WO2005043563A1 - Lamination type magnetic part and method of producing the same, and method of producing hybrid sheet for lamination type magnetic part - Google Patents

Lamination type magnetic part and method of producing the same, and method of producing hybrid sheet for lamination type magnetic part Download PDF

Info

Publication number
WO2005043563A1
WO2005043563A1 PCT/JP2003/014060 JP0314060W WO2005043563A1 WO 2005043563 A1 WO2005043563 A1 WO 2005043563A1 JP 0314060 W JP0314060 W JP 0314060W WO 2005043563 A1 WO2005043563 A1 WO 2005043563A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
magnetic
dielectric
laminated
dielectric sheet
Prior art date
Application number
PCT/JP2003/014060
Other languages
French (fr)
Japanese (ja)
Inventor
Toshimi Mizoguchi
Yasuhiro Yokote
Original Assignee
Tamura Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corporation filed Critical Tamura Corporation
Priority to JP2005510149A priority Critical patent/JPWO2005043563A1/en
Priority to AU2003280714A priority patent/AU2003280714A1/en
Priority to PCT/JP2003/014060 priority patent/WO2005043563A1/en
Publication of WO2005043563A1 publication Critical patent/WO2005043563A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F2017/0093Common mode choke coil

Definitions

  • the present invention relates to a laminated magnetic component, a method for producing the same, and a method for producing a hybrid sheet for a laminated magnetic component.
  • the present invention relates to a coil and a core that are formed by laminating sheets having electromagnetic characteristics.
  • the present invention relates to a laminated magnetic component formed with the above, a method for producing the same, and a method for producing a hybrid sheet for a laminated magnetic component.
  • a method of obtaining a laminated body includes, for example, a screen printing method and a sheet method. It is manufactured by baking at a high temperature and integrating the laminated ceramic layers.
  • Such diffusion and thermal stress of the magnetic component generated inside the laminate lowers the magnetic permeability of the magnetic ceramic layer, so that the inductance value of the laminated magnetic component obtained from the fired laminate is reduced. This may be a factor lower than the desired design value.
  • the following measures (1) to (5) have been conventionally taken.
  • the number of turns of the coil-shaped internal electrode is increased by reducing the thickness of the magnetic ceramic layer per layer and decreasing the number of stacked magnetic ceramic layers.
  • An intermediate magnetic ceramic layer having a higher magnetic permeability is inserted into the blank ceramic layer between the magnetic ceramic layer and the dielectric ceramic layer.
  • the conventional techniques shown in the above (1) to (5) have the following problems. That is, in the methods (1) and (2), the electromagnetic coupling coefficient is clearly insufficient as compared with the wound magnetic parts, so that it is necessary to make the laminate thicker or longer and wider. This goes against the trend of miniaturization, which is an advantage of the above.
  • the frequency-inductance characteristic changes because the magnetic permeability of the portion that becomes the coil core increases.
  • the method (4) since the facing distance between the coil-shaped internal electrodes is reduced due to the reduction in the thickness of the magnetic ceramic layer, and the floating capacitance of the inductor is increased, the frequency characteristics change.
  • the method (5) is proposed to address the above problem, and the method (1), (2) is larger, and the inductance value is different from the method (3). Is suppressed. However, even with the method (5), it is necessary to insert the intermediate magnetic ceramic layer between the magnetic ceramic layer and the dielectric ceramic layer. .
  • a laminated magnetic component in which a sheet in which a conductive pattern for a coil is formed in a portion of the above is laminated in large numbers.
  • the conductive pattern is embedded in the low magnetic permeability part and is surrounded by the high magnetic permeability part, so that the number of laminated sheets and the leakage magnetic flux are suppressed, and a high coupling coefficient is secured.
  • the manufacturing method involves the steps of creating a sheet on PET or the like, filling the cavity formed on the sheet with a material having a different magnetic permeability from that of the sheet, and then screen printing a conductive pattern. Production efficiency is low.
  • the present invention has been proposed in order to solve the above-mentioned problems of the conventional technology.
  • the purpose of the present invention is to provide a high-quality laminated magnetic component that is small in size and can ensure a high electromagnetic coupling coefficient.
  • An object of the present invention is to provide a laminated magnetic component which can be efficiently produced, a method for producing the same, and a method for producing a composite sheet for a laminated magnetic component. Disclosure of the invention
  • the laminated magnetic component according to the present invention is composed of a first magnetic sheet having an air gap other than the magnetic core portion, a single magnetic sheet formed with a conductive pattern and matching the air gap of the magnetic sheet.
  • the method for manufacturing a laminated magnetic component according to the present invention includes the steps of: forming a first magnetic sheet and a pair of second magnetic sheets; forming a dielectric sheet; and forming the dielectric sheet on the dielectric sheet.
  • a conductive pattern is formed, a portion other than the core of the first magnetic sheet is removed, a portion corresponding to the core of the dielectric sheet is removed, and a portion of the dielectric sheet removed from the first magnetic sheet is removed.
  • a composite sheet is formed by combining the removed portions, the composite sheet is laminated, and the upper and lower sides are sandwiched by the pair of second magnetic sheets and fired.
  • the method for producing a hybrid sheet for a laminated magnetic component includes the steps of: forming a first magnetic sheet; forming a dielectric sheet; forming a conductive pattern on the dielectric sheet; Removing portions other than the magnetic core portion of the magnetic material sheet of: and removing the portion corresponding to the magnetic core portion of the dielectric sheet, and matching the non-removed portion of the dielectric sheet with the portion removed from the first magnetic material sheet; It is characterized.
  • a hybrid sheet can be formed only by matching a magnetic sheet prepared in advance and removing unnecessary portions with a dielectric sheet, so that a magnetic seed and a dielectric sheet can be formed. After creation, there is no need to take time and effort such as filling the cavity with materials and forming conductive patterns, and uniform and high-quality products can be manufactured efficiently.
  • a plurality of hybrid sheets are laminated, and the laminated hybrid sheets include a laminate in which a conductive pattern of a primary winding is formed and a laminate in which a conductive pattern of a secondary winding is formed. It may be a mold magnetic component.
  • a laminated magnetic component including a primary winding and a secondary winding functioning as a transformer section can be efficiently manufactured by laminating the hybrid sheets.
  • a first magnetic sheet is formed on the first substrate, a dielectric sheet is formed on the second substrate, a conductive pattern is formed on the dielectric sheet, and the first magnetic sheet is formed.
  • the portion other than the magnetic core portion of the body sheet is removed from the first substrate, the portion corresponding to the magnetic core portion of the dielectric sheet is removed from the second substrate, and removed from the first substrate of the first magnetic sheet.
  • a composite sheet is made by matching the portions remaining on the second substrate in the composite sheet, the first substrate and the second substrate are removed from the composite sheet, a composite sheet is laminated,
  • the laminated magnetic component may be manufactured by sandwiching and firing between a pair of second magnetic sheets.
  • the first magnetic sheet and the dielectric sheet are cut such that the boundary between the removed portion and the non-removed portion is an inclined end surface.
  • the end faces of the first magnetic material sheet and the dielectric sheet can be brought into close contact or overlap with each other, so that a composite sheet in which the magnetic material portion and the dielectric portion are joined without any gap can be created. Uniform and high quality products can be manufactured.
  • the end faces are joined by pressing the first magnetic sheet and the dielectric sheet. As a result, a composite sheet in which the magnetic material and the dielectric material are reliably integrated can be created, and uniform and high-quality products can be manufactured.
  • FIG. 1 is an exploded perspective view showing a laminated body of a laminated transformer according to one embodiment of the present invention
  • FIG. 2 is a longitudinal sectional view of the laminated transformer according to one embodiment of the present invention.
  • FIG. 3 is a flowchart showing a method of manufacturing a laminated transformer according to an embodiment of the present invention.
  • FIG. 4 shows an internal magnetic sheet and a dielectric sheet in which a boundary between a central portion and a peripheral portion is cut.
  • FIG. 5 is an explanatory view showing a cutting operation
  • FIG. 6 is a perspective view showing an internal magnetic sheet and a dielectric sheet from which unnecessary parts have been removed
  • FIG. FIG. 2 is a perspective view showing a composite sheet.
  • FIG. 8 is an explanatory view showing a joining step of the internal magnetic sheet and the dielectric sheet
  • FIG. 9 is an enlarged sectional view of the joining surface.
  • FIG. 10 shows various laminated magnetic components having different winding arrangements, widths, and the like.
  • FIG. 1 is a longitudinal sectional view showing the best mode for carrying out the invention.
  • FIG. 1 is an exploded perspective view showing an example of a laminated body constituting the laminated transformer.
  • FIG. 2 is a longitudinal sectional view showing an example of the laminated transformer manufactured according to the present embodiment.
  • the laminated body 10 is obtained by laminating a plurality of hybrid sheets 11 and 12, and sandwiching them by the upper magnetic sheet 15 and the lower magnetic sheet 16.
  • the composite sheets 11 and 12 are provided at the center and at the periphery of the non-magnetic dielectric portions 11a and 12a, respectively, at the center magnetic portion 11b and 12b and at the peripheral magnetic portion 11 1a.
  • c, 1 2 c are the physically configured sheets.
  • the hybrid sheets 11 and 12 have internal parts that leave portions corresponding to the central magnetic part 11b and 12b and the peripheral magnetic part 11c and .12c. It is manufactured by matching a magnetic sheet 13 with a dielectric sheet 14 from which portions corresponding to these magnetic parts have been removed (see FIGS. 4 to 7).
  • the inner magnetic material sheet 13 in the present embodiment corresponds to the first magnetic material sheet described in the claims, and includes a central magnetic material part lib, 12b and a peripheral magnetic material part 11c, 12. c constitutes the magnetic body part described in the claims. Further, the upper magnetic sheet 15 and the lower magnetic sheet 16 in the present embodiment correspond to the second magnetic sheet described in the claims.
  • conductive patterns 17 and 18 constituting windings of the transformer are provided on one surface of the dielectric portions 11a and 12a.
  • Each of the conductive patterns 17 and 18 forms one of a primary winding and a secondary winding.
  • FIG. 1 a pair of hybrid sheets corresponding to the primary winding and the secondary winding are shown. Although only the sheets 11 and 12 are described, a plurality of hybrid sheets 11 and 12 can be laminated in order to obtain a desired number of windings.
  • the respective windings are connected via through holes 19 and 20 filled with a conductor.
  • external electrodes 21 connected to conductive patterns 17 and 18 constituting either the primary winding or the secondary winding are provided on the lower surface of the lower magnetic sheet 16.
  • 22 are provided on the lower surface of the lower magnetic sheet 16.
  • a pair of external electrodes 21 1 and 22 are prepared for both ends on both the primary side and the secondary side, but connect the conductive patterns 17 and 18 to the external electrodes 21 and 22
  • the illustration of through holes, conductors, and the like is omitted.
  • the central magnetic part lib, 12b, the peripheral magnetic parts 11c, 12c, the upper magnetic sheet 15 and the lower magnetic sheet 16 It forms the core of the force transformer.
  • FIG. 1 and FIG. 2 are schematic diagrams partially simplified for convenience of explanation, and therefore do not correspond exactly.
  • the laminated transformer of FIG. 2 is obtained by laminating more of the hybrid sheets 11 and 12 of FIG.
  • the number of turns of the conductive patterns 17 and 18 serving as the primary winding and the secondary winding is increased, so that the conductive patterns 17 and 18 shown in FIG. Have different shapes.
  • Such a laminated transformer 100 has, for example, an external electrode 21 (one end) on the primary side—a through hole 19 (one end) ⁇ a conductive pattern 17 ⁇ a through hole 19 (the other end) ⁇
  • the current flows in the order of the external electrodes 21 (the other end) or in the reverse order.
  • the external electrode 22 (—end) ⁇ through hole 20 (—end) ⁇ conductive pattern 18 ⁇ through hole 20 (other end) ⁇ external Current flows in the order of electrode 22 (the other end) or in the reverse order.
  • the magnetic flux generated by the current flowing through the conductive pattern 17 constituting the primary winding forms an electromotive force according to the turns ratio to form the secondary winding. Generated in the conductive pattern 18.
  • the multilayer transformer 100 operates.
  • FIG. 3 is a process diagram
  • FIGS. 4 to 9 are diagrams showing various sheet materials during the process.
  • a magnetic slurry for the internal magnetic sheet 13 is prepared (Step 301).
  • the magnetic material may be, for example, a Ni-Cu-Zn system, but is not limited thereto.
  • the magnetic slurry is placed on a PET (polyethylene terephthalate) film B1 serving as a substrate, and the inside thereof is placed inside.
  • the magnetic sheet 13 is formed (step 302).
  • an upper magnetic sheet 15 and a lower magnetic sheet 1 & are formed on a PET film (steps 303, 304).
  • the inner magnetic sheet 13, the upper and lower magnetic sheets 15, 16, and the dielectric sheet 14 described later are each one sheet having a size corresponding to a large number of components.
  • the processing described below for the sheet is also performed at the position corresponding to each component.
  • a nonmagnetic slurry for the dielectric sheet 14 is also prepared (Step 305).
  • the nonmagnetic material of the dielectric sheet 1 for 4 for example, glass can be used ceramic materials was based on A 1 2 0 3.
  • the “non-magnetic material” means a substance having a magnetic permeability smaller than that of the magnetic material sheet.
  • “Dielectric sheet” means a sheet having at least a higher resistivity than a magnetic sheet, and is also called an insulating sheet. As shown in FIG. 4, such a nonmagnetic slurry is placed on a PET film B2 by using, for example, a doctor blade method, an extrusion molding method, etc., thereby forming a dielectric sheet 14. (Step 306).
  • through holes 19 and 20 are formed by a press or the like (step 307).
  • a primary paste such as an Ag-based conductive paste is printed on the dielectric sheet 14 by screen printing.
  • Conductive patterns 17 and 18 to be wires and secondary windings are formed (step 308).
  • the portions forming the conductive patterns 17 and 18 are portions that become the dielectric portions 11a and 12a as described above. Also, the conductive paste is filled in the through holes 19 and 20.
  • the line XI which is the outer edge of the central magnetic portion lib, 12b, and the outer edge
  • the line Y1 which is the inner edge of the magnetic portions 11c and 12c, is half-cut by a cutting device (step 309).
  • the half-cut here is such that only the inner magnetic sheet 13 is cut by the cutter C and the PET film B 1 is not cut.
  • the end face 3 is cut so as to have an inclination angle.
  • the dielectric sheet 14 is also half-cut so that the line X2, which is the inner edge of the dielectric portions 11a, 12a, and the line Y2, which is the outer edge, are inclined at the end face by the cutting device.
  • FIGS. 8 (A) and 8 (B) schematically show such cut surfaces. It is desirable that the inclination of the cut surface of the inner magnetic sheet 13 and the inclination of the cut surface of the dielectric sheet 14 be the same angle when they are matched. At least, the effects described later can be sufficiently obtained if each has an inclined surface.
  • unnecessary portions of the internal magnetic sheet 13 are removed (step 311).
  • the unnecessary portion is a portion other than the central magnetic body portion lib, 12b and the peripheral magnetic body portion 11c, 12c.
  • unnecessary portions of the dielectric sheet 14 are also removed.
  • the unnecessary portion is a portion other than the dielectric portions 11a and 12a.
  • FIG. 8 (C) schematically shows the cross section from which the unnecessary portion has been removed.
  • the removal of the unnecessary portion can be performed by masking the non-removed portion and peeling off the tape adhered thereon, but is not limited to this method.
  • the portions of the dielectric sheet 14 corresponding to the central magnetic portions lib, 12b and the peripheral magnetic portions 11c, 12c may be removed at the same time, or may be removed sequentially. You may.
  • the dielectric sheet 14 from which the unnecessary portion has been removed is inverted with respect to the internal magnetic material sheet 13 from which the unnecessary portion has been removed (step 3 13), and the internal magnetic material sheet 13 is removed. Match the dielectric sheet 14 to the part. It should be noted that the magnetic material sheet 14 side may be reversed so as to match.
  • the inclined end faces come into contact as shown in FIG. 8 (D).
  • the end faces are joined by a press or the like to integrate the dielectric sheet 14 and the internal magnetic sheet 13 (step 314).
  • the width a of the joining section is about 5 0 mu
  • by adding 3 0 kg Z c ⁇ 2 about pressure working adhesion of the magnetic material and dielectric material
  • one of the PET films (for example, the film B 2 on the dielectric sheet 14 side) is removed from the composite sheets 11 and 12 thus formed (see FIG. 7). Step 3 15).
  • the hybrid sheet 11 or 12 formed as described above is laminated on the lower magnetic sheet 16 and the PET film B1 is removed.
  • the composite sheets 11 or 12 are laminated so that the required number is obtained, and the upper magnetic sheet 15 is further placed, pressed and brought into close contact with each other to form a laminated body 10 (process). 3 1 6).
  • the PET films of the upper magnetic material sheet 15 and the lower magnetic material sheet 16 are appropriately removed in any of the manufacturing processes, for example, after forming the laminate.
  • the laminated body 10 is cut into a predetermined size corresponding to an individual laminated transformer (step 3117).
  • the composite sheets 11 and 12 are formed by appropriately cutting and matching the internal magnetic material sheet 13 prepared in advance and the dielectric sheet 14 to each other.
  • the internal magnetic sheet 13 and the dielectric sheet 14 that are prepared in advance need only be formed as a single sheet, so that the production is easy. Therefore, very efficient product manufacturing becomes possible.
  • the inner magnetic sheet 13 and the dielectric sheet 14 are formed on PET ⁇ B 1 and B2, and the subsequent cutting, removal of unnecessary portions, and matching of the remaining portions are performed on the PET sheet B1. , B2, each process can be performed efficiently.
  • PET ⁇ -Bl, B Since they can be handled together on the 2, high-speed processing is possible.
  • the space between the primary winding and the secondary winding is filled with a non-magnetic dielectric part.
  • a high magnetic shield structure is achieved and leakage magnetic flux can be suppressed.
  • the insulation between the primary windings and the secondary winding is degraded. There is no space between the primary and secondary windings. Therefore, the electromagnetic coupling coefficient can be increased while maintaining the insulation between the windings.
  • the insulation between the primary winding and the secondary winding is enhanced by the presence of the dielectric portion.
  • a gap (a gap having a low magnetic permeability) for improving the magnetic saturation characteristics of the core can be easily realized, excellent constant inductance can be obtained. Furthermore, withstand voltage can be secured by the electric insulation of the dielectric portion, so that high withstand voltage and stability can be achieved.
  • the number of windings and the number of windings of the laminated transformer as a finished product Since the ratio, magnetic permeability, size, dielectric strength, and the like can be adjusted, the degree of freedom in design is high, and multilayer transformers with various characteristics can be easily and mass-produced.
  • a dielectric sheet having no conductive pattern may be included in some layers by using a dielectric sheet having no conductive pattern.
  • the insulating performance can be enhanced by including a dielectric portion having no conductive pattern in a layer adjacent to the second magnetic material sheet (upper or lower magnetic material sheet).
  • Some layers may include non-hybrid dielectric or magnetic sheets.
  • the above embodiment is an example in which the present invention is applied to a multilayer transformer, but similarly, a multilayer magnetic component that requires a winding structure with a conductive pattern, for example, a multilayer inductor, a multilayer common mode filter, It can also be applied to components, laminated hybrid integrated circuits, etc. Regardless of the application to any of the electronic components, the range of use as a thin surface-mount type component is widened as in the multilayer transformer. In particular, when applied to a common mode filter, common mode noise can be effectively removed by high electromagnetic coupling.
  • the magnetic material, the dielectric material, the conductive material, and the like constituting each sheet, conductive pattern, electrode, and the like can be appropriately changed according to the type of such electronic components and the specifications required for each. Any material available now or in the future can be applied. Therefore, the present invention is not limited to the use of the materials exemplified in the above embodiments.
  • the size and shape of each part are not limited to the numerical values exemplified in the above embodiment.
  • the method for forming each sheet, conductive pattern, and the like is not limited to the method exemplified in the above embodiment.
  • the number of laminated hybrid sheets, the number, shape, arrangement, and the like of the conductive patterns in the composite sheet are also free.
  • various types of laminated magnetic components can be manufactured.
  • the shapes of the primary winding and the secondary winding are also free, such as spiral and L-shaped.
  • the number of layers of the second magnetic material sheet (upper and lower magnetic material sheets) is also free, and the shape of the magnetic material portion serving as the magnetic core (core) is also free.
  • the laminated magnetic component of the present invention the method of manufacturing the same, and the method of producing a composite sheet for a laminated magnetic component, a high-quality laminated magnetic component capable of ensuring a high electromagnetic coupling coefficient while being small in size can be efficiently manufactured. It can be manufactured well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

A method comprises the steps of forming an inner magnetic sheet (13) on a PET sheet (B1), forming a dielectric sheet (14) on a PET sheet (B2), forming electric conduction patterns (17, 18) on the dielectric sheet (14), removing the portion other than the central portion and peripheral edge in the inner magnetic sheet (13) from the PET sheet (B1), removing the central portion and peripheral edge in the dielectric sheet (14) from the PET sheet (B2), and coinciding the portion remaining on the substrate of the PET sheet (B2) in the dielectric sheet (14) with the portion removed from the PET sheet (B1) in the inner magnetic sheet (13), thereby forming hybrid sheets (11, 12). The hybrid sheets (11, 12) have the PET sheets (B1, B2) removed therefrom, and are superposed and then calcined while being held at top and bottom between the pair of upper and lower magnetic sheets (15, 16).

Description

積層型磁性部品及びその製造方法並びに積層型磁性部品用混成シー ト の製造方法 技術分野 TECHNICAL FIELD The present invention relates to a laminated magnetic component, a method for producing the same, and a method for producing a hybrid sheet for a laminated magnetic component.
本発明は、 電磁気的な特性を有するシートを積層してコイル及びコア 明  The present invention relates to a coil and a core that are formed by laminating sheets having electromagnetic characteristics.
を形成した積層型磁性部品及びその製造方法並びに積層型磁性部品用 混成シー トの製造方法に関する。 田 背景技術 TECHNICAL FIELD The present invention relates to a laminated magnetic component formed with the above, a method for producing the same, and a method for producing a hybrid sheet for a laminated magnetic component. Field background technology
近年、 電子機器の小型化の急速な進展に伴い、 卷線型に比べて、 軽く 小さく、 しかも薄い積層型磁性部品として、 積層トランス、 積層インダ クタ、 積層コモンモー ドフィルタ、 積層複合部品、 積層混成集積回路等 が知られている。 このような積層型磁性部品の製造過程において、 積層 体を得る方法には、例えば、スク リーン印刷法ゃシート法などがあるが、 、ずれも磁性体セラミック層や誘電体セラミック層のような異種のセ ラミック層を積層したものを、 高温で焼成して一体化することにより製 造される。  In recent years, with the rapid progress of miniaturization of electronic equipment, laminated transformers, laminated inductors, laminated common mode filters, laminated composite components, laminated composite components, and laminated integrated components have become lighter, smaller, and thinner compared to wire-wound types. Circuits and the like are known. In the manufacturing process of such a laminated magnetic component, a method of obtaining a laminated body includes, for example, a screen printing method and a sheet method. It is manufactured by baking at a high temperature and integrating the laminated ceramic layers.
ところが、 異種のセラミック層を積層した積層体を高温で焼成すると、 磁性体セラミックに含まれる磁性体成分が誘電体セラミック側に拡散 するという現象が生じる。 また、 磁性体セラミック層と誘電体セラミッ ク層とでは、 その熱膨張率が大きく異なるため、 積層体を焼成したとき の各セラミック層の熱膨張、 熱収縮の違いによって、 焼成時に積層体内 部に熱応力が生じる。  However, when a laminate of different types of ceramic layers is fired at a high temperature, a phenomenon occurs in which the magnetic component contained in the magnetic ceramic diffuses to the dielectric ceramic side. In addition, since the thermal expansion coefficients of the magnetic ceramic layer and the dielectric ceramic layer are significantly different, the difference in the thermal expansion and thermal shrinkage of each ceramic layer when the laminate is fired causes Thermal stress occurs.
このよ うな積層体内部に発生する磁性体成分の拡散や熱応力は、 磁性 体セラミック層の透磁率を低下させるので、 焼成後の積層体から得られ る積層型磁性部品のィンダクタンス値を、 所望の設計値より低下させる 要因となる。 かかる現象を防止するために、例えば、従来から、以下の ( 1 ) 〜( 5 ) に示すような対策がとられている。 Such diffusion and thermal stress of the magnetic component generated inside the laminate lowers the magnetic permeability of the magnetic ceramic layer, so that the inductance value of the laminated magnetic component obtained from the fired laminate is reduced. This may be a factor lower than the desired design value. In order to prevent such a phenomenon, for example, the following measures (1) to (5) have been conventionally taken.
( 1 ) 內部電極を有する磁性体セラミック層と誘電体セラミック層との 間に、 内部電極を有しない (いわゆるブランクの) 磁性体セラミック層 を何層も揷入することによって、 内部電極を有する磁性体セラミック層 と誘電体セラミック層 iの間を離隔する。 . (1) Inserting several (non-blank) magnetic ceramic layers without internal electrodes between the magnetic ceramic layer having the internal electrodes and the dielectric ceramic layer, Separates between the body ceramic layer and the dielectric ceramic layer i. .
( 2 ) コイル状の内部電極の内側の面積 (磁心面積) を増やす。 (2) Increase the area (core area) inside the coiled internal electrode.
( 3 ) 予め焼成時の透磁率の低下を見込んで、 高めの透磁率を有する磁 '性体セラミック材料を使用したシートを積層する。  (3) In view of a decrease in the magnetic permeability in advance of firing, laminate sheets using a magnetic ceramic material having a high magnetic permeability.
( 4 ) 1層当りの磁性体セラミック層を薄く し、 その分だけ磁性体セラ ミック層の積層数を增やすことによって、 コイル状の内部電極のターン 数を増大させる。  (4) The number of turns of the coil-shaped internal electrode is increased by reducing the thickness of the magnetic ceramic layer per layer and decreasing the number of stacked magnetic ceramic layers.
さらに、 上記の ( 1 ) ( 3 ) の改良技術として、 特許第 3 3 6 3 0 5 4号に、 次のような技術も開示されている。  Further, as an improved technique of the above (1) and (3), the following technique is disclosed in Japanese Patent No. 3363654.
( 5 ) 磁性体セラミック層と誘電体セラミック層との間のブランクのセ ラミック層の部分に、 より高い透磁率の中間磁性体セラミック層を揷入 する。  (5) An intermediate magnetic ceramic layer having a higher magnetic permeability is inserted into the blank ceramic layer between the magnetic ceramic layer and the dielectric ceramic layer.
[解決すべき課題] [task to solve]
ところで、 上記の ( 1 ) 〜 (5 ) に示したような従来技術では、 以下 のような問題点があった。 すなわち、 ( 1 ) 及び (2 ) の方法では、 卷 線型の磁性部品に比べて、 明らかに電磁結合係数が不足するため、 積層 体を厚くあるいは長く且つ幅広にする必要があり、 積層型磁性部品の利 点である小型化の流れに逆行することなる。  By the way, the conventional techniques shown in the above (1) to (5) have the following problems. That is, in the methods (1) and (2), the electromagnetic coupling coefficient is clearly insufficient as compared with the wound magnetic parts, so that it is necessary to make the laminate thicker or longer and wider. This goes against the trend of miniaturization, which is an advantage of the above.
また、 (3 ) の方法では、 コイル磁心となる部分の透磁率が高くなる ことから、周波数一インダクタンス特性が変化してしまう。そして、 (4 ) の方法では、 磁性体セラミック層の薄層化により、 コイル状の内部電極 間の対向距離が小さくなり、 ィンダクタ部分の浮遊静電容量が大きくな るので、 周波数特性が変化してしまう。 また、 (5 ) の方法は、 上記の問題に対処するために提案されたもの であり、 (1 ) ( 2 ) の方法のような大型化と、 (3 ) の方法のようなィ ンダクタンス値の低下を抑制するものである。 しかしながら、 (5 ) の 方法によっても、 磁性体セラミック層と誘電体セラミック層との間に、 中間磁性体セラミック層の挿入が必要となるため、 部品の外形や寸法の 小型化には限界がある。 Also, in the method (3), the frequency-inductance characteristic changes because the magnetic permeability of the portion that becomes the coil core increases. In the method (4), since the facing distance between the coil-shaped internal electrodes is reduced due to the reduction in the thickness of the magnetic ceramic layer, and the floating capacitance of the inductor is increased, the frequency characteristics change. Would. Also, the method (5) is proposed to address the above problem, and the method (1), (2) is larger, and the inductance value is different from the method (3). Is suppressed. However, even with the method (5), it is necessary to insert the intermediate magnetic ceramic layer between the magnetic ceramic layer and the dielectric ceramic layer. .
さらに、 特開平 7 - 2 0 1 5 6 9号には、 単に異なる材料から成るシ 一トを積層するのではなく、 同一層に高透磁率と低透磁率の部分を並存 させ、 低透磁率の部分にコイル用導電パターンを形成したシートを、 多 数積層した積層型磁性部品が開示されている。 かかる積層型磁性部品で は、 導電パターンが低透磁率部内に埋設されるとともに、 高透磁率部で 包囲されるので、 積層シート数の増大や'漏れ磁束を抑制し、 高い結合係 数を確保できる。 しかし、 その製造方法は、 P E T等にシートを作成し た後、 そのシートに形成したキヤビティに、 シートとは透磁率の異なる 材料を充填し、 さらに導電パターンをスク リーン印刷するという手順を 経なければならず、 製造効率がよくない。  Further, in Japanese Patent Application Laid-Open No. 7-210569, instead of simply stacking sheets made of different materials, high permeability and low permeability portions are coexistent in the same layer, and low permeability is provided. A laminated magnetic component is disclosed in which a sheet in which a conductive pattern for a coil is formed in a portion of the above is laminated in large numbers. In such a laminated magnetic component, the conductive pattern is embedded in the low magnetic permeability part and is surrounded by the high magnetic permeability part, so that the number of laminated sheets and the leakage magnetic flux are suppressed, and a high coupling coefficient is secured. it can. However, the manufacturing method involves the steps of creating a sheet on PET or the like, filling the cavity formed on the sheet with a material having a different magnetic permeability from that of the sheet, and then screen printing a conductive pattern. Production efficiency is low.
[発明の目的] [Object of the invention]
本発明は、 上記のような従来技術の問題点を解決するために提案され たものであり、 その目的は、 小型でありながら、 高い電磁結合係数を確 保できる高品質の積層型磁性部品を、 効率よく製造することができる積 層型磁性部品及びその製造方法並びに積層型磁性部品用混成シートの 製造方法を提供することにある。 発明の開示  The present invention has been proposed in order to solve the above-mentioned problems of the conventional technology. The purpose of the present invention is to provide a high-quality laminated magnetic component that is small in size and can ensure a high electromagnetic coupling coefficient. An object of the present invention is to provide a laminated magnetic component which can be efficiently produced, a method for producing the same, and a method for producing a composite sheet for a laminated magnetic component. Disclosure of the invention
本発明に係る積層型磁性部品は、 磁心部以外に空隙を有する第 1の磁 性体シートと、 導電パターンが形成されるとともに、 磁性体シー トの空 隙に合致することにより一枚の混成シートを構成する誘電体シートと、 一枚若しくは積層された複数枚の混成シートの上下を挟持する一対の 第 2の磁性体シートと、 を有することを特徴とする。 The laminated magnetic component according to the present invention is composed of a first magnetic sheet having an air gap other than the magnetic core portion, a single magnetic sheet formed with a conductive pattern and matching the air gap of the magnetic sheet. A dielectric sheet constituting the sheet, and a pair of one or more sandwiching the upper and lower sides of one or a plurality of laminated composite sheets And a second magnetic sheet.
また、 本発明に係る積層型磁性部品の製造方法は、 第 1の磁性体シー ト及び一対の第 2の磁性体シートを作成し、 誘電体シートを作成し、 誘 電体シ一ト上に導電パターンを作成し、 第 1 の磁性体シートにおける磁 心部以外を除去し、 誘電体シートにおける磁心部対応部分を除去し、 第 1の磁性体シートから除去した部分に、 誘電体シートの非除去部分を合 致させて混成シートを作成し、 混成シートを積層し、 その上下を前記一 対の第 2の磁性体シートにより挟持して焼成する、 ことを特徴とする。 また、 本発明に係る積層型磁性部品用混成シー トの製造方法は、 第 1 の磁性体シートを作成し、 誘電体シートを作成し、 誘電体シート上に導 電パターンを作成し、 第 1の磁性体シートにおける磁心部以外を除去し、 : 誘電体シートにおける磁心部対応部分を除去し、 第 1 の磁性体シートか ら除去した部分に、 誘電体シー トの非除去部分を合致させる、 ことを特 徴とする。  Further, the method for manufacturing a laminated magnetic component according to the present invention includes the steps of: forming a first magnetic sheet and a pair of second magnetic sheets; forming a dielectric sheet; and forming the dielectric sheet on the dielectric sheet. A conductive pattern is formed, a portion other than the core of the first magnetic sheet is removed, a portion corresponding to the core of the dielectric sheet is removed, and a portion of the dielectric sheet removed from the first magnetic sheet is removed. A composite sheet is formed by combining the removed portions, the composite sheet is laminated, and the upper and lower sides are sandwiched by the pair of second magnetic sheets and fired. Further, the method for producing a hybrid sheet for a laminated magnetic component according to the present invention includes the steps of: forming a first magnetic sheet; forming a dielectric sheet; forming a conductive pattern on the dielectric sheet; Removing portions other than the magnetic core portion of the magnetic material sheet of: and removing the portion corresponding to the magnetic core portion of the dielectric sheet, and matching the non-removed portion of the dielectric sheet with the portion removed from the first magnetic material sheet; It is characterized.
このような本発明によれば、 あらかじめ作成して不要部分を除去した 磁性体シートと誘電体シートとを合致させるだけで、 混成シートを形成 することができるため、 磁性体シード及び誘電体シートを作成した後は、 キヤビティへの材料の充填や導電パターンの形成等の手間や時間をか ける必要がなく、 均一で高品質の製品を効率良く製造することができる。 望ましくは、 混成シートは複数枚積層され、 積層された混成シートに は、 一次巻線の導電パターンが形成されたものと、 二次卷線の導電パタ ーンが形成されたものが含まれる積層型磁性部品であってもよい。 これ により、 トランス部として機能する一次卷線及び二次卷線を含む積層型 磁性部品を、 混成シートの積層により効率良く製造できる。  According to the present invention, a hybrid sheet can be formed only by matching a magnetic sheet prepared in advance and removing unnecessary portions with a dielectric sheet, so that a magnetic seed and a dielectric sheet can be formed. After creation, there is no need to take time and effort such as filling the cavity with materials and forming conductive patterns, and uniform and high-quality products can be manufactured efficiently. Desirably, a plurality of hybrid sheets are laminated, and the laminated hybrid sheets include a laminate in which a conductive pattern of a primary winding is formed and a laminate in which a conductive pattern of a secondary winding is formed. It may be a mold magnetic component. Thus, a laminated magnetic component including a primary winding and a secondary winding functioning as a transformer section can be efficiently manufactured by laminating the hybrid sheets.
望ましくは、 第 1の基板上に第 1の磁性体シー トを作成し、 第 2の基 板上に誘電体シー トを作成し、 誘電体シート上に導電パターンを作成し、 第 1 の磁性体シートにおける磁心部以外を、 第 1 の基板上から除去し、 誘電体シートにおける磁心部対応部分を、 第 2の基板上から除去し、 第 1 の磁性体シートにおける第 1の基板上から除去した部分に、 誘電体シ トにおける第 2の基板上に残留した部分を合致させて混成シートを 作成し、 混成シートから、 第 1の基板及び第 2の基板を除去し、 混成シ 一トを積層し、 その上下を、 一対の第 2の磁性体シートにより挟持して 焼成する、 ことにより積層型磁性部品を製造してもよい。 Preferably, a first magnetic sheet is formed on the first substrate, a dielectric sheet is formed on the second substrate, a conductive pattern is formed on the dielectric sheet, and the first magnetic sheet is formed. The portion other than the magnetic core portion of the body sheet is removed from the first substrate, the portion corresponding to the magnetic core portion of the dielectric sheet is removed from the second substrate, and removed from the first substrate of the first magnetic sheet. To the dielectric A composite sheet is made by matching the portions remaining on the second substrate in the composite sheet, the first substrate and the second substrate are removed from the composite sheet, a composite sheet is laminated, The laminated magnetic component may be manufactured by sandwiching and firing between a pair of second magnetic sheets.
このように、 あらかじめ第 1の基板上に第 1の磁性体シートを作成し、 第 2の基板上に誘電体シートを作成しておくことにより、 その後の不要 部分の除去と残留部分の合致を、 効率良く行うことができる。 '  In this way, by creating a first magnetic sheet on the first substrate and a dielectric sheet on the second substrate in advance, it is possible to remove unnecessary portions and match remaining portions. , It can be done efficiently. '
望ましくは、 第 1の磁性体シート及び誘電体シートにおける除去部分 と非除去部分との境界が、' 傾斜した端面となるように切断する。 これに より、 第 1の磁性体シートと誘電体シートとの端面を密着させ若しくは 重ならせることができるので、 磁性体部分と誘電体部分とが隙間無く接 合された混成シートを作成でき、 均一で高品質の製品製造が可能となる。 望ましくは、 第 1の磁性体シートと誘電体シートとを加圧することに より、 端面を接合する。 これにより、 磁性体と誘電体とが確実に一体化 した混成シートを作成でき、 均一で高品質の製品製造が可能となる。 図面の簡単な説明  Desirably, the first magnetic sheet and the dielectric sheet are cut such that the boundary between the removed portion and the non-removed portion is an inclined end surface. As a result, the end faces of the first magnetic material sheet and the dielectric sheet can be brought into close contact or overlap with each other, so that a composite sheet in which the magnetic material portion and the dielectric portion are joined without any gap can be created. Uniform and high quality products can be manufactured. Desirably, the end faces are joined by pressing the first magnetic sheet and the dielectric sheet. As a result, a composite sheet in which the magnetic material and the dielectric material are reliably integrated can be created, and uniform and high-quality products can be manufactured. Brief Description of Drawings
図 1は、 本発明の一実施形態である積層トランスの積層体を示す分解 斜視図であり、 図 2は、 本発明の一実施形態である積層トランスの縦断 面図である。  FIG. 1 is an exploded perspective view showing a laminated body of a laminated transformer according to one embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of the laminated transformer according to one embodiment of the present invention.
図 3は、 本発明の一実施形態である積層トランスの製造方法を示すェ 程図であり、 図 4は中央部及び周縁部の境界を切断した内部磁性体シー ト及ぴ誘電体シートを示す斜視図、 図 5は切断作業を示す説明図、 図 6 は不要部分を除去した内部磁性体シート及ぴ誘電体シートを示す斜視 図、 図 7は内部磁性体シート及ぴ誘電体シートを合致させた混成シート を示す斜視図である。  FIG. 3 is a flowchart showing a method of manufacturing a laminated transformer according to an embodiment of the present invention. FIG. 4 shows an internal magnetic sheet and a dielectric sheet in which a boundary between a central portion and a peripheral portion is cut. A perspective view, FIG. 5 is an explanatory view showing a cutting operation, FIG. 6 is a perspective view showing an internal magnetic sheet and a dielectric sheet from which unnecessary parts have been removed, and FIG. FIG. 2 is a perspective view showing a composite sheet.
また、 図 8は、 内部磁性体シートと誘電体シートとの接合工程を示す 説明図であり、 図 9は、 接合面の拡大断面図である。  FIG. 8 is an explanatory view showing a joining step of the internal magnetic sheet and the dielectric sheet, and FIG. 9 is an enlarged sectional view of the joining surface.
さらに、 図 1 0は、 卷線配置、 幅等が異なる種々の積層型磁性部品を 示す縦断面図である 発明を実施するための最良の形態 Further, FIG. 10 shows various laminated magnetic components having different winding arrangements, widths, and the like. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view showing the best mode for carrying out the invention.
' 次に、 本発明を実施するための最良の形態 (以下、 実施形態とする) として、 積層トランス及びその製造方法を例にとって、 具体的に説明す る。  Next, as a best mode for carrying out the present invention (hereinafter, referred to as an embodiment), a laminated transformer and a method for manufacturing the same will be specifically described.
[ 1 . 積層トランスの構成]  [1. Configuration of multilayer transformer]
まず、 本実施形態の積層トランスを、 図 1及び図 2を参照して説明す る。 なお、 図 1は、 積層トランスを構成する積層体の一例を示す分解斜 視図である。 図 2は、 本実施形態により製造された積層トランスの一例 を示す縦断面図である。  First, the laminated transformer of the present embodiment will be described with reference to FIGS. FIG. 1 is an exploded perspective view showing an example of a laminated body constituting the laminated transformer. FIG. 2 is a longitudinal sectional view showing an example of the laminated transformer manufactured according to the present embodiment.
すなわち、 積層体 1 0は、 複数の混成シート 1 1, 1 2を積層し、 そ れを上部磁性体シート 1 5、 下部磁性体シート 1 6によって挟持したも のである。 混成シート 1 1, 1 2は、 非磁性体の誘電体部 1 1 a, 1 2 aの中央及び周縁に、 それぞれ中央磁性体部 1 1 b, 1 2 b及ぴ周縁磁 性体部 1 1 c, 1 2 cがー体的に構成されたシートである。 この混成シ ート 1 1, 1 2は、 後述するように、 中央磁性体部 1 1 b, 1 2 b及ぴ 周縁磁性体部 1 1 c , . 1 2 cに対応する部分を残した内部磁性体シー ト 1 3と、 これらの磁性体部に対応する部分を除去した誘電体シート 1 4 とを合致させることによって製造されている (図 4〜図 7参照)。  That is, the laminated body 10 is obtained by laminating a plurality of hybrid sheets 11 and 12, and sandwiching them by the upper magnetic sheet 15 and the lower magnetic sheet 16. The composite sheets 11 and 12 are provided at the center and at the periphery of the non-magnetic dielectric portions 11a and 12a, respectively, at the center magnetic portion 11b and 12b and at the peripheral magnetic portion 11 1a. c, 1 2 c are the physically configured sheets. As will be described later, the hybrid sheets 11 and 12 have internal parts that leave portions corresponding to the central magnetic part 11b and 12b and the peripheral magnetic part 11c and .12c. It is manufactured by matching a magnetic sheet 13 with a dielectric sheet 14 from which portions corresponding to these magnetic parts have been removed (see FIGS. 4 to 7).
なお、 本実施形態における内部磁性体シート 1 3は、 請求項に記載の 第 1の磁性体シートに対応し、 中央磁性体部 l i b , 1 2 b及び周縁磁 性体部 1 1 c, 1 2 cが、 請求項に記載の磁性体部を構成する。 また、 本実施形態における上部磁性体シート 1 5、 下部磁性体シー ト 1 6は、 請求項に記載の第 2の磁性体シートに対応する。  The inner magnetic material sheet 13 in the present embodiment corresponds to the first magnetic material sheet described in the claims, and includes a central magnetic material part lib, 12b and a peripheral magnetic material part 11c, 12. c constitutes the magnetic body part described in the claims. Further, the upper magnetic sheet 15 and the lower magnetic sheet 16 in the present embodiment correspond to the second magnetic sheet described in the claims.
そして、 誘電体部 1 1 a, 1 2 aの一方の面上には、 トランスの卷線 を構成する導電パターン 1 7, 1 8が設けられている。 導電パターン 1 7, 1 8は、 それぞれ一次卷線及ぴ二次卷線のいずれかを構成する。 な お、 図 1においては、 一次卷線及び二次卷線に対応した一対の混成シー ト 1 1, 1 2のみ記載されているが、 所望の卷線数とするために、 混成 シート 1 1, 1 2をそれぞれ複数積層することができる。 そして、 それ ぞれの卷線は、 導電体が充填されたスルーホール 1 9, 2 0を介して接 eれる。 On one surface of the dielectric portions 11a and 12a, conductive patterns 17 and 18 constituting windings of the transformer are provided. Each of the conductive patterns 17 and 18 forms one of a primary winding and a secondary winding. In FIG. 1, a pair of hybrid sheets corresponding to the primary winding and the secondary winding are shown. Although only the sheets 11 and 12 are described, a plurality of hybrid sheets 11 and 12 can be laminated in order to obtain a desired number of windings. The respective windings are connected via through holes 19 and 20 filled with a conductor.
さらに、 図 2に示すように、 下部磁性体シー ト 1 6の下面には、 一次 卷線及び二次卷線のいずれかを構成する導電パターン 1 7, 1 8に接続 された外部電極 2 1, 2 2が設けられている。 外部電極 2 1, 2 2は、 一次側及び二次側ともに、 それぞれの両端に対応して一対用意されてい るが、 導電パターン 1 7 , 1 8 と外部電極 2 1, 2 2 とを接続するスル 一ホール及び導電体等は、 図示を省略する。 このよ うに形成された積層 トランス 1 0 0においては、 中央磁性体部 l i b , 1 2 b , 周縁磁性体 部 1 1 c, 1 2 c、上部磁性体シート 1 5及ぴ下部磁性体シート 1 6力 トランスの磁心 (コア) を構成している。  Further, as shown in FIG. 2, on the lower surface of the lower magnetic sheet 16, external electrodes 21 connected to conductive patterns 17 and 18 constituting either the primary winding or the secondary winding are provided. , 22 are provided. A pair of external electrodes 21 1 and 22 are prepared for both ends on both the primary side and the secondary side, but connect the conductive patterns 17 and 18 to the external electrodes 21 and 22 The illustration of through holes, conductors, and the like is omitted. In the laminated transformer 100 formed in this way, the central magnetic part lib, 12b, the peripheral magnetic parts 11c, 12c, the upper magnetic sheet 15 and the lower magnetic sheet 16 It forms the core of the force transformer.
なお、 図 1及び図 2は、 説明の便宜のために一部を簡略化した概略図 であるため、厳密には対応していない。例えば、図 2の積層トランスは、 図 1の混成シート 1 1, 1 2をより多く積層したものである。 また、 図 2の積層トランスは、 一次卷線及び二次卷線となる導電パターン 1 7, 1 8のターン数を多く したものであるため、 図 1で示した導電パターン 1 7, 1 8とはその形状が異なっている。  Note that FIG. 1 and FIG. 2 are schematic diagrams partially simplified for convenience of explanation, and therefore do not correspond exactly. For example, the laminated transformer of FIG. 2 is obtained by laminating more of the hybrid sheets 11 and 12 of FIG. Also, in the laminated transformer of FIG. 2, the number of turns of the conductive patterns 17 and 18 serving as the primary winding and the secondary winding is increased, so that the conductive patterns 17 and 18 shown in FIG. Have different shapes.
[ 2. 積層トランスの動作]  [2. Operation of multilayer transformer]
このような積層トランス 1 0 0は、 例えば、 一次側では、 外部電極 2 1 (一端側) —スルーホール 1 9 (一端側) →導電パターン 1 7→スル 一ホール 1 9 (他端側) →外部電極 2 1 (他端側) の順又はこの逆の順 で電流が流れる。 一方、 積層トランス 1 0 0の二次側では、 外部電極 2 2 (—端側) →スルーホール 2 0 (—端側) →導電パターン 1 8→スル 一ホール 2 0 (他端側) →外部電極 2 2 (他端側) の順又はこの逆の順 で電流が流れる。  Such a laminated transformer 100 has, for example, an external electrode 21 (one end) on the primary side—a through hole 19 (one end) → a conductive pattern 17 → a through hole 19 (the other end) → The current flows in the order of the external electrodes 21 (the other end) or in the reverse order. On the other hand, on the secondary side of the multilayer transformer 100, the external electrode 22 (—end) → through hole 20 (—end) → conductive pattern 18 → through hole 20 (other end) → external Current flows in the order of electrode 22 (the other end) or in the reverse order.
そして、 例えば、 一次側の卷線を構成する導電パターン 1 7を流れる 電流が発生させる磁束が、 卷数比に応じた起電力を二次側の卷線を構成 する導電パターン 1 8に発生させる。 このようにして、 積層トランス 1 0 0が動作する。 Then, for example, the magnetic flux generated by the current flowing through the conductive pattern 17 constituting the primary winding forms an electromotive force according to the turns ratio to form the secondary winding. Generated in the conductive pattern 18. Thus, the multilayer transformer 100 operates.
[ 3 . 積層トランスの製造方法]  [3. Manufacturing method of multilayer transformer]
次に、 本実施態様の積層トランスの製造方法を、 図 3〜 9を参照して 説明する。 なお、 図 3は工程図、 図 4〜 9は工程中における各種シート 材料を示す図である。  Next, a method for manufacturing the laminated transformer according to the present embodiment will be described with reference to FIGS. FIG. 3 is a process diagram, and FIGS. 4 to 9 are diagrams showing various sheet materials during the process.
[ 3— 1 . 磁性体シー トの作成]  [3-1. Creation of magnetic sheet]
まず、 内部磁性体シート 1 3用の磁性体スラ リーを作成する (工程 3 0 1 )。 磁性材料は、 例えば、 N i - C u - Z n系とすることが考えら れるが、 これに限定されるものではない。 そして、 図 4に示すように、 例えば、 ドクターブレード法、 押出成形法等を用いることにより、 この 磁性体スラ リーを、 基板となる P E T (polyethylene terephthalate) フィルム B 1上に載置して、 内部磁性体シート 1 3を成形する (工程 3 0 2 )。 また、 これと同様に、 P E Tフィルム上に上部磁性体シート 1 5, 下部磁性体シート 1 &を成形する (工程 3 0 3, 3 0 4 )。  First, a magnetic slurry for the internal magnetic sheet 13 is prepared (Step 301). The magnetic material may be, for example, a Ni-Cu-Zn system, but is not limited thereto. Then, as shown in FIG. 4, for example, by using a doctor blade method, an extrusion molding method, or the like, the magnetic slurry is placed on a PET (polyethylene terephthalate) film B1 serving as a substrate, and the inside thereof is placed inside. The magnetic sheet 13 is formed (step 302). Similarly, an upper magnetic sheet 15 and a lower magnetic sheet 1 & are formed on a PET film (steps 303, 304).
なお、 内部磁性体シート 1 3、 上下部磁性体シート 1 5, 1 6及び後 述する誘電体シート 1 4は、 それぞれ多数の部品に対応する大きさを有 する一枚のシートであり、 各シートに対してなされる後述の処理も、 個々の部品に対応する位置に施される。  The inner magnetic sheet 13, the upper and lower magnetic sheets 15, 16, and the dielectric sheet 14 described later are each one sheet having a size corresponding to a large number of components. The processing described below for the sheet is also performed at the position corresponding to each component.
[ 3 _ 2 . 誘電体シー トの作成]  [3 _ 2. Creation of dielectric sheet]
一方、 誘電体シート 1 4用の非磁性体スラリーも作成する (工程 3 0 5 )。 誘電体シート 1 4用の非磁性体材料としては、 例えば、 A 1 2 0 3 を基調としたガラスセラミック材料を用いることができる。 なお、 ここ でいう 「非磁性体」 とは、 少なく とも磁性体シートよりも小さい透磁率 を有する物質という意味である。 「誘電体シート」 とは、 少なく とも磁 性体シートよりも大きい抵抗率を有するシートという意味であり、 絶縁 シートとも呼ばれる。 このような非磁性体スラリーを、 図 4に示すよう に、 例えば、 ドクタープレード法、 押出成形法等を用いることにより、 P E Tフィルム B 2上に載置することにより、 誘電体シート 1 4を成形 する (工程 30 6 )。 On the other hand, a nonmagnetic slurry for the dielectric sheet 14 is also prepared (Step 305). The nonmagnetic material of the dielectric sheet 1 for 4, for example, glass can be used ceramic materials was based on A 1 2 0 3. Here, the “non-magnetic material” means a substance having a magnetic permeability smaller than that of the magnetic material sheet. “Dielectric sheet” means a sheet having at least a higher resistivity than a magnetic sheet, and is also called an insulating sheet. As shown in FIG. 4, such a nonmagnetic slurry is placed on a PET film B2 by using, for example, a doctor blade method, an extrusion molding method, etc., thereby forming a dielectric sheet 14. (Step 306).
そして、 プレス等によりスルーホール 1 9, 20を形成し (工程 3 0 7)、 例えば、 A g系等の導電ペース トを誘電体シート 1 4上にスク リ ーン印刷することにより、 一次巻線及び二次卷線となる導電パターン 1 7, 1 8を形成する (工程 3 0 8 )。 この導電パターン 1 7, 1 8を形 成する部分は、上述の通り、誘電体部 1 1 a, 1 2 aとなる部分である。 また、 スルーホール 1 9, 20内にも導電ペース トが充填される。  Then, through holes 19 and 20 are formed by a press or the like (step 307). For example, a primary paste such as an Ag-based conductive paste is printed on the dielectric sheet 14 by screen printing. Conductive patterns 17 and 18 to be wires and secondary windings are formed (step 308). The portions forming the conductive patterns 17 and 18 are portions that become the dielectric portions 11a and 12a as described above. Also, the conductive paste is filled in the through holes 19 and 20.
[ 3— 3. 両シートの切断]  [3— 3. Cutting both sheets]
以上のように、 P ETフィルム B 1上に成形された内部磁性体シート 1 3に対して、 図 4に示すように、 中央磁性体部 l i b , 1 2 bの外縁 となるライン X Iと、 周縁磁性部 1 1 c , 1 2 cの内縁となるライン Y 1を、 切断装置によってハーフカツ トする (工程 3 0 9 )。 ここでいう ハーフカッ トは、 図 5に示すように、 カツタ Cによって、 内部磁性体シ ート 1 3のみを切断し、 P ETフィルム B 1をカツ トしないものである また、 内部磁性体シート 1 3の端面は、 傾斜角度が付くように切断され る。  As described above, for the inner magnetic sheet 13 formed on the PET film B1, as shown in FIG. 4, the line XI, which is the outer edge of the central magnetic portion lib, 12b, and the outer edge The line Y1, which is the inner edge of the magnetic portions 11c and 12c, is half-cut by a cutting device (step 309). As shown in FIG. 5, the half-cut here is such that only the inner magnetic sheet 13 is cut by the cutter C and the PET film B 1 is not cut. The end face 3 is cut so as to have an inclination angle.
同様に、 誘電体シート 1 4も、 誘電体部 1 1 a, 1 2 aの内縁になる ライン X 2と外縁になるライン Y 2とを、 切断装置によって端面に傾斜 角度が付くようにハーフカッ トする (工程 3 1 0)。 このような切断面 の様子を、 図 8 (A) (B) に簡略的に示す。 なお、 内部磁性体シー ト 1 3の切断面の傾斜と誘電体シート 1 4の切断面の傾斜とは、 合致させ た場合に一致する角度であることが望ましいが、 角度が正確に一致して いなく とも、それぞれに傾斜面があれば、後述の効果は十分に得られる。 次に、 図 6に示すように、 内部磁性体シート 1 3における不要部分を 除去する (工程 3 1 1 )。 この不要部分とは、 中央磁性体部 l i b , 1 2 b及ぴ周縁磁性体部 1 1 c, 1 2 c以外の部分である。 一方、 誘電体 シート 14における不要部分も除去する。 この不要部分とは、 誘電体部 1 1 a , 1 2 a以外の部分である。 このように不要部分が除去された断 面を、 図 8 (C) に簡略的に示す。 ここで、 不要部分の除去は、 非除去部分をマスクして、 その上から貼 着させたテープを剥がすことにより行うことができるが、 この方法に限 定されるものではない。 また、 誘電体シート 1 4における中央磁性体部 l i b , 1 2 b及び周縁磁性体部 1 1 c, 1 2 cに対応する部分を、 同 時に除去してもよいし、 順次除去するよう.にしてもよい。 Similarly, the dielectric sheet 14 is also half-cut so that the line X2, which is the inner edge of the dielectric portions 11a, 12a, and the line Y2, which is the outer edge, are inclined at the end face by the cutting device. (Step 310). FIGS. 8 (A) and 8 (B) schematically show such cut surfaces. It is desirable that the inclination of the cut surface of the inner magnetic sheet 13 and the inclination of the cut surface of the dielectric sheet 14 be the same angle when they are matched. At least, the effects described later can be sufficiently obtained if each has an inclined surface. Next, as shown in FIG. 6, unnecessary portions of the internal magnetic sheet 13 are removed (step 311). The unnecessary portion is a portion other than the central magnetic body portion lib, 12b and the peripheral magnetic body portion 11c, 12c. On the other hand, unnecessary portions of the dielectric sheet 14 are also removed. The unnecessary portion is a portion other than the dielectric portions 11a and 12a. FIG. 8 (C) schematically shows the cross section from which the unnecessary portion has been removed. Here, the removal of the unnecessary portion can be performed by masking the non-removed portion and peeling off the tape adhered thereon, but is not limited to this method. Further, the portions of the dielectric sheet 14 corresponding to the central magnetic portions lib, 12b and the peripheral magnetic portions 11c, 12c may be removed at the same time, or may be removed sequentially. You may.
[ 3— 4. 混成シートの作成]  [3— 4. Creating a hybrid sheet]
さらに、 上記のように、 不要部分を除去した内部磁性体シート 1 3に 対して、不要部分を除去した誘電体シート 1 4を反転させ(工程 3 1 3)、 内部磁性体シート 1 3の除去部分に、 誘電体シート 1 4を合致させる。 なお、 磁性体シート 14側を反転させて合致させてもよい。  Further, as described above, the dielectric sheet 14 from which the unnecessary portion has been removed is inverted with respect to the internal magnetic material sheet 13 from which the unnecessary portion has been removed (step 3 13), and the internal magnetic material sheet 13 is removed. Match the dielectric sheet 14 to the part. It should be noted that the magnetic material sheet 14 side may be reversed so as to match.
このように、 両シートを合致させると、 図 8 (D) に示すように、 傾 斜した互いの端面が接触する。 そして、 図 8 (E) 及び図 9に示すよう に、 プレス等により端面を接合させて、 誘電体シート 1 4と内部磁性体 シート 1 3を一体化させる (工程 3 1 4)。 例えば、 図 9に示すように、 接合断面の幅 aが 5 0 μ程度の場合に、 3 0 k g Z c Πΐ2程度の圧力を 加えることによって、 磁性体材料と誘電体材料の接着力が働いて、 一体 ィ匕させることができる。 Thus, when the two sheets are aligned, the inclined end faces come into contact as shown in FIG. 8 (D). Then, as shown in FIG. 8 (E) and FIG. 9, the end faces are joined by a press or the like to integrate the dielectric sheet 14 and the internal magnetic sheet 13 (step 314). For example, as shown in FIG. 9, when the width a of the joining section is about 5 0 mu, by adding 3 0 kg Z c Πΐ 2 about pressure, working adhesion of the magnetic material and dielectric material Thus, it is possible to make them one by one.
そして、 このように形成された混成シート 1 1, 1 2から、 図 7に示 すように、 いずれか一方の P E Tフィルム (例えば、 誘電体シート 1 4 側のフィルム B 2) が除去される (工程 3 1 5)。  Then, as shown in FIG. 7, one of the PET films (for example, the film B 2 on the dielectric sheet 14 side) is removed from the composite sheets 11 and 12 thus formed (see FIG. 7). Step 3 15).
[3— 5. 積層トランスの作成]  [3— 5. Stacking transformer creation]
以上のように形成された混成シート 1 1若しくは 1 2を、 下部磁性体 シート 1 6に積層し、 P ETフィルム B 1を除去する。 同様に、 混成シ ート 1 1若しくは 1 2が必要数となるように積層して行き、 さらに上部 磁性体シート 1 5を乗せ、 プレスして密着させることにより積層体 1 0 を作成する (工程 3 1 6)。 なお、 上部磁性体シート 1 5, 下部磁性体 シート 1 6の PETフィルムも、 本製造工程のいずれかにおいて適宜に、 例えば、 積層体の形成後等に除去される。 続いて、 この積層体 1 0を、 個別の積層トランスに対応する所定の大きさに切断する (工程 3 1 7)。  The hybrid sheet 11 or 12 formed as described above is laminated on the lower magnetic sheet 16 and the PET film B1 is removed. Similarly, the composite sheets 11 or 12 are laminated so that the required number is obtained, and the upper magnetic sheet 15 is further placed, pressed and brought into close contact with each other to form a laminated body 10 (process). 3 1 6). In addition, the PET films of the upper magnetic material sheet 15 and the lower magnetic material sheet 16 are appropriately removed in any of the manufacturing processes, for example, after forming the laminate. Subsequently, the laminated body 10 is cut into a predetermined size corresponding to an individual laminated transformer (step 3117).
0 例えば、 6 mmX 9 aimの長方形状に切断する。そして、例えば 9 0 0 °C 前後で同時焼成を実行する (工程 3 1 8)。 最後に、 外部電極 2 1, 2 2を形成することにより、積層トランス 1 0 0が完成する (工程 3 1 9)。 0 For example, it is cut into a 6 mm X 9 aim rectangular shape. Then, for example, simultaneous firing is performed at about 900 ° C. (step 318). Finally, by forming the external electrodes 21 and 22, the laminated transformer 100 is completed (Step 3 19).
[4. 実施形態の効果] '  [4. Effects of the embodiment] ''
本実施形態によれば、 あらかじめ作成した内部磁性体シート 1 3と誘 電体シ一ト 1 4とを、 適宜切断して合致させることにより混成シート 1 1, 1 2を作成するため、 磁性体部分と誘電体部分とを一体化させる際 に、 キヤビティへの材料の充填及びその後の導電パターン形成等の手間 や時間がかからない。 そして、 あらかじめ作成しておく内部磁性体シー ト 1 3と誘電体シート 1 4は、 それぞれ一枚のシートを形成すればよい ので、 製造が容易である。 従って、 非常に効率のよい製品製造が可能と なる。  According to the present embodiment, the composite sheets 11 and 12 are formed by appropriately cutting and matching the internal magnetic material sheet 13 prepared in advance and the dielectric sheet 14 to each other. When integrating the portion with the dielectric portion, no labor or time is required for filling the cavity with a material and subsequently forming a conductive pattern. The internal magnetic sheet 13 and the dielectric sheet 14 that are prepared in advance need only be formed as a single sheet, so that the production is easy. Therefore, very efficient product manufacturing becomes possible.
また、 既に作成された内部磁性体シート 1 3と誘電体シート 1 4を合 致させるので、 キヤビティへの材料の充填に比べて、 乾燥時間が必要な く、 充填の際に生じ易いムラ等も発生しない。. 従って、 均一で高品質の 製品製造が可能となる。 特に、 内部磁性体シート 1 3と誘電体シート 1 4の接合断面がともに垂直であると、 両者が密着し難いが、 本実施形態 では、 図 8 (D) (E)、 図 9に示すように、 互いに合致するように傾斜 している。 このような傾斜があると、 上下からのプレスによって端面が 接合され、 両者が完全に密着するので、 接合不良等が発生せず、 品質が 安定する。  In addition, since the already created internal magnetic sheet 13 and dielectric sheet 14 are combined, compared to filling the material into the cavity, no drying time is required, and unevenness that is likely to occur during filling is eliminated. Does not occur. Therefore, uniform and high quality products can be manufactured. In particular, when the joining cross sections of the inner magnetic sheet 13 and the dielectric sheet 14 are both perpendicular, it is difficult for the two to adhere to each other. In the present embodiment, as shown in FIGS. 8 (D), (E), and FIG. And inclined to match each other. If there is such an inclination, the end faces are joined by pressing from above and below, and the two are completely adhered to each other.
また、 内部磁性体シート 1 3と誘電体シート 1 4は、 P ET^ B 1, B 2上に作成され、 その後の切断、 不要部分の除去、 残留部分の合 致等を P ETシート B 1, B 2上にて行うので、 各処理を効率良く行う ことができる。 特に、 上記実施形態の中央磁性体部 1 1 b, 1 2 b、 周 縁磁性部 1 l c , 1 2 cのように、 シートが複数部分に分かれる場合で も、 P ET^ — B l , B 2上で一体的に扱うことができるので、 高速 な処理が可能となる。  The inner magnetic sheet 13 and the dielectric sheet 14 are formed on PET ^ B 1 and B2, and the subsequent cutting, removal of unnecessary portions, and matching of the remaining portions are performed on the PET sheet B1. , B2, each process can be performed efficiently. In particular, even when the sheet is divided into a plurality of portions, such as the central magnetic portions 11b and 12b and the peripheral magnetic portions 11c and 12c of the above embodiment, PET ^ -Bl, B Since they can be handled together on the 2, high-speed processing is possible.
また、 一次卷線と二次卷線との間が非磁性体である誘電体部分で満た されていることにより、 高い磁気シールド構造となり、 洩れ磁束を抑制 できる。 しかも、 一次卷線及び二次卷線上に誘電体ペース トを塗布しそ 誘電体層を形成する等の必要がないので、 一次卷線同士及ぴ二次卷線同 士の絶縁性が劣化することもなく、 一次卷線と二次卷線との間隔も広が らない。 したがって、 卷線相互の絶縁性を維持したまま電磁結合係数を 増大できる。 これに加えて、 誘電体部分が介在することによって、 一次 卷線と二次卷線との絶縁性も高まる。 In addition, the space between the primary winding and the secondary winding is filled with a non-magnetic dielectric part. As a result, a high magnetic shield structure is achieved and leakage magnetic flux can be suppressed. In addition, since there is no need to apply a dielectric paste on the primary winding and the secondary winding to form a dielectric layer, the insulation between the primary windings and the secondary winding is degraded. There is no space between the primary and secondary windings. Therefore, the electromagnetic coupling coefficient can be increased while maintaining the insulation between the windings. In addition, the insulation between the primary winding and the secondary winding is enhanced by the presence of the dielectric portion.
そして、磁心(コア) の磁気飽和特性を改善させるためのギャップ(低 透磁率の空隙) を容易に実現できるので、 優れた定インダクタンス性が 得られる。 さらに、 誘電体部分の電気絶縁性によって、 耐電圧を確保で きるので、 高絶縁耐圧と安定化が図れる。  In addition, since a gap (a gap having a low magnetic permeability) for improving the magnetic saturation characteristics of the core can be easily realized, excellent constant inductance can be obtained. Furthermore, withstand voltage can be secured by the electric insulation of the dielectric portion, so that high withstand voltage and stability can be achieved.
また、 中央磁性体部 1 1 b及び周縁磁性体部 1 2 bと、 誘電体部 1 1 a , 1 2 aとが一体となった一枚の混成シート 1 1, 1 2を積層した構 成であるため、 薄型トランスを容易に実現可能となる。 従って、 表面実 装型部品 (SMD : S u r f a c e M o u n t D e v i c e ) とし て、 利用範囲が広い。  In addition, a configuration in which a single composite sheet 11, 1 2 in which the central magnetic body 11 b and the peripheral magnetic body 12 b are integrated with the dielectrics 11 a, 12 a is laminated. Therefore, a thin transformer can be easily realized. Therefore, it can be widely used as a surface mount part (SMD: Surface Moount Deevice).
また、 各混成シート 1 1, 1 2の材料、 サイズ等の仕様の変更、 混成 シート 1 1, 1 2の積層数の增減等によって、 完成品となる積層トラン スの卷線数、 卷線比、 透磁率、 サイズ、 絶縁耐圧等を調整できるので、 設計に対する自由度が高く、 種々の特性の積層トランスを容易且つ大量 に製造することができる。  Also, by changing the specifications such as the material and size of each hybrid sheet 11 and 12 and reducing the number of laminations of the hybrid sheets 11 and 12, the number of windings and the number of windings of the laminated transformer as a finished product Since the ratio, magnetic permeability, size, dielectric strength, and the like can be adjusted, the degree of freedom in design is high, and multilayer transformers with various characteristics can be easily and mass-produced.
[5. 他の実施形態]  [5. Other embodiments]
本発明は、上記のような実施形態に限定されるものではない。例えば、 導電パターンがない誘電体シートを使用することにより、 一部の層に導 電パターンのない誘電体部が含まれるようにしてもよい。 えば、 第 2 の磁性体シート (上部若しくは下部磁性体シー ト) に隣接する層に、 導 電パターンがない誘電体部を含めることによって、 絶縁性能を高めるこ とができる。 一部の層に、 混成でない誘電体シート若しくは磁性体シー トを含めてもよい。  The present invention is not limited to the above embodiments. For example, a dielectric sheet having no conductive pattern may be included in some layers by using a dielectric sheet having no conductive pattern. For example, the insulating performance can be enhanced by including a dielectric portion having no conductive pattern in a layer adjacent to the second magnetic material sheet (upper or lower magnetic material sheet). Some layers may include non-hybrid dielectric or magnetic sheets.
2 また、 例えば、 上記の実施形態は、 積層トランスに適用した例であつ たが、 同様に導電パターンによる卷線構造が必要となる積層型磁性部品、 例えば、 積層インダクタ、 積層コモンモードフィルタ、 積層複合部品、 積層混成集積回路等にも適用可能である。 いずれの電子部品に適用した 場合であっても、積層トランスと同様に、薄型の表面実装型部品として、 利用範囲が広くなる。 特に、 コモンモードフィルタに適用した場合、 高 電磁結合により、 コモンモードノィズを効果的に除去することができる。 また、 このような電子部品の種類、 それぞれについて要求される仕様 に応じて、 各シート、 導電パターン、 電極等を構成する磁性体材料、 誘 電体材料、 導電材料等は適宜変更可能であり、 現在又は将来において利 用可能なあらゆる材料が適用できる。 従って、 本発明は、 上記の実施形 態において例示した材料を使用するものには限定されない。 各部の大き さや形状等も、 上記の実施形態において例示した数値には限定されなレ、。 各シート、 導電パターン等の形成方法も、 上記の実施形態で例示した方 法には限定されない。 2 Also, for example, the above embodiment is an example in which the present invention is applied to a multilayer transformer, but similarly, a multilayer magnetic component that requires a winding structure with a conductive pattern, for example, a multilayer inductor, a multilayer common mode filter, It can also be applied to components, laminated hybrid integrated circuits, etc. Regardless of the application to any of the electronic components, the range of use as a thin surface-mount type component is widened as in the multilayer transformer. In particular, when applied to a common mode filter, common mode noise can be effectively removed by high electromagnetic coupling. In addition, the magnetic material, the dielectric material, the conductive material, and the like constituting each sheet, conductive pattern, electrode, and the like can be appropriately changed according to the type of such electronic components and the specifications required for each. Any material available now or in the future can be applied. Therefore, the present invention is not limited to the use of the materials exemplified in the above embodiments. The size and shape of each part are not limited to the numerical values exemplified in the above embodiment. The method for forming each sheet, conductive pattern, and the like is not limited to the method exemplified in the above embodiment.
また、 混成シートの積層数、 混成シートにおける導電パターンの数、 形状、 配置等も自由である。 すなわち、 上述のような設計の自由度が高 いという利点を生かして、 図 1 0 ( A ) 〜 (L ) に示すように、 一次卷 線及び二次卷線の数や幅、 一次卷線及び二次卷線の相対的な位置関係に ついて、 様々な態様の積層型磁性部品を製造することができる。 一次卷 線及び二次卷線の形状も、 螺旋状、 L字状等、 自由である。 第 2の磁性 体シート (上部、 下部磁性体シート) の積層数も自由であり、 磁心 (コ ァ) となる磁性体部の形状も、 自由である。 産業上の利用可能性  In addition, the number of laminated hybrid sheets, the number, shape, arrangement, and the like of the conductive patterns in the composite sheet are also free. In other words, taking advantage of the high degree of freedom of design as described above, as shown in FIGS. 10 (A) to (L), the number and width of the primary winding and the secondary winding, and the primary winding Regarding the relative positional relationship between the secondary winding and the secondary winding, various types of laminated magnetic components can be manufactured. The shapes of the primary winding and the secondary winding are also free, such as spiral and L-shaped. The number of layers of the second magnetic material sheet (upper and lower magnetic material sheets) is also free, and the shape of the magnetic material portion serving as the magnetic core (core) is also free. Industrial applicability
本発明に係る積層型磁性部品及びその製造方法並びに積層型磁性部 品用混成シートの製造方法によれば、 小型でありながら、 高い電磁結合 係数を確保できる高品質の積層型磁性部品を、 効率よく製造することが 可能となる。  ADVANTAGE OF THE INVENTION According to the laminated magnetic component of the present invention, the method of manufacturing the same, and the method of producing a composite sheet for a laminated magnetic component, a high-quality laminated magnetic component capable of ensuring a high electromagnetic coupling coefficient while being small in size can be efficiently manufactured. It can be manufactured well.

Claims

請求の範囲 The scope of the claims
1 . 磁心部以外に空隙を有する第 1の磁性体シートと、 1. a first magnetic sheet having a void other than the magnetic core;
導電パターンが形成されるとともに、 前記磁性体シートの空隙に合致 することにより一枚の混成シートを構成する—誘電体シートと、  A conductive sheet is formed, and a single composite sheet is formed by matching the gap of the magnetic sheet—a dielectric sheet;
一枚若じくは積層された複数枚の前記混成シートの上下を挟持する —対の第 2の磁性体シートと、  A pair of second magnetic sheets sandwiching the upper and lower sides of a plurality of the composite sheets which are laminated one by one;
を有することを特徴とする積層型磁性部品。  A laminated magnetic component comprising:
2 . 前記混成シー トは複数枚積層され、 2. A plurality of the hybrid sheets are laminated,
積層された前記混成シートには、 一次卷線の導電パターンが形成され たものと、 二次卷線の導電パターンが形成されたものが含まれているこ とを特徴とする請求項 1記載の積層型磁性部品。  2. The laminated hybrid sheet according to claim 1, wherein the laminated sheet includes a sheet on which a conductive pattern of a primary winding is formed and a sheet on which a conductive pattern of a secondary winding is formed. Laminated magnetic parts.
3 . 第 1の磁性体シート及び一対の第 2の磁性体シートを作成し、 誘電体シートを作成し、 3. Create a first magnetic sheet and a pair of second magnetic sheets, create a dielectric sheet,
前記誘電体シート上に導電パターンを作成し、  Create a conductive pattern on the dielectric sheet,
前記第 1 の磁性体シートにおける磁心部以外を除去し、  Removing portions other than the magnetic core portion of the first magnetic sheet,
前記誘電体シートにおける磁心部対応部分を除去し、  Removing a portion corresponding to the magnetic core portion in the dielectric sheet,
前記第 1 の磁性体シートから除去した部分に、 前記誘電体シー トの非 除去部分を合致させて混成シートを作成し、  A non-removed portion of the dielectric sheet is matched with a portion removed from the first magnetic material sheet to form a composite sheet,
前記混成シートを積層し、 その上下を前記一対の第 2の磁性体シート により挟持して焼成する、  Laminating the hybrid sheet, sandwiching the upper and lower portions between the pair of second magnetic sheets, and firing.
ことを特徴とする積層型磁性部品の製造方法。  A method for manufacturing a laminated magnetic component.
4 . 第 1の基板上に第 1の磁性体シートを作成し、 4. Create a first magnetic sheet on the first substrate,
第 2の基板上に誘電体シートを作成し、  Create a dielectric sheet on the second substrate,
前記誘電体シート上に導電パターンを作成し、  Create a conductive pattern on the dielectric sheet,
前記第 1 の磁性体シートにおける磁心部以外を、 前記第 1の基板上か  Except for the core portion of the first magnetic material sheet,
4 ら除去し、 Four And remove
前記誘電体シートにおける磁心部対応部分を、 前記第 2の基板上から 除去し、  Removing a portion corresponding to a magnetic core in the dielectric sheet from the second substrate;
前記第 1の磁性体シートにおける前記第 1の基板上から除去した部 分に、 前記誘電体シートにおける前記第 2の基板上に残留した部分を合 致させて混成シートを作成し、  A composite sheet is formed by combining a portion of the dielectric sheet removed from the first substrate with a portion of the dielectric sheet remaining on the second substrate,
前記混成シートから、 前記第 1 の基板及び前記第 2の基板を除去し、 前記混成シートを積層し、 その上下を、 一対の第 2の磁性体シートに より挟持して焼成する、  Removing the first substrate and the second substrate from the composite sheet, laminating the composite sheet, and sintering the upper and lower portions thereof with a pair of second magnetic sheets;
ことを特徴とする積層型磁性部品の製造方法。  A method for manufacturing a laminated magnetic component.
5 . 前記第 1 の磁性体シート及び前記誘電体シートにおける除去部分と 非除去部分との境界が、 傾斜した端面となるように切断することを特徴 とする請求項 3又は 4記載の積層型磁性部品の製造方法。 5. The laminated magnetic material according to claim 3 or 4, wherein the first magnetic sheet and the dielectric sheet are cut so that a boundary between a removed portion and a non-removed portion of the first magnetic sheet and the dielectric sheet is an inclined end face. The method of manufacturing the part.
6 . 前記第 1の磁性体シートと前記誘電体シートとを加圧することによ り、 端面を接合することを特徴とする請求項 3〜 5のいずれか 1項に記 載の積層型磁性部品の製造方法。 6. The laminated magnetic component according to any one of claims 3 to 5, wherein an end face is joined by pressing the first magnetic material sheet and the dielectric sheet. Manufacturing method.
7 . 第 1の磁性体シートを作成し、 7. Create the first magnetic sheet,
誘電体シートを作成し、  Create a dielectric sheet,
前記誘電体シート上に導電パターンを作成し、  Create a conductive pattern on the dielectric sheet,
前記第 1 の磁性体シートにおける磁心部以外を除去し、  Removing portions other than the magnetic core portion of the first magnetic sheet,
前記誘電体シートにおける磁心部対応部分を除去し、  Removing a portion corresponding to the magnetic core portion in the dielectric sheet,
前記第 1 の磁性体シートから除去した部分に、 前記誘電体シートの非 除去部分を合致させる、  Matching the non-removed portion of the dielectric sheet with the portion removed from the first magnetic sheet;
ことを特徴とする積層型磁性部品用混成シー トの製造方法。  A method for producing a hybrid sheet for a laminated magnetic component, the method comprising:
8 . 第 1の基板上に第 1 の磁性体シートを作成し、 第 2の基板上に誘電体シートを作成し、 8. Create a first magnetic sheet on the first substrate, Create a dielectric sheet on the second substrate,
前記誘電体シート上に導電パターンを作成し、  Create a conductive pattern on the dielectric sheet,
前記第 1の磁性体シートにおける磁心部以外を、 前記第 1の基板上か ら除去し、  Removing the portion other than the magnetic core portion of the first magnetic material sheet from the first substrate,
前記誘電体シートにおける磁心部対応部分を、 前記第 2の基板上から 除去し、  Removing a portion corresponding to a magnetic core in the dielectric sheet from the second substrate;
前記第 1の磁性体シートにおける前記第 1の基板上から除去した部 分に、 前記誘電体シートにおける前記第 2の基板上に残留した部分を合 致させる、  Matching a portion of the dielectric sheet remaining on the second substrate with a portion of the first magnetic sheet removed from above the first substrate;
ことを特徴とする積層型磁性部品用混成シートの製造方法。  A method for producing a composite sheet for a laminated magnetic component.
9 . 前記第 1の磁性体シート及び前記誘電体シートにおける除去部分と 非除去部分との境界が、 傾斜した端面となるように切断することを特徴 とする請求項 7又は 8記載の積層型磁性部品用混成シートの製造方法。 9. The laminated magnetic sheet according to claim 7, wherein the first magnetic sheet and the dielectric sheet are cut so that a boundary between a removed portion and a non-removed portion of the dielectric sheet is an inclined end surface. Manufacturing method of hybrid sheet for parts.
1 0 . 前記第 1の磁性体シートと前記誘電体シートとを加圧することに より、 端面を接合することを特徴とする請求項 7〜 9のいずれか 1項に 記載の積層型磁性部品用混成シートの製造方法。 10. The laminated magnetic component according to any one of claims 7 to 9, wherein an end face is joined by pressing the first magnetic sheet and the dielectric sheet. Manufacturing method of hybrid sheet.
PCT/JP2003/014060 2003-11-04 2003-11-04 Lamination type magnetic part and method of producing the same, and method of producing hybrid sheet for lamination type magnetic part WO2005043563A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005510149A JPWO2005043563A1 (en) 2003-11-04 2003-11-04 LAMINATED MAGNETIC COMPONENT, METHOD FOR MANUFACTURING SAME, AND METHOD FOR PRODUCING HYBRID SHEET FOR LAMINATED MAGNETIC COMPONENT
AU2003280714A AU2003280714A1 (en) 2003-11-04 2003-11-04 Lamination type magnetic part and method of producing the same, and method of producing hybrid sheet for lamination type magnetic part
PCT/JP2003/014060 WO2005043563A1 (en) 2003-11-04 2003-11-04 Lamination type magnetic part and method of producing the same, and method of producing hybrid sheet for lamination type magnetic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/014060 WO2005043563A1 (en) 2003-11-04 2003-11-04 Lamination type magnetic part and method of producing the same, and method of producing hybrid sheet for lamination type magnetic part

Publications (1)

Publication Number Publication Date
WO2005043563A1 true WO2005043563A1 (en) 2005-05-12

Family

ID=34532067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014060 WO2005043563A1 (en) 2003-11-04 2003-11-04 Lamination type magnetic part and method of producing the same, and method of producing hybrid sheet for lamination type magnetic part

Country Status (3)

Country Link
JP (1) JPWO2005043563A1 (en)
AU (1) AU2003280714A1 (en)
WO (1) WO2005043563A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669058A (en) * 1992-08-19 1994-03-11 Tdk Corp Manufacture of coil component
JPH07201569A (en) * 1993-12-28 1995-08-04 Taiyo Yuden Co Ltd Laminated electronic part and its manufacture
JPH0888126A (en) * 1994-09-16 1996-04-02 Taiyo Yuden Co Ltd Laminated transformer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669058A (en) * 1992-08-19 1994-03-11 Tdk Corp Manufacture of coil component
JPH07201569A (en) * 1993-12-28 1995-08-04 Taiyo Yuden Co Ltd Laminated electronic part and its manufacture
JPH0888126A (en) * 1994-09-16 1996-04-02 Taiyo Yuden Co Ltd Laminated transformer

Also Published As

Publication number Publication date
AU2003280714A1 (en) 2005-05-19
JPWO2005043563A1 (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP3686908B2 (en) Multilayer coil component and manufacturing method thereof
KR100417302B1 (en) Laminated coil component and method of manufacturing same
JP5482554B2 (en) Multilayer coil
JP3551876B2 (en) Manufacturing method of multilayer ceramic electronic component
EP1067568B1 (en) Lamination type coil component and method of producing the same
US7295092B2 (en) Gapped core structure for magnetic components
JP2004311944A (en) Chip power inductor
TW200416755A (en) Inductance element, laminated electronic component, laminated electronic component module and method for producing these element, component and module
WO2006043350A1 (en) Process for producing stacked ceramic electronic component and composite laminate
KR20060052652A (en) Laminated ceramic electronic component and method for producing the same
KR100447042B1 (en) Method of manufacturing laminated ceramic electronic component, and laminated ceramic electronic component
JP2012064683A (en) Lamination coil
JP2002270428A (en) Laminated chip inductor
JP3551135B2 (en) Thin transformer and method of manufacturing the same
EP1367611A1 (en) Inductor part, and method of producing the same
JPH05217772A (en) Composite laminated transformer and its production
JPH06224043A (en) Laminated chip transformer and manufacture thereof
JPH08153623A (en) Coil part
JP2001267129A (en) Chip inductor and manufacturing method thereof
JP3554784B2 (en) Multilayer ceramic electronic component and method of manufacturing the same
JP3933844B2 (en) Manufacturing method of multilayer ceramic electronic component
WO2005043564A1 (en) Lamination type magnetic part and method of producing the same, and method of producing laminate for lamination type magnetic part
WO2005043565A1 (en) Lamination type magnetic part and method of producing the same, and method of producing laminate for lamination type magnetic part
WO2005043563A1 (en) Lamination type magnetic part and method of producing the same, and method of producing hybrid sheet for lamination type magnetic part
JP2001307937A (en) Method of manufacturing laminated ceramic electronic part

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005510149

Country of ref document: JP

122 Ep: pct application non-entry in european phase