WO2005042994A1 - Tripod type constant velocity universal joint - Google Patents

Tripod type constant velocity universal joint Download PDF

Info

Publication number
WO2005042994A1
WO2005042994A1 PCT/JP2004/014539 JP2004014539W WO2005042994A1 WO 2005042994 A1 WO2005042994 A1 WO 2005042994A1 JP 2004014539 W JP2004014539 W JP 2004014539W WO 2005042994 A1 WO2005042994 A1 WO 2005042994A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
constant velocity
universal joint
velocity universal
trunnion journal
Prior art date
Application number
PCT/JP2004/014539
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Nozaki
Yoji Sato
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn Corporation filed Critical Ntn Corporation
Publication of WO2005042994A1 publication Critical patent/WO2005042994A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
    • F16D3/2055Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part having three pins, i.e. true tripod joints

Definitions

  • the present invention relates to a sliding tripod type constant velocity universal joint used for power transmission of automobiles and various industrial machines.
  • Constant velocity universal joints transmit torque between two non-linear rotating shafts.
  • Sliding tripod type constant velocity natural joints are widely used in the drive system of front-engine front-wheel drive vehicles (FF vehicles). Is done.
  • This sliding tripod type constant velocity universal joint 1 has a tripod member 2 provided with three trunnion journals 2b protruding in the radial direction as shown in FIG. 7 (A).
  • This tripod member 2 is connected to one shaft connected to a hub wheel in an FF vehicle.
  • a bottomed cylindrical outer ring 4 having three track grooves 3 is coupled to the other shaft such as the output shaft of the transmission.
  • An outer roller 5c is rotatably fitted to the outer diameter surface of the inner roller 5b via a needle roller 6 in a full roller state. That is, the roller rolling kit K as shown in FIG. 8 is fitted to the trunnion journal 2c of the low vibration constant velocity universal joint.
  • the roller rolling kit K has a triple structure of the inner roller 5b, the needle rollers 6, and the outer roller 5c.
  • the needle roller 6 is stopped by a pair of upper and lower retaining rings 7b.
  • the outer roller 5c is accommodated in the track groove 3 so as to be axially displaceable and transmits torque, similarly to the constant velocity universal joint in FIG. 7 (A).
  • the roller roller kit K is composed of the needle roller 6 and the roller 5a (the inner roller 5b and the outer roller 5c for the low vibration type).
  • the roller roller kit K has the following problems due to the use of needle rollers as rolling elements.
  • a double structure of needle rollers and rollers, or a triple structure of inner rollers, needle rollers, and outer rollers increases the number of parts, resulting in an increase in parts cost and assembly cost.
  • An object of the present invention is to provide a tripod type constant velocity universal joint that does not impair NVH performance.
  • the present invention provides a non-circular contour of the outer diameter surface of the trunnion journal of the tri-board type constant velocity universal joint.
  • the contact position between the radial surface and the inner diameter surface of the roller directly fitted to the outer diameter surface of the trunnion journal is determined from the perpendicular line lowered from the center of the trunnion journal to the track groove of the outer ring, and the longitudinal length of the track groove. Characterized by being moved to a position separated by a predetermined distance in the direction.
  • the rolling element such as a needle roller is omitted, and the inner diameter surface of the roller is directly rotatably fitted to the trunnion journal.
  • the contact point between the trunnion journal and the inner diameter surface of the roller must be changed from the conventional outer ring circumferential direction to the roller moving direction (the outer ring axial direction or the track groove Direction) by a predetermined distance. If the needle rollers are simply omitted, the rotation of the roller is suppressed by the sliding resistance between the trunnion journal and the inner diameter surface of the roller, which adversely affects the NVH characteristics (noise, vibration, and roughness).
  • the position of the contact point between the trunnion journal and the inner diameter surface of the roller was changed in order to promote the rotation of the roller.
  • the contour of the outer diameter surface of the trunnion journal is made non-circular.
  • “non-circular” is typically the contour shape of the movement trajectory of the ellipse when the ellipse is offset by a predetermined distance in the minor axis direction, or the ellipse is defined by a predetermined angle around its center.
  • the “non-circular” may have any other shape as long as the point of contact between the trunnion journal and the inner diameter surface of the roller is shifted by a predetermined distance from the circumferential direction of the outer ring in the moving direction of the roller. If the cross section of the trunnion journal is the above shape, the trunnion journal will contact at two points. When reciprocating, the load ratio at the two points changes. Focusing on the contact point on the side receiving more load, the following can be considered.
  • the mechanism for rotating the rollers will be described with reference to FIG.
  • FIG. 3 shows a cross section of the trunnion journal 2 a and the roller 5. The symbols used in FIG. 3 are as follows.
  • Point O ' Point of contact between trunnion journal 2a and roller 5 inner diameter surface
  • the roller By setting the abutment position between the trunnion journal and the inner diameter of the roller at a position shifted from the circumferential direction of the conventional outer ring in the direction of roller advancement, the roller can easily roll, and rolling elements such as needle rollers are omitted. Even so, the NVH characteristics required for constant velocity universal joints can be maintained.
  • the tri-board type constant velocity universal joint can be composed of three types of parts: trunnion, roller, and outer ring. The reduction in the number of parts can reduce manufacturing and assembly costs.
  • the outer diameter of the outer ring can be reduced in size and weight by reducing the dimensions of each part by utilizing the space allowance, and the accompanying cost reduction can be achieved.
  • FIG. 2 is a sectional view of a tripod type constant velocity universal joint according to the present invention.
  • FIG. 3 is a cross-sectional view in the axial direction of the outer ring track groove for explaining the rolling mechanism of the roller.
  • FIGS. 5A and 5B are cross-sectional views of the trunnion journal and the rollers.
  • FIGS. 6A and 6B are axial sectional views of the outer ring and the roller.
  • FIGS. 7A and 7B are sectional views of a conventional tripod type constant velocity universal joint.
  • FIG. 8 is a sectional view of a roller rolling kit of a conventional tripod type constant velocity universal joint.
  • FIG. 2 shows a cross section of the sliding tri-board type constant velocity universal joint 1 of the present invention applied to the drive system of an FF vehicle.
  • a tripboard member 2 having three trunnion journals 2a protruding in the radial direction is connected to a shaft (not shown) on the artboard side connected to the hub wheel.
  • a bottomed cylindrical outer ring 4 having three track grooves 3 extending in the axial direction is connected to a shaft (not shown) on the inboard side.
  • a roller 5 directly rotatably fitted to the trunnion journal 2a is accommodated in the track groove 3 so as to be axially displaceable.
  • the pair of guide surfaces 3a facing each other in the circumferential direction of the track groove 3 are constituted by a part of a cylindrical surface.
  • the outer diameter surface of the roller 5 is a spherical surface conforming to the roller guide surface 3a.
  • this contour C 1 is referred to as “offset elliptical contour C 1”.
  • Circular inner surface of the roller 5 is fitted to the outer diameter surface of the Toranio down journal 2 a. Accordingly, four points P 1 to P 4 on the outer diameter surface of the trunnion journal 2 a abut on the inner diameter surface of the mouthpiece 5.
  • Points P1 to P4 are the major axes of the ellipse E and are located in a direction offset from the ellipse by L2. Fig.
  • contour C2 of the outer diameter surface of the trunnion journal 2a, in which the ellipse E is rotated right or left by a predetermined angle around its center O (the intersection of the long axis and the short axis). This is the contour of the movement trajectory of the ellipse E at this time (hereinafter, this contour C2 is referred to as "spheroidal contour C2").
  • the four points P 1 to P 4 of the outer surface of the trunnion journal 2 a are Abuts the inner diameter surface of The four points P1 to P4 overlap with the major axis L of the ellipse.
  • the value of ⁇ is preferably 5.8 ° shown in FIG. 5 (A).
  • the value of ⁇ is preferably 5.8 ° shown in FIG. 5 (B) (including the angles at both ends).
  • FIG. 6 (A) and 6 (B) are sectional views of a tri-board type constant velocity universal joint.
  • the cross-sectional shape of the trunnion journal 2a of the constant velocity natural joint is an offset elliptical contour or a spheroidal elliptical contour.
  • 6A is a cross-sectional view of a constant velocity universal joint in which the inner diameter of the roller 5 is an arc-shaped convex cross section in the axial direction cross section.
  • the cross-sectional shape of the trunnion journal 2a is a shape obtained by offsetting or rotating the ellipse E, and the inner diameter of the roller 5 is an arc-shaped convex cross-section, so the trunnion journal 2a is located between the trunnion journal 2a and the roller 5.
  • a relatively large gap G1 is formed in the longitudinal direction of the track groove 3. This gap G
  • FIG. 6 (B) is a cross-sectional view of the constant velocity natural joint in which the inner diameter of the roller 5 is cylindrical and the cross-section in the axial direction is straight.
  • the trunnion journal 2 a has a cross-sectional shape obtained by offsetting or rotating the ellipse E, and a gap G 2 exists between the trunnion journal 2 a and the roller 5. Due to the presence of the upper and lower gaps (3 2 and 5), the reroller 5 can move in the axial direction of the trunnion journal 2a as shown by the arrow in FIG.
  • the outer diameter surface of the roller 5 should be spherical, and this roller 5 should be in angular contact with the track groove of the outer ring.
  • the outer diameter surface must be heat-treated to increase the hardness.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

A tripod type constant velocity universal joint enabling a remarkable reduction in the quantity of parts and man-hour for assembly by eliminating rolling elements such as needle rollers and capable of preventing, by excellent rolling characteristics of a roller, NVH performance from being impaired. The contour shape of the outer diameter surface of the trunnion journal of the tripod type constant velocity universal joint is formed in a non-circular shape, and a contact position between the outer diameter surface of the trunnion journal and the inner diameter surface of the roller directly fitted to the outer diameter surface of the trunnion journal is shifted from a perpendicular suspended from the center of the trunnion journal to the track groove of an outer ring to a position apart a specified distance in the longitudinal direction of the track groove. The contour shape of the outer diameter surface of the trunnion journal is formed in the contour shape of the moving route of an ellipse when the ellipse is offset by a specified distance in the minor axis direction thereof or in the contour shape of the moving route of the ellipse when the ellipse is rotated by a specified angle around the center thereof.

Description

トリポード型等速自在継手 技術分野  Technical field of tripod type constant velocity universal joint
本発明は、 自動車や各種産業機械の動力伝連用として使用される摺動式トリ ポード型等速自在継手に関する。 背景技術  The present invention relates to a sliding tripod type constant velocity universal joint used for power transmission of automobiles and various industrial machines. Background art
等速自在継手は非直線上にある回転 2軸間でトルク伝達を行なうもので、 前 置エンジン前輪駆動車 (F F車) の駆動系などでは摺動式トリポード型等速自 在継手が広く使用される。 この摺動式トリポ一ド型等速自在継手 1 ' は、 図 7 ( A ) のように、 半径方 向に突出した 3本のトラニオンジャーナル 2 bを備えたトリポード部材 2を有 する。 このトリポード部材 2は F F自動車ではハブ輪に連結された一方の軸に 結合される。 また 3つのトラック溝 3を備えた有底円筒状の外輪 4がトランス ミッションの出力軸など他方の軸に結合される。 そしてトラニオンジャーナル 2 aに回転自在に嵌合したローラ 5 aがトラック溝 3内に軸方向変位可能に収 容されて二軸間のトルク伝達を行う。 トラニオンジャーナル 2 aとローラ 5との間には例えば針状ころ 6などの転 動体が配設される。 針状ころ 6は一般に総ころ状態で配設され、 止め輪 7 aで 抜止めされる。 トラック溝 3は円周方向で対向する一対のローラ案内面 3 aを 有する。 このローラ案内面 3 aは軸方向に平行な凹曲面であり、 ローラ 5の外 径面はローラ案内面 3 aに適合する凸曲面である。 トリポード型等速自在継手 1 ' が作動角をとつた状態でトルクを伝達する時、 ローラ 5 aとローラ案内面 3 aが斜交関係となる。 このためローラ案内面 3 a とローラ 5 aとの間で滑りが発生し、 スライ ド抵抗と滑りによる軸方向の誘起 スラス卜が発生する。 これらスライド抵抗と誘起スラストは自動車の N V H性 能に悪影響を与える。 スライ ド抵抗と誘起スラス卜を低減した摺動式トリポード型等速自在継手と して、 例えば図 7 ( B ) に示す低振動型等速自在継手 'が知られている (特 許文献 1参照) 。 この等速自在継手 1 ' 'は外径面を例えば楕円筒に形成したト ラニオンジャーナル 2 cに内側ローラ 5 bが摺動可能かつ揺動可能に嵌合され る。 内側ローラ 5 bの外径面に、 総ころ状態の針状ころ 6を介して外側ローラ 5 cが回転自在に嵌合される。 すなわち、 図 8に示すようなローラ転動キット Kが、 低振動型等速自在継手 'のトラニオンジャーナル 2 cに嵌合される。 ローラ転動キット Kは、 内ローラ 5 b、 針状ころ 6、 および外ローラ 5 cの三 重構造である。 なお、 針状ころ 6は上下一対の止め輪 7 bで抜止めされる。 外 側ローラ 5 cは図 7 ( A ) の等速自在継手と同様にトラック溝 3に軸方向変位 可能に収容されてトルク伝達を行う。 この低振動型等速自在継手 1 ' 'では、 内側ローラ 5 bひいては外側ローラ 5 cがトラニオンジャーナル 2 cに対して揺動可能なため、 ある程度の作動角を とった状態でも外側ローラ 5 cとローラ案内面 3 aとが斜交 ί係にならず、 ス ライド抵抗と誘起スラス卜の発生が抑制される。 特許文献 1 特開 2 0 0 0— 3 2 0 5 6 3 発明の開示 Constant velocity universal joints transmit torque between two non-linear rotating shafts. Sliding tripod type constant velocity natural joints are widely used in the drive system of front-engine front-wheel drive vehicles (FF vehicles). Is done. This sliding tripod type constant velocity universal joint 1 'has a tripod member 2 provided with three trunnion journals 2b protruding in the radial direction as shown in FIG. 7 (A). This tripod member 2 is connected to one shaft connected to a hub wheel in an FF vehicle. In addition, a bottomed cylindrical outer ring 4 having three track grooves 3 is coupled to the other shaft such as the output shaft of the transmission. A roller 5a rotatably fitted to the trunnion journal 2a is accommodated in the track groove 3 so as to be axially displaceable, and transmits torque between the two shafts. A rolling element such as a needle roller 6 is disposed between the trunnion journal 2 a and the roller 5. The needle rollers 6 are generally arranged in a full-roller state, and are prevented from falling off by a retaining ring 7a. The track groove 3 has a pair of circumferentially opposed roller guide surfaces 3a. The roller guide surface 3a is a concave curved surface parallel to the axial direction, and the outer diameter surface of the roller 5 is a convex curved surface adapted to the roller guide surface 3a. When the tripod-type constant velocity universal joint 1 ′ transmits torque while maintaining an operating angle, the roller 5 a and the roller guide surface 3 a have an oblique relationship. For this reason, a slip occurs between the roller guide surface 3a and the roller 5a, and an induced thrust in the axial direction due to the slide resistance and the slip occurs. These slide resistances and induced thrust adversely affect the NVH performance of the vehicle. As a sliding tripod type constant velocity universal joint having reduced slide resistance and induced thrust, for example, a low vibration type constant velocity universal joint shown in FIG. 7 (B) is known (see Patent Document 1). ). The constant velocity universal joint 1 '' has an outer diameter The inner roller 5b is slidably and swingably fitted to the runion journal 2c. An outer roller 5c is rotatably fitted to the outer diameter surface of the inner roller 5b via a needle roller 6 in a full roller state. That is, the roller rolling kit K as shown in FIG. 8 is fitted to the trunnion journal 2c of the low vibration constant velocity universal joint. The roller rolling kit K has a triple structure of the inner roller 5b, the needle rollers 6, and the outer roller 5c. The needle roller 6 is stopped by a pair of upper and lower retaining rings 7b. The outer roller 5c is accommodated in the track groove 3 so as to be axially displaceable and transmits torque, similarly to the constant velocity universal joint in FIG. 7 (A). In this low-vibration constant velocity universal joint 1 ′ ′, since the inner roller 5 b and thus the outer roller 5 c can swing with respect to the trunnion journal 2 c, the outer roller 5 c can be connected to the outer roller 5 c even at a certain operating angle. The roller guide surface 3a does not form an oblique relationship, and the generation of slide resistance and induced thrust is suppressed. Patent Document 1 Japanese Patent Application Laid-Open No. 2000-32 0 56 3 Disclosure of the Invention
従来の摺動式トリポード型等速自在継手 1 ' 、 1 ' 'では、 針状ころ 6とロー ラ 5 a (低振動型では内側ローラ 5 bおよび外側ローラ 5 c ) によリローラ転 動キット Kが構成されるが、 このような従来型等速自在継手は、 針状ころを転 動体として採用しているために以下の課題があった。  In the conventional sliding tripod type constant velocity universal joints 1 'and 1' '', the roller roller kit K is composed of the needle roller 6 and the roller 5a (the inner roller 5b and the outer roller 5c for the low vibration type). However, such a conventional constant velocity universal joint has the following problems due to the use of needle rollers as rolling elements.
1 . 針状ころとローラの二重構造、 または内ローラ、 針状ころおよび外ローラ の三重構造となり、 部品点数が多くなるため部品コストゃ組み立てコス卜が増 加する。  1. A double structure of needle rollers and rollers, or a triple structure of inner rollers, needle rollers, and outer rollers increases the number of parts, resulting in an increase in parts cost and assembly cost.
2 . 針状ころは総ころ状態で配設されるが、 接触面圧が高いため耐久性を考慮 すると針状ころの直径および軸長を低減できず、 コンパク卜化には限界がある。 2. Needle rollers are installed in full-roller condition. However, due to the high contact surface pressure, the diameter and shaft length of the needle rollers cannot be reduced in consideration of durability, and there is a limit to compaction.
3 . 耐久性を向上させるためには針状ころの転走面の面粗度を向上させる方法 があるが、 面粗度向上のための加工コス卜が増加する。 本発明はこれら課題を解決するものであり、 針状ころなどの転動体を省略す ることにより部品点数と組立工数の大幅低減が可能であり、 かつ、 良好なロー ラ転動特性によリ N V H性能を損なうことのないトリポード型等速自在継手を 提供することにある。 本発明は前記課題を解決するため、 トリボード型等速自在継手のトラニオン ジャーナルの外径面の輪郭形状を非円形にし、 前記トラニオンジャーナルの外 径面と、 前記トラニオンジャーナルの外径面に直接嵌合させたローラの内径面 との当接位置を、 前記トラニオンジャーナルの中心から外輪の卜ラック溝に下 ろした垂線から、 トラック溝の長手方向に所定距離だけ離間した位置に移動さ せたことを特徴とする。 すなわち、 トリポード型等速自在継手の低コスト化とコンパク ト化を図るた め、 針状ころなどの転動体を省略してローラの内径面をトラニオンジャーナル に回転自在に直接嵌合すると共に、 転動体の省略によるローラの転動特性低下 を補完するため、 トラニオンジャーナルとローラの内径面との接触点を、 従来 の外輪円周方向から、 ローラの移動方向 (外輪の軸線方向ないしトラック溝の 長手方向) に所定距離だけずらしたことを特徴とする。 単純に針状ころを省略した場合、 トラニオンジャーナルとローラの内径面と の間の滑り抵抗によりローラの回転が抑制され、 N V H特性 (騒音、 振動、 荒 さ) に悪影響を及ぼす。 そこで本発明の等速自在継手ではローラの回転を促進 するためトラニオンジャーナルとローラの内径面との接触点の位置 ^変更した。 トラニオンジャーナルとローラの内径面との接触点をずらすため、 トラニォ ンジャーナルの外径面の輪郭形状を非円形にする。 ここで 「非円形」 は、 典型 的には、 楕円をその短軸方向に所定距離だけオフセッ卜した時の当該楕円の移 動軌跡の輪郭形状であるか、 あるいは楕円をその中心回りに所定角度だけ回転 させた時の当該楕円の移動軌跡の輪郭形状である。 しかし、 トラニオンジャー ナルとローラの内径面との接触点を外輪円周方向からローラの移動方向に所定 距離だけずらすものである限り、 「非円形」はその他任意の形状であってよい。 トラニオンジャーナル断面を上記の形状にすると、 トラニオンジャーナルは 2点で接触する。 往復動の際には 2点の荷重割合が変化する。 より負荷を受け ている側の接触点に着目すると次のように考えられる。 ローラが回転するため のメカニズムを図 3を参照して説明する。 図 3はトラニオンジャーナル 2 aと ローラ 5の横断面を示す。 なお、 図 3で使用する符号は以下のとおりである。 3. There is a method of improving the surface roughness of the rolling surface of the needle rollers to improve the durability, but the processing cost for improving the surface roughness increases. The present invention solves these problems. By omitting rolling elements such as needle rollers, it is possible to greatly reduce the number of parts and the number of assembling steps, and to achieve good roller rolling characteristics. An object of the present invention is to provide a tripod type constant velocity universal joint that does not impair NVH performance. In order to solve the above-mentioned problems, the present invention provides a non-circular contour of the outer diameter surface of the trunnion journal of the tri-board type constant velocity universal joint. The contact position between the radial surface and the inner diameter surface of the roller directly fitted to the outer diameter surface of the trunnion journal is determined from the perpendicular line lowered from the center of the trunnion journal to the track groove of the outer ring, and the longitudinal length of the track groove. Characterized by being moved to a position separated by a predetermined distance in the direction. In other words, in order to reduce the cost and make the tripod-type constant velocity universal joint more compact and compact, the rolling element such as a needle roller is omitted, and the inner diameter surface of the roller is directly rotatably fitted to the trunnion journal. To compensate for the lowering of the rolling characteristics of the roller due to the omission of the moving body, the contact point between the trunnion journal and the inner diameter surface of the roller must be changed from the conventional outer ring circumferential direction to the roller moving direction (the outer ring axial direction or the track groove Direction) by a predetermined distance. If the needle rollers are simply omitted, the rotation of the roller is suppressed by the sliding resistance between the trunnion journal and the inner diameter surface of the roller, which adversely affects the NVH characteristics (noise, vibration, and roughness). Therefore, in the constant velocity universal joint of the present invention, the position of the contact point between the trunnion journal and the inner diameter surface of the roller was changed in order to promote the rotation of the roller. In order to shift the contact point between the trunnion journal and the inner diameter surface of the roller, the contour of the outer diameter surface of the trunnion journal is made non-circular. Here, “non-circular” is typically the contour shape of the movement trajectory of the ellipse when the ellipse is offset by a predetermined distance in the minor axis direction, or the ellipse is defined by a predetermined angle around its center. This is the contour shape of the movement trajectory of the ellipse when rotated only by However, the “non-circular” may have any other shape as long as the point of contact between the trunnion journal and the inner diameter surface of the roller is shifted by a predetermined distance from the circumferential direction of the outer ring in the moving direction of the roller. If the cross section of the trunnion journal is the above shape, the trunnion journal will contact at two points. When reciprocating, the load ratio at the two points changes. Focusing on the contact point on the side receiving more load, the following can be considered. The mechanism for rotating the rollers will be described with reference to FIG. FIG. 3 shows a cross section of the trunnion journal 2 a and the roller 5. The symbols used in FIG. 3 are as follows.
Q: トラニオンジャーナル 2 aがローラ 5の内径面を垂直に押す力  Q: Force of the trunnion journal 2 a to push the inner diameter surface of the roller 5 vertically
F : トラニオンジャーナル 2 aがローラ 5を外輪トラック溝 3に沿ってスラ ィドさせる力 (Qの水平方向分力)  F: Force that trunnion journal 2a slides roller 5 along outer ring track groove 3 (horizontal component of Q)
P : トラニオンジャーナル 2 aがローラ 5を外輪トラック溝 3に押し付ける 力 (Qの垂直方向分力)  P: Force of trunnion journal 2a pressing roller 5 against outer ring track groove 3 (vertical component of Q)
U : ローラ 5と外輪トラック溝 3との間の摩擦係数 点 C : ローラ 5と外輪トラック溝 3との間に発生する接触楕円 eの先端 (口 ーラが回転する時の支点) U: Coefficient of friction between roller 5 and outer ring track groove 3 Point C: The tip of the contact ellipse e generated between the roller 5 and the outer ring track groove 3 (fulcrum when the roller rotates)
点 O : トラニオンジャーナル 2 aの中心点  Point O: Central point of trunnion journal 2a
点 O' : トラニオンジャーナル 2 aとローラ 5内径面の接触点  Point O ': Point of contact between trunnion journal 2a and roller 5 inner diameter surface
a :点 O' から点 Cまでの外輪円周方向の最短距離  a: Shortest distance in the circumferential direction of the outer ring from point O 'to point C
b :点 O' から点 Cまでの外輪 線方向の最短距離 ここで、 外輪のトラック溝 3方向 (継手軸方向) の力の関係で、 F>/ Pの 時、 ローラ 5は Fの方向へ滑り、 F≤ Pの時、 ローラは静止している。 ローラ 5の点 Cを支点としたモーメントの関係で、 a F>b Pの時、 ローラ 5に右回転方向のモーメントが作用し、 a F<b Pの時、 ローラ 5に左回転方 向のモーメン卜がかかる。 以上のローラ 5の挙動をまとめると以下の表 1のようになる。  b: Shortest distance in the direction of the outer ring line from point O 'to point C Here, the roller 5 moves in the direction of F when F> / P due to the force in the outer groove track groove 3 direction (joint axis direction). When sliding, F≤P, the roller is stationary. Due to the moment about the point C of the roller 5 as a fulcrum, when a F> b P, a moment in the right rotation direction acts on the roller 5, and when a F <b P, a left rotation direction acts on the roller 5. It takes moments. Table 1 below summarizes the behavior of the roller 5 described above.
【表 1】 【table 1】
Figure imgf000006_0001
表 1の右上欄のとき、 すなわち、 F≤ P、 かつ、 a F>b Pのとき、 口一 ラ 5は外輪トラック溝 3上を滑ることなく転がリ移動する。 以上のことから、 トラニオンジャーナル 2 aの外径面に直接嵌合させた口一 ラ 5の内径面の当接位置を、 トラニオンジャーナル 2 aの中心から外輪のトラ ック溝 3に下ろした垂線 Vから、 トラック溝 3の長手方向に所定距離だけ離間 させることにより、 転動体なしでも、 ローラ 5をトラック溝 3の長手方向で滑 ることなく転がリ移動させることが可能であることが証明される。 本発明は以上のように構成したものであるから 1 . トラニオンジャーナルとローラ内径部の接触点を 2点としたことで荷重が 分散され面圧が低下し、 トラニオンジャーナルの摩耗を減少させることができ る。
Figure imgf000006_0001
In the upper right column of Table 1, that is, when F≤P and a F> b P, the mouthpiece 5 rolls without slipping on the outer ring track groove 3. Based on the above, the abutting position of the inner diameter surface of the collar 5 directly fitted to the outer diameter surface of the trunnion journal 2a is perpendicular from the center of the trunnion journal 2a to the track groove 3 of the outer ring. From V, it was proved that the roller 5 could be re-moved without slipping in the longitudinal direction of the track groove 3 without a rolling element by separating the roller 5 by a predetermined distance in the longitudinal direction of the track groove 3. Is done. Because the present invention is configured as described above 1. Two points of contact between the trunnion journal and the inner diameter of the roller disperse the load, lower the surface pressure, and reduce the wear of the trunnion journal.
2 . トラニオンジャーナルとローラ内径部との当接位置を、 従来の外輪の円周 方向からローラ進行方向にずらした位置とすることでローラが転がりやすくな り、 針状ころなどの転動体を省略しても等速自在継手に要求される N V H特性 を維持することができる。  2. By setting the abutment position between the trunnion journal and the inner diameter of the roller at a position shifted from the circumferential direction of the conventional outer ring in the direction of roller advancement, the roller can easily roll, and rolling elements such as needle rollers are omitted. Even so, the NVH characteristics required for constant velocity universal joints can be maintained.
3 . トリボード型等速自在継手をトラニオン、 ローラおよび外輪の 3種の部品 で構成可能であり、 部品点数削減により製造コストと組立てコストを低減でき る。  3. The tri-board type constant velocity universal joint can be composed of three types of parts: trunnion, roller, and outer ring. The reduction in the number of parts can reduce manufacturing and assembly costs.
4 . 針状ころなどの転動体の省略により継手の内部にスペース的余裕が生まれ、 このスペース的余裕を利用して各部品の肉厚を増大させる等の強度面の補強の 自由度が高まる。  4. Omission of rolling elements such as needle rollers creates a space inside the joint, and this space allows a greater degree of freedom in reinforcing the strength surface, such as increasing the thickness of each part.
5 . 前記スペース的余裕を利用して各部品の寸法を小さくする等によリ外輪の 外径コンパクト化と軽量化を図れ、 それに伴うコストダウンも可能となる。 図面の簡単な説明  5. The outer diameter of the outer ring can be reduced in size and weight by reducing the dimensions of each part by utilizing the space allowance, and the accompanying cost reduction can be achieved. Brief Description of Drawings
図 1は本発明に係るトリポード型等速自在継手のトラニオンジャーナルの横 断面輪郭図である。  FIG. 1 is a cross-sectional profile view of a trunnion journal of a tripod type constant velocity universal joint according to the present invention.
図 2は本発明に係る卜リポード型等速自在継手の断面図である。  FIG. 2 is a sectional view of a tripod type constant velocity universal joint according to the present invention.
図 3はローラの転動メカニズムを説明するための外輪トラック溝軸線方向断 面図である。  FIG. 3 is a cross-sectional view in the axial direction of the outer ring track groove for explaining the rolling mechanism of the roller.
図 4は本発明の変形例に係るトリボード型等速自在継手のトラニオンジャー ナルの横断面輪郭図である。  FIG. 4 is a cross-sectional profile view of a trunnion journal of a tri-board type constant velocity universal joint according to a modification of the present invention.
図 5 ( A ) ( B ) はトラニオンジャーナルとローラの横断面図である。  FIGS. 5A and 5B are cross-sectional views of the trunnion journal and the rollers.
図 6 ( A ) ( B ) は外輪とローラの軸線方向断面図である。  FIGS. 6A and 6B are axial sectional views of the outer ring and the roller.
図 7 ( A ) ( B ) は従来のトリポード型等速自在継手の断面図である。  FIGS. 7A and 7B are sectional views of a conventional tripod type constant velocity universal joint.
図 8は従来のトリポード型等速自在継手のローラ転動キッ卜の断面図である。 発明を実施するための最良の形態  FIG. 8 is a sectional view of a roller rolling kit of a conventional tripod type constant velocity universal joint. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の実施形態を図面を参照して説明する。 図 2は F F自動車の駆 動系に適用した本発明の摺動式トリボード型等速自在継手 1の断面を示す。 こ のトリポード型等速自在継手 1は、ハブ輪に連結されるァゥトボード側の軸(図 示せず) に、 半径方向に突出した 3本のトラニオンジャーナル 2 aを備えたト リボード部材 2が連結される。 またトランスミッションの出力軸に連結された インボード側の軸 (図示せず) に、 軸線方向に延びる 3つのトラック溝 3を備 えた有底円筒状の外輪 4が連結される。 トラニオンジャーナル 2 aに回転自在に直接嵌合したローラ 5が、 トラック 溝 3内に軸方向変位可能に収容される。 トラック溝 3の円周方向に対向する一 対の口一ラ案内面 3 aは円筒面の一部で構成される。 ローラ 5の外径面はロー ラ案内面 3 aに適合する球状面とされている。 ローラ 5とトラック溝 3の周方 向の係合により、 トランスミッション出力軸からハブ輪へのトルク伝達が行な われる。 図 1のように、 トラニオンジャーナル 2 aの外径面の輪郭は、従来の図 7 (A) のような円形や、 図 7 (B) のような楕円等ではなく、 楕円 Eを所定距離だけ その短軸方向にオフセッ卜した時の当該楕円 Eの移動軌跡の輪郭 C1であるEmbodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows a cross section of the sliding tri-board type constant velocity universal joint 1 of the present invention applied to the drive system of an FF vehicle. In this tripod-type constant velocity universal joint 1, a tripboard member 2 having three trunnion journals 2a protruding in the radial direction is connected to a shaft (not shown) on the artboard side connected to the hub wheel. You. Also connected to the output shaft of the transmission A bottomed cylindrical outer ring 4 having three track grooves 3 extending in the axial direction is connected to a shaft (not shown) on the inboard side. A roller 5 directly rotatably fitted to the trunnion journal 2a is accommodated in the track groove 3 so as to be axially displaceable. The pair of guide surfaces 3a facing each other in the circumferential direction of the track groove 3 are constituted by a part of a cylindrical surface. The outer diameter surface of the roller 5 is a spherical surface conforming to the roller guide surface 3a. By the circumferential engagement between the roller 5 and the track groove 3, torque is transmitted from the transmission output shaft to the hub wheel. As shown in Fig. 1, the contour of the outer diameter surface of the trunnion journal 2a is not a circle as shown in Fig. 7 (A) or an ellipse as shown in Fig. 7 (B). This is the contour C1 of the movement trajectory of the ellipse E when offset in the short axis direction.
(以下、 この輪郭 C 1を 「オフセット楕円輪郭 C 1」 という) 。 このトラニォ ンジャーナル 2 aの外径面にローラ 5の円形の内径面が嵌合される。 従って、 トラニオンジャーナル 2 aの外径面の 4つの点 P 1 ~P4が口一ラ 5の内径面 に当接する。 点 P 1〜P 4は楕円 Eの長軸し 1、 L 2よりも楕円をオフセット させた方向に位置している。 図 4はトラニオンジャーナル 2 aの外径面の輪郭 C 2の変形例であり、 楕円 Eをその中心 O (長軸と短軸の交点) 回りに所定角度だけ右方向ないし左方向 に回転させた時の当該楕円 Eの移動軌跡の輪郭である (以下、 この輪郭 C 2を 「回転楕円輪郭 C 2」 という) 。 このトラニオンジャーナル 2 aの外径面に口 —ラ 5の円形の内径面が回転自在に直接嵌合されると、 トラニオンジャーナル 2 aの外径面の 4つの点 P 1 ~P 4がローラ 5の内径面に当接する。 4つの点 P 1〜P 4は楕円の長軸 Lと重なる。 図 5のように、 楕円 Eの中心と点を結ぶ直線が楕円 Eの長軸 Lと成す角度を Θ とした場合、 この Θ の値を、 望ましくは図 5 (A) に示す 5. 8° と、 図 5 (B) に示す 9° の間とする (両端の角度を含む) 。 0<5. 8° では表 1の 右下欄の 「静止」 になりやすく、 9。 く Θでは表 1の左上欄の 「右回転転がり 滑り」 か、 または左下欄の 「無回転滑り」 になりやすい。 この 5. 8° と 9° は前記 F≤ Pかつ a F>b Pの条件から算出した。 図 6 ( A ) ( B ) はトリボード型等速自在継手の断面図である。 この等速自 在継手のトラニオンジャーナル 2 aの横断面形状は、 オフセット楕円輪郭また は回転楕円輪郭である。 図 6 ( A ) はローラ 5の内径形状が軸線方向断面で円弧状凸断面の等速自在 継手の断面図である。 トラニオンジャーナル 2 aは横断面形状が楕円 Eをオフ セットまたは回転した形状であり、 ローラ 5の内径形状は軸線方向断面が円弧 状凸断面であるため、 トラニオンジャーナル 2 aとローラ 5との間にトラック 溝 3の長手方向において比較的大きなすき間 G 1が形成される。 このすき間 G(Hereinafter, this contour C 1 is referred to as “offset elliptical contour C 1”). Circular inner surface of the roller 5 is fitted to the outer diameter surface of the Toranio down journal 2 a. Accordingly, four points P 1 to P 4 on the outer diameter surface of the trunnion journal 2 a abut on the inner diameter surface of the mouthpiece 5. Points P1 to P4 are the major axes of the ellipse E and are located in a direction offset from the ellipse by L2. Fig. 4 shows a modified example of the contour C2 of the outer diameter surface of the trunnion journal 2a, in which the ellipse E is rotated right or left by a predetermined angle around its center O (the intersection of the long axis and the short axis). This is the contour of the movement trajectory of the ellipse E at this time (hereinafter, this contour C2 is referred to as "spheroidal contour C2"). When the circular inner surface of the mouth 5 is rotatably fitted directly to the outer surface of the trunnion journal 2 a, the four points P 1 to P 4 of the outer surface of the trunnion journal 2 a are Abuts the inner diameter surface of The four points P1 to P4 overlap with the major axis L of the ellipse. As shown in FIG. 5, when the angle formed by the straight line connecting the center of the ellipse E and the point with the major axis L of the ellipse E is Θ, the value of Θ is preferably 5.8 ° shown in FIG. 5 (A). And 9 ° as shown in Fig. 5 (B) (including the angles at both ends). At 0 <5.8 °, it tends to be “stationary” in the lower right column of Table 1; In Table 1, it is easy to have “Rotating rolling slip” in the upper left column of Table 1 or “Non-rotating sliding” in the lower left column. These 5.8 ° and 9 ° were calculated from the conditions of F≤P and a F> bP. 6 (A) and 6 (B) are sectional views of a tri-board type constant velocity universal joint. The cross-sectional shape of the trunnion journal 2a of the constant velocity natural joint is an offset elliptical contour or a spheroidal elliptical contour. FIG. 6A is a cross-sectional view of a constant velocity universal joint in which the inner diameter of the roller 5 is an arc-shaped convex cross section in the axial direction cross section. The cross-sectional shape of the trunnion journal 2a is a shape obtained by offsetting or rotating the ellipse E, and the inner diameter of the roller 5 is an arc-shaped convex cross-section, so the trunnion journal 2a is located between the trunnion journal 2a and the roller 5. A relatively large gap G1 is formed in the longitudinal direction of the track groove 3. This gap G
1とローラ 5上下のすきまの存在によリロ一ラ 5が図 6 ( A ) で矢印にて示す 如く トラ オンジャーナル 2 aの軸線方向に移動可能であり、 かつ、 トラニォ ンジャーナル 2 aに対して左右方向の首振り揺動が可能である。 これにより、 トリボード型等速自在継手が作動角をもって回転する時のローラ 5 aとトラッ ク溝 3との斜交関係が緩和され、 N V H性能が損なわれるのを防止する。 図 6 ( B ) はローラ 5の内径形状が円筒形状で軸線方向断面が直線の等速自 在継手の断面図である。 この等速自在継手でも、 トラニオンジャーナル 2 aは 横断面形状が楕円 Eをオフセットまたは回転した形状であり、 トラニオンジャ —ナル 2 aとローラ 5との間にすき間 G 2が存在する。 このすき間 (3 2と口一 ラ 5上下のすきまの存在にによリローラ 5が図 6 ( B ) で矢印にて示す如く 卜 ラニオンジャーナル 2 aの軸線方向に移動可能であり、 かつ、 トラニオンジャ —ナル 2 aに対して左右方向の首振り揺動が可能である。 これにより、 トリポ 一ド型等速自在継手が作動角をもって回転する時のローラ 5 bとトラック溝 3 との斜交関係が緩和され、 N V H性能が損なわれるのを防止する。 以上、 本発明の実施形態につき説明したが、 本発明は前記実施形態に限定さ れることなく、 特許請求の範囲に記載した技術的思想の範囲内で種々の変形が 可能である。 以下に本発明のトリボード型等速自在継手に必要に応じて付加す ることができる構造または処理を列挙する。 Due to the clearance between the roller 1 and the roller 5, the re-roller 5 can move in the axial direction of the traverse journal 2a as shown by the arrow in FIG. It is possible to swing right and left. This alleviates the oblique relationship between the roller 5a and the track groove 3 when the tri-board type constant velocity universal joint rotates with the operating angle, and prevents the NVH performance from being impaired. FIG. 6 (B) is a cross-sectional view of the constant velocity natural joint in which the inner diameter of the roller 5 is cylindrical and the cross-section in the axial direction is straight. Also in this constant velocity universal joint, the trunnion journal 2 a has a cross-sectional shape obtained by offsetting or rotating the ellipse E, and a gap G 2 exists between the trunnion journal 2 a and the roller 5. Due to the presence of the upper and lower gaps (3 2 and 5), the reroller 5 can move in the axial direction of the trunnion journal 2a as shown by the arrow in FIG. —Swing and swinging in the left and right directions is possible with respect to the null 2a, so that the oblique relationship between the roller 5b and the track groove 3 when the tripod type constant velocity universal joint rotates with the operating angle Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and the technical ideas described in the claims are not limited to the embodiments. Various modifications are possible within the scope of the invention.The following lists the structures or processes that can be added as necessary to the tri-board type constant velocity universal joint of the present invention.
1 . ローラ 5の姿勢を安定化させるため、 ローラ 5の外径面を球状面とし、 こ のローラ 5を外輪のトラック溝にアンギユラコンタク卜させること。  1. In order to stabilize the attitude of the roller 5, the outer diameter surface of the roller 5 should be spherical, and this roller 5 should be in angular contact with the track groove of the outer ring.
2 . トラニオンジャーナル 2 aの耐久性向上のため、 その外径面に熱処理を施 し硬度を増大させること。  2. To improve the durability of the trunnion journal 2a, the outer diameter surface must be heat-treated to increase the hardness.
3 . ローラ 5の外径面および Zまたは内径面に、 耐磨耗性または低摩擦化のた めの溶射、 めっき、 滑リ材の貼付け等の表面処理を施すこと。 4 . 外輪 4のトラック溝 3に、耐磨耗性または低摩擦化のための溶射、 めっき、 滑リ材の貼付け等の表面処理を施すこと。 3. Apply a surface treatment such as thermal spraying, plating, or attaching a lubricating material to the outer diameter surface and the Z or inner diameter surface of the roller 5 for wear resistance or low friction. 4. The track groove 3 of the outer ring 4 shall be subjected to surface treatment such as thermal spraying, plating, or application of lubricating material for abrasion resistance or low friction.
5 . トラニオンジャーナル 2 aの外径面に、 潤滑剤の介入を促進する油溝を設 けること。 6 . ローラ 5の内径部および Zまたは外径部に、 潤滑剤の介入を促 進する油溝を設けること。  5. Provide an oil groove on the outer diameter surface of the trunnion journal 2a to facilitate the intervention of lubricant. 6. Provide an oil groove on the inner diameter part and Z or outer diameter part of roller 5 to promote the intervention of lubricant.
7 . 外輪 4のトラック溝 3に潤滑剤の介入を促進する油溝を設けること。  7. Provide an oil groove in the track groove 3 of the outer ring 4 to facilitate the intervention of lubricant.
8 . トラニオンジャーナル 2 aの外径面のうち、 ローラ 5の内径面と接触する 領域のみを摩擦係数低減および耐久性向上のため研削加工すること。  8. Of the outer diameter surface of the trunnion journal 2a, only the area that comes into contact with the inner diameter surface of the roller 5 should be ground to reduce the friction coefficient and improve durability.

Claims

特許請求の範囲 . トリポード型等速自在継手のトラニオンジャーナルの外径面の輪郭形状を 非円形にし、 前記トラニオンジャーナルの外径面と、 前記トラニオンジャーナ ルの外径面に回転自在に直接嵌合させたローラの内径面との当接位置を、 前記 トラニオンジャーナルの中心から外輪のトラック溝に下ろした垂線から、 前記 トラック溝の長手方向に所定距離だけ離間した位置にしたことを特徴とするト リボード型等速自在継手。 Claims. The outer shape of the trunnion journal of the tripod type constant velocity universal joint is made non-circular, and the trunnion journal is directly rotatably fitted to the trunnion journal. The contact position between the roller and the inner diameter surface of the roller is set at a position separated by a predetermined distance in the longitudinal direction of the track groove from a perpendicular line lowered from the center of the trunnion journal to the track groove of the outer ring. Reboard type constant velocity universal joint.
2 . 前記トラニオンジャーナルの外径面の輪郭形状を、 楕円をその短軸方向に 所定距離だけオフセッ卜した時の当該楕円の移動軌跡の輪郭形状としたことを 特徴とする請求項 1記載のトリポ一ド型等速自在継手。 2. The tripod according to claim 1, wherein the contour shape of the outer diameter surface of the trunnion journal is the contour shape of the movement locus of the ellipse when the ellipse is offset by a predetermined distance in the minor axis direction. One-DO type constant velocity universal joint.
3 . 前記トラニオンジャーナルの外径面の輪郭形状を、 楕円をその中心回りに 所定角度だけ回転させた時の当該楕円の移動軌跡の輪郭形状としたことを特徴 とする請求項 1記載のトリボード型等速自在継手。 3. The tri-board type according to claim 1, wherein a contour shape of an outer diameter surface of the trunnion journal is a contour shape of a movement locus of the ellipse when the ellipse is rotated around a center thereof by a predetermined angle. Constant velocity universal joint.
4 . 前記トラック溝の長手方向において、 前記トラニオンジャーナルの外径面 と前記ローラの内径面との間に、 前記ローラの揺動を許容する所定のすき間を 形成したことを特徴とする請求項 2または 3記載のトリポード型等速自在継手。 4. A predetermined gap is formed between the outer diameter surface of the trunnion journal and the inner diameter surface of the roller in the longitudinal direction of the track groove, to allow the roller to swing. Or the tripod constant velocity universal joint described in 3.
5 . 前記ローラの内径面形状を、 前記トラニオンジャーナルの軸線方向両端で の内径に比べて軸線方向中央部での内径の方が小さい円弧状凸形状としたこと を特徴とする請求項 4記載のトリポード型等速自在継手。 5. The inner diameter surface shape of the roller is an arc-shaped convex shape in which the inner diameter at the center in the axial direction is smaller than the inner diameter at both ends in the axial direction of the trunnion journal. Tripod type constant velocity universal joint.
6 . 前記ローラの外径面を球状面とし、 前記ローラを前記外輪のトラック溝に アンギユラコンタク卜させたことを特徴とする請求項 2または 3記載のトリポ ード型等速自在継手。 6. The tripod constant velocity universal joint according to claim 2, wherein an outer diameter surface of the roller is a spherical surface, and the roller is an angular contact with a track groove of the outer ring.
7 . 前記トラニオンジャーナルの外径面に、 耐磨耗性または低摩擦化のための 溶射、 めっき、 滑リ材の貼付け等の表面処理を施したことを特徴とする請求項 1記載の卜リポ一ド型等速自在継手。 7. The tripod according to claim 1, wherein the outer diameter surface of the trunnion journal is subjected to a surface treatment such as thermal spraying, plating, or application of a lubricating material for abrasion resistance or low friction. One-DO type constant velocity universal joint.
8 . 前記トラニオンジャーナルの外径面に、 硬度増大のための熱処理を施した ことを特徴とする請求項 1記載のトリポ一ド型等速自在継手。 8. The tripod constant velocity universal joint according to claim 1, wherein a heat treatment for increasing hardness is performed on an outer diameter surface of the trunnion journal.
9 . 前記ローラの外径面に、 耐磨耗性または低摩擦化のための溶射、 めっき、 滑リ材の貼付け等の表面処理を施したことを特徴とする請求項 1記載のトリポ 一ド型等速自在継手。 9. The tripod according to claim 1, wherein an outer diameter surface of the roller is subjected to a surface treatment such as thermal spraying, plating, or application of a lubricating material for reducing abrasion resistance or friction. Type constant velocity universal joint.
1 0 . 前記ローラの内径部に、耐磨耗性または低摩擦化のための溶射、 めっき、 滑リ材の貼付け等の表面処理を施したことを特徴とする請求項 1記載のトリポ ード型等速自在継手。 10. The tripod according to claim 1, wherein the inner diameter portion of the roller has been subjected to a surface treatment such as thermal spraying, plating, or application of a lubricating material for abrasion resistance or low friction. Type constant velocity universal joint.
1 1 . 前記外輪のトラック溝に、 耐磨耗性または低摩擦化のための溶射、 めつ き、 滑リ材の貼付け等の表面処理を施したことを特徴とする請求項 1記載の卜 リボード型等速自在継手。 11. The track according to claim 1, wherein the track groove of the outer ring is subjected to a surface treatment such as thermal spraying, plating, or attaching a lubricating material for abrasion resistance or low friction. Reboard type constant velocity universal joint.
1 2 . 前記トラニオンジャーナルの外径面に、 潤滑剤の介入を促進する油溝を 設けたことを特徴とする請求項 1記載のトリポード型等速自在継手。 12. The tripod constant velocity universal joint according to claim 1, wherein an oil groove is provided on an outer diameter surface of the trunnion journal to facilitate the intervention of a lubricant.
1 3 . 前記ローラの内径部および Zまたは外径部に、 潤滑剤の介入を促進する 油溝を設けたことを特徴とする請求項 1記載のトリポ一ド型等速自在継手。 13. The tripod constant velocity universal joint according to claim 1, wherein an oil groove is provided at an inner diameter portion and a Z or outer diameter portion of the roller to facilitate the intervention of a lubricant.
1 4 . 前記外輪のトラック溝に潤滑剤の介入を促進する油溝を設けたことを特 徴とする請求項 1記載のトリポード型等速自在継手。 14. The tripod constant velocity universal joint according to claim 1, characterized in that an oil groove is provided in the track groove of the outer ring to facilitate the intervention of a lubricant.
1 5 . 前記トラニオンジャーナルの外径面のうち、 前記ローラの内径面と接触 する領域のみを研削加工したことを特徴とする請求項 1記載のトリポ一ド型等 速自在継手。 15. The tripod constant velocity universal joint according to claim 1, wherein only a region of the outer diameter surface of the trunnion journal that contacts the inner diameter surface of the roller is ground.
1 6 . 前記トラニオンジャーナルの外径面と前記ローラの内径面との当接位置 が、 前記トラニオンジャーナルの中心から前記外輪のトラック溝に下ろした垂 線を基準として、 前記ローラの周方向に 5 . 8 ° 以上 9 ° 以下離間しているこ とを特徴とする請求項 1記載のトリポード型等速自在継手。 16. The abutment position between the outer diameter surface of the trunnion journal and the inner diameter surface of the roller is determined in the circumferential direction of the roller based on a perpendicular drawn from the center of the trunnion journal to the track groove of the outer ring. 2. The tripod-type constant velocity universal joint according to claim 1, wherein the joint is separated by 8 ° or more and 9 ° or less.
PCT/JP2004/014539 2003-10-31 2004-09-27 Tripod type constant velocity universal joint WO2005042994A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-372616 2003-10-31
JP2003372616A JP2005133890A (en) 2003-10-31 2003-10-31 Tripod type constant velocity universal joint

Publications (1)

Publication Number Publication Date
WO2005042994A1 true WO2005042994A1 (en) 2005-05-12

Family

ID=34544034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014539 WO2005042994A1 (en) 2003-10-31 2004-09-27 Tripod type constant velocity universal joint

Country Status (2)

Country Link
JP (1) JP2005133890A (en)
WO (1) WO2005042994A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1788267A1 (en) * 2005-08-30 2007-05-23 Ntn Corporation Tripod type constant velocity universal joint
CN102859219A (en) * 2010-03-19 2013-01-02 Ntn株式会社 Tripod constant velocity universal joint

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100706081B1 (en) 2005-11-22 2007-04-12 한국프랜지공업 주식회사 Structure for tripod constant velocity joint

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354645A (en) * 1976-10-27 1978-05-18 Ntn Toyo Bearing Co Ltd Uniform velocity universal joint
JPS6455427A (en) * 1987-05-06 1989-03-02 Glyco Metall Werke Universal joint used for shaft transmitting turning moment, particularly, cardan shaft, and partial driving shaft
JP2000320563A (en) * 1999-03-05 2000-11-24 Ntn Corp Constant velocity universal joint
JP2001234941A (en) * 2000-02-22 2001-08-31 Ntn Corp Constant velocity universal joint
JP2003097589A (en) * 2001-09-26 2003-04-03 Ntn Corp Constant velocity universal joint

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354645A (en) * 1976-10-27 1978-05-18 Ntn Toyo Bearing Co Ltd Uniform velocity universal joint
JPS6455427A (en) * 1987-05-06 1989-03-02 Glyco Metall Werke Universal joint used for shaft transmitting turning moment, particularly, cardan shaft, and partial driving shaft
JP2000320563A (en) * 1999-03-05 2000-11-24 Ntn Corp Constant velocity universal joint
JP2001234941A (en) * 2000-02-22 2001-08-31 Ntn Corp Constant velocity universal joint
JP2003097589A (en) * 2001-09-26 2003-04-03 Ntn Corp Constant velocity universal joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1788267A1 (en) * 2005-08-30 2007-05-23 Ntn Corporation Tripod type constant velocity universal joint
CN102859219A (en) * 2010-03-19 2013-01-02 Ntn株式会社 Tripod constant velocity universal joint

Also Published As

Publication number Publication date
JP2005133890A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
US5203741A (en) Constant velocity ratio universal joint with gothic arch shaped rollers and guide grooves
JPH1073129A (en) Slide type constant velocity universal joint
JP5073190B2 (en) Sliding constant velocity universal joint
JP4334754B2 (en) Tripod type constant velocity joint
US6893351B2 (en) Tripod type constant velocity universal joint
JP2006162056A (en) Constant-velocity joint
US7217194B2 (en) Constant velocity universal joint
JP4361351B2 (en) Tripod type constant velocity universal joint
US6733394B2 (en) Constant velocity joint
US6264565B1 (en) Tripod type constant velocity universal joint
JP4298392B2 (en) Constant velocity universal joint
WO2005042994A1 (en) Tripod type constant velocity universal joint
JPH086757B2 (en) Constant velocity universal joint
KR20070025956A (en) Tripod type constant velocity universal joint
JP2008190621A (en) Tripod type constant velocity universal joint
JP4255678B2 (en) Tripod type constant velocity universal joint
WO2023047930A1 (en) Tripod-type constant-velocity universal joint
JP4080036B2 (en) Fixed type constant velocity universal joint
US9631676B2 (en) Tripod joint having low vibration inducing forces
US7097565B2 (en) Fixed-center articulating constant velocity joint
KR100633307B1 (en) Anti axial force tripod-constant velocity joint
JP2001208090A (en) Constant speed universal coupling
JP2006266325A (en) Constant velocity universal joint
JP2006266324A (en) Constant velocity universal joint
KR100633306B1 (en) Tripod-constant velocity joint of double roller type

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase