WO2005051214A1 - Elektrode für nervengewebe - Google Patents

Elektrode für nervengewebe Download PDF

Info

Publication number
WO2005051214A1
WO2005051214A1 PCT/DE2004/002621 DE2004002621W WO2005051214A1 WO 2005051214 A1 WO2005051214 A1 WO 2005051214A1 DE 2004002621 W DE2004002621 W DE 2004002621W WO 2005051214 A1 WO2005051214 A1 WO 2005051214A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
alloy
electrode according
electrodes
tissue
Prior art date
Application number
PCT/DE2004/002621
Other languages
English (en)
French (fr)
Inventor
Ulrich G. Hofmann
Mohamed Es-Souni
Original Assignee
Universität Zu Lübeck
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universität Zu Lübeck filed Critical Universität Zu Lübeck
Publication of WO2005051214A1 publication Critical patent/WO2005051214A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof

Definitions

  • the invention relates to an electrode, in particular a microelectrode arrangement (matrix electrode) for stimulation and / or derivation of electrical cell potentials, which has a plurality of electrodes arranged next to one another.
  • a microelectrode arrangement matrix electrode for stimulation and / or derivation of electrical cell potentials, which has a plurality of electrodes arranged next to one another.
  • the derivation of signals from living nerve cells is a common task in today's brain research. Especially the brains of higher organisms are often surgically T. extensively contacted with electrodes by implantation in the living nerve tissue. The aim of this research is to understand the function of the body in general and to develop suitable machine interfaces for direct, "mental" control of external devices, such as artificial limbs after an amputation.
  • Electrodes In order to derive signals synchronously from a large number of neighboring neurons in the brain, close contact with electrodes is necessary. So-called matrix electrodes are usually used, which are constructed like a nail board. Electrically conductive shafts (electrodes) of up to 5 mm in length, regularly arranged next to each other, e.g. Silicon or precious metal (usually platinum or iridium) are located on an insulating carrier substrate, from the back of which each electrode can be individually addressed and read electronically. In this way, spatial signal distributions in the tissue can be determined. Typically, the electrodes are predominantly coated with insulation material, so that only the electrode tips are in contact with the neurons.
  • the desired change in rigidity can be done in the simplest way via the temperature change in the vicinity of the electrode after it has penetrated the tissue.
  • the probes are to be made of conductive and highly elastic material at 37-40 ° C, they should be made according to the invention from nickel-titanium alloys.
  • alloys of the composition Ni x Ti y Cu 1-xy and Ni x- TiyFe ⁇ x .y with x> 50% and 35% ⁇ y ⁇ 45% which are characterized by biological compatibility, good electrical conductivity and so-called Characterize super elasticity.
  • This is understood to mean a "rubber-like" behavior of the metal, which does not deform plastically even under extreme bends, but rather returns to its original shape after the load has been removed.
  • the restoring forces are almost independent of the extent of the deflection.
  • Very thin wires are therefore suitable very good as electrodes for neural leads, because they can "swim" with the relative movement of the neurons and exert only very small forces on the tissue when deformed.
  • the so-called diffusion-free phase transformation between the austenite and martensite structure which enables the shape memory effect, is simultaneously accompanied by a pronounced change in the modulus of elasticity.
  • the modulus of elasticity primarily determines the rigidity of these materials and is directly dependent on the temperature. At high temperatures (typically around 7o ° C, but very variable), said alloys are present primarily in the austenite phase with an E modulus around 70-80 GPa. When cooling, e.g. here preferably below 40 ° C, the material adopts its martensite phase and the modulus of elasticity is approximately halved.
  • the length of the electrodes is between 0.5 and 15 mm and the electrode diameter is less than 100 ⁇ m.
  • the distance between the individual electrodes is between 0.2 and 0.4 mm.
  • NiTi probes Since the derivation should usually only take place at the electrode tips, the individual NiTi probes have to be largely insulated. Coatings with organic insulating lacquer (for example parylene C) or inorganic oxides (for example titanium oxide, Al 2 O 3 ) are suitable for this purpose. These are chemically inert and a layer thickness of a few tens of nanometers is completely sufficient for isolation. In particular, layers of this type do not limit the flexibility of the probes, and they do not chip off when they are bent.
  • the oxide coatings can be produced, for example, by means of chemical vapor deposition (CVD), physical vapor deposition (PVD) or sol-gel processes. The electrode tips are etched free again after the coating.
  • NiTi alloys are chemically very stable. Nevertheless, the electrode tips can be additionally processed, in particular sharpened, for example by etching with hydrofluoric acid (tip diameter 1-3 ⁇ m is desirable).
  • the NiTi electrodes according to the invention are also significantly softer in the austenite phase than, for example, silicon tips. Therefore, the penetration of the meninges should be supported, if possible, by appropriate treatment of the electrode tips.
  • the initially exposed tips are also covered with a titanium nitride layer. Titanium nitride is an extremely hard material, which advantageously also conducts electrically.
  • the matrix electrode Before inserting the stems, the matrix electrode is heated to take advantage of the increased rigidity of the austenite phase.
  • the transformation point can be set by the exact choice of the alloy composition so that heating to 45-50 ° C leads to sufficiently stiff shafts.
  • the heated electrode is pressed against the neurons during the cooling phase as long as the rigidity is still at a maximum.
  • the stems take on the more flexible martensite phase, which reduces the traumatization of the tissue through movement.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Neurosurgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Neurology (AREA)
  • Physics & Mathematics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Materials For Medical Uses (AREA)
  • Electrotherapy Devices (AREA)

Abstract

Elektrode zur dauerhaften Implantation in biologischem Gewebe wobei die Elektrode einen temperaturabhängig variablen Elastizitäts-Modul aufweist.

Description

Elektrode für Nervengewebe
Die Erfindung betrifft eine Elektrode, insbesondere eine Mikroelektroden-Anordnung (Matrixelektrode) zur Stimulation und/oder Ableitung elektrischer Zellpotenziale, die eine Mehrzahl nebeneinander angeordneter Elektroden aufweist.
Die Ableitung von Signalen aus lebenden Nervenzellen (neuronale Aktivität) ist gängige Aufgabe der heutigen Gehirnforschung. Insbesondere die Gehirne höherer Lebewesen werden oft operativ z. T. großflächig mit Elektroden kontaktiert durch Implantation in das lebende Nervengewebe. Ziele dieser Forschung sind das Verständnis der Gerümfunktion im Allgemeinen und die Entwicklung geeigneter maschineller Schnittstellen zur direkten, „gedanklichen" Steuerung externer Vorrichtungen, wie z.B. künstlicher Gliedmaßen nach einer Amputation.
Um aus einer Vielzahl benachbarter Neurone im Gehirn synchron Signale abzuleiten, ist eine dichte Kontaktierung mit Elektroden notwendig. Üblicherweise benutzt man deshalb so genannte Matrixelektroden, die nach Art eines Nagelbretts aufgebaut sind. Regelmäßig nebeneinander angeordnete, elektrisch leitende Schäfte (Elektroden) von bis zu 5 mm Länge aus z.B. Silizium oder Edelmetall (i. d. R. Platin oder Iridium) befinden sich auf einem isolierenden Trägersubstrat, von dessen Rückseite aus jede Elektrode einzeln elektronisch angesprochen und ausgelesen werden kann. So lassen sich räumliche Signalverteilungen im Gewebe ermitteln. Typischerweise sind die Elektroden überwiegend mit Isolationsmaterial beschichtet, so dass nur die Elektrodenspitzen mit den Neuronen in Kontakt stehen.
Eine wichtige Anforderung dieser Matrixelektroden ist die Rigidität jeder einzelnen Elektrode, damit sie bei der Implantation die Hirnhäute (meist nur die Pia mater) penetrieren können, um im darunter liegenden weicheren Hirngewebe die Ableitungen vorzunehmen. Diese Rigidität ist aber im nachhinein nachteilig, da die mögliche Relativbewegung zwischen Gehirn und Elektrode zur Traumatisierung des Gewebes führt. Die unflexiblen E- lektroden „schneiden" durch das Gewebe und zerstören so entweder die Neuronen oder sie werden durch die körpereigene Abwehr mit einer elektrisch dichten Glia-Zellschicht umgeben und abgeschirmt. Messbar wird dieser Effekt durch die Abnahme an neuronaler Aktivität, die die jeweilige Elektrode aufzeichnet.
Es ist die Aufgabe der Erfindung, Elektrodenanordnungen, insbesondere eine Matrixelektrode, anzugeben, die zunächst über die zur Penetration der Hirnhaut erforderliche Rigidität verfügen, welche dann nach der Implantation abnimmt, um die Traumatisierung des Gewebes zu verringern.
Die Aufgabe wird gelöst durch eine Elektrode nach Anspruch 1. Die Unteransprüche geben vorteilhafte Ausgestaltungen an.
Die angestrebte Rigiditätsänderung kann in einfachster Weise über den Temperaturwechsel in der Umgebung der Elektrode erfolgen, nachdem diese in das Gewebe eingedrungen sind. Da die Sonden aus leitfähigem und bei 37-40 °C hochelastischem Material bestehen sollen, sollen sie erfindungsgemäß aus Nickel-Titan-Legierungen hergestellt werden. In Frage kommen insbesondere Legierungen der Zusammensetzung NixTiyCu1-x-y und Nix- TiyFe^x.y mit x > 50% und 35 % < y < 45 %, die sich durch biologische Verträglichkeit, gute elektrische Leitfähigkeit und so genannte Superelastizität auszeichnen. Darunter versteht man ein „gummiartiges" Verhalten des Metalls, das sich auch unter extremen Biegungen nicht plastisch verformt, sondern nach Wegnahme der Belastung wieder in seine Ausgangsform zurückkehrt. Vorteilhafterweise sind die Rückstellkräfite dabei nahezu unabhängig vom Ausmaß der Auslenkung. Sehr dünne Drähte eignen sich somit sehr gut als Elektroden für neuronale Ableitungen, da sie bei Relativbewegung der Neuronen gewissermaßen „mitschwimmen" können und bei Verformung nur sehr kleine Kräfte auf das Gewebe ausüben.
Die Herstellung sehr dünner Drähte aus NiTi-Legierung durch thermomechanische Behandlungsverfahren ist Stand der Technik. Insbesondere für Matrixelektroden sind Schaftdicken von 100 μm oder weniger wünschenswert. Solche Durchmesser sind ohne weiteres herstellbar; kommerziell erhältlich sind Drahtdurchmesser bis etwa 25 μm. Derartige Legierungen sind auch als Formgedächtnismetalle geläufig, denen eine bestimmte Form eingeprägt werden kann, die sie bei Erwärmung wieder annehmen. Dieser Effekt ist für die vorliegende Erfindung aber nicht wesentlich.
Wesentlich ist vielmehr, dass die so genannte diffusionslose Phasenumwandlung zwischen Austenit- und Martensit-Struktur, die den Formgedächtniseffekt ermöglicht, zugleich mit einer ausgeprägten Änderung des Elastizitätsmoduls einhergeht. Der E-Modul bestimmt vor allem die Rigidität dieser Materialien und ist direkt von der Temperatur abhängig. Bei hohen Temperaturen (typisch: um 7o °C, aber sehr variabel) liegen besagte Legierungen vor allem in der Austenit-Phase mit einem E-Modul um 70-80 GPa vor. Bei Abkühlung, z.B. hier bevorzugt unter 40 °C, nimmt das Material seine Martensit-Phase an und der E- Modul wird in etwa halbiert.
Eine erfindungsgemäße Matrixelektrode zur neuronalen Ableitung besteht vorzugsweise aus einem isolierenden Trägersubstrat mit n x m (n, m = 4 bis 10) regelmäßig angeordneten, einzeln ableitbaren NiTi-Elektroden, die beliebig konfiguriert werden können, um die gleiche Matrixelektrode sowohl für die Ableitung von Elektroneurogrammen als auch für die Stimulation einsetzen zu können. Die Länge der Elektroden liegt zwischen 0,5 und 15 mm und der Elektrodendurchmesser unter 100 μm. Der Abstand zwischen den einzelnen Elektroden beträgt zwischen 0,2 und 0,4 mm.
Da die Ableitung üblicherweise nur an den Elektrodenspitzen erfolgen soll, müssen die einzelnen NiTi-Sonden weitgehend isolierend beschichtet sein. Hierzu kommen Beschichtungen mit organischem Isolierlack (z.B. Parylene C) oder anorganischen Oxiden (z.B. Titanoxid, Al2O3) in Frage. Diese sind chemisch inert und eine Schichtdicke von einigen zehn Nanometern ist zur Isolierung völlig ausreichend. Insbesondere schränken derartige Schichten die Flexibilität der Sonden nicht ein, und sie platzen bei deren Verbiegung auch nicht ab. Die Oxid-Beschichtungen können z.B. mittels Chemical Vapour Deposition (CVD), Physical Vapour Deposition (PVD) oder Sol-Gel- Verfahren erzeugt werden. Die Elektrodenspitzen werden nach der Beschichtung wieder freigeätzt. Grundsätzlich sind NiTi-Legierungen chemisch sehr stabil. Gleichwohl können die Elektrodenspitzen z.B. durch Ätzen mit Flusssäure zusätzlich bearbeitet, insbesondere angespitzt werden (Spitzendurchmesser 1-3 μm ist wünschenswert). Die erfindungsgemäßen NiTi- Elektroden sind auch in der Austenit-Phase noch deutlich weicher als etwa Silizium- Spitzen. Deshalb sollte das Penetrieren der Hirnhaut nach Möglichkeit durch geeignete Behandlung der Elektrodenspitzen unterstützt werden. In einer bevorzugten Ausgestaltung werden die zunächst freigelegten Spitzen noch mit einer Titannitridschicht überzogen. Titannitrid ist ein extrem harter Werkstoff, der vorteilhafterweise auch elektrisch leitet.
Vor dem Einbringen der Schäfte wird die Matrixelektrode erwärmt, um die erhöhte Rigidität der Austenit-Phase zu nutzen. Dabei kann der Umwandlungspunkt durch die genaue Wahl der Legierungs-Zusammensetzung so eingestellt werden, dass bereits eine Erwärmung auf 45-50 °C zu ausreichend steifen Schäften führt. Die erwärmte Elektrode wird in der Abkühlphase an die Neuronen gedrückt, solange die Rigidität noch maximal ist. Im Hirngewebe (neuropil), bei Körpertemperatur, nehmen die Schäfte die flexiblere Marten- sit-Phase an, wodurch sich die Traumatisierung des Gewebes durch Bewegungen verringert.

Claims

Patentansprüche
1. Elektrode zur dauerhaften Implantation in biologischem Gewebe aus einer Legierung,
dadurch gekennzeichnet, dass
die Legierung bei 45° - 50° C in der Austenit-Phase und bei 37° - 40° C in der Martensit- Phase ist.
2. Elektrode nach Anspruch 1, dadurch gekennzeichnet, dass die Elektrode aus einer Nickel-Titan-Legierung besteht,
3. Elektrode nach Anspruch 2, dadurch gekennzeichnet, dass die Legierung eine Zusammensetzung vonNixTiyCut-x-y oder NixTiyFe1-x_y mit x >50% und 35%< y <45% ist.
4. Elektrode nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Elektroden mit organischem Isolierlack oder anorganischen Oxiden beschichtet sind.
5. Elektrode nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Elektrodenspitzen mit Titannitrid gehärtet sind.
6. Elektrode nach einem der vorangehenden Ansprüche, gekennzeichnet durch eine Ausbildung als Matrixelektrode mit einer Vielzahl nadeiförmiger, auf einem nichtleitfähi- gem Trägersubstrat angeordneter Einzelelektroden, die über ein Leiterbalmsystem auf oder in dem Substrat ansteuerbar sind, wobei das Leiterbahnsystem mit Anschlüssen versehen ist, die mit einer externen oder implantierten Ansteuer- und Signalempfangseinheit in Verbindung stehen.
PCT/DE2004/002621 2003-11-28 2004-11-26 Elektrode für nervengewebe WO2005051214A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10355815A DE10355815B4 (de) 2003-11-28 2003-11-28 Elektrode für Nervengewebe
DE10355815.2 2003-11-28

Publications (1)

Publication Number Publication Date
WO2005051214A1 true WO2005051214A1 (de) 2005-06-09

Family

ID=34625381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/002621 WO2005051214A1 (de) 2003-11-28 2004-11-26 Elektrode für nervengewebe

Country Status (2)

Country Link
DE (1) DE10355815B4 (de)
WO (1) WO2005051214A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053303A (ja) * 2006-08-22 2008-03-06 Mitsubishi Heavy Ind Ltd 太陽電池パネル

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778043A1 (de) * 1995-12-04 1997-06-11 Pacesetter AB Führungseinheit mit internem Führungsdraht aus einer Formgedächtnislegierung
FR2758266A1 (fr) * 1997-01-16 1998-07-17 Memometal Ind Agrafe de contention ou d'osteosynthese et procede de fabrication d'une telle agrafe
WO1999025260A1 (en) * 1997-11-17 1999-05-27 Rita Medical Systems, Inc. Multiple electrode ablation apparatus and method
US5964770A (en) * 1997-09-30 1999-10-12 Litana Ltd. High strength medical devices of shape memory alloy
US6306141B1 (en) * 1983-10-14 2001-10-23 Medtronic, Inc. Medical devices incorporating SIM alloy elements

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4424753B4 (de) * 1994-07-13 2004-07-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Retina-Implantat
WO2001072201A2 (en) * 2000-03-29 2001-10-04 Arizona Board Of Regents Device for creating a neural interface and method for making same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306141B1 (en) * 1983-10-14 2001-10-23 Medtronic, Inc. Medical devices incorporating SIM alloy elements
EP0778043A1 (de) * 1995-12-04 1997-06-11 Pacesetter AB Führungseinheit mit internem Führungsdraht aus einer Formgedächtnislegierung
FR2758266A1 (fr) * 1997-01-16 1998-07-17 Memometal Ind Agrafe de contention ou d'osteosynthese et procede de fabrication d'une telle agrafe
US5964770A (en) * 1997-09-30 1999-10-12 Litana Ltd. High strength medical devices of shape memory alloy
WO1999025260A1 (en) * 1997-11-17 1999-05-27 Rita Medical Systems, Inc. Multiple electrode ablation apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053303A (ja) * 2006-08-22 2008-03-06 Mitsubishi Heavy Ind Ltd 太陽電池パネル

Also Published As

Publication number Publication date
DE10355815B4 (de) 2006-06-29
DE10355815A1 (de) 2005-06-30

Similar Documents

Publication Publication Date Title
Deku et al. Amorphous silicon carbide ultramicroelectrode arrays for neural stimulation and recording
US8489203B2 (en) Biostable neuroelectrode
US8170638B2 (en) MEMS flexible substrate neural probe and method of fabricating same
Moxon et al. Ceramic-based multisite electrode arrays for chronic single-neuron recording
JP5596088B2 (ja) 電極束
EP0843574A1 (de) Cuff-elektrode
DE3300668A1 (de) Elektrode fuer medizinische anwendungen
EP0928212A1 (de) Flexible künstliche nervenplatte
Fomani et al. Fabrication and characterization of the flexible neural microprobes with improved structural design
DE102018221355B4 (de) Kontaktierungsverfahren und System
EP2944281A1 (de) Elektrodenelement zur elektromedizinischen therapie in einem menschlichen oder tierischen körper
US20130296678A1 (en) Combination structural porous surfaces for functional electrode stimulation and sensing
US20050075709A1 (en) Biomedical electrode of enhanced surface area
Srikantharajah et al. Minimally-invasive insertion strategy and in vivo evaluation of multi-shank flexible intracortical probes
DE19507929A1 (de) Elektrodensystem zur Messung des monophasischen Aktionspotentials
DE10355815B4 (de) Elektrode für Nervengewebe
EP2682157A1 (de) Mapping Elektrode für den linken Vorhof des Herzens
Leber et al. Novel method of fabricating self-dissolvable and freely floating neural array
US10406349B2 (en) Medical leads and techniques for manufacturing the same
DE102019220269B4 (de) Additives Herstellverfahren für multidirektionale Elektroden
DE102020118372B3 (de) Mehrlagige Ringelektrode mit mehreren Öffnungen und Diffusionszwischenschicht
EP4095277B1 (de) Medizinische leitungen und verfahren zur herstellung davon
DE102021102864B3 (de) Federkontaktring
DE102021128427A1 (de) Elektrode mit geschütztem Randbereich
US20220008717A1 (en) Multilayer ring electrode having a plurality of openings

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase