WO2005045413A1 - A method of reducing interferences in an electrochemical sensor using two different applied potentials - Google Patents
A method of reducing interferences in an electrochemical sensor using two different applied potentials Download PDFInfo
- Publication number
- WO2005045413A1 WO2005045413A1 PCT/GB2004/004588 GB2004004588W WO2005045413A1 WO 2005045413 A1 WO2005045413 A1 WO 2005045413A1 GB 2004004588 W GB2004004588 W GB 2004004588W WO 2005045413 A1 WO2005045413 A1 WO 2005045413A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- working electrode
- potential
- glucose
- analyte
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/49—Systems involving the determination of the current at a single specific value, or small range of values, of applied voltage for producing selective measurement of one or more particular ionic species
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14532—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1486—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150015—Source of blood
- A61B5/150022—Source of blood for capillary blood or interstitial fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150206—Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
- A61B5/150274—Manufacture or production processes or steps for blood sampling devices
- A61B5/150282—Manufacture or production processes or steps for blood sampling devices for piercing elements, e.g. blade, lancet, canula, needle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150358—Strips for collecting blood, e.g. absorbent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150381—Design of piercing elements
- A61B5/150412—Pointed piercing elements, e.g. needles, lancets for piercing the skin
- A61B5/150435—Specific design of proximal end
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150381—Design of piercing elements
- A61B5/150503—Single-ended needles
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
- C12Q1/005—Enzyme electrodes involving specific analytes or enzymes
- C12Q1/006—Enzyme electrodes involving specific analytes or enzymes for glucose
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3271—Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
- G01N27/3274—Corrective measures, e.g. error detection, compensation for temperature or hematocrit, calibration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Definitions
- Electrochemical glucose test strips such as those used in the OneTouch ® Ultra ® whole blood testing kit, which is available from LifeScan, Inc., are designed to measure the concentration of glucose in a blood sample from patients with diabetes.
- the measurement of glucose is based upon the specific oxidation of glucose by the flavo-enzyme glucose oxidase. During this reaction, the enzyme becomes reduced. The enzyme is re-oxidised by reaction with the mediator ferricyanide, which is itself reduced during the course or the reaction.
- a redox mediator such as ferricyanide is a compound that exchanges electrons between a redox enzyme such as glucose oxidase and an electrode.
- glucose current As the concentration of glucose in the sample increases, the amount of reduced mediator formed also increases, hence, there is a direct relationship between current resulting from the re-oxidation of reduced mediator and glucose concentration.
- the transfer of " electrons across the electrical interface results in a flow of current (2 moles of electrons for every mole of glucose that is oxidized).
- the current resulting from the introduction of glucose may, therefore, be referred to as the glucose current.
- meters Because it can be very important to know the concentration of glucose in blood, particularly in people with Diabetes, meters have been developed using the principals set forth above to enable the average person to sample and test their blood to determine the glucose concentration at any given time.
- the Glucose Current generated is monitored by the meter and converted into a reading of glucose concentration using a preset algorithm that relates current to glucose concentration via a simple mathematical formula.
- the meters work in conjunction with a disposable strip that includes a sample chamber and at least two electrodes disposed within the sample chamber in addition to the enzyme (e.g. glucose oxidase) and mediator (e.g. ferricyanide).
- the user pricks their finger or other convenient site to induce bleeding and introduces a blood sample to the sample chamber, thus starting the chemical reaction set forth above.
- the function of the meter is two fold. Firstly, it provides a polarizing voltage (approximately 0.4 V in the case of OneTouch ® Ultra that polarizes the electrical interface and allows current flow at the carbon working electrode surface. Secondly, it measures the current that flows in the external circuit between the anode (working electrode) and the cathode (reference electrode).
- the meter may, therefore be considered to be a simple electrochemical system that operates in two-electrode mode although, in practice, third and, even fourth electrodes may be used to facilitate the measurement of glucose and/or perform other functions in the meter.
- the equation set forth above is considered to be a sufficient approximation of the chemical reaction taking place on the test strip and the meter reading a sufficiently accurate representation of the glucose content of the blood sample.
- it maybe advantageous to improve the accuracy of the measurement For example, where a portion of the current measured at the electrode results from the presence of other chemicals or compounds in the sample. Where such additional chemicals or compounds are present, they may be referred to as interfering compounds and the resulting additional current may be referred to as Interfering Currents
- Examples of potentially interfering chemicals include ascorbate, urate and acetaminophen (TylenolTM or Paracetamol).
- One mechanism for generating Interfering Currents in an electrochemical meter for measuring the concentration of an analyte in a physiological fluid involves the oxidation of one or more interfering compounds by reduction of the enzyme (e.g. glucose oxidase).
- a further mechanism for generating Interfering Currents in such a meter involves the oxidation of one or more interfering compounds by reduction of the mediator (e.g. ferricyanide).
- a further mechanism for generating Interfering Currents in such a meter involves the oxidation of one or more interfering compounds at the working electrode.
- the total current measured at the working electrode is the superposition of the current generated by oxidation of the analyte and the current generated by oxidation of interfering compounds.
- Oxidation of interfering compounds may be a result of interaction with the enzyme, the mediator or may occur directly at the working electrode.
- potentially interfering compounds can be oxidized at the electrode surface and/or by a redox mediator.
- This oxidation of the interfering compound in a glucose measurement system causes the measured oxidation current to be dependent on both the glucose and the interfering compound. Therefore, if the concentration of interfering compound oxidizes as efficiently as glucose and/or the interfering compound concentration is significantly high relative to the glucose concentration, it may impact the measured glucose concentration.
- analyte e.g. glucose
- interfering compounds is especially problematic when the standard potential (i.e.
- the potential at which a compound is oxidized) of the interfering compound is similar in magnitude to the standard potential of the redox mediator , resulting in a significant portion of the interference Current being generated by oxidation of the interfering compounds at the working electrode.
- Electrical current resulting from the oxidation of interfering compounds at the working electrode may be referred to as direct interference current. It would, therefore, be advantageous to reduce or minimize the effect of the direct interference current on the measurement of analyte concentration.
- Previous methods of reducing or eliminating direct interference current include designing test strips that prevent the interfering compounds from reaching the working electrode, thus reducing or eliminating the direct interference current attributable to the excluded compounds.
- One strategy for reducing the effects of interfering compounds that generate Direct interference current is to place a negatively charged membrane on top of the working electrode.
- a sulfonated fluoropolymer such as NAFIONTM may be placed over the working electrode to repel all negatively charged chemicals.
- many interfering compounds including ascorbate and urate, have a negative charge, and thus, are excluded from being oxidized at the working electrode when the surface of the working electrode is covered by a negatively charged membrane.
- some interfering compounds, such as acetaminophen are not negatively charged, and thus, can pass through the negatively charged membrane, the use of a negatively charged membrane will not eliminate the Direct interference current.
- Another disadvantage of covering the working electrode with a negatively charged membrane is that commonly used redox mediators, such as ferricyanide, are negatively charged and cannot pass through the membrane to exchange electrons with the electrode.
- a further disadvantage of using a negatively charged membrane over the working electrode is the potential to slow the diffusion of the reduced mediator to the working electrode, thus increasing the test time.
- a further disadvantage of using a negatively charged membrane over the working electrode is the increased complexity and expense of manufacturing the test strips with a negatively charged membrane.
- Another strategy that can be used to decrease the effects of Direct Interfering Currents is to position a size selective membrane on top of the working electrode.
- a 100 Dalton size exclusion membrane such as cellulose acetate maybe placed over the working electrode to exclude compounds having a molecular weight greater than 100 Daltons.
- the redox enzyme such as glucose oxidase is positioned over the size exclusion membrane.
- Glucose oxidase generates hydrogen peroxide, in the presence of glucose and oxygen, in an amount proportional to the glucose concentration. It should be noted that glucose and most redox mediators have a molecular weight greater than 100 Daltons, and thus, cannot pass through the size selective membrane.
- Hydrogen peroxide however, has a molecular weight of 34 Daltons, and thus, can pass through the size selective membrane.
- most interfering compounds have a molecular weight greater than 100 Daltons, and thus, are excluded from being oxidized at the electrode surface. Since some interfering compounds have smaller molecular weights, and thus, can pass through the size selective membrane, the use of a size selective membrane will not eliminate the Direct interference current.
- a further disadvantage of using a size selective membrane over the working electrode is the increased complexity and expense of manufacturing the test strips with a size selective membrane.
- a redox mediator with a low redox potential for example, a redox potential of between about - 300mV to + 100 mV (vs a saturated calomel electrode).
- a redox potential for example, a redox potential of between about - 300mV to + 100 mV (vs a saturated calomel electrode).
- redox mediators having a relatively low redox potential include osmium bipyridyl complexes, ferrocene derivatives, and quinone derivatives.
- redox mediators having a relatively low potential are often difficult to synthesize, relatively unstable and relatively insoluble.
- Another strategy that can be used to decrease the effects of interfering compounds is to use a dummy electrode in conjunction with the working electrode.
- the current measured at the dummy electrode may then be subtracted from the current measured at the working electrode in order to compensate for the effect of the interfering compounds. If the dummy electrode is bare (i.e. not covered by an enzyme or mediator), then the current measured at the dummy electrode will be proportional to the Direct interference current and subtracting the current measured at the dummy electrode from the current measured at the working electrode will reduce or eliminate the effect of the direct oxidation of interfering compounds at the working electrode.
- the current measured at the dummy electrode will be a combination of Direct interference current and interference current resulting from reduction of the redox mediator by an interfering compound.
- subtracting the current measured at the dummy electrode coated with a redox mediator from the current measured at the working electrode will reduce or eliminate the effect of the direct oxidation of interfering compounds and the effect of interference resulting from reduction of the redox mediator by an interfering compound at the working electrode.
- the dummy electrode may also be coated with an inert protein or deactivated redox enzyme in order to simulate the effect of the redox mediator and enzyme on diffusion.
- test strips have a small sample chamber so that people with diabetes do not have to express a large blood sample, it may not be advantageous to include an extra electrode which incrementally increases the sample chamber volume where the extra electrode is not used to measure the analyte (e.g. glucose). Further, it may be difficult to directly correlate the current measured at the dummy electrode to interference currents at the working electrode.
- the dummy electrode may be coated with a material or materials (e.g. redox mediator) which differ from the materials used to cover the working electrode (e.g. redox mediator and enzyme), test strips which use dummy electrodes as a method of reducing or eliminating the effect of interfering compounds in a multiple working electrode system may increase the cost and complexity of manufacturing the test strip.
- test strip designs which utilize multiple working electrodes to measure analyte, such as the system used in the OneTouch ® Ultra ® glucose measurement system are advantageous because the use of two working electrodes. In such systems, it would, therefore, be advantageous to develop a method of reducing or eliminating the effect of interfering compounds. More particularly, it would be advantageous to develop a method of reducing or eliminating the effect of interfering compounds without utilizing a dummy electrode, an intermediate membrane or a redox mediator with a low redox potential.
- the present invention is directed to a method of reducing the effects of interfering compounds in the measurement of analytes and more particularly to a method of reducing the effects of interfering compounds in a system wherein the test strip utilizes two or more working electrodes.
- a first potential is applied to a first working electrode and a second potential, having the same polarity but a greater magnitude than the first potential, is applied to a second working electrode.
- the magnitude of the second potential may also be less than the first potential for an embodiment where a reduction current is used to measure the analyte concentration.
- the first working electrode and second working electrode may be covered with an enzyme reagent and redox mediator that are analyte specific.
- the first potential applied to the first working electrode is selected such that it is sufficient to oxidize reduced redox mediator in a diffusion limited manner while the second potential is selected to have a magnitude (i.e. absolute value) greater than the magnitude of the first potential, resulting in a more efficient oxidation of at the second working electrode.
- the current measured at the first working electrode includes an analyte current and interfering compound current while the current measured at the second working electrode includes an analyte overpotential current and an interfering compound overpotential current.
- analyte current and the analyte overpotential current both refer to a current that corresponds to the analyte concentration and that the current is a result of a reduced mediator oxidation.
- the relationship between the currents at the first working electrode and second working electrode may be defined by the following equation,
- A is the analyte current at the first working electrode
- Wj is the current measured at the first working electrode
- W 2 is the current measured at the second working electrode
- X is an analyte dependent voltage effect factor
- 7 is an interfering compound dependent voltage effect factor.
- the concentration of glucose in a sample placed on a test strip can be calculated by placing the sample on a test strip having a first working electrode and second working electrode and a reference electrode, at least the first working electrode and second working electrodes being coated with chemical compounds (e.g. an enzyme and a redox mediator) adapted to facilitate the oxidation of glucose and the transfer of electrons from the oxidized glucose to the first working electrode and the second working electrode when a potential is applied between the first working electrode and the reference electrode, and the second working electrode and the reference electrode.
- chemical compounds e.g. an enzyme and a redox mediator
- a first potential is applied between the first working electrode and the reference electrode, the first potential being selected to have a magnitude sufficient to ensure that the magnitude of the current generated by oxidation of the glucose in the sample is limited only by factors other than applied voltage (e.g. diffusion).
- a second potential is applied between the second working electrode and the reference electrode, the second potential being greater in magnitude than the first potential and, in one embodiment of the present invention, the second potential being selected to increase the oxidation of interfering compounds at the second working electrode.
- the following equation may be used to reduce the effect of oxidation current resulting from the presence of interfering compounds on the current used to calculate the concentration of glucose in the sample.
- the glucose concentration may be derived using a calculated current A G where:
- a JG is a glucose current
- Wj is the current measured at the first working electrode
- W 2 is the current measured at the second working electrode
- X ⁇ is a glucose dependent voltage effect factor
- Y is an interfering compound dependent voltage effect factor
- Figure 1 is an exploded perspective view of a test strip embodiment for use in the present invention.
- Figure 2 is a schematic view of a meter and strip for use in the present invention.
- Figure 3 is a hydrodynamic voltammogram illustrating the dependence of applied voltage with measured current.
- the present invention is particularly adapted to the measurement of glucose concentration in blood, it will be apparent to those of skill in the art that the method described herein may be adapted to improve the selectivity of other systems used for the electrochemical measurement of analytes in physiological fluids.
- systems that may be adapted to improve selectivity using the method according to the present invention include electrochemical sensors used to measure the concentration of lactate, lactate, alcohol, cholesterol, amino acids, choline, and fructosamine in physiological fluids.
- physiological fluids that may contain such analytes include blood, plasma, serum, urine, and interstitial fluid.
- the present invention is directed to a method for improving the selectivity of an electrochemical measuring system that is particularly adapted for use in a blood glucose measurement system. More particularly, the present invention is directed to a method for improving the selectivity of a blood glucose measurement system by partially or wholly correcting for the effect of the direct interference current. Selectivity in such systems being a measure of the ability of the system to accurately measure the glucose concentration in a sample of physiological fluid which includes one or more compounds which create an interfering current.
- the measured current may be a function of the oxidation of interfering compounds commonly found in physiological fluids such as, for example, acetaminophen (TylenolTM or Paracetamol), ascorbic acid, bilirubin, dopamine, gentisic acid, glutathione, levodopa, methyldopa, tolazimide, tolbutamide and uric acid.
- interfering compounds may be oxidized by, for example, reacting chemically with the redox mediator or by oxidizing at the elecfrode surface.
- the present invention describes a method of removing some or all of the effect of interfering compounds by quantifying the proportion of the overall oxidation current generated by the interfering compounds and subtracting that quantity from the overall oxidation current.
- a test strip that includes first working electrode and second working electrode, two different potentials are applied and the oxidation current generated at each of the working electrodes is measure used to estimate the respective oxidation current proportions for both the glucose and interfering compounds.
- a test strip which includes a sample chamber containing a first working electrode, a second working electrode, and a reference electrode.
- the first working electrode, the second working electrode and the reference elecfrodes are covered by glucose oxidase (the enzyme) and a Ferricyanide (the redox mediator).
- glucose oxidase the enzyme
- Ferricyanide the redox mediator
- test strip An example of a test strip that may be suitable for use in a method according to the present invention is the OneTouch ® Ultra ® test strip sold by LifeScan, Inc. of Milpitas, California. Other suitable strips are described in international publication WO 01/67099A1 and WO 01/73124A2.
- a first potential is applied to a first working electrode and a second potential is applied to the second working electrode.
- the first potential is selected to be in a range in which the glucose current response is relatively insensitive to the applied potential and thus the magnitude of the glucose current at the first working electrode is limited by the amount of reduced redox mediator diffusing to the first working electrode.
- glucose is not directly oxidized at a working electrode, but instead is indirectly oxidized through using a redox enzyme and a redox mediator.
- the glucose current refers to an oxidation of reduced redox mediator that correlates to the gluocose concentration.
- the first potential may range from about 0 millivolts to about 500 millivolts, and more preferably from about 385 millivolts to about 415 millivolts, and yet even more preferably may range from about 395 to 405 mV.
- a second potential is applied to a second working electrode such that the second potential is greater than the first potential. Where the applied potential is greater than the potential needed to oxidize the glucose.
- the second potential may range from about 50 millivolts to about 1000 millivolts, and more preferably from about 420 millivolts to about 1000 millivolts.
- the glucose current at the second working electrode should be substantially equal to the glucose current at the first working electrode, even though the potential at the second working electrode is greater than the potential at the first electrode.
- any additional current measured at the second working electrode may be attributed to the oxidation of interfering compounds.
- the higher potential at the second working electrode should cause a glucose overpotenital current to be measured at the second working electrode which is equal or substantially equal in magnitude to the glucose current at the first working electrode because the first potential and second potential are in a limiting glucose current range which is insensitive to changes in applied potential.
- IR drop i.e. uncompensated resistance
- a higher applied potential causes an increase in the measured current magnitude.
- IR drops may be the nominal resistance of the first working electrode, second working electrode, the reference electrode, the physiological fluid between the working electrode and the reference electrode.
- the application of a higher potential results in the formation of a larger ionic double layer which forms at the electrode/liquid interface, increasing the ionic capacitance and the resulting current at either the firstworking electrode or second working electrode.
- glucose current at the second working electrode may also be referred to as a glucose overpotential current.
- the voltage effect factor XQ for glucose may be expected to be between about 0.95 any about 1.1.
- higher potentials do not have a significant impact on the glucose oxidation current because the redox mediator (ferrocyanide) has fast electron transfer kinetics and reversible electron transfer characteristics with the working electrode. Because the glucose current does not increase with increasing potential after a certain point, the glucose current may be said to be saturated or in a diffusion limited regime.
- glucose is indirectly measured by oxidizing ferrocyanide at the working electrode and where the ferrocyanide concentration is directly proportional to the glucose concentration.
- the standard potential (E°) value for a particular electrochemical compound is a measure of that compound's ability to exchange electrons with other chemical compounds.
- the potential at the first working electrode is selected to be greater than the standard potential (E°) of the redox mediator. Because the first potential is selected such that it is sufficiently greater than the E° value of the redox couple, the oxidation rate does not increase substantially as the applied potential increases. Thus, applying a greater potential at the second working electrode will not increase the oxidation at the second working electrode and any increased current measured at the higher potential electrode must be due to other factors, such as, for example, oxidation of interfering compounds.
- Figure 3 is a hydrodynamic voltammogram illustrating the dependence of applied voltage with measured current where ferri/ferrocyanide is the redox mediator and carbon is the working electrode. Each data point on the graph represents at least one experiment where a current is measured 5 seconds after applying a voltage across a working electrode and a reference electrode. Figure 3 shows that the current forms an onset of a plateau region at about 400 mV because the applied voltage is sufficiently greater than of the E° value of ferrocyanide. Thus, as illustrated in Figure 3, as the potential reaches approximately 400 mV, the glucose current becomes saturated because the oxidation of ferrocyanide is diffusion limited (i.e. the diffusion of ferrocyanide to the working electrode limits the magnitude of the measured current and is not limited by the electron transfer rate between ferrocyanide and the electrode).
- an outer sphere electron transfer does not require a chemical reaction before transferring an electron. Therefore, inner sphere electron transfer rates are typically slower than outer sphere electron transfers because they require an additional chemical reaction step.
- the oxidation of ascorbate to dehydroascorbate is an example of an inner sphere oxidation that requires the liberation of two hydride moieties.
- the oxidation of ferrocyanide to ferricyanide is an example of an outer sphere electron transfer. Therefore, the current generated by interfering compounds generally increases when testing at a higher potential.
- Y is an interfering compound dependent voltage effect factor
- I 2 is the interfering compound overpotential current.
- the interfering compound voltage effect factor Y is dependent upon a number of factors, including, the particular interfering compound or compounds of concern and the material used for the working electrodes, calculation of a particular interfering compound dependent voltage effect factor for a particular system, test strip, analyte and interfering compound or compounds may require experimentation to optimize the voltage effect factor for those criteria. Alternatively, under certain circumstances, appropriate voltage effect factors may be derived or described mathematically.
- the interfering compound dependent voltage effect factor 7 could be mathematically described using the Tafel equation for/; and h, / ⁇ 'expj (eq 2 a)
- Equation 2 (the standard potential of a specific interfering compound) is not important because it is canceled out in the calculation of A ⁇ . Equations 2, 2a, 2b can be combined and rearranged to yield the following equation,
- Equation 2c provides a mathematical relationship describing the relationship between A ⁇ (i.e. the difference between the first potential and the second potential) and the interfering compound dependent voltage effect factor 7.
- 7 may range from about 1 to about 100, and more preferably between about 1 and 10.
- the interfering compound dependent voltage effect factor 7 may be determined experimentally for a specific interfering compound or combination of interfering compounds. It should be noted that the interfering compound dependent voltage effect factor 7 for interfering compounds is usually greater than voltage effect factor X G for glucose.
- W I A JG + I J (eq 3)
- Wj is the first current at the first working electrode.
- the first current includes a superposition of the glucose current A JG and the interfering compound current I .
- the interfering compound current may be a direct interfering current which has been described hereinabove.
- W 2 A 2G + (eq 4)
- the interfering compound overpotential current may be a Direct Interfering compound Current which has been described hereinabove.
- eq's 1 to 4 which contain 4 unknowns (A JG , A 2 , h, and I 2 )
- a 2G from eq 1 and I 2 from eq 2 can be substituted into eq 4 to give the following eq 5.
- eq 3 is multiplied by interfering compound dependent voltage effect factor 7 for interfering compounds to give eq 6.
- Eq 7 can now be rearranged to solve for the corrected glucose current A JG measured at the first potential as shown in eq 8.
- X G -Y Eq 8 outputs a corrected glucose current A G which removes the effects of interferences requiring only the current output of the first working electrode and second working electrode (eg Wj and W 2 ), glucose dependent voltage effect factors XQ , and interfering compound dependent voltage effect factor 7 for interfering compounds.
- a glucose meter containing electronics is electrically interfaced with a glucose test strip to measure the current from Wj and W 2 .
- XQ and 7 may be programmed into the glucose meter as read only memory.
- ⁇ and 7 may be transferred to the meter via a calibration code chip.
- the calibration code chip would have in its memory a particular set of values ⁇ O ⁇ X G and 7 which would be calibrated for a particular lot of test strips. This would account for test strip lot-to-lot variations that may occur in XQ and 7.
- the corrected glucose current in eq 8 may be used by the meter only when a certain threshold is exceeded. For example, if W 2 is about 10% or greater than Wi, then the meter would use eq 8 to correct for the current output. However, if W 2 is about 10% or less than Wj, the interfering compound concentration is low and thus the meter can simply take an average current value between Wj and W to improve the accuracy and precision of the measurement.
- a more accurate W approach may be to average Wj with — — where the glucose dependent voltage effect X G W factor X G is taken into account (note — — approximately equals AJ G according to eq 1 and 4 when I 2 is low).
- the strategy of using eq 8 only under certain situations where it is likely that a significant level of interferences are in the sample mitigates the risk of overcorrecting the measured glucose current. It should be noted that when W 2 is sufficiently greater than Wj by a large amount (e.g. about 100% or more), this is an indicator of having an unusually high concentration of interferences. In such a case, it may be desirable to output an error message instead of a glucose value because a very high level of interfering compounds may cause a breakdown in the accuracy of eq 8.
- Test strip 600 is an exploded perspective view of test strip 600, which includes six layers disposed upon a base substrate 5. These six layers are a conductive layer 50, an insulation layer 16, a reagent layer 22, an adhesive layer 60, a hydrophilic layer 70, and a top layer 80.
- Test strip 600 may be manufactured in a series of steps wherein the conductive layer 50, insulation layer 16, reagent layer 22, adhesive layer 60 are deposited on base substrate 5 using, for example, a screen printing process.
- Hydrophilic layer 70 and top layer 80 may be deposed from a roll stock and laminated onto base substrate 5.
- the fully assembled test strip forms a sample receiving chamber that can accept a blood sample so that it can be analyzed.
- Conductive layer 50 includes reference electrode 10, first working electrode 12, second working electrode 14, a first contact 13, a second contact 15, a reference contact 11 , and a strip detection bar 17.
- Suitable materials which may be used for the conductive layer are Au, Pd, Ir, Pt, Rh, stainless steel, doped tin oxide, carbon, and the like.
- the material for the conductive layer may be a carbon ink such as those described in US5653918.
- Insulation layer 16 includes cutout 18 which exposes a portion of reference electrode 10, first working electrode 12, and second working electrode 14 which can be wetted by a liquid sample.
- insulation layer (16 or 160) may be Ercon E6110-116 Jet Black Insulayer Ink which may be purchased from Ercon, Inc.
- Reagent layer 22 may be disposed on a portion of conductive layer 50 and insulation layer 16.
- reagent layer 22 may include chemicals such as a redox enzyme and redox mediator which selectivity react with glucose. During this reaction, a proportional amount of a reduced redox mediator can be generated that then can be measured electrochemically so that a glucose concentration can be calculated.
- Examples of reagent formulations or inks suitable for use in the present invention can be found in US patents 5,708,247 and 6,046,051; published international applications WOOl/67099 and WOOl/73124, all of which are incorporated by reference herein.
- Adhesive layer 60 includes first adhesive pad 24, second adhesive pad 26, and third adhesive pad 28.
- the side edges of first adhesive pad 24 and second adhesive pad 26 located adjacent to reagent layer 22 each define a wall of a sample receiving chamber.
- the adhesive layer may comprise a water based acrylic copolymer pressure sensitive adhesive which is commercially available from Tape Specialties LTD in Tring, Herts, United Kingdom (part#A6435).
- Hydrophilic layer 70 includes a distal hydrophilic pad 32 and proximal hydrophilic pad 34.
- hydrophilic layer 70 be a polyester having one hydrophilic surface such as an anti-fog coating which is commercially available from 3M. It should be noted that both distal hydrophilic film 32 and proximal hydrophilic film 34 are visibly transparent enabling a user to observe a liquid sample filling the sample receiving chamber.
- Top layer 80 includes a clear portion 36 and opaque portion 38. Top layer 80 is disposed on and adhered to hydrophilic layer 70. As a non-limiting example, top layer 40 may be a polyester. It should be noted that the clear portion 36 substantially overlaps proximal hydrophilic pad 32 which allows a user to visually confirm that the sample receiving chamber is sufficiently filled. Opaque portion 38 helps the user observe a high degree of contrast between a colored fluid such as, for example, blood within the sample receiving chamber and the opaque section of the top film.
- a colored fluid such as, for example, blood within the sample receiving chamber and the opaque section of the top film.
- FIG. 2 is a simplified schematic showing a meter 500 interfacing with a test strip 600.
- Meter 500 has three electrical contacts that form an electrical connection to first working electrode 12, second working electrode 14, and reference electrode 10.
- connector 101 connects voltage source 103 to first working electrode 12
- connector 102 connects voltage source 104 to second working electrode 14
- common connector 100 connects voltage source 103 and 104 to reference elecfrode 10.
- voltage source 103 in meter 500 applies a first potential E ⁇ between first working electrode 12 and reference electrode 10
- voltage source 104 applies a second potential E 2 between second working electrode 14 and reference electrode 10.
- a sample of blood is applied such that first working electrode 12, second working electrode 14, and reference electrode 10 are covered with blood.
- reagent layer 22 This causes reagent layer 22 to become hydrated which generates ferrocyanide in an amount proportional to the glucose and/or interfering compound concentration present in the sample.
- meter 500 measures an oxidation current for both first working electrode 12 and second working electrode 14.
- the first working electrode 12 and second working electrode 14 had the same area. It should be noted that the present invention is not limited to test strips having equal areas. For alternative embodiments to the previously described strips where the areas are different, the current output for each working electrode must be normalized for area. Because the current output is directly proportional to area, the terms within Equation 1 to Equation 8 may be in units of amperes (current) or in amperes per unit area (i.e. current density).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Emergency Medicine (AREA)
- Optics & Photonics (AREA)
- Dermatology (AREA)
- Urology & Nephrology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020067010291A KR101201245B1 (en) | 2003-10-31 | 2004-10-29 | A method of reducing interferences in an electrochemical sensor using two different applied potentials |
AU2004288008A AU2004288008B2 (en) | 2003-10-31 | 2004-10-29 | A method of reducing interferences in an electrochemical sensor using two different applied potentials |
JP2006537429A JP4694498B2 (en) | 2003-10-31 | 2004-10-29 | Method for reducing interference in an electrochemical sensor by applying two different potentials |
EP04791625A EP1678490B1 (en) | 2003-10-31 | 2004-10-29 | A method of reducing interferences in an electrochemical sensor using two different applied potentials |
DE602004021835T DE602004021835D1 (en) | 2003-10-31 | 2004-10-29 | METHOD FOR REDUCING INTERFERENCE IN AN ELECTROCHEMICAL SENSOR USING TWO DIFFERENT APPROPRIATE POTENTIALS |
AT04791625T ATE435419T1 (en) | 2003-10-31 | 2004-10-29 | METHOD FOR REDUCING INTERFERENCE IN AN ELECTROCHEMICAL SENSOR USING TWO DIFFERENT APPLIED POTENTIALS |
CA2543797A CA2543797C (en) | 2003-10-31 | 2004-10-29 | A method of reducing interferences in an electrochemical sensor using two different applied potentials |
DK04791625T DK1678490T3 (en) | 2003-10-31 | 2004-10-29 | Method for reducing interferences in an electrochemical sensor using two different applied potentials |
PL04791625T PL1678490T3 (en) | 2003-10-31 | 2004-10-29 | A method of reducing interferences in an electrochemical sensor using two different applied potentials |
IL175321A IL175321A0 (en) | 2003-10-31 | 2006-04-30 | A method of reducing interferences in an electrochemical sensor using two different applied potentials |
HK06112291.5A HK1091898A1 (en) | 2003-10-31 | 2006-11-08 | A method of reducing interferences in an electrochemical sensor using two different applied potentials |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US51625203P | 2003-10-31 | 2003-10-31 | |
US60/516,252 | 2003-10-31 | ||
US55872804P | 2004-03-31 | 2004-03-31 | |
US55842404P | 2004-03-31 | 2004-03-31 | |
US60/558,728 | 2004-03-31 | ||
US60/558,424 | 2004-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005045413A1 true WO2005045413A1 (en) | 2005-05-19 |
Family
ID=34577659
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2004/004574 WO2005045412A1 (en) | 2003-10-31 | 2004-10-29 | Method of reducing the effect of direct interference current in an electrochemical test strip |
PCT/GB2004/004588 WO2005045413A1 (en) | 2003-10-31 | 2004-10-29 | A method of reducing interferences in an electrochemical sensor using two different applied potentials |
PCT/GB2004/004592 WO2005045414A1 (en) | 2003-10-31 | 2004-10-29 | Electrochemical test strip for reducing the effect of direct interference current |
PCT/GB2004/004599 WO2005045417A1 (en) | 2003-10-31 | 2004-10-29 | Method of reducing the effect of direct and mediated interference current in an electrochemical test strip |
PCT/GB2004/004598 WO2005045416A1 (en) | 2003-10-31 | 2004-10-29 | Electrochemical test strip for reducing the effect of direct and mediated interference current |
PCT/GB2004/004594 WO2005045415A1 (en) | 2003-10-31 | 2004-10-29 | A meter for use in an improved method of reducing interferences in an electrochemical sensor using two different applied potentials |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2004/004574 WO2005045412A1 (en) | 2003-10-31 | 2004-10-29 | Method of reducing the effect of direct interference current in an electrochemical test strip |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2004/004592 WO2005045414A1 (en) | 2003-10-31 | 2004-10-29 | Electrochemical test strip for reducing the effect of direct interference current |
PCT/GB2004/004599 WO2005045417A1 (en) | 2003-10-31 | 2004-10-29 | Method of reducing the effect of direct and mediated interference current in an electrochemical test strip |
PCT/GB2004/004598 WO2005045416A1 (en) | 2003-10-31 | 2004-10-29 | Electrochemical test strip for reducing the effect of direct and mediated interference current |
PCT/GB2004/004594 WO2005045415A1 (en) | 2003-10-31 | 2004-10-29 | A meter for use in an improved method of reducing interferences in an electrochemical sensor using two different applied potentials |
Country Status (16)
Country | Link |
---|---|
US (7) | US20050133368A1 (en) |
EP (6) | EP1685393B1 (en) |
JP (6) | JP4694498B2 (en) |
KR (5) | KR101092350B1 (en) |
AT (4) | ATE360816T1 (en) |
AU (6) | AU2004288008B2 (en) |
CA (6) | CA2543961A1 (en) |
DE (4) | DE602004021835D1 (en) |
DK (3) | DK1685393T3 (en) |
ES (4) | ES2343184T3 (en) |
HK (4) | HK1091896A1 (en) |
IL (6) | IL175324A0 (en) |
PL (3) | PL1678489T3 (en) |
PT (2) | PT1685393E (en) |
SG (2) | SG131941A1 (en) |
WO (6) | WO2005045412A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8211292B2 (en) | 2005-08-05 | 2012-07-03 | Bayer Healthcare Llc | Method for distinguishing electrochemical sensors |
CN112294324A (en) * | 2019-08-02 | 2021-02-02 | 华广生技股份有限公司 | Method for reducing interference of miniature biosensor measurement |
EP3771413A1 (en) * | 2019-08-02 | 2021-02-03 | Bionime Corporation | Method for manufacturing implantable micro-biosensor |
TWI844059B (en) * | 2021-07-22 | 2024-06-01 | 華廣生技股份有限公司 | Micro biosensor and sensing structure thereof |
Families Citing this family (243)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3394262B2 (en) | 1997-02-06 | 2003-04-07 | セラセンス、インク. | Small volume in vitro analyte sensor |
US6862465B2 (en) | 1997-03-04 | 2005-03-01 | Dexcom, Inc. | Device and method for determining analyte levels |
US7899511B2 (en) | 2004-07-13 | 2011-03-01 | Dexcom, Inc. | Low oxygen in vivo analyte sensor |
US8527026B2 (en) | 1997-03-04 | 2013-09-03 | Dexcom, Inc. | Device and method for determining analyte levels |
US6001067A (en) | 1997-03-04 | 1999-12-14 | Shults; Mark C. | Device and method for determining analyte levels |
US9155496B2 (en) | 1997-03-04 | 2015-10-13 | Dexcom, Inc. | Low oxygen in vivo analyte sensor |
US6036924A (en) | 1997-12-04 | 2000-03-14 | Hewlett-Packard Company | Cassette of lancet cartridges for sampling blood |
US6391005B1 (en) | 1998-03-30 | 2002-05-21 | Agilent Technologies, Inc. | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
US8465425B2 (en) | 1998-04-30 | 2013-06-18 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8346337B2 (en) | 1998-04-30 | 2013-01-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8688188B2 (en) | 1998-04-30 | 2014-04-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8480580B2 (en) | 1998-04-30 | 2013-07-09 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US6175752B1 (en) | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
US9066695B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8974386B2 (en) | 1998-04-30 | 2015-03-10 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US6949816B2 (en) | 2003-04-21 | 2005-09-27 | Motorola, Inc. | Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same |
US8641644B2 (en) | 2000-11-21 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US6560471B1 (en) | 2001-01-02 | 2003-05-06 | Therasense, Inc. | Analyte monitoring device and methods of use |
US7310543B2 (en) * | 2001-03-26 | 2007-12-18 | Kumetrix, Inc. | Silicon microprobe with integrated biosensor |
JP4209767B2 (en) | 2001-06-12 | 2009-01-14 | ペリカン テクノロジーズ インコーポレイテッド | Self-optimized cutting instrument with adaptive means for temporary changes in skin properties |
AU2002344825A1 (en) | 2001-06-12 | 2002-12-23 | Pelikan Technologies, Inc. | Method and apparatus for improving success rate of blood yield from a fingerstick |
AU2002348683A1 (en) | 2001-06-12 | 2002-12-23 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
US7981056B2 (en) | 2002-04-19 | 2011-07-19 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
DE60234597D1 (en) | 2001-06-12 | 2010-01-14 | Pelikan Technologies Inc | DEVICE AND METHOD FOR REMOVING BLOOD SAMPLES |
DE60238119D1 (en) | 2001-06-12 | 2010-12-09 | Pelikan Technologies Inc | ELECTRIC ACTUATOR ELEMENT FOR A LANZETTE |
US7041068B2 (en) | 2001-06-12 | 2006-05-09 | Pelikan Technologies, Inc. | Sampling module device and method |
US8337419B2 (en) | 2002-04-19 | 2012-12-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
DE10134650B4 (en) * | 2001-07-20 | 2009-12-03 | Roche Diagnostics Gmbh | System for taking small amounts of body fluid |
US20030032874A1 (en) | 2001-07-27 | 2003-02-13 | Dexcom, Inc. | Sensor head for use with implantable devices |
US8010174B2 (en) | 2003-08-22 | 2011-08-30 | Dexcom, Inc. | Systems and methods for replacing signal artifacts in a glucose sensor data stream |
US10022078B2 (en) | 2004-07-13 | 2018-07-17 | Dexcom, Inc. | Analyte sensor |
US7828728B2 (en) | 2003-07-25 | 2010-11-09 | Dexcom, Inc. | Analyte sensor |
US7497827B2 (en) | 2004-07-13 | 2009-03-03 | Dexcom, Inc. | Transcutaneous analyte sensor |
US7613491B2 (en) | 2002-05-22 | 2009-11-03 | Dexcom, Inc. | Silicone based membranes for use in implantable glucose sensors |
US9247901B2 (en) | 2003-08-22 | 2016-02-02 | Dexcom, Inc. | Systems and methods for replacing signal artifacts in a glucose sensor data stream |
US9282925B2 (en) | 2002-02-12 | 2016-03-15 | Dexcom, Inc. | Systems and methods for replacing signal artifacts in a glucose sensor data stream |
US8260393B2 (en) | 2003-07-25 | 2012-09-04 | Dexcom, Inc. | Systems and methods for replacing signal data artifacts in a glucose sensor data stream |
US7674232B2 (en) | 2002-04-19 | 2010-03-09 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7331931B2 (en) | 2002-04-19 | 2008-02-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8784335B2 (en) | 2002-04-19 | 2014-07-22 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling device with a capacitive sensor |
US7491178B2 (en) | 2002-04-19 | 2009-02-17 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8579831B2 (en) | 2002-04-19 | 2013-11-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7175642B2 (en) | 2002-04-19 | 2007-02-13 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US7901362B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7291117B2 (en) | 2002-04-19 | 2007-11-06 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9795334B2 (en) | 2002-04-19 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7976476B2 (en) | 2002-04-19 | 2011-07-12 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
US7229458B2 (en) | 2002-04-19 | 2007-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8360992B2 (en) | 2002-04-19 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7892183B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7547287B2 (en) | 2002-04-19 | 2009-06-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7232451B2 (en) | 2002-04-19 | 2007-06-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7909778B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7371247B2 (en) | 2002-04-19 | 2008-05-13 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
US7297122B2 (en) | 2002-04-19 | 2007-11-20 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7648468B2 (en) | 2002-04-19 | 2010-01-19 | Pelikon Technologies, Inc. | Method and apparatus for penetrating tissue |
US8267870B2 (en) | 2002-04-19 | 2012-09-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling with hybrid actuation |
US8372016B2 (en) | 2002-04-19 | 2013-02-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling and analyte sensing |
US7717863B2 (en) | 2002-04-19 | 2010-05-18 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8221334B2 (en) | 2002-04-19 | 2012-07-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US7198606B2 (en) | 2002-04-19 | 2007-04-03 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with analyte sensing |
US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
US7767068B2 (en) * | 2002-12-02 | 2010-08-03 | Epocal Inc. | Heterogeneous membrane electrodes |
US7842234B2 (en) * | 2002-12-02 | 2010-11-30 | Epocal Inc. | Diagnostic devices incorporating fluidics and methods of manufacture |
US8052926B2 (en) * | 2002-12-27 | 2011-11-08 | Roche Diagnostics Operations, Inc. | Method for manufacturing a sterilized lancet integrated biosensor |
US7815579B2 (en) * | 2005-03-02 | 2010-10-19 | Roche Diagnostics Operations, Inc. | Dynamic integrated lancing test strip with sterility cover |
US8574895B2 (en) | 2002-12-30 | 2013-11-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
US7134999B2 (en) | 2003-04-04 | 2006-11-14 | Dexcom, Inc. | Optimized sensor geometry for an implantable glucose sensor |
WO2004107975A2 (en) | 2003-05-30 | 2004-12-16 | Pelikan Technologies, Inc. | Method and apparatus for fluid injection |
WO2004107964A2 (en) | 2003-06-06 | 2004-12-16 | Pelikan Technologies, Inc. | Blood harvesting device with electronic control |
WO2006001797A1 (en) | 2004-06-14 | 2006-01-05 | Pelikan Technologies, Inc. | Low pain penetrating |
US7761130B2 (en) | 2003-07-25 | 2010-07-20 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
US7424318B2 (en) * | 2003-12-05 | 2008-09-09 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
US7460898B2 (en) * | 2003-12-05 | 2008-12-02 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
EP1648298A4 (en) | 2003-07-25 | 2010-01-13 | Dexcom Inc | Oxygen enhancing membrane systems for implantable devices |
US7366556B2 (en) * | 2003-12-05 | 2008-04-29 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
US8423113B2 (en) | 2003-07-25 | 2013-04-16 | Dexcom, Inc. | Systems and methods for processing sensor data |
US7467003B2 (en) * | 2003-12-05 | 2008-12-16 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
US8160669B2 (en) | 2003-08-01 | 2012-04-17 | Dexcom, Inc. | Transcutaneous analyte sensor |
US20100168542A1 (en) | 2003-08-01 | 2010-07-01 | Dexcom, Inc. | System and methods for processing analyte sensor data |
US9135402B2 (en) * | 2007-12-17 | 2015-09-15 | Dexcom, Inc. | Systems and methods for processing sensor data |
US8761856B2 (en) | 2003-08-01 | 2014-06-24 | Dexcom, Inc. | System and methods for processing analyte sensor data |
US20190357827A1 (en) | 2003-08-01 | 2019-11-28 | Dexcom, Inc. | Analyte sensor |
US7778680B2 (en) | 2003-08-01 | 2010-08-17 | Dexcom, Inc. | System and methods for processing analyte sensor data |
US7519408B2 (en) | 2003-11-19 | 2009-04-14 | Dexcom, Inc. | Integrated receiver for continuous analyte sensor |
US8845536B2 (en) | 2003-08-01 | 2014-09-30 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8369919B2 (en) | 2003-08-01 | 2013-02-05 | Dexcom, Inc. | Systems and methods for processing sensor data |
US7925321B2 (en) | 2003-08-01 | 2011-04-12 | Dexcom, Inc. | System and methods for processing analyte sensor data |
US8886273B2 (en) | 2003-08-01 | 2014-11-11 | Dexcom, Inc. | Analyte sensor |
US7591801B2 (en) | 2004-02-26 | 2009-09-22 | Dexcom, Inc. | Integrated delivery device for continuous glucose sensor |
US7774145B2 (en) | 2003-08-01 | 2010-08-10 | Dexcom, Inc. | Transcutaneous analyte sensor |
US20140121989A1 (en) | 2003-08-22 | 2014-05-01 | Dexcom, Inc. | Systems and methods for processing analyte sensor data |
US7920906B2 (en) | 2005-03-10 | 2011-04-05 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US8282576B2 (en) | 2003-09-29 | 2012-10-09 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
US9351680B2 (en) | 2003-10-14 | 2016-05-31 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a variable user interface |
CA2543961A1 (en) * | 2003-10-31 | 2005-05-19 | Lifescan Scotland Limited | Electrochemical test strip for reducing the effect of direct and mediated interference current |
US7655119B2 (en) * | 2003-10-31 | 2010-02-02 | Lifescan Scotland Limited | Meter for use in an improved method of reducing interferences in an electrochemical sensor using two different applied potentials |
US9247900B2 (en) | 2004-07-13 | 2016-02-02 | Dexcom, Inc. | Analyte sensor |
EP3399047A1 (en) * | 2003-12-04 | 2018-11-07 | PHC Holdings Corporation | A biosensor |
US8287453B2 (en) | 2003-12-05 | 2012-10-16 | Dexcom, Inc. | Analyte sensor |
US8423114B2 (en) | 2006-10-04 | 2013-04-16 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
US8364231B2 (en) | 2006-10-04 | 2013-01-29 | Dexcom, Inc. | Analyte sensor |
US20100185071A1 (en) * | 2003-12-05 | 2010-07-22 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
EP1711790B1 (en) | 2003-12-05 | 2010-09-08 | DexCom, Inc. | Calibration techniques for a continuous analyte sensor |
US8774886B2 (en) | 2006-10-04 | 2014-07-08 | Dexcom, Inc. | Analyte sensor |
US11633133B2 (en) | 2003-12-05 | 2023-04-25 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
EP2316331B1 (en) | 2003-12-09 | 2016-06-29 | Dexcom, Inc. | Signal processing for continuous analyte sensor |
US7822454B1 (en) | 2005-01-03 | 2010-10-26 | Pelikan Technologies, Inc. | Fluid sampling device with improved analyte detecting member configuration |
WO2005065414A2 (en) | 2003-12-31 | 2005-07-21 | Pelikan Technologies, Inc. | Method and apparatus for improving fluidic flow and sample capture |
US8808228B2 (en) | 2004-02-26 | 2014-08-19 | Dexcom, Inc. | Integrated medicament delivery device for use with continuous analyte sensor |
US20050245799A1 (en) * | 2004-05-03 | 2005-11-03 | Dexcom, Inc. | Implantable analyte sensor |
US8792955B2 (en) | 2004-05-03 | 2014-07-29 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8277713B2 (en) | 2004-05-03 | 2012-10-02 | Dexcom, Inc. | Implantable analyte sensor |
EP1751546A2 (en) | 2004-05-20 | 2007-02-14 | Albatros Technologies GmbH & Co. KG | Printable hydrogel for biosensors |
US9820684B2 (en) | 2004-06-03 | 2017-11-21 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US9775553B2 (en) | 2004-06-03 | 2017-10-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US8452368B2 (en) | 2004-07-13 | 2013-05-28 | Dexcom, Inc. | Transcutaneous analyte sensor |
US7783333B2 (en) | 2004-07-13 | 2010-08-24 | Dexcom, Inc. | Transcutaneous medical device with variable stiffness |
US20080242961A1 (en) * | 2004-07-13 | 2008-10-02 | Dexcom, Inc. | Transcutaneous analyte sensor |
US7905833B2 (en) | 2004-07-13 | 2011-03-15 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8565848B2 (en) | 2004-07-13 | 2013-10-22 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8886272B2 (en) | 2004-07-13 | 2014-11-11 | Dexcom, Inc. | Analyte sensor |
US20090054811A1 (en) * | 2004-12-30 | 2009-02-26 | Dirk Boecker | Method and apparatus for analyte measurement test time |
US8652831B2 (en) | 2004-12-30 | 2014-02-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte measurement test time |
US7935063B2 (en) * | 2005-03-02 | 2011-05-03 | Roche Diagnostics Operations, Inc. | System and method for breaking a sterility seal to engage a lancet |
JP5020832B2 (en) * | 2005-03-04 | 2012-09-05 | バイエル・ヘルスケア・エルエルシー | Stabilization of enzyme activity with electrochemical biosensors |
US20090076360A1 (en) | 2007-09-13 | 2009-03-19 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8133178B2 (en) | 2006-02-22 | 2012-03-13 | Dexcom, Inc. | Analyte sensor |
US8744546B2 (en) | 2005-05-05 | 2014-06-03 | Dexcom, Inc. | Cellulosic-based resistance domain for an analyte sensor |
US20070111196A1 (en) * | 2005-08-19 | 2007-05-17 | Javier Alarcon | Sterilization of Biosensors |
WO2007028271A2 (en) * | 2005-09-09 | 2007-03-15 | F. Hoffmann-La Roche Ag | A system, tools, devices and a program for diabetes care |
US20090134043A1 (en) * | 2005-11-10 | 2009-05-28 | Kevin Ward | Non-biofouling, universal redox electrode and measurement system |
RU2008130869A (en) * | 2005-12-27 | 2010-02-10 | Байер Хелткэр Ллк (Us) | METHOD FOR PRODUCING ELECTRODES FOR TEST SENSORS |
US9757061B2 (en) | 2006-01-17 | 2017-09-12 | Dexcom, Inc. | Low oxygen in vivo analyte sensor |
EP1991110B1 (en) | 2006-03-09 | 2018-11-07 | DexCom, Inc. | Systems and methods for processing analyte sensor data |
US8163162B2 (en) | 2006-03-31 | 2012-04-24 | Lifescan, Inc. | Methods and apparatus for analyzing a sample in the presence of interferents |
US7909983B2 (en) * | 2006-05-04 | 2011-03-22 | Nipro Diagnostics, Inc. | System and methods for automatically recognizing a control solution |
BRPI0711337A2 (en) * | 2006-05-08 | 2011-08-30 | Bayer Healthcare Llc | electrochemical test sensor with reduced sample volume |
US20080064937A1 (en) | 2006-06-07 | 2008-03-13 | Abbott Diabetes Care, Inc. | Analyte monitoring system and method |
DE102006043718B4 (en) * | 2006-09-18 | 2014-12-31 | Alexander Adlassnig | Determination of hydrogen peroxide concentrations |
US7831287B2 (en) | 2006-10-04 | 2010-11-09 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
AU2007303239A1 (en) | 2006-10-04 | 2008-04-10 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
WO2008040982A1 (en) * | 2006-10-05 | 2008-04-10 | Lifescan Scotland Limited | Method for determining hematocrit corrected analyte concentrations |
EP2082222B1 (en) | 2006-10-05 | 2012-11-21 | Lifescan Scotland Limited | Systems and methods for determining a substantially hematocrit independent analyte concentration |
US9046480B2 (en) | 2006-10-05 | 2015-06-02 | Lifescan Scotland Limited | Method for determining hematocrit corrected analyte concentrations |
EP2080022B1 (en) | 2006-10-05 | 2015-05-13 | Lifescan Scotland Ltd | Methods for determining an analyte concentration using signal processing algorithms |
GB0621352D0 (en) * | 2006-10-27 | 2006-12-06 | Suresensors | Measurement device |
TW200823456A (en) * | 2006-11-24 | 2008-06-01 | Health & Life Co Ltd | Biosensor |
KR100909620B1 (en) * | 2007-04-20 | 2009-07-27 | 주식회사 영텍 | Calibration device |
BRPI0810515A2 (en) * | 2007-04-27 | 2014-10-21 | Abbott Diabetes Care Inc | ANALYZED METHODS AND SENSORS WITHOUT CALIBRATION |
US9063070B2 (en) * | 2007-05-18 | 2015-06-23 | Luoxis Diagnostics, Inc. | Measurement and uses of oxidative status |
US8709709B2 (en) | 2007-05-18 | 2014-04-29 | Luoxis Diagnostics, Inc. | Measurement and uses of oxidative status |
CA2688184A1 (en) | 2007-06-08 | 2008-12-18 | Dexcom, Inc. | Integrated medicament delivery device for use with continuous analyte sensor |
TWI336782B (en) * | 2007-07-05 | 2011-02-01 | Apex Biotechnology Corp | Composite modified electrode trip |
KR101522322B1 (en) * | 2007-07-26 | 2015-05-21 | 아가매트릭스, 인코포레이티드 | Electrochemical Test Strips |
EP2227132B1 (en) | 2007-10-09 | 2023-03-08 | DexCom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US8417312B2 (en) | 2007-10-25 | 2013-04-09 | Dexcom, Inc. | Systems and methods for processing sensor data |
US8290559B2 (en) | 2007-12-17 | 2012-10-16 | Dexcom, Inc. | Systems and methods for processing sensor data |
USD612279S1 (en) | 2008-01-18 | 2010-03-23 | Lifescan Scotland Limited | User interface in an analyte meter |
US9143569B2 (en) | 2008-02-21 | 2015-09-22 | Dexcom, Inc. | Systems and methods for processing, transmitting and displaying sensor data |
IL197532A0 (en) | 2008-03-21 | 2009-12-24 | Lifescan Scotland Ltd | Analyte testing method and system |
US8396528B2 (en) | 2008-03-25 | 2013-03-12 | Dexcom, Inc. | Analyte sensor |
JP5032654B2 (en) * | 2008-03-27 | 2012-09-26 | パナソニック株式会社 | Measuring device, measuring system, and concentration measuring method |
US20090247856A1 (en) * | 2008-03-28 | 2009-10-01 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US8583204B2 (en) * | 2008-03-28 | 2013-11-12 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US8682408B2 (en) | 2008-03-28 | 2014-03-25 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US11730407B2 (en) | 2008-03-28 | 2023-08-22 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
EP2265324B1 (en) | 2008-04-11 | 2015-01-28 | Sanofi-Aventis Deutschland GmbH | Integrated analyte measurement system |
USD611151S1 (en) | 2008-06-10 | 2010-03-02 | Lifescan Scotland, Ltd. | Test meter |
USD611372S1 (en) | 2008-09-19 | 2010-03-09 | Lifescan Scotland Limited | Analyte test meter |
EP2326944B1 (en) | 2008-09-19 | 2020-08-19 | Dexcom, Inc. | Particle-containing membrane and particulate electrode for analyte sensors |
US8956308B2 (en) | 2008-09-29 | 2015-02-17 | Bayer Healthcare Llc | Integrated-testing system |
US8986208B2 (en) * | 2008-09-30 | 2015-03-24 | Abbott Diabetes Care Inc. | Analyte sensor sensitivity attenuation mitigation |
US8012428B2 (en) * | 2008-10-30 | 2011-09-06 | Lifescan Scotland, Ltd. | Analytical test strip with minimal fill-error sample viewing window |
US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
KR100918027B1 (en) * | 2009-02-19 | 2009-09-18 | 주식회사 올메디쿠스 | Bio-sensor provided with code electrode, method for manufacturing the same, and method for taking sensor information from the same |
US9446194B2 (en) | 2009-03-27 | 2016-09-20 | Dexcom, Inc. | Methods and systems for promoting glucose management |
US20110048972A1 (en) * | 2009-08-31 | 2011-03-03 | Lifescan Scotland Limited | Multi-analyte test strip with shared counter/reference electrode and inline electrode configuration |
US9212380B2 (en) * | 2009-08-31 | 2015-12-15 | Panasonic Healthcare Holdings Co., Ltd. | Sensor and concentration measurement method |
KR101109857B1 (en) * | 2009-09-29 | 2012-02-14 | 광운대학교 산학협력단 | Electrochemical Biosensor Using Double Pulse Excitation |
IL209760A (en) | 2009-12-11 | 2015-05-31 | Lifescan Scotland Ltd | Fill sufficiency method and system |
GB201005357D0 (en) | 2010-03-30 | 2010-05-12 | Menai Medical Technologies Ltd | Sampling plate |
GB201005359D0 (en) | 2010-03-30 | 2010-05-12 | Menai Medical Technologies Ltd | Sampling plate |
US20120238841A1 (en) * | 2010-04-15 | 2012-09-20 | Mark Castle | Sample capture in one step for test strips |
US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
JP5925285B2 (en) * | 2010-04-22 | 2016-05-25 | アークレイ株式会社 | Biosensor |
JP5753720B2 (en) * | 2010-04-22 | 2015-07-22 | アークレイ株式会社 | Biosensor |
GB201007711D0 (en) * | 2010-05-07 | 2010-06-23 | Pa Consulting Services | Devices and methods for testing analytes |
US8940141B2 (en) | 2010-05-19 | 2015-01-27 | Lifescan Scotland Limited | Analytical test strip with an electrode having electrochemically active and inert areas of a predetermined size and distribution |
US20110290668A1 (en) * | 2010-05-27 | 2011-12-01 | Lifescan Scotland Limited | Analytical test strip with crossroads exposed electrode configuration |
EP2601518A4 (en) * | 2010-08-06 | 2017-01-18 | Schlumberger Technology B.V. | Electrochemical sensor |
US20120048746A1 (en) * | 2010-08-30 | 2012-03-01 | Cilag Gmbh International | Analyte test strip with electrically distinguishable divided electrode |
AU2011303639B2 (en) | 2010-09-13 | 2015-05-14 | Lifescan Scotland Limited | Analyte measurement method and system with hematocrit compensation |
RU2564923C2 (en) * | 2010-12-31 | 2015-10-10 | Цилаг Гмбх Интернэшнл | Systems and methods for high-accuracy analyte measurement |
KR20140034720A (en) | 2011-02-28 | 2014-03-20 | 로익스 다이어그노스틱스, 아이엔씨. | Method and apparatus for measuring oxidation-reduction potential |
WO2012133633A1 (en) * | 2011-03-29 | 2012-10-04 | 株式会社テクノメデイカ | Disposable lysine sensor |
EP3575796B1 (en) | 2011-04-15 | 2020-11-11 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
TWI427291B (en) * | 2011-07-06 | 2014-02-21 | Bionime Corp | Method for operating a measurement of a sample on an electrochemical test strip |
USD703208S1 (en) * | 2012-04-13 | 2014-04-22 | Blackberry Limited | UICC apparatus |
US8936199B2 (en) | 2012-04-13 | 2015-01-20 | Blackberry Limited | UICC apparatus and related methods |
EA201491808A1 (en) | 2012-04-19 | 2015-03-31 | Луоксис Дайэгностикс, Инк. | MULTILAYER GEL |
USD701864S1 (en) * | 2012-04-23 | 2014-04-01 | Blackberry Limited | UICC apparatus |
JP2013242171A (en) * | 2012-05-18 | 2013-12-05 | Tanita Corp | Concentration measuring apparatus |
TWI513978B (en) | 2012-06-08 | 2015-12-21 | Hmd Biomedical Inc | Test strip, detecting device and detection method |
US20130341207A1 (en) * | 2012-06-21 | 2013-12-26 | Lifescan Scotland Limited | Analytical test strip with capillary sample-receiving chambers separated by stop junctions |
US9128038B2 (en) * | 2012-06-21 | 2015-09-08 | Lifescan Scotland Limited | Analytical test strip with capillary sample-receiving chambers separated by a physical barrier island |
US8877023B2 (en) * | 2012-06-21 | 2014-11-04 | Lifescan Scotland Limited | Electrochemical-based analytical test strip with intersecting sample-receiving chambers |
GB2505694B (en) * | 2012-09-07 | 2017-03-22 | Lifescan Scotland Ltd | Electrochemical-based analytical test strip with bare interferent electrodes |
SG11201401110WA (en) | 2012-10-23 | 2014-06-27 | Luoxis Diagnostics Inc | Methods and systems for measuring and using the oxidation-reduction potential of a biological sample |
US9244036B2 (en) | 2012-11-16 | 2016-01-26 | Cilag Gmbh International | System and method for determination of a concentration of at least one interfering substance and correction of glucose concentration based on the concentration of the interfering substance |
TWI493186B (en) | 2013-02-08 | 2015-07-21 | Hmd Biomedical Inc | Test strip, detecting device and detection method |
US9121050B2 (en) | 2013-03-15 | 2015-09-01 | American Sterilizer Company | Non-enzyme based detection method for electronic monitoring of biological indicator |
US8858884B2 (en) | 2013-03-15 | 2014-10-14 | American Sterilizer Company | Coupled enzyme-based method for electronic monitoring of biological indicator |
JP5813171B2 (en) * | 2013-05-02 | 2015-11-17 | アークレイ株式会社 | Analytical tool, manufacturing method thereof, and measuring device using the same |
GB2514846B (en) * | 2013-06-07 | 2015-09-30 | Lifescan Scotland Ltd | Electrochemical-based analytical test strip with a soluble electrochemically-active coating opposite a bare electrode |
GB2518165B (en) * | 2013-09-11 | 2016-04-27 | Cilag Gmbh Int | Electrochemical-based analytical test strip with ultra-thin discontinuous metal layer |
US20150068893A1 (en) * | 2013-09-12 | 2015-03-12 | Joinsoon Medical Technology Co., Ltd. | Biosensor test strip for biosensor test device |
JP6404681B2 (en) * | 2013-11-08 | 2018-10-10 | アークレイ株式会社 | Measuring apparatus and measuring method |
US20150176049A1 (en) * | 2013-12-23 | 2015-06-25 | Cilag Gmbh International | Determining usability of analytical test strip |
EP3172570A4 (en) | 2014-07-25 | 2017-12-27 | Becton, Dickinson and Company | Analyte test strip assays, and test strips and kits for use in practicing the same |
EP3183246B1 (en) | 2014-08-22 | 2020-09-23 | Roche Diagnostics GmbH | Redoxindicators |
ES2883115T3 (en) | 2014-08-25 | 2021-12-07 | Hoffmann La Roche | Two-electrode test strip that compensates for interference |
GB201419472D0 (en) | 2014-10-31 | 2014-12-17 | Inside Biometrics Ltd | Method of using and electrochemical device |
AU2015373937A1 (en) * | 2014-12-31 | 2017-07-27 | Trividia Health, Inc. | Glucose test strip with interference correction |
WO2016183044A1 (en) * | 2015-05-10 | 2016-11-17 | Gordhanbhai Patel | Uv cured indicating devices |
ES2720780T3 (en) | 2016-03-14 | 2019-07-24 | Hoffmann La Roche | Method to detect an interfering contribution in a biosensor |
CN112698021B (en) * | 2016-12-23 | 2024-09-20 | 雷迪奥米特医学公司 | Multiple use sensor assembly for body fluids |
WO2019006413A1 (en) * | 2017-06-30 | 2019-01-03 | Abbott Diabetes Care | Method and apparatus for analyte detection using an electrochemical biosensor |
DK3700416T3 (en) | 2017-10-24 | 2024-09-30 | Dexcom Inc | PRE-CONNECTED ANALYTE SENSORS |
US11331022B2 (en) | 2017-10-24 | 2022-05-17 | Dexcom, Inc. | Pre-connected analyte sensors |
US10330628B2 (en) | 2017-11-21 | 2019-06-25 | Uxn Co., Ltd. | Glucose-sensing electrode and device with nanoporous layer |
WO2019118920A1 (en) * | 2017-12-15 | 2019-06-20 | Uxn Co., Ltd | Colloid with a nanoporous structure and device and system for non-enzymatic glucose-sensing |
CN109270145B (en) * | 2018-11-20 | 2021-09-17 | 三诺生物传感股份有限公司 | Method for testing electrochemical test strip with double electrodes |
CN110082418B (en) * | 2019-05-27 | 2021-10-15 | 三诺生物传感股份有限公司 | Uric acid electrochemical measurement method |
CN112067604B (en) * | 2019-08-01 | 2023-01-10 | 杭州博拓生物科技股份有限公司 | Detection device |
ES2915406B2 (en) * | 2020-12-21 | 2024-03-14 | Bioquochem S L | METHOD FOR MEASURING A CONCENTRATION OF AN ANALYTICAL COMPOUND OR AN ENZYMATIC ACTIVITY IN A COMPLEX SAMPLE BY SELECTIVELY QUANTIFYING HYDROGEN PEROXIDE |
DE102022107214B4 (en) | 2022-03-28 | 2024-07-18 | Senslab - Gesellschaft Zur Entwicklung Und Herstellung Bioelektrochemischer Sensoren Mbh | Method and sensor for determining a plasma-related analyte concentration in whole blood |
US20230314340A1 (en) * | 2022-03-29 | 2023-10-05 | Medtronic, Inc. | Noise reduction for sensor apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4431004A (en) * | 1981-10-27 | 1984-02-14 | Bessman Samuel P | Implantable glucose sensor |
US4655880A (en) * | 1983-08-01 | 1987-04-07 | Case Western Reserve University | Apparatus and method for sensing species, substances and substrates using oxidase |
WO1989002593A1 (en) * | 1987-08-28 | 1989-03-23 | Harman John N Iii | Noise reduction technique for electrochemical cells |
US5298146A (en) * | 1991-11-08 | 1994-03-29 | Bayer Aktiengesellschaft | Device for the simultaneous detection of dissimilar gas components |
US5830343A (en) * | 1994-07-11 | 1998-11-03 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Electrochemical analysis process |
Family Cites Families (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US565062A (en) * | 1896-08-04 | Samuel l | ||
US4233031A (en) * | 1978-12-11 | 1980-11-11 | Environmental Sciences Associates, Inc. | Electrochemical testing system and method |
JPS613048A (en) * | 1984-06-18 | 1986-01-09 | Matsushita Electric Works Ltd | Measurement using biosensor |
WO1989009397A1 (en) * | 1988-03-31 | 1989-10-05 | Matsushita Electric Industrial Co., Ltd. | Biosensor and process for its production |
FR2661548B1 (en) * | 1990-04-30 | 1992-07-17 | Telemecanique | LOCKING INVERTER CONTACTOR APPARATUS. |
JPH04240558A (en) * | 1991-01-25 | 1992-08-27 | Sumitomo Metal Ind Ltd | Enzyme electrode |
JP2960265B2 (en) * | 1991-10-18 | 1999-10-06 | 松下電器産業株式会社 | Biosensor and measurement method using the same |
JP2658769B2 (en) * | 1991-10-21 | 1997-09-30 | 松下電器産業株式会社 | Biosensor |
JP3135959B2 (en) * | 1991-12-12 | 2001-02-19 | アークレイ株式会社 | Biosensor and separation and quantification method using the same |
ZA938555B (en) * | 1992-11-23 | 1994-08-02 | Lilly Co Eli | Technique to improve the performance of electrochemical sensors |
US5592551A (en) * | 1992-12-01 | 1997-01-07 | Scientific-Atlanta, Inc. | Method and apparatus for providing interactive electronic programming guide |
US5582697A (en) | 1995-03-17 | 1996-12-10 | Matsushita Electric Industrial Co., Ltd. | Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same |
US5650062A (en) | 1995-03-17 | 1997-07-22 | Matsushita Electric Industrial Co., Ltd. | Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same |
JPH09129236A (en) * | 1995-08-25 | 1997-05-16 | Furukawa Battery Co Ltd:The | Negative active material for lithium secondary battery and lithium secondary battery |
US5628890A (en) * | 1995-09-27 | 1997-05-13 | Medisense, Inc. | Electrochemical sensor |
US5650052A (en) * | 1995-10-04 | 1997-07-22 | Edelstein; Sergio | Variable cell size collimator |
US5653918A (en) * | 1996-01-11 | 1997-08-05 | E. I. Du Pont De Nemours And Company | Flexible thick film conductor composition |
US5708247A (en) | 1996-02-14 | 1998-01-13 | Selfcare, Inc. | Disposable glucose test strips, and methods and compositions for making same |
JP2000512762A (en) * | 1996-06-17 | 2000-09-26 | マーキュリー ダイアグノスティックス インコーポレイテッド | Electrochemical test equipment and related methods |
KR100193716B1 (en) * | 1996-10-16 | 1999-06-15 | 윤종용 | Ink-jet printing method and apparatus using dielectrophoretic force by electric field density difference |
JP3460183B2 (en) * | 1996-12-24 | 2003-10-27 | 松下電器産業株式会社 | Biosensor |
US5943263A (en) * | 1997-01-08 | 1999-08-24 | Micron Technology, Inc. | Apparatus and method for programming voltage protection in a non-volatile memory system |
JP3394262B2 (en) * | 1997-02-06 | 2003-04-07 | セラセンス、インク. | Small volume in vitro analyte sensor |
BR7700267U (en) * | 1997-03-20 | 1998-11-03 | Wahler Metalurgica Ltda | Integrated thermostat |
US6139718A (en) | 1997-03-25 | 2000-10-31 | Cygnus, Inc. | Electrode with improved signal to noise ratio |
US6046051A (en) * | 1997-06-27 | 2000-04-04 | Hemosense, Inc. | Method and device for measuring blood coagulation or lysis by viscosity changes |
US6599406B1 (en) * | 1997-07-22 | 2003-07-29 | Kyoto Daiichi Kagaku Co., Ltd. | Concentration measuring apparatus, test strip for the concentration measuring apparatus, biosensor system and method for forming terminal on the test strip |
BR9811609A (en) | 1997-09-05 | 2000-09-05 | Abbott Lab | Electrochemical sensor with equalized electrode areas |
JP3267907B2 (en) * | 1997-09-29 | 2002-03-25 | 松下電器産業株式会社 | Biosensor and Substrate Quantification Method Using It |
US6001239A (en) * | 1998-09-30 | 1999-12-14 | Mercury Diagnostics, Inc. | Membrane based electrochemical test device and related methods |
JP3267933B2 (en) * | 1998-01-27 | 2002-03-25 | 松下電器産業株式会社 | Substrate quantification method |
CN1122178C (en) * | 1998-04-02 | 2003-09-24 | 松下电器产业株式会社 | Substrate determining method |
GB2337122B (en) * | 1998-05-08 | 2002-11-13 | Medisense Inc | Test strip |
JP3267936B2 (en) * | 1998-08-26 | 2002-03-25 | 松下電器産業株式会社 | Biosensor |
AU5683599A (en) | 1998-08-31 | 2000-03-21 | Cubus Corporation | Computer product for networking a document development system using message headers associated with message files |
US6338790B1 (en) * | 1998-10-08 | 2002-01-15 | Therasense, Inc. | Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
JP3462401B2 (en) * | 1998-10-15 | 2003-11-05 | 日本電信電話株式会社 | Electrochemical detector |
JP5073129B2 (en) * | 1999-03-31 | 2012-11-14 | 株式会社日本触媒 | (Meth) acrylic acid purification method |
US6258229B1 (en) * | 1999-06-02 | 2001-07-10 | Handani Winarta | Disposable sub-microliter volume sensor and method of making |
US6287451B1 (en) * | 1999-06-02 | 2001-09-11 | Handani Winarta | Disposable sensor and method of making |
GB2351153B (en) | 1999-06-18 | 2003-03-26 | Abbott Lab | Electrochemical sensor for analysis of liquid samples |
US6616819B1 (en) * | 1999-11-04 | 2003-09-09 | Therasense, Inc. | Small volume in vitro analyte sensor and methods |
EP2151683A3 (en) * | 1999-11-15 | 2010-07-28 | Panasonic Corporation | Biosensor, thin film electrode forming method, quantification apparatus, and quantification method |
JP3982133B2 (en) * | 2000-01-25 | 2007-09-26 | 松下電器産業株式会社 | Measuring device using biosensor and biosensor and dedicated standard solution used therefor |
GB0005564D0 (en) | 2000-03-08 | 2000-05-03 | Inverness Medical Ltd | Measurjement of substances in liquid |
US20020092612A1 (en) * | 2000-03-28 | 2002-07-18 | Davies Oliver William Hardwicke | Rapid response glucose sensor |
CA2402354C (en) | 2000-03-28 | 2011-10-04 | Inverness Medical Technology, Inc. | Rapid response glucose sensor |
JP2002055076A (en) * | 2000-09-08 | 2002-02-20 | Nec Corp | Electrochemical sensor |
GB0030929D0 (en) | 2000-12-19 | 2001-01-31 | Inverness Medical Ltd | Analyte measurement |
EP1369684A4 (en) * | 2001-01-17 | 2009-07-22 | Arkray Inc | Quantitative analyzing method and quantitative analyzer using sensor |
US6572745B2 (en) * | 2001-03-23 | 2003-06-03 | Virotek, L.L.C. | Electrochemical sensor and method thereof |
JP3672099B2 (en) * | 2001-06-14 | 2005-07-13 | 松下電器産業株式会社 | Biosensor |
DE10158420A1 (en) | 2001-11-29 | 2003-06-12 | Basf Ag | Adhesive containing glycidyl (meth) acrylate |
US6837976B2 (en) * | 2002-04-19 | 2005-01-04 | Nova Biomedical Corporation | Disposable sensor with enhanced sample port inlet |
DE10218828A1 (en) | 2002-04-26 | 2003-11-06 | Siemens Ag | Mobile RF device with transmission power limitation, can be set to maximum transmission power via mobilephone menu with user personally selecting maximum acceptable radiative loading level |
US20030143113A2 (en) * | 2002-05-09 | 2003-07-31 | Lifescan, Inc. | Physiological sample collection devices and methods of using the same |
KR100485671B1 (en) | 2002-09-30 | 2005-04-27 | 주식회사 인포피아 | A measuring instrument for biosensor |
CA2504311C (en) | 2002-10-30 | 2011-12-20 | Inverness Medical Limited | Preconditioning of a substrate in a continuous process for manufacture of electrochemical sensors |
US20040120848A1 (en) * | 2002-12-20 | 2004-06-24 | Maria Teodorczyk | Method for manufacturing a sterilized and calibrated biosensor-based medical device |
US20040149578A1 (en) * | 2003-01-30 | 2004-08-05 | Chun-Mu Huang | Method for manufacturing electrochemical sensor and structure thereof |
US7132041B2 (en) | 2003-02-11 | 2006-11-07 | Bayer Healthcare Llc | Methods of determining the concentration of an analyte in a fluid test sample |
US7462265B2 (en) * | 2003-06-06 | 2008-12-09 | Lifescan, Inc. | Reduced volume electrochemical sensor |
US7655119B2 (en) * | 2003-10-31 | 2010-02-02 | Lifescan Scotland Limited | Meter for use in an improved method of reducing interferences in an electrochemical sensor using two different applied potentials |
CA2543961A1 (en) | 2003-10-31 | 2005-05-19 | Lifescan Scotland Limited | Electrochemical test strip for reducing the effect of direct and mediated interference current |
US7875461B2 (en) * | 2007-07-24 | 2011-01-25 | Lifescan Scotland Limited | Test strip and connector |
-
2004
- 2004-10-29 CA CA002543961A patent/CA2543961A1/en not_active Abandoned
- 2004-10-29 US US10/976,489 patent/US20050133368A1/en not_active Abandoned
- 2004-10-29 AT AT04791611T patent/ATE360816T1/en not_active IP Right Cessation
- 2004-10-29 AU AU2004288008A patent/AU2004288008B2/en not_active Ceased
- 2004-10-29 WO PCT/GB2004/004574 patent/WO2005045412A1/en active IP Right Grant
- 2004-10-29 PT PT04769041T patent/PT1685393E/en unknown
- 2004-10-29 US US10/977,154 patent/US7618522B2/en not_active Expired - Fee Related
- 2004-10-29 EP EP04769041A patent/EP1685393B1/en not_active Expired - Lifetime
- 2004-10-29 AU AU2004288014A patent/AU2004288014A1/en not_active Abandoned
- 2004-10-29 AU AU2004288013A patent/AU2004288013A1/en not_active Abandoned
- 2004-10-29 US US10/577,586 patent/US7653492B2/en active Active
- 2004-10-29 EP EP04791633A patent/EP1678492A1/en not_active Withdrawn
- 2004-10-29 EP EP04791630A patent/EP1678491B1/en not_active Expired - Lifetime
- 2004-10-29 AT AT04769041T patent/ATE354796T1/en not_active IP Right Cessation
- 2004-10-29 US US10/977,086 patent/US20050139489A1/en not_active Abandoned
- 2004-10-29 WO PCT/GB2004/004588 patent/WO2005045413A1/en active Application Filing
- 2004-10-29 CA CA2543957A patent/CA2543957C/en not_active Expired - Lifetime
- 2004-10-29 CA CA002543802A patent/CA2543802A1/en not_active Abandoned
- 2004-10-29 EP EP04791611A patent/EP1678489B1/en not_active Expired - Lifetime
- 2004-10-29 JP JP2006537429A patent/JP4694498B2/en not_active Expired - Fee Related
- 2004-10-29 DE DE602004021835T patent/DE602004021835D1/en not_active Expired - Lifetime
- 2004-10-29 SG SG200702859-0A patent/SG131941A1/en unknown
- 2004-10-29 DK DK04769041T patent/DK1685393T3/en active
- 2004-10-29 KR KR1020067010292A patent/KR101092350B1/en active IP Right Grant
- 2004-10-29 ES ES04791630T patent/ES2343184T3/en not_active Expired - Lifetime
- 2004-10-29 PL PL04791611T patent/PL1678489T3/en unknown
- 2004-10-29 DK DK04791611T patent/DK1678489T3/en active
- 2004-10-29 ES ES04791625T patent/ES2327741T3/en not_active Expired - Lifetime
- 2004-10-29 AU AU2004288004A patent/AU2004288004B2/en not_active Ceased
- 2004-10-29 ES ES04791611T patent/ES2285536T3/en not_active Expired - Lifetime
- 2004-10-29 JP JP2006537432A patent/JP4652334B2/en not_active Expired - Fee Related
- 2004-10-29 PL PL04791625T patent/PL1678490T3/en unknown
- 2004-10-29 WO PCT/GB2004/004592 patent/WO2005045414A1/en active IP Right Grant
- 2004-10-29 JP JP2006537434A patent/JP2007514930A/en active Pending
- 2004-10-29 DE DE602004025960T patent/DE602004025960D1/en not_active Expired - Lifetime
- 2004-10-29 AU AU2004288012A patent/AU2004288012B2/en not_active Ceased
- 2004-10-29 ES ES04769041T patent/ES2282898T3/en not_active Expired - Lifetime
- 2004-10-29 CA CA2551058A patent/CA2551058C/en not_active Expired - Fee Related
- 2004-10-29 EP EP04791625A patent/EP1678490B1/en not_active Expired - Lifetime
- 2004-10-29 DK DK04791625T patent/DK1678490T3/en active
- 2004-10-29 CA CA2543797A patent/CA2543797C/en not_active Expired - Fee Related
- 2004-10-29 SG SG200702868-1A patent/SG131942A1/en unknown
- 2004-10-29 EP EP04791634A patent/EP1678493A1/en not_active Withdrawn
- 2004-10-29 KR KR1020067010641A patent/KR20070027497A/en not_active Application Discontinuation
- 2004-10-29 KR KR1020067010636A patent/KR101179998B1/en active IP Right Grant
- 2004-10-29 HK HK06112230A patent/HK1091896A1/en not_active IP Right Cessation
- 2004-10-29 WO PCT/GB2004/004599 patent/WO2005045417A1/en not_active Application Discontinuation
- 2004-10-29 DE DE602004006148T patent/DE602004006148T2/en not_active Expired - Lifetime
- 2004-10-29 KR KR1020067010291A patent/KR101201245B1/en active IP Right Grant
- 2004-10-29 JP JP2006537431A patent/JP2007514928A/en active Pending
- 2004-10-29 JP JP2006537423A patent/JP4611313B2/en not_active Expired - Fee Related
- 2004-10-29 US US10/977,316 patent/US20050139469A1/en not_active Abandoned
- 2004-10-29 PT PT04791611T patent/PT1678489E/en unknown
- 2004-10-29 CA CA002544424A patent/CA2544424A1/en not_active Abandoned
- 2004-10-29 PL PL04769041T patent/PL1685393T3/en unknown
- 2004-10-29 JP JP2006537435A patent/JP2007514931A/en active Pending
- 2004-10-29 KR KR1020067010640A patent/KR20070027496A/en not_active Application Discontinuation
- 2004-10-29 AU AU2004288011A patent/AU2004288011A1/en not_active Abandoned
- 2004-10-29 AT AT04791630T patent/ATE460661T1/en not_active IP Right Cessation
- 2004-10-29 WO PCT/GB2004/004598 patent/WO2005045416A1/en not_active Application Discontinuation
- 2004-10-29 US US10/977,292 patent/US20050114062A1/en not_active Abandoned
- 2004-10-29 AT AT04791625T patent/ATE435419T1/en active
- 2004-10-29 WO PCT/GB2004/004594 patent/WO2005045415A1/en active Application Filing
- 2004-10-29 DE DE602004004929T patent/DE602004004929T2/en not_active Expired - Lifetime
-
2006
- 2006-04-30 IL IL175324A patent/IL175324A0/en unknown
- 2006-04-30 IL IL175322A patent/IL175322A0/en active IP Right Grant
- 2006-04-30 IL IL175323A patent/IL175323A0/en unknown
- 2006-04-30 IL IL175321A patent/IL175321A0/en unknown
- 2006-04-30 IL IL175320A patent/IL175320A0/en unknown
- 2006-04-30 IL IL175325A patent/IL175325A0/en unknown
- 2006-11-08 HK HK06112291.5A patent/HK1091898A1/en not_active IP Right Cessation
- 2006-11-09 HK HK06112340.6A patent/HK1091900A1/en not_active IP Right Cessation
- 2006-12-15 HK HK06113835A patent/HK1093095A1/en not_active IP Right Cessation
-
2009
- 2009-10-06 US US12/574,469 patent/US20100018878A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4431004A (en) * | 1981-10-27 | 1984-02-14 | Bessman Samuel P | Implantable glucose sensor |
US4655880A (en) * | 1983-08-01 | 1987-04-07 | Case Western Reserve University | Apparatus and method for sensing species, substances and substrates using oxidase |
WO1989002593A1 (en) * | 1987-08-28 | 1989-03-23 | Harman John N Iii | Noise reduction technique for electrochemical cells |
US5298146A (en) * | 1991-11-08 | 1994-03-29 | Bayer Aktiengesellschaft | Device for the simultaneous detection of dissimilar gas components |
US5830343A (en) * | 1994-07-11 | 1998-11-03 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Electrochemical analysis process |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8211292B2 (en) | 2005-08-05 | 2012-07-03 | Bayer Healthcare Llc | Method for distinguishing electrochemical sensors |
US8480868B2 (en) | 2005-08-05 | 2013-07-09 | Bayer Healthcare Llc | Method for distinguishing electrochemical sensors |
CN112294324A (en) * | 2019-08-02 | 2021-02-02 | 华广生技股份有限公司 | Method for reducing interference of miniature biosensor measurement |
CN112294325A (en) * | 2019-08-02 | 2021-02-02 | 华广生技股份有限公司 | Miniature biosensor and method for reducing measurement interference |
EP3771411A1 (en) * | 2019-08-02 | 2021-02-03 | Bionime Corporation | Method for reducing measurement interference of micro biosensor |
EP3771410A1 (en) * | 2019-08-02 | 2021-02-03 | Bionime Corporation | Micro biosensor and method for reducing measurement interference using the same |
EP3771413A1 (en) * | 2019-08-02 | 2021-02-03 | Bionime Corporation | Method for manufacturing implantable micro-biosensor |
EP3771415A1 (en) * | 2019-08-02 | 2021-02-03 | Bionime Corporation | Implantable micro-biosensor and method for manufacturing the same |
US11950902B2 (en) | 2019-08-02 | 2024-04-09 | Bionime Corporation | Micro biosensor and method for reducing measurement interference using the same |
US11974842B2 (en) | 2019-08-02 | 2024-05-07 | Bionime Corporation | Implantable micro-biosensor and method for manufacturing the same |
TWI844059B (en) * | 2021-07-22 | 2024-06-01 | 華廣生技股份有限公司 | Micro biosensor and sensing structure thereof |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2551058C (en) | A meter for use in an improved method of reducing interferences in an electrochemical sensor using two different applied potentials | |
US7655119B2 (en) | Meter for use in an improved method of reducing interferences in an electrochemical sensor using two different applied potentials | |
EP2565638B1 (en) | Electrochemical analyte measurement system and method | |
JP5044655B2 (en) | Reagent formulations using ruthenium hexamine as a transmitter for electrochemical test strips | |
EP2615976B1 (en) | Analyte measurement method and system with hematocrit compensation | |
CN101163963B (en) | A measurer of reducing interferences in an electrochemical sensor using two different applied potentials | |
KR20140005156A (en) | Glucose electrochemical measurement method with error detection | |
KR20070022195A (en) | Electrochemical test strip for reducing the effect of direct interference current |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200480039526.5 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2543797 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006537429 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 175321 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004288008 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004791625 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2004288008 Country of ref document: AU Date of ref document: 20041029 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2004288008 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020067010291 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2004791625 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067010291 Country of ref document: KR |