WO2005052601A1 - Acceleration detection device - Google Patents

Acceleration detection device Download PDF

Info

Publication number
WO2005052601A1
WO2005052601A1 PCT/JP2004/014632 JP2004014632W WO2005052601A1 WO 2005052601 A1 WO2005052601 A1 WO 2005052601A1 JP 2004014632 W JP2004014632 W JP 2004014632W WO 2005052601 A1 WO2005052601 A1 WO 2005052601A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
mounting plane
sensor
outputs
axis
Prior art date
Application number
PCT/JP2004/014632
Other languages
French (fr)
Japanese (ja)
Inventor
Jun Tabota
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2005515740A priority Critical patent/JPWO2005052601A1/en
Publication of WO2005052601A1 publication Critical patent/WO2005052601A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions

Definitions

  • the present invention relates to an acceleration detection device, and more particularly to an acceleration detection device that can independently detect acceleration in two perpendicular directions using two acceleration sensors.
  • an acceleration sensor has been used to detect impact or acceleration applied to a magnetic hard disk device.
  • the structurally vulnerable to impact is the mechanism of the head arm 1 that is rotationally driven in a pivot shape as shown in FIG.
  • This mechanism is weak in the direction perpendicular to the surface of the magnetic disk 2 and in the radial direction, but relatively strong in the longitudinal direction of the head arm 1. Therefore, when detecting acceleration or impact in order to protect such a mechanism, it is effective to detect acceleration in two-axis directions, which is weaker than in all three-axis directions. This direction corresponds to a horizontal direction and a vertical direction with respect to the sensor mounting surface 3.
  • the acceleration applied in two directions of the X axis (or Y axis) and the Z axis Independent detection of the horizontal acceleration sensor 4 with at least the maximum sensitivity axis in the direction parallel to the XY plane 3 and the vertical acceleration sensor 5 with the maximum sensitivity axis in the Z-axis direction It is necessary to use different types of sensors.
  • the horizontal type sensor 4 and the vertical type sensor 5 often have completely different structures due to the mounting surface, so it is necessary to prepare two types of sensors separately, which increases the cost. there were.
  • two orthogonal surfaces comprising a horizontal mounting surface 6 and a vertical mounting surface 7 are provided, and the same type (for example, a horizontal type) sensor 8 is provided on these mounting surfaces 6, 7.
  • the same type for example, a horizontal type
  • sensor 8 is provided on these mounting surfaces 6, 7.
  • By attaching, 9 respectively it is also possible to measure acceleration in two directions of X axis and Z axis independently. In this case, the cost required for the sensor can be reduced. Since two orthogonal mounting surfaces 6 and 7 are required, there is a disadvantage that the thickness of a product such as an electronic device is increased.
  • Patent Document 1 discloses that two acceleration sensors whose maximum sensitivity axis directions with respect to the sensor mounting plane are neither parallel nor perpendicular to the mounting plane are mounted on the mounting plane in a direction orthogonal to X, ⁇ . Acceleration detectors have been proposed that can detect accelerations in three axes, Z and Z.
  • This device has the advantage of being able to detect a wide range of acceleration with a small number of acceleration sensors.
  • the force can be detected independently by detecting the relative ratio of the acceleration components of the three axes alone. Not in translation.
  • Patent Document 1 JP-A-8-201419
  • an object of the present invention is to mount two acceleration sensors on a single mounting plane so that acceleration in a direction parallel to the mounting plane and acceleration in a direction perpendicular to the mounting plane can be detected independently. It is to provide a device.
  • the invention according to claim 1 provides two acceleration sensors having the same sensitivity axis whose maximum sensitivity axis direction to the sensor mounting plane is neither parallel nor perpendicular to the mounting plane. Means for inverting by 180 ° in the mounting plane, means for calculating the sum (S + S) of the outputs S 1 and S 2 of the two acceleration sensors, and the outputs S 1 and S 2
  • an acceleration detection device characterized in that acceleration in a direction can be independently detected.
  • Two acceleration sensors whose maximum sensitivity axis direction with respect to the sensor mounting plane is oblique to the mounting plane are mounted to be inverted by 180 ° in the mounting plane.
  • the mounting plane is an XY plane and the sensitivity axis directions of the two sensors are arranged along the X axis direction
  • the outputs S and S of these acceleration sensors include components in the X axis direction and the Z axis direction .
  • accelerations are independent data that are not affected by each other, Acceleration can be detected individually.
  • the direction of the maximum sensitivity axis of the acceleration sensor is within a range of 20-70 ° in the vertical direction from the mounting plane.
  • the direction of the maximum sensitivity axis of the acceleration sensor used in the present invention with respect to the sensor mounting plane is neither parallel nor perpendicular to the mounting plane. That is, the angle 0 with respect to the mounting plane in the direction of the maximum sensitivity axis is 0 ° ⁇ ⁇ 90 °.
  • may be any angle.
  • the difference between the sensitivity in the X-axis direction and the sensitivity in the X-axis direction is preferably as small as possible. Therefore, it is better to set 20 ° ⁇ ⁇ 70 °.
  • the most desirable angle in the above range is 45 °. Because it is the force that can make the sensitivity of both XZ axes almost equal.
  • the acceleration sensor includes a detection element made of piezoelectric ceramics and an insulating case for housing the detection element, and the detection element is formed on a bottom surface of the insulation case forming a sensor mounting plane. It is stored and held in an oblique direction with respect to the object.
  • this sensor is small and inexpensive, and has a substantially constant maximum sensitivity axial direction, it can accurately detect the acceleration.
  • the means for determining (S) should have the function of independently adjusting the amplification factor.
  • the two-axis acceleration can be detected independently from the sum (S + S) and difference (S-S) of the outputs,
  • the amplification factor can be adjusted independently for the means for obtaining the sum and the means for obtaining the difference.
  • the sensitivity of sum and difference can be made the same, and acceleration in two axes can be detected with the same sensitivity.
  • two acceleration sensors whose maximum sensitivity axis direction with respect to the sensor mounting plane is oblique to the mounting plane are mounted to be inverted by 180 ° in the mounting plane. So, from the sum of the outputs of the two acceleration sensors (S + S), it is perpendicular to the mounting plane
  • Direction acceleration can be detected, and the acceleration parallel to the mounting plane can be calculated from the output difference (S-S).
  • FIG. 4 shows a first embodiment of the acceleration detection device according to the present invention.
  • an acceleration sensor A and an acceleration sensor B are mounted on a sensor mounting plane 10 by inverting 180 ° in the mounting plane 10.
  • the maximum sensitivity axis directions P and P of the sensors A and B with respect to the sensor mounting plane 10 are
  • the maximum sensitivity axis direction P of the acceleration sensor A is inclined in the Z axis direction by an angle ⁇ ⁇ ⁇ ⁇ with respect to the plus direction of the X axis.
  • the maximum sensitivity axis direction P of the acceleration sensor B is the angle ⁇ with respect to the minus direction of the X axis.
  • the two sensors A and B are arranged along the X-axis direction. However, if the directions are inverted by 180 ° in the mounting plane 10, the positions are arbitrary.
  • Sensors A and B are the same acceleration sensor, and have the same structure as that shown in Japanese Patent Application Laid-Open No. Hei 7-20144. That is, as shown in Fig. 5, a bimorph-type acceleration detection
  • the output element 20 is housed and supported in an insulative case 30 having a strength such as an insulating ceramic with both ends fixed.
  • the bottom surface of the case 30 is mounted on the mounting plane 10.
  • the acceleration detecting element 20 has a rectangular flat plate shape, and a pair of piezoelectric ceramic plates 23 having a signal electrode 21 and an intermediate electrode 22 formed on the front and back surfaces are face-to-face bonded, and the tilt angle corresponding to the direction of the maximum sensitivity axis P is formed. It was cut off at.
  • Each of the piezoelectric ceramic plates 23 joined via the intermediate electrode 22 is polarized (indicated by an arrow in FIG. 5) in the direction of its own thickness and in the opposite direction to the other side.
  • each of the signal electrodes 21 is drawn out to different ends along the longitudinal direction of each piezoelectric ceramic plate 23.
  • external electrodes from which the signal electrodes 21 of the acceleration detecting element 20 are drawn out are formed on the outer surface of the case 30, and are configured as surface-mounted chip components.
  • FIG. 6 shows a circuit block for processing the outputs of the acceleration sensors A and B mounted as shown in FIG.
  • the output of sensor A is amplified by first-stage amplifier 11 and input to adders 13 and 14.
  • the output of the sensor B is amplified by the first-stage amplifier 12 having the same amplification degree as the first-stage amplifier 11 and is input to the adder 13, and the output of the first-stage amplifier 12 is inverted by the inverter 15 before and after being inverted. It is input to the adder 14.
  • the adder 13 increases the output S of the sensor A amplified by the first-stage amplifier 11 and the output S of the sensor A by the first-stage amplifier 12.
  • the width of the output S of the sensor B is added.
  • the adder 14 is amplified by the first-stage amplifier 11.
  • an inverter 15 and an adder 14 were used to determine the output difference S — S.
  • acceleration outputs of sensors A and B be S and S (vectors), respectively, and use these as the X, ⁇ , and Z axes.
  • the sum output (S + S) operates as a vertical sensor with main axis sensitivity in the ⁇ axis direction.
  • the difference output (s-S) works as a horizontal type sensor with main axis sensitivity in the X-axis direction.
  • Fig. 7 shows the X: Z sensitivity ratio of the acceleration sensor A alone and the sensitivity ratio of X (S-S): Z (S + S) by the acceleration sensors A and B according to the maximum sensitivity axis angle ⁇ . It is.
  • 0 has no sensitivity in the direction of one of X and ⁇ ⁇ at 0 ° and 90 °, but other angles can be used.
  • the most desirable angle ⁇ is 45 °, It can be used without any problem in the range of 20 °-70 °.
  • accelerations in the X and Z axis directions are independently detected using two sensors A and B having the same sensitivity axis angle ⁇ , but as shown in FIG. It is also possible to independently detect acceleration in the X, ⁇ , and Z-axis directions using three sensors A, B, and C having sensitivity axis angles ⁇ .
  • the sensors A and B are the same as in the first embodiment, and the sensor C is mounted on the mounting plane 10 in the Y-axis direction. That is, the sensor C is mounted in the direction orthogonal to the sensors A and B.
  • S vector
  • the acceleration of the ⁇ axis can be detected independently. Thereafter, by passing through an appropriate amplifier as in the first embodiment, the sensitivities of X, ⁇ , and ⁇ ⁇ ⁇ can be made uniform.
  • accelerations in the X, ⁇ , and ⁇ -axis directions can be independently detected. Therefore, sensitivity adjustment is easy and the cost of the acceleration sensor can be reduced.
  • the acceleration detection device according to the present invention is not limited to the above embodiment.
  • the sensor shown in Fig. 5 was used as the acceleration sensor, it is not limited to this, but any sensor that has a sensitivity axis with a constant angle ⁇ and that has a fixed mounting angle with respect to the mounting plane can be used. .
  • Fig. 8 shows an example in which three sensors A, ⁇ , and C with the same angle ⁇ are used to independently detect acceleration in the X, ⁇ , and ⁇ three-axis directions. Not something.
  • Example instead of the sensor c having an oblique sensitivity axis, a known horizontal type acceleration sensor can be attached in the Y-axis direction to independently detect acceleration in the X, ⁇ , and Z-axis directions. . In this case, it is not necessary to perform the calculation as in the second embodiment.
  • FIG. 1 is a schematic diagram of a magnetic hard disk drive.
  • FIG. 2 is a perspective view of an acceleration detection device in which two types of acceleration sensors are mounted on one mounting plane.
  • FIG. 3 is a perspective view of an acceleration detection device in which two acceleration sensors are attached to two orthogonal attachment planes.
  • FIG. 4 is a perspective view of the acceleration detecting device according to the first embodiment of the present invention in a mounted state.
  • FIG. 5 is a perspective view of an example of an acceleration sensor used in the present invention.
  • FIG. 6 is a circuit block diagram for processing an output of an acceleration sensor according to the present invention.
  • FIG. 8 is a perspective view of an acceleration detecting device according to a second embodiment of the present invention in a mounted state. Explanation of symbols

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

[PROBLEMS] To provide an acceleration detection device capable of independently detecting an acceleration in a direction parallel with a mounting plane and an acceleration in a direction vertical thereto by mounting two acceleration sensors on one mounting plane. [MEANS FOR SOLVING PROBLEMS] These two same acceleration sensors (A) and (B) having the directions of axes of the maximum sensitivities relative to the sensor mounting plane (10) angled by θ relative to the mounting plane (10) are installed in the mounting plane (10) in the state of being inverted by 180˚each other. The acceleration in the direction vertical to the mounting plane can be provided by using the sum (SA + SB) of outputs (SA) and (SB) from the two acceleration sensors, and the acceleration in the direction parallel with the mounting plane can be detected by using a difference (SA - SB) between the outputs (SA) and (SB) independently of the acceleration in the vertical direction.

Description

明 細 書  Specification
加速度検出装置  Acceleration detector
技術分野  Technical field
[0001] 本発明は加速度検出装置、特に 2つの加速度センサを用いて直角な 2方向の加速 度を独立して検出できる加速度検出装置に関するものである。  The present invention relates to an acceleration detection device, and more particularly to an acceleration detection device that can independently detect acceleration in two perpendicular directions using two acceleration sensors.
背景技術  Background art
[0002] 従来、磁気ハードディスク装置に加わる衝撃や加速度を検出するために、加速度セ ンサが用いられている。磁気ハードディスク装置の場合、構造的に衝撃に弱い部分 は、図 1に示すピボット状に回転駆動するヘッドアーム 1の機構である。この機構は、 磁気ディスク 2の面に垂直な方向と半径方向には弱いが、ヘッドアーム 1の長手方向 には比較的強い。したがって、このような機構の保護のために、加速度又は衝撃を検 出する場合は、 3軸方向全てである必要はなぐより弱い 2軸方向の加速度を検出す ることが効果的である。この方向は、センサ取付面 3に対して、水平方向と垂直方向 に相当する。  [0002] Conventionally, an acceleration sensor has been used to detect impact or acceleration applied to a magnetic hard disk device. In the case of a magnetic hard disk drive, the structurally vulnerable to impact is the mechanism of the head arm 1 that is rotationally driven in a pivot shape as shown in FIG. This mechanism is weak in the direction perpendicular to the surface of the magnetic disk 2 and in the radial direction, but relatively strong in the longitudinal direction of the head arm 1. Therefore, when detecting acceleration or impact in order to protect such a mechanism, it is effective to detect acceleration in two-axis directions, which is weaker than in all three-axis directions. This direction corresponds to a horizontal direction and a vertical direction with respect to the sensor mounting surface 3.
[0003] 図 2に示すように、加速度センサの取付平面 3を XY平面とし、これに垂直な方向を Z 方向とした場合、 X軸 (又は Y軸)と Z軸との 2方向に加わる加速度を独立して検出す るには、少なくとも XY平面 3に平行な方向に最大感度軸を持つ水平タイプの加速度 センサ 4と、 Z軸方向に最大感度軸を持つ垂直タイプの加速度センサ 5との 2種類の センサを用いる必要がある。  [0003] As shown in FIG. 2, when the mounting plane 3 of the acceleration sensor is an XY plane and the direction perpendicular to the XY plane is the Z direction, the acceleration applied in two directions of the X axis (or Y axis) and the Z axis Independent detection of the horizontal acceleration sensor 4 with at least the maximum sensitivity axis in the direction parallel to the XY plane 3 and the vertical acceleration sensor 5 with the maximum sensitivity axis in the Z-axis direction It is necessary to use different types of sensors.
しかし、水平タイプのセンサ 4と垂直タイプのセンサ 5は、取付面との関係でその構造 が全く異なる場合が多ぐ 2種類のセンサを別々に用意する必要があるため、コスト高 になる不都合があった。  However, the horizontal type sensor 4 and the vertical type sensor 5 often have completely different structures due to the mounting surface, so it is necessary to prepare two types of sensors separately, which increases the cost. there were.
[0004] 一方、図 3に示すように、水平な取付面 6と垂直な取付面 7とからなる直交する 2面を 設け、これら取付面 6, 7に同一タイプ(例えば水平タイプ)のセンサ 8, 9をそれぞれ 取り付けることで、 X軸と Z軸との 2方向の加速度を独立して測定することも可能である 。この場合には、センサに力かるコストは低減できる力 直交する 2つの取付面 6, 7を 必要とするため、電子機器などの製品の厚みが大きくなるという欠点があった。 [0005] 特許文献 1には、センサ取付平面に対する最大感度軸方向が取付平面に対して平 行でも垂直でもない 2個の加速度センサを、取付平面上に直交方向に取り付けること で、 X, Υ, Zの 3軸の加速度を検出できる加速度検出装置が提案されている。 [0004] On the other hand, as shown in FIG. 3, two orthogonal surfaces comprising a horizontal mounting surface 6 and a vertical mounting surface 7 are provided, and the same type (for example, a horizontal type) sensor 8 is provided on these mounting surfaces 6, 7. By attaching, 9 respectively, it is also possible to measure acceleration in two directions of X axis and Z axis independently. In this case, the cost required for the sensor can be reduced. Since two orthogonal mounting surfaces 6 and 7 are required, there is a disadvantage that the thickness of a product such as an electronic device is increased. [0005] Patent Document 1 discloses that two acceleration sensors whose maximum sensitivity axis directions with respect to the sensor mounting plane are neither parallel nor perpendicular to the mounting plane are mounted on the mounting plane in a direction orthogonal to X, Υ. Acceleration detectors have been proposed that can detect accelerations in three axes, Z and Z.
この装置は、少な 、個数の加速度センサで広 、範囲の加速度を検出できる利点はあ る力 3軸の加速度成分の相対的な比を検出するだけで、各軸の加速度を独立して 検出できる訳ではない。  This device has the advantage of being able to detect a wide range of acceleration with a small number of acceleration sensors.The force can be detected independently by detecting the relative ratio of the acceleration components of the three axes alone. Not in translation.
特許文献 1:特開平 8— 201419号公報  Patent Document 1: JP-A-8-201419
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] そこで、本発明の目的は、 1つの取付平面上に 2個の加速度センサを取り付けること で、取付平面に平行な方向の加速度と垂直な方向の加速度とを独立して検出できる 加速度検出装置を提供することにある。 [0006] Therefore, an object of the present invention is to mount two acceleration sensors on a single mounting plane so that acceleration in a direction parallel to the mounting plane and acceleration in a direction perpendicular to the mounting plane can be detected independently. It is to provide a device.
課題を解決するための手段  Means for solving the problem
[0007] 前記目的を達成するため、請求項 1に記載の発明は、センサ取付平面に対する最大 感度軸方向が前記取付平面に対して平行でも垂直でもない同一の感度軸を持つ 2 個の加速度センサを、前記取付平面内で 180° 反転して取り付けるとともに、前記 2 個の加速度センサの出力 S , S の和(S +S )を求める手段と、前記出力 S , S [0007] In order to achieve the above object, the invention according to claim 1 provides two acceleration sensors having the same sensitivity axis whose maximum sensitivity axis direction to the sensor mounting plane is neither parallel nor perpendicular to the mounting plane. Means for inverting by 180 ° in the mounting plane, means for calculating the sum (S + S) of the outputs S 1 and S 2 of the two acceleration sensors, and the outputs S 1 and S 2
A B A B A B  A B A B A B
の差 (S — S )を求める手段とを設け、前記出力の和(S +S )から前記取付平面 And means for determining the difference (S—S) between the mounting planes are calculated from the sum of the outputs (S + S).
A B A B A B A B
に垂直な方向の加速度を、前記出力の差 (S — S )から前記取付平面に平行な方  The acceleration in the direction perpendicular to the mounting plane from the output difference (S-S)
A B  A B
向の加速度を独立に検出可能としたことを特徴とする加速度検出装置を提供する。  Provided is an acceleration detection device characterized in that acceleration in a direction can be independently detected.
[0008] センサ取付平面に対する最大感度軸方向が取付平面に対して斜め方向の 2個の加 速度センサを、取付平面内で 180° 反転して取り付ける。例えば取付平面を XY平 面とし、 2個のセンサの感度軸方向を X軸方向に沿って並べると、これら加速度セン サの出力 S , S には X軸方向と Z軸方向の成分が含まれる。 2つの加速度センサの [0008] Two acceleration sensors whose maximum sensitivity axis direction with respect to the sensor mounting plane is oblique to the mounting plane are mounted to be inverted by 180 ° in the mounting plane. For example, if the mounting plane is an XY plane and the sensitivity axis directions of the two sensors are arranged along the X axis direction, the outputs S and S of these acceleration sensors include components in the X axis direction and the Z axis direction . Of two acceleration sensors
A B  A B
感度軸方向が 180° 反転しているから、出力 S , S の Z軸方向の成分は同じで、 X  Since the sensitivity axis direction is inverted by 180 °, the components of the outputs S and S in the Z-axis direction are the same and X
A B  A B
軸方向の成分が正負逆転している。したがって、これら出力の和(S +S )から Z軸  The component in the axial direction is reversed. Therefore, the sum of these outputs (S + S)
A B  A B
方向の加速度を検出でき、これら出力の差 (S — S )から X軸方向の加速度を検出  Direction acceleration can be detected, and the X-axis direction acceleration is detected from the difference between these outputs (S-S).
A B  A B
できる。これら加速度は、互いに影響を受けない独立したデータであるから、各軸の 加速度を個別に検出できる。 it can. Since these accelerations are independent data that are not affected by each other, Acceleration can be detected individually.
このように本発明では、同一の最大感度軸を持った同じ加速度センサを 2個用い、か つ 1つのセンサ取付平面上に反転させて取り付けるだけでよいので、加速度センサ のコストを低くできるとともに、製品の厚みが増大することがない。  As described above, in the present invention, it is only necessary to use two identical acceleration sensors having the same maximum sensitivity axis and mount them in a reversed manner on one sensor mounting plane, so that the cost of the acceleration sensor can be reduced and The thickness of the product does not increase.
[0009] 請求項 2のように、加速度センサの最大感度軸方向が、取付平面から垂直方向に 20 一 70° の範囲内にあるのがよい。 [0009] As described in claim 2, it is preferable that the direction of the maximum sensitivity axis of the acceleration sensor is within a range of 20-70 ° in the vertical direction from the mounting plane.
本発明で使用する加速度センサのセンサ取付平面に対する最大感度軸方向は、取 付平面に対して平行でも垂直でもない。つまり、最大感度軸方向の取付平面に対す る角度 0は 0° < Θ < 90° である。  The direction of the maximum sensitivity axis of the acceleration sensor used in the present invention with respect to the sensor mounting plane is neither parallel nor perpendicular to the mounting plane. That is, the angle 0 with respect to the mounting plane in the direction of the maximum sensitivity axis is 0 ° <Θ <90 °.
0 =0° および 90° においては、 X, Zの一方の軸方向に感度を持たないが、それ 以外であれば、 Θは任意の角度でよい。但し、より高感度で検出するには、 X軸方向 の感度と X軸方向の感度との差ができるだけ小さい方がよぐそのため 20° ≤ Θ≤7 0° とするのがよい。  At 0 = 0 ° and 90 °, there is no sensitivity in one of the X and Z axes. Otherwise, Θ may be any angle. However, in order to detect with higher sensitivity, the difference between the sensitivity in the X-axis direction and the sensitivity in the X-axis direction is preferably as small as possible. Therefore, it is better to set 20 ° ≤ Θ≤70 °.
前記範囲の中でも、最も望ましい Θは 45° である。なぜなら、 XZ両軸の感度をほぼ 等しくできる力 である。  The most desirable angle in the above range is 45 °. Because it is the force that can make the sensitivity of both XZ axes almost equal.
[0010] 請求項 3のように、加速度センサは、圧電セラミックスよりなる検出素子と、この検出素 子を収納する絶縁ケースよりなり、前記検出素子は、センサ取付平面を構成する絶 縁ケースの底面に対して斜め方向に収納保持されて 、るものがよ 、。 [0010] According to claim 3, the acceleration sensor includes a detection element made of piezoelectric ceramics and an insulating case for housing the detection element, and the detection element is formed on a bottom surface of the insulation case forming a sensor mounting plane. It is stored and held in an oblique direction with respect to the object.
このような加速度センサとしては、例えば特開平 7— 20144号公報に示されたものが ある。  An example of such an acceleration sensor is disclosed in Japanese Patent Application Laid-Open No. Hei 7-20144.
このセンサは、小型で安価であり、かつ最大感度軸方向がほぼ一定しているので、加 速度を精度よく検出できる。  Since this sensor is small and inexpensive, and has a substantially constant maximum sensitivity axial direction, it can accurately detect the acceleration.
[0011] 請求項 4のように、 2個の加速度センサの出力の和(S +S )を求める手段と、差(S [0011] As in claim 4, means for obtaining the sum (S + S) of the outputs of the two acceleration sensors and the difference (S
A B  A B
S )を求める手段は、それぞれ独立して増幅率を調整できる機能を有するのがよ The means for determining (S) should have the function of independently adjusting the amplification factor.
A B A B
い。  No.
出力の和(S +S )と差 (S — S )から 2軸の加速度を独立して検出できるが、最大  The two-axis acceleration can be detected independently from the sum (S + S) and difference (S-S) of the outputs,
A B A B  A B A B
感度軸方向の取付平面に対する角度 0が 45° 以外であれば、和差の感度が異なる ことになる。そこで、和を求める手段と差を求める手段に独立して増幅率を調整できる 機能を付加することで、和差の感度を同一にでき、 2軸の加速度を同一の感度で検 出できる。 If the angle 0 to the mounting plane in the direction of the sensitivity axis is other than 45 °, the sensitivity of the sum difference will be different. Therefore, the amplification factor can be adjusted independently for the means for obtaining the sum and the means for obtaining the difference. By adding the function, the sensitivity of sum and difference can be made the same, and acceleration in two axes can be detected with the same sensitivity.
発明の効果  The invention's effect
[0012] 請求項 1に記載の発明によれば、センサ取付平面に対する最大感度軸方向が取付 平面に対して斜め方向の 2個の加速度センサを、取付平面内で 180° 反転して取り 付けたので、 2個の加速度センサの出力の和(S +S )から取付平面に対して垂直  [0012] According to the invention described in claim 1, two acceleration sensors whose maximum sensitivity axis direction with respect to the sensor mounting plane is oblique to the mounting plane are mounted to be inverted by 180 ° in the mounting plane. So, from the sum of the outputs of the two acceleration sensors (S + S), it is perpendicular to the mounting plane
A B  A B
方向の加速度を検出でき、出力の差 (S — S )から取付平面に対して平行な加速度  Direction acceleration can be detected, and the acceleration parallel to the mounting plane can be calculated from the output difference (S-S).
A B  A B
を検出できる。し力も、これら加速度は独立したデータであるから、各軸の加速度を個 別に検出できる。  Can be detected. Since these accelerations are independent data, the acceleration of each axis can be detected individually.
また、本発明では、全く同じ加速度センサを 2個用いればよいので、加速度センサの コストを低くできるとともに、これらセンサを 1つのセンサ取付平面上に反転させて取り 付けるだけでよいので、薄型に構成でき、製品の厚みが増大する問題を解消できる。 発明を実施するための最良の形態  Further, in the present invention, since two identical acceleration sensors may be used, the cost of the acceleration sensor can be reduced, and these sensors need only be inverted and mounted on one sensor mounting plane. The problem that the thickness of the product increases can be solved. BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下に、本発明の実施の形態を、実施例を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to examples.
実施例 1  Example 1
[0014] 図 4は本発明にかかる加速度検出装置の第 1実施例を示す。  FIG. 4 shows a first embodiment of the acceleration detection device according to the present invention.
この加速度検出装置は、センサ取付平面 10上に、加速度センサ Aと加速度センサ B とを取付平面 10内で 180° 反転して取り付けたものである。センサ A, Bのセンサ取 付平面 10に対する最大感度軸方向 P , P は、取付平面 10に対して角度 0だけ傾  In this acceleration detection device, an acceleration sensor A and an acceleration sensor B are mounted on a sensor mounting plane 10 by inverting 180 ° in the mounting plane 10. The maximum sensitivity axis directions P and P of the sensors A and B with respect to the sensor mounting plane 10 are
A B  A B
いている。  Have been.
図 4において、取付平面 10を XY平面とすると、この実施例では加速度センサ Aの最 大感度軸方向 P は、 X軸のプラス方向に対して角度 Θだけ Z軸方向に傾いており、  In FIG. 4, assuming that the mounting plane 10 is an XY plane, in this embodiment, the maximum sensitivity axis direction P of the acceleration sensor A is inclined in the Z axis direction by an angle に 対 し て with respect to the plus direction of the X axis.
A  A
加速度センサ Bの最大感度軸方向 P は、 X軸のマイナス方向に対して角度 Θだけ Z  The maximum sensitivity axis direction P of the acceleration sensor B is the angle Θ with respect to the minus direction of the X axis.
B  B
軸方向に傾いている。  It is inclined in the axial direction.
ここでは、 2個のセンサ A, Bを X軸方向に沿って配置したが、向きが取付平面 10内 で 180° 反転しておれば、位置は任意である。  Here, the two sensors A and B are arranged along the X-axis direction. However, if the directions are inverted by 180 ° in the mounting plane 10, the positions are arbitrary.
[0015] センサ Aおよび Bは、同一の加速度センサであり、その構造は特開平 7— 20144号公 報に示すものと同様である。すなわち、図 5に示すように、バイモルフ型の加速度検 出素子 20を、絶縁セラミック等力もなる絶縁性のケース 30内に両端固定構造で収納 支持したものである。ケース 30の底面が前記取付平面 10に取り付けられる。 [0015] Sensors A and B are the same acceleration sensor, and have the same structure as that shown in Japanese Patent Application Laid-Open No. Hei 7-20144. That is, as shown in Fig. 5, a bimorph-type acceleration detection The output element 20 is housed and supported in an insulative case 30 having a strength such as an insulating ceramic with both ends fixed. The bottom surface of the case 30 is mounted on the mounting plane 10.
加速度検出素子 20は、矩形平板状とされ、表裏面上に信号電極 21および中間電極 22が形成された一対の圧電セラミック板 23を対面接合した上、これを最大感度軸 P 方向に見合う傾斜角度で切り落としたものである。なお、中間電極 22を介して接合さ れた圧電セラミック板 23の各々力 自らの厚み方向に沿いつつ他方側とは逆向きに 分極処理(図 5に矢印で示す)されている。また、信号電極 21のそれぞれが各圧電セ ラミック板 23の長手方向に沿って互いに異なる端部まで引き出されている。なお、図 示していないが、ケース 30の外面には、加速度検出素子 20の信号電極 21のそれぞ れが引き出された外部電極が形成され、表面実装型のチップ部品として構成されて いる。  The acceleration detecting element 20 has a rectangular flat plate shape, and a pair of piezoelectric ceramic plates 23 having a signal electrode 21 and an intermediate electrode 22 formed on the front and back surfaces are face-to-face bonded, and the tilt angle corresponding to the direction of the maximum sensitivity axis P is formed. It was cut off at. Each of the piezoelectric ceramic plates 23 joined via the intermediate electrode 22 is polarized (indicated by an arrow in FIG. 5) in the direction of its own thickness and in the opposite direction to the other side. Further, each of the signal electrodes 21 is drawn out to different ends along the longitudinal direction of each piezoelectric ceramic plate 23. Although not shown, external electrodes from which the signal electrodes 21 of the acceleration detecting element 20 are drawn out are formed on the outer surface of the case 30, and are configured as surface-mounted chip components.
[0016] 図 6は、図 4のように取り付けられた加速度センサ A, Bの出力を処理する回路ブロッ クを示す。  FIG. 6 shows a circuit block for processing the outputs of the acceleration sensors A and B mounted as shown in FIG.
図において、センサ Aの出力は初段アンプ 11で増幅され、加算器 13と加算器 14と に入力される。一方、センサ Bの出力は、初段アンプ 11と同一の増幅度を持つ初段 アンプ 12で増幅され、加算器 13に入力されるとともに、初段アンプ 12の出力をイン バータ 15で正負反転させた上、加算器 14に入力される。  In the figure, the output of sensor A is amplified by first-stage amplifier 11 and input to adders 13 and 14. On the other hand, the output of the sensor B is amplified by the first-stage amplifier 12 having the same amplification degree as the first-stage amplifier 11 and is input to the adder 13, and the output of the first-stage amplifier 12 is inverted by the inverter 15 before and after being inverted. It is input to the adder 14.
加算器 13は、初段アンプ 11で増幅されたセンサ Aの出力 S と、初段アンプ 12で増  The adder 13 increases the output S of the sensor A amplified by the first-stage amplifier 11 and the output S of the sensor A by the first-stage amplifier 12.
A  A
幅されたセンサ Bの出力 S とを加算する。一方、加算器 14は、初段アンプ 11で増幅  The width of the output S of the sensor B is added. On the other hand, the adder 14 is amplified by the first-stage amplifier 11.
B  B
されたセンサ Aの出力 S と、初段アンプ 12で増幅されインバータ 15で反転されたセ  Output S of the sensor A and the sensor amplified by the first-stage amplifier 12 and inverted by the inverter 15.
A  A
ンサ Bの出力— S とを加算する。つまり、加算器 13は S +S を出力し、加算器 14  Add the output of sensor B—S. That is, the adder 13 outputs S + S and the adder 14
B A B  B A B
は S — S を出力する。  Returns S — S.
A B  A B
この例では、出力の差 S — S を求めるために、インバータ 15と加算器 14とを用いた  In this example, an inverter 15 and an adder 14 were used to determine the output difference S — S.
A B  A B
力 公知の減算器を用いることもできる。  Force A well-known subtractor can also be used.
[0017] ここで、本発明の測定原理を説明する。 Here, the measurement principle of the present invention will be described.
センサ A, Bの加速度出力をそれぞれ S , S (ベクトル)とし、これを X, Υ, Zの各軸  Let the acceleration outputs of sensors A and B be S and S (vectors), respectively, and use these as the X, Υ, and Z axes.
A B  A B
の成分で表すと、  Expressed by the components of
S = (K cos θ , 0, K sin θ ) S = (— K cos θ , 0, K sin 0 ) S = (K cos θ, 0, K sin θ) S = (— K cos θ, 0, K sin 0)
B B B  B B B
となる。ここで、 K 、K は各センサの感度である。 It becomes. Where K and K are the sensitivities of each sensor.
A B  A B
次に、センサ A, Bの出力の和(S +S )と差 (S — S )とを考える。 Next, the sum (S + S) and the difference (S−S) of the outputs of the sensors A and B are considered.
A B A B  A B A B
(S +S ) = ( (K — K ) cos 0 , 0, (K +K ) sin Θ )  (S + S) = ((K — K) cos 0, 0, (K + K) sin Θ)
A B A B A B  A B A B A B
(S -S ) = ( (K +K ) cos 0 , 0, (K — K ) sin Θ )  (S -S) = ((K + K) cos 0, 0, (K — K) sin Θ)
A B A B A B  A B A B A B
ここで、各センサの感度を K =κ =κとすると、 Here, if the sensitivity of each sensor is K = κ = κ,
A B  A B
(S +S ) = (0, 0, 2Ksin Θ )  (S + S) = (0, 0, 2Ksin Θ)
A B  A B
(S -S ) = (2Kcos Θ, 0, 0)  (S -S) = (2Kcos Θ, 0, 0)
A B  A B
となる。 It becomes.
つまり、和出力(S +S )は∑軸方向に主軸感度を持つ垂直タイプのセンサとして働 In other words, the sum output (S + S) operates as a vertical sensor with main axis sensitivity in the ∑ axis direction.
A B  A B
き、差出力(s -S )は X軸方向に主軸感度を持つ水平タイプのセンサとして働く。 In this case, the difference output (s-S) works as a horizontal type sensor with main axis sensitivity in the X-axis direction.
A B  A B
例えば、 Θ = 25° のセンサ A, Bを使用した場合には、 For example, if sensors A and B with Θ = 25 ° are used,
(S +S ) = (0, 0, 0. 845K) (S + S) = (0, 0, 0.845K)
A B  A B
(S — S ) = (1. 813K, 0, 0)  (S — S) = (1. 813K, 0, 0)
A B  A B
となる。つまり、感度 0. 845Kを持つ垂直タイプのセンサと、感度 1. 813Kを持つ水 平タイプのセンサとを設けたのと等価となる。 It becomes. In other words, this is equivalent to providing a vertical sensor with a sensitivity of 0.845K and a horizontal sensor with a sensitivity of 1.813K.
このようにして 2軸を独立して測定できる加速度検出装置を実現できる力 和差の感 度が異なるので、和出力または差出力の一方または双方を補正して感度を同一にす るのが望ましい。その場合には、加算器 13, 14に独立に増幅率を調整できる機能を 付カロし、例えば Θ = 25° の場合には、加算器 13, 14の増幅率の比を、前述の感度 比の逆比である 1. 813 : 0. 845に設定すればよい。 In this way, the sensitivity of the sum-of-differences that can realize an acceleration detection device that can measure two axes independently is different. . In that case, adders 13 and 14 are provided with a function to adjust the gain independently.For example, when Θ = 25 °, the ratio of the gains of the adders 13 and 14 is calculated as the sensitivity ratio It should be set to the inverse ratio of 1.813: 0.845.
図 7は最大感度軸方向の角度 Θによる加速度センサ A単独の X:Zの感度比、及び 加速度センサ A, Bによる X(S — S ) :Z (S +S )の感度比を表したものである。こ Fig. 7 shows the X: Z sensitivity ratio of the acceleration sensor A alone and the sensitivity ratio of X (S-S): Z (S + S) by the acceleration sensors A and B according to the maximum sensitivity axis angle Θ. It is. This
A B A B  A B A B
こで、 K= lとする。 Here, K = l.
図 7より、 0は 0° および 90° では X, Ζの一方の軸方向に感度を持たないが、それ 以外であれば、任意の角度のものを使用できる。但し、加算器 13, 14の増幅率で X , Ζ両軸の感度を同一にできるといっても、 SZN等の問題もあり、調整前の両軸の感 度はできるだけ等しいことが望ましい。従って、最も望ましい角度 Θは 45° であり、概 ね 20° — 70° の範囲であれば、問題なく使うことができる。 According to Fig. 7, 0 has no sensitivity in the direction of one of X and で は at 0 ° and 90 °, but other angles can be used. However, even if the gains of the adders 13 and 14 can make the sensitivities of the X and 軸 axes the same, there is a problem of SZN and so on. Therefore, the most desirable angle Θ is 45 °, It can be used without any problem in the range of 20 °-70 °.
実施例 2  Example 2
[0019] 実施例 1では、同一の感度軸角度 Θを持つ 2個のセンサ A, Bを用いて X, Z軸方向 の加速度を独立して検出したが、図 8に示すように、同一の感度軸角度 Θを持つ 3個 のセンサ A, B, Cを用いて X, Υ, Z3軸方向の加速度を独立して検出することも可能 である。センサ A, Bは実施例 1と同じであり、センサ Cは Y軸方向に向けて取付平面 10に取り付ける。つまり、センサ Cをセンサ A, Bに対して直交方向に取り付ける。  In the first embodiment, accelerations in the X and Z axis directions are independently detected using two sensors A and B having the same sensitivity axis angle Θ, but as shown in FIG. It is also possible to independently detect acceleration in the X, Υ, and Z-axis directions using three sensors A, B, and C having sensitivity axis angles Θ. The sensors A and B are the same as in the first embodiment, and the sensor C is mounted on the mounting plane 10 in the Y-axis direction. That is, the sensor C is mounted in the direction orthogonal to the sensors A and B.
[0020] センサ Cの X, Υ, Z軸方向の感度を S (ベクトル)とし、これを各軸の成分で表すと、  [0020] The sensitivity of the sensor C in the X, Υ, and Z-axis directions is represented by S (vector), which is represented by a component of each axis.
C  C
S = (0, K cos Θ, K sin Θ )  S = (0, K cos Θ, K sin Θ)
C C C  C C C
となる。  It becomes.
ここで、センサ cの感度 κ C =κA =κB =κとすると、  Here, assuming that the sensitivity of sensor c is κ C = κA = κB = κ,
S = (0, Kcos Θ , Ksin Θ )  S = (0, Kcos Θ, Ksin Θ)
c  c
となる。  It becomes.
センサ Cの出力 S を 2倍したものから和出力(S +S )を差し引くと、  Subtracting the sum output (S + S) from twice the output S of sensor C gives
C A B  C A B
2S 一(S +S )  2S one (S + S)
C A B  C A B
= (0, 2Kcos Θ , 2Ksin θ )-(0, 0, 2Ksin θ )  = (0, 2Kcos Θ, 2Ksin θ)-(0, 0, 2Ksin θ)
= (0, 2Kcos θ , 0)  = (0, 2Kcos θ, 0)
となり、独立に Υ軸の加速度を検出できることがわかる。この後、実施例 1と同様に適 当な増幅器を通すことで、 X, Υ, Ζの感度を同一に揃えることができる。  It can be seen that the acceleration of the Υ axis can be detected independently. Thereafter, by passing through an appropriate amplifier as in the first embodiment, the sensitivities of X, Υ, and で き る can be made uniform.
この実施例では、同一の 3個のセンサを取付平面 10上に所定の向きで固定すること で、 X, Υ, Ζ3軸方向の加速度を独立して検出することができる。そのため、感度調 整が容易であり、かつ加速度センサのコストを低くできる。  In this embodiment, by fixing the same three sensors on the mounting plane 10 in a predetermined direction, accelerations in the X, 加速度, and Ζ-axis directions can be independently detected. Therefore, sensitivity adjustment is easy and the cost of the acceleration sensor can be reduced.
[0021] 本発明にかかる加速度検出装置は、前記実施例に限定されるものではない。 The acceleration detection device according to the present invention is not limited to the above embodiment.
加速度センサとして、図 5に示すものを使用したが、これに限るものではなぐ一定角 度 Θの感度軸を持ち、取付平面に対する取付角度が一定しているものであれば、使 用可能である。  Although the sensor shown in Fig. 5 was used as the acceleration sensor, it is not limited to this, but any sensor that has a sensitivity axis with a constant angle Θ and that has a fixed mounting angle with respect to the mounting plane can be used. .
また、図 8では、 X, Υ, Ζ3軸方向の加速度を独立して検出するために、同一の角度 Θを持つ 3個のセンサ A, Β, Cを用いた例を示した力 これに限るものではない。例 えば、斜め方向の感度軸を持つセンサ cに代えて、公知の水平タイプの加速度セン サを Y軸方向に取り付けることで、 X, Υ, Z3軸方向の加速度を独立して検出すること もできる。この場合は、実施例 2のような計算を行う必要がない。 Fig. 8 shows an example in which three sensors A, Β, and C with the same angle Θ are used to independently detect acceleration in the X, Υ, and Ζ three-axis directions. Not something. Example For example, instead of the sensor c having an oblique sensitivity axis, a known horizontal type acceleration sensor can be attached in the Y-axis direction to independently detect acceleration in the X, Υ, and Z-axis directions. . In this case, it is not necessary to perform the calculation as in the second embodiment.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]磁気ハードディスク装置の概略図である。 FIG. 1 is a schematic diagram of a magnetic hard disk drive.
[図 2]1つの取付平面に 2種類の加速度センサを取り付けた加速度検出装置の斜視 図である。  FIG. 2 is a perspective view of an acceleration detection device in which two types of acceleration sensors are mounted on one mounting plane.
[図 3]直交する 2つの取付平面に 2個の加速度センサを取り付けた加速度検出装置 の斜視図である。  FIG. 3 is a perspective view of an acceleration detection device in which two acceleration sensors are attached to two orthogonal attachment planes.
[図 4]本発明にかかる加速度検出装置の第 1実施例の取付状態の斜視図である。  FIG. 4 is a perspective view of the acceleration detecting device according to the first embodiment of the present invention in a mounted state.
[図 5]本発明で使用される加速度センサの一例の斜視図である。  FIG. 5 is a perspective view of an example of an acceleration sensor used in the present invention.
[図 6]本発明に力かる加速度センサの出力を処理する回路ブロック図である。  FIG. 6 is a circuit block diagram for processing an output of an acceleration sensor according to the present invention.
[図 7]最大感度軸方向の角度 Θによる X:Zの感度比および (S — S ) : (S +S )の  [Fig.7] Sensitivity ratio of X: Z and angle of maximum sensitivity axis direction Θ and (S — S): (S + S)
A B A B  A B A B
感度比を表す図である。  It is a figure showing a sensitivity ratio.
[図 8]本発明にかかる加速度検出装置の第 2実施例の取付状態の斜視図である。 符号の説明  FIG. 8 is a perspective view of an acceleration detecting device according to a second embodiment of the present invention in a mounted state. Explanation of symbols
[0023] A, B 加速度センサ [0023] A, B acceleration sensor
10 センサ取付平面  10 Sensor mounting surface
13, 14 加算器(出力の和を求める手段)  13, 14 Adder (means for calculating the sum of outputs)
15 インバータ  15 Inverter
20 加速度検出素子  20 Acceleration detector
30 ケース  30 cases

Claims

請求の範囲 The scope of the claims
[1] センサ取付平面に対する最大感度軸方向が前記取付平面に対して平行でも垂直で もない同一の感度軸を持つ 2個の加速度センサを、前記取付平面内で 180° 反転し て取り付けるとともに、前記 2個の加速度センサの出力 S , S の和(S +S )を求  [1] Two accelerometers having the same sensitivity axis whose maximum sensitivity axis direction to the sensor mounting plane is neither parallel nor perpendicular to the mounting plane are mounted 180 ° inverted in the mounting plane, The sum (S + S) of the outputs S 1 and S 2 of the two acceleration sensors is calculated.
A B A B  A B A B
める手段と、前記出力 S , S の差 (S — S )を求める手段とを設け、  Means for determining the difference (S—S) between the outputs S 1 and S 2,
A B A B  A B A B
前記出力の和(S +S )から前記取付平面に垂直な方向の加速度を、前記出力の  From the sum of the outputs (S + S), the acceleration in the direction perpendicular to the mounting plane is calculated as
A B  A B
差 (S — S )から前記取付平面に平行な方向の加速度を独立に検出可能としたこと Acceleration in the direction parallel to the mounting plane can be detected independently from the difference (S-S)
A B A B
を特徴とする加速度検出装置。  An acceleration detecting device characterized by the above-mentioned.
[2] 前記加速度センサの最大感度軸方向が、前記取付平面から垂直方向に 20— 70° の範囲内にあることを特徴とする請求項 1に記載の加速度検出装置。 2. The acceleration detection device according to claim 1, wherein a direction of a maximum sensitivity axis of the acceleration sensor is within a range of 20 to 70 degrees in a vertical direction from the mounting plane.
[3] 前記加速度センサは、圧電セラミックスよりなる検出素子と、この検出素子を収納する 絶縁ケースよりなり、 [3] The acceleration sensor includes a detection element made of piezoelectric ceramics, and an insulating case that houses the detection element,
前記検出素子は、センサ取付平面を構成する絶縁ケースの底面に対して斜め方向 に収納保持されていることを特徴とする請求項 1または 2に記載の加速度検出装置。  3. The acceleration detection device according to claim 1, wherein the detection element is housed and held obliquely with respect to a bottom surface of an insulating case forming a sensor mounting plane.
[4] 前記出力の和(S +S )を求める手段と、差 (S — S )を求める手段は、それぞれ [4] The means for obtaining the sum (S + S) of the outputs and the means for obtaining the difference (S—S)
A B A B  A B A B
独立して増幅率を調整できる機能を有することを特徴とする請求項 1な!ヽし 3の ヽず れかに記載の加速度検出装置。  4. The acceleration detecting device according to claim 1, wherein the acceleration detecting device has a function of independently adjusting an amplification factor.
PCT/JP2004/014632 2003-11-26 2004-10-05 Acceleration detection device WO2005052601A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515740A JPWO2005052601A1 (en) 2003-11-26 2004-10-05 Acceleration detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-395486 2003-11-26
JP2003395486 2003-11-26

Publications (1)

Publication Number Publication Date
WO2005052601A1 true WO2005052601A1 (en) 2005-06-09

Family

ID=34631487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014632 WO2005052601A1 (en) 2003-11-26 2004-10-05 Acceleration detection device

Country Status (2)

Country Link
JP (1) JPWO2005052601A1 (en)
WO (1) WO2005052601A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080800A1 (en) * 2012-11-20 2014-05-30 株式会社村田製作所 Acceleration sensor
US8794073B2 (en) 2009-08-25 2014-08-05 Nec Corporation Structure for attaching vibration sensor to storage device
US10614845B2 (en) 2018-03-08 2020-04-07 Kabushiki Kaisha Toshiba Actuator assembly having dual sensors for detecting the vibration on magnetic disk device
US20210132108A1 (en) * 2019-11-05 2021-05-06 Elektrobit Automotive Gmbh System for checking an inertial measurement unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140164A (en) * 1993-11-19 1995-06-02 Matsushita Electric Works Ltd Piezoelectric acceleration sensor
JPH08201418A (en) * 1995-01-23 1996-08-09 Murata Mfg Co Ltd Acceleration sensor mounting structure
JPH08327652A (en) * 1995-05-26 1996-12-13 Murata Mfg Co Ltd Acceleration sensor
JPH11183504A (en) * 1997-12-22 1999-07-09 Nec Home Electron Ltd On-vehicle acceleration measuring apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140164A (en) * 1993-11-19 1995-06-02 Matsushita Electric Works Ltd Piezoelectric acceleration sensor
JPH08201418A (en) * 1995-01-23 1996-08-09 Murata Mfg Co Ltd Acceleration sensor mounting structure
JPH08327652A (en) * 1995-05-26 1996-12-13 Murata Mfg Co Ltd Acceleration sensor
JPH11183504A (en) * 1997-12-22 1999-07-09 Nec Home Electron Ltd On-vehicle acceleration measuring apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8794073B2 (en) 2009-08-25 2014-08-05 Nec Corporation Structure for attaching vibration sensor to storage device
WO2014080800A1 (en) * 2012-11-20 2014-05-30 株式会社村田製作所 Acceleration sensor
US10614845B2 (en) 2018-03-08 2020-04-07 Kabushiki Kaisha Toshiba Actuator assembly having dual sensors for detecting the vibration on magnetic disk device
US10937454B2 (en) 2018-03-08 2021-03-02 Kabushiki Kaisha Toshiba Actuator assembly having dual sensors for detecting the vibration on magnetic disk device
US20210132108A1 (en) * 2019-11-05 2021-05-06 Elektrobit Automotive Gmbh System for checking an inertial measurement unit
US11906542B2 (en) * 2019-11-05 2024-02-20 Elektrobit Automotive Gmbh System for checking an inertial measurement unit

Also Published As

Publication number Publication date
JPWO2005052601A1 (en) 2007-12-06

Similar Documents

Publication Publication Date Title
US6462530B1 (en) Redundant rate sensor and method
US7253079B2 (en) Coplanar mounting member for a MEM sensor
US20030146358A1 (en) Sensing apparatus and movable body-mountable electronic equipment utilizing same
WO2008023573A1 (en) Combined sensor
JP5306570B2 (en) Vibrating gyro
US7096733B2 (en) Angular velocity sensor
WO2020195000A1 (en) Signal processing device, inertial force sensor, signal processing method, and program
WO2005052601A1 (en) Acceleration detection device
JP3147786B2 (en) Acceleration sensor
JP2006145329A (en) Acceleration sensor
JP3070424B2 (en) Accelerometer mounting structure
KR102337688B1 (en) Accelerometer and acoustic vector sensor having the same
JP2006337196A (en) Multiaxial acceleration detector
EP0897100B1 (en) Nondirectional touch signal probe
JP2006337197A (en) Acceleration detector
JP3118660B2 (en) 2-axis acceleration sensor
JP2002107374A (en) Acceleration sensor, acceleration detecting device, and positioning device
US20200200618A1 (en) Detection of strain direction in an integrated circuit
JPH08201419A (en) Acceleration sensor mounting structure
WO2003067266A1 (en) Piezoelectric acceleration sensor
JP3342748B2 (en) Acceleration sensor
JP2000164946A (en) Pyroelectric element
JPH0511893B2 (en)
JP2001324513A (en) Acceleration sensor
JP3109350B2 (en) Acceleration sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515740

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase