WO2005047406A1 - Thermisch härtbare pulverlacke, verfahren zu ihrer herstellung und ihre verwendung - Google Patents

Thermisch härtbare pulverlacke, verfahren zu ihrer herstellung und ihre verwendung Download PDF

Info

Publication number
WO2005047406A1
WO2005047406A1 PCT/EP2004/052921 EP2004052921W WO2005047406A1 WO 2005047406 A1 WO2005047406 A1 WO 2005047406A1 EP 2004052921 W EP2004052921 W EP 2004052921W WO 2005047406 A1 WO2005047406 A1 WO 2005047406A1
Authority
WO
WIPO (PCT)
Prior art keywords
diyl
component
powder coatings
groups
coatings according
Prior art date
Application number
PCT/EP2004/052921
Other languages
English (en)
French (fr)
Inventor
Joachim Woltering
Ulrike RÖCKRATH
Michael Tecklenborg
Günther OTT
Rolf Boysen
Ingrid Heid
Frank Rehwald
Original Assignee
Basf Coatings Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Coatings Ag filed Critical Basf Coatings Ag
Publication of WO2005047406A1 publication Critical patent/WO2005047406A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/282Alkanols, cycloalkanols or arylalkanols including terpenealcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/062Copolymers with monomers not covered by C09J133/06
    • C09J133/064Copolymers with monomers not covered by C09J133/06 containing anhydride, COOH or COOM groups, with M being metal or onium-cation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings
    • C08G2150/20Compositions for powder coatings

Definitions

  • the present invention relates to new thermally curable powder coatings.
  • the present invention also relates to a new process for producing thermally curable powder coatings.
  • the present invention relates to the use of the new thermally curable powder coatings and the thermally curable powder coatings produced by means of the new process as coating materials, adhesives and sealants for painting, gluing and sealing bodywork of means of transportation and parts thereof, structures and parts thereof, doors , Windows, furniture, small industrial parts, mechanical, optical and electronic components, coils, containers, packaging, hollow glass bodies and everyday objects.
  • Thermally curable powder coatings which contain at least one constituent containing epoxy groups and at least one constituent containing carboxyl groups, processes for their preparation and their use are known, for example, from German patent application DE 196 13 547 A1. These known thermally curable powder coatings already have a very good application-related property profile, which, however, has to be continuously improved due to the increasing demands of the market with regard to storage stability, processability, in particular fluidizability in flowing gases. In addition, the chemical resistance and the scratch resistance of the coatings and coatings produced from the known thermally curable powder coatings must be improved further.
  • the object of the present invention is to provide new thermally curable powder coatings which have improved storage stability and improved processability, in particular improved fluidizability in flowing gases, and which provide thermosetting powder coatings with excellent application properties, in particular with high chemical resistance and scratch resistance ,
  • At least one constituent containing at least two urethane groups selected from the group consisting of crystalline, partially crystalline, thermoplastic or partially crystalline and thermoplastic polyurethanes and polyisocyanates blocked with monools, which have a melting point, a melting range or a glass transition temperature> 30 ° C.
  • cycloaliphatic structural units contain and are essentially or completely free of reactive functional groups which react with epoxy groups and carboxyl groups,
  • the new thermally curable powder coatings are referred to as “powder coatings according to the invention”.
  • the new process for the production of thermally curable powder coatings was found, in which one
  • At least one constituent containing at least two urethane groups selected from the group consisting of crystalline, partially crystalline, thermoplastic or partially crystalline and thermoplastic polyurethanes and polyisocyanates blocked with monools, which have a melting point, a melting range or a glass transition temperature> 30 ° C.
  • cycloaliphatic structural units contain and are essentially or completely free of reactive functional groups which react with epoxy groups and carboxyl groups,
  • the new process for producing thermally curable powder coatings is referred to below as the “process according to the invention”.
  • the object on which the present invention was based could be achieved with the aid of the powder coatings according to the invention.
  • the powder coatings according to the invention were simple to produce and had excellent storage stability and processability, in particular exhibited excellent fluidizability in flowing gases, in particular in an air stream, and delivered coatings, adhesive layers and seals, in particular clearcoats, with outstanding application properties, in particular with high chemical stability and scratch resistance.
  • the constituent of the powder coating materials of the invention is at least one, in particular one, at least two, in particular at least three, component (C) containing urethane groups.
  • Constituent (C) is selected from the group consisting of crystalline, semi-crystalline, thermoplastic or semi-crystalline and thermoplastic polyurethanes and polyisocyanates blocked with monools, preferably aliphatic and cycloaliphatic alcohols, which have a melting point, a melting range or a glass transition temperature> 30 ° C., preferably > 40 ° C and in particular> 45 ° C, have cycloaliphatic structural units and are essentially or completely free of reactive functional groups which react with epoxy groups and carboxyl groups.
  • the component (C) preferably contains at least two, preferably at least three, particularly preferably at least four and in particular at least five cycloaliphatic structural units.
  • cycloaliphatic structural units are preferred.
  • Cycloalkanediyl radicals in particular with 2 to 20 carbon atoms.
  • the cycloalkanediyl radicals are preferably selected from the group consisting of cyclobutane-1,3-diyl, cyclopentane-1,3-diyl, cyclohexane-1,3- or -1,4-diyl, cycloheptane-1,4-diyl, norbornane-1,4-diyl, adamantane-1,5-diyl, decalin-diyl, 3,3,5-trimethyl-cyclohexane-1,5- diyl, 1-methylcyclohexane-2,6-diyl, dicyclohexylmethane-4,4'-diyl, 1,1'-dicyclohexane-4,4'-diyl or 1,4-dicyclohexylhexane-4,4 "-diyl, especially 3 , 3,5-trimethyl-cyclohexane-1, 5-diyl or di
  • component (C) contains such a small number of reactive functional groups that their reactions with the carboxyl groups and the epoxy groups do not influence the property profile of the coatings and coatings produced from the powder coating materials of the invention.
  • Component (C) is preferably completely free of reactive functional groups.
  • Component (C) may contain minor amounts of flexibilizing structural units which lower their glass transition temperature Tg as a component of three-dimensional networks. “Minor amounts” means that the flexibilizing structural units are present in such an amount that the glass transition temperature of the component (C) in question does not drop below 30 ° C., preferably not below 40 ° C. and in particular not below 45 ° C. Examples of suitable flexibilizing structural units are known from German patent application DE 101 29 970 A1, page 8, paragraph [0064], to page 9, paragraph [0072].
  • Component (C) is preferably essentially or completely free from aromatic structural units. “Essentially free” means that component (C) contains aromatic structural units in an amount that does not influence the application properties, in particular does not adversely affect the UV stability of component (C).
  • Component (C) is preferably hydrophobic, ie it has the tendency to leave the aqueous phase in a liquid two-phase system comprising a non-polar organic phase and an aqueous phase and to accumulate predominantly in the organic phase.
  • the component (C) can contain reactive functional groups which do not react with the epoxy groups and carboxyl groups under the conditions of production, application and curing of the powder coating materials of the invention. Or, under these conditions, the reactive functional groups react with the epoxy groups and carboxyl groups so slowly that the application properties of the powder coatings and the coatings and coatings produced therefrom are not affected.
  • the reactive functional groups preferably do not react with the epoxy groups and carboxyl groups at temperatures ⁇ 150 ° C., preferably ⁇ 160 ° C. and in particular ⁇ 170 ° C. in this sense.
  • An example of reactive functional groups of this type is the hydroxyl group.
  • Component (C) can be a polyisocyanate blocked with monools, in particular with aliphatic and cycloaliphatic alcohols.
  • the aliphatic and cycloaliphatic alcohols are preferably selected from the group consisting of methanol, ethanol, propanol, isopropanol, butanol and cyclohexanol.
  • the polyisocyanates to be blocked are preferably cycloaliphatic polyisocyanates.
  • the cycloaliphatic diisocyanates and isocyanurate, biuret, allophanate, iminooxadiazinedione, Polyisocyanates containing urethane, urea and / or uretdione groups are used on the basis of these cycloaliphatic diisocyanates.
  • These blocked polyisocyanates (C) are preferably crystalline or partially crystalline.
  • the alcohol-blocked isocyanurates of isophorone diisocyanate (IPDI) and dicyclohexylmethane-2,4'-diisocyanate (H12-MDI) are used as components (C).
  • IPDI isophorone diisocyanate
  • H12-MDI dicyclohexylmethane-2,4'-diisocyanate
  • C are commercially available products.
  • the component (C) can be a crystalline, partially crystalline, thermoplastic or partially crystalline and thermoplastic, in particular a partially crystalline and thermoplastic, polyurethane. Its main chain can be linear or star-shaped or comb-shaped. It is preferably linear.
  • the polyurethane (C) can be produced using the customary and known methods of polyurethane chemistry.
  • the polyurethane (C) is to have terminal hydroxyl groups, it is preferably prepared from polyisocyanates, preferably diisocyanates, in particular cycloaliphatic diisocyanates, and polyols, preferably diols, in particular cycloaliphatic diols.
  • the polyols are used in excess.
  • the molar ratio is preferably selected such that the ratio of hydroxyl groups to isocyanate groups is 1.1: 1 to 2: 1, in particular 1.3: 1 to 1.6: 1.
  • the polyisocyanates preferably the diisocyanates, in particular the cycloaliphatic diisocyanates, are added in excess of the polyols, preferably the diols, in particular the cycloaliphatic diols, are used.
  • the molar ratio is preferably chosen such that the ratio of isocyanate groups to hydroxyl groups is 1.1: 1 to 2: 1, in particular 1.3: 1 to 1.6: 1.
  • the reaction results in a polyurethane having terminal isocyanate groups which are reacted with at least one, in particular one, compound with at least one, in particular one, isocyanate-reactive functional group, in particular a hydroxyl group.
  • suitable compounds of this type are the aliphatic and cycloaliphatic alcohols described above and further alcohols, such as n-pentanol, n-hexanol or 2-ethylhexanol.
  • cycloaliphatic diisocyanates and / or cycloaliphatic diols which contain the cycloaliphatic structural units described above.
  • Diisocyanatocyclohexane or dicyclohexylmethane diisocyanate H12-MDI
  • suitable cycloaliphatic diols are cyclobutane-1,3-diol, cyclopentane-1, 3-diol, cyclohexane-1, 2-, -1,3- or -1,4-diol, cycloheptane-1,4-diol, Norboman-1,4-diol, adamantane-1,5-diol, decalin-diol, 3,3,5-trimethyl-cyclohexane-1,5-diol, 1-methylcyclohexane-2,6-diol, cyclohexanedimethanol, dicyclohexylmethane 4,4'-diol, 1, 1'-dicyclohexane-4,4'-d
  • aliphatic polyisocyanates in particular diisocyanates
  • polyols in particular diols, which contain the flexibilizing structural units described above
  • They are described, for example, in German patent application DE 101 29 970 A1, page 9, paragraph [0074], and paragraph [0098] spanning pages 10 and 11.
  • the polyurethane (C) can be prepared in an organic solution or in a melt of the starting products.
  • the organic solution preferably contains at least one inert, preferably low-boiling, organic solvent which, under the conditions of the preparation of the polyurethane (C), does not react either with the polyisocyanates or with the polyols.
  • suitable organic solvents are known from the book "Paints, Coatings and Solvents", second completely revised edition, Edit. D. Stoye and W. Freitag, Wiley-VCH, Weinheim, New York, 1998.
  • Diisocyanates with the polyols in particular the diols, or with the polyols and the monools in the presence of more common and known Catalysts, in particular tin-containing catalysts such as dibutyltin dilaurate, are carried out.
  • polyurethane (C) was produced in organic solution, it can be isolated for further use as a solid or it can be processed further in solution.
  • the polyurethane (C) was produced in the melt, it is discharged from the reaction vessel in the molten state, cooled and further processed as a solid.
  • the component (C) is preferably present in the powder coating materials of the invention in an amount of 1 to 50% by weight, preferably 5 to 40% by weight and in particular 5 to 30% by weight, based on the powder coating. It can be present as a separate phase (C) in addition to the powder coating particles. Or part of the component (C) is in the powder coating particles and the other part is in the form of a separate dispersed phase (C). The total amount of component (C) is preferably contained in the powder coating particles.
  • the powder coating materials of the invention contain at least one, in particular one, component (A) containing epoxy groups.
  • the oligomers and / or polymers containing epoxide groups are suitable.
  • the oligomers and / or polymers (A) preferably have a glass transition temperature> 30 ° C., in particular> 40 ° C. They are preferably (meth) acrylate copolymers. Examples of suitable (meth) acrylate copolymers (A) are described in German patent application DE 196 13 547 A1, column 2, lines 10 to 59, and column 3, lines 20 to 24. However, crosslinkers containing epoxide groups are also suitable as constituent (A) (cf. German patent application DE 196 13 547 A1, column 3, lines 2 to 4).
  • the content of constituent (A) in the powder coatings according to the invention can vary very widely and depends on the requirements of the individual case.
  • the content is preferably 10 to 80, preferably 15 to 80, particularly preferably 20 to 80, very particularly preferably 25 to 80 and in particular 30 to 80% by weight, based in each case on the powder coating according to the invention.
  • the powder coating materials of the invention contain at least one component (B) containing carboxyl groups.
  • the component (B) containing carboxyl groups is preferably selected from the group of solid, low molecular weight polycarboxylic acids, in particular dicarboxylic acids.
  • the carboxyl group-containing component (B) can also contain at least one, in particular one, carboxylic anhydride group. Suitable constituents (B) containing carboxyl groups are described in German patent application DE 196 13 547 A1, column 2, line 60 to column 3, line 11.
  • the content of the carboxyl group-containing constituent (B) in the powder coatings according to the invention can vary very widely and depends on the requirements of the individual case, in particular on the type and number of complementary reactive functional groups in the constituents (A) containing epoxy groups.
  • the content is preferably 1 to 40, preferably 2 to 35, particularly preferably 3 to 30, very particularly preferably 4 to 27 and in particular 5 to 25% by weight, based in each case on the powder coating according to the invention.
  • the epoxy group-containing constituents (A) and the carboxyl group-containing constituents (B) are preferably used in an amount such that 0.5 to 1.5, preferably 0.75 to 1.25 and in particular 0.8 to, per equivalent of epoxy groups are used in the powder coatings according to the invention 1, 2 equivalents of carboxyl groups are present.
  • the powder coating materials of the invention may also contain at least one additive (D), as is usually used in powder coating materials.
  • additives are described in detail in the German patent applications
  • the powder coating materials of the invention can also be pigmented and contain customary and known, color and / or effect pigments. Examples of suitable pigments are described in detail in German patent application DE 100 58 860 A1, page 8, paragraph [0056], to page 9, paragraph [0067].
  • the production of the powder coatings according to the invention has no special features in terms of method, but can be carried out using the customary and known processes.
  • the constituents of the powder coating materials of the invention can be mixed with one another in customary and known mixing units, such as extruders.
  • the resulting mixtures are comminuted after solidification with the aid of customary and known grinding units and, if appropriate, sifted.
  • the powder coating materials of the invention can also be produced by mixing the constituents with the aid of melt emulsification, cooling the melt and isolating the suspended particles (cf. German patent application DE 101 26 649 A1).
  • the particle size distribution of the powder coating materials of the invention can vary comparatively broadly and depends on the particular intended use.
  • the particle size distribution is preferably comparatively narrow with only a very small proportion of coarse particles (particle sizes above 95 ⁇ m) and of very fine particles (particle sizes below 5 ⁇ m).
  • Powder coatings according to the invention with the particle size distribution described in European patent EP 0 666 779 B1 are particularly preferably used.
  • the powder coatings according to the invention are outstandingly suitable as coating materials, adhesives and sealants. They are excellent for painting, gluing and sealing the bodies of means of transportation and parts thereof, structures and parts thereof, doors, windows, furniture, small industrial parts, mechanical, optical and electronic components, coils, containers, Packaging, hollow glass bodies and everyday items are suitable.
  • They are preferably used as coating materials, particularly preferably as powder clearcoats.
  • they are suitable for the production of clearcoats in the context of multi-layer paint and / or effect coatings.
  • the powder coatings according to the invention are particularly simple by the processes known and customary for powder coatings (cf. German patent applications DE 100 27 270 A 1, page 15, para . [0139], and DE 101 26 649 A1, page 19, paragraph [0199]).
  • the curing of the powder coatings according to the invention has no special features in terms of method, but is carried out using the customary and known devices and methods, in particular using IR radiation, NIR radiation and / or hot air, conventional and known radiant heaters and convection ovens preferably being used become.
  • the applied powder coating materials of the invention are preferably cured at temperatures> 120 ° C., in particular> 130 ° C. Temperatures of 180 ° C., in particular 175 ° C., are preferably not exceeded during curing.
  • the coatings in particular the clearcoats, adhesive layers and seals, are scratch-resistant and can be overpainted without any problems, which is of great importance for automotive refinishing, for example.
  • the diols and monools were placed in a reaction vessel equipped with a stirrer, reflux condenser, inert gas inlet and dropping funnel at room temperature.
  • the initial charge was heated to 80 ° C. with stirring. After the initial charge had completely melted, 0.05% by weight of dibutyltin dilaurate, based on the entire reaction mixture, was added with stirring. Subsequently, diyclohexylmethane diisocyanate was slowly added dropwise so that the temperature was 110 ° C. After the addition was complete, the reaction mixture was held at 110 ° C.
  • Table 1 gives an overview of the material composition of the starting products and the glass transition temperatures (determined with the modulated differential thermal analysis, MDSC, heating rate 3 ° C / min) of the polyurethanes (C1) and (C2).
  • Table 1 The material compositions of the polyurethanes (C1) and (C2) and their glass transition temperatures
  • Polyurethanes (C1) and (C2) were outstandingly suitable for the production of powder coatings.
  • polyurethane (C2) from preparation example 2 was used.
  • Table 2 The material composition of powder coatings 1, 2 and V1
  • Tinuvin ® 144 HALS, commercially available reversible radical scavenger from Ciba Specialty Chemicals 0.91 0.91 1
  • the powder clearcoats 1 and 2 had a significantly better storage stability, flowability and fluidizability than the powder clearcoat V1 and could therefore be stored, refilled and applied more easily than this.
  • the fluidizability was determined by fluidizing a specified amount of powder coating under defined conditions with compressed air in a fluidized bed vessel. The height hi became the fluidized bed measured. The compressed air was then switched off and the height ho of the powder coating in the fluidized-bed vessel was determined again.
  • the following fluidization factors ho / o were measured:
  • Powder coating 1 165%
  • Powder coating 2 160%
  • Powder coating V1 135%.
  • the powder coatings 1, 2 and V1 were applied electrostatically to steel sheets which - in the order specified above one another - were pre-coated with an electro-dip coating, a filler coating and a black water-based coating.
  • the layer thickness of the applied powder coating layers 1, 2 and V1 was chosen so that the cured clearcoats 1, 2 and V1 had a layer thickness of 65 ⁇ m.
  • the applied layers were thermally hardened at 145 ° C. for 30 minutes. For the thermal hardening, convection ovens from Heraeus were used.
  • the resulting clearcoats 1 and 2 had a better flow than the clearcoat V1 and were free from surface defects. In addition, clearcoats 1 and 2 had significantly higher scratch resistance, chemical stability and stability against whitening after exposure to moisture than clearcoat V 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)

Abstract

Thermisch härtbare Pulverlacke, enthaltend (A) mindestens einen epoxidgruppenhaltigen Bestandteil, (B) mindestens einen carboxylgruppenhaltigen Bestandteil und (C) mindestens einen mindestens zwei Urethangruppen enthaltenden Bestandteil, ausgewählt aus der Gruppe, bestehend aus kristallinen, teilkristallinen, thermoplastischen oder teilkristallinen und thermoplastischen Polyurethanen und mit Monoolen blockierten Polyisocyanaten, die einen Schmelzpunkt, einen Schmelzbereich oder eine Glasübergangstemperatur > 30 °C aufweisen, cycloaliphatische Struktureinheiten enthalten und im wesentlichen oder völlig frei sind von reaktiven funktionellen Gruppen, die mit Epoxidgruppen und Carboxylgruppen reagieren; Verfahren zu ihrer Herstellung und ihre Verwendung.

Description

Thermisch härtbare Pulverlacke, Verfahren zu ihrer Herstellung und ihre Verwendung
Die vorliegende Erfindung betrifft neue thermisch härtbare Pulverlacke. Außerdem betrifft die vorliegende Erfindung ein neues Verfahren zu Herstellung von thermisch härtbaren Pulverlacken. Außerdem betrifft die vorliegende Erfindung die Verwendung der neuen thermisch härtbaren Pulverlacke und der mit Hilfe des neuen Verfahrens hergestellten thermisch härtbaren Pulverlacke als Beschichtungsstoffe, Klebstoffe und Dichtungsmassen für das Lackieren, Verkleben und Abdichten von Karosserien von Fortbewegungsmitteln und Teilen hiervon, Bauwerken und Teilen hiervon, Türen, Fenstern, Möbeln, industriellen Kleinteilen, mechanischen, optischen und elektronischen Bauteilen, Coils, Container, Emballagen, Glashohlkörpern und Gegenständen des täglichen Bedarfs.
Thermisch härtbare Pulverlacke, die mindestens einen epoxidgruppenhaltigen Bestandteil und mindestens einen carboxylgruppenhaltigen Bestandteil enthalten, Verfahren zu ihrer Herstellung und ihre Verwendung sind beispielsweise aus der deutschen Patentanmeldung DE 196 13 547 A 1 bekannt. Diese bekannten thermisch härtbaren Pulverlacke weisen bereits ein sehr gutes anwendungstechnisches Eigenschaftsprofil auf, das aber aufgrund der gestiegenen Ansprüche des Marktes hinsichtlich der Lagerstabilität, der Verarbeitbarkeit, insbesondere der Fluidisierbarkeit in strömenden Gasen, stetig weiter verbessert werden muss. Außerdem müssen die Chemikalienbeständigkeit und die Kratzfestigkeit der aus den bekannten thermisch härtbaren Pulverlacken hergestellten Beschichtungen und Lackierungen weiter verbessert werden. Aufgabe der vorliegenden Erfindung ist es, neue thermisch härtbare Pulverlacke zur Verfügung zustellen, die eine verbesserte Lagerstabilität und eine verbesserte Verarbeitbarkeit, insbesondere eine verbesserte Fluidisierbarkeit in strömenden Gasen, aufweisen und duroplastische Pulveriackierungen mit hervorragenden anwendungstechnischen Eigenschaften, insbesondere mit einer hohen Chemikalienbeständigkeit und Kratzfestigkeit, liefern.
Dem gemäß wurden die neuen thermischen härtbaren Pulverlacke gefunden, die
(A) mindestens einen epoxidgruppenhaltigen Bestandteil,
(B) mindestens einen carboxylgruppenhaltigen Bestandteil und
C) mindestens einen mindestens zwei Urethangruppen enthaltenden Bestandteil, ausgewählt aus der Gruppe, bestehend aus kristallinen, teilkristallinen, thermoplastischen oder teilkristallinen und thermoplastischen Polyurethanen und mit Monoolen blockierten Polyisocyanaten, die einen Schmelzpunkt, einen Schmelzbereich oder eine Glasübergangstemperatur > 30 °C aufweisen, cycloaliphatische Struktureinheiten enthalten und im wesentlichen oder völlig frei sind von reaktiven funktioneilen Gruppen, die mit Epoxidgruppen und Carboxylgruppen reagieren,
enthalten.
Im Folgenden werden die neuen thermisch härtbaren Pulverlacke als »erfindungsgemäße Pulverlacke« bezeichnet. Außerdem wurde das neue Verfahren zur Herstellung von thermisch härtbaren Pulverlacken gefunden, bei dem man
(A) mindestens einen epoxidgruppenhaltigen Bestandteil,
(B) mindestens einen carboxylgruppenhaltigen Bestandteil und
C) mindestens einen mindestens zwei Urethangruppen enthaltenden Bestandteil, ausgewählt aus der Gruppe, bestehend aus kristallinen, teilkristallinen, thermoplastischen oder teilkristallinen und thermoplastischen Polyurethanen und mit Monoolen blockierten Polyisocyanaten, die einen Schmelzpunkt, einen Schmelzbereich oder eine Glasübergangstemperatur > 30 °C aufweisen, cycloaliphatische Struktureinheiten enthalten und im wesentlichen oder völlig frei sind von reaktiven funktionellen Gruppen, die mit Epoxidgruppen und Carboxylgruppen reagieren,
miteinander vermischt und die resultierende Mischung zerkleinert.
Im Folgenden wird das neue Verfahren zur Herstellung von thermisch härtbaren Pulverlacken als »erfindungsgemäßes Verfahren« bezeichnet.
Weitere Erfindungsgegenstände gehen aus der Beschreibung hervor.
Im Hinblick auf den Stand der Technik war es überraschend und für den Fachmann nicht vorhersehbar, dass die Aufgabe, die der vorliegenden Erfindung zugrunde lag, mit Hilfe der erfindungsgemäßen Pulverlacke gelöst werden konnte. Insbesondere war es überraschend, dass die erfindungsgemäßen Pulverlacke einfach hergestellt werden konnten und eine hervorragende Lagerstabilität und Verarbeitbarkeit, insbesondere eine hervorragende Fluidisierbarkeit in strömenden Gasen, insbesondere im Luftstrom, aufwiesen und Beschichtungen, Klebschichten und Dichtungen, insbesondere Klarlackierungen, mit hervorragenden anwendungstechnischen Eigenschaften, insbesondere mit hoher Chemikalienstabilität und Kratzfestigkeit, lieferten.
Der erfindungswesentliche Bestandteil der erfindungsgemäßen Pulverlacke ist mindestens ein, insbesondere ein, mindestens zwei, insbesondere mindestens drei, Urethangruppen enthaltender Bestandteil (C).
Der Bestandteil (C) wird aus der Gruppe, bestehend aus kristallinen, teilkristallinen, thermoplastischen oder teilkristallinen und thermoplastischen Polyurethanen und mit Monoolen, vorzugsweise aliphatischen und cycloaliphatischen Alkoholen, blockierten Polyisocyanaten, die einen Schmelzpunkt, einen Schmelzbereich oder eine Glasübergangstemperatur > 30 °C, vorzugsweise > 40 °C und insbesondere > 45 °C, aufweisen, cycloaliphatische Struktureinheiten enthalten und im wesentlichen oder völlig frei sind von reaktiven funktionellen Gruppen, die mit Epoxidgruppen und Carboxylgruppen reagieren, ausgewählt.
Der Bestandteil (C) enthält vorzugsweise mindestens zwei, bevorzugt mindestens drei, besonders bevorzugt mindestens vier und insbesondere mindestens fünf cycloaliphatische Struktureinheiten.
Vorzugsweise sind die cycloaliphatischen Struktureinheiten
Cycloalkandiyl-Reste, insbesondere mit 2 bis 20 Kohlenstoffatomen.
Vorzugsweise werden die Cycloalkandiyl-Reste aus der Gruppe, bestehend aus Cyclobutan-1 ,3-diyl, Cyclopentan-1 ,3-diyl, Cyclohexan-1 ,3- oder -1,4-diyl, Cycloheptan-1 ,4-diyl, Norbornan-1,4-diyl, Adamantan-1 ,5- diyl, Decalin-diyl, 3,3,5-Trimethyl-cyclohexan-1,5-diyl, 1 -Methylcyclohexan- 2,6-diyl, Dicyclohexylmethan-4,4'-diyl, 1,1'-Dicyclohexan-4,4'-diyl oder 1,4- Dicyclohexylhexan-4,4"-diyl, insbesondere 3,3,5-Trimethyl-cyclohexan- 1 ,5-diyl oder Dicyclohexylmethan-4,4'-diyl, ausgewählt.
»Im wesentlichen frei von reaktiven funktionellen Gruppen« bedeutet, dass der Bestandteil (C) eine so geringe Anzahl von reaktiven funktionellen Gruppen enthält, dass ihre Reaktionen mit den Carboxylgruppen und den Epoxidgruppen das Eigenschaftprofil der aus den erfindungsgemäßen Pulverlacken hergestellten Beschichtungen und Lackierungen nicht beeinflussen. Vorzugsweise ist der Bestandteil (C) völlig frei von reaktiven funktionellen Gruppen.
Der Bestandteil (C) kann flexibilisierende Struktureinheiten, die als Bestandteil dreidimensionaler Netzwerke deren Glasübergangstemperatur Tg erniedrigen, in untergeordneten Mengen enthalten. »Untergeordnete Mengen« bedeutet, dass die flexibilisierenden Struktureinheiten in einer solchen Menge vorhanden sind, dass die Glasübergangstemperatur des betreffenden Bestandteils (C) nicht unter 30 °C, vorzugsweise nicht unter 40 °C und insbesondere nicht unter 45 °C absinkt. Beispiele geeigneter flexibilisierender Struktureinheiten sind aus der deutschen Patentanmeldung DE 101 29 970 A 1, Seite 8, Abs. [0064], bis Seite 9, Abs. [0072], bekannt.
Vorzugsweise ist der Bestandteil (C) im Wesentlichen oder völlig frei von aromatischen Struktureinheiten. »Im Wesentlichen frei« bedeutet, dass der Bestandteil (C) aromatische Struktureinheiten in einer Menge enthält, die die anwendungstechnischen Eigenschaften nicht prägt, insbesondere die UV-Stabilität des Bestandteils (C) nicht nachteilig beeinflusst. Vorzugsweise ist der Bestandteil (C) hydrophob, d. h., er hat die Neigung, in einem flüssigen Zweiphasensystem aus einer unpolaren organischen Phase und einer wässrigen Phase die wässrige Phase zu verlassen und sich überwiegend in der organischen Phase anzusammeln.
Der Bestandteil (C) kann reaktive funktioneile Gruppen enthalten, die unter den Bedingungen der Herstellung, der Applikation und der Härtung der erfindungsgemäßen Pulverlacke nicht mit den Epoxidgruppen und Carboxylgruppen reagieren. Oder aber die reaktiven funktionellen Gruppen reagieren unter diesen Bedingungen mit den Epoxidgruppen und Carboxylgruppen so langsam, dass dadurch die anwendungstechnischen Eigenschaften der Pulverlacke und der hieraus hergestellten Beschichtungen und Lackierungen nicht beeinflusst werden. Vorzugsweise reagieren die reaktiven funktionellen Gruppen bei Temperaturen < 150 ° C, bevorzugt < 160 ° C und insbesondere < 170 ° C in diesem Sinne nicht mit den Epoxidgruppen und Carboxylgruppen. Ein Beispiel für reaktive funktioneile Gruppen dieser Art ist die Hydroxylgruppe.
Der Bestandteil (C) kann ein mit Monoolen, insbesondere mit aliphatischen und cycloaliphatischen Alkoholen, blockiertes Polyisocyanat sein.
Vorzugsweise werden die aliphatischen und cycloaliphatischen Alkohole aus der Gruppe, bestehend aus Methanol, Ethanol, Propanol, Isopropanol, Butanol und Cyclohexanol, ausgewählt. Vorzugsweise sind die zu blockierenden Polyisocyanate cycloaliphatische Polyisocyanate. Bevorzugt werden die nachstehend beschriebenen cycloaliphatischen Diisocyanate und Isocyanurat-, Biuret-, Allophanat-, Iminooxadiazindion-, Urethan-, Harnstoff- und/oder Uretdiongruppen aufweisenden Polyisocyanate auf der Basis dieser cycloaliphatischen Diisocyanate verwendet. Vorzugsweise sind diese blockierten Polyisocyanate (C) kristallin oder teilkristallin. Insbesondere werden die mit Alkoholen blockierten Isocyanurate von Isophorondiisocyanat (IPDI) und Dicyclohexylmethan-2,4'-diisocyanat (H12-MDI) als Bestandteile (C) verwendet. Diese blockierten Polyisocyanate (C) sind handelsübliche Produkte.
Der Bestandteil (C) kann ein kristallines, teilkristallines, thermoplastisches oder teilkristallines und thermoplastisches, insbesondere ein teilkristallines und thermoplastisches, Polyurethan sein. Seine Hauptkette kann linear oder sternförmig oder kammförmig verzweigt sein. Vorzugsweise ist sie linear.
Das Polyurethan (C) kann mit Hilfe der üblichen und bekannten Verfahren der Polyurethanchemie hergestellt werden.
Soll das Polyurethan (C) terminale Hydroxylgruppen aufweisen, wird es vorzugsweise aus Polyisocyanaten, vorzugsweise Diisocyanaten, insbesondere cycloaliphatischen Diisocyanaten, und Polyolen, vorzugsweise Diolen, insbesondere cycloaliphatischen Diolen, hergestellt. Dabei werden die Polyole im Uberschuss eingesetzt. Vorzugsweise wird das Molverhältnis so gewählt, dass das Verhältnis von Hydroxylgruppen zu Isocyanatgruppen bei 1 ,1 : 1 bis 2 : 1, insbesondere 1,3 : 1 bis 1,6 : 1 liegt.
Soll das Polyurethan (C) keine terminalen Hydroxylgruppen aufweisen, werden die Polyisocyanate, vorzugsweise die Diisocyanate, insbesondere die cycloaliphatischen Diisocyanate, im Uberschuss über die Polyole, vorzugsweise die Diole, insbesondere die cycloaliphatischen Diole, eingesetzt. Vorzugsweise wird das Molverhältnis so gewählt, dass das Verhältnis von Isocyanatgruppen zu Hydroxylgruppen bei 1,1 : 1 bis 2 : 1, insbesondere 1 ,3 : 1 bis 1 ,6 : 1 liegt. Bei der Umsetzung resultiert dann ein Polyurethan mit terminalen Isocyanatgruppen, die mit mindestens einer, insbesondere einer, Verbindung mit mindestens einer, insbesondere einer, isocyanatreaktiven funktionellen Gruppe, insbesondere einer Hydroxylgruppe, umgesetzt werden. Beispiele geeigneter Verbindungen dieser Art sind die vorstehend beschriebenen aliphatischen und cycloaliphatischen Alkohole sowie weitere Alkohole, wie n-Pentanol, n- Hexanol oder 2-Ethylhexanol.
Insbesondere werden cycloaliphatische Diisocyanate und/oder cycloaliphatische Diole verwendet, die die vorstehend beschriebenen cycloaliphatischen Struktureinheiten enthalten.
Beispiele für geeignete cycloaliphatische Diisocyanate sind Isophorondiisocyanat (= 5-lsocyanato-1-isocyanatomethyl-1 ,3,3-trimethyl-cyclohexan, IPDI), 5-lsocyanato-1-(2-isocyanatoeth-1-yl)-1 ,3,3-trimethyl-cyclohexan, 5- lsocyanato-1-(3-isocyanatoprop-1-yl)-1 ,3,3-trimethyl-cyclohexan, 5- lsocyanato-(4-isocyanatobut-1 -yl)-1 ,3,3-trimethyl-cyclohexan, 1 - lsocyanato-2-(3-isocyanatoprop-1 -yl)-cyclohexan, 1 -lsocyanato-2-(3- isocyanatoeth-1 -yl)cyclohexan, 1 -lsocyanato-2-(4-isocyanatobut-1 -yl)- cyclohexan, 1 ,2-Diisocyanatocyclobutan, 1 ,3-Diisocyanatocyclobutan, 1 ,2-Diisocyanatocyclopentan, 1 ,3-Diisocyanatocyclopentan, 1 ,2-
Diisocyanatocyclohexan, 1 ,3-Diisocyanatocyclohexan, 1 ,4-
Diisocyanatocyclohexan oder Dicyclohexylmethandiisocyanat (H12-MDI), insbesondere IPDI und H12-MDI. Beispiele für geeignete cycloaliphatische Diole sind Cyclobutan-1,3-diol, Cyclopentan-1 ,3-diol, Cyclohexan-1 ,2-, -1,3- oder -1,4-diol, Cycloheptan- 1,4-diol, Norboman-1 ,4-diol, Adamantan-1 ,5-diol, Decalin-diol, 3,3,5- Trimethyl-cyclohexan-1 ,5-diol, 1 -Methylcyclohexan-2,6-diol, Cyclohexandimethanol, Dicyclohexylmethan-4,4'-diol, 1 ,1'-Dicyclohexan- 4,4'-diol oder 1,4-Dicyclohexylhexan-4,4"-diol, insbesondere 3,3,5- Trimethyl-cyclohexan-1 ,5-diol oder Dicyclohexylmethan-4,4'-diol.
Für die Herstellung des Polyurethans (C) können noch aliphatische Polyisocyanate, insbesondere Diisocyanate, und/oder Polyole, insbesondere Diole, die die vorstehend beschriebenen flexibilisierenden Struktureinheiten enthalten, in im vorstehend Sinne untergeordneten Mengen eingesetzt werden. Sie werden beispielsweise in der deutschen Patentanmeldung DE 101 29 970 A 1, Seite 9, Abs. [0074], und der die Seiten 10 und 11 übergreifende Abs. [0098], beschrieben.
Das Poylurethan (C) kann in einer organischen Lösung oder in einer Schmelze der Ausgangsprodukte hergestellten werden.
Vorzugsweise enthält die organische Lösung mindestens ein inertes, vorzugsweise niedrig siedendes, organisches Lösungsmittel, das unter den Bedingungen der Herstellung des Polyurethans (C) weder mit den Polyisocyanaten noch mit den Polyolen reagiert. Beispiele geeigneter organischer Lösemittel sind aus dem Buch „Paints, Coatings and Solvents", second completely revised edition, Edit. D. Stoye und W. Freitag, Wiley-VCH, Weinheim, New York, 1998, bekannt.
Vorzugsweise wird die Umsetzung der Polyisocyanate, insbesondere der
Diisocyanate, mit den Polyolen insbesondere den Diolen, oder mit den Polyolen und den Monoolen in der Gegenwart üblicher und bekannter Katalysatoren, insbesondere zinnhaltiger Katalysatoren wie Dibutylzinndilaurat, durchgeführt.
Wurde das Polyurethan (C) in organischer Lösung hergestellt, kann zur weiteren Verwendung als Feststoff isoliert oder es kann in Lösung weiterverarbeitet werden.
Wurde das Polyurethan (C) in der Schmelze hergestellt, wird es in geschmolzenem Zustand aus dem Reaktionsgefäß ausgetragen, abgekühlt und als Feststoff weiterverarbeitet.
Der Bestandteil (C) ist in den erfindungsgemäßen Pulverlacken vorzugsweise in einer Menge von, jeweils bezogen auf den Pulverlack, 1 bis 50 Gew.-%, bevorzugt 5 bis 40 Gew.-% und insbesondere 5 bis 30 Gew.-% enthalten. Dabei kann er als separate Phase (C) neben den Pulverlackpartikeln vorliegen. Oder aber ein Teil des Bestandteils (C) liegt in den Pulverlackpartikeln und der andere Teil als separate dispergierte Phase (C) vor. Vorzugsweise ist die gesamte Menge des Bestandteils (C) in den Pulverlackpartikeln enthalten.
Die erfindungsgemäßen Pulverlacke enthalten mindestens einen, insbesondere einen, epoxidgruppenhaltigen Bestandteil (A).
Als Bestandteil (A) kommen insbesondere die epoxidgruppenhaltigen Oligomeren und/oder Polymeren in Betracht, wie sie üblicherweise für die Herstellung von Pulverlacken eingesetzt werden. Vorzugsweise haben die Oligomeren und/oder Polymeren (A) eine Glasübergangstemperatur > 30 °C, insbesondere > 40 °C. Bevorzugt sind sie (Meth)Acrylatcopolymerisate Beispiele geeigneter (Meth)Acrylatcopolymerisate (A) werden in der deutschen Patentanmeldung DE 196 13 547 A 1, Spalte 2, Zeilen 10 bis 59, und Spalte 3, Zeilen 20 bis 24 beschrieben. Als Bestandteil (A) kommen aber auch epoxidgruppenhaltige Vernetzer in Betracht (vgl. die deutsche Patentanmeldung DE 196 13 547 A 1, Spalte 3, Zeilen 2 bis 4).
Der Gehalt der erfindungsgemäßen Pulverlacke an dem Bestandteil (A) kann sehr breit variieren und richtet sich nach den Erfordernissen des Einzelfalls. Vorzugsweise liegt der Gehalt bei, jeweils bezogen auf den erfindungsgemäßen Pulverlack, 10 bis 80, bevorzugt 15 bis 80, besonders bevorzugt 20 bis 80, ganz besonders bevorzugt 25 bis 80 und insbesondere 30 bis 80 Gew.-%.
Die erfindungsgemäßen Pulverlacke enthalten mindestens einen carboxylgruppenhaltigen Bestandteil (B). Vorzugsweise wird der carboxylgruppenhaltige Bestandteil (B) aus der Gruppe der festen, niedermolekularen Polycarbonsauren, insbesondere der Dicarbonsauren, ausgewählt. Der carboxylgruppenhaltige Bestandteil (B) kann noch mindestens eine, insbesondere eine, Carbonsäureanhydridgruppe enthalten. Geeignete carboxylgruppenhaltige Bestandteile (B) werden in der deutschen Patentanmeldung DE 196 13 547 A 1, Spalte 2, Zeile 60, bis Spalte 3, Zeile 11 , beschrieben.
Der Gehalt der erfindungsgemäßen Pulverlacke an dem carboxylgruppenhaltigen Bestandteil (B) kann sehr breit variieren und richtet sich nach den Erfordernissen des Einzelfalls, insbesondere nach der Art und Anzahl der komplementären reaktiven funktionellen Gruppen in den epoxidgruppenhaltigen Bestandteilen (A). Vorzugsweise liegt der Gehalt bei, jeweils bezogen auf den erfindungsgemäßen Pulverlack, 1 bis 40, bevorzugt 2 bis 35, besonders bevorzugt 3 bis 30, ganz besonders bevorzugt 4 bis 27 und insbesondere 5 bis 25 Gew.-%. Vorzugsweise werden die epoxidgruppenhaltigen Bestandteile (A) und die carboxylgruppenhaltige Bestandteile (B) in einer Menge eingesetzt, dass in den erfindungsgemäßen Pulverlacken pro Äquivalent Epoxidgruppen 0,5 bis 1,5, bevorzugt 0,75 bis 1,25 und insbesondere 0,8 bis 1 ,2 Äquivalente Carboxylgruppen vorliegen.
Darüber hinaus können die erfindungsgemäßen Pulverlacke noch mindestens einen Zusatzstoff (D) enthalten, wie er üblicherweise in Pulverlacken eingesetzt wird. Beispiele geeigneter Zusatzstoffe werden im Detail in den deutschen Patentanmeldungen
DE 196 13 547 A 1 , Spalte 3, Zeilen 25 bis 52,
DE 100 27 267 A 1, Seite 11, Abs. [0106], bis Seite 12, Abs. [0107],
DE 101 26 649 A 1 , Seite 17, Abs. [0174], bis Seite 18, Abs. [0189], oder
- DE 100 58 860 A 1 , Seite 4, Abs. [0037], bis Seite 8, Abs. [0055],
beschrieben.
Darüber hinaus können die erfindungsgemäßen Pulverlacke auch pigmentiert sein und übliche und bekannte, färb- und/oder effektgebende Pigmente enthalten. Beispiele geeigneter Pigmente werden im Detail in der deutschen Patentanmeldung DE 100 58 860 A 1 , Seite 8, Abs. [0056], bis Seite 9, Abs. [0067], beschrieben. Die Herstellung der erfindungsgemäßen Pulverlacke weist keine methodischen Besonderheiten auf, sondern kann mit Hilfe der üblichen und bekannten Verfahren durchgeführt werden.
Beispielsweise können die Bestandteile der erfindungsgemäßen Pulverlacke in üblichen und bekannten Mischaggregaten wie Extrudern miteinander vermischt werden. Die resultierenden Mischungen werden nach dem Verfestigen mit Hilfe üblicher und bekannter Mahlaggregate zerkleinert und gegebenenfalls gesichtet.
Die erfindungsgemäßen Pulverlacke können auch durch Vermischen der Bestandteile mit Hilfe der Schmelzeemulgierung, Abkühlen der Schmelze und Isolieren der suspendierten Partikel hergestellt werden (vgl. die deutsche Patentanmeldung DE 101 26 649 A 1).
Die Teilchengrößenverteilung der erfindungsgemäßen Pulverlacke kann vergleichsweise breit variieren und richtet sich nach dem jeweiligen Verwendungszweck. Vorzugsweise ist die Teilchengrößenverteilung vergleichsweise eng mit einem nur sehr geringen Anteil an Grobkorn (Teilchengrößen oberhalb 95 μm) und an Feinstkorn (Teilchengrößen unter 5 μm). Besonders bevorzugt werden erfindungsgemäße Pulverlacke mit der in dem europäischen Patent EP 0 666 779 B 1 beschriebenen Teilchengrößenverteilung verwendet.
Die erfindungsgemäßen Pulverlacke eignen sich hervorragend als Beschichtungsstoffe, Klebstoffe und Dichtungsmassen. Dabei sind sie hervorragend für das Lackieren, Verkleben und Abdichten von Karosserien von Fortbewegungsmitteln und Teilen hiervon, Bauwerken und Teilen hiervon, Türen, Fenstern, Möbeln, industriellen Kleinteilen, mechanischen, optischen und elektronischen Bauteilen, Coils, Container, Emballagen, Glashohlkörpern und Gegenständen des täglichen Bedarfs geeignet.
Bevorzugt werden sie als Beschichtungsstoffe, besonders bevorzugt als Pulverklarlacke, eingesetzt. Insbesondere eignen sie sich zur Herstellung Klarlackierungen im Rahmen von färb- und/oder effektgebenden Mehrschichtlackierungen.
Wegen ihrer hervorragenden Lagerstabilität und Verarbeitbarkeit, insbesondere ihrer hervorragenden Fluidisierbarkeit in strömenden Gasen, insbesondere im Luftstrom, sind die erfindungsgemäßen Pulverlacke besonders einfach nach den für Pulverlacke üblichen und bekannten Verfahren (vgl. die deutschen Patentanmeldungen DE 100 27 270 A 1, Seite 15, Abs. [0139], und DE 101 26 649 A 1, Seite 19, Abs. [0199]) zu applizieren.
Die Härtung der applizierten erfindungsgemäßen Pulverlacke weist keine methodischen Besonderheiten auf, sondern erfolgt mit Hilfe der üblichen und bekannten Vorrichtungen und Verfahren, insbesondere unter Verwendung von IR-Strahlung, NIR-Strahlung und/oder heißer Luft, wobei vorzugsweise übliche und bekannte Heizstrahler und Umluftöfen angewandt werden. Bevorzugt werden die applizierten erfindungsgemäßen Pulverlacke bei Temperaturen > 120 °C, insbesondere > 130 °C, gehärtet. Vorzugsweise werden bei der Härtung Temperaturen von 180 °C, insbesondere 175 °C, nicht überschritten.
Bei allen Anwendungen liefern die applizierten erfindungsgemaßen
Pulverlacke nach ihrer Härtung Beschichtungen, Klebschichten und
Dichtungen, die auch bei hohen Schichtdicken keine Oberflächenstörungen, kein Weißanlaufen nach der Belastung mit Feuchtigkeit zeigen und eine hervorragende Chemikalienstabilität haben. Darüber hinaus sind die Beschichtungen, insbesondere die Klarlackierungen, Klebschichten und Dichtungen kratzfest und können völlig problemlos überlackiert werden, was beispielsweise für die Autoreparaturlackierung von großer Bedeutung ist.
Beispiele
Herstellbeispiele 1 und 2
Die Herstellung der Polyurethane (C1) und (C2)
Allgemeine Herstellungsvorschrift:
In einem Reaktionsgefäß, ausgerüstet mit Rührer, Rückflusskühler, Inertgaseinleitung und Tropftrichter, wurden die Diole und Monoole bei Raumtemperatur vorgelegt. Die Vorlage wurde unter Rühren auf 80 " C erhitzt. Nachdem die Vorlage vollständig geschmolzen war, wurden 0,05 Gew.-% Dibutylzinndilaurat, bezogen auf das gesamte Reaktionsgemisch, unter Rühren hinzugegeben. Anschließend wurde Diyclohexylmethandiisocyanat langsam zugetropft, sodass die Temperatur 110 ° C nicht überschritten. Nach der Beendigung der Zugabe wurde das Reaktionsgemisch so lange bei 110 ° C gehalten, bis keine freien Isocyanatgruppen mehr nachweisbar waren. Das resultierende geschmolzene Polyurethan (C) wurde aus dem Reaktiongefäß in eine Kupferwanne ausgetragen und abgekühlt. Das resultierende feste Produkt wird zerkleinert und vor der weiteren Verarbeitung mikronisiert. Die Tabelle 1 gibt einen Überblick über die stoffliche Zusammensetzung der Ausgangsprodukte und die Glasübergangstemperaturen (bestimmt mit der modulierten Differentialthermoanalyse, MDSC, Heizrate 3 °C/min) der Polyurethane (C1 ) und (C2). Tabelle 1 : Die stoffliche Zusammensetzungen der Polyurethane (C1) und (C2) und ihre Glasübergangstemperaturen
Ausgangsprodukt Molverhältnisse Herstellbeispiele: 1/C1 2/C2
Dicyclohexylmethandiisocyanat
Cyclohexandimethanol-1 ,4
n-Butanol
2-Ethylhexanol
Glasübergangstemperatur (°C) 64 58
Die Polyurethane (C1 ) und (C2) waren hervorragend für die Herstellung von Pulverlacken geeignet.
Beispiele 1 und 2 und Vergleichsversuch V1
Die Herstellung der Pulverklarlacke 1, 2 und V1 sowie der Klarlackierungen 1, 2 und V1 Für das Beispiel 1 wurde das Polyurethan (C1) des Herstellbeispiels 1 verwendet.
Für das Beispiel 2 wurde das Polyurethan (C2) des Herstellbeispiels 2 verwendet.
Bei dem Vergleichsversuch V1 wurde kein Polyurethan (C) verwendet.
Die Bestandteile der Pulverlacke 1, 2 und V1 wurden in einem Henschel- Fluidmischer vermischt, in einem BUSS PLK 46 Extruder extrudiert, auf einer Hosokawa ACM 2-Mühle vermählen und über ein 63 μm Taumelsieb abgesiebt. Die Tabelle 2 gibt einen Überblick über die stoffliche Zusammensetzung der Pulverlacke 1 , 2 und V1.
Tabelle 2: Die stoffliche Zusammensetzung der Pulverlacke 1, 2 und V1
Ausgangsprodukte Beispiele: 1 2 V1 (Gew.-%) (Gew.-%) (Gew.-%)
Methacrylatcopolymerisat (A), Epoxyäquivalentgewicht (319 g/mol): 63 63 69,17
Dodecandisäure 22,66 22,66 24,93
Irgafos PEPQ (handelsübliches Antioxidans der Firma Ciba Specialty Chemicals) 0,91 0,91 1
CGL 1545 FG (handelsüblicher UV-Stabilisator der Firma Ciba Specialty Chemicals) 1,82 1 ,82 2
Tinuvin ® 144 (HALS, handelsüblicher reversibler Radikalfänger der Firma Ciba Specialty Chemicals) 0,91 0,91 1
Benzoin 0,54 0,54 0,6
Perenol ® F40 (handelsübliches Verlaufsmittel der Firma Cognis) 1 ,18 1 ,18 1 ,3
Polyurethan:
(C1) 9,1 (C2) - 9,1
Die Pulverklarlacke 1 und 2 wiesen eine signifikant bessere Lagerstabilität, Rieselfähigkeit und Fluidisierbarkeit als der Pulverklarlack V1 auf und konnten daher leichter als dieser gelagert, umgefüllt und appliziert werden.
Die Fluidisierbarkeit wurde bestimmt, indem man eine festgelegte Menge an Pulverlack unter definierten Bedingungen mit Druckluft in einem Wirbelschichtgefäß fluidisierte. Dabei wurde die Höhe hi der Wirbelschicht gemessen. Anschließend wurde die Druckluft abgestellt und es wurde erneut die Höhe ho des Pulverlacks im Wirbelschichtgefaß bestimmt. Der Fluidisierungsfaktor errechnet sich nach der Formel h»/0 = hι/h0x100; er sollte mindestens 130% betragen. Die folgenden Fluidisierungsfaktoren ho/o wurden gemessen:
Pulverlack 1 : 165%;
Pulverlack 2: 160%;
Pulverlack V1 : 135%.
Die Pulverlacke 1 , 2 und V1 wurden elektrostatisch auf Stahlbleche appliziert, die - in der angegebenen Reihenfolge übereinander liegend - mit einer Elektrotauchlackierung, einer Füllerlackierung und einem schwarzen Wasserbasislack vorlackiert waren. Die Schichtdicke der applizierten Pulverlackschichten 1 , 2 und V1 wurde so gewählt, dass die gehärteten Klarlackierungen 1 , 2 und V1 eine Schichtdicke von 65 μm aufwiesen. Die applizierten Schichten wurden und während 30 Minuten bei 145 °C thermisch gehärtet. Für die thermische Härtung wurden Umluftöfen der Firma Heraeus verwendet.
Die resultierenden Klarlackierungen 1 und 2 wiesen einen besseren Verlauf als die Klarlackierung V1 auf und waren frei von Oberflächenstörungen. Außerdem wiesen die Klarlackierungen 1 und 2 eine signifikant höhere Kratzfestigkeit, Chemikalienstabilität und Stabilität gegenüber Weißanlaufen nach der Belastung mit Feuchtigkeit auf als die Klarlackierung V 1.

Claims

Patentansprüche
1. Thermisch härtbare Pulverlacke, enthaltend (A) mindestens einen epoxidgruppenhaltigen Bestandteil,
(B) mindestens einen carboxylgruppenhaltigen Bestandteil und
(C) mindestens einen mindestens zwei Urethangruppen enthaltenden Bestandteil, ausgewählt aus der Gruppe, bestehend aus kristallinen, teilkristallinen, thermoplastischen oder teilkristallinen und thermoplastischen Polyurethanen und mit Monoolen blockierten Polyisocyanaten, die einen Schmelzpunkt, einen Schmelzbereich oder eine Glasübergangstemperatur > 30 °C aufweisen, cycloaliphatische Struktureinheiten enthalten und im wesentlichen oder völlig frei sind von reaktiven funktionellen Gruppen, die mit Epoxidgruppen und Carboxylgruppen reagieren.
2. Pulverlacke nach Anspruch 1 , dadurch gekennzeichnet, dass der Bestandteil (C) mindestens drei Urethangruppen enthält.
3. Pulverlacke nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das der Bestandteil (C) einen Schmelzpunkt, einen Schmelzbereich oder eine Glasübergangstemperatur > 40 °C hat.
4. Pulverlacke nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Bestandteil (C) Hydroxylgruppen enthält.
5. Pulverlacke nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die cycloaliphatischen Struktureinheiten Cycloalkandiyl-Reste mit 2 bis 20 Kohlenstoffatomen sind.
6. Härtbare Pulverlacke nach Anspruch 5, dadurch gekennzeichnet, dass die Cycloalkandiyl-Reste aus der Gruppe, bestehend aus Cyclobutan-1 ,3-diyl, Cyclopentan-1,3-diyl, Cyclohexan-1 ,3- oder - 1,4-diyl, Cycloheptan-1 ,4-diyl, Norboman-1,4-diyl, Adamantan-1 ,5- diyl, Decalin-diyl, 3,3,5-Trimethyl-cyclohexan-1,5-diyl, 1- Methylcyclohexan-2,6-diyl, Dicyclohexylmethan-4,4'-diyl, 1,1'- Dicyclohexan-4,4'-diyl oder 1 ,4-Dicyclohexylhexan-4,4"-diyl, insbesondere 3,3,5-Trimethyl-cyclohexan-1 ,5-diyl oder Dicyclohexylmethan-4,4'-diyl, ausgewählt sind.
7. Pulverlacke nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Bestandteil (C) im Wesentlichen oder völlig frei von aromatischen Struktureinheiteπ ist.
8. Pulverlacke nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass sie den Bestandteil (C), bezogen auf den Pulverlack, in einer Menge von 1 bis 50 Gew.-% enthalten.
9. Pulverlacke nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der epoxidgruppenhaltige Bestandteil (A) aus der Gruppe, bestehend aus Oligomeren und Polymeren mit einer Glasübergangstemperatur > 30 ° C, ausgewählt sind.
10. Pulverlacke nach Anspruch 9, dadurch gekennzeichnet, dass die Oligomeren und Polymeren (A) (Meth)Acrylatcopolymerisate sind.
11. Pulverlacke nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass sie den epoxidgruppenhaltigen Bestandteil (A) in einer Menge von 10 bis 80 Gew.-%, bezogen auf den thermisch härtbaren Pulverlack, enthalten.
12. Pulverlacke nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Bestandteil (B) aus der Gruppe, bestehend aus festen, niedermolekularen Polycarbonsauren, ausgewählt ist.
13. Pulverlacke nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die niedermolekularen Polycarbonsauren (B) Dicarbonsauren sind.
14. Pulverlacke nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass der carboxylgruppenhaltige Bestandteil (B) Carbonsäureanhydridgruppen enthält.
15. Pulverlacke nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass sie den carboxylgruppenhaltigen Bestandteil (B) in einer Menge von 1 bis 40 Gew.-%, bezogen auf den thermisch härtbaren Pulverlack, enthalten.
16. Verfahren zur Herstellung der thermisch härtbaren Pulverlacke gemäß einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass man
(A) mindestens einen epoxidgruppenhaltigen Bestandteil, (B) mindestens einen carboxylgruppenhaltigen Bestandteil und C) mindestens einen mindestens zwei Urethangruppen enthaltenden Bestandteil, ausgewählt aus der Gruppe, bestehend aus kristallinen, teilkristallinen, thermoplastischen oder teilkristallinen und thermoplastischen Polyurethanen und mit Monoolen blockierten Polyisocyanaten, die einen Schmelzpunkt, einen Schmelzbereich oder eine Glasübergangstemperatur > 30 °C aufweisen, cycloaliphatische Struktureinheiten enthalten und im wesentlichen oder völlig frei sind von reaktiven funktionellen Gruppen, die mit Epoxidgruppen und Carboxylgruppen reagieren, miteinander vermischt und die resultierende Mischung zerkleinert.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass man die resultierende Mischung sichtet.
18. Verwendung der thermischen härtbaren Pulverlacke gemäß einem der Ansprüche 1 bis 15 und der mit Hilfe des Verfahrens gemäß Anspruch 16 oder 17 hergestellten thermisch härtbaren Pulverlacke als Beschichtungsstoffe, Klebstoffe und Dichtungsmassen.
19. Verwendung nach Anspruch 18, dadurch gekennzeichnet, dass die Beschichtungsstoffe, Klebstoffe und Dichtungsmassen dem Lackieren, Verkleben und Abdichten von Karosserien von Fortbewegungsmitteln und Teilen hiervon, Bauwerken und Teilen hiervon, Türen, Fenstern, Möbeln, industriellen Kleinteilen, mechanischen, optischen und elektronischen Bauteilen, Coils, Container, Emballagen, Glashohlkörpern und Gegenständen des täglichen Bedarfs dienen.
PCT/EP2004/052921 2003-11-17 2004-11-08 Thermisch härtbare pulverlacke, verfahren zu ihrer herstellung und ihre verwendung WO2005047406A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003153636 DE10353636A1 (de) 2003-11-17 2003-11-17 Thermisch härtbare Pulverlacke, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10353636.1 2003-11-17

Publications (1)

Publication Number Publication Date
WO2005047406A1 true WO2005047406A1 (de) 2005-05-26

Family

ID=34585181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/052921 WO2005047406A1 (de) 2003-11-17 2004-11-08 Thermisch härtbare pulverlacke, verfahren zu ihrer herstellung und ihre verwendung

Country Status (2)

Country Link
DE (1) DE10353636A1 (de)
WO (1) WO2005047406A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007067432A1 (en) * 2005-12-09 2007-06-14 E. I. Du Pont De Nemours And Company Non-aqueous, liquid coating compositions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141063A (ja) * 1985-12-14 1987-06-24 Toyobo Co Ltd 熱可塑性エラストマ−組成物
US6376608B1 (en) * 1999-08-11 2002-04-23 Ppg Industries Ohio, Inc. Curable powder film-forming composition having improved chemical resistance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444954A (en) * 1982-09-30 1984-04-24 The Sherwin-Williams Company Water reducible quaternary ammonium salt containing polymers
ZA962618B (en) * 1995-04-10 1996-10-11 Basf Lacke & Farben Aqueous dispersion of transparent powder lacquers
DE10126649A1 (de) * 2001-06-01 2002-12-12 Basf Coatings Ag Kontinuierliches Verfahren zur Herstellung von Pulverlacksuspensionen (Pulverslurries) und Pulverlacken

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141063A (ja) * 1985-12-14 1987-06-24 Toyobo Co Ltd 熱可塑性エラストマ−組成物
US6376608B1 (en) * 1999-08-11 2002-04-23 Ppg Industries Ohio, Inc. Curable powder film-forming composition having improved chemical resistance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 011, no. 369 (C - 461) 2 December 1987 (1987-12-02) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007067432A1 (en) * 2005-12-09 2007-06-14 E. I. Du Pont De Nemours And Company Non-aqueous, liquid coating compositions
US8697799B2 (en) 2005-12-09 2014-04-15 Axalta Coating Systems Ip Co., Llc Non-aqueous, liquid coating compositions

Also Published As

Publication number Publication date
DE10353636A1 (de) 2005-06-16

Similar Documents

Publication Publication Date Title
EP1549692B1 (de) Nanopartikel, verfahren zur modifizierung ihrer oberfläche, dispersion der nanopartikel, verfahren zu ihrer herstellung und ihre verwendung
EP1373422B1 (de) Thermisch und mit aktinischer strahlung härtbare wässrige dispersionen, verfahren zu ihrer herstellung und ihre verwendung
EP0669354B1 (de) Verfahren zur Herstellung von uretdiongruppenhaltigen Polyadditionsprodukten und deren Verwendung in Polyurethan-Lacksystemen
EP0045994B1 (de) Verfahren zur Herstellung von blockierungsmittelfreien Polyurethan-Pulverlacken mit hoher Lagerstabilität, die oberhalb 120 Grad C härtbar sind sowie die danach hergestellten Polyurethan-Pulverlacke
DE102008047359A1 (de) Härtende Zusammensetzungen zur Beschichtung von Verbundwerkstoffen
DE10129970A1 (de) Thermisch und mit aktinischer Strahlung härtbare Beschichtungsstoffe, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10115605A1 (de) Thermisch und mit aktinischer Strahlung härtbare Pulverslurries, Verfahren zu ihrer Herstellung und ihre Verwendung
EP0178398A1 (de) Lagerstabile Polyurethanharz-Pulverlacke
WO2006084629A1 (de) Lacke enthaltend partikel mit geschützten isocyanatgruppen
WO1997046604A1 (de) Pulverlack zur herstellung einer mehrschichtlackierung
EP1583808A1 (de) Mehrkomponentensystem und seine verwendung zur herstellung einer thermisch und mit aktinischer strahlung härtbaren triple-cure-mischung
EP1311580B1 (de) Thermisch und mit aktinischer strahlung härtbare einkomponentensysteme und ihre verwendung
EP0317741A1 (de) PUR-Pulverlacke für matte Überzüge
DE19637375A1 (de) Uretdiongruppenhaltige Polyisocyanate, ein Verfahren zu ihrer Herstellung sowie deren Verwendung
EP1737919A1 (de) Mindestens drei komponenten enthaltendes mehrkomponentensystem, verfahren zu seiner herstellung und seine verwendung
WO2005047406A1 (de) Thermisch härtbare pulverlacke, verfahren zu ihrer herstellung und ihre verwendung
EP1311628B1 (de) Strukturviskose, von organischen lösemitteln und externen emulgatoren freie pulverklarlack-slurry, verfahren zu ihrer herstellung und ihre verwendung
DE10200928A1 (de) Organische Dispersionen von oberflächenmodifizierten Nanopartikeln, Verfahren zu ihrer Herstellung und ihre Verwendung
WO2005047401A2 (de) Strukturviskose, wässrige dispersionen, verfahren zu ihrer herstellung und ihre verwendung
DE10128885A1 (de) Härtbare Stoffgemische, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10234792A1 (de) Strukturviskose Klarlack-Slurry, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10351251B3 (de) Strukturviskose, wässrige Dispersionen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10150088A1 (de) Thermisch und mit aktinischer Strahlung härtbarer, nicht wässriger Einkomponenten-Beschichtungsstoff, Verfahren zu seiner Herstellung und seine Verwendung
DE19730670A1 (de) Als Pulverlack bzw. als Bindemittel für Pulverlacke geeignete Stoffgemische

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase