WO2014080800A1 - Acceleration sensor - Google Patents

Acceleration sensor Download PDF

Info

Publication number
WO2014080800A1
WO2014080800A1 PCT/JP2013/080568 JP2013080568W WO2014080800A1 WO 2014080800 A1 WO2014080800 A1 WO 2014080800A1 JP 2013080568 W JP2013080568 W JP 2013080568W WO 2014080800 A1 WO2014080800 A1 WO 2014080800A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
detection element
maximum sensitivity
acceleration detection
axis
Prior art date
Application number
PCT/JP2013/080568
Other languages
French (fr)
Japanese (ja)
Inventor
孝昌 窪木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2014080800A1 publication Critical patent/WO2014080800A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • G01P15/0922Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up of the bending or flexing mode type

Definitions

  • the present invention relates to an acceleration sensor.
  • Patent Document 1 describes an acceleration sensor having a bimorph element that is arranged so that a perpendicular to a main surface is perpendicular to a circuit board surface, and cases that support both ends of the bimorph element. With this acceleration sensor, acceleration in a direction perpendicular to the circuit board surface can be detected.
  • acceleration sensors In recent years, the use of acceleration sensors has been diversified, and the characteristics required for acceleration sensors have changed, and accordingly, acceleration sensors having a novel structure have been demanded.
  • the main object of the present invention is to provide an acceleration sensor having a novel structure.
  • the acceleration sensor according to the present invention includes a first acceleration detection element and a second acceleration detection element.
  • the first acceleration detecting element is inclined with respect to each of the first and second directions in a virtual plane including a first direction parallel to the attachment surface and a second direction perpendicular to the attachment surface. With a maximum sensitivity axis extending in the selected direction.
  • the second acceleration detection element is stacked on the first acceleration detection element in the second direction.
  • the second acceleration detection element has a maximum sensitivity axis extending in a direction inclined with respect to each of the first and second directions and the maximum sensitivity axis of the first acceleration detection element in the virtual plane.
  • the maximum sensitivity axis of the first acceleration detecting element extends to one side in the first direction toward one side in the second direction.
  • the maximum sensitivity axis of the second acceleration detecting element extends to the other side in the first direction toward one side in the second direction.
  • the angle between the maximum sensitivity axis of the first acceleration detection element and the mounting surface, and the maximum sensitivity axis of the second acceleration detection element and the mounting surface is the same.
  • the first acceleration detection element and the second acceleration detection element are provided at different positions in the first direction.
  • an acceleration sensor having a novel structure can be provided.
  • FIG. 1 is a schematic exploded perspective view of the acceleration sensor according to the first embodiment.
  • FIG. 2 is a schematic side view of the acceleration sensor according to the first embodiment.
  • FIG. 3 is a schematic side view of the acceleration sensor according to the second embodiment.
  • the acceleration sensor 1 includes a first acceleration detection element 10, a second acceleration detection element 20, and a housing 30.
  • the first and second acceleration detection elements 10 and 20 are fixed to the housing 30.
  • the housing 30 has an internal space 30a.
  • One end portions of the first and second acceleration detection elements 10 and 20 are fixed to the side wall of the housing 30 and extend toward the internal space 30a.
  • the first and second acceleration detection elements 10 and 20 are each attached in a cantilever manner, but may be attached in a both-end cantilever manner.
  • the acceleration sensor 1 is attached to an electronic device such as a magnetic hard disk on the attachment surface 30 b of the housing 30.
  • the attachment surface 30b extends along the x-axis direction and the y-axis direction.
  • the first and second acceleration detection elements 10 and 20 are each composed of a piezoelectric element.
  • the first acceleration detecting element 10 includes a piezoelectric plate 11, a first electrode 12 provided on one main surface 11 a of the piezoelectric plate 11, and a second electrode provided on the other main surface 11 b of the piezoelectric plate 11. And an electrode 13.
  • the piezoelectric plate 11 can be composed of, for example, piezoelectric ceramics or quartz.
  • the electrodes 12 and 13 can be made of an appropriate metal or alloy such as silver or copper, for example.
  • the perpendiculars of the principal surfaces 11a and 11b of the piezoelectric plate 11 are the x-axis direction and the imaginary xz plane including the x-axis direction parallel to the mounting surface 30b and the z-axis direction perpendicular to the mounting surface 30b. It extends in a direction inclined with respect to each of the z-axis directions. For this reason, the maximum sensitivity axis A1 (see FIG. 2) of the first acceleration detecting element 10 extends in directions inclined with respect to the x-axis direction and the z-axis direction on the xz plane.
  • the maximum sensitivity axis A1 extends on the x1 side in the x-axis direction toward the z2 side in the z-axis direction or on the x2 side in the x-axis direction toward the z1 side in the z-axis direction.
  • the second acceleration detecting element 20 includes a piezoelectric plate 21, a first electrode 22 provided on one main surface 21 a of the piezoelectric plate 21, and a second electrode provided on the other main surface 21 b of the piezoelectric plate 21. And an electrode 23.
  • the piezoelectric plate 21 can be composed of, for example, piezoelectric ceramics or quartz.
  • the electrodes 22 and 23 can be made of, for example, an appropriate metal or alloy such as silver or copper.
  • the perpendiculars of the principal surfaces 21a, 21b of the piezoelectric plate 21 are in the imaginary xz plane including the x-axis direction parallel to the mounting surface 30b and the z-axis direction perpendicular to the mounting surface 30b. It extends in a direction inclined with respect to the z-axis direction and the perpendiculars of the principal surfaces 11a, 11b of the piezoelectric plate 11. For this reason, the maximum sensitivity axis A2 of the second acceleration detection element 20 extends in the xz plane and in directions inclined with respect to the x-axis direction, the z-axis direction, and the maximum sensitivity axis A1.
  • the maximum sensitivity axis A2 extends on the x1 side in the x-axis direction toward the z1 side in the z-axis direction or on the x2 side in the x-axis direction toward the z2 side in the z-axis direction.
  • the maximum sensitivity axis A1 extends in the xz plane in directions inclined with respect to the x-axis direction and the z-axis direction
  • the maximum sensitivity axis A2 extends in the xz plane.
  • the acceleration in the z-axis direction can be calculated from the acceleration detected by the first acceleration detection element 10 and the acceleration detected by the second acceleration detection element 20.
  • the output of the first acceleration detecting element 10 is It becomes easier to calculate the acceleration in the z-axis direction from the output of the second acceleration detecting element 20.
  • the size of the angle formed by the maximum sensitivity axis A1 and the mounting surface 30b and the size of the angle formed by the maximum sensitivity axis A2 and the mounting surface 30b are each preferably 5 ° to 45 °.
  • the sensitivity of the first acceleration detection element 10 and the sensitivity of the second acceleration detection element 20 are substantially the same.
  • FIG. 3 is a schematic side view of the acceleration sensor according to the second embodiment.
  • the acceleration sensor 2 of the present embodiment is the acceleration sensor 1 according to the first embodiment in that the first acceleration detection element 10 and the second acceleration detection element 20 are provided at different positions in the x-axis direction. And different. By doing in this way, the sensitivity fall by the 1st acceleration detection element 10 and the 2nd acceleration detection element 20 contacting can be suppressed effectively.
  • the acceleration sensor 2 can be thinned.

Abstract

An acceleration sensor having a new structure is provided. An acceleration sensor (1) comprises a first acceleration detecting element (10) and a second acceleration detecting element (20). The first acceleration detecting element (10) has an axis of maximum sensitivity (A1) that extends in a direction that is slanted with respect to both a first and a second direction on a virtual plane that contains the first direction and the second direction, said first direction being parallel to a mounting face (30b) and said second direction being perpendicular to the mounting face (30b). The second acceleration detecting element (20) is stacked on the first acceleration detecting element (10) in the second direction. The second acceleration detecting element (20) has an axis of maximum sensitivity (A2) that extends in a direction that is slanted with respect to each of the first and second direction on the virtual plane and the axis of maximum sensitivity (A1) of the first acceleration detecting element (10).

Description

加速度センサAcceleration sensor
 本発明は、加速度センサに関する。 The present invention relates to an acceleration sensor.
 従来、磁気ハードディスク等に加わる衝撃や加速度を検出するために、磁気ハードディスクに加速度センサが搭載されている。例えば特許文献1には、主面の垂線が回路基板面に対して垂直となるように配されたバイモルフ素子と、バイモルフ素子の両端部を支持するケースとを有する加速度センサが記載されている。この加速度センサでは、回路基板面に対して垂直な方向の加速度を検出することができる。 Conventionally, an acceleration sensor is mounted on a magnetic hard disk in order to detect an impact or acceleration applied to the magnetic hard disk or the like. For example, Patent Document 1 describes an acceleration sensor having a bimorph element that is arranged so that a perpendicular to a main surface is perpendicular to a circuit board surface, and cases that support both ends of the bimorph element. With this acceleration sensor, acceleration in a direction perpendicular to the circuit board surface can be detected.
特許第3079966号公報Japanese Patent No. 3079966
 近年、加速度センサの用途が多様化すると共に、加速度センサに求められる特性なども変化してきており、それに伴い、新規な構造を有する加速度センサが求められている。 In recent years, the use of acceleration sensors has been diversified, and the characteristics required for acceleration sensors have changed, and accordingly, acceleration sensors having a novel structure have been demanded.
 本発明の主な目的は、新規な構造を有する加速度センサを提供することにある。 The main object of the present invention is to provide an acceleration sensor having a novel structure.
 本発明に係る加速度センサは、第1の加速度検出素子と、第2の加速度検出素子とを備える。第1の加速度検出素子は、取付面と平行な第1の方向と、取付面に対して垂直な第2の方向とを含む仮想平面内において第1及び第2の方向のそれぞれに対して傾斜した方向に延びる最大感度軸を有する。第2の加速度検出素子は、第2の方向において第1の加速度検出素子に積層されている。第2の加速度検出素子は、仮想平面内において第1及び第2の方向並びに第1の加速度検出素子の最大感度軸のそれぞれに対して傾斜した方向に延びる最大感度軸を有する。 The acceleration sensor according to the present invention includes a first acceleration detection element and a second acceleration detection element. The first acceleration detecting element is inclined with respect to each of the first and second directions in a virtual plane including a first direction parallel to the attachment surface and a second direction perpendicular to the attachment surface. With a maximum sensitivity axis extending in the selected direction. The second acceleration detection element is stacked on the first acceleration detection element in the second direction. The second acceleration detection element has a maximum sensitivity axis extending in a direction inclined with respect to each of the first and second directions and the maximum sensitivity axis of the first acceleration detection element in the virtual plane.
 本発明に係る加速度センサのある特定の局面では、第1の加速度検出素子の最大感度軸が第2の方向の一方側に向かって第1の方向の一方側に延びている。第2の加速度検出素子の最大感度軸が第2の方向の一方側に向かって第1の方向の他方側に延びている。 In a specific aspect of the acceleration sensor according to the present invention, the maximum sensitivity axis of the first acceleration detecting element extends to one side in the first direction toward one side in the second direction. The maximum sensitivity axis of the second acceleration detecting element extends to the other side in the first direction toward one side in the second direction.
 本発明に係る加速度センサの別の特定の局面では、第1の加速度検出素子の最大感度軸と取付面とのなす角の大きさと、第2の加速度検出素子の最大感度軸と取付面とのなす角の大きさとが同じである。 In another specific aspect of the acceleration sensor according to the present invention, the angle between the maximum sensitivity axis of the first acceleration detection element and the mounting surface, and the maximum sensitivity axis of the second acceleration detection element and the mounting surface The size of the corner is the same.
 本発明に係る加速度センサの他の特定の局面では、第1の方向において、第1の加速度検出素子と第2の加速度検出素子とが異なる位置に設けられている。 In another specific aspect of the acceleration sensor according to the present invention, the first acceleration detection element and the second acceleration detection element are provided at different positions in the first direction.
 本発明によれば、新規な構造を有する加速度センサを提供することができる。 According to the present invention, an acceleration sensor having a novel structure can be provided.
図1は、第1の実施形態に係る加速度センサの略図的分解斜視図である。FIG. 1 is a schematic exploded perspective view of the acceleration sensor according to the first embodiment. 図2は、第1の実施形態に係る加速度センサの略図的側面図である。FIG. 2 is a schematic side view of the acceleration sensor according to the first embodiment. 図3は、第2の実施形態に係る加速度センサの略図的側面図である。FIG. 3 is a schematic side view of the acceleration sensor according to the second embodiment.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものである。図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。 In each drawing referred to in the embodiment and the like, members having substantially the same function are referred to by the same reference numerals. The drawings referred to in the embodiments and the like are schematically described. A ratio of dimensions of an object drawn in a drawing may be different from a ratio of dimensions of an actual object. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.
 (第1の実施形態)
 図1及び図2に示されるように、加速度センサ1は、第1の加速度検出素子10と、第2の加速度検出素子20と、筐体30とを有する。
(First embodiment)
As shown in FIGS. 1 and 2, the acceleration sensor 1 includes a first acceleration detection element 10, a second acceleration detection element 20, and a housing 30.
 第1及び第2の加速度検出素子10,20は、筐体30に固定されている。具体的には、筐体30は、内部空間30aを有する。第1及び第2の加速度検出素子10,20の一方側端部が筐体30の側壁に固定されており、内部空間30aに向かって延びている。なお、本実施形態では、第1及び第2の加速度検出素子10,20は、それぞれ、片持ち梁態様で取り付けられているが、両持ち梁態様で取り付けられていてもよい。 The first and second acceleration detection elements 10 and 20 are fixed to the housing 30. Specifically, the housing 30 has an internal space 30a. One end portions of the first and second acceleration detection elements 10 and 20 are fixed to the side wall of the housing 30 and extend toward the internal space 30a. In the present embodiment, the first and second acceleration detection elements 10 and 20 are each attached in a cantilever manner, but may be attached in a both-end cantilever manner.
 加速度センサ1は、筐体30の取付面30bにおいて、例えば磁気ハードディスクなどの電子装置に取り付けられる。取付面30bは、x軸方向及びy軸方向に沿って延びている。 The acceleration sensor 1 is attached to an electronic device such as a magnetic hard disk on the attachment surface 30 b of the housing 30. The attachment surface 30b extends along the x-axis direction and the y-axis direction.
 第1及び第2の加速度検出素子10,20は、それぞれ、圧電素子により構成されている。 The first and second acceleration detection elements 10 and 20 are each composed of a piezoelectric element.
 第1の加速度検出素子10は、圧電板11と、圧電板11の一主面11a上に設けられた第1の電極12と、圧電板11の他主面11b上に設けられた第2の電極13とを有する。なお、圧電板11は、例えば、圧電セラミックスや水晶などにより構成することができる。電極12,13は、例えば、銀、銅など適宜の金属や合金により構成することができる。 The first acceleration detecting element 10 includes a piezoelectric plate 11, a first electrode 12 provided on one main surface 11 a of the piezoelectric plate 11, and a second electrode provided on the other main surface 11 b of the piezoelectric plate 11. And an electrode 13. The piezoelectric plate 11 can be composed of, for example, piezoelectric ceramics or quartz. The electrodes 12 and 13 can be made of an appropriate metal or alloy such as silver or copper, for example.
 圧電板11の主面11a、11bの垂線は、取付面30bと平行なx軸方向と、取付面30bに対して垂直なz軸方向とを含む仮想のx-z平面において、x軸方向及びz軸方向のそれぞれに対して傾斜した方向に延びている。このため、第1の加速度検出素子10の最大感度軸A1(図2を参照)は、x-z平面において、x軸方向及びz軸方向のそれぞれに対して傾斜した方向に延びている。最大感度軸A1は、z軸方向のz2側に向かってx軸方向のx1側に、またはz軸方向のz1側に向かってx軸方向のx2側に延びている。 The perpendiculars of the principal surfaces 11a and 11b of the piezoelectric plate 11 are the x-axis direction and the imaginary xz plane including the x-axis direction parallel to the mounting surface 30b and the z-axis direction perpendicular to the mounting surface 30b. It extends in a direction inclined with respect to each of the z-axis directions. For this reason, the maximum sensitivity axis A1 (see FIG. 2) of the first acceleration detecting element 10 extends in directions inclined with respect to the x-axis direction and the z-axis direction on the xz plane. The maximum sensitivity axis A1 extends on the x1 side in the x-axis direction toward the z2 side in the z-axis direction or on the x2 side in the x-axis direction toward the z1 side in the z-axis direction.
 第2の加速度検出素子20は、圧電板21と、圧電板21の一主面21a上に設けられた第1の電極22と、圧電板21の他主面21b上に設けられた第2の電極23とを有する。なお、圧電板21は、例えば、圧電セラミックスや水晶などにより構成することができる。電極22,23は、例えば、銀、銅など適宜の金属や合金により構成することができる。 The second acceleration detecting element 20 includes a piezoelectric plate 21, a first electrode 22 provided on one main surface 21 a of the piezoelectric plate 21, and a second electrode provided on the other main surface 21 b of the piezoelectric plate 21. And an electrode 23. The piezoelectric plate 21 can be composed of, for example, piezoelectric ceramics or quartz. The electrodes 22 and 23 can be made of, for example, an appropriate metal or alloy such as silver or copper.
 圧電板21の主面21a、21bの垂線は、取付面30bと平行なx軸方向と、取付面30bに対して垂直なz軸方向とを含む仮想のx-z平面において、x軸方向及びz軸方向並びに圧電板11の主面11a、11bの垂線のそれぞれに対して傾斜した方向に延びている。このため、第2の加速度検出素子20の最大感度軸A2は、x-z平面において、x軸方向及びz軸方向並びに最大感度軸A1のそれぞれに対して傾斜した方向に延びている。最大感度軸A2は、z軸方向のz1側に向かってx軸方向のx1側に、またはz軸方向のz2側に向かってx軸方向のx2側に延びている。 The perpendiculars of the principal surfaces 21a, 21b of the piezoelectric plate 21 are in the imaginary xz plane including the x-axis direction parallel to the mounting surface 30b and the z-axis direction perpendicular to the mounting surface 30b. It extends in a direction inclined with respect to the z-axis direction and the perpendiculars of the principal surfaces 11a, 11b of the piezoelectric plate 11. For this reason, the maximum sensitivity axis A2 of the second acceleration detection element 20 extends in the xz plane and in directions inclined with respect to the x-axis direction, the z-axis direction, and the maximum sensitivity axis A1. The maximum sensitivity axis A2 extends on the x1 side in the x-axis direction toward the z1 side in the z-axis direction or on the x2 side in the x-axis direction toward the z2 side in the z-axis direction.
 以上説明したように、最大感度軸A1がx-z平面において、x軸方向及びz軸方向のそれぞれに対して傾斜した方向に延びており、かつ、最大感度軸A2が、x-z平面において、x軸方向及びz軸方向並びに最大感度軸A1のそれぞれに対して傾斜した方向に延びている。このため、第1の加速度検出素子10により検出された加速度と、第2の加速度検出素子20により検出された加速度から、z軸方向の加速度を算出することができる。 As described above, the maximum sensitivity axis A1 extends in the xz plane in directions inclined with respect to the x-axis direction and the z-axis direction, and the maximum sensitivity axis A2 extends in the xz plane. , And the x-axis direction and the z-axis direction, and the direction inclined with respect to the maximum sensitivity axis A1. Therefore, the acceleration in the z-axis direction can be calculated from the acceleration detected by the first acceleration detection element 10 and the acceleration detected by the second acceleration detection element 20.
 例えば、最大感度軸A1と取付面30bとのなす角の大きさと、最大感度軸A2と取付面30bとのなす角の大きさとが同じである場合は、第1の加速度検出素子10の出力と、第2の加速度検出素子20の出力とから、z軸方向の加速度を算出することがより容易となる。最大感度軸A1と取付面30bとのなす角の大きさと、最大感度軸A2と取付面30bとのなす角の大きさとは、それぞれ、5°~45°であることが好ましい。また、第1の加速度検出素子10の感度と、第2の加速度検出素子20の感度は、実質的に同じであることが好ましい。 For example, when the angle formed by the maximum sensitivity axis A1 and the mounting surface 30b is the same as the angle formed by the maximum sensitivity axis A2 and the mounting surface 30b, the output of the first acceleration detecting element 10 is It becomes easier to calculate the acceleration in the z-axis direction from the output of the second acceleration detecting element 20. The size of the angle formed by the maximum sensitivity axis A1 and the mounting surface 30b and the size of the angle formed by the maximum sensitivity axis A2 and the mounting surface 30b are each preferably 5 ° to 45 °. Moreover, it is preferable that the sensitivity of the first acceleration detection element 10 and the sensitivity of the second acceleration detection element 20 are substantially the same.
 なお、本実施形態では、第1及び第2の加速度検出素子10,20が一対設けられている例について説明したが、第1及び第2の加速度検出素子10,20が複数対設けられていてもよい。 In the present embodiment, an example in which a pair of first and second acceleration detection elements 10 and 20 are provided has been described. However, a plurality of pairs of first and second acceleration detection elements 10 and 20 are provided. Also good.
 (第2の実施形態)
 図3は、第2の実施形態に係る加速度センサの略図的側面図である。本実施形態の加速度センサ2は、x軸方向において、第1の加速度検出素子10と第2の加速度検出素子20とが異なる位置に設けられている点で第1の実施形態に係る加速度センサ1と異なる。このようにすることで、第1の加速度検出素子10と第2の加速度検出素子20とが接触することによる感度低下を効果的に抑制することができる。また、第1の加速度検出素子10と第2の加速度検出素子20とをz軸方向に近接して配置することができるため、加速度センサ2を薄型化することができる。
(Second Embodiment)
FIG. 3 is a schematic side view of the acceleration sensor according to the second embodiment. The acceleration sensor 2 of the present embodiment is the acceleration sensor 1 according to the first embodiment in that the first acceleration detection element 10 and the second acceleration detection element 20 are provided at different positions in the x-axis direction. And different. By doing in this way, the sensitivity fall by the 1st acceleration detection element 10 and the 2nd acceleration detection element 20 contacting can be suppressed effectively. In addition, since the first acceleration detection element 10 and the second acceleration detection element 20 can be arranged close to each other in the z-axis direction, the acceleration sensor 2 can be thinned.
1,2…加速度センサ
A1…第1の加速度検出素子の最大感度軸
A2…第2の加速度検出素子の最大感度軸
10…第1の加速度検出素子
20…第2の加速度検出素子
11,21…圧電板
11a、21a…一主面
11b、21b…他主面
12,22…第1の電極
13,23…第2の電極
30…筐体
30a…内部空間
30b…取付面
DESCRIPTION OF SYMBOLS 1, 2 ... Acceleration sensor A1 ... Maximum sensitivity axis A2 of 1st acceleration detection element ... Maximum sensitivity axis 10 of 2nd acceleration detection element ... 1st acceleration detection element 20 ... 2nd acceleration detection element 11, 21 ... Piezoelectric plates 11a, 21a ... one main surface 11b, 21b ... other main surfaces 12, 22 ... first electrode 13, 23 ... second electrode 30 ... casing 30a ... internal space 30b ... mounting surface

Claims (4)

  1.  取付面と平行な第1の方向と、前記取付面に対して垂直な第2の方向とを含む仮想平面内において前記第1及び第2の方向のそれぞれに対して傾斜した方向に延びる最大感度軸を有する第1の加速度検出素子と、
     前記第2の方向において前記第1の加速度検出素子に積層されており、前記仮想平面内において前記第1及び第2の方向並びに前記第1の加速度検出素子の最大感度軸のそれぞれに対して傾斜した方向に延びる最大感度軸を有する第2の加速度検出素子と、
    を備える、加速度センサ。
    Maximum sensitivity extending in a direction inclined with respect to each of the first and second directions in a virtual plane including a first direction parallel to the mounting surface and a second direction perpendicular to the mounting surface. A first acceleration sensing element having an axis;
    It is laminated | stacked on the said 1st acceleration detection element in the said 2nd direction, and it inclines with respect to each of the said 1st and 2nd direction and the maximum sensitivity axis | shaft of the said 1st acceleration detection element in the said virtual plane. A second acceleration sensing element having a maximum sensitivity axis extending in the direction
    An acceleration sensor comprising:
  2.  前記第1の加速度検出素子の最大感度軸が前記第2の方向の一方側に向かって前記第1の方向の一方側に延びる一方、前記第2の加速度検出素子の最大感度軸が前記第2の方向の一方側に向かって前記第1の方向の他方側に延びている、請求項1に記載の加速度センサ。 The maximum sensitivity axis of the first acceleration detection element extends to one side of the first direction toward one side of the second direction, while the maximum sensitivity axis of the second acceleration detection element is the second sensitivity axis. The acceleration sensor according to claim 1, wherein the acceleration sensor extends toward one side of the first direction toward the other side in the first direction.
  3.  前記第1の加速度検出素子の最大感度軸と前記取付面とのなす角の大きさと、前記第2の加速度検出素子の最大感度軸と前記取付面とのなす角の大きさとが同じである、請求項1または2に記載の加速度センサ。 The angle between the maximum sensitivity axis of the first acceleration detection element and the mounting surface is the same as the angle between the maximum sensitivity axis of the second acceleration detection element and the mounting surface. The acceleration sensor according to claim 1 or 2.
  4.  前記第1の方向において、前記第1の加速度検出素子と前記第2の加速度検出素子とが異なる位置に設けられている、請求項1~3のいずれか一項に記載の加速度センサ。 The acceleration sensor according to any one of claims 1 to 3, wherein the first acceleration detection element and the second acceleration detection element are provided at different positions in the first direction.
PCT/JP2013/080568 2012-11-20 2013-11-12 Acceleration sensor WO2014080800A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012254248 2012-11-20
JP2012-254248 2012-11-20

Publications (1)

Publication Number Publication Date
WO2014080800A1 true WO2014080800A1 (en) 2014-05-30

Family

ID=50775983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080568 WO2014080800A1 (en) 2012-11-20 2013-11-12 Acceleration sensor

Country Status (1)

Country Link
WO (1) WO2014080800A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110063095A (en) * 2016-12-19 2019-07-26 株式会社富士 Component mounter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04158226A (en) * 1990-10-22 1992-06-01 Omron Corp Acceleration sensor
WO2005052601A1 (en) * 2003-11-26 2005-06-09 Murata Manufacturing Co., Ltd. Acceleration detection device
JP2009053141A (en) * 2007-08-29 2009-03-12 Yokohama Rubber Co Ltd:The Acceleration sensor module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04158226A (en) * 1990-10-22 1992-06-01 Omron Corp Acceleration sensor
WO2005052601A1 (en) * 2003-11-26 2005-06-09 Murata Manufacturing Co., Ltd. Acceleration detection device
JP2009053141A (en) * 2007-08-29 2009-03-12 Yokohama Rubber Co Ltd:The Acceleration sensor module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110063095A (en) * 2016-12-19 2019-07-26 株式会社富士 Component mounter
CN110063095B (en) * 2016-12-19 2021-02-05 株式会社富士 Component mounting machine

Similar Documents

Publication Publication Date Title
US20220229081A1 (en) Inertia measurement module for unmanned aircraft
JP4929918B2 (en) Compound sensor
JP5862567B2 (en) Vibration sensor
JP2012251801A5 (en)
JP5634697B2 (en) Micro Electro Mechanical System (MEMS) Force Parallel Accelerometer
JP6288410B2 (en) Capacitive transducer, acoustic sensor and microphone
WO2012153439A1 (en) Angular acceleration detecting element
WO2014080800A1 (en) Acceleration sensor
JP2010175359A (en) Mems inclination sensor
JP2011247714A (en) Semiconductor physical quantity sensor
JP2010190636A5 (en)
WO2013027741A1 (en) Piezoelectric vibration sensor
WO2014088021A1 (en) Acceleration sensor
JP2013024765A (en) Capacitance type sensor
JP6065017B2 (en) Angular acceleration sensor and acceleration sensor
JP2013029347A (en) Magnetic sensor device and connector mechanism
JPWO2005052601A1 (en) Acceleration detector
JP5345134B2 (en) Acceleration sensor element and acceleration sensor device
JP2009008414A (en) Fall detection sensor
JP5046240B2 (en) Method for manufacturing acceleration sensor
JP5971349B2 (en) Angular acceleration sensor
JP6020590B2 (en) Angular acceleration sensor
JP2005291826A (en) Inertia sensor
JP2006208316A (en) Electrostatic capacity type acceleration sensor
JP2006153513A (en) Acceleration sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP