WO2005046363A2 - Tobacco compositions - Google Patents

Tobacco compositions Download PDF

Info

Publication number
WO2005046363A2
WO2005046363A2 PCT/US2004/036793 US2004036793W WO2005046363A2 WO 2005046363 A2 WO2005046363 A2 WO 2005046363A2 US 2004036793 W US2004036793 W US 2004036793W WO 2005046363 A2 WO2005046363 A2 WO 2005046363A2
Authority
WO
WIPO (PCT)
Prior art keywords
composition
tobacco
format
flavor
film
Prior art date
Application number
PCT/US2004/036793
Other languages
French (fr)
Other versions
WO2005046363A3 (en
Inventor
James A. Strickland
Frank S. Atchley
James M. Rossman
Armand J. Desmarais
Scott A. Williams
Tod J. Miller
Cherne W. Johnson
Original Assignee
U.S. Smokeless Tobacco Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by U.S. Smokeless Tobacco Company filed Critical U.S. Smokeless Tobacco Company
Priority to BRPI0415741-9B1A priority Critical patent/BRPI0415741B1/en
Priority to EP04800749A priority patent/EP1691631A4/en
Priority to AU2004289248A priority patent/AU2004289248B2/en
Priority to JP2006539648A priority patent/JP4931596B2/en
Publication of WO2005046363A2 publication Critical patent/WO2005046363A2/en
Publication of WO2005046363A3 publication Critical patent/WO2005046363A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B13/00Tobacco for pipes, for cigars, e.g. cigar inserts, or for cigarettes; Chewing tobacco; Snuff
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/70Fixation, conservation, or encapsulation of flavouring agents
    • A23L27/79Fixation, conservation, or encapsulation of flavouring agents in the form of films
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/81Solanaceae (Potato family), e.g. tobacco, nightshade, tomato, belladonna, capsicum or jimsonweed

Definitions

  • the invention relates to the field of tobacco products.
  • compositions of the invention may be based on a variety of technologies. Technologies include films, tabs, shaped parts, gels, consumable units, insoluble matrices, and hollow shapes. In addition to tobacco, compositions may also contain flavors, colors, and other additives as described herein. Compositions may also be orally disintegrable. Exemplary compositions and methods of their manufacture are described herein. For example, any composition described herein may include a flavor or flavor masking agent.
  • Exemplary flavors include licorice, kudzu, hydrangea, Japanese white bark magnolia leaf, chamomile, fenugreek, clove, menthol, Japanese mint, aniseed, cinnamon, herb, wintergreen, cherry, berry, apple, peach, Dramboui, bourbon, scotch, whiskey, spearmint, peppermint, lavender, cardamon, apium graveolens, cascarilla, nutmeg, sandalwood, bergamot, geranium, honey essence, rose oil, vanilla, lemon oil, orange oil, cassia, caraway, cognac, jasmin, ilangilang, sage, fennel, piment, ginger, anise, coriander, coffee, or a mint oil from any species of the genus Mentha.
  • composition of the invention may also include a sweetener (such as sucrose, sucralose, acesulfame potassium, aspartame, saccharine, cyclamates, lactose, sucrose, glucose, fructose, sorbitol, and mannitol); a surfactant; a plasticizer (such as glycerine, propylene glycol, polyethylene glycol, sorbitol/mannitol, acetylated monoglycerides, triacetin, and 1,3 butane diol); a filler (such as starch, microcrystalline cellulose, wood pulp, soluble fiber, calcium carbonate, dicalcium phosphate, calcium sulfate, and a clay); a lubricant (such as stearic acid and a stearate) or a wax (such as lecithin, glycerol monostearate, and propylene glycol monostearate); a preservative (such as methyl paraben
  • Any composition described herein may further include a coating, e.g., matte or glossy.
  • the coating preferably includes a color, flavor, sweetener, or flavor masking agent.
  • the coating may also include a different flavor, color, or rate of disintegration from the format in the composition.
  • the coating may also include tobacco .
  • Any composition described herein may further include a printed pattern, e.g., in a logo.
  • a printed pattern may include a color, tobacco, a flavor, sweetener, or flavor masking agent.
  • the surface of any composition described herein may also include a pattern in relief.
  • Tobacco included in any composition may be a powder, granules, shreds, or perceived to be soluble in the mouth.
  • Any composition described herein may further include flakes, e.g., containing tobacco or a plurality of flavors or colors. Any composition of the invention may be formed in a shape suitable for application in the mouth. A composition of the invention may further provide tobacco satisfaction, e.g., over a period of 10 s to 30 minutes. The invention also features a method for obtaining tobacco satisfaction by placing at least a portion of any composition as described herein in the mouth. The invention also features methods for making compositions as described herein. Any of these methods may further include adding a coating to the composition, e.g., by spraying, brushing, roll coating, doctor bar casting, slot coating, extrusion coating, or hot melt deposition.
  • any of the methods may also include printing a pattern on the composition, e.g., by offset, flexographic, gravure, ink jet, laser, or screen printing.
  • the methods of making compositions may include adding a flavor, color, flavor masking agent, or any other ingredient described herein to the format or composition.
  • format is meant an ingredient or compilation of ingredients, as provided herein, in a composition, for example, a carrier or agent.
  • tobacco is meant any part, e.g., leaves, flowers, roots, and stems, of any member of the genus Nicotiana. Exemplary species of tobacco include N. rustica and N.
  • t ⁇ b ⁇ cum e.g., LA B21, L ⁇ KY171, TI 1406, Basma, Galpao, Perique, Beinhart 1000-1, and Petico.
  • Other species include N. ⁇ c ⁇ ulis, N. ⁇ cumin ⁇ t ⁇ , N. ⁇ cumin ⁇ t ⁇ v ⁇ r. multiflor ⁇ , N. ⁇ fric ⁇ n ⁇ , IS/, ⁇ l ⁇ t ⁇ , N. ⁇ mplexic ⁇ ulis, N. ⁇ rentsii, N. ⁇ ttenu ⁇ t ⁇ , N. ben ⁇ videsii, N. benth ⁇ mi ⁇ n ⁇ , N. bigelovii, N. bon ⁇ riensis, N. c ⁇ vicol ⁇ , N.
  • obtusifoli ⁇ N. occident ⁇ lis, N. occident ⁇ lis subsp. hesperis, N. otophor ⁇ , N. p ⁇ nicul ⁇ t ⁇ , N. p ⁇ uciflor ⁇ , N. petunioides, N. plumb ⁇ ginifoli ⁇ , N. qu ⁇ driv ⁇ lvis, N. r ⁇ imondii, N. rep ⁇ nd ⁇ , N. rosul ⁇ t ⁇ , N. rosul ⁇ t ⁇ subsp. ingulb ⁇ , N. rotundifoli ⁇ , N. setchellii, N. simul ⁇ ns, N. sol ⁇ nifoli ⁇ , N. speg ⁇ zzinii, N. stocktonii, N.
  • the tobacco may be whole, shredded, cut, cured, aged, fermented, or otherwise processed, e.g., granulated or encapsulated.
  • Tobacco may also be in the form of finished products, including but not limited to any non- combustible tobacco that is orally consumed, e.g., smokeless tobacco.
  • Such smokeless tobacco includes snuff (moist or dry), chewing tobacco, loose tobacco, pouched tobacco, and the like, or any form contained herein.
  • the term also includes an extract of tobacco including two or more tobacco organoleptic components.
  • tobacco satisfaction in this case, is meant the experience associated with tobacco organoleptic components and added flavor components that are released in the mouth when using a smokeless tobacco.
  • An adult consumer who chooses to use a smokeless tobacco product purchases a smokeless tobacco product typically according to their individual preference, such a preference includes, without limitation, flavor, cut of tobacco, form, ease of use, and packaging.
  • organoleptic relating or contributing to the integrated sensory perception by the consumer that includes, for example, any combination of aroma, fragrance, flavor, taste, odor, mouth feel, or the like.
  • non-combustible does not combust during ordinary usage. Compositions described herein are advantageous from the perspective of size, ease of use, and controlled rate of disintegration. All percentages are by weight unless otherwise noted. Other features and advantages will be apparent from the following description and the claims.
  • the invention features tobacco compositions that are typically for tobacco satisfaction.
  • Tobacco Tobacco useful in compositions described herein includes any raw or processed form, e.g., a powder, granule, or shred.
  • the tobacco is sized or made to disintegrate in the mouth (e.g., dissolve), to give the perception of dissolvability (e.g., the tobacco does not produce a tactile experience in the mouth), or to be easily swallowed.
  • the tobacco may be sized or made to provide a tactile experience in the mouth. Exemplary average sizes are in the range of 1 to 1000 ⁇ m, e.g., about 800, 500, 250, 100, 80, 75, 50, 25, 20, 15, 10, 8, 6, 5, 3, 2, or 1 ⁇ m or less, preferably 80 ⁇ m or less.
  • the tobacco may also be in the form of a slurry or a flowable gel.
  • a flowable gel is a mixture of a format dissolved in water and mixed with tobacco and then mixed with a miscible solvent that prevents the complete dissolution of the format. Such a mixture causes the format to swell forming a viscous paste that is pseudoplastic and is easily dispensed from a container (e.g., a tube) with slight pressure.
  • An exemplary tobacco is smokeless tobacco. Additional tobaccos are described in U.S. Publication Nos. 2003/0094182 and
  • compositions filed November 5, 2004; the disclosures of which are hereby incorporated by reference.
  • the tobacco employed in the composition may also be prepared according to the methods of U.S. Publication No. 2004/0112394; the disclosure of which is hereby incorporated by reference.
  • Other suitable tobacco is known in the art.
  • Tobacco may be distributed randomly or evenly throughout a composition or concentrated in various regions thereof, e.g., in the center or on the surface.
  • the typical final tobacco concentration ranges from 1 percent to 99 percent by weight of the final composition, for example, at most 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, or 90%.
  • the composition includes around 25% tobacco.
  • compositions of the invention are intended for oral use or consumption.
  • a composition containing tobacco may be manufactured using any suitable orally compatible format.
  • the tobacco may be mixed directly with the format or otherwise supported by the format.
  • a composition may contain tobacco, e.g., as dried particles, shreds, granules, a powder, or a slurry, deposited on, mixed in, surrounded by, or otherwise combined with a format.
  • tobacco in compositions may or may not be, or be perceived to be, soluble.
  • the compositions are spitless tobacco compositions.
  • Compositions may also include a mixture of forms or types of tobacco.
  • Compositions may be foamed or dense.
  • Foamed compositions may be rigid or flexible and may be based on water soluble, water insoluble, or thermoplastic formats. Exemplary compositions are described herein.
  • a composition of the invention is non-combustible.
  • Fonnats suitable for use in the compositions described herein include orally compatible polymers, such as cellulosics (e.g., carboxymethyl cellulose (CMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), hydroxypropyl methyl cellulose (HPMC), and methyl cellulose (MC)), natural polymers (e.g., starches and modified starches, konjac, collagen, inulin, soy protein, whey protein, casein, and wheat gluten), seaweed-derived polymers (e.g., carrageenan (kappa, iota, and lambda), alginates, and propylene glycol alginate), microbial-derived polymers (e.g., xanthan, dextran
  • a composition may also include fillers (e.g., starch, microcrystalline cellulose, wood pulp (e.g., Solkafloc from International Fibers, Inc.), soluble fiber (e.g., Fibersol from Matsushita), calcium carbonate, dicalcium phosphate, calcium sulfate, and clays), lubricants (e.g., lecithin, stearic acid, stearates (e.g., Mg or K), and waxes (e.g., glycerol monostearate, propylene glycol monostearate, and acetylated monoglycerides)), plasticizers (e.g., glycerine, propylene glycol, polyethylene glycol, sorbitol
  • fillers e.g., starch, microcrystalline cellulose, wood pulp (e.g., Solkafloc from International Fibers, Inc.), soluble fiber (e.g., Fibersol from Matsushita), calcium carbonate,
  • compositions of the invention may include flavor extracts (e.g., licorice, kudzu, hydrangea, Japanese white bark magnolia leaf, cham ⁇ mile, fenugreek, clove, menthol, Japanese mint, aniseed, cinnamon, herb, wintergreen, cherry, berry, peach, apple, Dramboui, bourbon, scotch, whiskey, spearmint, peppermint, lavender, cardamon, apium graveolens, cascarilla, nutmeg, sandalwood, bergamot, geranium, honey essence, rose oil, vanilla, lemon oil, orange oil, cassia, caraway, cognac, jasmin, ilangilang, sage, fennel, pi ent, ginger, anise, coriander, coffee, or a mint oil from any species of the genus Mentha), flavor masking agents, bitterness receptor site blockers, receptor site enhancers,
  • Flavors may also be provided by plant matter, e.g., mint leaves, which are typically 10% flavor oils and 90% insoluble fiber.
  • Exemplary plants further include licorice, kudzu, hydrangea, Japanese white bark magnolia, chamomile, fenugreek, clove, Japanese mint, cinnamon, herb, cherry, berry, peach, apple, lavender, cardamon, apium graveolens, cascarilla, nutmeg, sandalwood, bergamot, geranium, rose, vanilla, lemon, orange, cassia, caraway, jasmin, ilangilang, sage, fennel, piment, ginger, anise, coriander, coffee, or any species of the genus Mentha.
  • Flavor may be provided to a composition as described herein by flavor extracts, plant matter, or a combination thereof. In addition to natural flavor extracts, flavor may also be provided by imitation, synthetic, or artificial flavor ingredients and blends containing such ingredients. Flavors may be added as a powder, an oil, or in encapsulated form. In certain embodiments, the composition disintegrates in the mouth. Disintegration rates of compositions may vary from 60 minutes to less than 1 minute.
  • Fast release compositions typically disintegrate in under 2 minutes and most preferably, in 1 minute or less, e.g., less than 60 s, 50 s, 45 s, 40 s, 35 s, 30 s, 25 s, 20 s, 15 s, 10 s, 5 s, 4 s, 3 s, 2 s, or 1 s.
  • the disintegration may occur by any mechanism, for example, dissolution, melting, mechanical disruption (e.g., from chewing), enzymatic or other chemical degradation, or disruption of the interaction between the format and tobacco.
  • the format or tobacco itself may similarly disintegrate.
  • the amount of time required for a composition to disintegrate may be controlled by varying the thickness of the composition and is dependent upon the type of format, other additives, and the pattern of usage.
  • the composition When placed in the mouth, the composition may temporarily adhere to a part of the oral mucosa.
  • the length of time of the tobacco satisfaction may vary. This length of time may be affected by, e.g., by the rate of disintegration of a composition, the rate of extraction of organoleptic components from a composition, and the residence time of the composition in the mouth.
  • the tobacco satisfaction may be provided over a period of at least 10 s, 30 s, 45 s, 1 min, 2 min, 3 min, 5 min, 10, min, 15 min, 30 min, or 1 h, preferably from 10 s to 10 minutes and more preferably from 30 s to 5 minutes.
  • the compositions do not disintegrate over the residence period in the mouth.
  • introduction of tobacco organoleptic components into the mouth may occur by dissolution, leaching, extraction, or mechanical disruption caused by chewing.
  • Individual compositions may be sized to fit entirely in the mouth, or they may be sized to fit only partially in the mouth. Preferred cross sections of the compositions include, but are not limited to, square, circular, rectangular, elliptical, oval, and the like.
  • Preferred dimensions may vary depending upon the serving size and ingredients. Typically, the largest dimension of a single serving is 5 cm or smaller.
  • tobacco products may be made in a larger form, from which individual servings may be cut or otherwise separated, e.g., by chewing, biting, or oral disintegration.
  • a strip, or other long piece may be placed in a container, and the consumer may remove a desired serving size.
  • a larger composition (or orally sized piece attached to a handle) may also be partially inserted in the mouth, similar to a toothpick or cigarette, and the consumer may suck or chew on it.
  • the larger piece is orally disintegrable and may be completely consumed over a period of time.
  • compositions of the invention may be formed as films that may be orally disintegrable. Such films may contain a single layer or multiple layers. A single layer film will contain tobacco, a format, and other ingredients, e.g., in a homogeneous mixture. Multilayer films may include several tobacco containing layers, e.g., with the same or different kind or size of tobacco, e.g., tobacco perceived to be soluble. Multiple layers may be laminated together. In addition, multilayer films may contain tobacco in one or more layers and other layers that contain additional ingredients, as described herein. For example, individual layers may be added for flavor, sweetness, color, rate of disintegration, or stability (e.g., during handling or during consumption).
  • Tobacco may also be placed between two or more layers in a sandwich arrangement.
  • One or more of the layers in the sandwich may also include tobacco.
  • the layers may disintegrate at the same or different rates, or a layer may not disintegrate orally.
  • the composition may provide tobacco at differing times based on the layers disintegrating.
  • Single layer films or individual layers in multilayer films may also be foamed or aerated to provide desirable physical properties or desirable dissolution or disintegration rates.
  • Films may be sized to fit in the mouth as individual servings. Alternatively, larger films may be fabricated from which individual servings may be separated. For example, a film may be wrapped, or otherwise shaped, to form a hollow tube or straw, which in turn may be filled with additional material.
  • a film e.g., containing a high percentage of tobacco in the range of 1% to 99% based on dry weight, may be fabricated and then used in preparation of flakes or a powder for addition to other compositions, as described herein.
  • the preferred thickness of a film is typically less than 1 mm, e.g., less than 500, 200, 100, 50, 40, 30, 20, 10, 5, 4, 3, 2, or 1 ⁇ m; preferably 5 to 125 ⁇ m.
  • Various methods known in the art can be used to manufacture films. The technique employed may depend on the format employed in the film. Exemplary methods include solution casting or extrusion, melt extrusion, drum drying, and calendaring.
  • a film may be modified, e.g., by printing or otherwise coating or decorating the surface of the film. Flavors, colors, or tobacco may be added to the surface of a film by a printing, coating, or decorative process. All printing processes known in the art, e.g., offset, flexographic, gravure, ink jet, laser, screen printing, and other typical methods, may be used. Coatings or decorative patterns may be applied to the surface of the film using processes known in the art, e.g., spraying, brushing, roll coating, doctor bar casting, slot coating, extrusion coating, hot melt deposition, depositing particles or flakes, and other typical methods.
  • the film to be printed, coated, or decorated may or may not contain tobacco.
  • One function of the printing, coating, or decorative pattern is to provide additional amounts of color, flavor, or tobacco to the film. Another function is to improve the dimensional stability and appearance of the film.
  • an additional layer of film may be applied to cover, protect and seal the printed, coated, or decorated surface.
  • Film Examples The following table shows exemplary ingredients for fabricating films of the invention.
  • Example B Tobacco Film A mixture of 50 grams of K-3 (60%), K-100 (35%) and K4M (5%) grades of hydroxypropylmethyl cellulose (HPMC) from Dow Chemical are added to a beaker containing 450 grams of well agitated, deionized water which has been heated to 180°F. While mixing, 40 grams of finely ground tobacco is added to the HPMC solution along with 15 grams of microcrystalline cellulose (FMC), 17 grams of starch (B-700 from Grain Processing Corp.), 16 grams of glycerine, 0.8 grams of polysorbate 80 (Unichema), and 4 grams of propylene glycol monostearate (PGMS from Danisco).
  • HPMC hydroxypropylmethyl cellulose
  • the glass plate is placed in an air circulating laboratory oven preset at a temperature of 170 °F. After 30 minutes, the glass plate is removed from the oven, cooled to room temperature, and the dry film with a thickness of 2.5 mils (0.0025 inches) is removed from the glass plate. The film may then be cut into smaller pieces suitable for placing in the mouth. A 1.0 inch by 1.25 inch section of the film will typically disintegrate in the mouth in less than one minute, thereby releasing the flavor, sweetener, and tobacco. The tobacco content of this film on a dry weight basis is 25%.
  • Example C Opaque, Flavored Film Using the same procedure as Example B, a solution is prepared without the addition of tobacco. While the solution is still hot, 32 grams of a titanium dioxide dispersion (50% titanium dioxide in water) supplied by Sensient Colors and 0.01 grams of FD&C Red No. 40 lake (Sensient Colors) are added with agitation. The solution is cooled to 65°F and is spread on a glass plate, dried, and removed from the glass plate as described in Example B. An opaque, light red film of good strength and a dry film thickness of 1.5 mils (0.015 inches) is produced.
  • a titanium dioxide dispersion 50% titanium dioxide in water supplied by Sensient Colors and 0.01 grams of FD&C Red No. 40 lake (Sensient Colors) supplied with agitation.
  • the solution is cooled to 65°F and is spread on a glass plate, dried, and removed from the glass plate as described in Example B. An opaque, light red film of good strength and a dry film thickness of 1.5 mils (0.015
  • Example D Two Layer Film A portion of the solution from Example B is spread on a glass plate using a draw down blade with a fixed gap of 15 mils (0.015 inches). The glass plate is placed in a laboratory oven and the film is dried as in Example B. The glass plate is removed from the oven and cooled to room temperature, but the film is not removed from the glass plate. A portion of the solution from Example C is spread over the dry film of Example B using a draw down blade with a fixed gap of 5 mils (0.005 inches). The glass plate is placed in the laboratory oven at 170°F for 10 minutes. The dry film with a thickness of 3 mils (0.003 inches) is removed from the glass plate. The film is distinctly two sided with a layer of brown, tobacco containing film on one side and a red, flavored film on the opposite side. A 1.0 inch by 1.25 inch section of the film will typically disintegrate in the mouth in less than one minute.
  • Example E Three Layer Film
  • a portion of the solution from Example C is spread on a glass plate using a draw down blade with a fixed gap of 5 mils and is dried in the laboratory oven as before.
  • a portion of the solution from Example B is spread over the dried film of Example C using a draw down blade with a fixed gap of 15 mils and is dried in the laboratory oven as before.
  • a portion of the solution from Example C is spread on a glass plate using a draw down blade with a fixed gap of 5 mils and is dried in the laboratory oven as before.
  • the resulting film is 3 mils (0.003 inches) in thickness and is comprised of three layers with a layer of opaque, red, flavored film on either side and a center layer of tobacco containing film.
  • a 1.0 inch by 1.25 inch section of the film will typically disintegrate in the mouth in less than one minute.
  • Example F Foamed Film
  • a 100 gram portion of tobacco containing solution from Example B is added with vigorous mixing, 0.5 grams of sodium lauryl sulfate (a surface active agent).
  • This solution is then mixed on a high shear mixer such as a Silverson Laboratory Homogenizer, Model L4RT-W, to create a uniform bubble structure.
  • This highly aerated solution is then spread on a glass plate using a draw down blade with a fixed gap of 4 mils (0.040 inches) and is dried in a laboratory oven.
  • the dry, foamed film has a thickness of 4 mils (0.004 inches) when it is removed from the glass plate.
  • the weight of a section of this foamed film of 1.0 inch by 1.25 inch by 4 mils (0.004 inches) in thickness is 35% lower than an identical section of unfoamed film as prepared in Example B.
  • the dissolution rate of the foamed film in the mouth is typically faster when compared to the identical unfoamed film as prepared in Example B.
  • Example G Flakes A solution is prepared in a beaker by adding 40 grams of spray dried Gum Arabic (TIC Gums, Inc.) and 0.4 grams of propylene glycol monostearate (PGMS) to 60 grams deionized water while mixing vigorously for 30 minutes. To 10 grams of this solution, 0.01 grams of FD&C Red No. 40 lake is added with high agitation to ensure uniform dispersion of the color. The solution is covered and set aside for 24 hours to permit all entrapped air to dissipate. A portion of this solution is then spread on a glass plate using a draw down blade with a fixed gap of 5 mils (0.005 inches). The glass plate is placed in a laboratory oven preset at 170 °F for 20 minutes until the film is thoroughly dried. When the film is removed from the glass plate, it breaks into many small pieces of high gloss, colorful, red flakes. This process is repeated with other FD&C lakes to produce flakes of many different colors. Flavors and artificial sweeteners can also be added to the flakes.
  • Example H Tobacco Flakes To 10 grams of the solution prepared in Example G is added 4 grams of finely ground tobacco powder. Films are prepared on glass plates and are dried, cooled, and removed in the same manner as in Example G. The resulting flakes are composed of 50% tobacco and 50% Gum Arabic and are a deep brown color. Flavors, if desired, can be added to the flakes. Materials such as sodium carbonate can also be added to the flakes to adjust pH.
  • Example I Tobacco Film with Flakes
  • a film is prepared as in Example B. While the film is still wet on the glass plate, a measured quantity of flakes are prepared and are spread uniformly over the wet film. The glass plate is then dried in a laboratory oven; the film is cooled to room temperature and then removed from the glass plate. Typically, the dried film of Example B has a dry weight of 1 gram (containing 25% or 0.25 grams of tobacco). If this film is divided into 20 equal sections of film (1.0 inch by 1.25 inches by 2 mils), each section will weigh 50 milligrams (containing 25%> or 12.5 milligrams of tobacco).
  • each section will weigh 100 milligrams and will contain 37.5 milligrams of tobacco.
  • the section of film cut into a 1.0 inch by 1.25 inch size will typically disintegrate in the mouth in less than one minute.
  • Example J Tobacco Film with Decorative Flakes
  • decorative flakes e.g., colored flakes which do not contain any tobacco
  • blends of colored flakes and tobacco containing flakes The resulting films have a colorful appearance.
  • Example K Flavored Tobacco Film
  • a 1.0 inch by 1.25 inch unit of film disintegrated in the mouth in less than 30 seconds A 1.0 inch by 1.25 inch unit of film disintegrated in the mouth in less than 30 seconds.
  • Relatively slower disintegrating films e.g., films disintegrating in the mouth in greater than 30 seconds
  • the films were dried in the same manner as above for 40 minutes.
  • the films produced typically disintegrated in the mouth in less than 1 minute.
  • Super-fast disintegrating films e.g., films disintegrating in the mouth in less than 15 seconds were produced from the same solutions by foaming the solution prior to casting on the glass plate.
  • Foaming was accomplished by subjecting lOOg of each solution to high shear mixing (with an Arrow Model 1750 high shear mixer) for approximately 3 minutes, after which the foamed solution was immediately cast on the glass plate with a draw-down knife with a fixed gap of 30 mils.
  • the films produced typically disintegrated in the mouth in less than 15 seconds.
  • a total of 619.14g of boiling water was weighed into a stainless steel container.
  • the water was stirred vigorously with an Arrow Model 1750 high shear mixer.
  • MIX2 To the water was added MIX2.
  • Stirring was continued for 30 seconds, at which point MIX1 was added.
  • Vigorous stirring was continued for 4 minutes.
  • the resultant solution was transferred to a Silverson SSI vessel, which had been adapted for mixing under vacuum.
  • the vessel was attached to a Silverson L4RTU homogenizer motor unit.
  • the solution was homogenized under vacuum (20-25 inches of Hg) for 2 minutes at 7500 RPM, after which an ice bath was placed around the homogenizer vessel.
  • the film includes wintergreen, spearmint, or apple flavor.
  • Relatively slower disintegrating films e.g., films disintegrating in the mouth in greater than 30 seconds
  • super-fast disintegrating films e.g., films disintegrating in the mouth in less than 15 seconds
  • MIX3 Glycerin 1.31g Propylene Glycol 1.31 g Polyethylene Glycol 400 1.31 g Peach Puree 100.0g Peach Flavor 3.27g Tobacco Flavor Modifier (Hagelin) 2.62g Sucralose Solution 25% (Tate & Lyle) 2.62g
  • a total of 619.14g of boiling water was weighed into a stainless steel container.
  • the water was stirred vigorously with an Arrow Model 1750 high shear mixer.
  • MIX2 To the water was added MIX2.
  • Stirring was continued for 30 seconds, at which point MIXl was added.
  • Vigorous stirring was continued for 4 minutes.
  • MIX3. Vigorous stirring was continued for 1 minute.
  • the resultant solution was transferred to a Silverson SSI vessel, which had been adapted for mixing under vacuum.
  • the vessel was attached to a Silverson L4RTU homogenizer motor unit.
  • the solution was homogenized under vacuum (20-25 inches of Hg) for 2 minutes at 7500 RPM, after which an ice bath was placed around the homogenizer vessel.
  • Relatively slower disintegrating films e.g., films disintegrating in the mouth in greater than 30 seconds
  • super-fast disintegrating films e.g., films disintegrating in the mouth in less than 15 seconds
  • Example N Flavored Tobacco Film for Sticks/Wraps/Pouches/Vacuum Forming
  • HM3PA2910 (Wolff Cellulosics) 38.48g HM100PA2208(Wolff Cellulosics) 19.27g HM4000PA2910( Wolff Cellulosics) 3.24g B700(Grain Processing Corporation) 20.32g Tobacco Powder (avg. particle size ⁇ 80 ⁇ m) 14.39g
  • a total of 606.1 Og of boiling water was weighed into a stainless steel container.
  • the water was stirred vigorously with an Arrow Model 1750 high shear mixer.
  • MIX2 To the water was added MIX2.
  • Stirring was continued for 30 seconds, at which point MIXl was added.
  • Vigorous stirring was continued for 4 minutes.
  • the resultant solution was transferred to a Silverson SSI vessel, which had been adapted for mixing under vacuum.
  • the vessel was attached to a Silverson L4RTU homogenizer motor unit.
  • the solution was homogenized under vacuum (20-25 inches of Hg) for 2 minutes at 7500 RPM, after which an ice bath was placed around the homogenizer vessel.
  • the resultant solution was transferred to a Silverson SSI vessel, which had been adapted for mixing under vacuum.
  • the vessel was attached to a Silverson L4RTU homogenizer motor unit.
  • the solution was homogenized under vacuum (20-25 inches) for 2 minutes at 7500 RPM, after which an ice bath was placed around the homogenizer vessel. Homogenization continued under vacuum (20-25 inches) for 8 minutes at 10000 RPM.
  • a portion of the solution was transferred to a 500-mL Nalgene bottle for storage.
  • a portion of the resultant gel solution was poured onto a glass plate that had previously been covered with an appropriately sized sheet of Mylar. The gel solution was drawn across the glass plate with a draw-down knife with a fixed gap of 20 mils.
  • the resultant solution was transfened to a Silverson SSI vessel, which had been adapted for mixing under vacuum.
  • the vessel was attached to a Silverson L4RTU homogenizer motor unit.
  • the solution was homogenized under vacuum (20-25 inches of Hg) for 2 minutes at 7500 RPM, after which an ice bath was placed around the homogenizer vessel.
  • lOg of boiling water was weighed into a stainless steel container. The water was stirred vigorously with an Arrow Model 1750 high shear mixer. To the water was added MIX2. Stirring was continued for 30 seconds, at which point was added MIXl. Vigorous stirring was continued for 4 minutes. To the resultant solution was added MIX3. Vigorous stirring was continued for 1 minute.
  • the resultant solution was transfened to a Silverson SSI vessel, which had been adapted for mixing under vacuum.
  • the vessel was attached to a Silverson L4RTU homogenizer motor unit.
  • the solution was homogenized under vacuum (20-25 inches of Hg) for 2 minutes at 7500 RPM, after which an ice bath was placed around the homogenizer vessel. Homogenization continued under vacuum (20-25 inches of Hg) for 8 minutes at 10000 RPM. After homogenization was complete, a portion of the solution was transferred to a 500-mL Nalgene bottle for storage. A portion of the resultant gel solution was poured onto a glass plate which had previously been covered with an appropriately sized sheet of Mylar.
  • the gel solution was drawn across the glass plate with a draw-down knife with a fixed gap of 20 mils.
  • the glass plate was placed in a side-swept forced air oven (VWR model 1330FM), for 35 minutes, which had been set at 75°C.
  • VWR model 1330FM side-swept forced air oven
  • the resultant film dried to approximately 4% moisture, was removed from the Mylar sheet, and was stored in a plastic bag for future use.
  • Klucel LF Hercules/Aqualon 3448.
  • Na 2 C0 3 181.0g Sucralose (Tate & Lyle) 45.
  • Propylene Glycol 363.0g Tobacco Powder (average particle size ⁇ 80 ⁇ m) 1451.0g Water 2344.0g
  • the tobacco granulation was introduced to the feed section of a Leistritz Micro- 18 Twin Screw Extruder 40:1 L/D, which had been configured for co- rotating extrusion with a medium-shear screw design. Feed rates for the extrusion varied between 1 - 3 pounds per hour. Barrel zone temperatures varied between 75 - 240 °F. Venting of volatiles from the extrusion melt was accomplished by inco ⁇ orating a venting orifice prior to the discharge die of the extruder. Tobacco film, with a width of approximately 3 inches and a thickness varying from 2 - 3 mils, was produced by inco ⁇ orating a strip die at the discharge end of the extruder.
  • the tobacco film Upon discharge, the tobacco film was calendared and cooled to room temperature by utilizing a 3 -roll stacked chill roller. Downstream from the chill roller the film was taken up on a rewind reel, inco ⁇ orating Mylar between the film layers to prevent adhesion. The tobacco film was placed in a container suitable for storage. The tobacco film was subsequently used in the manufacture of dissolvable tobacco containing pouches, as described herein. The film disintegrated slowly in the mouth, over a period of 2 - 4 minutes.
  • a total of 288.93g of boiling water was weighed into a stainless steel container.
  • the water was stined vigorously with an Arrow Model 1750 high shear mixer.
  • MIX2 To the water was added MIX2.
  • Stining was continued for 30 seconds, at which point was added MIXl.
  • Vigorous stining was continued for 4 minutes.
  • MIX3. Vigorous stining was continued for 3 minutes.
  • the resultant solution was transfened to a suitable container for storage.
  • a portion of the resultant gel solution was poured onto a glass plate which had previously been covered with an appropriately sized sheet of Mylar. The gel solution was drawn across the glass plate with a draw-down knife with a fixed gap of 20 mils.
  • the glass plate was placed in a side-swept forced air oven (VWR model 1330FM), for 35 minutes, which had been set at 75°C.
  • VWR model 1330FM side-swept forced air oven
  • the resultant film dried to approximately 4% moisture, was removed from the Mylar sheet, and cut into appropriately sized units.
  • a 1.0 inch by 1.25 inch unit of film dissolved in the mouth in less than 30 seconds, releasing flavor, sweetener, and tobacco.
  • HM3PA2910 (Wolff Cellulosics) 11.40g HM100PA2208 (Wolff Cellulosics) 7.24g HM4000P A2910 (Wolff Cellulosics) 1.21 g B700 (Grain Processing Co ⁇ oration) 7.63g Gelatin 3.05g Tobacco Powder (average particle size ⁇ 80 ⁇ m) 15.27g
  • a total of 288.93g of boiling water was weighed into a stainless steel container.
  • the water was stined vigorously with an Anow Model 1750 high shear mixer.
  • MIX2 To the water was added MIX2.
  • Stining was continued for 30 seconds, at which point was added MIXl.
  • Vigorous stining was continued for 4 minutes.
  • MIX3. Vigorous stining was continued for 3 minutes.
  • the resultant solution was transfened to a suitable container for storage.
  • a portion of the resultant gel solution was poured onto a glass plate which had previously been covered with an appropriately sized sheet of Mylar. The gel solution was drawn across the glass plate with a draw-down knife with a fixed gap of 20 mils.
  • the glass plate was placed in a side-swept forced air oven (VWR model 1330FM), for 35 minutes, which had been set at 75°C.
  • VWR model 1330FM side-swept forced air oven
  • the resultant film dried to approximately 4% moisture, was removed from the Mylar sheet, and cut into appropriately sized units.
  • a 1.0 inch by 1.25 inch unit of film disintegrated in the mouth in less than 30 seconds, releasing flavor, sweetener, and tobacco.
  • HM3PA2910 (Wolff Cellulosics) 8.35g HM100PA2208 (Wolff Cellulosics) 7.24g HM4000PA2910 (Wolff Cellulosics) 1.21 g B700 (Grain Processing Co ⁇ oration) 7.63g Gelatin 6.11g Tobacco Powder (average particle size ⁇ 80 ⁇ m) 15.27g
  • a portion of the resultant gel solution was poured onto a glass plate which had previously been covered with an appropriately sized sheet of Mylar.
  • the gel solution was drawn across the glass plate with a draw-down knife with a fixed gap of 20 mils.
  • the glass plate was placed in a side-swept forced air oven (VWR model 1330FM), for 35 minutes, which had been set at 75°C.
  • the resultant film dried to approximately 4% moisture, was removed from the Mylar sheet, and cut into appropriately sized units.
  • a 1.0 inch by 1.25 inch unit of film disintegrated in the mouth in less than 30 seconds, releasing flavor, sweetener, and tobacco.
  • compositions of the invention may also be produced as tabs, such as super fast disintegrate (about 15 seconds), fast disintegrate (less than 2 minutes), slow disintegrate (2-10 minutes), and chewable tabs.
  • Tabs may be sized as individual servings or smaller, a plurality of which constitute an individual serving. Tabs sized as individual servings typically have dimensions of 5 mm to 15 mm. Smaller tabs typically range from 2 to 4 mm in diameter. Such smaller tabs may be fabricated in a variety of colors or flavors, e.g., for simultaneous consumption. Tabs may be shaped as a wafer, a convex or concave pellet, ovals, or any other shape known to the trade.
  • Tabs may also be foamed to provide faster dissolution or disintegration in the mouth. Tabs may also be layered to provide a variety of tastes or mouth feels as the tab dissolves or disintegrates. Tabs may also be coated to modify color or taste or to provide mechanical strength for improved handling. In one embodiment, a tab designed to disintegrate rapidly in water may be coated with a very thin water insoluble coating to provide protection to the tab while a second, water soluble coating is applied. Tabs may be fabricated from a dry mix, known as direct compression or from pregranulated materials by any fonning method known in the art, e.g., via a press, injection molding, compression molding, injection foam molding, or compression foam molding.
  • Tab Examples The following table shows exemplary ingredients for fabricating tabs of the invention.
  • Example Z Exemplary Chewable Tab A chewable tab can be formed using the following ingredients: compressible sugar (40%); tobacco (20%); dextrose (25%); maltodextrin (13%); coloring agents (0.05%); flavor (1.35%); and magnesium stearate (0.60%).
  • thermoplastic tab can be formed using the following ingredients (in parts): hydroxypropyl cellulose (HPC) 54; tobacco 27; microcrystalline cellulose 10; propylene glycol 4; artificial sweetener 2; flavor 2; and stabilizer 0.2.
  • the ingredients are dry mixed and fed to an extruder using banel temperatures necessary to melt the HPC (typically 340-370 °F).
  • a rod of about Vi inch diameter is extruded and cut to size sufficient to form a tab.
  • Binding Solution Ingredient amounts, as noted in Table AB2, were weighed out into separate containers. Gum Arabic Pre-hydrated (emulsifier) was slowly added to the water and mixed under high shear agitation in a stainless steel vessel. After complete dissolution, M 585 maltodextrin (Grain Processing
  • binding solution amount was determined by the desired batch size to achieve the ingredient percentages shown in Table ABI .
  • the binding solution was slowly sprayed onto the dry ingredients to form the granulation.
  • the nozzle pressure was set at 22 psi and airflow at 200 CFM.
  • the airflow was increased to ensure good product movement or fluidization in the fluid bed chamber.
  • the airflow was reduced to 200 CFM. The process was stopped once the product temperature reached approximately 43 °C.
  • Example ABI binding solution preparation
  • Formulary amounts of peppermint and spearmint flavors as noted in Table ACl and 45.00 grams of Na 2 C0 3 were added to binding solution.
  • the remaining procedures for the make-up for the binding solution, preparation of dry ingredients, preparation of Vector Multiflo- 15 Fluid Bed Chamber, and granulation process were followed.
  • Example AD The same procedures were followed for making a Tobacco Tab in Example AD except wintergreen flavor was used in place of cinnamon flavor.
  • the finished material was then sized through a 12-mesh screen.
  • the magnesium stearate was sized through a 40-mesh screen.
  • the formulary amount of magnesium stearate (0.50% for a fast disintegrate or 0.75% for a slow disintegrate) was combined with the granulated material in a plastic bag and manually shaken for 2 minutes.
  • Binding Solution Preparation of Binding Solution The procedures previously stated for binding solution preparation were followed. Formulary amounts of apple flavor, natural bitter blocker (Comax), and Na 2 C0 3 as noted in Table AFl were added to binding solution. The remaining procedures for the make-up of the binding solution, preparation of dry ingredients (lactose filler plus tobacco powder), preparation of the Vector Multiflo-15 Fluid Bed Chamber, and the granulation process were followed.
  • Coating Process Tabs (5.5-6.5 KG) were placed in the coating pan of a Vector/Freund Hi-Coater pan coating machine and warmed until the exhaust temperature reached 45 °C. This was done with the pan running at less than 5 RPMs to minimize Tab attrition. Air at 75 °C and 100 CFM ran across the pan at a pan pressure of -0.5" water. Once the tabs reached temperature, the pan speed was increased to approximately 15 RPMs and the Opadry coating suspension was applied at a rate of 15-20 grams/minute. The suspension was continually mixed during application to prevent the solids from settling. The spray was atomized with approximately 100 liters of air per minute at approximately 70 psi.
  • the atomized spray was formed into a pattern using directional air ports on the nozzle set at approximately 50 liters of air per minute at approximately 70 psi. Inlet air temperature was periodically increased or decreased to maintain an exhaust temperature between 43 and 46 °C. Spraying was continued until desired amount of solids was applied to satisfy formulary requirements which was typically around 3%>, or until tabs were visually satisfactory.
  • Example AG Tobacco Solid Disintegratable The following ingredients were weighed out into individual containers: Klucel EF (Hercules) 60 g Tobacco Powder 75 g Tobacco Flavor Modifier 6 g Corn Syrup (65 %) 45 g Sucrose 45 g B700 (Grain Processing Co ⁇ .) 51 g Sucralose Solution 25 %> (Tate & Lyle) 3 g Propylene Glycol 3 g Sodium Carbonate 1.5 g Water 6 g Oil of Peppermint 4.5 g Water portion 1 (hot) 120 g Water portion 2 (cold) 120 g
  • the mixture was thoroughly blended prior to the addition of the next ingredient.
  • the ingredients were added in the following order: tobacco flavor modifier, propylene glycol, sucralose solution, corn syrup, sodium carbonate solution, sucrose, tobacco powder, B700, and oil of peppermint. Ice was added to the ice bath throughout the mixing process to keep the mixture cold. After all ingredients were added, the mixture was stirred for an additional 10 minutes. The container was removed from the ice bath and the mixture was dispensed in solid disintegratable portions onto wax paper and allowed to dry at room temperature for 24 hours. The solid disintegratables were removed from the wax paper and transfened to another sheet of wax paper to continue drying at room temperature. The desired hardness for the solid disintegratables was achieved after 12 to 24 hours of continued drying.
  • Example AH Tobacco Solid Disintegratable The following ingredients were weighed out into individual containers:
  • the ingredients were added in the following order: tobacco flavor modifier, propylene glycol, sucralose solution, corn syrup, sodium carbonate solution, sucrose, tobacco powder, B700, and oil of peppermint. After all ingredients were added, the mixture was stined for an additional 10 minutes. The mixture was dispensed in portions onto wax paper and allowed to dry at room temperature for 24 hours. The solid disintegratables were removed from the wax paper and transfened to another sheet of wax paper to continue drying at room temperature. The desired hardness for the solid disintegratables was achieved after 12 to 24 hours of continued drying.
  • a similar product was made using the same formulation, mixing process, and dispensing process, but the solid disintegratables were dried in a forced air oven (VWR Model 1330FM) set at 32° C for one hour. The solid disintegratables were then removed from the oven and dried at room temperature for 24 hours. Additionally, solid disintegratables were dried in the forced air oven at 32° C for 18 hours. A slightly harder solid disintegratable with a dull finish was achieved with this drying technique.
  • VWR Model 1330FM forced air oven
  • Example AL Multilayer Tab Commercially available press equipment can be used to prepare tabs with two or more distinct layers.
  • the composition of these layers can be the same or different in composition.
  • Individual layers can be differentiated by color, flavor, tobacco type, tobacco content, dissolution rate, and other similar characteristics. For example, one layer could disintegrate very rapidly to release flavor or flavor masking ingredients.
  • a second layer containing tobacco powder could disintegrate more slowly thereby gradually exposing the tobacco.
  • Shaped Parts Tobacco compositions may also be formed into products that are sufficiently rigid to be easily handled. These shaped products may vary in physical properties and range from highly flexible to highly stiff parts. Such products may be formed into any shape and be dense or foamed. These compositions typically have a moisture content of 2-50%), preferably 5-10%, of the finished part weight.
  • Exemplary shapes include a tube, a toothpick, a stick, a twist, or a solid rod.
  • a shaped part will be sucked or chewed on for an extended period of time to release tobacco organoleptic components into the mouth.
  • a shaped part may or may not disintegrate orally. Parts that disintegrate may do so over a period of 1-60 minutes, preferably from 1-10 minutes.
  • Shaped parts may or may not be sized to fit entirely in the mouth. Compositions larger than the mouth may be partially inserted. Typically the largest dimension of a shaped part is 6 inches, more preferably 2.5 inches.
  • Shaped parts may contain discrete regions, e.g., with each region having the same or different flavor or color or size or form of tobacco, e.g., tobacco perceived as soluble.
  • a twist may contain individual strands, each having a different flavor or color or size or form of tobacco.
  • shaped parts may be prepared in multistep processes in which molded or extruded parts are composed of layers, two or more of which contain different flavors, colors, or sizes or forms of tobacco.
  • Shaped part compositions may be fabricated by any method known in the art, e.g., extrusion, compression molding, injection molding, impact forming, foam molding, blow molding, and overmolding.
  • shaped parts may be based on water soluble or thermoplastic formats.
  • an aqueous-based shaped part is fabricated by forming a viscous paste (e.g., via Hobart process) of the fonnat, water, tobacco, and other ingredients and pressing the paste into a fonn, extruding through a die, or forming a sheet from which shapes are cut.
  • the cut or formed part may then be dried to the desired moisture level of from 2-50%, preferably from 5-10% of the finished part weight for very rigid parts and from 10-50% for highly flexible parts.
  • the aqueous paste can be formed in a two, stage extrusion process (e.g., via a Wenger twin screw extruder) in which the format, water, tobacco, and other ingredients are blended in a mixing or pre-extrusion stage of the machine, and the resulting paste is fed directly to the twin screw extrusion element of the machine and is extruded through a die to form a shape, which is then dried to the desired moisture level.
  • a thermoplastic-based shaped part is fabricated, for example, by mixing components via a PK blender, high intensity mixer, pre-pelletizer, or granulation (fluid bed or Hobart) process.
  • the mixed components may then be extruded through conventional single or twin screw extruders to form shaped parts or the mixture can be fed into injection molding machines or other thermoplastic processing machinery to form shaped parts.
  • Shaped Part Examples Example AJ. Injection Molded Shaped Parts The following table provides exemplary shaped parts to be fonned by injection molding.
  • Heating zones were Zone 1 - 300-340 °F; Zone 2 - 350-370 °F; Zone 3 - 300-340 °F; mold temperature was ambient. Sufficient composition was fed to the screw to equal one injection cycle; the material was immediately injected into the mold; the mold was opened after 10 seconds; and the part was removed.
  • the shaped part was a stepped color chip, 2 inches by 3 inches by steps at l/8 th , l/4 th , and 3/8th inch thickness.
  • Example AK Compression Molded Shaped Parts The following table provides exemplary shaped parts fonned by compression molding. Table AK1
  • Additives may also be employed so that the shaped part remains flexible after removal from the tool.
  • the parts containing a majority of low viscosity HPC formed excellent pieces if left in the tool for an extended time (40 to 60 seconds).
  • the inclusion of plasticizer increased the rate of moisture abso ⁇ tion from the atmosphere, which caused some parts to soften over time.
  • Foaming can be accomplished in aqueous systems by inco ⁇ orating a surface active agent (e.g., sodium lauryl sulfate) into the mix and beating to inco ⁇ orate air; foaming or aeration can also be achieved by introducing a gas (e.g. nitrogen) to the aqueous system while the composition is under high shear. The aqueous system is then dried to the desired moisture level to create a stable foamed composition.
  • a gas e.g. nitrogen
  • an aqueous composition is introduced to partially fill a compression mold; the mold is closed; the mold temperature is raised above the boiling point of water to form steam, which expands the aqueous composition to fill the void area and to create a foamed, shaped part.
  • foaming can be accomplished by inco ⁇ orating water into the tobacco/format composition; the temperature is raised to above the boiling point of water to form steam; and, as the tobacco composition exits a die, the steam expands to create a foamed structure.
  • gas e.g., nitrogen or carbon dioxide
  • Other thermoplastic foaming processes well known in the art e.g., injection foam molding
  • Tables AL1 and AL2 show exemplary ingredients for fabricating aqueous shaped parts of the invention. Sufficient water is added to form a viscous paste. Table AL1
  • Example AM Exemplary Thermoplastic Shaped Parts.
  • Table AMI shows exemplary ingredients for fabricating thermoplastic shaped parts of the invention.
  • Example AN Tobacco rods.
  • a tobacco rod is made from tobacco (54 parts); flavor (2); insoluble fiber (28); CMC (10); artificial sweetener (0.2); and microcrystalline cellulose (30).
  • Water sufficient to form a viscous paste e.g., 140 parts
  • a suitable extruder would be a Kitchen Aid mixer fitted with a pasta extruder and die. The rod prepared from extrusion through a pasta die can then be used as the forming mandrel for a spiral winding machine and a tobacco containing film can be used to form a wrapping around the tobacco core.
  • MIXl HM100PA2208 (Wolff Cellulosics) l l.l ⁇ g B700 (Grain Processing Corporation) 55.77g Cinnamon Powder 24.54g Fibersol-2 (Matsutani) 44.6 lg Na 2 C0 3 6.69g Sucralose (Tate & Lyle) - 2.22g Tobacco Powder (average particle size ⁇ 80 ⁇ m) 55.11 g The resultant mixture was mixed until homogeneous. In a separate container were weighed the following ingredients:
  • MIXl was added to the stainless steel mixing bowl of a Kitchen Aid stand mixer. MIX2 was inco ⁇ orated slowly to the mixture over a time period of 3 minutes with the aid of a paddle attachment at a medium-low speed. Following this addition, 76.92g of water was added to the mix in the same manner. The resulting paste was allowed to rest at room temperature for a period of 5 minutes. Following the rest period, the paste was fed through a 1/8 inch aperture strand forming unit which had previously been attached to the Kitchen Aid mixer. The strands produced were cut to between 1 A and 2 inches in length, and stored in suitable containers. A set of platens with 2 inch by 1/4 inch opposing mold cavities was heated to between 300 - 330 °F.
  • a formed strand was placed in the lower cavity, and the mold was closed by means of a hydraulic press.
  • the mold was allowed to remain closed for a period of 30 — 60 seconds, providing a means for cooking the starch component of the unit and the release of a portion of the volatile components.
  • the newly formed stick measuring approximately 2 inches by 1/8 inch, comprised a smooth rigid outer layer, and a rigid foam-like inner mass.
  • the unit disintegrated in the mouth over a period of 1 - 2 minutes.
  • MIXl HM100PA2208 (Wolff Cellulosics) l l.l ⁇ g B700 (Grain Processing Co ⁇ oration) 55.77g Sucrose 22.29g Fibersol-2 (Matsutani) 44.6 lg Na 2 C0 3 6.69g Sucralose (Tate & Lyle) 1.1 lg Malic Acid 2.22g Tobacco Powder (average particle size ⁇ 80 ⁇ m) 55.11 g
  • MIXl was added to the stainless steel mixing bowl of a Kitchen Aid stand mixer. MIX2 was inco ⁇ orated slowly to the mixture over a time period of 3 minutes with the aid of a paddle attachment at a medium-low speed. Following this addition, 76.95g of water was added to the mix in the same manner. The resulting paste was allowed to rest at room temperature for a period of 5 minutes. Following the rest period, the paste was fed through a 1/8 inch aperture strand forming unit which had previously been attached to the Kitchen Aid mixer. The strands produced were cut to between 1 X A and 2 inches in length, and stored in suitable containers. A set of platens with 2 inch by 1/4 inch opposing mold cavities was heated to between 300 - 330 °F.
  • a formed strand was placed in the lower cavity, and the mold was closed by means of a hydraulic press.
  • the mold was allowed to remain closed for a period of 30 - 60 seconds, providing a means for cooking the starch and sugar components of the unit and the release of a portion of the volatile components.
  • the newly formed stick measuring approximately 2 inches by 1/8 inch, comprised a rigid outer layer, and a rigid foam-like inner mass.
  • the unit disintegrated in the mouth over a period of 1 - 2 minutes.
  • Flavor application rates were established at 5 percent of the process flow; hence cinnamon flavor was inco ⁇ orated to the process downstream of the granulation feed. Venting of volatiles from the extrusion melt was accomplished by inco ⁇ orating a venting orifice prior to the discharge die of the extruder. Solid tobacco sticks, with an approximate diameter of 1/8 inch, were produced by inco ⁇ orating a strand die at the discharge end of the extruder. Upon discharge, the flexible tobacco strand was cooled to room temperature on an air-cooling conveyor and became rigid, and was cut to approximately 2 l A inches in length. The formed tobacco sticks were placed in a suitable container for storage. The stick disintegrated slowly in the mouth over a period of 5 - 10 minutes.
  • compositions of the invention may also be made as gels or gel beads.
  • the composition may contain a soluble or insoluble gel containing tobacco.
  • a gel may be used to encapsulate another material, or another material may encapsulate a gel.
  • Gels may be consumed in hydrated forms containing as much as 70% water.
  • the gels may also be dried resulting in parts containing from 1 to 10% water. The amount of water retained in the gel depends on the properties desired in the finished product. It is possible to prepare tobacco containing gels that provide a wide range of organoleptic characteristics.
  • Exemplary gel formats for soluble and insoluble gels include kappa canageenan, sodium alginate, carboxymethyl cellulose, gelatin, pectin, agar, and starches.
  • Soluble gels containing tobacco can be formed by dissolving the format and at an elevated temperature, e.g., kappa canageenan at 180°F, and adding the tobacco powder to this solution while continuing vigorous mixing. The hot mixture is then deposited into a mold.
  • Gelatin provides a weak gel at room temperature but firmness and stability can be increased by the addition of agar or starches.
  • Other gelling formats may be used in a similar manner.
  • Insoluble gels are formed by the addition of a cross-linking agent to a predissolved solution or sluny.
  • the solution is deposited into a mold to fom the desired shape and sets up through cooling and/or drying. In most cases, it is necessary to maintain the solution at a high temperature, e.g., greater than 180 °F, to prevent premature gelation prior to deposition into the mold.
  • the gel can be packaged as is or be further dried to a desired water content.
  • Cross-linking agents include potassium ions for canageenan; calcium ions for alginates and low methoxy pectins; and trivalent ions such as aluminum for carboxymethyl cellulose.
  • tobacco organoleptic compounds may leach out of the gel as it is held or chewed in the mouth.
  • gel compositions e.g., beads
  • An exemplary solid center includes smokeless tobacco.
  • An interior liquid may be aqueous, non-aqueous, or heterogeneous, depending on the solubility characteristics of the encapsulating bead wall.
  • Aqueous based liquids are typically encapsulated in a water-insoluble gel that can be disrupted, either mechanically or chemically, in the mouth.
  • the encapsulating gel format may include a polymer and a cross linking agent.
  • Exemplary systems include canageenan and a monovalent cation (e.g. potassium), algiiiate or pectin and a divalent ion (e.g.
  • a water soluble gel encapsulates a non-aqueous filling, e.g., employing ethanol, glycol, vegetable oil, or mineral oil.
  • the water soluble gel and/or the non-aqueous filling may contain tobacco and other ingredients as described herein.
  • Aqueous liquids may also be encapsulated in water soluble gels by the inclusion of additives, e.g., sugars or salts, that sufficiently bind the available water in the filling, thus, preventing the water in the liquid from dissolving the encapsulant.
  • Gel encapsulants also include both hard and soft standard gelatin capsules, which can be filled with liquids or solids.
  • the center of these gel compositions may or may not include tobacco, e.g., as a tobacco slurry.
  • the gel encapsulant also may or may not include tobacco.
  • An exemplary solid center includes smokeless tobacco.
  • the center may also include a color, sweetener, flavor, or flavor masking agent, which may be the same or different from that of the gel encapsulant.
  • the rate of disintegration for the gel encapsulant and center may also be the same or different.
  • Gels with centers typically have a largest dimension of at most 10 mm, e.g., at most 5 mm.
  • Gel beads with liquid centers may be made by introducing droplets of a tobacco/format mixture into a solution causing gelation of the outer surface of the gel bead and retaining the liquid center.
  • Beads can be fonned using commercial processes developed by the Morishita Jintan Company and others and refened to generically as "seamless liquid encapsulation" or "seamless capsule technology.”
  • widely used methods for forming gels of all types including beads have been developed by the suppliers of alginate, canageenan, and pectin polymers and are well known in the art.
  • the amount of gelation may be controlled, thereby controlling the thickness of the gel encapsulant wall, by varying the concentration of the format, the concentration of the cross-linking agent (e.g., salt), the temperature of the solidifying solution, and the residence time of the gel bead in the solidifying solution.
  • the solution may contain a cross-linking agent or may induce gelation by other means, e.g., a temperature change.
  • Solid gels may be soluble or insoluble. For solid gels, the tobacco and format, with or without additives, are typically mixed, and the fonnat is allowed to gel.
  • Soluble gels can be obtained by using a self gelling gum, such as gellan gum or kappa canageenan, or by using a polymer, e.g., gelatin, that sets by a change of temperature.
  • Insoluble solid gels are prepared using a cross linking agent.
  • Such soluble and insoluble gels may be made by introducing droplets into an oil bath, e.g., canola oil, or into an aqueous, cross-linking bath to form a spherical shape. They may also be made to pass through the oil into a water based cross-linking solution. Gels may also be made in molds or may be die cut from sheets.
  • a gel composition is supplied as a dry mixture of format, cross-linking agent (e.g., salt), and tobacco, e.g., in powder form, that is solvated by the consumer prior to use.
  • Solvation causes the gel composition to form a solid, which may be placed in the mouth.
  • the user places the dry mixture of gel ingredients in a mold and adds solvent, which may be aqueous or non-aqueous. The mixture then quickly hydrates, thereby forming a gel which solidifies in the shape of the mold.
  • the solvating liquid may be used to impart flavor or other taste or mouth feel characteristics to the composition.
  • the consumer may place the dry mixture in the mouth for solvation.
  • the solvent may impart flavor or color to the composition.
  • Example AR Gel Beads 100 g of 4% solution of CMC-7MF and 20 g tobacco are combined.
  • Droplets are then dried with air drying or gentle oven drying.
  • 100 g of 2% kappa canageenan and tobacco are combined and heated to 180 -190 °F.
  • Drops are deposited into a cool solution of 5% KC1.
  • 100 g of 4% medium viscosity sodium alginate and tobacco are combined at 150-170 °F.
  • Drops are deposited into a cool solution of 5% edible divalent salt (e.g., CaCl 2 or Ca citrate).
  • Beads containing gelatin walls and tobacco slurry centers can be prepared by depositing drops of a cold tobacco slurry (e.g.
  • a dilute, warm gelatin solution e.g. 130 °F
  • the warm gelatin coats the outside of the cold droplet and as the gelatin cools and solidifies, it forms a wall of gelatin around the liquid center. Beads are retrieved from the solution by standard means.
  • Example AS Orally Disintegrable Solid Gels. Combine 10 g gelatin and 90 g water and heat to 140 °F to dissolve gelatin. Add 20 g tobacco and pour into a mold. Strength of the gel can be increased by substituting 6 g of gelatin and 4 g of agar and heating to 190 °F to dissolve.
  • Table AS1 shows exemplary ingredients for fabricating orally disintegrable gels of the invention.
  • Example AT Exemplary Insoluble Solid Gels.
  • the following tables and descriptions show exemplary ingredients for fabricating insoluble gels of the invention, i.e., gels that do not orally disintegrate.
  • composition is cast at 180 °F after adding KCl and mixing thoroughly.
  • composition is cast after adding CaCl 2 at 180 °F.
  • Table AT3. Carboxy Methyl Cellulose Gels.
  • composition is cast after adding A1 2 (S0 4 ) 3 at 180 °F.
  • Example AU Soluble Gels 416 grams of aqueous 3.9%> kappa canageenan and 51.0 gra s of tobacco were combined. The solution was heated to ⁇ 80° F - 190° F with stining, and then the solution was deposited into a mold of the desired shape. Upon cooling, the resultant solid form was removed from the mold and dried to the desired tobacco concentration and gel consistency. In an alternative process, to a 1000 ml stainless steel container equipped with an overhead mixer, mixing bar and hotplate was added 400 ml of water at greater than 200° F.
  • the water was continuously stined and heated, and 16.0 g of kappa canageenan (Gelcarin GP 812, FMC Biopolymer) was added over 2 minutes.
  • the resulting mixture was stined for an additional 20 minutes, or until all kappa canageenan was dissolved, then tobacco was added to the homogeneous solution, and the resulting mixture was stined for an additional 2 minutes while maintaining an optimal temperature of 180° F.
  • To this solution was added 0.8 g powdered Sucralose and 7.0 g cinnamon oil (Wixon Industries) with vigorous stining.
  • the resulting mixture was quickly transfened via pipette (inner diameter 0.5 cm) to Teflon-coated metal molds to obtain the desired shape. After cooling to room temperature, the resulting gels were removed from the molds and air dried at room temperature for 1 h to several days until the desired consistency of the gels was obtained.
  • Example AV Soluble Gels 100 grams of aqueous 20% gelatin and 33 grams of tobacco were combined. The solution was heated to 140° F - 150° F with stining, and then the solution was deposited into a mold of the desired shape. Following refrigeration for a few minutes to a few days depending on desired firmness, the resultant solid form was removed from the mold and dried to the desired tobacco concentration and gel consistency.
  • mixing bar and hotplate was added 80 ml of water at 140° F. The water was continuously stined and heated, and 20.0 g of Gelatin (Type A 250 Bloom 40 Mesh, Gum Technology) was added over 2 minutes.
  • the resulting solution was stined for 5 minutes or until the gelatin was dissolved, then 33 g of tobacco was added in portions over 2 minutes.
  • the resulting mixture was stined for an additional 1 minute, then 0.3 g powdered Sucralose and 1.0 g of oil of peppermint (rectified, Blend SX 091O001, Essex Labs) were added, and the mixture was vigorously stined for an additional 1 minute while maintaining a temperature of 140° F.
  • the resulting mixture was transfened via pipette (inner diameter 0.5 cm) to Teflon-coated metal molds to obtain the desired shape. After cooling to room temperature, the resulting gels were removed from the molds, and the gelatin was set by refrigeration at 40° F for 1 hour to several days depending on desired firmness of the finished piece. Table AVI . Gelatin Gels
  • Example AW Gel Beads
  • a solution of 4% sodium alginate (Keltone LV, International Specialty Products) was prepared by adding 12 g sodium alginate to 288 g of water heated to boiling, followed by stining and continuous heating of water on a hot plate for 30 minutes or until the solution was homogeneous (stock solution A).
  • a second solution of 0.50 M disodium hydrogen phosphate was prepared by dissolving 33.5 g disodium hydrogen phosphate heptahydrate in 200 ml of water with warming and stining of the resulting mixture until the salt was dissolved, followed by adjusting the solution to 250 ml with water.
  • a solution of aqueous 5% CaCl 2 was prepared by adding 5 g of CaCl to 95 g of water with stining until the calcium chloride was dissolved (solution D).
  • Solution C was then added drop by drop to solution D by pipette from a height of 10 inches.
  • the outer coat of each droplet solidified upon exposure to solution D, forming a solid gel-like outer coat with a liquid center that sank to the bottom of the calcium chloride solution.
  • the gel beads were allowed to remain in the calcium chloride solution for 2-4 minutes, removed, and allowed to air dry for several minutes.
  • compositions of the invention may also be fabricated as consumable units. These units may be packaged as edible or inedible materials.
  • the consumable unit includes tobacco (e.g., smokeless tobacco) or a tobacco composition, e.g., flakes, tabs, beads, granules, or other tobacco composition as described herein, and a wrapping, e.g., a pouch.
  • the wrapping in one embodiment, may act as an adhesive to hold the composition together, e.g., to hold a plurality of tabs, beads, flakes, etc. together.
  • the wrapping may enclose the composition, e.g., loose tabs, beads, flakes, etc.
  • the composition may also include a liquid, e.g., a tobacco sluny.
  • the wrapping may or may not be orally disintegrable. Orally disintegrable wrappings may be used to enclose aqueous or non-aqueous liquids.
  • the liquid includes an agent to prevent dissolution of the wrapping.
  • Exemplary agents include sugars, salts, and other hydrophilic agents capable of binding water sufficiently to reduce water activity to a level at which the water is no longer available to interact with and dissolve the water soluble wrapping.
  • the wrapping may also enclose a moldable tobacco composition that conforms to the mouth or holds its shape in the mouth.
  • an orally disintegrable wrapping encloses smokeless tobacco, e.g., dry snuff or tobacco, that is perceived as soluble (e.g., less than 80 ⁇ m particle size).
  • Orally disintegrable smokeless tobacco compositions may be introduced to consumable portion packs which have been formed on continuous thermofonning or horizontal form/fill/seal equipment or other suitable packaging equipment using edible films (which may or may not contain tobacco) made in accordance with the subject technology.
  • Consumable units may also contain two or more, individually wrapped portions of tobacco, e.g., all contained within a larger package, one containing the other portions, or none of the portions contained with another.
  • any two may have the same or different flavor, color, form of tobacco, or rate of disintegration.
  • Exemplary wrapping materials include films formed from film compositions based on formats such as HPMC, CMC, pectin, alginates, pullulan, and other commercially viable, edible film fonning polymers, such as those described herein.
  • Other wrapping materials may include pre-formed capsules made from gelatin, HPMC, starch/canageenan, or other commercially available materials.
  • Such wrapping materials may include tobacco as an ingredient.
  • Wrappings which are not orally disintegrable may include woven or nonwoven fabrics; coated or uncoated paper; or of perforated or otherwise porous plastic films. Wrappings may also be colored.
  • Exemplary consumable units include those formed by any method used in commercial packaging, e.g., blister pack and stik-pak (e.g. a small package formed on a vertical form/fill/seal packaging machine).
  • Consumable Unit Examples The following description provides exemplary ingredients for fabricating consumable units of the invention.
  • Example AX Films or capsules encapsulating beads, powders, tabs, etc. Any of the compositions described herein can be encapsulated with a film or capsule.
  • the encapsulant may provide color, stability (e.g., during storage, handling or consumption), or organoleptic properties (e.g., flavor, sweetness, smell, or mouth feel).
  • the encapsulant may also contain tobacco.
  • a vacuum forming tool is constructed which has a series of cavities which are shaped as circles with diameter of 3/4 th inch and depth of 3/8 th inch. Films as described herein are prepared with and without tobacco as an ingredient. These films are introduced to a vacuum forming machine with a vacuum forming tool. The films are placed over heating elements and warmed to a temperature of 200 °F.
  • the films are then quickly placed on the vacuum forming tool, and a vacuum is pulled to draw the film into the cavities.
  • the films are then cooled to set the shapes.
  • Tobacco powder is then introduced into each cavity.
  • a second sheet of film prepared with or without tobacco is selected and coated (by wiping the surface of the film with a wet felt) with a thin layer of water to create a sticky, adhesive surface.
  • the sticky surface is placed on top of the formed sheet wherein each cavity is filled with a tobacco product.
  • the sheets are pressed together to form closed consumable units.
  • Each cavity is then cut out of the vacuum formed sheet to create individual units.
  • a unit is placed in the mouth wherein the film disintegrates and disperses the tobacco in the oral cavity.
  • Example AY Tobacco particles in a water-soluble bag.
  • Smokeless tobacco particles or powder may be placed in a water-disintegrable bag. When placed in the mouth, the bag disintegrates after a specified period of time.
  • the bag may contain a single serving of tobacco. It may also contain additional additives as described herein.
  • the tobacco may also adhere to itself as a moldable plug once the wrapping disintegrates.
  • the disintegrable bag may be formed using films such as those described herein. The film can be fonned into a bag using commercially available packaging equipment such as vertical form/fill/seal machines (e.g. stick pack machines), horizontal form/fill/seal machines, flow wrappers, thermofo ⁇ ners (blister pack machines), and other equipment common to the art.
  • Example AZ Tobacco particles in film/fabric laminations.
  • Smokeless tobacco particles or powder may be placed in a bag that is fonned from an open or highly porous wrapping material, e.g., fabrics, paper or plastic films, which has been laminated to a water-soluble wrapping film.
  • the water-soluble film layer provides protection for the tobacco contents and prevents the tobacco from sifting through the openings of the insoluble material during storage and handling. Once the bag is placed in the mouth, the water- soluble film layer dissolves or disintegrates.
  • Example BA Film Pouches Containing Tobacco Films as described herein in Film Examples N, O, P, and Q were used to manufacture tobacco containing pouches. Individual units approximately 1 inch by 1 % inches were cut from each sheet of manufactured film. The unit was folded over lengthwise and heat-sealed using a Clamco Model 210-8E impulse sealer. One end of the formed unit was also sealed in the same manner. A flavored tobacco granulation was fed to the interior of the formed pouch, and the final seal was made as described to seal the pouch. The tobacco containing pouch disintegrated in the mouth between 20 seconds and 1 minute, releasing the contents of the pouch. Insoluble Matrices. Tobacco may also be coated onto or entrapped within an insoluble matrix.
  • Tobacco can be dispersed to form a slurry in an aqueous solution of a format, as when forming a film; this slurry can be coated on to an insoluble matrix or can be used to saturate a porous insoluble matrix. The slurry may then be converted into a soluble or insoluble gel or it may simply be dried to form a coating. When a portion of this coated/saturated insoluble matrix is placed in the mouth, leaching of organoleptic components occurs through dissolution, chewing, or other means.
  • tobacco in a format is introduced into a porous matrix, e.g., an open cell polyurethane foam or a high loft polyester nonwoven fabric.
  • the insoluble matrix may be placed wholly in the mouth, or it may be disposed on a stick or other handle, which remains partially outside the mouth during consumption.
  • tobacco in a format is blended with an incompatible liquid, e.g., a dispersion of carnauba wax in water, deposited in a mold, and quickly cooled to cause a phase separation such that the tobacco slurry is disposed within a waxy structure.
  • an incompatible liquid e.g., a dispersion of carnauba wax in water, deposited in a mold, and quickly cooled to cause a phase separation such that the tobacco slurry is disposed within a waxy structure.
  • Example BB Polyurethane Foam A.
  • a film forming composition which contains finely ground tobacco as described herein is used to saturate a piece (e.g., 12 inches by 12 inches by 1 inch) of open cell polyurethane foam (Stephenson & Lawyer, Inc. Grand Rapids, MI).
  • the saturated foam is placed on a metal tray and is put into an air circulating laboratory oven preset at 175 °F for one hour.
  • the tobacco containing composition has dried to form a coating that uniformly covers all the interstices of the polyurethane foam.
  • the coated foam is cut into pieces of a size (e.g., 1 inch by 1 inch by 1 inch) suitable to place in the mouth. After use, the polyurethane foam is removed from the mouth and discarded.
  • Example BC Polyurethane Foam B.
  • a sodium alginate and calcium salt gel composition containing finely ground tobacco as described herein is used to saturate an open cell polyurethane foam (e.g., 12 inches by 12 inches by 1 inch).
  • the alginate gel is maintained at a temperature of 180 °F to prevent premature setting of the gel.
  • the hot alginate gel is poured on to the polyurethane foam, which is placed on a metal tray and then quickly cooled in a refrigerator at 40 °F to set the gel.
  • the foam is then placed in a laboratory oven preset at 175 °F for 10 minutes to surface dry the gel and to reduce moisture content to 50% based on dry weight of the gel.
  • the partially dried gel fills voids in the polyurethane foam.
  • a further example of gels in an insoluble matrix is obtained by drying the gel to a lower moisture content (e.g., 10% based on dry weight of the gel).
  • the tobacco containing gel exhibits a firm, rubbery texture within the foam matrix and rehydrates slowly when placed in the mouth and chewed.
  • the polyurethane foam is removed from the mouth and discarded.
  • Hollow Shapes As discussed above, films or thin sheets of material may be wrapped, extruded, blow molded, or otherwise shaped to form tubes, straws, or other hollow shapes. Exemplary film or sheet materials are disclosed in the film section herein. Such hollow shapes may be single or multilayer.
  • a spiral wrapped hollow shape e.g., tube or straw, may require an adhesive (e.g., CMC or guar) to keep from unraveling.
  • the layers in a multilayer hollow shape may contain the same or different color or flavor, and such layers may disintegrate at the same or different rates.
  • tobacco may also be disposed within one or more layers or may be disposed between layers in a sandwich anangement.
  • the hollow shape may also include a disintegrant to hasten disintegration.
  • the compositions described above may be hollow or filled.
  • the filling may include tobacco, a flavor, sweetener, flavor masking agent, or a color.
  • the flavor or color of the filling may be the same or different than the hollow shape.
  • the filling is typically a gel (solid or flowable) but may also be mechanically rigid or may be composed of a powder or other product form. Exemplary filling materials include gels as described herein.
  • a hollow shape may also be filled with a composition that disintegrates more rapidly than the shape, e.g., to provide tobacco at different times based on the rate of disintegration.
  • a tobacco core e.g., formulated with tobacco and a format
  • a water soluble, thermoplastic outer layer e.g., formulated with a fonnat and a flavor
  • a typical thermoplastic outer layer can be provided with a fonnulation based on hydroxypropyl cellulose (HPC) which is extruded at a temperature between 220-370 °F.
  • HPC hydroxypropyl cellulose
  • a rigid extruded tobacco rod may become a core which is encased in a wrapped film.
  • a thermoplastic formulation containing hydroxypropyl cellulose, tobacco, flavor, and sweetener can be blow molded to form a hollow shape.
  • films as described herein were additionally used to manufacture spiral-wound straws and/or sticks. Strips of film approximately 10 inches by 3 / 4 inch were cut from each sheet of manufactured film. A strip of paper of equal size was cut and wound spirally around a 3/16 inch diameter stainless steel mandrel. The paper was secured about the mandrel with tape on each end. A strip of film was wound spirally about the paper in the same fashion, overlapping each spiral by 1/16 inch. At each overlap the film strip was glued to itself with a 30% solution of gum arabic. The process was repeated with two additional plies of film.
  • spiral-wound film straw/stick was placed in a side-swept forced air oven at 75°C (VWR model 1330FM) for 15 minutes to dry. Upon removal from the oven, the spiral-wound straw/stick was removed from the mandrel, and the paper "core" removed from the interior of the straw/stick. The resultant straw/stick was cut into various sizes.
  • spiral-wound straw/stick products were prepared using tobacco containing films as described in Example N. Flavored Tobacco Film for Sticks/Wraps/Pouches/Vacuum Forming. Straw/stick products containing one layer, two layers and three layers of Example N films were prepared as described.
  • straw/stick products were prepared using two layers of film as described in Example N.
  • the film from Example O was red in color, cinnamon flavored and did not contain tobacco.
  • straw/stick products were prepared using three layers of film as described in Example P. Peach Flavored Film for Sticks/ Wraps/Pouches. The film from Example P contained tobacco powder and peach puree.
  • the straw/stick was prepared as above. The straw/stick disintegrated gradually over a period of 1 to 5 minutes.
  • straw/stick products were prepared using three layers of film as described in Example N and Example Q. One layer of tobacco containing film prepared in Example N was used. A second layer of opaque, white film prepared as in Example Q was wound over the first layer of film and offset by l/8 th inch. A third layer of tobacco containing film as prepared in Example N was wound over the second layer and again was offset by l/8 th inch. The affect was to provide a spiral-wound straw/stick with a striped appearance. The straw/stick, when placed in the mouth, disintegrated gradually over a period of 1 to 5 minutes.
  • hollow tobacco straws with diameters ranging from 1/8 to 1/4 inch, were produced by methods similar to those employed in Example AQ of Shaped Parts; however, a tube die was employed in the manufacture of the straw. The straw(s) disintegrated slowly in the mouth over a period of 5 - 10 minutes. Similar articles may be manufactured with a filling, with methods known in the art (i.e. co-extrusion).
  • a composition may be coated in single or multiple layers. Such coatings are employed, e.g., for handling, disintegration rate, taste, and color. Exemplary coatings include HPMC. Coatings or decorative patterns may be applied to the surface of the film using processes l ⁇ iown in the art, e.g., spraying, brushing, roll coating, doctor bar casting, slot coating, extrusion coating, hot melt deposition, depositing particles or flakes, and other typical methods. Coatings may be matte or glossy.
  • a coating may contain a color, flavor, sweetener, or flavor masking agent, as described herein.
  • the color, flavor, sweetener, or flavor masking agent in the coating may be same or different as the underlying composition.
  • multiple coatings may also contain the same or different color, flavor, sweetener, or flavor masking agent.
  • the coating may also disintegrate at a different rate than the underlying composition. For example, a coating may disintegrate faster than the underlying composition to provide a burst of flavor or other organoleptic components.
  • An orally disintegrable coating may also be placed on a composition that does not disintegrate orally. A coating that does not disintegrate orally may be placed on a composition that disintegrates orally, and such a coating may be removed, e.g., by chewing.
  • Coatings may also be employed to prevent evaporation of volatile components in a composition and to prevent mechanical maceration of a composition prior to use.
  • a coating may also contain tobacco.
  • Patterns may also be printed on the surfaces of compositions. Printing patterns also encompasses dusting or sprinkling compounds on the surface of a composition. The pattern may be random or in a design, e.g., a logo. All printing processes known in the art, e.g., offset, flexographic, gravure, ink jet, laser, screen printing, and other typical methods may be used.
  • the printed pattern may or may not contain a color, flavor, sweetener, or flavor masking agent, as described herein.
  • the color, flavor, sweetener, or flavor masking agent in the pattern may be same as or different from the underlying composition.
  • multiple patterns may also contain the same or different color, flavor, sweetener, or flavor masking agent.
  • the printed pattern may also contain tobacco, e.g., up to 1-99%, preferably 10-50%>. Such a pattern may contain more tobacco, percentage-wise or in an absolute sense, than the underlying composition.
  • Flakes may also be added to compositions described herein. Flakes may be mixed into the composition, may be placed within a void in the composition, or may be placed on the surface, e.g., and adhered by a coating. Flakes may or may not contain a color, flavor, sweetener, or flavor masking agent, as described herein.
  • the color, flavor, sweetener, or flavor masking agent in the flakes may be same or different as the underlying composition. In addition, multiple flakes may also contain the same or different color, flavor, sweetener, or flavor masking agent. Flakes may also contain tobacco, e.g., up to 99%, preferably up to 50%. Flakes may be made by standard film forming technology as described herein. Flakes may contain more tobacco, percentagewise or in an absolute sense, than the underlying composition. Once the printed, coated, or decorated film has been prepared, an additional layer of film may be applied to cover, protect and seal the printed, coated or decorated surface.
  • compositions of the invention may be shaped in various forms, e.g., plants and geometric shapes (e.g., round, square, rectangular, triangular, oval, octagonal, and the like).
  • compositions may contain a pattern in relief (positive or negative) on the surface.
  • Such a pattern may be a design, such as a logo.
  • Composite compositions i.e., compositions including two or more of the different types of products described herein, are also contemplated by the invention.
  • a shaped part may contain regions of gel compositions, e.g., having a variety of flavors.
  • a tab may be sunounded by a gel.
  • Composite compositions may also have different rates of disintegration.
  • compositions will be packaged as appropriate for the contents of the composition.
  • the compositions are stored in a wate ⁇ roof case and are stable between 40 and 120 °F.
  • Compositions are typically dry, flexible, and non-adhesive while in storage.
  • compositions may be packaged using non-stick barriers, e.g., plastic film or paper, between servings.
  • Compositions may also be provided in a bulk form, from which individual servings are separated.
  • the package is water impermeable and water insoluble, and tobacco, e.g., in liquid, sluny, or flowable gel form, is disposed within the package, e.g., a squeezable plastic package, a bellows, or a spray bottle, and is capable of being dispensed into the mouth from the package.
  • the bellows may be compressed for oral use.
  • Solutions or slunies are prepared for use in a plastic bellows container or other similar consumer packaging containers wherein the liquid is injected into the mouth by squeezing the package.
  • Thixotropic polymers are combined with tobacco and other ingredients to prepare higher viscosity solutions suitable for use in other containers.
  • Tobacco particles can be of greater size, but must still be small enough to pass through the orifice of the container.
  • a stable tobacco sluny is contained in the bottle; tobacco particles are sized to be able to pass through a spray nozzle without blocking the orifice; and the tobacco slurry is sprayed directly in the oral cavity.
  • Liquid sprays are prepared by dissolving a thixotropic polymer such as xanthan, gellan or dextran in water and suspending tobacco particles in a low viscosity (e.g., ⁇ 50 centipoise) solution. Other compounds, such as flavor, sweetener and dispersant, can be added to the solution.
  • the tobacco particles are ground to a particle size (e.g., ⁇ 80 microns) to permit the homogeneous solution to pass through the orifice of a spray bottle.
  • Other packages may be otherwise squeezed or used to expel the tobacco into the oral cavity.
  • Example BD Sprayable Solution A solution is prepared by mixing 0.2 grams of xanthan (Kelzan from C.P. Kelco) in 78.6 grams of cool water with vigorous mixing for 30 minutes. To this solution is added 20 grams of finely ground tobacco, 0.2 grams of sucralose, and 2 grams of cinnamon flavor while continuing to mix vigorously. The solution viscosity is adjusted with water to a viscosity of 50 centipoise.
  • xanthan Kelzan from C.P. Kelco
  • Example BE Thick solution.
  • a solution is prepared by mixing 1 gram of xanthan (Kelzan from C. P. Kelco) with 76.8 grams of cool water while mixing vigorously for 30 minutes. To this is added 20 grams of fine tobacco, 0.2 grams of sucralose and 2 grams of cinnamon flavor while continuing to mix vigorously. Solution viscosity is 1,500 centipoise.
  • xanthan Kelzan from C. P. Kelco
  • Example BF Paste A paste is prepared by adding 2 grams of a medium viscosity carboxymethyl cellulose (CMC 7MF from Hercules, Inc.) to a mixture of 35.8 grams of cool water and 40 grams of glycerine with vigorous mixing for 30 minutes. To this mixture is added 20 grams of fine tobacco powder, 0.2 grams of sucralose, and 2 grams of cinnamon flavor. A thick paste is prepared which is highly shear sensitive. This paste can be introduced to a tube or other squeezable package where the shear force from squeezing reduces the viscosity to permit flow of the paste.
  • CMC 7MF medium viscosity carboxymethyl cellulose

Abstract

The invention features tobacco compositions and methods of their use and manufacture. Compositions of the invention may be based on a variety of technologies. Technologies include films, tabs, shaped parts, gels, consumable units, insoluble matrices, and hollow shapes. In addition to tobacco, compositions may also contain flavors, colors, and other additives as described herein. Compositions may also be orally disintegrable. Exemplary compositions and methods of their manufacture are described herein.

Description

TOBACCO COMPOSITIONS
FIELD OF THE INVENTION The invention relates to the field of tobacco products.
SUMMARY OF THE INVENTION The invention features tobacco compositions and methods of their use and manufacture. Compositions of the invention may be based on a variety of technologies. Technologies include films, tabs, shaped parts, gels, consumable units, insoluble matrices, and hollow shapes. In addition to tobacco, compositions may also contain flavors, colors, and other additives as described herein. Compositions may also be orally disintegrable. Exemplary compositions and methods of their manufacture are described herein. For example, any composition described herein may include a flavor or flavor masking agent. Exemplary flavors include licorice, kudzu, hydrangea, Japanese white bark magnolia leaf, chamomile, fenugreek, clove, menthol, Japanese mint, aniseed, cinnamon, herb, wintergreen, cherry, berry, apple, peach, Dramboui, bourbon, scotch, whiskey, spearmint, peppermint, lavender, cardamon, apium graveolens, cascarilla, nutmeg, sandalwood, bergamot, geranium, honey essence, rose oil, vanilla, lemon oil, orange oil, cassia, caraway, cognac, jasmin, ilangilang, sage, fennel, piment, ginger, anise, coriander, coffee, or a mint oil from any species of the genus Mentha. Any composition of the invention may also include a sweetener (such as sucrose, sucralose, acesulfame potassium, aspartame, saccharine, cyclamates, lactose, sucrose, glucose, fructose, sorbitol, and mannitol); a surfactant; a plasticizer (such as glycerine, propylene glycol, polyethylene glycol, sorbitol/mannitol, acetylated monoglycerides, triacetin, and 1,3 butane diol); a filler (such as starch, microcrystalline cellulose, wood pulp, soluble fiber, calcium carbonate, dicalcium phosphate, calcium sulfate, and a clay); a lubricant (such as stearic acid and a stearate) or a wax (such as lecithin, glycerol monostearate, and propylene glycol monostearate); a preservative (such as methyl paraben and potassium sorbate); and/or a stabilizer (such as ascorbic acid, monosterol citrate, BHT, and BHA). Any composition described herein may further include a coating, e.g., matte or glossy. The coating preferably includes a color, flavor, sweetener, or flavor masking agent. The coating may also include a different flavor, color, or rate of disintegration from the format in the composition. The coating may also include tobacco . Any composition described herein may further include a printed pattern, e.g., in a logo. A printed pattern may include a color, tobacco, a flavor, sweetener, or flavor masking agent. The surface of any composition described herein may also include a pattern in relief. Tobacco included in any composition may be a powder, granules, shreds, or perceived to be soluble in the mouth. Any composition described herein may further include flakes, e.g., containing tobacco or a plurality of flavors or colors. Any composition of the invention may be formed in a shape suitable for application in the mouth. A composition of the invention may further provide tobacco satisfaction, e.g., over a period of 10 s to 30 minutes. The invention also features a method for obtaining tobacco satisfaction by placing at least a portion of any composition as described herein in the mouth. The invention also features methods for making compositions as described herein. Any of these methods may further include adding a coating to the composition, e.g., by spraying, brushing, roll coating, doctor bar casting, slot coating, extrusion coating, or hot melt deposition. Any of the methods may also include printing a pattern on the composition, e.g., by offset, flexographic, gravure, ink jet, laser, or screen printing. In addition, the methods of making compositions may include adding a flavor, color, flavor masking agent, or any other ingredient described herein to the format or composition. By "format" is meant an ingredient or compilation of ingredients, as provided herein, in a composition, for example, a carrier or agent. By "tobacco" is meant any part, e.g., leaves, flowers, roots, and stems, of any member of the genus Nicotiana. Exemplary species of tobacco include N. rustica and N. tαbαcum (e.g., LA B21, LΝ KY171, TI 1406, Basma, Galpao, Perique, Beinhart 1000-1, and Petico). Other species include N. αcαulis, N. αcuminαtα, N. αcuminαtα vαr. multiflorα, N. αfricαnα, IS/, αlαtα, N. αmplexicαulis, N. αrentsii, N. αttenuαtα, N. benαvidesii, N. benthαmiαnα, N. bigelovii, N. bonαriensis, N. cαvicolα, N. clevelαndii, N. cordifoliα, N. corymbosα, N. debneyi, N. excelsior, N. forgetiαnα, N.frαgrαns, N. glαucα, N. glutinosα, N. goodspeedii, N. gossei, N. hybrid, N. ingulbα, N. kαwαkαmii, N. knightiαnα, N. lαngsdorffii, N. lineαris, N. longiflorα, N. mαritimα, N. megαlosiphon, N. miersii, N. noctiflorα, N. nudicαulis, N. obtusifoliα, N. occidentαlis, N. occidentαlis subsp. hesperis, N. otophorα, N. pαniculαtα, N. pαuciflorα, N. petunioides, N. plumbαginifoliα, N. quαdrivαlvis, N. rαimondii, N. repαndα, N. rosulαtα, N. rosulαtα subsp. ingulbα, N. rotundifoliα, N. setchellii, N. simulαns, N. solαnifoliα, N. spegαzzinii, N. stocktonii, N. suαveolens, N. sylvestris, N. thyrsiflorα, N. tomentosα, N. tomentosiformis, N. trigonophyllα, N. umbrαticα, N. undulαtα, N. velutinα, TV. wigαndioides, and N. x sαnderαe. The tobacco may be whole, shredded, cut, cured, aged, fermented, or otherwise processed, e.g., granulated or encapsulated. Tobacco may also be in the form of finished products, including but not limited to any non- combustible tobacco that is orally consumed, e.g., smokeless tobacco. Such smokeless tobacco includes snuff (moist or dry), chewing tobacco, loose tobacco, pouched tobacco, and the like, or any form contained herein. The term also includes an extract of tobacco including two or more tobacco organoleptic components. By "tobacco satisfaction," in this case, is meant the experience associated with tobacco organoleptic components and added flavor components that are released in the mouth when using a smokeless tobacco. An adult consumer who chooses to use a smokeless tobacco product purchases a smokeless tobacco product typically according to their individual preference, such a preference includes, without limitation, flavor, cut of tobacco, form, ease of use, and packaging. By "organoleptic" is meant relating or contributing to the integrated sensory perception by the consumer that includes, for example, any combination of aroma, fragrance, flavor, taste, odor, mouth feel, or the like. By "non-combustible" is meant does not combust during ordinary usage. Compositions described herein are advantageous from the perspective of size, ease of use, and controlled rate of disintegration. All percentages are by weight unless otherwise noted. Other features and advantages will be apparent from the following description and the claims.
DETAILED DESCRIPTION OF THE INVENTION The invention features tobacco compositions that are typically for tobacco satisfaction.
A. Tobacco Tobacco useful in compositions described herein includes any raw or processed form, e.g., a powder, granule, or shred. Preferably, the tobacco is sized or made to disintegrate in the mouth (e.g., dissolve), to give the perception of dissolvability (e.g., the tobacco does not produce a tactile experience in the mouth), or to be easily swallowed. Alternatively, the tobacco may be sized or made to provide a tactile experience in the mouth. Exemplary average sizes are in the range of 1 to 1000 μm, e.g., about 800, 500, 250, 100, 80, 75, 50, 25, 20, 15, 10, 8, 6, 5, 3, 2, or 1 μm or less, preferably 80 μm or less. The tobacco may also be in the form of a slurry or a flowable gel. A flowable gel is a mixture of a format dissolved in water and mixed with tobacco and then mixed with a miscible solvent that prevents the complete dissolution of the format. Such a mixture causes the format to swell forming a viscous paste that is pseudoplastic and is easily dispensed from a container (e.g., a tube) with slight pressure. An exemplary tobacco is smokeless tobacco. Additional tobaccos are described in U.S. Publication Nos. 2003/0094182 and
2003/0070687 , U.S.S.N. 60/603,887, and U.S.S.N. titled "Nicotiana
Compositions," filed November 5, 2004; the disclosures of which are hereby incorporated by reference. The tobacco employed in the composition may also be prepared according to the methods of U.S. Publication No. 2004/0112394; the disclosure of which is hereby incorporated by reference. Other suitable tobacco is known in the art. Tobacco may be distributed randomly or evenly throughout a composition or concentrated in various regions thereof, e.g., in the center or on the surface. Depending on the desired characteristics and the end use of the composition, the typical final tobacco concentration ranges from 1 percent to 99 percent by weight of the final composition, for example, at most 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, or 90%. In preferred embodiments, the composition includes around 25% tobacco.
B. Compositions In general, compositions of the invention are intended for oral use or consumption. A composition containing tobacco may be manufactured using any suitable orally compatible format. The tobacco may be mixed directly with the format or otherwise supported by the format. For example, a composition may contain tobacco, e.g., as dried particles, shreds, granules, a powder, or a slurry, deposited on, mixed in, surrounded by, or otherwise combined with a format. Tobacco in compositions may or may not be, or be perceived to be, soluble. In one embodiment, the compositions are spitless tobacco compositions. Compositions may also include a mixture of forms or types of tobacco. Compositions may be foamed or dense. Foamed compositions may be rigid or flexible and may be based on water soluble, water insoluble, or thermoplastic formats. Exemplary compositions are described herein. In one embodiment, a composition of the invention is non-combustible. Fonnats suitable for use in the compositions described herein include orally compatible polymers, such as cellulosics (e.g., carboxymethyl cellulose (CMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), hydroxypropyl methyl cellulose (HPMC), and methyl cellulose (MC)), natural polymers (e.g., starches and modified starches, konjac, collagen, inulin, soy protein, whey protein, casein, and wheat gluten), seaweed-derived polymers (e.g., carrageenan (kappa, iota, and lambda), alginates, and propylene glycol alginate), microbial-derived polymers (e.g., xanthan, dextran, pullulan, curdlan, and gellan), extracts (e.g., locust bean gum, guar gum, tara gum, gum tragacanth, pectin (lo methoxy and amidated), agar, zein, karaya, gelatin, psyllium seed, chitin, and chitosan), exudates (e.g., gum acacia (arabic) and shellac), synthetic polymers (e.g., polyvinyl pyrrolidone, polyethylene oxide, and polyvinyl alcohol). Other useful formats are known in the art, for example, see Krochta et al. Food Technology, 1997, 51:61-74, Glicksman Food
Hydrocolloids CRC 1982, Krochta Edible Coatings and Films to Improve Food Quality Technomic 1994, Industrial Gums Academic 1993, Nussinovitch Water-Soluble Polymer Applications in Foods Blackwell Science 2003. Depending on the desired characteristics, a composition may also include fillers (e.g., starch, microcrystalline cellulose, wood pulp (e.g., Solkafloc from International Fibers, Inc.), soluble fiber (e.g., Fibersol from Matsushita), calcium carbonate, dicalcium phosphate, calcium sulfate, and clays), lubricants (e.g., lecithin, stearic acid, stearates (e.g., Mg or K), and waxes (e.g., glycerol monostearate, propylene glycol monostearate, and acetylated monoglycerides)), plasticizers (e.g., glycerine, propylene glycol, polyethylene glycol, sorbitol, mannitol, triacetin, and 1,3 butane diol), stabilizers (e.g., ascorbic acid and monosterol citrate, BHT, or BHA), or other compounds (e.g., vegetable oils, surfactants, and preservatives). Some compounds function as both plasticizers and lubricants. Compositions of the invention may include flavor extracts (e.g., licorice, kudzu, hydrangea, Japanese white bark magnolia leaf, chamσmile, fenugreek, clove, menthol, Japanese mint, aniseed, cinnamon, herb, wintergreen, cherry, berry, peach, apple, Dramboui, bourbon, scotch, whiskey, spearmint, peppermint, lavender, cardamon, apium graveolens, cascarilla, nutmeg, sandalwood, bergamot, geranium, honey essence, rose oil, vanilla, lemon oil, orange oil, cassia, caraway, cognac, jasmin, ilangilang, sage, fennel, pi ent, ginger, anise, coriander, coffee, or a mint oil from any species of the genus Mentha), flavor masking agents, bitterness receptor site blockers, receptor site enhancers, sweeteners (e.g., sucralose, acesulfame potassium (Ace-K), aspartame, saccharine, cyclamates, lactose, sucrose, glucose, fructose, sorbitol, and mannitol), and other desirable additives such as chlorophyll, minerals, botanicals, or breath freshening agents. Flavors may also be provided by plant matter, e.g., mint leaves, which are typically 10% flavor oils and 90% insoluble fiber. Exemplary plants further include licorice, kudzu, hydrangea, Japanese white bark magnolia, chamomile, fenugreek, clove, Japanese mint, cinnamon, herb, cherry, berry, peach, apple, lavender, cardamon, apium graveolens, cascarilla, nutmeg, sandalwood, bergamot, geranium, rose, vanilla, lemon, orange, cassia, caraway, jasmin, ilangilang, sage, fennel, piment, ginger, anise, coriander, coffee, or any species of the genus Mentha. Flavor may be provided to a composition as described herein by flavor extracts, plant matter, or a combination thereof. In addition to natural flavor extracts, flavor may also be provided by imitation, synthetic, or artificial flavor ingredients and blends containing such ingredients. Flavors may be added as a powder, an oil, or in encapsulated form. In certain embodiments, the composition disintegrates in the mouth. Disintegration rates of compositions may vary from 60 minutes to less than 1 minute. Fast release compositions typically disintegrate in under 2 minutes and most preferably, in 1 minute or less, e.g., less than 60 s, 50 s, 45 s, 40 s, 35 s, 30 s, 25 s, 20 s, 15 s, 10 s, 5 s, 4 s, 3 s, 2 s, or 1 s. The disintegration may occur by any mechanism, for example, dissolution, melting, mechanical disruption (e.g., from chewing), enzymatic or other chemical degradation, or disruption of the interaction between the format and tobacco. The format or tobacco itself may similarly disintegrate. The amount of time required for a composition to disintegrate may be controlled by varying the thickness of the composition and is dependent upon the type of format, other additives, and the pattern of usage. When placed in the mouth, the composition may temporarily adhere to a part of the oral mucosa. In addition, the length of time of the tobacco satisfaction may vary. This length of time may be affected by, e.g., by the rate of disintegration of a composition, the rate of extraction of organoleptic components from a composition, and the residence time of the composition in the mouth. The tobacco satisfaction may be provided over a period of at least 10 s, 30 s, 45 s, 1 min, 2 min, 3 min, 5 min, 10, min, 15 min, 30 min, or 1 h, preferably from 10 s to 10 minutes and more preferably from 30 s to 5 minutes. In other embodiments, the compositions do not disintegrate over the residence period in the mouth. In such compositions, introduction of tobacco organoleptic components into the mouth may occur by dissolution, leaching, extraction, or mechanical disruption caused by chewing. Individual compositions may be sized to fit entirely in the mouth, or they may be sized to fit only partially in the mouth. Preferred cross sections of the compositions include, but are not limited to, square, circular, rectangular, elliptical, oval, and the like. Preferred dimensions may vary depending upon the serving size and ingredients. Typically, the largest dimension of a single serving is 5 cm or smaller. Alternatively, tobacco products may be made in a larger form, from which individual servings may be cut or otherwise separated, e.g., by chewing, biting, or oral disintegration. For example, a strip, or other long piece, may be placed in a container, and the consumer may remove a desired serving size. A larger composition (or orally sized piece attached to a handle) may also be partially inserted in the mouth, similar to a toothpick or cigarette, and the consumer may suck or chew on it. In one embodiment, the larger piece is orally disintegrable and may be completely consumed over a period of time.
C. Technologies Films. Compositions of the invention may be formed as films that may be orally disintegrable. Such films may contain a single layer or multiple layers. A single layer film will contain tobacco, a format, and other ingredients, e.g., in a homogeneous mixture. Multilayer films may include several tobacco containing layers, e.g., with the same or different kind or size of tobacco, e.g., tobacco perceived to be soluble. Multiple layers may be laminated together. In addition, multilayer films may contain tobacco in one or more layers and other layers that contain additional ingredients, as described herein. For example, individual layers may be added for flavor, sweetness, color, rate of disintegration, or stability (e.g., during handling or during consumption). Tobacco may also be placed between two or more layers in a sandwich arrangement. One or more of the layers in the sandwich may also include tobacco. In films having multiple layers, the layers may disintegrate at the same or different rates, or a layer may not disintegrate orally. When rates of disintegration differ, the composition may provide tobacco at differing times based on the layers disintegrating. Single layer films or individual layers in multilayer films may also be foamed or aerated to provide desirable physical properties or desirable dissolution or disintegration rates. Films may be sized to fit in the mouth as individual servings. Alternatively, larger films may be fabricated from which individual servings may be separated. For example, a film may be wrapped, or otherwise shaped, to form a hollow tube or straw, which in turn may be filled with additional material. In addition, a film, e.g., containing a high percentage of tobacco in the range of 1% to 99% based on dry weight, may be fabricated and then used in preparation of flakes or a powder for addition to other compositions, as described herein. The preferred thickness of a film is typically less than 1 mm, e.g., less than 500, 200, 100, 50, 40, 30, 20, 10, 5, 4, 3, 2, or 1 μm; preferably 5 to 125 μm. Various methods known in the art can be used to manufacture films. The technique employed may depend on the format employed in the film. Exemplary methods include solution casting or extrusion, melt extrusion, drum drying, and calendaring. Once formed, a film may be modified, e.g., by printing or otherwise coating or decorating the surface of the film. Flavors, colors, or tobacco may be added to the surface of a film by a printing, coating, or decorative process. All printing processes known in the art, e.g., offset, flexographic, gravure, ink jet, laser, screen printing, and other typical methods, may be used. Coatings or decorative patterns may be applied to the surface of the film using processes known in the art, e.g., spraying, brushing, roll coating, doctor bar casting, slot coating, extrusion coating, hot melt deposition, depositing particles or flakes, and other typical methods. The film to be printed, coated, or decorated may or may not contain tobacco. One function of the printing, coating, or decorative pattern is to provide additional amounts of color, flavor, or tobacco to the film. Another function is to improve the dimensional stability and appearance of the film. Once the printed, coated, or decorated film has been prepared, an additional layer of film may be applied to cover, protect and seal the printed, coated, or decorated surface. Film Examples The following table shows exemplary ingredients for fabricating films of the invention.
Table Al
Figure imgf000012_0001
Example B. Tobacco Film A mixture of 50 grams of K-3 (60%), K-100 (35%) and K4M (5%) grades of hydroxypropylmethyl cellulose (HPMC) from Dow Chemical are added to a beaker containing 450 grams of well agitated, deionized water which has been heated to 180°F. While mixing, 40 grams of finely ground tobacco is added to the HPMC solution along with 15 grams of microcrystalline cellulose (FMC), 17 grams of starch (B-700 from Grain Processing Corp.), 16 grams of glycerine, 0.8 grams of polysorbate 80 (Unichema), and 4 grams of propylene glycol monostearate (PGMS from Danisco). Ten grams of cinnamon flavor and 2 grams of sucralose (artificial sweetener) are added to the solution when the temperature has dropped below 100 °F. Two grams of sodium carbonate is added to adjust pH to approximately 7.5. Once all ingredients have been added and have been uniformly dispersed, the mixture is place in a water bath and, with continued mixing for 30 minutes, is reduced in temperature to 65 °F. Additional water is added as required to obtain a Brookfield viscosity of 5,000 centipoise at a temperature of 65 °F. A portion of this tobacco containing solution described above is then spread on a glass plate using a draw down blade with a fixed gap of 15 mils (0.015 inches). The glass plate is placed in an air circulating laboratory oven preset at a temperature of 170 °F. After 30 minutes, the glass plate is removed from the oven, cooled to room temperature, and the dry film with a thickness of 2.5 mils (0.0025 inches) is removed from the glass plate. The film may then be cut into smaller pieces suitable for placing in the mouth. A 1.0 inch by 1.25 inch section of the film will typically disintegrate in the mouth in less than one minute, thereby releasing the flavor, sweetener, and tobacco. The tobacco content of this film on a dry weight basis is 25%.
Example C. Opaque, Flavored Film Using the same procedure as Example B, a solution is prepared without the addition of tobacco. While the solution is still hot, 32 grams of a titanium dioxide dispersion (50% titanium dioxide in water) supplied by Sensient Colors and 0.01 grams of FD&C Red No. 40 lake (Sensient Colors) are added with agitation. The solution is cooled to 65°F and is spread on a glass plate, dried, and removed from the glass plate as described in Example B. An opaque, light red film of good strength and a dry film thickness of 1.5 mils (0.015 inches) is produced.
Example D. Two Layer Film A portion of the solution from Example B is spread on a glass plate using a draw down blade with a fixed gap of 15 mils (0.015 inches). The glass plate is placed in a laboratory oven and the film is dried as in Example B. The glass plate is removed from the oven and cooled to room temperature, but the film is not removed from the glass plate. A portion of the solution from Example C is spread over the dry film of Example B using a draw down blade with a fixed gap of 5 mils (0.005 inches). The glass plate is placed in the laboratory oven at 170°F for 10 minutes. The dry film with a thickness of 3 mils (0.003 inches) is removed from the glass plate. The film is distinctly two sided with a layer of brown, tobacco containing film on one side and a red, flavored film on the opposite side. A 1.0 inch by 1.25 inch section of the film will typically disintegrate in the mouth in less than one minute.
Example E. Three Layer Film A portion of the solution from Example C is spread on a glass plate using a draw down blade with a fixed gap of 5 mils and is dried in the laboratory oven as before. A portion of the solution from Example B is spread over the dried film of Example C using a draw down blade with a fixed gap of 15 mils and is dried in the laboratory oven as before. A portion of the solution from Example C is spread on a glass plate using a draw down blade with a fixed gap of 5 mils and is dried in the laboratory oven as before. The resulting film is 3 mils (0.003 inches) in thickness and is comprised of three layers with a layer of opaque, red, flavored film on either side and a center layer of tobacco containing film. A 1.0 inch by 1.25 inch section of the film will typically disintegrate in the mouth in less than one minute.
Example F. Foamed Film To a 100 gram portion of tobacco containing solution from Example B is added with vigorous mixing, 0.5 grams of sodium lauryl sulfate (a surface active agent). This solution is then mixed on a high shear mixer such as a Silverson Laboratory Homogenizer, Model L4RT-W, to create a uniform bubble structure. This highly aerated solution is then spread on a glass plate using a draw down blade with a fixed gap of 4 mils (0.040 inches) and is dried in a laboratory oven. The dry, foamed film has a thickness of 4 mils (0.004 inches) when it is removed from the glass plate. The weight of a section of this foamed film of 1.0 inch by 1.25 inch by 4 mils (0.004 inches) in thickness is 35% lower than an identical section of unfoamed film as prepared in Example B. The dissolution rate of the foamed film in the mouth is typically faster when compared to the identical unfoamed film as prepared in Example B.
Example G. Flakes A solution is prepared in a beaker by adding 40 grams of spray dried Gum Arabic (TIC Gums, Inc.) and 0.4 grams of propylene glycol monostearate (PGMS) to 60 grams deionized water while mixing vigorously for 30 minutes. To 10 grams of this solution, 0.01 grams of FD&C Red No. 40 lake is added with high agitation to ensure uniform dispersion of the color. The solution is covered and set aside for 24 hours to permit all entrapped air to dissipate. A portion of this solution is then spread on a glass plate using a draw down blade with a fixed gap of 5 mils (0.005 inches). The glass plate is placed in a laboratory oven preset at 170 °F for 20 minutes until the film is thoroughly dried. When the film is removed from the glass plate, it breaks into many small pieces of high gloss, colorful, red flakes. This process is repeated with other FD&C lakes to produce flakes of many different colors. Flavors and artificial sweeteners can also be added to the flakes.
Example H. Tobacco Flakes To 10 grams of the solution prepared in Example G is added 4 grams of finely ground tobacco powder. Films are prepared on glass plates and are dried, cooled, and removed in the same manner as in Example G. The resulting flakes are composed of 50% tobacco and 50% Gum Arabic and are a deep brown color. Flavors, if desired, can be added to the flakes. Materials such as sodium carbonate can also be added to the flakes to adjust pH.
Example I. Tobacco Film with Flakes A film is prepared as in Example B. While the film is still wet on the glass plate, a measured quantity of flakes are prepared and are spread uniformly over the wet film. The glass plate is then dried in a laboratory oven; the film is cooled to room temperature and then removed from the glass plate. Typically, the dried film of Example B has a dry weight of 1 gram (containing 25% or 0.25 grams of tobacco). If this film is divided into 20 equal sections of film (1.0 inch by 1.25 inches by 2 mils), each section will weigh 50 milligrams (containing 25%> or 12.5 milligrams of tobacco). If one gram of tobacco flakes (which are 50% by weight of tobacco) are spread uniformly over the film, the full piece of film will have a dry weight of 2 grams (containing a total of 0.75 grams of tobacco). When divided into 20 equal sections, each section will weigh 100 milligrams and will contain 37.5 milligrams of tobacco. The section of film cut into a 1.0 inch by 1.25 inch size will typically disintegrate in the mouth in less than one minute.
Example J. Tobacco Film with Decorative Flakes The procedure outlined in Example I can be repeated using decorative flakes (e.g., colored flakes which do not contain any tobacco) or with blends of colored flakes and tobacco containing flakes. The resulting films have a colorful appearance. Example K. Flavored Tobacco Film
Table Kl
Figure imgf000017_0001
The following ingredients were weighed and combined in a container of suitable volume:
MIX1 HM3PA2910(Wolff Cellulosics) 30.98g HM1 OOP A2208(Wolff Cellulosics) 15.5 lg HM4000PA2910(Wolff Cellulosics) 2.60g B700(Grain Processing Corporation) 16.36g Tobacco Powder (average particle size <80 μm) 32.72g The resultant mixture was mixed until homogeneous. In a separate container were weighed the following ingredients:
MIX2 Na2C03 1.96g Propylene Glycol Monostearate 0.65g Sodium Lauryl Sulfate 0.65g
In a third container were weighed the following ingredients:
MIX3 Glycerin 5.89g Propylene Glycol 5.22g Polyethylene Glycol 400 6.54g Cinnamon Flavor 6.54g Tobacco Flavor Modifier (Hagelin) 2.62g Sucralose Solution 25% (Tate & Lyle) 2.62g A total of 619.14g of boiling water was weighed into a stainless steel container. The water was stirred vigorously with an Arrow Model 1750 high shear mixer. To the water was added MIX2. Stirring was continued for 30 seconds, at which point MIX1 was added. Vigorous stirring was continued for 4 minutes. To the resultant solution was added MIX3. Vigorous stirring was continued for 1 minute. The resultant solution was transferred to a Silverson SSI vessel, which had been adapted for mixing under vacuum. The vessel was attached to a Silverson L4RTU homogenizer motor unit. The solution was homogenized under vacuum (20-25 inches of Hg) for 2 minutes at 7500 RPM, after which an ice bath was placed around the homogenizer vessel.
Homogenization continued under vacuum (20-25 inches of Hg) for 8 minutes at 10,000 RPM. After homogenization was complete, a portion of the solution was transferred to a 500-mL Nalgene bottle for storage. A portion of the resultant gel solution was poured onto a glass plate that had previously been covered with an appropriately sized sheet of Mylar. The gel solution was drawn across the glass plate with a draw-down knife with a fixed gap of 15 mils. The glass plate was placed in a side-swept forced air oven (VWR model 1330FM), for 30 minutes, which had been set at 75°C. The resultant film, dried to approximately 4% moisture, was removed from the Mylar sheet and cut into appropriately sized units. A 1.0 inch by 1.25 inch unit of film disintegrated in the mouth in less than 30 seconds. Relatively slower disintegrating films (e.g., films disintegrating in the mouth in greater than 30 seconds) were produced from the same solutions by casting the solution across the glass plate with a draw-down knife with a fixed gap of 30 mils. The films were dried in the same manner as above for 40 minutes. The films produced typically disintegrated in the mouth in less than 1 minute. Super-fast disintegrating films (e.g., films disintegrating in the mouth in less than 15 seconds) were produced from the same solutions by foaming the solution prior to casting on the glass plate. Foaming was accomplished by subjecting lOOg of each solution to high shear mixing (with an Arrow Model 1750 high shear mixer) for approximately 3 minutes, after which the foamed solution was immediately cast on the glass plate with a draw-down knife with a fixed gap of 30 mils. The films produced typically disintegrated in the mouth in less than 15 seconds.
Example L. Flavored Tobacco Film
Table LI
Figure imgf000019_0001
The following ingredients were weighed and combined in a container of suitable volume:
MIX1 HM3PA2910(Wolff Cellulosics) 30.98g HM100PA2208(Wolff Cellulosics) 15.51g HM4000PA2910(Wolff Cellulosics) 2.60g B700(Grain Processing Corporation) 16.36g Tobacco Powder (avg. particle size <80 μm) 32.72g
The resultant mixture was mixed until homogeneous. In a separate container were weighed the following ingredients: \
MIX2 Na2C03 1.96g Propylene Glycol Monostearate 0.65g Sodium Lauryl Sulfate 0.65g In a third container were weighed the following ingredients:
MIX3 Glycerin 4.58g Propylene Glycol 5.22g Polyethylene Glycol 400 4.58g Mint Flavor 9.81g Tobacco Flavor Modifier (Hagelin) 2.62g Sucralose Solution 25% (Tate & Lyle) 2.62g
A total of 619.14g of boiling water was weighed into a stainless steel container. The water was stirred vigorously with an Arrow Model 1750 high shear mixer. To the water was added MIX2. Stirring was continued for 30 seconds, at which point MIX1 was added. Vigorous stirring was continued for 4 minutes. To the resultant solution was added MIX3. Vigorous stirring was continued for 1 minute. The resultant solution was transferred to a Silverson SSI vessel, which had been adapted for mixing under vacuum. The vessel was attached to a Silverson L4RTU homogenizer motor unit. The solution was homogenized under vacuum (20-25 inches of Hg) for 2 minutes at 7500 RPM, after which an ice bath was placed around the homogenizer vessel.
Homogenization continued under vacuum (20-25 inches of Hg) for 8 minutes at 10000 RPM. After homogenization was complete, a portion of the solution was transferred to a 500-mL Nalgene bottle for storage. A portion of the resultant gel solution was poured onto a glass plate that had previously been covered with an appropriately sized sheet of Mylar. The gel solution was drawn across the glass plate with a draw-down knife with a fixed gap of 15 mils. The glass plate was placed in a side-swept forced air oven (VWR model 1330FM), for 30 minutes, which had been set at 75°C. The resultant film, dried to approximately 4%> moisture, was removed from the Mylar sheet and cut into appropriately sized units. A 1.0 inch by 1.25 inch unit of film typically disintegrated in the mouth in 15-30 seconds. Alternatively, the film includes wintergreen, spearmint, or apple flavor. Relatively slower disintegrating films (e.g., films disintegrating in the mouth in greater than 30 seconds) and super-fast disintegrating films (e.g., films disintegrating in the mouth in less than 15 seconds) were produced from the same solutions as described in Example K.
Example M. Peach Flavored Tobacco Film
Table Ml
Figure imgf000021_0001
The following ingredients were weighed and combined in a container of suitable volume:
MIX1 HM3PA2910(Wolff Cellulosics) 30.98g HM100PA2208(Wolff Cellulosics) 15.51g HM4000PA2910(Wolff Cellulosics) 2.60g B700(Grain Processing Corporation) 16.36g Tobacco Powder (average particle size <80 μm) 32.72g
The resultant mixture was mixed until homogeneous. In a separate container were weighed the following ingredients:
MIX2 Na2C03 1.96g Propylene Glycol Monostearate 0.65g Sodium Lauryl Sulfate 0.65g In a third container were weighed the following ingredients:
MIX3 Glycerin 1.31g Propylene Glycol 1.31 g Polyethylene Glycol 400 1.31 g Peach Puree 100.0g Peach Flavor 3.27g Tobacco Flavor Modifier (Hagelin) 2.62g Sucralose Solution 25% (Tate & Lyle) 2.62g
A total of 619.14g of boiling water was weighed into a stainless steel container. The water was stirred vigorously with an Arrow Model 1750 high shear mixer. To the water was added MIX2. Stirring was continued for 30 seconds, at which point MIXl was added. Vigorous stirring was continued for 4 minutes. To the resultant solution was added MIX3. Vigorous stirring was continued for 1 minute. The resultant solution was transferred to a Silverson SSI vessel, which had been adapted for mixing under vacuum. The vessel was attached to a Silverson L4RTU homogenizer motor unit. The solution was homogenized under vacuum (20-25 inches of Hg) for 2 minutes at 7500 RPM, after which an ice bath was placed around the homogenizer vessel. Homogenization continued under vacuum (20-25 inches of Hg) for 8 minutes at 10000 RPM. After homogenization was complete, a portion of the solution was transferred to a 500-mL Nalgene bottle for storage. A portion of the resultant gel solution was poured onto a glass plate which had previously been covered with an appropriately sized sheet of Mylar. The gel solution was drawn across the glass plate with a draw-down knife with a fixed gap of 15 mils. The glass plate was placed in a side-swept forced air oven (VWR model 1330FM), for 30 minutes, which had been set at 75°C. The resultant film, dried to approximately 4% moisture, was removed from the Mylar sheet, and cut into appropriately sized units. A 1.0 inch by 1.25 inch unit of film typically disintegrated in the mouth in 15-30 seconds. Relatively slower disintegrating films (e.g., films disintegrating in the mouth in greater than 30 seconds) and super-fast disintegrating films (e.g., films disintegrating in the mouth in less than 15 seconds) were produced from the same solutions as described in Example K.
Example N. Flavored Tobacco Film for Sticks/Wraps/Pouches/Vacuum Forming
Figure imgf000023_0001
The following ingredients were weighed and combined in a container of suitable volume:
MIXl HM3PA2910(Wolff Cellulosics) 38.48g HM100PA2208(Wolff Cellulosics) 19.27g HM4000PA2910( Wolff Cellulosics) 3.24g B700(Grain Processing Corporation) 20.32g Tobacco Powder (avg. particle size <80 μm) 14.39g
The resultant mixture was mixed until homogeneous. In a separate container were weighed the following ingredients:
MIX2 Na2C03 2.16g Propylene Glycol Monostearate 0.72g Sodium Lauryl Sulfate 0.72g In a third container were weighed the following ingredients:
MIX3 Glycerin 7.19g Propylene Glycol 7.19g Polyethylene Glycol 400 7.19g Triacetin 6.47g Cinnamon Flavor 10.80g Tobacco Flavor Modifier (Hagelin) 2.88g Sucralose Solution 25% (Tate & Lyle) 2.88g
A total of 606.1 Og of boiling water was weighed into a stainless steel container. The water was stirred vigorously with an Arrow Model 1750 high shear mixer. To the water was added MIX2. Stirring was continued for 30 seconds, at which point MIXl was added. Vigorous stirring was continued for 4 minutes. To the resultant solution was added MIX3. Vigorous stirring was continued for 1 minute. The resultant solution was transferred to a Silverson SSI vessel, which had been adapted for mixing under vacuum. The vessel was attached to a Silverson L4RTU homogenizer motor unit. The solution was homogenized under vacuum (20-25 inches of Hg) for 2 minutes at 7500 RPM, after which an ice bath was placed around the homogenizer vessel. Homogenization continued under vacuum (20-25 inches of Hg) for 8 minutes at 10000 RPM. After homogenization was complete, a portion of the solution was transferred to a 500-mL Nalgene bottle for storage. A portion of the resultant gel solution was poured onto a glass plate which had previously been covered with an appropriately sized sheet of Mylar. The gel solution was drawn across the glass plate with a draw-down knife with a fixed gap of 20 mils. The glass plate was placed in a side-swept forced air oven (VWR model 1330FM), for 35 minutes, which had been set at 75°C. The resultant film, dried to approximately 4% moisture, was removed from the Mylar sheet, and was stored in a plastic bag for future use. Alternatively flavored tobacco films, e.g., apple flavored, were also produced following the preceding formulation and procedure. Example O. Flavored/Colored Film for Sticks/Wraps/Pouches
Table 01
Figure imgf000025_0001
The following ingredients were weighed and combined in a container of suitable volume:
MIXl HM3PA2910(Wolff Cellulosics) 38.48g HM100PA2208(Wolff Cellulosics) 19.27g HM4000PA2910(Wolff Cellulosics) 3.24g B700(Grain Processing Corporation) 20.32g Fibersol-2(Matsutani) 14.39g FD&C Red 40 Alum Lake 35-42% (Sensient Colors) 0.29g The resultant mixture was mixed until homogeneous. In a separate container were weighed the following ingredients:
MIX2 Na2C03 2.16g Propylene Glycol Monostearate 0.58g Sodium Lauryl Sulfate 0.58g
In a third container were weighed the following ingredients:
MIX3 Glycerin 7.19g Propylene Glycol 7.19g Polyethylene Glycol 400 7.19g Triacetin 6.47g Cinnamon Flavor 10.79g Tobacco Flavor Modifier (Hagelin) 2.88g Sucralose Solution 25% (Tate & Lyle) 2.88g A total of 606.1 Og of boiling water was weighed into a stainless steel container. The water was stirred vigorously with an Arrow Model 1750 high shear mixer. To the water was added MIX2. Stirring was continued for 30 seconds, at which point was added MIXl. Vigorous stirring was continued for 4 minutes. To the resultant solution was added MIX3. Vigorous stirring was continued for 1 minute. The resultant solution was transferred to a Silverson SSI vessel, which had been adapted for mixing under vacuum. The vessel was attached to a Silverson L4RTU homogenizer motor unit. The solution was homogenized under vacuum (20-25 inches) for 2 minutes at 7500 RPM, after which an ice bath was placed around the homogenizer vessel. Homogenization continued under vacuum (20-25 inches) for 8 minutes at 10000 RPM. After homogenization was complete, a portion of the solution was transferred to a 500-mL Nalgene bottle for storage. A portion of the resultant gel solution was poured onto a glass plate that had previously been covered with an appropriately sized sheet of Mylar. The gel solution was drawn across the glass plate with a draw-down knife with a fixed gap of 20 mils. The glass plate was placed in a side-swept forced air oven (VWR model 1330FM), for 35 minutes, which had been set at 75°C. Additional films were cast at 40 mils, and dried for 1 hour. The resultant films dried to approximately 4% moisture, were removed from the Mylar sheet, and were stored in a plastic bag for future use. Alternatively flavors include mint flavor, wintergreen flavor, or spearmint flavor. Alternative colors include FD&C Blue Alum Lake 35-42%, FD&C Emerald Green Lake Blend, and FD&C Blue Alum Lake + FD&C Emerald Green Lake Blend. Example P. Peach Flavored Film for Sticks/Wraps/Pouches
Table PI
Figure imgf000027_0001
The following ingredients were weighed and combined in a container of suitable volume:
MIXl HM3PA2910(Wolff Cellulosics) 38.48g HM100PA2208(Wolff Cellulosics) 19.27g HM4000PA2910(Wolff Cellulosics) 3.24g B700(Grain Processing Corporation) 20.32g Tobacco Powder (average particle size <80 μm) 14.39g
The resultant mixture was mixed until homogeneous. In a separate container were weighed the following ingredients:
MIX2 Na2C03 2.16g Propylene Glycol Monostearate 0.72g Sodium Lauryl Sulfate 0.72g
In a third container were weighed the following ingredients:
MIX3 Glycerin 7.19g Propylene Glycol 7.19g Polyethylene Glycol 400 7.19g Triacetin 6.47g Peach Puree lOO.Og Peach Flavor 3.60g Tobacco Flavor Modifier (Hagelin) 2.88g Sucralose Solution 25% (Tate & Lyle) 2.88g A total of 606. lOg of boiling water was weighed into a stainless steel container. The water was stirred vigorously with an Arrow Model 1750 high shear mixer. To the water was added MIX2. Stirring was continued for 30 seconds, at which point was added MIXl. Vigorous stirring was continued for 4 minutes. To the resultant solution was added MIX3. Vigorous stining was continued for 1 minute. The resultant solution was transfened to a Silverson SSI vessel, which had been adapted for mixing under vacuum. The vessel was attached to a Silverson L4RTU homogenizer motor unit. The solution was homogenized under vacuum (20-25 inches of Hg) for 2 minutes at 7500 RPM, after which an ice bath was placed around the homogenizer vessel.
Homogenization continued under vacuum (20-25 inches of Hg) for 8 minutes at 10000 RPM. After homogenization was complete, a portion of the solution was transferred to a 500-mL Nalgene bottle for storage. A portion of the resultant gel solution was poured onto a glass plate that had previously been covered with an appropriately sized sheet of Mylar. The gel solution was drawn across the glass plate with a draw-down knife with a fixed gap of 20 mils. The glass plate was placed in a side-swept forced air oven (VWR model 1330FM), for 35 minutes, which had been set at 75°C. The resultant film, dried to approximately 4% moisture, was removed from the Mylar sheet, and was stored in a plastic bag for future use.
Example Q. Flavored/White Opaque Film for Coating Table Ql
Figure imgf000028_0001
The following ingredients were weighed and combined in a container of suitable volume:
MIXl HM3PA2910(Wolff Cellulosics) 38.48g HM100PA2208(Wolff Cellulosics) 19.27g HM4000PA2910(Wolff Cellulosics) 3.24g B700(Grain Processing Corporation) 20.32g Fibersol-2(Matsutani) 14.39g
The resultant mixture was mixed until homogeneous. In a separate container were weighed the following ingredients:
MIX2 Na2C03 1.44g Propylene Glycol Monostearate 0.72g Sodium Lauryl Sulfate 0.72g
In a third container were weighed the following ingredients:
MIX3 Glycerin 3.60g Propylene Glycol 3.60g Polyethylene Glycol 400 ' 3.60g , Triacetin 3.60g Ti02 suspension 50% (Sensient Colors) 28.04g Tobacco Flavor Modifier (Hagelin) 1.44g Sucralose Solution 25% (Tate & Lyle) 1.44g A total of 606. lOg of boiling water was weighed into a stainless steel container. The water was stirred vigorously with an Arrow Model 1750 high shear mixer. To the water was added MIX2. Stirring was continued for 30 seconds, at which point was added MIXl. Vigorous stirring was continued for 4 minutes. To the resultant solution was added MIX3. Vigorous stirring was continued for 1 minute. The resultant solution was transfened to a Silverson SSI vessel, which had been adapted for mixing under vacuum. The vessel was attached to a Silverson L4RTU homogenizer motor unit. The solution was homogenized under vacuum (20-25 inches of Hg) for 2 minutes at 7500 RPM, after which an ice bath was placed around the homogenizer vessel. Homogenization continued under vacuum (20-25 inches of Hg) for 8 minutes at 10000 RPM. After homogenization was complete, a portion of the solution was transferred to a 500-mL Nalgene bottle for storage. A portion of the resultant gel solution was poured onto a glass plate which had previously been covered with an appropriately sized sheet of Mylar. The gel solution was drawn across the glass plate with a draw-down knife with a fixed gap of 20 mils. The glass plate was placed in a side-swept forced air oven (VWR model 1330FM), for 35 minutes, which had been set at 75°C. The resultant film, dried to approximately 4% moisture, was removed from the Mylar sheet, and was stored in a plastic bag for future use.
Example R. Extruded Tobacco Films
Table Rl
Figure imgf000030_0001
The following ingredients were granulated in a manner similar to granulations utilized for tab production, as described herein, yielding a tobacco granulation with an approximate moisture of 4.50%:
Klucel LF (Hercules/Aqualon) 3448. Og Na2C03 181.0g Sucralose (Tate & Lyle) 45. Og Propylene Glycol 363.0g Tobacco Powder (average particle size <80 μm) 1451.0g Water 2344.0g
The tobacco granulation was introduced to the feed section of a Leistritz Micro- 18 Twin Screw Extruder 40:1 L/D, which had been configured for co- rotating extrusion with a medium-shear screw design. Feed rates for the extrusion varied between 1 - 3 pounds per hour. Barrel zone temperatures varied between 75 - 240 °F. Venting of volatiles from the extrusion melt was accomplished by incoφorating a venting orifice prior to the discharge die of the extruder. Tobacco film, with a width of approximately 3 inches and a thickness varying from 2 - 3 mils, was produced by incoφorating a strip die at the discharge end of the extruder. Upon discharge, the tobacco film was calendared and cooled to room temperature by utilizing a 3 -roll stacked chill roller. Downstream from the chill roller the film was taken up on a rewind reel, incoφorating Mylar between the film layers to prevent adhesion. The tobacco film was placed in a container suitable for storage. The tobacco film was subsequently used in the manufacture of dissolvable tobacco containing pouches, as described herein. The film disintegrated slowly in the mouth, over a period of 2 - 4 minutes.
Example S. Flavored Tobacco Film with Gelatin
Table SI
Figure imgf000031_0001
The following ingredients were weighed and combined in a container of suitable volume:
MIXl HM3PA2910 (Wolff Cellulosics) 13.84g HM100PA2208 (Wolff Cellulosics) 7.24g HM4000PA2910 (Wolff Cellulosics) 1.21g B700 (Grain Processing Coφoration) 7.63g Gelatin 0.6 lg Tobacco Powder (average particle size <80 μm) 15.27g The resultant mixture was mixed until homogeneous. In a separate container were weighed the following ingredients:
MIX2 Na2C03 0.9 lg Propylene Glycol Monostearate 0.30g Sodium Lauryl Sulfate 0.30g
In a third container were weighed the following ingredients: MIX3 Glycerin 2.14g Propylene Glycol 2.44g Polyethylene Glycol 400 2.14g Mint Flavor 4.58g Tobacco Flavor Modifier (Hagelin) 1.22g Sucralose Solution 25% (Tate & Lyle) 1.22g
A total of 288.93g of boiling water was weighed into a stainless steel container. The water was stined vigorously with an Arrow Model 1750 high shear mixer. To the water was added MIX2. Stining was continued for 30 seconds, at which point was added MIXl. Vigorous stining was continued for 4 minutes. To the resultant solution was added MIX3. Vigorous stining was continued for 3 minutes. The resultant solution was transfened to a suitable container for storage. A portion of the resultant gel solution was poured onto a glass plate which had previously been covered with an appropriately sized sheet of Mylar. The gel solution was drawn across the glass plate with a draw-down knife with a fixed gap of 20 mils. The glass plate was placed in a side-swept forced air oven (VWR model 1330FM), for 35 minutes, which had been set at 75°C. The resultant film dried to approximately 4% moisture, was removed from the Mylar sheet, and cut into appropriately sized units. A 1.0 inch by 1.25 inch unit of film dissolved in the mouth in less than 30 seconds, releasing flavor, sweetener, and tobacco.
Example T. Flavored Tobacco Film with Gelatin
Table TI
Figure imgf000033_0001
The following ingredients were weighed and combined in a container of suitable volume:
MIXl HM3PA2910 (Wolff Cellulosics) 11.40g HM100PA2208 (Wolff Cellulosics) 7.24g HM4000P A2910 (Wolff Cellulosics) 1.21 g B700 (Grain Processing Coφoration) 7.63g Gelatin 3.05g Tobacco Powder (average particle size <80 μm) 15.27g
The resultant mixture was mixed until homogeneous. In a separate container were weighed the following ingredients:
MIX2 Na2C03 0.91g Propylene Glycol Monostearate 0.30g Sodium Lauryl Sulfate 0.30g In a third container were weighed the following ingredients:
MIX3 Glycerin 2.14g Propylene Glycol 2.44g Polyethylene Glycol 400 2.14g Mint Flavor 4.58g Tobacco Flavor Modifier (Hagelin) 1.22g Sucralose Solution 25% (Tate & Lyle) 1.22g
A total of 288.93g of boiling water was weighed into a stainless steel container. The water was stined vigorously with an Anow Model 1750 high shear mixer. To the water was added MIX2. Stining was continued for 30 seconds, at which point was added MIXl. Vigorous stining was continued for 4 minutes. To the resultant solution was added MIX3. Vigorous stining was continued for 3 minutes. The resultant solution was transfened to a suitable container for storage. A portion of the resultant gel solution was poured onto a glass plate which had previously been covered with an appropriately sized sheet of Mylar. The gel solution was drawn across the glass plate with a draw-down knife with a fixed gap of 20 mils. The glass plate was placed in a side-swept forced air oven (VWR model 1330FM), for 35 minutes, which had been set at 75°C. The resultant film dried to approximately 4% moisture, was removed from the Mylar sheet, and cut into appropriately sized units. A 1.0 inch by 1.25 inch unit of film disintegrated in the mouth in less than 30 seconds, releasing flavor, sweetener, and tobacco.
Example U. Flavored Tobacco Film with Gelatin
Table UI
Figure imgf000035_0001
The following ingredients were weighed and combined in a container of suitable volume:
MIXl HM3PA2910 (Wolff Cellulosics) 8.35g HM100PA2208 (Wolff Cellulosics) 7.24g HM4000PA2910 (Wolff Cellulosics) 1.21 g B700 (Grain Processing Coφoration) 7.63g Gelatin 6.11g Tobacco Powder (average particle size <80 μm) 15.27g
The resultant mixture was mixed until homogeneous. In a separate container were weighed the following ingredients:
MIX2 Na2C03 0.91g Propylene Glycol Monostearate 0.30g Sodium Lauryl Sulfate 0.30g
In a third container were weighed the following ingredients:
MIX3 Glycerin 2.14g Propylene Glycol 2.44g Polyethylene Glycol 400 2.14g Mint Flavor 4.58g Tobacco Flavor Modifier (Hagelin) 1.22g Sucralose Solution 25% (Tate & Lyle) l-22g A total of 288.93g of boiling water was weighed into a stainless steel container. The water was stined vigorously with an Anow Model 1750 high shear mixer. To the water was added MIX2. Stining was continued for 30 seconds, at which point was added MIXl. Vigorous stining was continued for 4 minutes. To the resultant solution was added MIX3. Vigorous stining was continued for 3 minutes. The resultant solution was transfened to a suitable container for storage. A portion of the resultant gel solution was poured onto a glass plate which had previously been covered with an appropriately sized sheet of Mylar. The gel solution was drawn across the glass plate with a draw-down knife with a fixed gap of 20 mils. The glass plate was placed in a side-swept forced air oven (VWR model 1330FM), for 35 minutes, which had been set at 75°C. The resultant film dried to approximately 4% moisture, was removed from the Mylar sheet, and cut into appropriately sized units. A 1.0 inch by 1.25 inch unit of film disintegrated in the mouth in less than 30 seconds, releasing flavor, sweetener, and tobacco.
Tabs. Compositions of the invention may also be produced as tabs, such as super fast disintegrate (about 15 seconds), fast disintegrate (less than 2 minutes), slow disintegrate (2-10 minutes), and chewable tabs. Tabs may be sized as individual servings or smaller, a plurality of which constitute an individual serving. Tabs sized as individual servings typically have dimensions of 5 mm to 15 mm. Smaller tabs typically range from 2 to 4 mm in diameter. Such smaller tabs may be fabricated in a variety of colors or flavors, e.g., for simultaneous consumption. Tabs may be shaped as a wafer, a convex or concave pellet, ovals, or any other shape known to the trade. Tabs may also be foamed to provide faster dissolution or disintegration in the mouth. Tabs may also be layered to provide a variety of tastes or mouth feels as the tab dissolves or disintegrates. Tabs may also be coated to modify color or taste or to provide mechanical strength for improved handling. In one embodiment, a tab designed to disintegrate rapidly in water may be coated with a very thin water insoluble coating to provide protection to the tab while a second, water soluble coating is applied. Tabs may be fabricated from a dry mix, known as direct compression or from pregranulated materials by any fonning method known in the art, e.g., via a press, injection molding, compression molding, injection foam molding, or compression foam molding.
Tab Examples The following table shows exemplary ingredients for fabricating tabs of the invention.
Table VI
Figure imgf000037_0001
Example Z. Exemplary Chewable Tab A chewable tab can be formed using the following ingredients: compressible sugar (40%); tobacco (20%); dextrose (25%); maltodextrin (13%); coloring agents (0.05%); flavor (1.35%); and magnesium stearate (0.60%).
Example AA. Thermoplastic Tab A thermoplastic tab can be formed using the following ingredients (in parts): hydroxypropyl cellulose (HPC) 54; tobacco 27; microcrystalline cellulose 10; propylene glycol 4; artificial sweetener 2; flavor 2; and stabilizer 0.2. The ingredients are dry mixed and fed to an extruder using banel temperatures necessary to melt the HPC (typically 340-370 °F). A rod of about Vi inch diameter is extruded and cut to size sufficient to form a tab.
Example AB. Tobacco Tab
Table ABI. Formulation of Tobacco Tab
Figure imgf000038_0001
Table AB2. Formulation of Bindin Solution for Production of Tobacco Tab
Figure imgf000038_0002
Preparation of Binding Solution Ingredient amounts, as noted in Table AB2, were weighed out into separate containers. Gum Arabic Pre-hydrated (emulsifier) was slowly added to the water and mixed under high shear agitation in a stainless steel vessel. After complete dissolution, M 585 maltodextrin (Grain Processing
Coφoration) was added slowly to the water. Once M 585 was completely dissolved, the Sucralose sweetener (Tate & Lyle) was added slowly and mixed thoroughly to ensure complete dissolution. Formulary amounts of peppermint and spearmint flavors and a2C03 as noted in Table ABI were added to the binding solution. The entire mixture was homogenized for approximately 20 minutes at 9000-10000 RPMs with the aid of a homogenizer. The proper amount of binding solution to use was detennined by the batch size and the ingredient percentages shown in Table AB 1. The homogenized solution was transfened into the flavor holding/pumping tank.
Preparation of Dry Ingredients The formulary amounts of mannitol (sweetener) and tobacco powder (bone dry basis), as noted in Table ABI, were blended together and placed in the product bowl.
Preparation of Vector Multiflo-15 Fluid Bed Chamber A Vector Multiflo-15 fluid bed coater was used to apply the binding solution to the dry ingredient blend to form the final granulation. The manual process was selected on the control panel computer. The machine operating parameters, located in Table AB3, were loaded into the program: Table AB3. Vector Multiflo-15 Fluid Bed Parameter Settings
Figure imgf000040_0001
The appropriate amount of binding solution to be sprayed on was also loaded into the program. The binding solution amount was determined by the desired batch size to achieve the ingredient percentages shown in Table ABI .
Granulation Process Once the dry ingredients were fluidized in the fluid bed chamber and achieved a temperature of 40-45 °C, the binding solution was slowly sprayed onto the dry ingredients to form the granulation. The nozzle pressure was set at 22 psi and airflow at 200 CFM. The airflow was increased to ensure good product movement or fluidization in the fluid bed chamber. Once all the binding solution had been applied, the airflow was reduced to 200 CFM. The process was stopped once the product temperature reached approximately 43 °C.
Preparation of Granulation for Forming Tabs The granulated material was then sized through a 12-mesh screen. The magnesium stearate (lubricant) was sized through a 40-mesh screen. The formulary amount of magnesium stearate as noted in Table AB4 was combined with the granulated material in a plastic bag and manually shaken for 2 minutes. Table AB4. Formulation of In redients for Forming Tabs
Figure imgf000041_0001
Tab Forming Process The granulated material plus lubricant was loaded into the hopper of the press. The following parameters noted in Table AB5 were set on the Vanguard VSP 8 Mini Rotary Press:
Figure imgf000041_0002
Fast disintegrate disintegrated in the mouth within 1 to 3 minutes. Slow disintegrate disintegrated in the mouth between 5-8 minutes.
Example AC. Tobacco Tab
Table AC1. Formulation of Tobacco Tab
Figure imgf000041_0003
tion for Production of Tobacco Tab
Figure imgf000042_0001
The procedures previously stated in Example ABI for binding solution preparation were followed. Formulary amounts of peppermint and spearmint flavors as noted in Table ACl and 45.00 grams of Na2C03 were added to binding solution. The remaining procedures for the make-up for the binding solution, preparation of dry ingredients, preparation of Vector Multiflo- 15 Fluid Bed Chamber, and granulation process were followed.
Preparation of Granulation for Forming Tabs The granulated material and magnesium stearate were sized through the appropriate screens as previously stated. The formulary amount of magnesium stearate (0.75% for a fast disintegrate or 1.00% for a slow disintegrate) was combined with the granulated material in a plastic bag and manually shaken for 2 minutes.
Tab Forming Process The machine operating parameters noted in Table AC3 were set on the Vanguard VSP 8 Mini Rotary Press:
Table AC3. Tab Formin Parameters for Tobacco Tab
Figure imgf000042_0002
Example AD. Tobacco Tab
Table AD1. Formulation of Tobacco Tab
ution for Production of Tobacco Tab
Figure imgf000043_0001
The procedures previously stated for binding solution preparation were followed. Formulary amounts of Cinnamon Flavor and Na2C03 as noted in Table AD1, were added to the binding solution. The remaining procedures for the make-up of the binding solution, preparation of dry ingredients (lactose filler combined with tobacco powder), preparation of the Vector Multiflo-15 Fluid Bed Chamber, and the granulation process were followed.
Preparation of Granulation for Forming Tabs The granulated material and magnesium stearate were sized through 12- and 40 -mesh screens, respectively. The formulary amount of magnesium stearate (0.50% for a fast disintegrate or 1.00%) for a slow disintegrate) was combined with the granulated material in a plastic bag and manually shaken for 2 minutes. Tab forming process The parameters noted in Table AD3 were set on the Vanguard VSP 8 Mini Rotary Press:
Table AD3. Tab Formin Parameters for Tobacco Tab
Figure imgf000044_0001
Example AE. Tobacco Tab
The same procedures were followed for making a Tobacco Tab in Example AD except wintergreen flavor was used in place of cinnamon flavor.
Preparation of Granulation for Forming Tabs The finished material was then sized through a 12-mesh screen. The magnesium stearate was sized through a 40-mesh screen. The formulary amount of magnesium stearate (0.50% for a fast disintegrate or 0.75% for a slow disintegrate) was combined with the granulated material in a plastic bag and manually shaken for 2 minutes.
Tab Forming process for Tobacco Tab The parameters noted in Table AE1 were set on the Vanguard VSP 8
Mini Rotary Press:
Figure imgf000045_0001
Example AF. Tobacco Tab with an Opaque, White Coating
Table AFl. Fonnulation of Tobacco Tab
Figure imgf000045_0002
Table AF2. Formulation of Bindin Solution for Production of Tobacco Tab
Figure imgf000045_0003
Preparation of Binding Solution The procedures previously stated for binding solution preparation were followed. Formulary amounts of apple flavor, natural bitter blocker (Comax), and Na2C03 as noted in Table AFl were added to binding solution. The remaining procedures for the make-up of the binding solution, preparation of dry ingredients (lactose filler plus tobacco powder), preparation of the Vector Multiflo-15 Fluid Bed Chamber, and the granulation process were followed.
Preparation of Granulation for Tab Forming The finished material was then sized through a 12-mesh screen. The magnesium stearate was sized through a 40-mesh screen. The fonnulaiy amount of magnesium stearate (0.75% for a slow disintegrate) was combined with the granulated material in a plastic bag and manually shaken for 2 minutes.
Tab Forming Process The parameters noted in Table AF3 were set on the Vanguard VSP 8 Mini Rotary Press:
Table AF3. Tab Forming Parameters for a Slow Disintegrate Tobacco Tab
Figure imgf000046_0001
Tobacco Tab Coating- Suspension Makeup A 20% Opadry II aqueous solution was prepared as directed by the manufacturer and allowed to mix 45 minutes prior to coating.
Coating Process Tabs (5.5-6.5 KG) were placed in the coating pan of a Vector/Freund Hi-Coater pan coating machine and warmed until the exhaust temperature reached 45 °C. This was done with the pan running at less than 5 RPMs to minimize Tab attrition. Air at 75 °C and 100 CFM ran across the pan at a pan pressure of -0.5" water. Once the tabs reached temperature, the pan speed was increased to approximately 15 RPMs and the Opadry coating suspension was applied at a rate of 15-20 grams/minute. The suspension was continually mixed during application to prevent the solids from settling. The spray was atomized with approximately 100 liters of air per minute at approximately 70 psi. The atomized spray was formed into a pattern using directional air ports on the nozzle set at approximately 50 liters of air per minute at approximately 70 psi. Inlet air temperature was periodically increased or decreased to maintain an exhaust temperature between 43 and 46 °C. Spraying was continued until desired amount of solids was applied to satisfy formulary requirements which was typically around 3%>, or until tabs were visually satisfactory.
Example AG. Tobacco Solid Disintegratable The following ingredients were weighed out into individual containers: Klucel EF (Hercules) 60 g Tobacco Powder 75 g Tobacco Flavor Modifier 6 g Corn Syrup (65 %) 45 g Sucrose 45 g B700 (Grain Processing Coφ.) 51 g Sucralose Solution 25 %> (Tate & Lyle) 3 g Propylene Glycol 3 g Sodium Carbonate 1.5 g Water 6 g Oil of Peppermint 4.5 g Water portion 1 (hot) 120 g Water portion 2 (cold) 120 g
The 6 g of water was added to the sodium carbonate, and the mixture was stirred. This mixture was allowed to stir until it was added to the other ingredients later in the process. Water portion 2 (cold) was placed in an ice bath to chill while water portion 1 (hot) was heated to 60° C and transfened to a stainless steel container. The 60° C water was stined with an Anow Model 1750 high shear mixer and the Klucel EF gradually added to the water. This solution was stirred for several minutes. Water portion 2 (cold) was then added to the mixture. An ice bath was placed under the stainless steel container, and the mixture was stined for 15 minutes. After 15 minutes of stining, the remaining ingredients were added to the mixture one at a time. The mixture was thoroughly blended prior to the addition of the next ingredient. The ingredients were added in the following order: tobacco flavor modifier, propylene glycol, sucralose solution, corn syrup, sodium carbonate solution, sucrose, tobacco powder, B700, and oil of peppermint. Ice was added to the ice bath throughout the mixing process to keep the mixture cold. After all ingredients were added, the mixture was stirred for an additional 10 minutes. The container was removed from the ice bath and the mixture was dispensed in solid disintegratable portions onto wax paper and allowed to dry at room temperature for 24 hours. The solid disintegratables were removed from the wax paper and transfened to another sheet of wax paper to continue drying at room temperature. The desired hardness for the solid disintegratables was achieved after 12 to 24 hours of continued drying.
Example AH. Tobacco Solid Disintegratable The following ingredients were weighed out into individual containers:
HPMC 2910 HM E5/6 Bv (Celanese) 60 g Tobacco Powder 75 g Tobacco Flavor Modifier 6 g Com Syrup (65 %) 45 g Sucrose 45 g B700 (Grain Processing Coφ.) 39 g Sucralose Solution 25 % (Tate & Lyle) 3 g Propylene Glycol 15 g Sodium Carbonate 1.5 g Water 6 g Oil of Peppermint 4.5 g Water portion 1 (hot) 120 g Water portion 2 (room temp.) 120 g
The 6 g of water was added to the sodium carbonate, and the mixture was stirred. This mixture was allowed to stir until it was added to the other ingredients later in the process. Water portion 1 (hot) was heated to 80° C and transfened to a stainless steel container. The 80° C water was stined with an Anow Model 1750 high shear mixer, and the HPMC gradually added to the water. This solution was stined for several minutes. Water portion 2 (room temp.) was then added to the mixture, and the mixture was stined for 15 minutes. After 15 minutes of stirring, the remaining ingredients were added to the mixture one at a time. The mixture was thoroughly blended prior to the addition of the next ingredient. The ingredients were added in the following order: tobacco flavor modifier, propylene glycol, sucralose solution, corn syrup, sodium carbonate solution, sucrose, tobacco powder, B700, and oil of peppermint. After all ingredients were added, the mixture was stined for an additional 10 minutes. The mixture was dispensed in portions onto wax paper and allowed to dry at room temperature for 24 hours. The solid disintegratables were removed from the wax paper and transfened to another sheet of wax paper to continue drying at room temperature. The desired hardness for the solid disintegratables was achieved after 12 to 24 hours of continued drying. A similar product was made using the same formulation, mixing process, and dispensing process, but the solid disintegratables were dried in a forced air oven (VWR Model 1330FM) set at 32° C for one hour. The solid disintegratables were then removed from the oven and dried at room temperature for 24 hours. Additionally, solid disintegratables were dried in the forced air oven at 32° C for 18 hours. A slightly harder solid disintegratable with a dull finish was achieved with this drying technique.
Example AL Multilayer Tab Commercially available press equipment can be used to prepare tabs with two or more distinct layers. The composition of these layers can be the same or different in composition. Individual layers can be differentiated by color, flavor, tobacco type, tobacco content, dissolution rate, and other similar characteristics. For example, one layer could disintegrate very rapidly to release flavor or flavor masking ingredients. A second layer containing tobacco powder could disintegrate more slowly thereby gradually exposing the tobacco. Shaped Parts. Tobacco compositions may also be formed into products that are sufficiently rigid to be easily handled. These shaped products may vary in physical properties and range from highly flexible to highly stiff parts. Such products may be formed into any shape and be dense or foamed. These compositions typically have a moisture content of 2-50%), preferably 5-10%, of the finished part weight. Exemplary shapes include a tube, a toothpick, a stick, a twist, or a solid rod. Typically, a shaped part will be sucked or chewed on for an extended period of time to release tobacco organoleptic components into the mouth. A shaped part may or may not disintegrate orally. Parts that disintegrate may do so over a period of 1-60 minutes, preferably from 1-10 minutes. Shaped parts may or may not be sized to fit entirely in the mouth. Compositions larger than the mouth may be partially inserted. Typically the largest dimension of a shaped part is 6 inches, more preferably 2.5 inches. Shaped parts may contain discrete regions, e.g., with each region having the same or different flavor or color or size or form of tobacco, e.g., tobacco perceived as soluble. For example, a twist may contain individual strands, each having a different flavor or color or size or form of tobacco. As further examples, shaped parts may be prepared in multistep processes in which molded or extruded parts are composed of layers, two or more of which contain different flavors, colors, or sizes or forms of tobacco. Shaped part compositions may be fabricated by any method known in the art, e.g., extrusion, compression molding, injection molding, impact forming, foam molding, blow molding, and overmolding. In addition, shaped parts may be based on water soluble or thermoplastic formats. In one embodiment, an aqueous-based shaped part is fabricated by forming a viscous paste (e.g., via Hobart process) of the fonnat, water, tobacco, and other ingredients and pressing the paste into a fonn, extruding through a die, or forming a sheet from which shapes are cut. The cut or formed part may then be dried to the desired moisture level of from 2-50%, preferably from 5-10% of the finished part weight for very rigid parts and from 10-50% for highly flexible parts. In another embodiment, the aqueous paste can be formed in a two, stage extrusion process (e.g., via a Wenger twin screw extruder) in which the format, water, tobacco, and other ingredients are blended in a mixing or pre-extrusion stage of the machine, and the resulting paste is fed directly to the twin screw extrusion element of the machine and is extruded through a die to form a shape, which is then dried to the desired moisture level. A thermoplastic-based shaped part is fabricated, for example, by mixing components via a PK blender, high intensity mixer, pre-pelletizer, or granulation (fluid bed or Hobart) process. The mixed components may then be extruded through conventional single or twin screw extruders to form shaped parts or the mixture can be fed into injection molding machines or other thermoplastic processing machinery to form shaped parts. Shaped Part Examples Example AJ. Injection Molded Shaped Parts The following table provides exemplary shaped parts to be fonned by injection molding.
Table AJ1.
Figure imgf000052_0001
Heating zones were Zone 1 - 300-340 °F; Zone 2 - 350-370 °F; Zone 3 - 300-340 °F; mold temperature was ambient. Sufficient composition was fed to the screw to equal one injection cycle; the material was immediately injected into the mold; the mold was opened after 10 seconds; and the part was removed. The shaped part was a stepped color chip, 2 inches by 3 inches by steps at l/8th, l/4th, and 3/8th inch thickness. Example AK. Compression Molded Shaped Parts The following table provides exemplary shaped parts fonned by compression molding. Table AK1
Figure imgf000053_0001
10-50 grams of water is added per 100 grams of dry compound - sufficient to soften the mix and enable it to pass through a pasta die mounted on a mixer. The mold parameters are as follows:
Table AK2
Figure imgf000053_0002
Longer residence times produced more rigid parts, as long as the steam was allowed to freely vent during the expansion of the part. Additives may also be employed so that the shaped part remains flexible after removal from the tool. The parts containing a majority of low viscosity HPC formed excellent pieces if left in the tool for an extended time (40 to 60 seconds). The inclusion of plasticizer increased the rate of moisture absoφtion from the atmosphere, which caused some parts to soften over time. When the mold cavities were completely filled with molding compound, dense and rigid parts were prepared. When the mold cavities were filled to about 75% of the mold capacity, the compound expanded under the pressure of expanding steam to fomi foamed parts which had good rigidity, good flavor, and which disintegrated readily in the mouth. Foaming can be accomplished in aqueous systems by incoφorating a surface active agent (e.g., sodium lauryl sulfate) into the mix and beating to incoφorate air; foaming or aeration can also be achieved by introducing a gas (e.g. nitrogen) to the aqueous system while the composition is under high shear. The aqueous system is then dried to the desired moisture level to create a stable foamed composition. In one embodiment, an aqueous composition is introduced to partially fill a compression mold; the mold is closed; the mold temperature is raised above the boiling point of water to form steam, which expands the aqueous composition to fill the void area and to create a foamed, shaped part. For thermoplastic systems, foaming can be accomplished by incoφorating water into the tobacco/format composition; the temperature is raised to above the boiling point of water to form steam; and, as the tobacco composition exits a die, the steam expands to create a foamed structure. In another embodiment, gas (e.g., nitrogen or carbon dioxide) is introduced into the molten, thermoplastic, tobacco composition prior to its discharge from an extruder resulting in a highly uniform foam structure in the shaped tobacco composition. Other thermoplastic foaming processes well known in the art (e.g., injection foam molding) can be used to create foamed, tobacco compositions and shaped parts. Example AL. Exemplary Aqueous Shaped Parts. Tables AL1 and AL2 show exemplary ingredients for fabricating aqueous shaped parts of the invention. Sufficient water is added to form a viscous paste. Table AL1
Figure imgf000055_0001
Table AL2
Figure imgf000056_0001
Example AM. Exemplary Thermoplastic Shaped Parts. Table AMI shows exemplary ingredients for fabricating thermoplastic shaped parts of the invention.
Table AMI
Figure imgf000056_0002
Example AN. Tobacco rods. A tobacco rod is made from tobacco (54 parts); flavor (2); insoluble fiber (28); CMC (10); artificial sweetener (0.2); and microcrystalline cellulose (30). Water sufficient to form a viscous paste (e.g., 140 parts) is added, and the paste is suitable for processing through an extruder. A suitable extruder would be a Kitchen Aid mixer fitted with a pasta extruder and die. The rod prepared from extrusion through a pasta die can then be used as the forming mandrel for a spiral winding machine and a tobacco containing film can be used to form a wrapping around the tobacco core.
Example AO. Compression Molded Cinnamon Flavored Tobacco Stick
Table AOl
Figure imgf000057_0001
The following ingredients were weighed and combined in a container of suitable volume:
MIXl HM100PA2208 (Wolff Cellulosics) l l.lόg B700 (Grain Processing Corporation) 55.77g Cinnamon Powder 24.54g Fibersol-2 (Matsutani) 44.6 lg Na2C03 6.69g Sucralose (Tate & Lyle) - 2.22g Tobacco Powder (average particle size <80 μm) 55.11 g The resultant mixture was mixed until homogeneous. In a separate container were weighed the following ingredients:
MIX2 Glycerin 11.16g Cinnamon Flavor 11.16g
MIXl was added to the stainless steel mixing bowl of a Kitchen Aid stand mixer. MIX2 was incoφorated slowly to the mixture over a time period of 3 minutes with the aid of a paddle attachment at a medium-low speed. Following this addition, 76.92g of water was added to the mix in the same manner. The resulting paste was allowed to rest at room temperature for a period of 5 minutes. Following the rest period, the paste was fed through a 1/8 inch aperture strand forming unit which had previously been attached to the Kitchen Aid mixer. The strands produced were cut to between 1 A and 2 inches in length, and stored in suitable containers. A set of platens with 2 inch by 1/4 inch opposing mold cavities was heated to between 300 - 330 °F. A formed strand was placed in the lower cavity, and the mold was closed by means of a hydraulic press. The mold was allowed to remain closed for a period of 30 — 60 seconds, providing a means for cooking the starch component of the unit and the release of a portion of the volatile components. The newly formed stick, measuring approximately 2 inches by 1/8 inch, comprised a smooth rigid outer layer, and a rigid foam-like inner mass. The unit disintegrated in the mouth over a period of 1 - 2 minutes. Example AP. Compression Molded Apple Flavored Tobacco Stick
Table API
Figure imgf000059_0001
The following ingredients were weighed and combined in a container of suitable volume:
MIXl HM100PA2208 (Wolff Cellulosics) l l.lβg B700 (Grain Processing Coφoration) 55.77g Sucrose 22.29g Fibersol-2 (Matsutani) 44.6 lg Na2C03 6.69g Sucralose (Tate & Lyle) 1.1 lg Malic Acid 2.22g Tobacco Powder (average particle size <80 μm) 55.11 g
The resultant mixture was mixed until homogeneous. In a separate container were weighed the following ingredients:
MIX2 Glycerin H.16g Apple Flavor 12.27g
MIXl was added to the stainless steel mixing bowl of a Kitchen Aid stand mixer. MIX2 was incoφorated slowly to the mixture over a time period of 3 minutes with the aid of a paddle attachment at a medium-low speed. Following this addition, 76.95g of water was added to the mix in the same manner. The resulting paste was allowed to rest at room temperature for a period of 5 minutes. Following the rest period, the paste was fed through a 1/8 inch aperture strand forming unit which had previously been attached to the Kitchen Aid mixer. The strands produced were cut to between 1 XA and 2 inches in length, and stored in suitable containers. A set of platens with 2 inch by 1/4 inch opposing mold cavities was heated to between 300 - 330 °F. A formed strand was placed in the lower cavity, and the mold was closed by means of a hydraulic press. The mold was allowed to remain closed for a period of 30 - 60 seconds, providing a means for cooking the starch and sugar components of the unit and the release of a portion of the volatile components. The newly formed stick, measuring approximately 2 inches by 1/8 inch, comprised a rigid outer layer, and a rigid foam-like inner mass. The unit disintegrated in the mouth over a period of 1 - 2 minutes.
Example AQ. Extruded Tobacco Sticks
Table AQ1
Figure imgf000060_0001
The following ingredients were granulated in a manner similar to granulations utilized for tab production, yielding a tobacco granulation with an approximate moisture of 4.50%:
B700 (Grain Processing Coφoration) 3327. lg B825 (Grain Processing Coφoration) 120.0g Na2C03 181.4g Sucralose (Tate & Lyle) 45.4g Glycerin 362.9g Tobacco Powder (average particle size <80 μm) 1451.5g Water 3473. Og The tobacco granulation was introduced to the feed section of a Leistritz Micro- 18 Twin Screw Extruder 40:1 L/D, which had been configured for co- rotating extrusion with a medium-shear screw design. Feed rates for the extrusion varied between 1 - 3 pounds per hour. Banel zone temperatures varied between 75 - 100 °F. Flavor application rates were established at 5 percent of the process flow; hence cinnamon flavor was incoφorated to the process downstream of the granulation feed. Venting of volatiles from the extrusion melt was accomplished by incoφorating a venting orifice prior to the discharge die of the extruder. Solid tobacco sticks, with an approximate diameter of 1/8 inch, were produced by incoφorating a strand die at the discharge end of the extruder. Upon discharge, the flexible tobacco strand was cooled to room temperature on an air-cooling conveyor and became rigid, and was cut to approximately 2 lA inches in length. The formed tobacco sticks were placed in a suitable container for storage. The stick disintegrated slowly in the mouth over a period of 5 - 10 minutes.
Gels and Gel Beads. Compositions of the invention may also be made as gels or gel beads. The composition may contain a soluble or insoluble gel containing tobacco. A gel may be used to encapsulate another material, or another material may encapsulate a gel. Gels may be consumed in hydrated forms containing as much as 70% water. The gels may also be dried resulting in parts containing from 1 to 10% water. The amount of water retained in the gel depends on the properties desired in the finished product. It is possible to prepare tobacco containing gels that provide a wide range of organoleptic characteristics. Exemplary gel formats for soluble and insoluble gels include kappa canageenan, sodium alginate, carboxymethyl cellulose, gelatin, pectin, agar, and starches. Soluble gels containing tobacco can be formed by dissolving the format and at an elevated temperature, e.g., kappa canageenan at 180°F, and adding the tobacco powder to this solution while continuing vigorous mixing. The hot mixture is then deposited into a mold. Gelatin provides a weak gel at room temperature but firmness and stability can be increased by the addition of agar or starches. Other gelling formats may be used in a similar manner. Insoluble gels are formed by the addition of a cross-linking agent to a predissolved solution or sluny. The solution is deposited into a mold to fom the desired shape and sets up through cooling and/or drying. In most cases, it is necessary to maintain the solution at a high temperature, e.g., greater than 180 °F, to prevent premature gelation prior to deposition into the mold. After the gel has set into its final shape, the gel can be packaged as is or be further dried to a desired water content. Cross-linking agents include potassium ions for canageenan; calcium ions for alginates and low methoxy pectins; and trivalent ions such as aluminum for carboxymethyl cellulose. In insoluble gels (i.e., those that do not orally disintegrate), tobacco organoleptic compounds may leach out of the gel as it is held or chewed in the mouth. In one embodiment, gel compositions, e.g., beads, have a solid or liquid center. An exemplary solid center includes smokeless tobacco. An interior liquid may be aqueous, non-aqueous, or heterogeneous, depending on the solubility characteristics of the encapsulating bead wall. Aqueous based liquids are typically encapsulated in a water-insoluble gel that can be disrupted, either mechanically or chemically, in the mouth. The encapsulating gel format may include a polymer and a cross linking agent. Exemplary systems include canageenan and a monovalent cation (e.g. potassium), algiiiate or pectin and a divalent ion (e.g. calcium), carboxymethyl cellulose and a trivalent ion (e.g. aluminum), and gelatin and gum arabic. The center may or may not include tobacco. In another embodiment, a water soluble gel encapsulates a non-aqueous filling, e.g., employing ethanol, glycol, vegetable oil, or mineral oil. The water soluble gel and/or the non-aqueous filling may contain tobacco and other ingredients as described herein. Aqueous liquids may also be encapsulated in water soluble gels by the inclusion of additives, e.g., sugars or salts, that sufficiently bind the available water in the filling, thus, preventing the water in the liquid from dissolving the encapsulant. Gel encapsulants also include both hard and soft standard gelatin capsules, which can be filled with liquids or solids. The center of these gel compositions may or may not include tobacco, e.g., as a tobacco slurry. The gel encapsulant also may or may not include tobacco. An exemplary solid center includes smokeless tobacco. The center may also include a color, sweetener, flavor, or flavor masking agent, which may be the same or different from that of the gel encapsulant. The rate of disintegration for the gel encapsulant and center may also be the same or different. Gels with centers typically have a largest dimension of at most 10 mm, e.g., at most 5 mm. Gel beads with liquid centers may be made by introducing droplets of a tobacco/format mixture into a solution causing gelation of the outer surface of the gel bead and retaining the liquid center. Beads can be fonned using commercial processes developed by the Morishita Jintan Company and others and refened to generically as "seamless liquid encapsulation" or "seamless capsule technology." In addition, widely used methods for forming gels of all types including beads have been developed by the suppliers of alginate, canageenan, and pectin polymers and are well known in the art. The amount of gelation may be controlled, thereby controlling the thickness of the gel encapsulant wall, by varying the concentration of the format, the concentration of the cross-linking agent (e.g., salt), the temperature of the solidifying solution, and the residence time of the gel bead in the solidifying solution. The solution may contain a cross-linking agent or may induce gelation by other means, e.g., a temperature change. Solid gels may be soluble or insoluble. For solid gels, the tobacco and format, with or without additives, are typically mixed, and the fonnat is allowed to gel. Soluble gels can be obtained by using a self gelling gum, such as gellan gum or kappa canageenan, or by using a polymer, e.g., gelatin, that sets by a change of temperature. Insoluble solid gels are prepared using a cross linking agent. Such soluble and insoluble gels may be made by introducing droplets into an oil bath, e.g., canola oil, or into an aqueous, cross-linking bath to form a spherical shape. They may also be made to pass through the oil into a water based cross-linking solution. Gels may also be made in molds or may be die cut from sheets. In another embodiment, a gel composition is supplied as a dry mixture of format, cross-linking agent (e.g., salt), and tobacco, e.g., in powder form, that is solvated by the consumer prior to use. Solvation causes the gel composition to form a solid, which may be placed in the mouth. Typically, the user places the dry mixture of gel ingredients in a mold and adds solvent, which may be aqueous or non-aqueous. The mixture then quickly hydrates, thereby forming a gel which solidifies in the shape of the mold. The solvating liquid may be used to impart flavor or other taste or mouth feel characteristics to the composition. Alternatively, the consumer may place the dry mixture in the mouth for solvation. The solvent may impart flavor or color to the composition.
Gel Examples
Example AR. Gel Beads 100 g of 4% solution of CMC-7MF and 20 g tobacco are combined.
Drops are deposited into a 5% solution of water soluble, edible trivalent salt
(e.g., A1C13 or A12(S04)3). The surface of droplets is then dried with air drying or gentle oven drying. 100 g of 2% kappa canageenan and tobacco are combined and heated to 180 -190 °F. Drops are deposited into a cool solution of 5% KC1. 100 g of 4% medium viscosity sodium alginate and tobacco are combined at 150-170 °F. Drops are deposited into a cool solution of 5% edible divalent salt (e.g., CaCl2 or Ca citrate). Beads containing gelatin walls and tobacco slurry centers can be prepared by depositing drops of a cold tobacco slurry (e.g. 60 °F) into a slow moving stream of a dilute, warm gelatin solution (e.g. 130 °F). The warm gelatin coats the outside of the cold droplet and as the gelatin cools and solidifies, it forms a wall of gelatin around the liquid center. Beads are retrieved from the solution by standard means.
Example AS. Orally Disintegrable Solid Gels. Combine 10 g gelatin and 90 g water and heat to 140 °F to dissolve gelatin. Add 20 g tobacco and pour into a mold. Strength of the gel can be increased by substituting 6 g of gelatin and 4 g of agar and heating to 190 °F to dissolve.
Table AS1 shows exemplary ingredients for fabricating orally disintegrable gels of the invention.
Table AS 1
Figure imgf000065_0001
Example AT. Exemplary Insoluble Solid Gels. The following tables and descriptions show exemplary ingredients for fabricating insoluble gels of the invention, i.e., gels that do not orally disintegrate.
Table ATI. Canageenan Gels
Figure imgf000066_0001
The composition is cast at 180 °F after adding KCl and mixing thoroughly.
Table AT2. Alginate Gels
Figure imgf000066_0002
The composition is cast after adding CaCl2 at 180 °F. Table AT3. Carboxy Methyl Cellulose Gels.
Figure imgf000067_0001
The composition is cast after adding A12(S04)3 at 180 °F.
Example AU. Soluble Gels 416 grams of aqueous 3.9%> kappa canageenan and 51.0 gra s of tobacco were combined. The solution was heated to ι80° F - 190° F with stining, and then the solution was deposited into a mold of the desired shape. Upon cooling, the resultant solid form was removed from the mold and dried to the desired tobacco concentration and gel consistency. In an alternative process, to a 1000 ml stainless steel container equipped with an overhead mixer, mixing bar and hotplate was added 400 ml of water at greater than 200° F. The water was continuously stined and heated, and 16.0 g of kappa canageenan (Gelcarin GP 812, FMC Biopolymer) was added over 2 minutes. The resulting mixture was stined for an additional 20 minutes, or until all kappa canageenan was dissolved, then tobacco was added to the homogeneous solution, and the resulting mixture was stined for an additional 2 minutes while maintaining an optimal temperature of 180° F. To this solution was added 0.8 g powdered Sucralose and 7.0 g cinnamon oil (Wixon Industries) with vigorous stining. Following an additional 1 minute of stining, the resulting mixture was quickly transfened via pipette (inner diameter 0.5 cm) to Teflon-coated metal molds to obtain the desired shape. After cooling to room temperature, the resulting gels were removed from the molds and air dried at room temperature for 1 h to several days until the desired consistency of the gels was obtained.
Table AU1. Cana eenan Gels
Figure imgf000068_0001
Example AV. Soluble Gels 100 grams of aqueous 20% gelatin and 33 grams of tobacco were combined. The solution was heated to 140° F - 150° F with stining, and then the solution was deposited into a mold of the desired shape. Following refrigeration for a few minutes to a few days depending on desired firmness, the resultant solid form was removed from the mold and dried to the desired tobacco concentration and gel consistency. In an alternative process, to a 400 ml stainless steel container equipped with an overhead mixer, mixing bar and hotplate was added 80 ml of water at 140° F. The water was continuously stined and heated, and 20.0 g of Gelatin (Type A 250 Bloom 40 Mesh, Gum Technology) was added over 2 minutes. The resulting solution was stined for 5 minutes or until the gelatin was dissolved, then 33 g of tobacco was added in portions over 2 minutes. The resulting mixture was stined for an additional 1 minute, then 0.3 g powdered Sucralose and 1.0 g of oil of peppermint (rectified, Blend SX 091O001, Essex Labs) were added, and the mixture was vigorously stined for an additional 1 minute while maintaining a temperature of 140° F. The resulting mixture was transfened via pipette (inner diameter 0.5 cm) to Teflon-coated metal molds to obtain the desired shape. After cooling to room temperature, the resulting gels were removed from the molds, and the gelatin was set by refrigeration at 40° F for 1 hour to several days depending on desired firmness of the finished piece. Table AVI . Gelatin Gels
Figure imgf000069_0001
Example AW. Gel Beads A solution of 4% sodium alginate (Keltone LV, International Specialty Products) was prepared by adding 12 g sodium alginate to 288 g of water heated to boiling, followed by stining and continuous heating of water on a hot plate for 30 minutes or until the solution was homogeneous (stock solution A). A second solution of 0.50 M disodium hydrogen phosphate was prepared by dissolving 33.5 g disodium hydrogen phosphate heptahydrate in 200 ml of water with warming and stining of the resulting mixture until the salt was dissolved, followed by adjusting the solution to 250 ml with water. To 100 g of aqueous 0.50 M disodium phosphate was added 20 grams of tobacco and the resulting solution was stined for 5 minutes (stock solution B). To 50 g of the resulting tobacco sluny (stock solution B) was added 50 ml of aqueous 4% sodium alginate (stock solution A), and the resulting mixture was stined for 5 minutes. To flavor, 0.20 g of powdered Sucralose and 0.80 g of oil of peppem int (rectified, Blend SX 0910001, Essex Labs) were added to the resulting tobacco/sodium alginate sluny (solution C), and the mixture was stined for 2 minutes. To prepare gel beads from solution C, a solution of aqueous 5% CaCl2 was prepared by adding 5 g of CaCl to 95 g of water with stining until the calcium chloride was dissolved (solution D). Solution C was then added drop by drop to solution D by pipette from a height of 10 inches. The outer coat of each droplet solidified upon exposure to solution D, forming a solid gel-like outer coat with a liquid center that sank to the bottom of the calcium chloride solution. The gel beads were allowed to remain in the calcium chloride solution for 2-4 minutes, removed, and allowed to air dry for several minutes. Solution A
Figure imgf000070_0001
Consumable Units. Compositions of the invention may also be fabricated as consumable units. These units may be packaged as edible or inedible materials. In one embodiment, the consumable unit includes tobacco (e.g., smokeless tobacco) or a tobacco composition, e.g., flakes, tabs, beads, granules, or other tobacco composition as described herein, and a wrapping, e.g., a pouch. The wrapping, in one embodiment, may act as an adhesive to hold the composition together, e.g., to hold a plurality of tabs, beads, flakes, etc. together. Alternatively, the wrapping may enclose the composition, e.g., loose tabs, beads, flakes, etc. The composition may also include a liquid, e.g., a tobacco sluny. The wrapping may or may not be orally disintegrable. Orally disintegrable wrappings may be used to enclose aqueous or non-aqueous liquids. When an aqueous liquid is employed with a water soluble wrapping, the liquid includes an agent to prevent dissolution of the wrapping. Exemplary agents include sugars, salts, and other hydrophilic agents capable of binding water sufficiently to reduce water activity to a level at which the water is no longer available to interact with and dissolve the water soluble wrapping. The wrapping may also enclose a moldable tobacco composition that conforms to the mouth or holds its shape in the mouth. In one embodiment, an orally disintegrable wrapping encloses smokeless tobacco, e.g., dry snuff or tobacco, that is perceived as soluble (e.g., less than 80 μm particle size). Orally disintegrable smokeless tobacco compositions may be introduced to consumable portion packs which have been formed on continuous thermofonning or horizontal form/fill/seal equipment or other suitable packaging equipment using edible films (which may or may not contain tobacco) made in accordance with the subject technology. Consumable units may also contain two or more, individually wrapped portions of tobacco, e.g., all contained within a larger package, one containing the other portions, or none of the portions contained with another. When multiple portions are used, any two may have the same or different flavor, color, form of tobacco, or rate of disintegration. Exemplary wrapping materials include films formed from film compositions based on formats such as HPMC, CMC, pectin, alginates, pullulan, and other commercially viable, edible film fonning polymers, such as those described herein. Other wrapping materials may include pre-formed capsules made from gelatin, HPMC, starch/canageenan, or other commercially available materials. Such wrapping materials may include tobacco as an ingredient. Wrappings which are not orally disintegrable may include woven or nonwoven fabrics; coated or uncoated paper; or of perforated or otherwise porous plastic films. Wrappings may also be colored. Exemplary consumable units include those formed by any method used in commercial packaging, e.g., blister pack and stik-pak (e.g. a small package formed on a vertical form/fill/seal packaging machine). Consumable Unit Examples The following description provides exemplary ingredients for fabricating consumable units of the invention.
Example AX. Films or capsules encapsulating beads, powders, tabs, etc. Any of the compositions described herein can be encapsulated with a film or capsule. The encapsulant may provide color, stability (e.g., during storage, handling or consumption), or organoleptic properties (e.g., flavor, sweetness, smell, or mouth feel). The encapsulant may also contain tobacco. A vacuum forming tool is constructed which has a series of cavities which are shaped as circles with diameter of 3/4th inch and depth of 3/8th inch. Films as described herein are prepared with and without tobacco as an ingredient. These films are introduced to a vacuum forming machine with a vacuum forming tool. The films are placed over heating elements and warmed to a temperature of 200 °F. The films are then quickly placed on the vacuum forming tool, and a vacuum is pulled to draw the film into the cavities. The films are then cooled to set the shapes. Tobacco powder is then introduced into each cavity. A second sheet of film prepared with or without tobacco is selected and coated (by wiping the surface of the film with a wet felt) with a thin layer of water to create a sticky, adhesive surface. The sticky surface is placed on top of the formed sheet wherein each cavity is filled with a tobacco product. The sheets are pressed together to form closed consumable units. Each cavity is then cut out of the vacuum formed sheet to create individual units. A unit is placed in the mouth wherein the film disintegrates and disperses the tobacco in the oral cavity. Example AY. Tobacco particles in a water-soluble bag. Smokeless tobacco particles or powder, e.g., snuff, may be placed in a water-disintegrable bag. When placed in the mouth, the bag disintegrates after a specified period of time. The bag may contain a single serving of tobacco. It may also contain additional additives as described herein. The tobacco may also adhere to itself as a moldable plug once the wrapping disintegrates. The disintegrable bag may be formed using films such as those described herein. The film can be fonned into a bag using commercially available packaging equipment such as vertical form/fill/seal machines (e.g. stick pack machines), horizontal form/fill/seal machines, flow wrappers, thermofoπners (blister pack machines), and other equipment common to the art.
Example AZ. Tobacco particles in film/fabric laminations. Smokeless tobacco particles or powder may be placed in a bag that is fonned from an open or highly porous wrapping material, e.g., fabrics, paper or plastic films, which has been laminated to a water-soluble wrapping film. The water-soluble film layer provides protection for the tobacco contents and prevents the tobacco from sifting through the openings of the insoluble material during storage and handling. Once the bag is placed in the mouth, the water- soluble film layer dissolves or disintegrates.
Example BA. Film Pouches Containing Tobacco Films as described herein in Film Examples N, O, P, and Q were used to manufacture tobacco containing pouches. Individual units approximately 1 inch by 1 % inches were cut from each sheet of manufactured film. The unit was folded over lengthwise and heat-sealed using a Clamco Model 210-8E impulse sealer. One end of the formed unit was also sealed in the same manner. A flavored tobacco granulation was fed to the interior of the formed pouch, and the final seal was made as described to seal the pouch. The tobacco containing pouch disintegrated in the mouth between 20 seconds and 1 minute, releasing the contents of the pouch. Insoluble Matrices. Tobacco may also be coated onto or entrapped within an insoluble matrix. Tobacco can be dispersed to form a slurry in an aqueous solution of a format, as when forming a film; this slurry can be coated on to an insoluble matrix or can be used to saturate a porous insoluble matrix. The slurry may then be converted into a soluble or insoluble gel or it may simply be dried to form a coating. When a portion of this coated/saturated insoluble matrix is placed in the mouth, leaching of organoleptic components occurs through dissolution, chewing, or other means. In one embodiment, tobacco in a format is introduced into a porous matrix, e.g., an open cell polyurethane foam or a high loft polyester nonwoven fabric. The insoluble matrix may be placed wholly in the mouth, or it may be disposed on a stick or other handle, which remains partially outside the mouth during consumption. In another embodiment, tobacco in a format is blended with an incompatible liquid, e.g., a dispersion of carnauba wax in water, deposited in a mold, and quickly cooled to cause a phase separation such that the tobacco slurry is disposed within a waxy structure. These matrices may also be chewable. Formats for use in retaining the tobacco in the insoluble matrix include any of the film forming polymers described herein; any of the gelling systems described herein and any of the coating materials described herein.
Insoluble Matrix Examples
Example BB. Polyurethane Foam A. A film forming composition which contains finely ground tobacco as described herein is used to saturate a piece (e.g., 12 inches by 12 inches by 1 inch) of open cell polyurethane foam (Stephenson & Lawyer, Inc. Grand Rapids, MI). The saturated foam is placed on a metal tray and is put into an air circulating laboratory oven preset at 175 °F for one hour. When the foam is removed from the oven, the tobacco containing composition has dried to form a coating that uniformly covers all the interstices of the polyurethane foam. The coated foam is cut into pieces of a size (e.g., 1 inch by 1 inch by 1 inch) suitable to place in the mouth. After use, the polyurethane foam is removed from the mouth and discarded.
Example BC. Polyurethane Foam B. A sodium alginate and calcium salt gel composition containing finely ground tobacco as described herein is used to saturate an open cell polyurethane foam (e.g., 12 inches by 12 inches by 1 inch). The alginate gel is maintained at a temperature of 180 °F to prevent premature setting of the gel. The hot alginate gel is poured on to the polyurethane foam, which is placed on a metal tray and then quickly cooled in a refrigerator at 40 °F to set the gel. The foam is then placed in a laboratory oven preset at 175 °F for 10 minutes to surface dry the gel and to reduce moisture content to 50% based on dry weight of the gel. The partially dried gel fills voids in the polyurethane foam. The foam is cut into pieces and is placed in the mouth. A further example of gels in an insoluble matrix is obtained by drying the gel to a lower moisture content (e.g., 10% based on dry weight of the gel). The tobacco containing gel exhibits a firm, rubbery texture within the foam matrix and rehydrates slowly when placed in the mouth and chewed. After use, the polyurethane foam is removed from the mouth and discarded. Hollow Shapes. As discussed above, films or thin sheets of material may be wrapped, extruded, blow molded, or otherwise shaped to form tubes, straws, or other hollow shapes. Exemplary film or sheet materials are disclosed in the film section herein. Such hollow shapes may be single or multilayer. When multiple layers are used, some may contain tobacco while others may contain colors, flavors, sweeteners, or other compounds as described herein. Different layers may also be employed for stability during handling or to control disintegration during consumption. A spiral wrapped hollow shape, e.g., tube or straw, may require an adhesive (e.g., CMC or guar) to keep from unraveling. The layers in a multilayer hollow shape may contain the same or different color or flavor, and such layers may disintegrate at the same or different rates. As with films, tobacco may also be disposed within one or more layers or may be disposed between layers in a sandwich anangement. The hollow shape may also include a disintegrant to hasten disintegration. The compositions described above may be hollow or filled. The filling may include tobacco, a flavor, sweetener, flavor masking agent, or a color. The flavor or color of the filling may be the same or different than the hollow shape. The filling is typically a gel (solid or flowable) but may also be mechanically rigid or may be composed of a powder or other product form. Exemplary filling materials include gels as described herein. A hollow shape may also be filled with a composition that disintegrates more rapidly than the shape, e.g., to provide tobacco at different times based on the rate of disintegration. In one embodiment, a tobacco core (e.g., formulated with tobacco and a format) can be extruded from a single or twin screw extruder into a coextrusion die. In a separate single or twin screw extruder, a water soluble, thermoplastic outer layer (e.g., formulated with a fonnat and a flavor) can be introduced to the coextrusion die to create a coated rod. A typical thermoplastic outer layer can be provided with a fonnulation based on hydroxypropyl cellulose (HPC) which is extruded at a temperature between 220-370 °F. In addition, a rigid extruded tobacco rod may become a core which is encased in a wrapped film. In one example, a thermoplastic formulation containing hydroxypropyl cellulose, tobacco, flavor, and sweetener can be blow molded to form a hollow shape. In another example, films as described herein were additionally used to manufacture spiral-wound straws and/or sticks. Strips of film approximately 10 inches by 3/4 inch were cut from each sheet of manufactured film. A strip of paper of equal size was cut and wound spirally around a 3/16 inch diameter stainless steel mandrel. The paper was secured about the mandrel with tape on each end. A strip of film was wound spirally about the paper in the same fashion, overlapping each spiral by 1/16 inch. At each overlap the film strip was glued to itself with a 30% solution of gum arabic. The process was repeated with two additional plies of film. The mandrel and newly formed spiral-wound film straw/stick was placed in a side-swept forced air oven at 75°C (VWR model 1330FM) for 15 minutes to dry. Upon removal from the oven, the spiral-wound straw/stick was removed from the mandrel, and the paper "core" removed from the interior of the straw/stick. The resultant straw/stick was cut into various sizes. For example, spiral-wound straw/stick products were prepared using tobacco containing films as described in Example N. Flavored Tobacco Film for Sticks/Wraps/Pouches/Vacuum Forming. Straw/stick products containing one layer, two layers and three layers of Example N films were prepared as described. When placed in the mouth, the straw/stick disintegrated gradually over a period of 1 to 5 minutes. In another example, straw/stick products were prepared using two layers of film as described in Example N. A third layer of film, prepared as described in Example O. Flavored/Colored Film for Sticks/Wraps/Pouches, was provided on the top or outside of the straw/stick. The film from Example O was red in color, cinnamon flavored and did not contain tobacco. This straw/stick, when placed in the mouth, disintegrated gradually over a period of 1 to 5 minutes In another example, straw/stick products were prepared using three layers of film as described in Example P. Peach Flavored Film for Sticks/ Wraps/Pouches. The film from Example P contained tobacco powder and peach puree. The straw/stick was prepared as above. The straw/stick disintegrated gradually over a period of 1 to 5 minutes. In yet another example, straw/stick products were prepared using three layers of film as described in Example N and Example Q. One layer of tobacco containing film prepared in Example N was used. A second layer of opaque, white film prepared as in Example Q was wound over the first layer of film and offset by l/8th inch. A third layer of tobacco containing film as prepared in Example N was wound over the second layer and again was offset by l/8th inch. The affect was to provide a spiral-wound straw/stick with a striped appearance. The straw/stick, when placed in the mouth, disintegrated gradually over a period of 1 to 5 minutes. In another example, hollow tobacco straws, with diameters ranging from 1/8 to 1/4 inch, were produced by methods similar to those employed in Example AQ of Shaped Parts; however, a tube die was employed in the manufacture of the straw. The straw(s) disintegrated slowly in the mouth over a period of 5 - 10 minutes. Similar articles may be manufactured with a filling, with methods known in the art (i.e. co-extrusion).
D. Modifications Any tobacco composition described herein may be modified in various ways. For example, a composition may be coated in single or multiple layers. Such coatings are employed, e.g., for handling, disintegration rate, taste, and color. Exemplary coatings include HPMC. Coatings or decorative patterns may be applied to the surface of the film using processes lαiown in the art, e.g., spraying, brushing, roll coating, doctor bar casting, slot coating, extrusion coating, hot melt deposition, depositing particles or flakes, and other typical methods. Coatings may be matte or glossy. A coating may contain a color, flavor, sweetener, or flavor masking agent, as described herein. The color, flavor, sweetener, or flavor masking agent in the coating may be same or different as the underlying composition. In addition, multiple coatings may also contain the same or different color, flavor, sweetener, or flavor masking agent. The coating may also disintegrate at a different rate than the underlying composition. For example, a coating may disintegrate faster than the underlying composition to provide a burst of flavor or other organoleptic components. An orally disintegrable coating may also be placed on a composition that does not disintegrate orally. A coating that does not disintegrate orally may be placed on a composition that disintegrates orally, and such a coating may be removed, e.g., by chewing. Coatings may also be employed to prevent evaporation of volatile components in a composition and to prevent mechanical maceration of a composition prior to use. A coating may also contain tobacco. Patterns may also be printed on the surfaces of compositions. Printing patterns also encompasses dusting or sprinkling compounds on the surface of a composition. The pattern may be random or in a design, e.g., a logo. All printing processes known in the art, e.g., offset, flexographic, gravure, ink jet, laser, screen printing, and other typical methods may be used. The printed pattern may or may not contain a color, flavor, sweetener, or flavor masking agent, as described herein. The color, flavor, sweetener, or flavor masking agent in the pattern may be same as or different from the underlying composition. In addition, multiple patterns may also contain the same or different color, flavor, sweetener, or flavor masking agent. The printed pattern may also contain tobacco, e.g., up to 1-99%, preferably 10-50%>. Such a pattern may contain more tobacco, percentage-wise or in an absolute sense, than the underlying composition. Flakes may also be added to compositions described herein. Flakes may be mixed into the composition, may be placed within a void in the composition, or may be placed on the surface, e.g., and adhered by a coating. Flakes may or may not contain a color, flavor, sweetener, or flavor masking agent, as described herein. The color, flavor, sweetener, or flavor masking agent in the flakes may be same or different as the underlying composition. In addition, multiple flakes may also contain the same or different color, flavor, sweetener, or flavor masking agent. Flakes may also contain tobacco, e.g., up to 99%, preferably up to 50%. Flakes may be made by standard film forming technology as described herein. Flakes may contain more tobacco, percentagewise or in an absolute sense, than the underlying composition. Once the printed, coated, or decorated film has been prepared, an additional layer of film may be applied to cover, protect and seal the printed, coated or decorated surface. Compositions of the invention may be shaped in various forms, e.g., plants and geometric shapes (e.g., round, square, rectangular, triangular, oval, octagonal, and the like). In addition, compositions may contain a pattern in relief (positive or negative) on the surface. Such a pattern may be a design, such as a logo. Composite compositions, i.e., compositions including two or more of the different types of products described herein, are also contemplated by the invention. For example, a shaped part may contain regions of gel compositions, e.g., having a variety of flavors. In another example, a tab may be sunounded by a gel. Composite compositions may also have different rates of disintegration.
E. Packaging Individual compositions will be packaged as appropriate for the contents of the composition. Preferably, the compositions are stored in a wateφroof case and are stable between 40 and 120 °F. Compositions are typically dry, flexible, and non-adhesive while in storage. Alternatively, compositions may be packaged using non-stick barriers, e.g., plastic film or paper, between servings. Compositions may also be provided in a bulk form, from which individual servings are separated. In another embodiment, the package is water impermeable and water insoluble, and tobacco, e.g., in liquid, sluny, or flowable gel form, is disposed within the package, e.g., a squeezable plastic package, a bellows, or a spray bottle, and is capable of being dispensed into the mouth from the package. The bellows may be compressed for oral use. Solutions or slunies are prepared for use in a plastic bellows container or other similar consumer packaging containers wherein the liquid is injected into the mouth by squeezing the package. Thixotropic polymers are combined with tobacco and other ingredients to prepare higher viscosity solutions suitable for use in other containers. Tobacco particles can be of greater size, but must still be small enough to pass through the orifice of the container. For spray bottles, a stable tobacco sluny is contained in the bottle; tobacco particles are sized to be able to pass through a spray nozzle without blocking the orifice; and the tobacco slurry is sprayed directly in the oral cavity. Liquid sprays are prepared by dissolving a thixotropic polymer such as xanthan, gellan or dextran in water and suspending tobacco particles in a low viscosity (e.g., <50 centipoise) solution. Other compounds, such as flavor, sweetener and dispersant, can be added to the solution. The tobacco particles are ground to a particle size (e.g., <80 microns) to permit the homogeneous solution to pass through the orifice of a spray bottle. Other packages may be otherwise squeezed or used to expel the tobacco into the oral cavity.
F. Solutions The following tobacco solutions may be included in any composition described herein.
Example BD. Sprayable Solution A solution is prepared by mixing 0.2 grams of xanthan (Kelzan from C.P. Kelco) in 78.6 grams of cool water with vigorous mixing for 30 minutes. To this solution is added 20 grams of finely ground tobacco, 0.2 grams of sucralose, and 2 grams of cinnamon flavor while continuing to mix vigorously. The solution viscosity is adjusted with water to a viscosity of 50 centipoise.
Example BE. Thick solution. A solution is prepared by mixing 1 gram of xanthan (Kelzan from C. P. Kelco) with 76.8 grams of cool water while mixing vigorously for 30 minutes. To this is added 20 grams of fine tobacco, 0.2 grams of sucralose and 2 grams of cinnamon flavor while continuing to mix vigorously. Solution viscosity is 1,500 centipoise.
Example BF. Paste A paste is prepared by adding 2 grams of a medium viscosity carboxymethyl cellulose (CMC 7MF from Hercules, Inc.) to a mixture of 35.8 grams of cool water and 40 grams of glycerine with vigorous mixing for 30 minutes. To this mixture is added 20 grams of fine tobacco powder, 0.2 grams of sucralose, and 2 grams of cinnamon flavor. A thick paste is prepared which is highly shear sensitive. This paste can be introduced to a tube or other squeezable package where the shear force from squeezing reduces the viscosity to permit flow of the paste.
OTHER EMBODIMENTS The description of the specific embodiments of the invention is presented for the puφoses of illustration. It is not intended to be exhaustive nor to limit the scope of the invention to the specific forms described herein. Although the invention has been described with reference to several embodiments, it will be understood by one of ordinary skill in the art that various modifications can be made without departing from the spirit and the scope of the invention, as set forth in the claims. All patents, patent applications, and publications referenced herein are hereby incoφorated by reference. Other embodiments are within the claims. What is claimed is:

Claims

1. A tobacco composition comprising tobacco and a format, wherein said composition is readily disintegrable in the mouth.
2. The composition of claim 1, comprising the ingredients listed in Table I. Table I
Figure imgf000084_0001
3. The composition of claim 1, comprising the ingredients listed in Table II. Table II
Figure imgf000084_0002
Figure imgf000085_0001
4. The composition of claim 1, wherein said composition is a film.
5. The composition of claim 1, wherein said composition comprises a single layer.
6. The composition of claim 1, wherein said composition comprises a foamed layer.
7. The composition of claim 1, wherein said composition comprises multiple layers.
8. The composition of claim 7, wherein at least two layers are laminated together.
9. The composition of claim 7, wherein said tobacco is disposed between two layers.
10. The composition of claim 7, wherein at least two of said multiple layers comprise different flavors or colors.
11. The composition of claim 1, wherein said composition disintegrates in less than 2 minutes.
12. The composition of claim 1, wherein said composition has a thickness of 0.001 - 1.0 mm.
13. The composition of claim 1, wherein said format comprises carboxymethyl cellulose (CMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), hydroxypropyl methyl cellulose (HPMC), methyl cellulose (MC), starch, amylose, high amylose starch, hydroxypropylated high amylose starch, konjac, tara gum, collagen, inulin, soy protein, whey protein, casein, wheat gluten, kappa canageenan, iota canageenan, lambda canageenan, alginate, propylene glycol alginate, xanthan, dextran, pullulan, curdlan, gellan, locust bean gum, guar gum, tara gum, gum tragacanth, pectin, agar, zein, karaya, gelatin, psyllium seed, chitin, chitosan, gum acacia (arabic), shellac, polyvinyl pynolidone, polyethylene oxide, or polyvinyl alcohol.
14. A tobacco composition comprising tobacco and a format, wherein said composition is produced as a tab.
15. The composition of claim 14, comprising the ingredients listed in Table III. Table III
Figure imgf000086_0001
16. The composition of claim 14, wherein said tab is super fast disintegrating.
17. The composition of claim 14, wherein said tab is fast disintegrating.
18. The composition of claim 14, wherein said tab is slow disintegrating. ι
19. The composition of claim 14, wherein said tab is chewable.
20. The composition of claim 14, wherein said tab has a maximum dimension of 2-4 mm.
21. The composition of claim 14, wherein said tab is shaped as a wafer or pellet.
22. The composition of claim 14, further comprising a water insoluble coating and a water soluble coating, wherein said water insoluble coating is disposed between said format and said water soluble coating.
23. The composition of claim 22, wherein said water soluble coating provides mechanical stability.
24. A tobacco composition comprising a plurality of tabs of claim 20.
25. The composition of claim 24, wherein said plurality of tabs comprises a plurality of flavors or colors.
26. A non-combustible tobacco composition comprising tobacco and a format, wherein said composition is shaped.
27. The composition of claim 26, comprising the ingredients listed in Table IV. Table IV
Figure imgf000088_0001
28. The composition of claim 27, comprising the ingredients listed in Table V. Table V
Figure imgf000088_0002
9. The composition of claim 26, comprising the ingredients listed in Table VI. Table VI
Figure imgf000089_0001
30. The composition of claim 29, comprising the ingredients listed in Table VII. Table VII
Figure imgf000089_0002
31. The composition of claim 26, comprising the ingredients listed in Table VIII. Table VIII
Figure imgf000090_0001
32. The composition of claim 26, comprising the ingredients listed in Table IX. Table IX
Figure imgf000090_0002
33. The composition of claim 26, wherein said composition has a water content of 2-50%.
34. The composition of claim 26, wherein said composition is orally disintegrable.
35. The composition of claim 34, wherein said composition disintegrates in 1-60 minutes.
36. The composition of claim 26, wherein said composition is sized to allow only a portion in the mouth.
37. The composition of claim 26, wherein said composition has a largest dimension of less than 6 inches.
38. The composition of claim 26, wherein said composition has a largest dimension of less than 3 inches.
39. The composition of claim 26, wherein said composition is shaped as a tube, a toothpick, a stick, a twist, or a rod.
40. The composition of claim 26, further comprising one or more discrete regions, wherein each region comprises a flavor or color.
41. The composition of claim 40, wherein each region comprises a strand, and each strand is twisted together to form said composition.
42. The composition of claim 40, wherein at least one region comprises a different flavor or color than said format.
43. The composition of claim 40, comprising at least two regions, wherein each region comprises a different flavor or color.
44. The composition of claim 26, wherein said composition is formed by injection molding, compression molding, overmolding, extrusion, or a slurry process.
45. A non-combustible tobacco composition comprising tobacco and a gel format.
46. The composition of claim 45, wherein said gel format comprises kappa canageenan, sodium alginate, carboxymethyl cellulose, gelatin, pectin, agar, or a starch.
47. The composition of claim 45, wherein said gel format encapsulates a center.
48. The composition of claim 45, wherein said format comprises a polymer and a cross-linking agent.
49. The composition of claim 48, wherein said polymer comprises canageenan, and said cross-linking agent comprises a monovalent cation.
50. The composition of claim 49, wherein said monovalent cation is potassium.
51. The composition of claim 48, wherein said polymer comprises alginate, and said cross-linking agent comprises a divalent cation.
52. The composition of claim 51, wherein said divalent cation is calcium.
53. The composition of claim 48, wherein said polymer comprises carboxy methyl cellulose, and said cross-linking agent comprises a trivalent cation.
54. The composition of claim 53, wherein said trivalent cation is aluminum.
55. The composition of claim 48, wherein said polymer comprises pectin, and said cross-linking agent comprises a divalent cation.
56. The composition of claim 55, wherein said divalent cation is calcium.
57. The composition of claim 45, wherein said format comprises gelatin.
58. The composition of claim 48, wherein said format comprises gelatin and gum arabic.
59. The composition of claim 47, wherein said center comprises a solid material.
60. The composition of claim 47, wherein said center comprises a liquid material.
61. The composition of claim 60, wherein said liquid material is aqueous.
62. The composition of claim 60, wherein said liquid material is non- aqueous.
63. The composition of claim 60, wherein said liquid material is heterogeneous.
64. The composition of claim 62, wherein said non-aqueous material comprises ethanol or an oil.
65. The composition of claim 47, wherein said center comprises tobacco.
66. The composition of claim 47, wherein said center comprises a tobacco slurry.
67. The composition of claim 47, wherein said center comprises tobacco and a sugar or salt solution.
68. The composition of claim 47, wherein said center does not comprise tobacco.
69. The composition of claim 47, wherein said center comprises a color, sweetener, flavor, or flavor masking agent.
70. The composition of claim 47, wherein said center comprises a different color from said format.
71. The composition of claim 47, wherein said center comprises a different flavor from said format.
72. The composition of claim 47, wherein said center has a different rate of disintegration than said format.
73. The composition of claim 45, wherein said composition is orally disintegrable.
74. The composition of claim 45, wherein said composition is chewable.
75. The composition of claim 45, wherein the largest dimension is at most 15 mm.
76. The composition of claim 45, wherein the largest dimension is at most 5 mm. '
77. The composition of claim 45, wherein said format is a gelatin capsule.
78. A tobacco composition comprising a plurality of the composition of claim 45.
79. The composition of claim 78, wherein said plurality comprises a plurality of flavors or colors.
80. The composition of claim 45, further comprising a plurality of discrete regions of gel, wherein each region comprises a flavor or color.
81. The composition of claim 80, wherein at least two regions have different flavors or colors.
82. The composition of claim 80, wherein at least two of said regions are disposed concentrically.
83. The composition of claim 45, wherein said format is not orally disintegrable.
84. The composition of claim 45, wherein said format comprises a polymer and a cross-linking agent.
85. The composition of claim 84, wherein said polymer, tobacco, and cross-linking agent are not solvated, wherein the addition of solvent causes said polymer and cross-linking agent to form an insoluble gel.
86. The composition of claim 85, wherein said polymer comprises canageenan, and said cross-linking agent comprises a monovalent cation.
87. The composition of claim 86, wherein said monovalent cation is potassium.
88. The composition of claim 85, wherein said polymer comprises alginate, and said cross-linking agent comprises a divalent cation.
89. The composition of claim 88, wherein said divalent cation is calcium.
90. The composition of claim 85, wherein said polymer comprises carboxy methyl cellulose, and said cross-linking agent comprises a trivalent cation.
91. The composition of claim 90, wherein said trivalent cation is aluminum.
92. The composition of claim 85, wherein said polymer comprises pectin, and said cross-linking agent comprises a divalent cation.
93. The composition of claim 92, wherein said divalent cation is calcium.
94. The composition of claim 85, wherein said solvent is aqueous.
95. The composition of claim 85, wherein said solvent is non- aqueous.
96. The composition of claim 85, wherein said solvent is heterogeneous.
97. The composition of claim 85, wherein said composition is fabricated by phase separation technology.
98. A kit comprising (i) a mixture of tobacco and a format and (ii) a mold, wherein when solvent is added to said mixture in said mold, an insoluble gel is formed in the shape of said mold.
99. The kit of claim 98, wherein said fonnat comprises a polymer and a cross-linking agent.
100. The kit of claim 99, wherein said polymer comprises canageenan, and said cross-linking agent comprises a monovalent cation.
101. The kit of claim 100, wherein said monovalent cation is potassium.
102. The kit of claim 99, wherein said polymer comprises alginate, and said cross-linking agent comprises a divalent cation.
103. The kit of claim 102, wherein said divalent cation is calcium.
104. The kit of claim 99, wherein said polymer comprises carboxy methyl cellulose, and said cross-linking agent comprises a trivalent cation.
105. The kit of claim 104, wherein said trivalent cation is aluminum.
106. The kit of claim 99, wherein said polymer comprises pectin, and said cross-linking agent comprises a divalent cation.
107. The kit of claim 106, wherein said divalent cation is calcium.
108. The kit of claim 98, wherein said format comprises a solvent- swellable, insoluble polymer.
109. The kit of claim 108, wherein said solvent-swellable, insoluble polymer comprises polyvinyl alcohol.
110. The kit of claim 98, wherein said solvent is aqueous.
111. The kit of claim 98, wherein said solvent is non-aqueous.
112. The kit of claim 98, wherein said solvent is heterogeneous.
113. A non-combustible composition comprising (i) a tobacco composition comprising tobacco and a format and (ii) a wrapping.
114. The composition of claim 113, wherein said tobacco composition comprises a plurality of members.
115. The composition of claim 114, wherein said members comprise flakes, tabs, or beads.
116. The composition of claim 114, wherein said members are embedded within said wrapping.
117. The composition of claim 114, wherein said members are not embedded in said wrapping.
118. The composition of claim 113, wherein said wrapping is orally disintegrable.
119. The composition of claim 113, wherein said wrapping is not orally disintegrable.
120. The composition of claim 113, wherein said wrapping comprises HPMC, CMC, pectin, an alginate, or pullulan.
121. The composition of claim 113, wherein said wrapping comprises a fabric or paper.
122. The composition of claim 113, wherein said tobacco composition comprises a liquid.
123. The composition of claim 113, wherein said liquid comprises a sugar or salt, wherein said sugar or salt prevents disintegration of said wrapping by said liquid.
124. The composition of claim 113, wherein said format and tobacco form a moldable plug.
125. The composition of claim 113, wherein said format is shaped using a vertical form/fill/seal machine, a horizontal form/fill/seal machine, a flow wrapper, or a thermoformer.
126. A tobacco composition comprising tobacco and an orally disintegrable package, wherein said tobacco is disposed within said package.
127. The composition of claim 126, wherein said tobacco comprises dry snuff or moist smokeless tobacco.
128. The composition of claim 126, wherein said orally disintegrable package comprises HPMC, CMC, pectin, an alginate, or pullulan.
129. The composition of claim 126, wherein said format is shaped using a vertical form/fill/seal machine, a horizontal form/fϊll/seal machine, a flow wrapper, or a thermoformer.
130. A tobacco composition comprising an insoluble, open cell matrix, tobacco, and a format, wherein said tobacco is disposed within said matrix and retained in the matrix by said format.
131. The composition of claim 130, wherein said open cell matrix comprises a fabric, foam, or paper.
132. The composition of claim 131, wherein said foam comprises polyurethane.
133. The composition of claim 130, wherein said composition is chewable.
134. The composition of claim 130, wherein said open cell matrix is disposed on a stick or handle.
135. The composition of claim 130, comprising the ingredients listed in Table X. Table X
Figure imgf000101_0001
136. The composition of claim 130, comprising the ingredients listed in Table XL Table XI
Figure imgf000101_0002
Figure imgf000102_0001
137. A tobacco composition comprising tobacco and a format, wherein said format is formed in a hollow shape.
138. The composition of claim 137, comprising the ingredients listed in Table XII. Table XII
Figure imgf000102_0002
139. The composition of claim 137, comprising the ingredients listed in Table XIII. Table XIII
Figure imgf000102_0003
Figure imgf000103_0001
140. The composition of claim 137, wherein said format is spirally wound.
141. The composition of claim 137, further comprising an adhesive, wherein said adhesive is disposed to prevent unwinding.
142. The composition of claim 137, wherein said hollow shape is formed by extrusion.
143. The composition of claim 137, wherein said tobacco and format form a single layer.
144. The composition of claim 137, wherein said composition comprises multiple layers.
145. The composition of claim 144, wherein at least two layers are laminated together.
146. The composition of claim 144, wherein said tobacco is disposed between two layers.
147. The composition of claim 144, wherein at least two of said multiple layers comprise different flavors or colors.
148. The composition of claim 137, further comprising a filling disposed within said hollow shape.
149. The composition of claim 148, wherein said filling comprises tobacco.
150. The composition of claim 148, wherein said filling comprises a color, sweetener, flavor, or flavor masking agent.
151. The composition of claim 148, wherein said filling comprises a different color or flavor from said shape.
152. The composition of claim 148, wherein said filling comprises a gel.
153. The composition of claim 137, further comprising a disintegrant.
154. A non-combustible tobacco composition comprising tobacco and a foamed format.
155. The composition of claim 154, wherein said composition is shaped.
156. The composition of claim 154, wherein said composition is shaped as a film.
157. The composition of claim 154, wherein said format is water soluble.
158. The composition of claim 154, wherein said format is thermoplastic.
159. The composition of any of claims 1-158, further comprising a flavor or flavor masking agent.
160. The composition of claim 159, wherein said flavor comprises licorice, kudzu, hydrangea, Japanese white bark magnolia leaf, chamomile, fenugreek, clove, menthol, Japanese mint, aniseed, cinnamon, herb, wintergreen, cherry, beny, Dramboui, bourbon, scotch, whiskey, spearmint, peppermint, lavender, cardamon, apium graveolens, cascarilla, nutmeg, sandalwood, bergamot, geranium, honey essence, rose oil, vanilla, lemon oil, orange oil, cassia, caraway, cognac, jasmin, ilangilang, sage, fennel, piment, ginger, anise, coriander, coffee, or a mint oil from any species of the genus Mentha.
161. The composition of any of claims 1-158, further comprising a sweetener.
162. The composition of claimlόl, wherein said sweetener comprises sucrose, sucralose, acesulfame potassium, aspartame, saccharine, cyclamates, lactose, sucrose, glucose, fructose, sorbitol, and mannitol.
163. The composition of any of claims 1-158, further comprising a surfactant.
164. The composition of any of claims 1-158, further comprising a plasticizer.
165. The composition of claim 164, wherein said plasticizer comprises glycerine, propylene glycol, polyethylene glycol, sorbitol/mannitol, acetylated monoglycerides, triacetin, or 1,3 butane diol.
166. The composition of any of claims 1-158, further comprising a filler.
167. The composition of claim 166, wherein said filler comprises starch, microcrystalline cellulose, wood pulp, soluble fiber, calcium carbonate, dicalcium phosphate, calcium sulfate, or a clay.
168. The composition of any of claims 1-158, further comprising a lubricant or a wax.
169. The composition of claim 168, wherein said lubricant comprises stearic acid or a stearate.
170. The composition of claim 168, wherein said wax is lecithin, glycerol monostearate, or propylene glycol monostearate.
171. The composition of any of claims 1-158, further comprising a preservative.
172. The composition of claim 171, wherein said preservative comprises methyl paraben or potassium sorbate.
173. The composition of any of claims 1-158, further comprising a stabilizer.
174. The composition of claim 173, wherein said stabilizer comprises ascorbic acid, monosterol citrate, BHT, or BHA.
175. The composition of any of claims 1-158, further comprising a coating.
176. The composition of claim 175, wherein said coating is matte.
177. The composition of claim 175, wherein said coating is glossy.
178. The composition of claim 175, wherein said coating comprises a color, flavor, sweetener, or flavor masking agent.
179. The composition of claim 175, wherein said coating comprises a different flavor from said format.
180. The composition of claim 175, wherein said coating has a different rate of disintegration than said format.
181. The composition of claim 175, wherein said coating comprises tobacco.
182. The composition of claim 175, wherein said coating comprises a color.
183. The composition of claim 175, wherein said coating comprises a different color from said format.
184. The composition of any of claims 1-158, further comprising a printed pattern.
185. The composition of claim 184, wherein said printed pattern comprises a logo.
186. The composition of claim 184, wherein said printed pattern comprises a color.
187. The composition of claim 184, wherein said printed pattern comprises tobacco.
188. The composition of claim 184, wherein said printed pattern comprises a flavor, sweetener, or flavor masking agent.
189. The composition of any of claims 1-158, wherein a surface of said composition comprises a pattern in relief.
190. The composition of any of claims 1-158, wherein said tobacco comprises a powder, granules, or shreds.
191. The composition of any of claims 1-158, wherein said tobacco is perceived to be soluble in the mouth.
192. The composition of any of claims 1-158, further comprising flakes.
193. The composition of claim 192, wherein said flakes comprise tobacco.
194. The composition of claim 192, wherein said flakes comprises a plurality of flavors or colors.
195. The composition of any of claims 1-158, wherein said composition is in a shape suitable for application in the mouth.
196. The composition of any of claims 1-158, wherein said composition provides tobacco satisfaction.
197. The composition of any of claims 1-158, wherein said tobacco satisfaction occurs over a period of 10 s to 30 minutes.
198. A composition comprising a water impermeable, water insoluble package and tobacco, wherein said tobacco is disposed within said package and is capable of being dispensed into the mouth from said package.
199. The composition of claim 198, wherein said package comprises a bellows, and wherein compressing said bellows provides said tobacco to the oral cavity.
200. The composition of claim 198, wherein said package comprises a spray bottle.
201. The composition of claim 198, wherein said tobacco is disposed in a gel.
202. A method for obtaining tobacco satisfaction, said method comprising placing at least a portion of a composition of any of claims 1-197 in the mouth, thereby obtaining tobacco satisfaction.
203. A method of fabricating a tobacco composition, said method comprising the steps of (i) fonning a format into a film and (ii) adding tobacco to said format or film.
204. The method of claim 203, wherein said film is formed by solution casting, extrusion, melt extrusion, drum drying, or calendaring.
205. The method of claim 203 , wherein said tobacco is added to said format prior to said forming.
206. The method of claim 203, wherein said tobacco is added to said film after said forming.
207. The method of claim 203 , further comprising forming a second format into a second film and adhering the film of (i) and said second film.
208. The method of claim 203, wherein said tobacco is disposed between said film of (i) and said second film.
209. A method of making a tobacco composition, said method comprising the steps of (i) forming a format into a tab and (ii) adding tobacco to said format or tab.
210. The method of claim 209, wherein said format is formed using a press, injection molding, compression molding, injection foam molding, or compression foam molding.
211. A method of making a tobacco composition, said method comprising the steps of (i) forming a format into a shape and (ii) adding tobacco to said format or shape.
212. The method of claim 211, wherein said format is formed into said shape by extrusion, compression molding, injection molding, impact forming, foam molding, blow molding, overmolding, or a slurry process.
213. The method of claim 211, wherein said format is die cut from a sheet to form said shape.
214. The method of claim 211, wherein said format is foamed.
215. A method of making a tobacco composition, said method comprising the steps of (i) combining a gel format with a solvent to form a gel and (ii) adding tobacco to said gel format, solvent, or gel.
216. The method of claim 215, wherein said format comprises a polymer and a cross-linking agent.
217. The method of claim 215, wherein said gel is formed in a mold.
218. The method of claim 215, wherein said gel is formed by extruding a profile and cutting said extruded profile to length.
219. A method of making a tobacco composition, said method comprising the steps of (i) providing a liquid mixture of tobacco and a polymer and (ii) placing said liquid in a bath, wherein said bath induces solidification of said polymer.
220. The method of claim 219, wherein said bath comprises a cross- linking agent that cross-links said polymer.
221. The method of claim 219, wherein said bath is at a temperature that causes said polymer to solidify.
222. The method of claim 219, wherein the center of said composition is a liquid.
223. A method of making a tobacco composition, said method comprising placing tobacco inside a gelatin capsule.
224. A method of making a tobacco composition, said method comprising (i) providing a mixture of tobacco and a format and (ii) adding a liquid to said tobacco and format, wherein said format solvates and forms a solid.
225. The method of claim 224, wherein prior to step (ii) said mixture is placed in a mold, and after step (ii) said composition retains the shape of said mold.
226. A method of making a composition, said method comprising the steps of (i) providing a tobacco composition and (ii) combining said tobacco composition with a wrapping.
227. The method of claim 226, wherein said tobacco composition is embedded in said wrapping.
228. The method of claim 226, wherein said tobacco composition is not embedded in said wrapping. Il l
229. The method of claim 226, wherein said wrapping is formed using a vertical form/fill/seal machine, a horizontal form/fill/seal machine, a flow wrapper, or a thermoformer.
230. A method of making a tobacco composition, said method comprising introducing a mixture of tobacco and a format into an open cell matrix, wherein said format adheres said tobacco to said matrix, and said matrix is not orally disintegrable.
231. A method of making a tobacco composition, said method comprising (i) blending a mixture of tobacco and a format with an immiscible liquid comprising a matrix material; and (ii) causing a phase separation and solidification of said matrix material, such that the mixture is disposed within said solidified matrix material.
232. A method of making a tobacco composition, said method comprising the steps of (i) providing a format shaped as a sheet; (ii) spirally winding said sheet to form a hollow tube, and (iii) adding tobacco to said format or tube.
233. A method of making a tobacco composition, said method comprising the steps of (i) forming a format into a hollow shape and (ii) adding tobacco to said fonnat or shape.
234. The method of claim 233, further comprising filling said shape with a liquid, gel, or solid.
235. The method of claim 233, wherein said forming comprises extrusion, injection molding, or blow molding.
236. A method of making a tobacco composition, said method comprising disposing a flowable liquid comprising tobacco inside a water-proof container.
237. The method of claim 236, wherein said container is a spray bottle.
238. The method of claim 236, wherein said container comprises a bellows.
239. The method of any of claims 203-235, further comprising adding a coating to said composition.
240. The method of claim 239, wherein said coating is applied by spraying, brushing, roll coating, doctor bar casting, slot coating, extrusion coating, or hot melt deposition.
241. The method of any of claims 203 -235 , further comprising printing a pattern on said film.
242. The method of claim 241 , wherein said printing occurs by offset, flexographic, gravure, ink jet, laser, or screen printing.
243. The method of any of claims 203-235, further comprising adding a flavor, color, or flavor masking agent to said format or composition.
PCT/US2004/036793 2003-11-07 2004-11-05 Tobacco compositions WO2005046363A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BRPI0415741-9B1A BRPI0415741B1 (en) 2003-11-07 2004-11-05 tobacco compositions and methods of manufacturing a tobacco composition
EP04800749A EP1691631A4 (en) 2003-11-07 2004-11-05 Tobacco compositions
AU2004289248A AU2004289248B2 (en) 2003-11-07 2004-11-05 Tobacco compositions
JP2006539648A JP4931596B2 (en) 2003-11-07 2004-11-05 Tobacco composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US51835203P 2003-11-07 2003-11-07
US60/518,352 2003-11-07
US60388804P 2004-08-23 2004-08-23
US60/603,888 2004-08-23

Publications (2)

Publication Number Publication Date
WO2005046363A2 true WO2005046363A2 (en) 2005-05-26
WO2005046363A3 WO2005046363A3 (en) 2006-11-16

Family

ID=34594905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/036793 WO2005046363A2 (en) 2003-11-07 2004-11-05 Tobacco compositions

Country Status (9)

Country Link
US (6) US8469036B2 (en)
EP (1) EP1691631A4 (en)
JP (2) JP4931596B2 (en)
CN (2) CN102669810B (en)
AU (1) AU2004289248B2 (en)
BR (1) BRPI0415741B1 (en)
HK (1) HK1175963A1 (en)
TW (1) TWI428093B (en)
WO (1) WO2005046363A2 (en)

Cited By (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007089613A2 (en) * 2006-01-31 2007-08-09 U.S. Smokeless Tobacco Company Nicotiana diversity
WO2008016520A3 (en) * 2006-08-01 2008-07-24 Reynolds Tobacco Co R Smokeless tobacco
WO2009004487A2 (en) * 2007-06-08 2009-01-08 Philip Morris Products S.A. Oral pouched products including tobacco beads
JP2009508523A (en) * 2005-09-22 2009-03-05 アール・ジエイ・レイノルズ・タバコ・カンパニー Smokeless tobacco composition
WO2009048522A1 (en) 2007-10-11 2009-04-16 Richard Fuisz Smokeless tobacco product
WO2009087215A2 (en) * 2008-01-10 2009-07-16 British American Tobacco (Investments) Limited Tobacco product for oral use
JP2009538151A (en) * 2006-05-26 2009-11-05 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Dissolvable tobacco film strip and method for producing the same
US7798153B2 (en) 2004-08-23 2010-09-21 Us Smokeless Tobacco Co. Nicotiana Kawakamii smokeless tobacco
US7861728B2 (en) * 2006-02-10 2011-01-04 R.J. Reynolds Tobacco Company Smokeless tobacco composition having an outer and inner pouch
WO2011057777A1 (en) * 2009-11-12 2011-05-19 Philip Morris Products S.A. Oral chewable tobacco product and method of manufacture thereof
US8053008B2 (en) 2005-11-21 2011-11-08 Philip Morris Usa Inc. Method of manufacturing flavor pouches
US8058504B2 (en) 2001-11-13 2011-11-15 U.S. Smokeless Tobacco Company Cloning of cytochrome P450 genes from Nicotiana
EP2413971A1 (en) * 2009-04-03 2012-02-08 X-International APS Plant fiber product and method for its manufacture
WO2012019372A1 (en) * 2010-08-09 2012-02-16 深圳市如烟生物科技有限公司 Medicinal healthcare solid electronic cigarette atomizing solution and preparation thereof
RU2443172C1 (en) * 2010-10-27 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443177C1 (en) * 2010-10-27 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443155C1 (en) * 2010-10-11 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443156C1 (en) * 2010-10-11 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443175C1 (en) * 2010-10-27 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443165C1 (en) * 2010-10-20 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443162C1 (en) * 2010-10-20 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443163C1 (en) * 2010-10-20 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443169C1 (en) * 2010-10-20 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443166C1 (en) * 2010-10-20 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443160C1 (en) * 2010-10-11 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443171C1 (en) * 2010-10-20 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443144C1 (en) * 2010-10-11 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443164C1 (en) * 2010-10-20 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443173C1 (en) * 2010-10-27 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443157C1 (en) * 2010-10-11 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
US8168855B2 (en) 2007-02-23 2012-05-01 U.S. Smokeless Tobacco Company Tobacco compositions and methods of making
WO2012019035A3 (en) * 2010-08-05 2012-05-31 Altria Client Services Inc. Composite smokeless tobacco products, systems, and methods
WO2012074865A1 (en) * 2010-12-01 2012-06-07 R. J. Reynolds Tobacco Company Smokeless tobacco pastille and injection molding process for forming smokeless tobacco products
WO2012075035A3 (en) * 2010-12-01 2012-07-26 R. J. Reynolds Tobacco Company Smokeless tobacco pastille and moulding process for forming smokeless tobacco products
US8319011B2 (en) 2006-12-15 2012-11-27 U.S. Smokeless Tobacco Company Llc Tobacco plants having reduced nicotine demethylase activity
EP2606752A1 (en) * 2010-08-20 2013-06-26 Japan Tobacco Inc. Tobacco-flavor-releasing material and non-heating type tobacco flavor aspirator comprising same
GB2501092A (en) * 2012-04-11 2013-10-16 British American Tobacco Co Oral tobacco product
US8581043B2 (en) 2001-11-13 2013-11-12 U.S. Smokeless Tobacco Company Llc Nicotiana nucleic acid molecules and uses thereof
US8586837B2 (en) 2004-04-29 2013-11-19 U.S. Smokeless Tobacco Company Llc Nicotiana nucleic acid molecules and uses thereof
CN103549648A (en) * 2013-11-11 2014-02-05 云南烟草科学研究院 Novel tabletting type smokeless tobacco product and preparation method thereof
CN103549646A (en) * 2013-11-11 2014-02-05 云南烟草科学研究院 Orally-disintegrating-tablet-type smokeless tobacco product containing tobacco ultra-micro powder and preparation method thereof
WO2013109931A3 (en) * 2012-01-20 2014-03-13 Altria Client Services Inc. Oral product
US8685478B2 (en) 2005-11-21 2014-04-01 Philip Morris Usa Inc. Flavor pouch
US8695609B2 (en) * 2006-02-10 2014-04-15 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US8701679B2 (en) 2007-07-16 2014-04-22 Philip Morris Usa Inc. Tobacco-free oral flavor delivery pouch product
WO2015051306A1 (en) * 2013-10-03 2015-04-09 Altria Client Services Inc. Dissolvable chewable tablet
US9066540B2 (en) 2010-08-05 2015-06-30 Altria Client Services Inc. Fabric having tobacco entangled with structural fibers
US9096864B2 (en) 2011-02-28 2015-08-04 North Carolina State University Tobacco inbred plants NCBEX1F, NCBEX1MS, and NC EX90
WO2015123422A1 (en) * 2014-02-14 2015-08-20 R. J. Reynolds Tobacco Company Tobacco-containing gel composition
US9187759B2 (en) 2005-02-23 2015-11-17 North Carolina State University Alteration of tobacco alkaloid content through modification of specific cytochrome P450 genes
US9228194B2 (en) 2007-11-12 2016-01-05 North Carolina State University Alteration of tobacco alkaloid content through modification of specific cytochrome P450 genes
US9247706B2 (en) 2010-01-15 2016-02-02 North Carolina State University Compositions and methods for minimizing nornicotine synthesis in tobacco
US9322030B2 (en) 2001-11-13 2016-04-26 U.S. Smokeless Tobacco Company Llc Tobacco nicotine demethylase genomic clone and uses thereof
US9370160B2 (en) 2006-12-15 2016-06-21 Altria Client Services Llc Tobacco inbred plants ALBEX1F and ALBEX1MS
US9414624B2 (en) 2013-03-14 2016-08-16 Altria Client Services Llc Fiber-wrapped smokeless tobacco product
US9560830B2 (en) 2013-03-05 2017-02-07 North Carolina State University Tobacco inbred and hybrid plants and uses thereof
US9596822B2 (en) 2014-03-03 2017-03-21 North Carolina State University Tobacco inbred and hybrid plants and tobacco products made thereof
US9596824B2 (en) 2014-03-03 2017-03-21 North Carolina State University Tobacco inbred and hybrid plants and tobacco products made thereof
US9596823B2 (en) 2014-03-03 2017-03-21 North Carolina State University Tobacco inbred and hybrid plants and tobacco products made thereof
US9603335B2 (en) 2013-01-11 2017-03-28 North Carolina State University Tobacco inbred plants K326 SRC, CMS K326 SRC, K346 SRC, CMS K346 SRC, NC1562-1 SRC, NCTG-61 SRC, CMS NCTG-61 SRC and hybrid NC196 SRC
US9820507B2 (en) 2010-04-12 2017-11-21 Altria Client Services Llc Method of making oral pouch product
US9848634B2 (en) 2009-06-30 2017-12-26 Philip Morris Products S.A. Smokeless tobacco product
US9854830B2 (en) 2012-01-20 2018-01-02 Altria Client Services Llc Oral tobacco product
US9854831B2 (en) 2012-01-20 2018-01-02 Altria Client Services Llc Oral product
US9884015B2 (en) 2012-01-20 2018-02-06 Altria Client Services Llc Oral product
US9889956B2 (en) 2007-07-16 2018-02-13 Philip Morris Usa Inc. Oral pouch product having soft edge and method of making
US9888712B2 (en) 2007-06-08 2018-02-13 Philip Morris Usa Inc. Oral pouch products including a liner and tobacco beads
US9896228B2 (en) 2014-03-14 2018-02-20 Altria Client Services Llc Polymer encased smokeless tobacco products
US9986756B2 (en) 2012-01-20 2018-06-05 Altria Client Services Llc Exhausted-tobacco oral product
US10028521B2 (en) 2013-03-15 2018-07-24 Altria Client Services Llc Methods and machines for pouching smokeless tobacco and tobacco substitute products
US10039312B2 (en) 2008-11-07 2018-08-07 R. J. Reynolds Tobacco Company Tobacco products and processes
US10051884B2 (en) 2010-03-26 2018-08-21 Philip Morris Usa Inc. Controlled release mentholated tobacco beads
US10098376B2 (en) 2003-11-07 2018-10-16 U.S. Smokeless Tobacco Company Llc Tobacco compositions
US10143230B2 (en) 2009-10-09 2018-12-04 Philip Morris Usa Inc. Tobacco-free pouched product containing flavor beads providing immediate and long lasting flavor release
US10219537B2 (en) 2007-07-23 2019-03-05 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US10239089B2 (en) 2014-03-14 2019-03-26 Altria Client Services Llc Product portion enrobing process and apparatus
US10266836B2 (en) 2001-11-13 2019-04-23 U.S. Smokeless Tobacco Company Llc Tobacco nicotine demethylase genomic clone and uses thereof
RU2688520C2 (en) * 2012-01-20 2019-05-21 Алтрия Клаинт Сервисиз Элэлси Product for oral administration
US10334872B2 (en) 2007-10-11 2019-07-02 Philip Morris Products S.A. Smokeless tobacco product, smokeless tobacco product in the form of a sheet, extrudable tobacco composition, method for manufacturing a smokeless tobacco product, method for delivering super bioavailable nicotine contained in tobacco to a user, and packaged smokeless tobacco product sheet
US10492523B2 (en) 2008-12-17 2019-12-03 Philip Morris Usa Inc. Moist botanical pouch processing and moist oral botanical pouch products
EP3125705B1 (en) * 2014-04-01 2020-07-01 R. J. Reynolds Tobacco Company Dispensing system for a tobacco-related product, and associated method
US10874134B2 (en) 2012-12-20 2020-12-29 British American Tobacco (Investments) Limited Smokeless oral tobacco product and preparation thereof
EP3494817B1 (en) 2005-07-19 2021-01-13 JT International SA Method and system for vaporization of substance
US10945454B2 (en) 2003-11-07 2021-03-16 U.S. Smokeless Tobacco Company Llc Tobacco compositions
WO2021048792A1 (en) * 2019-09-11 2021-03-18 R. J. Reynolds Tobacco Company Oral product with cellulosic flavor stabilizer
WO2021116890A1 (en) * 2019-12-09 2021-06-17 Nicoventures Trading Limited Liquid composition for oral use or for use in an aerosol delivery device
EP3837995A1 (en) * 2019-12-18 2021-06-23 Nerudia Limited A smokeless article
US11332753B2 (en) 2006-12-15 2022-05-17 U.S. Smokeless Tobacco Company Llc Tobacco plants having reduced nicotine demethylase activity
US11647783B2 (en) 2005-07-19 2023-05-16 Juul Labs, Inc. Devices for vaporization of a substance
US11771127B2 (en) 2013-10-03 2023-10-03 Altria Client Services Llc Chewable dissolvable nicotine tablet
US11793230B2 (en) 2019-12-09 2023-10-24 Nicoventures Trading Limited Oral products with improved binding of active ingredients
US11826462B2 (en) 2019-12-09 2023-11-28 Nicoventures Trading Limited Oral product with sustained flavor release
US11872231B2 (en) 2019-12-09 2024-01-16 Nicoventures Trading Limited Moist oral product comprising an active ingredient
US11877590B2 (en) 2019-03-27 2024-01-23 Fiedler & Lundgren Ab Smokeless tobacco composition
US11904089B2 (en) 2011-08-16 2024-02-20 Juul Labs, Inc. Devices for vaporization of a substance
US11969502B2 (en) 2019-12-09 2024-04-30 Nicoventures Trading Limited Oral products

Families Citing this family (344)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700851B2 (en) * 2001-11-13 2010-04-20 U.S. Smokeless Tobacco Company Tobacco nicotine demethylase genomic clone and uses thereof
US7812227B2 (en) 2001-11-13 2010-10-12 U.S. Smokeless Tobacco Company Cloning of cytochrome p450 genes from nicotiana
US7638154B2 (en) * 2003-01-21 2009-12-29 Hap International, Inc. Pan spray formulation and delivery system
US8637731B2 (en) * 2003-10-16 2014-01-28 U.S. Smokeless Tobacco Company Nicotiana nucleic acid molecules and uses thereof
US20070199097A1 (en) * 2004-09-03 2007-08-23 U.S. Smokeless Tobacco Company Tobacco plants having a mutation in a nicotine demethylase gene
US20070000505A1 (en) * 2005-02-24 2007-01-04 Philip Morris Usa Inc. Smoking article with tobacco beads
US7992575B2 (en) * 2005-02-28 2011-08-09 U.S. Smokeless Tobacco Company Use of chlorate, sulfur or ozone to reduce tobacco specific nitrosamines
US9044049B2 (en) 2005-04-29 2015-06-02 Philip Morris Usa Inc. Tobacco pouch product
JP5004947B2 (en) 2005-04-29 2012-08-22 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Tobacco pouch products
US20160345631A1 (en) 2005-07-19 2016-12-01 James Monsees Portable devices for generating an inhalable vapor
US20070062549A1 (en) * 2005-09-22 2007-03-22 Holton Darrell E Jr Smokeless tobacco composition
US7819124B2 (en) 2006-01-31 2010-10-26 U.S. Smokeless Tobacco Company Tobacco articles and methods
US7913699B2 (en) 2006-01-31 2011-03-29 U.S. Smokeless Tobacco Company Llc Tobacco articles and methods
US7918231B2 (en) 2006-01-31 2011-04-05 U.S. Smokeless Tobacco Company Llc Tobacco articles and methods
US20080017208A1 (en) * 2006-07-20 2008-01-24 Elberto Berdut Teruel Novel tobacco substitute
US20080029117A1 (en) * 2006-08-01 2008-02-07 John-Paul Mua Smokeless Tobacco
US20080029116A1 (en) * 2006-08-01 2008-02-07 John Howard Robinson Smokeless tobacco
WO2008049088A2 (en) * 2006-10-21 2008-04-24 Rollins Aaron M D Guidewire manipulation device
US9032971B2 (en) * 2006-11-15 2015-05-19 Philip Morris Usa Inc. Moist tobacco product and method of making
US20080156338A1 (en) * 2006-12-28 2008-07-03 Philip Morris Usa Inc. Sterilized moist snuff and method
GB0700889D0 (en) * 2007-01-17 2007-02-21 British American Tobacco Co Tobacco, tobacco derivative and/or tobacco substitute products, preparation and uses thereof
EP3689274A1 (en) 2007-02-05 2020-08-05 Boston Scientific Limited Thrombectomy system
US8616221B2 (en) 2007-02-28 2013-12-31 Philip Morris Usa Inc. Oral pouch product with flavored wrapper
US20080276948A1 (en) * 2007-05-09 2008-11-13 Philip Morris Usa Inc. Chewing article for oral tobacco delivery
US8356606B2 (en) 2007-06-01 2013-01-22 Philip Morris Usa Inc. Production of micronized encapsulated tobacco particles for tobacco flavor delivery from an oral pouch
WO2009007854A2 (en) * 2007-06-08 2009-01-15 Philip Morris Products S.A. Oral pouch product including soluble dietary fibers
US8029837B2 (en) 2007-06-08 2011-10-04 Philip Morris Usa Inc. Chewable pouch for flavored product delivery
WO2009004488A2 (en) 2007-06-08 2009-01-08 Philip Morris Products S.A. Capsule clusters for oral consumption
US20080302376A1 (en) * 2007-06-08 2008-12-11 Philip Morris Usa Inc. Smoking article with controlled flavor release
US8202589B2 (en) * 2007-07-16 2012-06-19 Philip Morris Usa Inc. Oral delivery pouch product with coated seam
US8124147B2 (en) * 2007-07-16 2012-02-28 Philip Morris Usa Inc. Oral pouch products with immobilized flavorant particles
WO2009010878A2 (en) 2007-07-16 2009-01-22 Philip Morris Products S.A. Method of flavor encapsulation of oral pouch products through the use of a drum coater
US7946295B2 (en) 2007-07-23 2011-05-24 R. J. Reynolds Tobacco Company Smokeless tobacco composition
EP2179666B1 (en) 2007-07-23 2012-08-29 R.J.Reynolds Tobacco Company Smokeless Tobacco Compositions And Methods For Treating Tobacco For Use Therein
US8312886B2 (en) * 2007-08-09 2012-11-20 Philip Morris Usa Inc. Oral tobacco product having a hydrated membrane coating and a high surface area
US9271524B1 (en) 2007-09-07 2016-03-01 U.S. Smokeless Tobacco Company Tobacco having reduced tobacco specific nitrosamine content
US20090098192A1 (en) * 2007-10-11 2009-04-16 Fuisz Richard C Extrudable and Extruded Compositions for Delivery of Bioactive Agents, Method of Making Same and Method of Using Same
AU2014202350B2 (en) * 2007-10-11 2016-06-02 Philip Morris Products S.A. Nonaqueous extrudable composition
US8336557B2 (en) * 2007-11-28 2012-12-25 Philip Morris Usa Inc. Smokeless compressed tobacco product for oral consumption
US8991402B2 (en) 2007-12-18 2015-03-31 Pax Labs, Inc. Aerosol devices and methods for inhaling a substance and uses thereof
US8470215B2 (en) * 2008-01-25 2013-06-25 R. J. Reynolds Tobacco Company Process for manufacturing breakable capsules useful in tobacco products
US8469037B2 (en) 2008-02-08 2013-06-25 Philip Morris Usa Inc. Pre-portioned moist product and method of making
US20100018539A1 (en) * 2008-07-28 2010-01-28 Paul Andrew Brinkley Smokeless tobacco products and processes
AU2009303979A1 (en) * 2008-10-14 2010-04-22 Mcneil Ab Multi portion intra-oral dosage form and use thereof
JP5228061B2 (en) 2008-11-12 2013-07-03 日本たばこ産業株式会社 Low spread fired cigarette paper
US9155772B2 (en) * 2008-12-08 2015-10-13 Philip Morris Usa Inc. Soft, chewable and orally dissolvable and/or disintegrable products
US9307787B2 (en) * 2008-12-19 2016-04-12 U.S. Smokeless Tobacco Company Llc Tobacco granules and method of producing tobacco granules
US9027567B2 (en) * 2008-12-30 2015-05-12 Philip Morris Usa Inc. Oral pouch product with multi-layered pouch wrapper
US9167835B2 (en) 2008-12-30 2015-10-27 Philip Morris Usa Inc. Dissolvable films impregnated with encapsulated tobacco, tea, coffee, botanicals, and flavors for oral products
US8691340B2 (en) 2008-12-31 2014-04-08 Apinee, Inc. Preservation of wood, compositions and methods thereof
CN102300478B (en) * 2008-12-31 2014-02-26 美国无烟烟草有限公司 Method for preparing smokeless tobacco articles
EP2213181A1 (en) * 2009-01-28 2010-08-04 Philip Morris Products S.A. Smokeless dissolvable compressed tobacco product
JP5818357B2 (en) 2009-02-10 2015-11-18 ヴェサテック エルエルシー Method and apparatus for operating a surgical guidewire
UA97936C2 (en) * 2009-02-23 2012-03-26 Джапан Тобакко Инк. Non-heating type flavor inhaler
US8863755B2 (en) 2009-02-27 2014-10-21 Philip Morris Usa Inc. Controlled flavor release tobacco pouch products and methods of making
US9167847B2 (en) * 2009-03-16 2015-10-27 Philip Morris Usa Inc. Production of coated tobacco particles suitable for usage in a smokeless tobacoo product
US8434496B2 (en) 2009-06-02 2013-05-07 R. J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US8944072B2 (en) 2009-06-02 2015-02-03 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US8991403B2 (en) 2009-06-02 2015-03-31 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
WO2010147024A1 (en) * 2009-06-16 2010-12-23 日本たばこ産業株式会社 Oral tobacco product
WO2010147026A1 (en) * 2009-06-17 2010-12-23 日本たばこ産業株式会社 Oral tobacco product
US8448647B2 (en) * 2009-08-28 2013-05-28 R. J. Reynolds Tobacco Company Feeder system for rod components of tobacco products
US9511914B2 (en) * 2009-09-01 2016-12-06 Philip Morris Usa Inc. Thermoformable multilayer films and blister packs produced therefrom
US9687023B2 (en) * 2009-10-09 2017-06-27 Philip Morris Usa Inc. Moist smokeless tobacco product for oral usage having on a portion of the outer surface at least one friction reducing strip that provides texture during use
US8539958B2 (en) * 2009-10-13 2013-09-24 Philip Morris Usa Inc. Oral moist smokeless tobacco products with net-structured gel coating and methods of making
US11766068B1 (en) 2009-12-14 2023-09-26 Altria Client Services Llc Method of treating smokeless tobacco
US20110139164A1 (en) * 2009-12-15 2011-06-16 R. J. Reynolds Tobacco Company Tobacco Product And Method For Manufacture
US20110220130A1 (en) 2009-12-15 2011-09-15 John-Paul Mua Tobacco Product And Method For Manufacture
CN102665764A (en) * 2009-12-22 2012-09-12 Fmc有限公司 Microcrystalline cellulose and calcium carbonate compositions useful as recompactible pharmaceutical excipients
US8096411B2 (en) 2010-01-12 2012-01-17 R. J. Reynolds Tabacco Company Dispensing container
US20130014771A1 (en) 2011-01-13 2013-01-17 R. J. Reynolds Tobacco Company Tobacco-derived components and materials
US8955523B2 (en) 2010-01-15 2015-02-17 R.J. Reynolds Tobacco Company Tobacco-derived components and materials
US8397945B2 (en) 2010-02-23 2013-03-19 R.J. Reynolds Tobacco Company Dispensing container
US9862923B2 (en) 2010-03-26 2018-01-09 Philip Morris Usa Inc. Cultured tobacco cells as a matrix for consumable products
US8268370B2 (en) 2010-03-26 2012-09-18 Philip Morris Usa Inc. Solid oral sensorial products including stain inhibitor
US9743688B2 (en) 2010-03-26 2017-08-29 Philip Morris Usa Inc. Emulsion/colloid mediated flavor encapsulation and delivery with tobacco-derived lipids
US10798869B2 (en) 2010-04-01 2020-10-13 Ball Horticultural Company Cast pellets for planting seeds
US9039839B2 (en) * 2010-04-08 2015-05-26 R.J. Reynolds Tobacco Company Smokeless tobacco composition comprising tobacco-derived material and non-tobacco plant material
US10327467B2 (en) 2010-04-14 2019-06-25 Altria Client Services Llc Preformed smokeless tobacco product
US9402415B2 (en) 2010-04-21 2016-08-02 R. J. Reynolds Tobacco Company Tobacco seed-derived components and materials
GB201012090D0 (en) 2010-07-19 2010-09-01 British American Tobacco Co Cellulosic material
US9155321B2 (en) 2010-08-11 2015-10-13 R.J. Reynolds Tobacco Company Meltable smokeless tobacco composition
US8905243B2 (en) 2010-08-11 2014-12-09 R.J. Reynolds Tobacco Company Apparatus for sorting objects, and associated method
US11116237B2 (en) 2010-08-11 2021-09-14 R.J. Reynolds Tobacco Company Meltable smokeless tobacco composition
US10028520B2 (en) 2010-09-02 2018-07-24 R.J. Reynolds Tobacco Company Apparatus for manufacturing a smokeless tobacco product incorporating an object, and associated method
US9675102B2 (en) 2010-09-07 2017-06-13 R. J. Reynolds Tobacco Company Smokeless tobacco product comprising effervescent composition
US8931493B2 (en) 2010-11-01 2015-01-13 R.J. Reynolds Tobacco Co. Smokeless tobacco products
US20120125354A1 (en) 2010-11-18 2012-05-24 R.J. Reynolds Tobacco Company Fire-Cured Tobacco Extract and Tobacco Products Made Therefrom
US9220295B2 (en) 2010-12-01 2015-12-29 R.J. Reynolds Tobacco Company Tobacco separation process for extracting tobacco-derived materials, and associated extraction systems
US20130263870A1 (en) * 2010-12-01 2013-10-10 R.J. Reynolds Tobacco Company Smokeless tobacco pastille and moulding process for forming smokeless tobacco products
WO2012078960A1 (en) 2010-12-10 2012-06-14 Altria Client Services Inc. Smokeless tobacco packaging system and method
US20120152265A1 (en) 2010-12-17 2012-06-21 R.J. Reynolds Tobacco Company Tobacco-Derived Syrup Composition
ES2842407T3 (en) 2010-12-22 2021-07-14 Syqe Medical Ltd Drug delivery system
US9107453B2 (en) 2011-01-28 2015-08-18 R.J. Reynolds Tobacco Company Tobacco-derived casing composition
US8893725B2 (en) 2011-01-28 2014-11-25 R. J. Reynolds Tobacco Company Polymeric materials derived from tobacco
US9908670B2 (en) 2011-01-31 2018-03-06 American Snuff Company, Llc Container for smokeless tobacco products
RU2537833C1 (en) * 2011-03-02 2015-01-10 Джапан Тобакко Инк. Method for production of smoking product sheet containing flavouring agent, smoking product sheet containing flavouring agent produced by said method and smoking product containing such sheet
EP2682006A4 (en) * 2011-03-02 2014-11-05 Feellife Bioscience Internat Co Ltd Method for preparing gel-state water soluble flavoring essence used for cigarette
US9066538B2 (en) 2011-03-15 2015-06-30 R.J. Reynolds Tobacco Company Cured tobacco and method therefor
US9254001B2 (en) 2011-04-27 2016-02-09 R.J. Reynolds Tobacco Company Tobacco-derived components and materials
US9878464B1 (en) 2011-06-30 2018-01-30 Apinee, Inc. Preservation of cellulosic materials, compositions and methods thereof
US20130118512A1 (en) 2011-11-16 2013-05-16 R.J. Reynolds Tobacco Company Smokeless tobacco products with starch component
US20130125907A1 (en) 2011-11-17 2013-05-23 Michael Francis Dube Method for Producing Triethyl Citrate from Tobacco
US20130125904A1 (en) 2011-11-18 2013-05-23 R.J. Reynolds Tobacco Company Smokeless tobacco product comprising pectin component
US10881132B2 (en) 2011-12-14 2021-01-05 R.J. Reynolds Tobacco Company Smokeless tobacco product comprising effervescent composition
US9282772B2 (en) 2012-01-31 2016-03-15 Altria Client Services Llc Electronic vaping device
US9420825B2 (en) 2012-02-13 2016-08-23 R.J. Reynolds Tobacco Company Whitened tobacco composition
UA116199C2 (en) 2012-02-22 2018-02-26 Олтріа Клайєнт Сервісиз Інк. Electronic smoking article and improved heater element
CN104284605B (en) 2012-03-19 2018-02-23 R.J.雷诺兹烟草公司 For the tobacco product for handling the method for the tobacco pulp extracted and thus preparing
EP2649888B1 (en) 2012-04-10 2020-02-19 Swedish Match North Europe AB A smokeless tobacco composition comprising non-tobacco fibers and a method for its manufacture
USD784603S1 (en) 2012-04-11 2017-04-18 British American Tobacco (Investments) Limited Oral tobacco
USD729974S1 (en) 2012-04-11 2015-05-19 British American Tobacco (Investments) Limited Oral tobacco
USD784602S1 (en) 2012-04-11 2017-04-18 British American Tobacco (Investments) Limited Oral tobacco
USD784604S1 (en) 2012-04-11 2017-04-18 British American Tobacco (Investments) Limited Oral tobacco
US9339058B2 (en) 2012-04-19 2016-05-17 R. J. Reynolds Tobacco Company Method for producing microcrystalline cellulose from tobacco and related tobacco product
US20130292279A1 (en) 2012-05-04 2013-11-07 R.J. Reynolds Tobacco Company Transparent moisture barrier coatings for containers
WO2013192413A1 (en) 2012-06-20 2013-12-27 Mishra Munmaya K Smokeless tobacco comprising lipid granules
US20130340773A1 (en) 2012-06-22 2013-12-26 R.J. Reynolds Tobacco Company Composite tobacco-containing materials
US10517530B2 (en) 2012-08-28 2019-12-31 Juul Labs, Inc. Methods and devices for delivering and monitoring of tobacco, nicotine, or other substances
US9521863B2 (en) 2012-09-19 2016-12-20 Altria Client Services Llc Methods of reducing tobacco-specific nitrosamines (TSNAs) and/or improving leaf quality in tobacco
US9591875B2 (en) 2012-09-21 2017-03-14 R. J. Reynolds Tobacco Company Fibrous composite tobacco-containing materials
US9386800B2 (en) 2012-09-21 2016-07-12 R.J. Reynolds Tobacco Company Fibrous composite tobacco-containing materials
US11412775B2 (en) 2012-10-09 2022-08-16 R.J. Reynolds Tobacco Company Tobacco-derived composition
US9870505B2 (en) 2012-11-19 2018-01-16 Altria Client Services Llc Hyperspectral imaging system for monitoring agricultural products during processing and manufacturing
CN103005680B (en) * 2013-01-15 2015-03-25 陈孝忠 Geranium scent type snuff
CN103027371B (en) * 2013-01-15 2015-04-22 王国琴 Myristica fragrans type snuff
CN103054168B (en) * 2013-01-15 2015-03-11 黑龙江中医药大学 Lotus incense type snuff
CN103040099B (en) * 2013-01-15 2015-04-22 李桂梅 Clove type snuff
CN103054163B (en) * 2013-01-15 2015-04-08 李群星 Lily-flavored snuff
CN103005688B (en) * 2013-01-15 2015-04-08 李群星 Snuff with camellia fragrance
CN103040098B (en) * 2013-01-15 2015-04-22 周午贤 Lavender odor type snuff
CN103005681B (en) * 2013-01-15 2015-06-17 张晓慧 Snuff with calendula aroma
CN103005684B (en) * 2013-01-15 2015-04-22 管延花 Rose flavored snuff
CN103054165B (en) * 2013-01-15 2015-07-22 晋清泉 Sandalwood type snuff
CN103040095B (en) * 2013-01-15 2015-07-01 田凌燕 Osmanthus scent snuff
CN103040096B (en) * 2013-01-15 2015-04-22 周午贤 Jasmine flower scent type snuff
CN103040103B (en) * 2013-01-15 2015-04-08 李群星 Fennel type snuff
CN103005669B (en) * 2013-01-15 2015-04-08 李群星 Storax snuff
CN103005691B (en) * 2013-01-15 2015-04-29 王春霞 Amber odor type snuff
CN103005682B (en) * 2013-01-15 2015-07-01 王文娟 Celery aroma type snuff
CN103005683B (en) * 2013-01-15 2015-04-22 陈雪芬 Rosin snuff
CN103054164B (en) * 2013-01-15 2015-07-22 丁荣林 Jujube-flower-flavored snuff
CN103005689B (en) * 2013-01-15 2015-04-08 李群星 Snuff with mint fragrance
CN103005670B (en) * 2013-01-15 2015-04-29 陈汝德 Holy basil flavored snuff
CN103054167B (en) * 2013-01-15 2015-07-22 李彩香 Rosemary scented snuff
CN103005679B (en) * 2013-01-15 2015-04-08 李群星 Snuff with chrysanthemum aroma
CN103054166B (en) * 2013-01-15 2015-11-25 吕国栋 A kind of Chinese cinnamon type snuff
CN103005674B (en) * 2013-01-15 2015-04-08 李群星 Albizia flower odor type snuff
US9289011B2 (en) 2013-03-07 2016-03-22 R.J. Reynolds Tobacco Company Method for producing lutein from tobacco
US9301544B2 (en) 2013-03-14 2016-04-05 R.J. Reynolds Tobacco Company Protein-enriched tobacco-derived composition
US9402414B2 (en) 2013-03-14 2016-08-02 Altria Client Services Llc Smokeless tobacco article
US9661876B2 (en) 2013-03-14 2017-05-30 R.J. Reynolds Tobacco Company Sugar-enriched extract derived from tobacco
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
US10799548B2 (en) 2013-03-15 2020-10-13 Altria Client Services Llc Modifying taste and sensory irritation of smokeless tobacco and non-tobacco products
US10653180B2 (en) 2013-06-14 2020-05-19 Juul Labs, Inc. Multiple heating elements with separate vaporizable materials in an electric vaporization device
US10226064B2 (en) 2013-03-15 2019-03-12 Altria Client Services Llc Nitrite-degrading and TSNA-degrading bacteria and methods of making and using
CN103214991B (en) * 2013-04-02 2015-01-28 大亚科技股份有限公司 Polypropylene tip filter stick adhesive for modifying cigarettes and application thereof
KR20230013165A (en) 2013-05-06 2023-01-26 쥴 랩스, 인크. Nicotine salt formulations for aerosol devices and methods thereof
KR101784081B1 (en) * 2013-05-13 2017-10-10 니뽄 다바코 산교 가부시키가이샤 Tobacco material, tobacco product to which tobacco material is added, and method for producing tobacco material
US9814864B2 (en) * 2013-05-17 2017-11-14 Covidien Lp Torque apparatus for use with a guidewire
US20150034109A1 (en) 2013-08-02 2015-02-05 R.J. Reynolds Tobacco Company Process for Producing Lignin from Tobacco
US9629391B2 (en) 2013-08-08 2017-04-25 R.J. Reynolds Tobacco Company Tobacco-derived pyrolysis oil
US11503853B2 (en) 2013-09-09 2022-11-22 R.J. Reynolds Tobacco Company Smokeless tobacco composition incorporating a botanical material
US11779045B2 (en) * 2013-10-03 2023-10-10 Altria Client Services Llc Dissolvable-chewable exhausted-tobacco tablet
US9999243B2 (en) 2013-10-03 2018-06-19 Altria Client Services Llc Exhausted tobacco lozenge
US10105320B2 (en) 2013-10-03 2018-10-23 Altria Client Services Soluble fiber lozenge
US10244786B2 (en) * 2013-10-03 2019-04-02 Altria Client Services Llc Tobacco lozenge
US20150096574A1 (en) * 2013-10-03 2015-04-09 Altria Client Services Inc. Dissolvable-chewable tobacco tablet
DK3054794T3 (en) 2013-10-09 2017-08-28 Swedish Match North Europe Ab AN ORAL SMOKE-TOBACCO COMPOSITION INCLUDING RELEASED, DELIGNIFIED TOBACCO FIBER AND A PROCEDURE FOR ITS PREPARATION
US10357054B2 (en) 2013-10-16 2019-07-23 R.J. Reynolds Tobacco Company Smokeless tobacco pastille
US9717272B2 (en) 2013-11-20 2017-08-01 R. J. Reynolds Tobacco Company Container for smokeless tobacco product
CA2932464C (en) 2013-12-05 2023-01-03 Pax Labs, Inc. Nicotine liquid formulations for aerosol devices and methods thereof
EP3077518A1 (en) 2013-12-06 2016-10-12 Altria Client Services LLC Tobacco plants having altered amounts of one or more alkaloids in leaf and methods of using such plants
US9549573B2 (en) 2013-12-23 2017-01-24 Pax Labs, Inc. Vaporization device systems and methods
FI3491948T4 (en) 2013-12-23 2024-05-06 Juul Labs International Inc Vaporization device systems
US10159282B2 (en) 2013-12-23 2018-12-25 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US20160366947A1 (en) 2013-12-23 2016-12-22 James Monsees Vaporizer apparatus
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
US10058129B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
US9265284B2 (en) 2014-01-17 2016-02-23 R.J. Reynolds Tobacco Company Process for producing flavorants and related materials
EP3129491A1 (en) 2014-04-08 2017-02-15 Altria Client Services LLC Tobacco having altered leaf properties and methods of making and using
US11478021B2 (en) 2014-05-16 2022-10-25 Juul Labs, Inc. Systems and methods for aerosolizing a vaporizable material
PL3145548T3 (en) 2014-05-22 2022-08-08 University Of Copenhagen Aqueous gel composition and its use
US11298477B2 (en) 2014-06-30 2022-04-12 Syqe Medical Ltd. Methods, devices and systems for pulmonary delivery of active agents
AU2015283589B2 (en) 2014-06-30 2019-09-12 Syqe Medical Ltd. Method and device for vaporization and inhalation of isolated substances
WO2016001924A2 (en) 2014-06-30 2016-01-07 Syqe Medical Ltd. Methods, devices and systems for pulmonary delivery of active agents
KR102561375B1 (en) 2014-06-30 2023-08-01 사이키 메디컬 엘티디. Clamping chamber for clamping inhaler dose cartridge
AU2015283590B2 (en) 2014-06-30 2020-04-16 Syqe Medical Ltd. Methods, devices and systems for pulmonary delivery of active agents
JP6980388B2 (en) 2014-06-30 2021-12-15 サイケ メディカル リミテッドSyqe Medical Ltd. Airflow control suction device
US10113174B2 (en) 2014-07-02 2018-10-30 Altria Client Services Llc Tobacco having altered leaf properties and methods of making and using
CN104059560A (en) * 2014-07-08 2014-09-24 山东津美生物科技有限公司 Cigarette holder adhesive and preparation method thereof
US10626409B2 (en) 2014-07-08 2020-04-21 Altria Client Services Llc Genetic locus imparting a low anatabine trait in tobacco and methods of using
JP6861151B2 (en) * 2014-08-05 2021-04-21 ザ ユニバーシティ オブ メンフィス Compositions and Methods for Improving Bone and Soft Tissue Healing and Regeneration
US20160044955A1 (en) 2014-08-13 2016-02-18 R.J. Reynolds Tobacco Company Smokeless tobacco products
EP4268584A3 (en) 2014-10-06 2024-02-21 Altria Client Services LLC Genetic control of axillary bud growth in tobacco plants
US9968130B2 (en) 2014-10-16 2018-05-15 R.J. Reynolds Tobacco Company Package for a tobacco-containing material with a valve assembly and related packaging method
US20160157515A1 (en) 2014-12-05 2016-06-09 R.J. Reynolds Tobacco Company Smokeless tobacco pouch
EP3821735A1 (en) 2014-12-05 2021-05-19 Juul Labs, Inc. Calibrated dose control
TW201633933A (en) 2015-01-07 2016-10-01 英美煙草(投資)有限公司 Material for inclusion in a smoking article
CN107846964A (en) 2015-01-07 2018-03-27 英美烟草(投资)有限公司 Material included in smoking product
WO2016123425A1 (en) 2015-01-29 2016-08-04 Altria Client Services Llc Endolysin from bacteriophage against geobacillus and methods of using
WO2016123427A1 (en) 2015-01-29 2016-08-04 Altria Client Services Llc Bacteriophage and methods of using
JP6001108B2 (en) * 2015-02-02 2016-10-05 エクス−インターナショナル・エピエス Plant fiber product and method for producing the same
US20160250270A1 (en) 2015-02-27 2016-09-01 Ebbu, LLC Compositions comprising combinations of purified cannabinoids, with at least one flavonoid, terpene, or mineral
WO2017100369A1 (en) * 2015-12-07 2017-06-15 Ebbu, LLC Printable cannabinoid and terpene compositions
DE102015205768A1 (en) * 2015-03-31 2016-10-06 Hauni Maschinenbau Gmbh A method of making a first subunit of a HNB smoking article having a rod body and a cavity disposed thereon
US10881133B2 (en) 2015-04-16 2021-01-05 R.J. Reynolds Tobacco Company Tobacco-derived cellulosic sugar
CN104805726A (en) * 2015-05-06 2015-07-29 嘉兴景程生物科技有限公司 Cigarette paper for cigarettes and preparation method of cigarette paper
US11147309B2 (en) 2015-06-10 2021-10-19 R.J. Reynolds Tobacco Company Container for smokeless tobacco products comprising a pulp material and related packaged product assembly and method
EP3892321A1 (en) 2015-08-12 2021-10-13 Vesatek, Llc System and method for manipulating an elongate medical device
US20170059554A1 (en) 2015-09-02 2017-03-02 R. J. Reynolds Tobacco Company Method for monitoring use of a tobacco product
US20170055565A1 (en) 2015-09-02 2017-03-02 R. J. Reynolds Tobacco Company Systems and Apparatus for Reducing Tobacco-Specific Nitrosamines in Dark-Fire Cured Tobacco Through Electronic Control of Curing Conditions
US10561440B2 (en) 2015-09-03 2020-02-18 Vesatek, Llc Systems and methods for manipulating medical devices
US10869497B2 (en) 2015-09-08 2020-12-22 R.J. Reynolds Tobacco Company High-pressure cold pasteurization of tobacco material
US11641874B2 (en) 2015-09-09 2023-05-09 R.J. Reynolds Tobacco Company Flavor delivery article
US11612183B2 (en) 2015-12-10 2023-03-28 R.J. Reynolds Tobacco Company Protein-enriched tobacco composition
US20170172200A1 (en) 2015-12-16 2017-06-22 R.J. Reynolds Tobacco Company Flavor additive accessory
US10226263B2 (en) 2015-12-23 2019-03-12 Incuvate, Llc Aspiration monitoring system and method
WO2017115234A1 (en) 2015-12-28 2017-07-06 R. J. Reynolds Tobacco Company Package for a tobacco-containing material and related packaging method
EP3851102A1 (en) 2016-01-06 2021-07-21 Syqe Medical Ltd. Low dose therapeutic treatment
US10499684B2 (en) 2016-01-28 2019-12-10 R.J. Reynolds Tobacco Company Tobacco-derived flavorants
EP3413960B1 (en) 2016-02-11 2021-03-31 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
SG11201806801VA (en) 2016-02-11 2018-09-27 Juul Labs Inc Securely attaching cartridges for vaporizer devices
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
US10457953B2 (en) 2016-04-13 2019-10-29 Altria Client Services Llc Tobacco plants exhibiting altered photosynthesis and methods of making and using
US10329068B2 (en) 2016-05-23 2019-06-25 R.J. Reynolds Tobacco Company Flavoring mechanism for a tobacco related material
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
USD848057S1 (en) 2016-06-23 2019-05-07 Pax Labs, Inc. Lid for a vaporizer
US10375984B2 (en) 2016-07-18 2019-08-13 R.J. Reynolds Tobacco Company Nonwoven composite smokeless tobacco product
US11425929B2 (en) 2016-07-25 2022-08-30 Aubrey Ray Thoede, Jr. Smoking apparatus and method of use
WO2018044953A1 (en) 2016-08-29 2018-03-08 Ebbu, LLC Water soluble compositions comprising purified cannabinoids
US11660403B2 (en) 2016-09-22 2023-05-30 Juul Labs, Inc. Leak-resistant vaporizer device
EP3523428B1 (en) 2016-10-07 2024-01-10 Altria Client Services LLC Tobacco plants having increased nitrogen efficiency and methods of using such plants
US20180199617A1 (en) * 2017-01-18 2018-07-19 Bianca Iodice Tobacco Free Hookah Smoking Gel
US10342259B2 (en) 2017-03-21 2019-07-09 Altria Client Services Llc Flavor delivery system
US11091446B2 (en) 2017-03-24 2021-08-17 R.J. Reynolds Tobacco Company Methods of selectively forming substituted pyrazines
US10470487B2 (en) 2017-04-06 2019-11-12 R.J. Reynolds Tobacco Company Smoke treatment
WO2019026997A1 (en) * 2017-08-03 2019-02-07 森永乳業株式会社 Edible film
US11457659B2 (en) 2017-08-04 2022-10-04 Altria Client Services Llc Stabilization methods for tobacco and tobacco products
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
US10548347B2 (en) 2018-02-23 2020-02-04 American Snuff Company, Llc Container for smokeless tobacco products
KR101998288B1 (en) * 2018-03-09 2019-07-09 (주)씨엘팜 Composition for smokeless tobacco and orally dissolving film-type smokeless tobacco comprising the same
US20190307082A1 (en) 2018-04-05 2019-10-10 R.J. Reynolds Tobacco Company Oriental tobacco production methods
DK3774570T3 (en) 2018-04-13 2022-05-23 Reynolds Tobacco Co R LID FOR A CONTAINER FOR SMOKE-FREE TOBACCO PRODUCTS AND METHOD FOR MANUFACTURE OF SUCH A LID
US11678905B2 (en) 2018-07-19 2023-06-20 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
PL3826478T3 (en) * 2018-07-26 2024-01-15 Philip Morris Products S.A. Article for forming an aerosol
GB201812509D0 (en) * 2018-07-31 2018-09-12 Nicoventures Holdings Ltd Aerosol generation
CN109315820A (en) * 2018-08-10 2019-02-12 杨福荣 Cigarette ingredient, preparation method and the cigarette using it
CN109259298B (en) * 2018-11-06 2021-12-14 彭荣淮 Method for producing substitute tobacco sheet from corn bract powder
WO2020097341A1 (en) 2018-11-08 2020-05-14 Juul Labs, Inc. Cartridges for vaporizer devices
US20200196658A1 (en) 2018-12-20 2020-06-25 R.J. Reynolds Tobacco Company Method for whitening tobacco
CN113766837B (en) * 2019-04-08 2023-04-18 菲利普莫里斯生产公司 Method for producing aerosol-generating films
EP4360473A2 (en) * 2019-04-08 2024-05-01 Philip Morris Products S.A. Aerosol-generating film
US11213062B2 (en) 2019-05-09 2022-01-04 American Snuff Company Stabilizer for moist snuff
US20210068448A1 (en) 2019-09-11 2021-03-11 Nicoventures Trading Limited Method for whitening tobacco
US20210068447A1 (en) 2019-09-11 2021-03-11 R. J. Reynolds Tobacco Company Pouched products with enhanced flavor stability
EP4027817A1 (en) 2019-09-11 2022-07-20 Nicoventures Trading Limited Alternative methods for whitening tobacco
US11369131B2 (en) 2019-09-13 2022-06-28 Nicoventures Trading Limited Method for whitening tobacco
US11903406B2 (en) 2019-09-18 2024-02-20 American Snuff Company, Llc Method for fermenting tobacco
MX2022005285A (en) 2019-10-31 2022-05-24 Nicoventures Trading Ltd Oral product and method of manufacture.
CA3160271A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Nanoemulsion for oral use
WO2021116881A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral product in a pourous pouch comprising a fleece material
JP2023505804A (en) 2019-12-09 2023-02-13 ニコベンチャーズ トレーディング リミテッド Oral products with dissolvable components
US11889856B2 (en) 2019-12-09 2024-02-06 Nicoventures Trading Limited Oral foam composition
JP2023504756A (en) 2019-12-09 2023-02-06 ニコベンチャーズ トレーディング リミテッド Oral products containing cannabinoids
US20210169129A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Lipid-containing oral composition
US20210169126A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral composition with salt inclusion
WO2021116854A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral products with active ingredient combinations
WO2021116842A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral products with controlled release
WO2021116919A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Fleece for oral product with releasable component
MX2022006973A (en) 2019-12-09 2022-09-12 Nicoventures Trading Ltd Layered fleece for pouched product.
WO2021116856A2 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral products
US20210169784A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Buffered oral compositions
EP4072338A1 (en) * 2019-12-09 2022-10-19 Nicoventures Trading Limited Agents for oral composition
WO2021116865A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Agents for oral composition
WO2021116895A2 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Stimulus-responsive pouch
EP4072317A1 (en) 2019-12-09 2022-10-19 Nicoventures Trading Limited Pouched products with heat sealable binder
US11672862B2 (en) 2019-12-09 2023-06-13 Nicoventures Trading Limited Oral products with reduced irritation
US20210169132A1 (en) * 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral composition including gels
US20210169783A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral products with controlled release
US20210169868A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral compositions with reduced water content
US20210169890A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral composition with polymeric component
WO2021116855A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral compositions and methods of manufacture
WO2021116916A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral product with multiple flavors having different release profiles
US20210169137A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Pouched products
US20210169785A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral compositions with reduced water activity
US20210170031A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral composition with nanocrystalline cellulose
US20210169123A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Pouched products with enhanced flavor stability
US20210169786A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral composition with beet material
US11883527B2 (en) 2019-12-09 2024-01-30 Nicoventures Trading Limited Oral composition and method of manufacture
US20210169138A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Fibrous fleece material
US20210169788A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral product and method of manufacture
US11617744B2 (en) 2019-12-09 2023-04-04 Nico Ventures Trading Limited Moist oral compositions
US11712059B2 (en) 2020-02-24 2023-08-01 Nicoventures Trading Limited Beaded tobacco material and related method of manufacture
WO2021250516A1 (en) 2020-06-08 2021-12-16 Nicoventures Trading Limited Effervescent oral composition comprising an active ingredient
US11937626B2 (en) 2020-09-04 2024-03-26 Nicoventures Trading Limited Method for whitening tobacco
US20220104543A1 (en) 2020-09-04 2022-04-07 Nicoventures Trading Limited Child-resistant container for tobacco-containing products
MX2023003823A (en) * 2020-10-07 2023-04-13 Philip Morris Products Sa An aerosol-forming substrate.
US20240008522A1 (en) 2020-11-18 2024-01-11 Nicoventures Trading Limited Oral products
US11839602B2 (en) 2020-11-25 2023-12-12 Nicoventures Trading Limited Oral cannabinoid product with lipid component
WO2022115309A1 (en) * 2020-11-30 2022-06-02 Juul Labs, Inc. Polysaccharide-based tobacco gel compositions
US20220183389A1 (en) 2020-12-11 2022-06-16 Rai Strategic Holdings, Inc. Sleeve for smoking article
US20220232881A1 (en) 2021-01-28 2022-07-28 Nicoventures Trading Limited Method for sealing pouches
WO2022189977A1 (en) 2021-03-09 2022-09-15 Nicoventures Trading Limited Oral products and methods of manufacture
US20220313679A1 (en) 2021-04-06 2022-10-06 Altria Client Services Llc Controlled-release nicotine chewing gum
US20220312826A1 (en) 2021-04-06 2022-10-06 Altria Client Services Llc Liquid mixtures of triglyceride and liquid nicotine
US20220313678A1 (en) 2021-04-06 2022-10-06 Altria Client Services Llc Spray dried nicotine for inclusion in oral products
US20220312825A1 (en) 2021-04-06 2022-10-06 Altria Client Services Llc Oral pouch product
US20220312822A1 (en) 2021-04-06 2022-10-06 Altria Client Services Llc Encapsulated sweetener granules and methods of preparation thereof
US20220313614A1 (en) 2021-04-06 2022-10-06 Altria Client Services Llc Encapsulated nicotine granules and methods of preparation thereof
US20220354785A1 (en) 2021-04-22 2022-11-10 Nicoventures Trading Limited Oral lozenge products
WO2022224200A1 (en) 2021-04-22 2022-10-27 Nicoventures Trading Limited Oral compositions and methods of manufacture
WO2022224197A1 (en) 2021-04-22 2022-10-27 Nicoventures Trading Limited Effervescent oral composition
US20220346436A1 (en) 2021-04-22 2022-11-03 Nicoventures Trading Limited Orally dissolving films
US20220354155A1 (en) 2021-04-30 2022-11-10 Nicoventures Trading Limited Multi-compartment oral pouched product
BR112023019609A2 (en) * 2021-05-27 2023-12-05 Philip Morris Products Sa METHOD FOR PRODUCING AN AEROSOL-FORMING SUBSTRATE AND AEROSOL-FORMING SUBSTRATE
WO2022264066A1 (en) 2021-06-16 2022-12-22 Nicoventures Trading Limited Pouched product comprising dissolvable composition
KR20240004756A (en) 2021-06-17 2024-01-11 니뽄 다바코 산교 가부시키가이샤 Flavor molded body and method for producing the same, method for producing tobacco materials, and method for producing tobacco products
CA3223460A1 (en) 2021-06-21 2022-12-29 Nicoventures Trading Limited Oral product tablet and method of manufacture
EP4358748A1 (en) 2021-06-25 2024-05-01 Nicoventures Trading Limited Oral products and method of manufacture
WO2023002194A1 (en) 2021-07-22 2023-01-26 Nicoventures Trading Limited Compositions comprising constituents, derivatives or extracts of cannabis
WO2023002196A1 (en) 2021-07-22 2023-01-26 Nicoventures Trading Limited Constituent, derivative or extract of cannabis in a water soluble matrix
IL310125A (en) 2021-07-22 2024-03-01 Nicoventures Trading Ltd Compositions comprising a constituent, derivative or extract of cannabis
AU2022314266A1 (en) 2021-07-22 2024-01-25 Nicoventures Trading Limited Compositions comprising a constituent, derivative or extract of cannabis
CA3224622A1 (en) 2021-07-22 2023-01-26 Steven Alderman Methods of preparing compositions comprising a constituent, derivative or extract of cannabis
WO2023002199A1 (en) 2021-07-22 2023-01-26 Nicoventures Trading Limited Composition comprising a constituent, derivative or extract of cannabis
CA3224625A1 (en) 2021-07-22 2023-01-26 Steven Alderman Constituent, derivative or extract of cannabis in amorphous form
IL309989A (en) 2021-07-22 2024-03-01 Nicoventures Trading Ltd Compositions comprising constituents, derivatives or extracts of cannabis
US20230148660A1 (en) 2021-11-15 2023-05-18 Nicoventures Trading Limited Products with enhanced sensory characteristics
US20230148652A1 (en) 2021-11-15 2023-05-18 Nicoventures Trading Limited Oral products with nicotine-polymer complex
WO2023174523A1 (en) * 2022-03-15 2023-09-21 Habit Factory In Sweden Ab Nicotine composition
US20230309603A1 (en) 2022-03-31 2023-10-05 R.J. Reynolds Tobacco Company Agglomerated botanical material for oral products
WO2023194959A1 (en) 2022-04-06 2023-10-12 Nicoventures Trading Limited Pouched products with heat sealable binder
WO2024069373A1 (en) 2022-09-26 2024-04-04 Nicoventures Trading Limited Child-resistant container for tobacco-containing products
WO2024069544A1 (en) 2022-09-30 2024-04-04 Nicoventures Trading Limited Reconstituted tobacco substrate for aerosol delivery device
WO2024069542A1 (en) 2022-09-30 2024-04-04 R. J. Reynolds Tobacco Company Method for forming reconstituted tobacco
US20240109697A1 (en) 2022-10-03 2024-04-04 Nicoventures Trading Limited Sealing member for packaging
WO2024074988A1 (en) 2022-10-04 2024-04-11 R. J. Reynolds Tobacco Company Stackable arrangement of product containers and related method of stacking
WO2024079722A1 (en) 2022-10-14 2024-04-18 Nicoventures Trading Limited Capsule-containing pouched products
WO2024089588A1 (en) 2022-10-24 2024-05-02 Nicoventures Trading Limited Shaped pouched products

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030084912A1 (en) * 2001-10-22 2003-05-08 Pera Ivo E Composition to reduce or quit smoking addiction

Family Cites Families (387)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734510A (en) * 1956-02-14 Preparing
US904521A (en) * 1908-04-20 1908-11-24 Carleton Ellis Masticable tobacco substitute.
US1376586A (en) 1918-04-06 1921-05-03 Schwartz Francis Tobacco-tablet
US2770241A (en) * 1954-05-10 1956-11-13 American Collo Corp Tobacco smoke filter and method
US2897103A (en) * 1957-08-05 1959-07-28 Gen Cigar Co Tobacco products and process therefor
US3067068A (en) 1959-03-09 1962-12-04 E R B Tobacco Products Co Inc Tobacco-like composition
US3098492A (en) 1960-11-25 1963-07-23 Nat Starch Chem Corp Method of making tobacco product
US3151996A (en) 1961-01-26 1964-10-06 Hercules Powder Co Ltd Adhesive comoposition and process of making corrugated paperboard therewith
US3166078A (en) * 1961-04-05 1965-01-19 Lorillard Co P Chewing tobacco product
US3046993A (en) 1961-05-15 1962-07-31 Lenardo Cigar Corp Cigar using homogenized leaf
US3120233A (en) 1961-09-25 1964-02-04 Fmc Corp Method for manufacturing recon-stituted tobacco products
US3240214A (en) * 1963-12-27 1966-03-15 Philip Morris Inc Method of making a composite tobacco sheet
US3455714A (en) 1964-09-01 1969-07-15 Hercules Inc Cellulose derivatives of improved dispersibility and process
US3292635A (en) * 1964-10-22 1966-12-20 Maxwell H Kolodny Integral cigarette-cigarette holder
US3313305A (en) 1965-08-11 1967-04-11 Beatrice Foods Co Cigarette filter
US3435027A (en) * 1965-12-13 1969-03-25 Hercules Inc Cellulose ether-esters and process
US3483148A (en) 1967-09-28 1969-12-09 Hercules Inc Protective coating composition of binder latex in water-glycol vehicle
US3470883A (en) 1968-08-29 1969-10-07 Nat Patent Dev Corp Tobacco smoke filters
US3625225A (en) 1969-07-24 1971-12-07 Amf Inc Reconstituted tobacco
US3951155A (en) * 1970-07-11 1976-04-20 Carreras Rothmans Limited Smoking materials
US3857972A (en) 1971-03-10 1974-12-31 Int Flavors & Fragrances Inc Flavoring with an oxocyclic pyrimidine
US3942537A (en) * 1971-03-10 1976-03-09 International Flavors & Fragrances Inc. Novel flavoring compositions and processes
US4014349A (en) * 1972-08-31 1977-03-29 Imperial Chemical Industries Limited Smoking material
US3891582A (en) 1973-04-26 1975-06-24 Hercules Inc Joint cement compositions utilizing water-insoluble carboxymethylated cellulose derivatives as asbestos substitutes
US3835074A (en) 1973-04-26 1974-09-10 Hercules Inc Joint cement compositions
GB1435304A (en) * 1973-11-13 1976-05-12 Carreras Rothmans Ltd Alginate fibres
US4014541A (en) * 1974-04-26 1977-03-29 Hercules Incorporated Golf tee
US3968804A (en) 1974-05-20 1976-07-13 Amf Incorporated Extruded tobacco sheet
JPS554625Y2 (en) 1974-05-28 1980-02-02
US4136162A (en) * 1974-07-05 1979-01-23 Schering Aktiengesellschaft Medicament carriers in the form of film having active substance incorporated therein
US4136145A (en) * 1974-07-05 1979-01-23 Schering Aktiengesellschaft Medicament carriers in the form of film having active substance incorporated therein
US4065319A (en) 1975-11-18 1977-12-27 Hercules Incorporated Tile cements
US4142535A (en) * 1976-05-04 1979-03-06 Imperial Group Limited Smoking product
GB1548022A (en) * 1976-10-06 1979-07-04 Wyeth John & Brother Ltd Pharmaceutial dosage forms
CA1097233A (en) 1977-07-20 1981-03-10 George K. E. Gregory Packages
US4325391A (en) * 1979-01-05 1982-04-20 Amf Incorporated Instantaneous slurry preparation on a continuous basis
JPS5758615A (en) 1980-09-26 1982-04-08 Nippon Soda Co Ltd Film agnent and its preparation
US4683256A (en) 1980-11-06 1987-07-28 Colorcon, Inc. Dry edible film coating composition, method and coating form
US4317837A (en) 1980-11-25 1982-03-02 Life Savers, Inc. Tobacco-flavored chewing gum
US4515769A (en) 1981-12-01 1985-05-07 Borden, Inc. Encapsulated flavorant material, method for its preparation, and food and other compositions incorporating same
JPS59500217A (en) 1982-02-22 1984-02-16 ベロルススキ− ナウチノ− イスレドワ−チエルスキ− サニタルノ− ギギエニチエスキ− インスチツ−ト Preparation with anti-nicotine effect and its manufacturing method
US4874000A (en) 1982-12-30 1989-10-17 Philip Morris Incorporated Method and apparatus for drying and cooling extruded tobacco-containing material
US4632131A (en) 1984-07-03 1986-12-30 Philip Morris Incorporated Foamed, extruded, coherent multistrand smoking articles
US4510950A (en) * 1982-12-30 1985-04-16 Philip Morris Incorporated Foamed, extruded, tobacco-containing smoking article and method of making same
US4501617A (en) * 1983-01-31 1985-02-26 Hercules Incorporated Tile mortars
DE3474659D1 (en) 1983-01-31 1988-11-24 Hercules Inc Tile mortars
EP0118637A2 (en) 1983-02-14 1984-09-19 Hercules Incorporated Tape joint cement composition
DE3475795D1 (en) 1983-02-14 1989-02-02 Hercules Inc Tape joint cement composition
US4513756A (en) * 1983-04-28 1985-04-30 The Pinkerton Tobacco Company Process of making tobacco pellets
GB8317576D0 (en) * 1983-06-29 1983-08-03 Shaw A S W Consumer tobacco products
US4545392A (en) 1983-07-25 1985-10-08 R. J. Reynolds Tobacco Co. Tobacco product
CA1263790A (en) 1983-08-01 1989-12-05 Armand Joseph Desmarais Denture adhesive composition
US5024701A (en) 1983-08-01 1991-06-18 Hercules Incorporated Denture adhesive composition
US4596259A (en) 1983-08-22 1986-06-24 R. J. Reynolds Tobacco Company Smoking material and method for its preparation
US5092352A (en) * 1983-12-14 1992-03-03 American Brands, Inc. Chewing tobacco product
US4611608A (en) 1984-01-13 1986-09-16 Naarden International N.V. Process for utilizing tobacco dust
US4558079A (en) 1984-01-24 1985-12-10 Hercules Incorporated Tape joint cement composition
US5288498A (en) * 1985-05-01 1994-02-22 University Of Utah Research Foundation Compositions of oral nondissolvable matrixes for transmucosal administration of medicaments
EP0166315B1 (en) 1984-06-19 1989-08-23 BASF Aktiengesellschaft Gastro-resistant cylindrical pancreatine-microtablets
US4596257A (en) 1984-06-29 1986-06-24 Philip Morris Incorporated Method and apparatus for tipping smoking articles
US4828841A (en) 1984-07-24 1989-05-09 Colorcon, Inc. Maltodextrin coating
US4643894A (en) * 1984-07-24 1987-02-17 Colorcon, Inc. Maltodextrin coating
US4624269A (en) * 1984-09-17 1986-11-25 The Pinkerton Tobacco Company Chewable tobacco based product
SE8405479D0 (en) * 1984-11-01 1984-11-01 Nilsson Sven Erik WANT TO ADMINISTER VOCABULARY, PHYSIOLOGY, ACTIVE SUBJECTS AND DEVICE FOR THIS
US4606357A (en) * 1984-11-19 1986-08-19 Dusek Russell L Tobacco composition
JPS61111677U (en) 1984-12-25 1986-07-15
GB8500281D0 (en) 1985-01-05 1985-02-13 Glamorgan Electronics Ltd Vehicle tyre monitoring system
JPS61163005U (en) 1985-03-29 1986-10-09
US5783207A (en) 1985-05-01 1998-07-21 University Of Utah Research Foundation Selectively removable nicotine-containing dosage form for use in the transmucosal delivery of nicotine
US5288497A (en) 1985-05-01 1994-02-22 The University Of Utah Compositions of oral dissolvable medicaments
US5785989A (en) 1985-05-01 1998-07-28 University Utah Research Foundation Compositions and methods of manufacturing of oral dissolvable medicaments
US4800903A (en) * 1985-05-24 1989-01-31 Ray Jon P Nicotine dispenser with polymeric reservoir of nicotine
US4661359A (en) * 1985-06-03 1987-04-28 General Mills, Inc. Compositions and methods for preparing an edible film of lower water vapor permeability
US4989619A (en) 1985-08-26 1991-02-05 R. J. Reynolds Tobacco Company Smoking article with improved fuel element
EP0283474A1 (en) 1985-10-09 1988-09-28 Desitin Arzneimittel GmbH Process for producing an administration or dosage form of drugs, reagents or other active ingredients
US4821745A (en) * 1985-11-14 1989-04-18 Rosen David I Apparatus and method for overcoming the habit of tobacco smoking
US4706692A (en) 1985-12-30 1987-11-17 Philip Morris Incorporated Method and apparatus for coating reconstituted tobacco
US4880018A (en) 1986-02-05 1989-11-14 R. J. Reynolds Tobacco Company Extruded tobacco materials
US4724850A (en) * 1986-02-05 1988-02-16 R. J. Reynolds Tobacco Company Process for providing tobacco extender material
US4764378A (en) 1986-02-10 1988-08-16 Zetachron, Inc. Buccal drug dosage form
GB8704196D0 (en) 1987-02-23 1987-04-01 British American Tobacco Co Tobacco reconstitution
US4708151A (en) 1986-03-14 1987-11-24 R. J. Reynolds Tobacco Company Pipe with replaceable cartridge
US4771795A (en) 1986-05-15 1988-09-20 R. J. Reynolds Tobacco Company Smoking article with dual burn rate fuel element
US4713243A (en) 1986-06-16 1987-12-15 Johnson & Johnson Products, Inc. Bioadhesive extruded film for intra-oral drug delivery and process
GB8615676D0 (en) 1986-06-26 1986-07-30 Stoppers Co Ltd Nicotine containing lozenge
JPS6368798A (en) * 1986-09-09 1988-03-28 Ebara Corp Submersible pump
JPH0356240Y2 (en) * 1986-10-24 1991-12-17
US4754767A (en) 1986-11-21 1988-07-05 R. J. Reynolds Tobacco Company Tobacco material processing
US4824681A (en) * 1986-12-19 1989-04-25 Warner-Lambert Company Encapsulated sweetener composition for use with chewing gum and edible products
US4911934A (en) * 1986-12-19 1990-03-27 Warner-Lambert Company Chewing gum composition with encapsulated sweetener having extended flavor release
US5130132A (en) 1987-01-15 1992-07-14 Vladimir Badmajew Composition and method for treating nicotine dependency
US4819665A (en) 1987-01-23 1989-04-11 R. J. Reynolds Tobacco Company Aerosol delivery article
US4907805A (en) 1987-01-29 1990-03-13 Watkins Derrall W Ring puzzle game
GB8704197D0 (en) * 1987-02-23 1987-04-01 British American Tobacco Co Tobacco reconstitution
GB8713645D0 (en) 1987-06-11 1987-07-15 Imp Tobacco Ltd Smoking device
CN1009801B (en) 1987-08-04 1990-10-03 于劲前 Transportation and accident lifesaving apparatus for high building
US4795641A (en) * 1987-08-20 1989-01-03 Eastman Kodak Company Polymer blends having reverse phase morphology for controlled delivery of bioactive agents
US4917161A (en) * 1987-10-06 1990-04-17 Helme Tobacco Company Chewing tobacco composition and process for producing the same
US4807648A (en) * 1987-12-21 1989-02-28 Tripar Incorporated Non-burning tobacco substitute
US4936920A (en) * 1988-03-09 1990-06-26 Philip Morris Incorporated High void volume/enhanced firmness tobacco rod and method of processing tobacco
JPH069497B2 (en) 1988-04-28 1994-02-09 大日精化工業株式会社 Cigarette molding, manufacturing method thereof, and cigarette
US5081158A (en) * 1988-05-02 1992-01-14 Zila Pharmaceuticals, Inc. Compositions and in situ methods for forming films on body tissue
US4985260A (en) * 1988-05-06 1991-01-15 Vitas Niaura Food body with surface color indicia
US4917924A (en) * 1988-12-16 1990-04-17 Viskase Corporation Food body with surface color indicia
US4981522A (en) * 1988-07-22 1991-01-01 Philip Morris Incorporated Thermally releasable flavor source for smoking articles
DE3827561C1 (en) 1988-08-13 1989-12-28 Lts Lohmann Therapie-Systeme Gmbh & Co Kg, 5450 Neuwied, De
US5244668A (en) 1988-10-14 1993-09-14 Zetachron, Inc. Low-melting moldable pharmaceutical excipient and dosage forms prepared therewith
US4955399A (en) 1988-11-30 1990-09-11 R. J. Reynolds Tobacco Company Smoking article
JPH0645536B2 (en) 1989-01-31 1994-06-15 日東電工株式会社 Oral mucosa patch and oral mucosa patch preparation
CA1328394C (en) 1989-04-03 1994-04-12 Bruce E. Banyai Stable biodegradable foam
EP0399252A3 (en) 1989-05-22 1992-04-15 R.J. Reynolds Tobacco Company Smoking article with improved insulating material
US5089307A (en) * 1989-05-23 1992-02-18 Mitsubishi Rayon Co., Ltd. Edible film and method of making same
US5129409A (en) 1989-06-29 1992-07-14 R. J. Reynolds Tobacco Company Extruded cigarette
DK365389D0 (en) * 1989-07-24 1989-07-24 Fertin Lab As ANTIFUNGAL CHEMICAL GUM PREPARATION
NO168921C (en) * 1989-07-31 1992-04-22 Svein Knudsen SMOKE-FREE Cigarette replacement for use in smoking cessation OR FOR USE IN SMOKE-FREE ENVIRONMENTS
US5824334A (en) 1989-09-05 1998-10-20 University Of Utah Research Foundation Tobacco substitute
US4987906A (en) * 1989-09-13 1991-01-29 R. J. Reynolds Tobacco Company Tobacco reconstitution process
US5101839A (en) * 1990-08-15 1992-04-07 R. J. Reynolds Tobacco Company Cigarette and smokable filler material therefor
US5525351A (en) * 1989-11-07 1996-06-11 Dam; Anders Nicotine containing stimulant unit
US5019403A (en) 1989-12-13 1991-05-28 The United States Of America As Represented By The Secretary Of Agriculture Coatings for substrates including high moisture edible substrates
SE8904295D0 (en) 1989-12-21 1989-12-21 Pharmacia Ab SMOKING SUBSTITUTE
US5099864A (en) * 1990-01-05 1992-03-31 R. J. Reynolds Tobacco Company Tobacco reconstitution process
JPH0740907B2 (en) * 1990-01-30 1995-05-10 日本たばこ産業株式会社 Sheet tobacco manufacturing method and apparatus
DE4005656C2 (en) * 1990-02-22 1994-05-26 Bat Cigarettenfab Gmbh Method and device for producing a tobacco film
US5183062A (en) 1990-02-27 1993-02-02 R. J. Reynolds Tobacco Company Cigarette
DE59004144D1 (en) 1990-04-03 1994-02-17 Paul Braendli Means to stop smoking.
EP0527153B1 (en) 1990-04-04 1996-07-24 Berwind Pharmaceutical Services, Inc. Aqueous maltodextrin and cellulosic polymer film coatings
GB9009390D0 (en) 1990-04-26 1990-06-20 Smith Kline French Lab Pharmaceutical compositions
US5307821A (en) 1990-04-27 1994-05-03 Asahi Glass Company Ltd. Tobacco raw material and method for its production
DE4018247A1 (en) 1990-06-07 1991-12-12 Lohmann Therapie Syst Lts MANUFACTURING METHOD FOR QUICK-DISINFITTING FILM-SHAPED PHARMACEUTICAL FORMS
US5186185A (en) * 1990-07-06 1993-02-16 Japan Tobacco Inc. Flavoring granule for tobacco products and a preparation method thereof
US5240014A (en) 1990-07-20 1993-08-31 Philip Morris Incorporated Catalytic conversion of carbon monoxide from carbonaceous heat sources
US5484604A (en) * 1990-07-21 1996-01-16 Chatfield Pharmaceuticals Limited Cross-linked alginate transdermal medicine delivery devices
US5147654A (en) 1990-07-23 1992-09-15 Alza Corporation Oral osmotic device for delivering nicotine
US5048544A (en) 1990-08-10 1991-09-17 Robert Mascarelli Cigarette substitute
US5327917A (en) 1990-08-15 1994-07-12 R. J. Reynolds Tobacco Company Method for providing a reconstituted tobacco material
US5105837A (en) 1990-08-28 1992-04-21 R. J. Reynolds Tobacco Company Smoking article with improved wrapper
US5488962A (en) * 1990-10-10 1996-02-06 Perfetti, S.P.A. Chewing gum which is a substitute for tobacco smoke
US5144967A (en) 1990-10-22 1992-09-08 Kimberly-Clark Corporation Flavor release material
US5144966A (en) 1990-12-11 1992-09-08 Philip Morris Incorporated Filamentary flavorant-release additive for smoking compositions
US5247949A (en) 1991-01-09 1993-09-28 Philip Morris Incorporated Method for producing metal carbide heat sources
US5205106A (en) * 1991-03-04 1993-04-27 General Mills, Inc. Rolled food item fabricating apparatus and methods
US5135753A (en) 1991-03-12 1992-08-04 Pharmetrix Corporation Method and therapeutic system for smoking cessation
US5240016A (en) 1991-04-19 1993-08-31 Philip Morris Incorporated Thermally releasable gel-based flavor source for smoking articles
GB9108604D0 (en) * 1991-04-22 1991-06-05 Nadreph Ltd Gel products and a process for making them
US5146934A (en) 1991-05-13 1992-09-15 Philip Morris Incorporated Composite heat source comprising metal carbide, metal nitride and metal
USD335934S (en) 1991-05-16 1993-05-25 Howard Ralph E Tobacco-impregnated toothpick
GB9111148D0 (en) 1991-05-23 1991-07-17 British American Tobacco Co Improvements relating to polymer viscosity and application of such polymers
DE4117307C1 (en) 1991-05-27 1992-06-04 B.A.T. Cigarettenfabriken Gmbh, 2000 Hamburg, De
US5197494A (en) * 1991-06-04 1993-03-30 R.J. Reynolds Tobacco Company Tobacco extraction process
US5178167A (en) 1991-06-28 1993-01-12 R. J. Reynolds Tobacco Company Carbonaceous composition for fuel elements of smoking articles and method of modifying the burning characteristics thereof
JPH0524353A (en) 1991-07-25 1993-02-02 Ricoh Co Ltd Heat-sensitive recording paper
JPH07501103A (en) * 1991-11-12 1995-02-02 ネペラ インコーポレイテッド Adhesive hydrogel with long service life and its preparation method
SE468743B (en) 1991-11-14 1993-03-15 Gudmar Olovson DEVICE FOR SMOKING WASTE
JP3232488B2 (en) 1992-08-20 2001-11-26 株式会社林原生物化学研究所 High content of pullulan, its production method and use
US5358765A (en) 1992-03-04 1994-10-25 Viskase Corporation Cellulosic article containing an olefinic oxide polymer and method of manufacture
US5286502A (en) 1992-04-21 1994-02-15 Wm. Wrigley Jr. Company Use of edible film to prolong chewing gum shelf life
US5393528A (en) 1992-05-07 1995-02-28 Staab; Robert J. Dissolvable device for contraception or delivery of medication
US5518730A (en) 1992-06-03 1996-05-21 Fuisz Technologies Ltd. Biodegradable controlled release flash flow melt-spun delivery system
US5783126A (en) * 1992-08-11 1998-07-21 E. Khashoggi Industries Method for manufacturing articles having inorganically filled, starch-bound cellular matrix
US5800647A (en) 1992-08-11 1998-09-01 E. Khashoggi Industries, Llc Methods for manufacturing articles from sheets having a highly inorganically filled organic polymer matrix
US5508072A (en) 1992-08-11 1996-04-16 E. Khashoggi Industries Sheets having a highly inorganically filled organic polymer matrix
US5810961A (en) 1993-11-19 1998-09-22 E. Khashoggi Industries, Llc Methods for manufacturing molded sheets having a high starch content
US5411945A (en) 1992-08-29 1995-05-02 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Pullulan binder and its uses
CN1072579A (en) * 1992-09-28 1993-06-02 李瀚旻 Disposable micro-multistage liquid containing filter tip for cigarette
FR2699406B1 (en) 1992-12-21 1995-03-10 Commissariat Energie Atomique Films based on copolymers, their applications in transdermal systems and their preparation processes.
US5441060A (en) 1993-02-08 1995-08-15 Duke University Dry powder delivery system
US5411746A (en) * 1993-02-24 1995-05-02 Warner-Jenkinson Company, Inc. Dye compositions and methods for film coating tablets and the like
US6001346A (en) 1993-02-25 1999-12-14 The Regents Of The University Of California Aqueous emulsion comprising biodegradable carrier for insect pheromones and methods for controlled release thereof
JPH0744622U (en) * 1993-03-30 1995-11-28 忠司 徳山 Candy with pipe
JPH0744622A (en) 1993-06-29 1995-02-14 Sharp Corp Table calculating device
US6616958B1 (en) 1993-07-07 2003-09-09 Jack Guttman, Inc. Method of making and using an edible film for decorating foodstuffs
US5520924A (en) 1993-07-09 1996-05-28 Mizu Systems Corporation Methods and articles for administering drug to the oral cavity
IT1266565B1 (en) * 1993-07-22 1997-01-09 Ct Lab Farm Srl PHARMACEUTICAL COMPOSITIONS WITH CONTROLLED RELEASE ON THE BASIS OF ONE OR MORE PHARMACEUTICALLY ACCEPTABLE SALTS OF THE RANGE-HYDROXY-BUTYRIC ACID.
US5387416A (en) * 1993-07-23 1995-02-07 R. J. Reynolds Tobacco Company Tobacco composition
US5549906A (en) * 1993-07-26 1996-08-27 Pharmacia Ab Nicotine lozenge and therapeutic method for smoking cessation
EP0636322B1 (en) 1993-07-31 2000-12-06 Hauni Maschinenbau Aktiengesellschaft Feeding device for producing an uniform layer
US5362496A (en) * 1993-08-04 1994-11-08 Pharmetrix Corporation Method and therapeutic system for smoking cessation
US6631722B2 (en) 1993-09-30 2003-10-14 British-American Tobacco Company Limited Tobacco smoke filter elements
SE9303574D0 (en) 1993-11-01 1993-11-01 Kabi Pharmacia Ab Composition for drug delivery and method of manufacturing thereof
FR2712094B1 (en) 1993-11-02 1995-12-01 Thomson Csf Method for determining the range of ambiguity in distance from radar echoes.
US6083586A (en) 1993-11-19 2000-07-04 E. Khashoggi Industries, Llc Sheets having a starch-based binding matrix
DE4341442C2 (en) 1993-12-04 1998-11-05 Lohmann Therapie Syst Lts Device for the controlled release of active substances and their use
CN1037317C (en) 1994-01-13 1998-02-11 孙来顺 Health-type chewing tobacco
US5547693A (en) 1994-03-02 1996-08-20 The Regents Of The University Of California Method of preserving natural color on fresh and minimally processed fruits and vegetables
US5599583A (en) * 1994-05-27 1997-02-04 Micro Flo Company Encapsulation with water soluble polymer
US5543164A (en) 1994-06-17 1996-08-06 The Regents Of The University Of California Water-insoluble protein-based edible barrier coatings and films
MA23587A1 (en) 1994-06-23 1995-12-31 Procter & Gamble TREATMENT OF NEED FOR NICOTINE AND / OR SMOKING-RELATED SYNDROME
NL9401037A (en) 1994-06-23 1996-02-01 Soonn Stichting Onderzoek En O Process for preparing a biodegradable polyhydroxyalkanoate coating using an aqueous dispersion of polyhydroxyalkanoate.
AU2703795A (en) * 1994-06-23 1996-01-19 Procter & Gamble Company, The Treatment of nicotine craving and/or smoking withdrawal symptoms with a transdermal or transmucosal composition containing nicotine and caffeine or xanthine
GB9414889D0 (en) 1994-07-23 1994-09-14 Imp Tobacco Co Ltd Tobacco reconstitution
US5533530A (en) 1994-09-01 1996-07-09 R. J. Reynolds Tobacco Company Tobacco reconstitution process
HU227234B1 (en) 1994-09-07 2010-11-29 British American Tobacco Co Smoking article, smoking article wrapper and process for producing thereof
US5666979A (en) * 1994-09-29 1997-09-16 Chase; Gene Cigar substitute
US5584306A (en) 1994-11-09 1996-12-17 Beauman; Emory Reconstituted tobacco material and method of its production
US5810018A (en) 1994-12-29 1998-09-22 Monte; Woodrow C. Method, composition and apparatus for reducing the incidence of cigarette smoking
DE19500977C2 (en) 1995-01-14 1999-01-07 Lohmann Therapie Syst Lts Solid drug form with active ingredient distributed in polymeric material
DE19503336C2 (en) 1995-02-02 1998-07-30 Lohmann Therapie Syst Lts Pharmaceutical form for delivering active substances to wounds, process for their preparation and their use
US6082368A (en) 1995-05-08 2000-07-04 Brown; Graham H. Nicotine candy cigarette
CH689198A5 (en) 1995-08-30 1998-12-15 Hanspeter Baldauf Toothpick.
US5811126A (en) 1995-10-02 1998-09-22 Euro-Celtique, S.A. Controlled release matrix for pharmaceuticals
JP2791317B2 (en) 1995-12-26 1998-08-27 株式会社三和化学研究所 Multilayer film preparation
US5747648A (en) 1996-03-12 1998-05-05 Midwest Grain Products Modified wheat glutens and use thereof in fabrication of films
ES2217410T3 (en) 1996-04-16 2004-11-01 Novartis Consumer Health S.A. ORAL DOSAGE FORM OF FAST DISINTEGRATION.
EP0906089B1 (en) 1996-05-13 2003-08-27 Novartis Consumer Health S.A. Buccal delivery system
JPH1043211A (en) 1996-08-07 1998-02-17 Kenichi Suzuki Manufacturing method and device for toothpick
SE506146C2 (en) 1996-08-26 1997-11-17 Swedish Match Sverige Ab Device for packaging of finely divided, moistened tobacco material
AU717633B2 (en) 1996-09-09 2000-03-30 Kiwitech Limited Acid casein or a non-toxic soluble salt thereof and high-methoxyl pectin polymer
CN2256216Y (en) * 1996-09-29 1997-06-18 赵康修 Cigarette product
US5800832A (en) 1996-10-18 1998-09-01 Virotex Corporation Bioerodable film for delivery of pharmaceutical compounds to mucosal surfaces
DE19646392A1 (en) 1996-11-11 1998-05-14 Lohmann Therapie Syst Lts Preparation for use in the oral cavity with a layer containing pressure-sensitive adhesive, pharmaceuticals or cosmetics for dosed delivery
US6083582A (en) 1996-11-13 2000-07-04 Regents Of The University Of Minnesota Cellulose fiber based compositions and film and the process for their manufacture
US5817381A (en) 1996-11-13 1998-10-06 Agricultural Utilization Research Institute Cellulose fiber based compositions and film and the process for their manufacture
DE19704737A1 (en) 1997-02-07 1998-08-13 Kalle Nalo Gmbh Edible moldings, especially flat and tubular films
US5845648A (en) * 1997-06-03 1998-12-08 Martin; John E. Multi-compartment expandable filter for a smoking product
AU8578498A (en) 1997-07-23 1999-02-16 Perio Products Ltd. Tannic acid-polymer compositions for controlled release of pharmaceutical agents, particularly in the oral cavity
US20030176467A1 (en) 1997-09-25 2003-09-18 Sven Andersson Nicotine compositions
SE9703458D0 (en) 1997-09-25 1997-09-25 Pharmacia & Upjohn Ab Nicotine compositions and methods of formulation thereof
JP3460538B2 (en) 1997-10-08 2003-10-27 救急薬品工業株式会社 Fast dissolving film preparation
EP1028713A1 (en) 1997-11-12 2000-08-23 The Dow Chemical Company A process for making a free-flowing, dust-free, cold water dispersible, edible, film-coating composition
US5947128A (en) 1997-12-08 1999-09-07 Brown & Williamson Tobacco Corporation Method for making a reconstituted tobacco sheet using steam exploded tobacco
US5908034A (en) 1997-12-08 1999-06-01 Brown & Williamson Tobacco Corporation Method for making a band cast reconstituted tobacco sheet using steam exploded tobacco
US6082370A (en) 1998-02-09 2000-07-04 Rousseau Research, Inc. Cigarette with dry powered Vitamin E
EA002711B1 (en) 1998-02-09 2002-08-29 Руссо Рисеч, Инк. Tobacco products with vitamin e
US5962053A (en) 1998-02-17 1999-10-05 Viskase Corporation Edible film and method
US20020008751A1 (en) 1998-03-25 2002-01-24 Stephen L. Spurgeon Decorating system for edible items
US6211194B1 (en) 1998-04-30 2001-04-03 Duke University Solution containing nicotine
US6273095B1 (en) * 1998-07-20 2001-08-14 Jong-Pyng Hsu Cigarette filter which removes carcinogens and toxic chemicals
US6344222B1 (en) * 1998-09-03 2002-02-05 Jsr Llc Medicated chewing gum delivery system for nicotine
US6596298B2 (en) * 1998-09-25 2003-07-22 Warner-Lambert Company Fast dissolving orally comsumable films
US20030211136A1 (en) 1998-09-25 2003-11-13 Neema Kulkarni Fast dissolving orally consumable films containing a sweetener
US20030206942A1 (en) 1998-09-25 2003-11-06 Neema Kulkarni Fast dissolving orally consumable films containing an antitussive and a mucosa coating agent
US6224897B1 (en) 1998-09-29 2001-05-01 Novartis Consumer Health S.A. Methods to abate the use of tobacco by humans
SE9803986D0 (en) 1998-11-23 1998-11-23 Pharmacia & Upjohn Ab New compositions
IL127396A0 (en) 1998-12-03 1999-10-28 Univ Ben Gurion A sustained-release polysaccharide-protein water insoluble bead and a process for preparing the same
US6627234B1 (en) 1998-12-15 2003-09-30 Wm. Wrigley Jr. Company Method of producing active agent coated chewing gum products
US6552024B1 (en) 1999-01-21 2003-04-22 Lavipharm Laboratories Inc. Compositions and methods for mucosal delivery
US6041789A (en) * 1999-01-28 2000-03-28 K&B Technologies, L.L.C. Cigarette substitute device and composition for use therein
US6723342B1 (en) 1999-02-08 2004-04-20 Fmc Corporation Edible coating composition
US6432448B1 (en) * 1999-02-08 2002-08-13 Fmc Corporation Edible coating composition
US6210699B1 (en) * 1999-04-01 2001-04-03 Watson Pharmaceuticals, Inc. Oral transmucosal delivery of drugs or any other ingredients via the inner buccal cavity
US6248760B1 (en) 1999-04-14 2001-06-19 Paul C Wilhelmsen Tablet giving rapid release of nicotine for transmucosal administration
US6583160B2 (en) 1999-04-14 2003-06-24 Steve Smith Nicotine therapy method and oral carrier for assuaging tobacco-addiction
GB9910505D0 (en) 1999-05-06 1999-07-07 Electrosols Ltd A method and apparatus for manufacturing consumable tablets
US6231957B1 (en) 1999-05-06 2001-05-15 Horst G. Zerbe Rapidly disintegrating flavor wafer for flavor enrichment
DE19925613A1 (en) 1999-06-04 2000-12-07 Lohmann Therapie Syst Lts Composite laminate and process for its manufacture
ATE297433T1 (en) 1999-07-22 2005-06-15 Warner Lambert Co FILM-FORMING COMPOSITIONS FROM PULLULAN
US6117096A (en) * 1999-08-19 2000-09-12 Hassard; Peter K. Lower spine protector
US6280769B1 (en) 1999-09-13 2001-08-28 Nabisco, Inc. Breath freshening comestible product
US6379726B1 (en) * 1999-10-20 2002-04-30 The United States Of America As Represented By The Department Of Agriculture Edible, water-solubility resistant casein masses
US6264981B1 (en) 1999-10-27 2001-07-24 Anesta Corporation Oral transmucosal drug dosage using solid solution
US6500462B1 (en) 1999-10-29 2002-12-31 Fmc Corporation Edible MCC/PGA coating composition
US6326022B1 (en) 1999-11-04 2001-12-04 Harry S. Katz Slow-release disposable elastomeric buccal devices
DE19954245A1 (en) * 1999-11-11 2001-07-19 Lohmann Therapie Syst Lts Multi-layer film-like preparation made of hydrophilic polymers for the rapid release of active ingredients
WO2001037814A1 (en) 1999-11-23 2001-05-31 Robert Gordon University Bilayered buccal tablets comprising nicotine
US6742525B2 (en) 1999-12-07 2004-06-01 Blunt Wrap U.S.A., Inc. Tobacco product
EP1120109A3 (en) 2000-01-24 2002-07-10 Pfizer Products Inc. Rapidly disintegrating and fast dissolving solid dosage form
US7067116B1 (en) 2000-03-23 2006-06-27 Warner-Lambert Company Llc Fast dissolving orally consumable solid film containing a taste masking agent and pharmaceutically active agent at weight ratio of 1:3 to 3:1
US6936291B1 (en) 2000-03-28 2005-08-30 Michael K. Weibel Method of producing edible cellulosic films
US6749882B2 (en) 2000-05-17 2004-06-15 Stephen Fortune, Jr. Coffee having a nicotine composition dissolved therein
AU2001261744A1 (en) * 2000-05-19 2001-12-03 Npd Llc Chewing gums, lozenges, candies, tablets, liquids, and sprays for efficient delivery of medications and dietary supplements
US6528088B1 (en) 2000-06-01 2003-03-04 A. E. Staley Manufacturing Co. Highly flexible starch-based films
PE20020102A1 (en) 2000-06-30 2002-03-06 Procter & Gamble TOPICAL ORAL COMPOSITION INCLUDING A MODULATING AGENT OF THE HOST RESPONSE TO PERIODONTAL PATHOGENS
WO2003009834A1 (en) * 2000-08-17 2003-02-06 Battey Alyce S Oral delivery of pharmaceuticals via encapsulation
US6660302B1 (en) 2000-09-06 2003-12-09 Chr. Hansen, Inc. Dry-powder film coating composition and method of preparation
US6576298B2 (en) 2000-09-07 2003-06-10 Ecolab Inc. Lubricant qualified for contact with a composition suitable for human consumption including a food, a conveyor lubrication method and an apparatus using droplets or a spray of liquid lubricant
US20020119192A1 (en) 2000-09-22 2002-08-29 Vishwanathan Narayanan Badri Controlled release formulations for oral administration
EP1331960A2 (en) 2000-11-03 2003-08-06 Recovery Pharmaceuticals, Inc. Device and method for the cessation of smoking
US6932861B2 (en) 2000-11-28 2005-08-23 Fmc Corporation Edible PGA coating composition
IL155959A0 (en) * 2000-11-28 2003-12-23 Fmc Corp Edible pga (propylene glycol alginate) coating composition
US20020131990A1 (en) 2000-11-30 2002-09-19 Barkalow David G. Pullulan free edible film compositions and methods of making the same
US6479076B2 (en) 2001-01-12 2002-11-12 Izhak Blank Nicotine delivery compositions
ES2317990T3 (en) 2001-02-09 2009-05-01 New Chapter, Inc. COMPOSITION AND METHOD FOR SMOKE DETOXIFICATION.
JP2004522802A (en) 2001-02-16 2004-07-29 ラヴィファーム・ラボラトリーズ・インク Water-soluble and savory complex
JP4354700B2 (en) 2001-03-23 2009-10-28 ガムリンク エー/エス Coated degradable chewing gum with improved shelf life and process for its preparation
FR2822471B1 (en) * 2001-03-26 2003-06-13 Roquette Freres METHOD OF COOKING / DRYING AMYLOSE-RICH STARCHES
BR0208382A (en) 2001-03-26 2004-06-15 Smithkline Beecham Corp Nicotine-containing oral dosage form
US20020170567A1 (en) 2001-04-06 2002-11-21 John Rizzotto Chewable flavor delivery system
WO2002085119A1 (en) * 2001-04-20 2002-10-31 Lavipharm Laboratories Inc. Intraoral delivery of nicotine for smoking cessation
CN1462194B (en) 2001-04-24 2013-04-24 琳得科株式会社 Oral preparations and supports for oral preparations
US20040020503A1 (en) * 2001-05-01 2004-02-05 Williams Jonnie R. Smokeless tobacco product
US6668839B2 (en) 2001-05-01 2003-12-30 Jonnie R. Williams Smokeless tobacco product
MXPA03010006A (en) * 2001-05-01 2005-03-07 Regent Court Technologies Llc Smokeless tobacco product.
US6899897B2 (en) * 2001-06-18 2005-05-31 Jaleva, Inc. Gum resin as a carrier for topical application of pharmacologically active agents
US6660292B2 (en) * 2001-06-19 2003-12-09 Hf Flavoring Technology Llp Rapidly disintegrating flavored film for precooked foods
US6656493B2 (en) * 2001-07-30 2003-12-02 Wm. Wrigley Jr. Company Edible film formulations containing maltodextrin
US6419903B1 (en) 2001-08-20 2002-07-16 Colgate Palmolive Company Breath freshening film
JP5089840B2 (en) 2001-09-25 2012-12-05 救急薬品工業株式会社 Nicotine-containing film preparation
SE0103210D0 (en) 2001-09-27 2001-09-27 Pharmacia Ab New formulations and use thereof
SE0103211D0 (en) 2001-09-27 2001-09-27 Pharmacia Ab New formulations and use thereof
US6953040B2 (en) 2001-09-28 2005-10-11 U.S. Smokeless Tobacco Company Tobacco mint plant material product
US7032601B2 (en) 2001-09-28 2006-04-25 U.S. Smokeless Tobacco Company Encapsulated materials
CN100408029C (en) 2001-09-28 2008-08-06 麦克内尔-Ppc股份有限公司 Composite dosage forms with a coating portion
US7666337B2 (en) * 2002-04-11 2010-02-23 Monosol Rx, Llc Polyethylene oxide-based films and drug delivery systems made therefrom
US7425292B2 (en) 2001-10-12 2008-09-16 Monosol Rx, Llc Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom
US20030111088A1 (en) 2001-10-29 2003-06-19 Addiction Therapies, Inc. Device and method for treating combination dependencies
US20040037879A1 (en) 2001-11-02 2004-02-26 Adusumilli Prasad S. Oral controlled release forms useful for reducing or preventing nicotine cravings
US20030099691A1 (en) 2001-11-16 2003-05-29 Susan Lydzinski Films containing starch
WO2003043659A1 (en) 2001-11-16 2003-05-30 Givaudan Sa Edible film
GB0130627D0 (en) 2001-12-21 2002-02-06 British American Tobacco Co Improvements relating to smokable filler materials
US7887838B2 (en) * 2002-01-18 2011-02-15 Banner Pharmacaps, Inc. Non-gelatin film and method and apparatus for producing same
US20050008735A1 (en) * 2002-02-11 2005-01-13 Pearce Tony M. Chocolate polymer snacks
US20030224090A1 (en) 2002-02-11 2003-12-04 Edizone, Lc Snacks of orally soluble edible films
US20040247744A1 (en) 2002-02-11 2004-12-09 Edizone, Lc Vitamin-containing orally soluble films
US20040247649A1 (en) 2002-02-11 2004-12-09 Edizone, Lc Medicine-containing orally soluble films
US7105173B1 (en) 2002-03-21 2006-09-12 Rolling Kenneth J Nicotine replacement applique
JP2003310179A (en) 2002-04-19 2003-11-05 Ajinomoto Co Inc Nutraceutical chips and method for producing the same
KR20030089047A (en) 2002-05-16 2003-11-21 주식회사 엘지생활건강 Composition for enhancing oral health
US20030235630A1 (en) 2002-06-21 2003-12-25 Nussen Kenneth H. Dental hygiene products and methods of making dental hygiene products
US7632525B2 (en) * 2002-06-25 2009-12-15 Wm. Wrigley Jr. Company Breath freshening and oral cleansing product with magnolia bark extract in combination with surface active agents
US7347985B2 (en) 2002-06-25 2008-03-25 Wm. Wrigley Jr. Company Breath freshening and oral cleansing product with magnolia bark extract
CN102008000A (en) 2002-06-25 2011-04-13 Wm.雷格利Jr.公司 Breath freshening and oral cleansing product with magnolia bark extract
CN100334979C (en) 2002-07-18 2007-09-05 法塞克斯公司 Reduction of constituents in tobacco
CA2505796C (en) 2002-07-22 2012-01-03 Monosolrx Llc Packaging and dispensing of rapid dissolve dosage form
US20040018156A1 (en) 2002-07-23 2004-01-29 Szeles Lori H Enzyme enhanced breath freshening film
EP1545480A1 (en) 2002-08-27 2005-06-29 Wm. Wrigley Jr. Company Breath freshening and oral cleansing product using citral
CA2495057A1 (en) 2002-08-27 2004-03-11 Wm. Wrigley Jr. Company Breath freshening and oral cleansing product
WO2004019871A2 (en) 2002-08-27 2004-03-11 Wm. Wrigley Jr. Company Breath freshening and oral cleansing product using geraniol
WO2004019870A2 (en) 2002-08-27 2004-03-11 Wm. Wrigley Jr. Company Breath freshening and oral cleansing product using salicylaldehyde
US20040043134A1 (en) * 2002-08-27 2004-03-04 Corriveau Christine Leclair Rolled edible thin film products and methods of making same
WO2004019867A2 (en) 2002-08-27 2004-03-11 Wm. Wrigley Jr. Company Breath freshening and oral cleansing product using cardamom oil
WO2004019802A2 (en) 2002-08-27 2004-03-11 Wm. Wrigley Jr. Company Breath freshening and oral cleansing product using carvacrol
WO2004019885A2 (en) 2002-08-29 2004-03-11 Linguagen Corp. Fast dissolving film delivery of nucleotides that inhibit the unpleasant taste of bitter tasting medications
US20040120991A1 (en) 2002-09-07 2004-06-24 Mars Incorporated Edible films having distinct regions
US20040052853A1 (en) 2002-09-16 2004-03-18 Cp Kelco, U.S., Inc. Pectin films
US20040107971A1 (en) 2002-09-17 2004-06-10 Abhijit De Gum based chewing product and process for preparing the same
US20040087467A1 (en) 2002-10-30 2004-05-06 Reg Macquarrie Edible dissolving gelatin strips
AU2002350090A1 (en) 2002-10-31 2004-06-07 Recovery Pharmaceuticals, Inc. Device and method for treating combination dependencies
ITMI20022343A1 (en) 2002-11-05 2004-05-06 Biofarm Srl FAST DISSOLUTION FILM IN WATER, CONTAINING COSMETIC, AROMATIC, PHARMACEUTICAL OR FOOD SYSTEMS.
US20040131662A1 (en) 2003-11-12 2004-07-08 Davidson Robert S. Method and apparatus for minimizing heat, moisture, and shear damage to medicants and other compositions during incorporation of same with edible films
CA2505833A1 (en) 2002-11-14 2004-06-03 Innozen, Inc. Edible film for relief of cough or symptoms associated with pharyngitis
US20060035008A1 (en) 2002-11-14 2006-02-16 Givaudan Sa Edible film containing food acid
US20040141927A1 (en) 2002-11-14 2004-07-22 Johnson Sonya S. Oral products containing novel flavor composition
US20040096569A1 (en) 2002-11-15 2004-05-20 Barkalow David G. Edible film products and methods of making same
US20050056294A1 (en) * 2002-11-19 2005-03-17 Wanna Joseph T. Modified reconstituted tobacco sheet
US20050039767A1 (en) * 2002-11-19 2005-02-24 John-Paul Mua Reconstituted tobacco sheet and smoking article therefrom
US20040115137A1 (en) 2002-12-17 2004-06-17 Verrall Andrew P. Water-soluble film for oral administration
EP1575383B1 (en) 2002-12-19 2009-05-06 Swedish Match North Europe AB A moist snuff composition comprising at least one thickening agent and a method for its manufacture
US20040118422A1 (en) 2002-12-19 2004-06-24 Swedish Match North Europe Ab Tobacco dough and a method for its manufacture
US20040118421A1 (en) 2002-12-19 2004-06-24 Swedish Match North Europe Ab New product and a method for its manufacture
WO2004056363A2 (en) 2002-12-20 2004-07-08 Niconovum Ab A physically and chemically stable nicotine-containing particulate material
WO2004058231A2 (en) 2002-12-26 2004-07-15 University Of Manitoba Dissolving film comprising a therapeutically active agent within the film or in a pouch formed by the film
US20040208931A1 (en) 2002-12-30 2004-10-21 Friend David R Fast dissolving films for oral administration of drugs
US20040156794A1 (en) 2003-02-11 2004-08-12 Barkalow David G. Bioerodible and bioadhesive confectionery products and methods of making same
MXPA05008491A (en) 2003-02-20 2006-02-22 Bpsi Holdings Inc Pearlescent film coating systems and substrates coated therewith.
US20040166214A1 (en) 2003-02-20 2004-08-26 Gesford Pamela K. Film coatings containing pearlescent pigments and edible articles coated therewith
US20040180110A1 (en) 2003-03-14 2004-09-16 Atul Mistry Chewing gum and confectionery compositions containing an endothermic agent
CN1764434A (en) 2003-03-26 2006-04-26 宝洁公司 Rapidly dissolving edible film compositions with cellulose film forming polymers
EP1605908A2 (en) 2003-03-26 2005-12-21 The Procter & Gamble Company Rapidly dissolving edible film compositions with improved film strength and stability
US20040202698A1 (en) 2003-04-02 2004-10-14 The Procter & Gamble Company Drug delivery systems comprising an encapsulated active ingredient
AU2004233744A1 (en) 2003-05-02 2004-11-11 Warner-Lambert Company Llc Fast dissolving orally consumable films containing a modified starch for improved heat and moisture resistance
US20040241294A1 (en) 2003-05-31 2004-12-02 Barabolak Roman M. Edible films including aspartame and methods of making same
US20040258630A1 (en) 2003-06-23 2004-12-23 Boyd Thomas J. Antiplaque breath freshening consumable film
US20050088632A1 (en) 2003-07-21 2005-04-28 Sadi Sonja J. Vitasolve dissolving film strips with supplements pharmaceutical drug(RX), +vitamins
US20050058609A1 (en) * 2003-07-22 2005-03-17 Alireza Nazeri Medicated toothpick
RU2351315C2 (en) 2003-07-24 2009-04-10 Смитклайн Бичам Корпорейшн Films, dissolving in mouth cavity
US20050031775A1 (en) * 2003-08-07 2005-02-10 Charles Signorino High gloss film coating and stable solution therefor
DK1663168T3 (en) 2003-09-08 2009-06-08 Mcneil Ab Nicotine formulations and their use
US20050123502A1 (en) 2003-10-07 2005-06-09 Chan Shing Y. Nicotine containing oral compositions
JP3870241B2 (en) 2003-10-10 2007-01-17 株式会社スズパック Flaky packaging
US20050079253A1 (en) 2003-10-10 2005-04-14 Hiroshi Nakamura Bilayer edible sheet
TWI343791B (en) 2003-11-03 2011-06-21 Us Smokeless Tobacco Co Flavored smokeless tobacco and methods of making
US8627828B2 (en) 2003-11-07 2014-01-14 U.S. Smokeless Tobacco Company Llc Tobacco compositions
JP4931596B2 (en) 2003-11-07 2012-05-16 ユーエス スモークレス タバコ カンパニー リミテッド ライアビリティ カンパニー Tobacco composition
JP2007511526A (en) 2003-11-13 2007-05-10 ディービーシー エルエルシー Dissolvable thin film xanthone supplement
WO2005048965A2 (en) 2003-11-13 2005-06-02 Wm. Wrigley Jr. Company Method and composition for breath freshening
KR20050048056A (en) 2003-11-18 2005-05-24 (주)케이비피 Composition for oral consumable film
US8658201B2 (en) 2004-01-30 2014-02-25 Corium International, Inc. Rapidly dissolving film for delivery of an active agent
US20050186256A1 (en) 2004-02-20 2005-08-25 Dihel Deborah L. Dissolvable film comprising an active ingredient and method of manufacture
US20050186257A1 (en) 2004-02-20 2005-08-25 Todd Manegold Dissolvable film and method of manufacture
DE102004021114A1 (en) 2004-04-29 2005-12-29 Reemtsma Cigarettenfabriken Gmbh Fine-cut partial quantity packing and method for producing fine-cut partial quantity packages
EP1773366A4 (en) * 2004-06-22 2009-11-11 E L Management Corp Dissolvable film composition
WO2006012213A2 (en) * 2004-06-25 2006-02-02 Tea Guard Llc Composition and method for delivery of phytochemicals
US20080196730A1 (en) 2004-07-02 2008-08-21 Radi Medical Systems Ab Smokeless Tobacco Product
US20060024425A1 (en) * 2004-07-30 2006-02-02 Wm. Wrigley Jr. Company Edible film compositions
US7798153B2 (en) * 2004-08-23 2010-09-21 Us Smokeless Tobacco Co. Nicotiana Kawakamii smokeless tobacco
CA2579043A1 (en) * 2004-09-02 2006-03-16 The Procter & Gamble Company Oral care composition comprising essential oils
WO2006065192A1 (en) 2004-11-12 2006-06-22 Swedish Match North Europe Ab A new oral tobacco product
US7097669B2 (en) 2004-11-18 2006-08-29 Milliken & Company Colorant compositions
JP5004947B2 (en) * 2005-04-29 2012-08-22 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Tobacco pouch products
WO2007037962A1 (en) 2005-09-22 2007-04-05 R.J. Reynolds Tobacco Company Smokeless tobacco composition
EP1928259A2 (en) 2005-09-30 2008-06-11 Wm. Wrigley Jr. Company Oral composition and method for stress reduction associated with smoking cessation
US7946296B2 (en) 2006-05-26 2011-05-24 Philip Morris Usa Inc. Dissolvable tobacco film strips and method of making the same
WO2007144687A1 (en) 2006-06-12 2007-12-21 Philip Morris Products S.A. Non-tobacco pouch product
DE602007010944D1 (en) 2006-08-01 2011-01-13 Reynolds Tobacco Co R SMOKING TOBACCO
GB0622252D0 (en) 2006-11-08 2006-12-20 British American Tobacco Co Materials and method for agglomeration of tobacco particles
JP3210945U (en) 2017-03-31 2017-06-15 ヒサ 中田 Buddhist robe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030084912A1 (en) * 2001-10-22 2003-05-08 Pera Ivo E Composition to reduce or quit smoking addiction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1691631A2 *

Cited By (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8188337B2 (en) 2001-11-13 2012-05-29 U.S. Smokeless Tobacco Company Cloning of cytochrome p450 genes from Nicotiana
US8581043B2 (en) 2001-11-13 2013-11-12 U.S. Smokeless Tobacco Company Llc Nicotiana nucleic acid molecules and uses thereof
US8058504B2 (en) 2001-11-13 2011-11-15 U.S. Smokeless Tobacco Company Cloning of cytochrome P450 genes from Nicotiana
US9322030B2 (en) 2001-11-13 2016-04-26 U.S. Smokeless Tobacco Company Llc Tobacco nicotine demethylase genomic clone and uses thereof
US10266836B2 (en) 2001-11-13 2019-04-23 U.S. Smokeless Tobacco Company Llc Tobacco nicotine demethylase genomic clone and uses thereof
US10945454B2 (en) 2003-11-07 2021-03-16 U.S. Smokeless Tobacco Company Llc Tobacco compositions
US10098376B2 (en) 2003-11-07 2018-10-16 U.S. Smokeless Tobacco Company Llc Tobacco compositions
US10765140B2 (en) 2003-11-07 2020-09-08 U.S. Smokeless Tobacco Company Llc Tobacco compositions
US10294520B2 (en) 2004-04-29 2019-05-21 U.S. Smokeless Tobacco Company Llc Nicotiana nucleic acid molecules and uses thereof
US11000059B2 (en) 2004-04-29 2021-05-11 U.S. Smokeless Tobacco Company Llc Nicotiana nucleic acid molecules and uses thereof
US8586837B2 (en) 2004-04-29 2013-11-19 U.S. Smokeless Tobacco Company Llc Nicotiana nucleic acid molecules and uses thereof
US10292416B2 (en) 2004-04-29 2019-05-21 Altria Client Services Llc Nicotiana nucleic acid molecules and uses thereof
US7798153B2 (en) 2004-08-23 2010-09-21 Us Smokeless Tobacco Co. Nicotiana Kawakamii smokeless tobacco
US9913451B2 (en) 2005-02-23 2018-03-13 North Carolina State University Alteration of tobacco alkaloid content through modification of specific cytochrome P450 genes
US9187759B2 (en) 2005-02-23 2015-11-17 North Carolina State University Alteration of tobacco alkaloid content through modification of specific cytochrome P450 genes
US10383299B2 (en) 2005-02-23 2019-08-20 North Carolina State University Alteration of tobacco alkaloid content through modification of specific cytochrome P450 genes
US11140843B2 (en) 2005-02-23 2021-10-12 North Carolina State University Alteration of tobacco alkaloid content through modification of specific cytochrome P450 genes
EP3494817B1 (en) 2005-07-19 2021-01-13 JT International SA Method and system for vaporization of substance
US11647783B2 (en) 2005-07-19 2023-05-16 Juul Labs, Inc. Devices for vaporization of a substance
JP2009508523A (en) * 2005-09-22 2009-03-05 アール・ジエイ・レイノルズ・タバコ・カンパニー Smokeless tobacco composition
US9643773B2 (en) 2005-11-21 2017-05-09 Philip Morris Usa Inc. Flavor pouch
US10065794B2 (en) 2005-11-21 2018-09-04 Philip Morris Usa Inc. Flavor pouch
US8685478B2 (en) 2005-11-21 2014-04-01 Philip Morris Usa Inc. Flavor pouch
US9139360B2 (en) 2005-11-21 2015-09-22 Philip Morris Usa Inc. Flavor pouch
US8053008B2 (en) 2005-11-21 2011-11-08 Philip Morris Usa Inc. Method of manufacturing flavor pouches
WO2007089613A3 (en) * 2006-01-31 2008-01-17 Us Smokeless Tobacco Co Nicotiana diversity
WO2007089613A2 (en) * 2006-01-31 2007-08-09 U.S. Smokeless Tobacco Company Nicotiana diversity
US7861728B2 (en) * 2006-02-10 2011-01-04 R.J. Reynolds Tobacco Company Smokeless tobacco composition having an outer and inner pouch
US8695609B2 (en) * 2006-02-10 2014-04-15 R. J. Reynolds Tobacco Company Smokeless tobacco composition
JP2009538151A (en) * 2006-05-26 2009-11-05 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Dissolvable tobacco film strip and method for producing the same
WO2008016520A3 (en) * 2006-08-01 2008-07-24 Reynolds Tobacco Co R Smokeless tobacco
US8319011B2 (en) 2006-12-15 2012-11-27 U.S. Smokeless Tobacco Company Llc Tobacco plants having reduced nicotine demethylase activity
US10597668B2 (en) 2006-12-15 2020-03-24 U.S. Smokeless Tobacco Company Llc Tobacco plants having reduced nicotine demethylase activity
US9370160B2 (en) 2006-12-15 2016-06-21 Altria Client Services Llc Tobacco inbred plants ALBEX1F and ALBEX1MS
US11970702B2 (en) 2006-12-15 2024-04-30 U.S. Smokeless Tobacco Company Llc Tobacco plants having reduced nicotine demethylase activity
US11332753B2 (en) 2006-12-15 2022-05-17 U.S. Smokeless Tobacco Company Llc Tobacco plants having reduced nicotine demethylase activity
US9173371B2 (en) 2007-02-23 2015-11-03 U.S. Smokeless Tobacco Company Tobacco compositions and methods of making
US8168855B2 (en) 2007-02-23 2012-05-01 U.S. Smokeless Tobacco Company Tobacco compositions and methods of making
US9629334B2 (en) 2007-02-23 2017-04-25 U.S. Smokeless Tobacco Company Llc Tobacco compositions and methods of making
US9888712B2 (en) 2007-06-08 2018-02-13 Philip Morris Usa Inc. Oral pouch products including a liner and tobacco beads
WO2009004487A3 (en) * 2007-06-08 2009-04-30 Philip Morris Prod Oral pouched products including tobacco beads
WO2009004487A2 (en) * 2007-06-08 2009-01-08 Philip Morris Products S.A. Oral pouched products including tobacco beads
US8701679B2 (en) 2007-07-16 2014-04-22 Philip Morris Usa Inc. Tobacco-free oral flavor delivery pouch product
US11542049B2 (en) 2007-07-16 2023-01-03 Philip Morris Usa Inc. Oral pouch product having soft edge and method of making
US9889956B2 (en) 2007-07-16 2018-02-13 Philip Morris Usa Inc. Oral pouch product having soft edge and method of making
US10640246B2 (en) 2007-07-16 2020-05-05 Philip Morris Usa Inc. Oral pouch product having soft edge and method of making
US10219537B2 (en) 2007-07-23 2019-03-05 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US10334872B2 (en) 2007-10-11 2019-07-02 Philip Morris Products S.A. Smokeless tobacco product, smokeless tobacco product in the form of a sheet, extrudable tobacco composition, method for manufacturing a smokeless tobacco product, method for delivering super bioavailable nicotine contained in tobacco to a user, and packaged smokeless tobacco product sheet
WO2009048522A1 (en) 2007-10-11 2009-04-16 Richard Fuisz Smokeless tobacco product
EP2217102A4 (en) * 2007-10-11 2017-12-27 Philip Morris Products S.A. Smokeless tobacco product
US9228194B2 (en) 2007-11-12 2016-01-05 North Carolina State University Alteration of tobacco alkaloid content through modification of specific cytochrome P450 genes
US9228195B2 (en) 2007-11-12 2016-01-05 North Carolina State University Alteration of tobacco alkaloid content through modification of specific cytochrome P450 genes
US10687490B2 (en) 2007-11-12 2020-06-23 North Carolina State University Alteration of tobacco alkaloid content through modification of specific cytochrome P450 genes
US11807859B2 (en) 2007-11-12 2023-11-07 North Carolina State University Alteration of tobacco alkaloid content through modification of specific cytochrome P450 genes
US11293031B2 (en) 2007-11-12 2022-04-05 North Carolina State University Alteration of tobacco alkaloid content through modification of specific cytochrome P450 genes
US10292353B2 (en) 2007-11-12 2019-05-21 North Carolina State University Alteration of tobacco alkaloid content through modification of specific cytochrome P450 genes
WO2009087215A2 (en) * 2008-01-10 2009-07-16 British American Tobacco (Investments) Limited Tobacco product for oral use
WO2009087215A3 (en) * 2008-01-10 2009-09-24 British American Tobacco (Investments) Limited Tobacco product for oral use
US10039312B2 (en) 2008-11-07 2018-08-07 R. J. Reynolds Tobacco Company Tobacco products and processes
US10492523B2 (en) 2008-12-17 2019-12-03 Philip Morris Usa Inc. Moist botanical pouch processing and moist oral botanical pouch products
US11963545B2 (en) 2008-12-18 2024-04-23 Philip Morris Usa Inc. Moist botanical pouch processing and moist oral botanical pouch products
EP2413971B1 (en) 2009-04-03 2022-08-10 Winnington AB Plant fiber product and method for its manufacture
EP4108261A1 (en) * 2009-04-03 2022-12-28 Winnington AB Plant fiber product and method for its manufacture
EP2413971A4 (en) * 2009-04-03 2012-10-03 Internat Aps X Plant fiber product and method for its manufacture
EP2413971A1 (en) * 2009-04-03 2012-02-08 X-International APS Plant fiber product and method for its manufacture
US10602769B2 (en) 2009-06-30 2020-03-31 Philip Morris Products S.A. Smokeless tobacco product
US9848634B2 (en) 2009-06-30 2017-12-26 Philip Morris Products S.A. Smokeless tobacco product
US10143230B2 (en) 2009-10-09 2018-12-04 Philip Morris Usa Inc. Tobacco-free pouched product containing flavor beads providing immediate and long lasting flavor release
US8640714B2 (en) 2009-11-12 2014-02-04 Philip Morris Usa Inc. Oral chewable tobacco product and method of manufacture thereof
WO2011057777A1 (en) * 2009-11-12 2011-05-19 Philip Morris Products S.A. Oral chewable tobacco product and method of manufacture thereof
US10194624B2 (en) 2010-01-15 2019-02-05 North Carolina State University Compositions and methods for minimizing nornicotine synthesis in tobacco
US10681883B2 (en) 2010-01-15 2020-06-16 North Carolina State University Compositions and methods for minimizing nornicotine synthesis in tobacco
US9247706B2 (en) 2010-01-15 2016-02-02 North Carolina State University Compositions and methods for minimizing nornicotine synthesis in tobacco
US11877556B2 (en) 2010-01-15 2024-01-23 North Carolina State University Compositions and methods for minimizing nornicotine synthesis in tobacco
US11304395B2 (en) 2010-01-15 2022-04-19 North Carolina State University Compositions and methods for minimizing nornicotine synthesis in tobacco
US10051884B2 (en) 2010-03-26 2018-08-21 Philip Morris Usa Inc. Controlled release mentholated tobacco beads
US11723395B2 (en) 2010-03-26 2023-08-15 Philip Morris Usa Inc. Controlled release mentholated tobacco beads
US9820507B2 (en) 2010-04-12 2017-11-21 Altria Client Services Llc Method of making oral pouch product
CN107568782A (en) * 2010-08-05 2018-01-12 奥驰亚客户服务公司 Compound smokeless tobacco product, system and method
RU2562784C2 (en) * 2010-08-05 2015-09-10 Олтриа Клайент Сервисиз Инк. Composite smokeless tobacco products, systems and methods
US9814261B2 (en) 2010-08-05 2017-11-14 Altria Client Services Llc Fabric having tobacco entangled with structural fibers
US9756875B2 (en) 2010-08-05 2017-09-12 Altria Client Services Llc Composite smokeless tobacco products, systems, and methods
US9066540B2 (en) 2010-08-05 2015-06-30 Altria Client Services Inc. Fabric having tobacco entangled with structural fibers
US10736354B2 (en) 2010-08-05 2020-08-11 Altria Client Services Llc Fabric having tobacco entangled with structural fibers
CN107568782B (en) * 2010-08-05 2020-10-27 奥驰亚客户服务有限责任公司 Composite smokeless tobacco products, systems, and methods
US10448669B2 (en) 2010-08-05 2019-10-22 Altria Client Services Llc Non-tobacco product having polyurethane structural fibers
US8978661B2 (en) 2010-08-05 2015-03-17 Altria Client Services Inc. Composite smokeless tobacco products, systems, and methods
US11540560B2 (en) 2010-08-05 2023-01-03 Altria Client Services Llc Fabric having tobacco entangled with structural fibers
WO2012019035A3 (en) * 2010-08-05 2012-05-31 Altria Client Services Inc. Composite smokeless tobacco products, systems, and methods
WO2012019372A1 (en) * 2010-08-09 2012-02-16 深圳市如烟生物科技有限公司 Medicinal healthcare solid electronic cigarette atomizing solution and preparation thereof
EP2606752A1 (en) * 2010-08-20 2013-06-26 Japan Tobacco Inc. Tobacco-flavor-releasing material and non-heating type tobacco flavor aspirator comprising same
EP2606752A4 (en) * 2010-08-20 2013-12-25 Japan Tobacco Inc Tobacco-flavor-releasing material and non-heating type tobacco flavor aspirator comprising same
US10039890B2 (en) 2010-08-20 2018-08-07 Japan Tobacco Inc. Tobacco-flavor-releasing material and non-heating type tobacco flavor inhalator containing same
RU2443144C1 (en) * 2010-10-11 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443157C1 (en) * 2010-10-11 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443155C1 (en) * 2010-10-11 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443160C1 (en) * 2010-10-11 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443156C1 (en) * 2010-10-11 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443166C1 (en) * 2010-10-20 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443163C1 (en) * 2010-10-20 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443171C1 (en) * 2010-10-20 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443169C1 (en) * 2010-10-20 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443164C1 (en) * 2010-10-20 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443165C1 (en) * 2010-10-20 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443162C1 (en) * 2010-10-20 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443175C1 (en) * 2010-10-27 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443177C1 (en) * 2010-10-27 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443173C1 (en) * 2010-10-27 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
RU2443172C1 (en) * 2010-10-27 2012-02-27 Олег Иванович Квасенков Method for production of non-smoking products of rustic tobacco
WO2012075035A3 (en) * 2010-12-01 2012-07-26 R. J. Reynolds Tobacco Company Smokeless tobacco pastille and moulding process for forming smokeless tobacco products
WO2012074865A1 (en) * 2010-12-01 2012-06-07 R. J. Reynolds Tobacco Company Smokeless tobacco pastille and injection molding process for forming smokeless tobacco products
US9096864B2 (en) 2011-02-28 2015-08-04 North Carolina State University Tobacco inbred plants NCBEX1F, NCBEX1MS, and NC EX90
US11904089B2 (en) 2011-08-16 2024-02-20 Juul Labs, Inc. Devices for vaporization of a substance
US9872516B2 (en) 2012-01-20 2018-01-23 Altria Client Services Llc Oral product
US9854830B2 (en) 2012-01-20 2018-01-02 Altria Client Services Llc Oral tobacco product
RU2688520C2 (en) * 2012-01-20 2019-05-21 Алтрия Клаинт Сервисиз Элэлси Product for oral administration
US9884015B2 (en) 2012-01-20 2018-02-06 Altria Client Services Llc Oral product
AU2013204417B2 (en) * 2012-01-20 2016-07-21 Altria Client Services Llc Oral Product
US10959454B2 (en) 2012-01-20 2021-03-30 Altria Client Services Llc Oral product
US9854831B2 (en) 2012-01-20 2018-01-02 Altria Client Services Llc Oral product
EP3440945A1 (en) * 2012-01-20 2019-02-13 Altria Client Services LLC Oral product
US9930909B2 (en) 2012-01-20 2018-04-03 Altria Client Services Llc Oral product
US11540554B2 (en) 2012-01-20 2023-01-03 Altria Client Services Llc Oral tobacco product
US9986756B2 (en) 2012-01-20 2018-06-05 Altria Client Services Llc Exhausted-tobacco oral product
US11864578B2 (en) 2012-01-20 2024-01-09 Altria Client Services Llc Oral product
WO2013109931A3 (en) * 2012-01-20 2014-03-13 Altria Client Services Inc. Oral product
US11541001B2 (en) 2012-01-20 2023-01-03 Altria Client Services Llc Oral product
US10602768B2 (en) 2012-01-20 2020-03-31 Altria Client Services Llc Oral tobacco product
US10631568B2 (en) 2012-01-20 2020-04-28 Altria Client Services Llc Oral product
US10639275B2 (en) 2012-01-20 2020-05-05 Altria Client Services Llc Oral product
EP4042882A1 (en) * 2012-01-20 2022-08-17 Altria Client Services LLC Oral product
US10660359B2 (en) 2012-01-20 2020-05-26 Altria Client Services Llc Oral product
US11369129B2 (en) 2012-01-20 2022-06-28 Altria Client Services Llc Oral product
EP2804498B1 (en) * 2012-01-20 2018-07-25 Altria Client Services LLC Oral product
GB2501092A (en) * 2012-04-11 2013-10-16 British American Tobacco Co Oral tobacco product
US10874134B2 (en) 2012-12-20 2020-12-29 British American Tobacco (Investments) Limited Smokeless oral tobacco product and preparation thereof
US9603335B2 (en) 2013-01-11 2017-03-28 North Carolina State University Tobacco inbred plants K326 SRC, CMS K326 SRC, K346 SRC, CMS K346 SRC, NC1562-1 SRC, NCTG-61 SRC, CMS NCTG-61 SRC and hybrid NC196 SRC
US9560830B2 (en) 2013-03-05 2017-02-07 North Carolina State University Tobacco inbred and hybrid plants and uses thereof
US11399500B2 (en) 2013-03-05 2022-08-02 North Carolina State University Tobacco inbred and hybrid plants and uses thereof
US10736292B2 (en) 2013-03-05 2020-08-11 North Carolina State University Tobacco inbred and hybrid plants and uses thereof
US10091963B2 (en) 2013-03-05 2018-10-09 North Carolina State University Tobacco inbred and hybrid plants and uses thereof
US10588339B2 (en) 2013-03-14 2020-03-17 Altria Client Services Llc Product portion enrobing machines and methods
US9414624B2 (en) 2013-03-14 2016-08-16 Altria Client Services Llc Fiber-wrapped smokeless tobacco product
US10531685B2 (en) 2013-03-14 2020-01-14 Altria Client Services Llc Product portion enrobing process and apparatus, and resulting products
US10905151B2 (en) 2013-03-14 2021-02-02 Altria Client Services Llc Fiber-wrapped smokeless tobacco product
US9462827B2 (en) 2013-03-14 2016-10-11 Altria Client Services Llc Product portion enrobing process and apparatus, and resulting products
US9693582B2 (en) 2013-03-14 2017-07-04 Altria Client Services Llc Product portion enrobing machines and methods
US20170208854A1 (en) 2013-03-14 2017-07-27 Altria Client Services Llc Product Portion Enrobing Process and Apparatus, and Resulting Products
US11723394B2 (en) 2013-03-14 2023-08-15 Altria Client Services Llc Fiber-wrapped smokeless tobacco product
US10306916B2 (en) 2013-03-14 2019-06-04 Altria Client Services Llc Product portion enrobing machines and methods
US9763473B2 (en) 2013-03-14 2017-09-19 Altria Client Services Llc Fiber-wrapped smokeless tobacco product
US11889857B2 (en) 2013-03-14 2024-02-06 Altria Client Services Llc Product portion enrobing machines and methods
US11103002B2 (en) 2013-03-14 2021-08-31 Altria Client Services Llc Product portion enrobing machines and methods
US10258076B2 (en) 2013-03-14 2019-04-16 Altria Client Services Llc Fiber-wrapped smokeless tobacco product
US11382350B2 (en) 2013-03-14 2022-07-12 Altria Client Services Llc Product portion enrobing process and apparatus, and resulting products
US11000060B2 (en) 2013-03-15 2021-05-11 Altria Client Services Llc Pouch material for smokeless tobacco and tobacco substitute products
US10463070B2 (en) 2013-03-15 2019-11-05 Altria Client Services Llc Pouch material for smokeless tobacco and tobacco substitute products
US11284643B2 (en) 2013-03-15 2022-03-29 Altria Client Services Llc Methods and machines for pouching smokeless tobacco and tobacco substitute products
US10039309B2 (en) 2013-03-15 2018-08-07 Altria Client Services Llc Pouch material for smokeless tobacco and tobacco substitute products
US10028521B2 (en) 2013-03-15 2018-07-24 Altria Client Services Llc Methods and machines for pouching smokeless tobacco and tobacco substitute products
US11375740B2 (en) 2013-03-15 2022-07-05 Altria Client Services Llc Methods and machines for pouching smokeless tobacco and tobacco substitute products
US10765142B2 (en) 2013-03-15 2020-09-08 Altria Client Services Llc Methods and machines for pouching smokeless tobacco and tobacco substitute products
US11882866B2 (en) 2013-03-15 2024-01-30 Altria Client Services Llc Pouch material for smokeless tobacco and tobacco substitute products
US11812776B2 (en) 2013-03-15 2023-11-14 Altria Client Services Llc Methods and machines for pouching smokeless tobacco and tobacco substitute products
US10813382B2 (en) 2013-03-15 2020-10-27 Altria Client Services Llc Methods and machines for pouching smokeless tobacco and tobacco substitute products
WO2015051306A1 (en) * 2013-10-03 2015-04-09 Altria Client Services Inc. Dissolvable chewable tablet
US11771127B2 (en) 2013-10-03 2023-10-03 Altria Client Services Llc Chewable dissolvable nicotine tablet
CN103549648A (en) * 2013-11-11 2014-02-05 云南烟草科学研究院 Novel tabletting type smokeless tobacco product and preparation method thereof
CN103549646A (en) * 2013-11-11 2014-02-05 云南烟草科学研究院 Orally-disintegrating-tablet-type smokeless tobacco product containing tobacco ultra-micro powder and preparation method thereof
WO2015123422A1 (en) * 2014-02-14 2015-08-20 R. J. Reynolds Tobacco Company Tobacco-containing gel composition
EP3603423A1 (en) * 2014-02-14 2020-02-05 R. J. Reynolds Tobacco Company Tobacco-containing gel composition
US9596824B2 (en) 2014-03-03 2017-03-21 North Carolina State University Tobacco inbred and hybrid plants and tobacco products made thereof
US9596822B2 (en) 2014-03-03 2017-03-21 North Carolina State University Tobacco inbred and hybrid plants and tobacco products made thereof
US9596823B2 (en) 2014-03-03 2017-03-21 North Carolina State University Tobacco inbred and hybrid plants and tobacco products made thereof
US10239089B2 (en) 2014-03-14 2019-03-26 Altria Client Services Llc Product portion enrobing process and apparatus
US10384816B2 (en) 2014-03-14 2019-08-20 Altria Client Services Llc Polymer encased smokeless tobacco products
US11731162B2 (en) 2014-03-14 2023-08-22 Altria Client Services Llc Polymer encased smokeless tobacco products
US9896228B2 (en) 2014-03-14 2018-02-20 Altria Client Services Llc Polymer encased smokeless tobacco products
US11198151B2 (en) 2014-03-14 2021-12-14 Altria Client Services Llc Polymer encased smokeless tobacco products
US10875051B2 (en) 2014-03-14 2020-12-29 Altria Client Services Llc Product portion enrobing process and apparatus
EP3125705B1 (en) * 2014-04-01 2020-07-01 R. J. Reynolds Tobacco Company Dispensing system for a tobacco-related product, and associated method
US11877590B2 (en) 2019-03-27 2024-01-23 Fiedler & Lundgren Ab Smokeless tobacco composition
WO2021048792A1 (en) * 2019-09-11 2021-03-18 R. J. Reynolds Tobacco Company Oral product with cellulosic flavor stabilizer
WO2021116890A1 (en) * 2019-12-09 2021-06-17 Nicoventures Trading Limited Liquid composition for oral use or for use in an aerosol delivery device
US11872231B2 (en) 2019-12-09 2024-01-16 Nicoventures Trading Limited Moist oral product comprising an active ingredient
US11826462B2 (en) 2019-12-09 2023-11-28 Nicoventures Trading Limited Oral product with sustained flavor release
US11793230B2 (en) 2019-12-09 2023-10-24 Nicoventures Trading Limited Oral products with improved binding of active ingredients
US11969502B2 (en) 2019-12-09 2024-04-30 Nicoventures Trading Limited Oral products
EP3837995A1 (en) * 2019-12-18 2021-06-23 Nerudia Limited A smokeless article

Also Published As

Publication number Publication date
JP5455131B2 (en) 2014-03-26
WO2005046363A3 (en) 2006-11-16
US20120199149A1 (en) 2012-08-09
US8469036B2 (en) 2013-06-25
US20200329755A1 (en) 2020-10-22
EP1691631A2 (en) 2006-08-23
BRPI0415741A (en) 2006-12-19
HK1175963A1 (en) 2013-07-19
US20090133704A1 (en) 2009-05-28
CN104397869A (en) 2015-03-11
CN102669810B (en) 2014-11-05
CN102669810A (en) 2012-09-19
TW200529772A (en) 2005-09-16
JP2012085643A (en) 2012-05-10
JP4931596B2 (en) 2012-05-16
US10765140B2 (en) 2020-09-08
AU2004289248B2 (en) 2012-05-03
JP2007515950A (en) 2007-06-21
EP1691631A4 (en) 2012-09-05
US8636011B2 (en) 2014-01-28
US20050244521A1 (en) 2005-11-03
BRPI0415741B1 (en) 2013-07-23
US20190029313A1 (en) 2019-01-31
US20090133703A1 (en) 2009-05-28
US10098376B2 (en) 2018-10-16
AU2004289248A1 (en) 2005-05-26
CN104397869B (en) 2016-06-08
TWI428093B (en) 2014-03-01

Similar Documents

Publication Publication Date Title
US20210274830A1 (en) Tobacco compositions
US20200329755A1 (en) Tobacco compositions
JP5215175B2 (en) Tobacco composition
CA2747719C (en) Tobacco granules and method of producing tobacco granules
CA2766587C (en) Smokeless tobacco product
AU2012207021B2 (en) Tobacco compositions
US11944114B2 (en) Smokeless tobacco lipid granules
AU2013248218A1 (en) Tobacco compositions
JP2024516545A (en) Sustained-release nicotine chewing gum

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006539648

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004289248

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200604406

Country of ref document: ZA

REEP Request for entry into the european phase

Ref document number: 2004800749

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004800749

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004289248

Country of ref document: AU

Date of ref document: 20041105

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004289248

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200480040041.8

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004800749

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0415741

Country of ref document: BR