WO2005042839A1 - Composite papyraceous material - Google Patents

Composite papyraceous material Download PDF

Info

Publication number
WO2005042839A1
WO2005042839A1 PCT/JP2004/015841 JP2004015841W WO2005042839A1 WO 2005042839 A1 WO2005042839 A1 WO 2005042839A1 JP 2004015841 W JP2004015841 W JP 2004015841W WO 2005042839 A1 WO2005042839 A1 WO 2005042839A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
fibrous
paper
composite paper
polytetrafluoroethylene
Prior art date
Application number
PCT/JP2004/015841
Other languages
French (fr)
Japanese (ja)
Inventor
Mikio Furukawa
Katsuyuki Toma
Yoshinao Yamada
Akira Ito
Norihiko Miki
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US10/577,399 priority Critical patent/US20070084575A1/en
Publication of WO2005042839A1 publication Critical patent/WO2005042839A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/12Organic non-cellulose fibres from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/12Organic non-cellulose fibres from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/14Polyalkenes, e.g. polystyrene polyethylene
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/22Condensation polymers of aldehydes or ketones
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/26Polyamides; Polyimides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/015Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/0278Polymeric fibers

Definitions

  • the present invention relates to a fibrous polyimide and fibrous polytetrafluoroethylene (PTFE) composite paper which also has a force.
  • PTFE polytetrafluoroethylene
  • Patent Document 1 proposes a paper-like material including a fluororesin-based fiber and a heat-resistant engineering plastic fiber.
  • Patent Document 2 proposes a sheet-shaped insulator in which an impregnating agent is impregnated into a fiber base made of a hybrid of insulating fibers and fluororesin fibers.
  • Patent Document 3 proposes a low dielectric constant printed wiring board material in which a mixed nonwoven fabric made of a fluorine resin fiber and a heat-resistant engineering plastic fiber is combined with a cyanate ester resin.
  • Patent Document 4 proposes, as a sliding member, a fluorine-based resin composition in which a polyimide fiber is blended with polytetrafluoroethylene resin.
  • Patent Document 5 proposes a substrate nonwoven fabric for a laminate in which polyimide fibers are bonded with a thermosetting binder.
  • the fluororesin fibers used in Patent Documents 13 to 13 are substantially in the form of chopped strands, and the fiber diameter is significantly larger than that of pulp-like material when compared under the same weight. If so, the problem remains in its homogeneity. Also, from the viewpoint of the production method of the fluorine resin fiber, the fluorine fiber to be applied is sufficiently baked, and its function as a binder for binding the fibers is insufficient. Sheet-like material obtained by wet papermaking If so, some sort of binder component must be added. In many cases, one component of the binder is a factor that impairs the properties of the resulting paper.
  • Patent Document 4 although the form of polytetrafluoroethylene resin and the like are not specified or unknown, it is not possible to obtain a thin paper-like composite molded article by estimating the manufacturing method. It is assumed to be virtually impossible.
  • thermosetting resin is employed as a binder for the polyimide fiber.
  • a thermosetting resin makes it possible to obtain only paper-like materials in which the inherent characteristics of polyimide fibers are impaired! /.
  • Patent Document 1 JP-A-10-212686
  • Patent Document 2 JP-A-11-144529
  • Patent Document 3 Japanese Patent No. 2762544
  • Patent Document 4 Japanese Patent No. 2983900
  • Patent Document 5 JP-A-11-200210
  • the present invention has been made in view of the background of the related art, and has excellent strength, thermal dimensional stability, chemical resistance, and abrasion resistance, and has an unprecedented small value in water absorption and dielectric properties. It is an object of the present invention to provide an engineering plastic fibrous paper having the following properties.
  • the present invention relates to a composite paper-like material comprising both fibrous polyimide and polytetrafluoroethylene.
  • the fibrous polyimide is not particularly limited, but is a fiber obtained by cutting a thermoplastic polyimide resin into a fiber by a melt spinning method or the like and cutting it to a fixed length, preferably a short fiber, particularly a crystal.
  • U which is preferably a fiber having properties.
  • the thermoplastic polyimide preferably has a glass transition temperature of 230 ° C or higher and a melting point of 400 ° C or lower. If the glass transition point is lower than 230 ° C, the heat resistance becomes poor, which is not preferable. On the other hand, if the melting point exceeds 400 ° C., processing by heat becomes difficult, which is not preferable.
  • Fibrous polyimide is a short fiber in consideration of the uniformity of the obtained composite paper.
  • the average fiber length is 1 to 15 mm, preferably 2 to 8 mm, and the average fiber diameter is 3 to 30 m, preferably 4 to 20 ⁇ m.
  • the orientation of the crystal part of a raw yarn obtained from a thermoplastic polyimide resin having crystallinity by a melt spinning method or the like can be increased by heating and drawing under appropriate conditions.
  • Fibrous polyimide with highly oriented crystal parts contributes to the thermal dimensional stability of paper-like materials with small dimensional changes during heating and cooling, and has the characteristics of low water absorption. Therefore, dimensional changes and changes in electrical characteristics due to water absorption are extremely small.
  • ⁇ Fiber having crystallinity '' is represented by the crystallinity of the fibrous polyimide, the crystallinity measured by X-ray diffraction method is preferably 15% or more, more preferably 20% or more, particularly It preferably means 25% or more. If the crystallinity is less than 15%, the thermal dimensional change and water absorption tend to increase, which is not preferable.
  • the polyimide is preferably a polyimide having the chemical structure represented by the following general formula (1) as a repeating unit and capable of satisfying the above characteristics.
  • R represents a tetravalent aromatic residue selected from a monocyclic aromatic, a condensed polycyclic aromatic, and a non-condensed polycyclic aromatic having an aromatic ring bonded directly or via a bridge member.
  • X represents a divalent residue selected from a direct bond, a hydrocarbon group, a carboyl group, an ether group, a thio group or a sulfol group, and may be a Y atom, an alkyl group, an alkoxyl group.
  • R is more preferably a short cyclic aromatic compound.
  • X is more preferably a direct bond.
  • Y is a hydrogen atom
  • a particularly preferred specific example of such a polyimide is a polyimide having the following chemical structural formula (2) as a repeating unit. [Chemical 2]
  • n is preferably 5-200
  • Such a polyimide is available, for example, under the trade name Aurum (manufactured by Mitsui Iridakusha).
  • polyimide When the polyimide is made into a fiber, a polyimide having various chemical structures may be blended.
  • polyester may be used.
  • An inorganic filler such as alumina, silica, aluminum nitride, silicon nitride, boron nitride, silicon carbide, carbon black, graphite and mica may be blended.
  • the fibrous polytetrafluoroethylene used in the present invention is a fibrous powder.
  • Polytetrafluoroethylene fibrous powder is, for example, one obtained by beating polytetrafluoroethylene powder, which has non-uniform beard-like branches which are preferable, while having a fiber form as a whole. And at the visual level show behavior as a powder.
  • the fibrous powder preferably has an average fiber length of 5 to 2000 m and an average view factor of 5 or more! If the ratio is below this range, in the paper making process, the drainage is poor and the productivity is lowered, but the paper strength with low air permeability cannot be obtained. If it exceeds this, the surface condition of the paper deteriorates, and it is difficult to obtain thin and uniform paper.
  • the specific surface area force measured by a nitrogen adsorption method is preferably 4.0 m 2 / g or more. If it is lower than this, the binding function is inferior, and the strength of the obtained paper-like material is reduced.
  • the average form factor is obtained by dividing the fiber length by the fiber width.
  • the polytetrafluoroethylene may be a tetrafluoroethylene homopolymer, or a copolymer of tetrafluoroethylene and a trace monomer other than tetrafluoroethylene. It may be unified and non-melting (hereinafter, referred to as modified polytetrafluoroethylene).
  • trace monomer examples include perfluoroolefin, perfluoro (alkyl vinyl ether), a cyclic fluorinated monomer, perfluoroalkylethylene, and the like.
  • perfluoroolefin examples include hexafluoropropylene and the like, and examples of monofluoro (alkylbutyl ether) include perfluoro (methylbiruether), perfluoro (propylbutylether) and the like.
  • examples of the cyclic fluorinated monomer include fluorodixole and the like, and examples of perfluoroalkylethylene include perfluoromethylethylene.
  • Fibrous polytetrafluoroethylene has a low-temperature-side peak area in a melting endothermic curve obtained by differential scanning calorimetry (DSC) analysis performed at a heating rate of 5 ° C per minute. It is preferred that the ratio is 88.5% or more of the total peak area and that the partially-baked one is used.
  • DSC differential scanning calorimetry
  • the upper limit is preferably 99.0%. If the ratio is below these ranges, it is difficult to obtain smooth paper. If the ratio is above these ranges, the unity of the paper is lost, and the operability is significantly impaired.
  • the peak area indicated by the differential scanning calorimeter is directly proportional to the calorific value, and is proportional to the number of molecules in a generally accepted range. Therefore, the ratio of unraveled polytetrafluoroethylene molecules can be evaluated by the peak ratio between the area of the low-temperature side peak obtained from the differential scanning calorimeter and the total peak area.
  • a double peak or a single peak with well-defined shoulders can be mathematically understood as a composite curve of three or more multiple normal distributions. Separation as a distribution curve is considered to be sufficiently valid, and reasonable results have been obtained in the study of the present invention. This means that even partially disentangled molecules are disassembled as small V, which is the calorific value required for disentanglement in evaluation, and are included in the normal distribution of molecules! / Just fine.
  • the complex absorption peak is usually approximated using a Gaussian-Lorentian type curve. Can be separated by The Gaussian type! / Has a feature that the degree of deviation is smaller than when using only the Lorentian type curve! /, And only the deviation is used.Therefore, this method can be applied to most calculation software attached to commercially available analytical instruments. Used. In this case, the two peaks apparent in the polytetrafluoroethylene powder used as the raw material are given as initial values, and approximation is performed without any restriction to obtain the basic peaks. The position was determined. For example, in the case of the fibrous polytetrafluoroethylene used in Example 1 of the present invention, the basic peak positions thus obtained are 339.14 ° C.
  • the composite paper-like material of the present invention is obtained by combining the above fibrous polyimide and polytetrafluoroethylene into a paper-like composite.
  • the composite method is not particularly limited, but can be easily obtained with high productivity by mixing and applying a papermaking method. From the viewpoint of obtaining a thin and uniform formation of a composite paper-like material, it is particularly preferable to use a wet papermaking method among the papermaking methods.
  • the wet papermaking method includes at least a dispersion step of dispersing fibrous polytetrafluoroethylene in water, a mixing step of fibrous polyimide, a papermaking step, and a drying step.
  • fibrous polytetrafluoroethylene slurry is added to water and fibrillated using a parper or a refiner equipped with a stirrer to thereby disperse the fibrous polytetrafluoroethylene slurry.
  • a dispersing agent is added to fibers or fibrous powder in advance, or It is preferable to mix them.
  • the dispersant to be applied is not particularly limited, but is preferred in that non-ionic polyoxyethylene alkyl ethers exhibit a dispersing effect when added in a small amount.
  • the fibrous polyimide is added to the slurry of the fibrous polytetrafluoroethylene obtained in the dispersing step, and the same treatment as in the dispersing step is performed to obtain a mixed slurry.
  • fibrous polyimide is evenly applied to the above slurry without using a dispersant. It can be dispersed all over.
  • the mixing ratio of the fibrous polyimide and polytetrafluoroethylene may be appropriately adjusted according to the purpose of use, but the lower limit of the mixing ratio of the fibrous polyimide is 5% by mass, preferably 10% by mass. % Is desirable.
  • the upper limit is preferably 90% by mass, more preferably 80% by mass. If the compounding power of the fibrous polyimide is less than ⁇ % by mass, the thermal dimensional stability and strength may be insufficient. If it exceeds 90% by mass, the handling of the composite paper in the manufacturing process may become poor. The strength and dielectric properties may be insufficient.
  • a known wet papermaking apparatus exemplified by a circular net wet paper machine, a short net wet paper machine, a short net inclined wet paper machine, or a long net inclined wet paper machine is used for the mixed slurry.
  • the papermaking process is used to form a paper-like material (papermaking product), and the resulting papermaking product is combined by a drying process in which the papermaking machine is dried by a hot-air, contact, or radiation dryer attached to the papermaking machine. Obtain a paper.
  • a pressurizing step of pressing the papermaking material in the thickness direction with a pair of metal rolls is provided, the fibrous polytetrafluoroethylene is pressed against the fibrous polyimide, and the shape retention It is possible to obtain a composite paper-like material excellent in quality. Pressing may be performed at room temperature, and the pressing force may be generally about 110 kgf / cm. However, if possible, the pressure may be applied while heating. This pressing step may be performed between the paper making step and the drying step, or may be performed after the drying step.
  • paper had a basis weight of the paper-like material after drying, 50- 1500 g / m 2, preferably carried out so that Do a 100- 1200g / m 2. If the basis weight is smaller than that value, the operability in the papermaking method tends to decrease, and it tends to be difficult to manufacture stably. On the other hand, if the basis weight is too large, there is a tendency that production problems such as a decrease in drainage and insufficient drying in the papermaking process become remarkable.
  • heating and pressurization is exemplified by a roll-shaped press device such as a calender roll composed of a pair of metal rolls or a double belt press device capable of performing a heat press between a pair of opposed metal-made belts.
  • a roll-shaped press device such as a calender roll composed of a pair of metal rolls or a double belt press device capable of performing a heat press between a pair of opposed metal-made belts.
  • the fibrous powder of polytetrafluoroethylene power is converted into a fibrous polyimide. Fused to Obtained, ie, a densified composite paper. It is needless to say that the heating and pressurizing step may be performed continuously after the papermaking step, or may be performed on a separate line.
  • the heating temperature at the time of heating and pressing is preferably performed at a temperature equal to or higher than the melting point of polytetrafluoroethylene. If the final heating temperature is lower than the melting point, the effect of improving the mechanical strength characteristics tends to be hardly obtained. On the other hand, this indicates that the binding force can be maintained within a certain range even if a heat treatment below the melting point is performed until the final heating step. It is possible to get.
  • the heating temperature is preferably lower than the temperature at which the polyimide forming the fibrous polyimide melts. If the polyimide is a crystalline polyimide, the heating temperature is lower than the melting point of the polyimide, and furthermore, the melting point. Preferably, the temperature is at least 10 ° C lower.
  • heating temperature exceeds the melting point of the polyimide, the fibrous polyimide is extremely melted, and the compounding effect of the fibrous polyimide tends not to be exerted.
  • a heating temperature of about 340-380 ° C may be used.
  • the melting point referred to here is a value measured using a differential scanning calorimeter (Pykinl DSC, manufactured by Pakinkin Elma).
  • the pressurizing pressure at the time of heating and pressurizing is not particularly limited, but the higher the pressurizing pressure, the lower the porosity of the obtained composite paper-like material tends to be.
  • a pressurized pressure of about 0.05-lOMPa can be adopted.
  • the composite paper-like material of the present invention when the composite paper-like material of the present invention is laminated into two or more layers and pressed under caloric heat, the resulting composite paper-like material becomes an integrated and densified paper-like material having no interlayer. By changing the density, a densified paper having a desired thickness can be obtained. At this time, by applying the composite paper-like material of the present invention having a different composition ratio to each layer, a composite paper-like material in which the composition of polyimide and polytetrafluoroethylene changes in the thickness direction can be obtained.
  • the thickness of the paper-like material obtained in this manner is determined by the number of layers and the degree of densification when pressed under heating in the papermaking process and under heating. From the viewpoint of uniformity, those having a thickness of 20 to 2000 ⁇ m are more preferable, and more preferably 25 to 800 / zm. If the value is below the lower limit, the operability during the process tends to be low and the yield tends to decrease.If the value exceeds the upper limit, the dimensions tend to be non-uniform in the pressurizing step under heating and the force tends not to be obtained. is there.
  • the apparent density is preferably 0.3-2.1 g / cm 3. If it falls below this range, the strength tends not to be excellent, and if it exceeds this range, it tends to be practically impossible to produce.
  • additives can be added to the composite paper-like material of the present invention as long as the object of the present invention is not impaired. That is, it is exemplified by other organic or inorganic short fibers or pulp-like materials such as aramide, polyester, polyetherimide, polyetheretherketone, polysulfone, polyphenylenesulfide, polyketone, carbon, glass, and alumina. Staple fiber or pulp-like material, furthermore, titanium oxide, zinc oxide, magnesium oxide, alumina, silica, aluminum nitride, silicon nitride, boron nitride, silicon carbide, carbon black, graphite, my power, disulfide, etc. Various particulate matter (filaments) which also has a strong property such as molybdenum may be blended.
  • thermoplastic resin such as a polyimide resin or a precursor thereof or a thermosetting resin such as an epoxy resin
  • a thermoplastic resin such as a polyimide resin or a precursor thereof or a thermosetting resin such as an epoxy resin
  • the polyimide resin or its precursor, epoxy resin, or the like is usually applied, sprayed, or impregnated in the form of an emulsion or a solution.
  • One or more of these additives may be blended as long as the object of the present invention is not impaired, but the total weight of the additives when dried is 30% by mass relative to the total mass of the composite paper of the present invention. % Is preferred from the viewpoint of maintaining various characteristics.
  • the composite paper-like material of the present invention can be in a form in which a fibrous powder having polytetrafluoroethylene force is fused to fibrous polyimide by the heating and pressurizing step as described above,
  • the paper-like material thus densified has excellent strength. Further, even when the layers are laminated in the heating and pressing step, no phenomenon of destruction between the layers during use is observed, and the layer has substantially the same strength level as that of a single layer.
  • the strength is determined by the compounding ratio of the fibrous powder and the fibrous polyimide and the degree of densification or the amount of the third component to be compounded, for example, specified in JIS-P8113.
  • the average breaking length obtained by the measurement method used is usually in the range of 0.5 to 7 km.
  • the composite paper-like material of the present invention is excellent in dimensional stability under high-temperature use with little dimensional change due to heat.
  • the average coefficient of linear expansion at 20-230 ° C is 20-30 m / m '° C in both the production direction and the width direction of the composite paper. (Value measured according to JIS-K7197). If the above average linear expansion coefficient is out of the range of 20-30 m / m '° C, the dimensional change under high temperature use tends to be large, making it unsuitable for use.
  • the composite paper has a low water absorption.
  • the water absorption capacity is not more than the water absorption capacity calculated by the following formula. Is a preferred embodiment of the present invention.
  • W represents the mass of the nonwoven fabric after moisture absorption, and W represents the mass of the nonwoven fabric at the time of absolute drying.
  • polyimide has a relatively high water absorbency due to its imide group's strong and polar properties.
  • a dimensional change and a change in electrical characteristics at the time of water absorption are known. Tended to be a problem.
  • Conventional amorphous polyimide fiber strength The size of the water absorption has also been a problem in the paper-like material formed, but in the present invention, a crystalline polyimide fiber having a small water absorption is used.
  • a fibrous powder that also has polytetrafluoroethylene power as the main constituent it has become possible to obtain a high-performance composite paper with low water absorption unlike before.
  • the polyimide represented by the above formula (1) or the chemical formula (2) has crystallinity and a small proportion of imide groups in the chemical structure. It is preferable to use a fibrous polyimide made of these properties.
  • the dielectric constant is low for both polyimide and polytetrafluoroethylene, and is excellent in insulation performance. Since the paper-like material of the present invention does not contain the third component serving as a binder, similar properties can be expected from the composite paper-like material. Its electrical characteristics are measured by a cylindrical dielectric constant evaluation device (a resonator manufactured by Kanto Electronics Co., Ltd.) and a network manufactured by Agilent Technologies, Inc. And an analyzer) at room temperature at 2.45 GHz.
  • the composite paper of the present invention varies depending on the content ratio of the fibrous powder composed of fibrous polyimide and polytetrafluoroethylene and the apparent density of the composite paper, but usually the densified composite paper. In the case of a solid, the dielectric constant obtained by the above measurement method is in the range of 2.0-3.1. Further, the dielectric loss obtained by the same measurement 1 X 10- 5 - in the range of 3 X 10- 3
  • both polyimide and polytetrafluoroethylene are excellent in chemical resistance and oxidation resistance, and the composite paper of the present invention can be excellent in these properties.
  • Chemical resistance can be evaluated by weight change, color, or shape change after immersing the composite paper in the drug to be tested and leaving it to stand at room temperature for one week. Shows a large change in weight and dimensional change, and a slight increase in weight when swelling Force Generally used alcohol solvents, ether solvents, ketone solvents, ester solvents, amide solvents, etc. It has been found that it has excellent properties with respect to many of the non-polar solvents such as polar solvents and hydrocarbon solvents, and various oils and fuels.
  • the oxidation resistance is determined by immersing the composite paper-like material in a so-called Fenton reagent in which a very small amount of an activator such as iron sulfate ( ⁇ ) is mixed with hydrogen peroxide and the degree of deterioration due to the oxidation. Can be evaluated by observing, for example, almost no deterioration was observed even when immersed at 70 ° C. for 48 hours.
  • an activator such as iron sulfate ( ⁇ )
  • the composite paper-like material of the present invention has a form in which polyimide having excellent abrasion resistance and polytetrafluoroethylene having excellent lubricity are uniformly mixed, the composite paper-like material has excellent friction and wear characteristics.
  • a thrust friction and wear tester can be used to evaluate at room temperature and without lubrication. It shows good wear resistance even when slid for 48 hours at a dynamic speed, and does not damage the mating material.
  • the composite paper-like material of the present invention has the above-mentioned properties, a seamless belt, a stamping mold, a guard tube, a flame-retardant paper material which is required to have strong strength, heat resistance and thermal dimensional stability. It is the best material for, valve seat, solder pattern and cushioning material. In addition, since it has excellent electrical characteristics, it can be applied to a circuit board. In addition, Since it has excellent chemical properties and abrasion resistance, it is also an excellent material for filters, abrasive paper materials, electrolyte membranes and seal materials.
  • Aurum (trade name; manufactured by Mitsui Iridaku) was used as the polyimide resin. After the polyimide resin is melted at 415 ° C, a strand obtained by extruding from a 0.2 mm diameter die is drawn at a speed of 700 m / min, cooled and solidified, wound around a paper tube, and wound with a fiber diameter of about 23. m of fibrous polyimide was obtained. Next, the fibrous polyimide was stretched about three times in a heater at 350 ° C. to obtain a fibrous polyimide having a fiber diameter of about 12 m. The crystal orientation of the obtained fibrous polyimide was advanced by stretching. In this example, short fibers obtained by cutting this fibrous polyimide into a length of 5 mm were used. The short fiber had a crystallinity of 26% and a melting point of 389 ° C.
  • a polymer obtained by emulsion polymerization of 100 mol% of tetrafluoroethylene was used as a raw material polytetrafluoroethylene powder (average particle size: 570 m).
  • the obtained raw material polytetrafluoroethylene powder was fed into a hopper by a feeder.
  • the polytetrafluoroethylene powder was supplied to a stretching tank equipped with rotating blades (tank inner diameter: 160 mm ⁇ ) while being appropriately assisted by dry air, and stretched. At this time, the lower surface of the stretching tank was partly meshed, and only those smaller than a certain size were allowed to exit the stretching tank. This was treated with a standard classification sieve to remove powder having a size of 5 ⁇ m or less to obtain a raw material polytetrafluoroethylene fibrous powder.
  • Example 1 3.2 parts by mass of polytetrafluoroethylene fibrous powder is added to water in which 0.1 parts by mass of polyoxyethylene alkyl ether is added to 1000 parts by mass of water, and the mixture is stirred.
  • This slurry was further diluted with water to a slurry concentration of 0.02% by mass, and supplied to a short net inclined continuous paper machine to continuously obtain a paper product.
  • the obtained paper has a moisture content of about
  • the paper was supplied to a conveyor-type hot air dryer attached to a paper machine and dried to obtain a composite paper having a water content of almost 0% by mass.
  • the obtained composite paper-like material is obtained by compressing polytetrafluoroethylene fibrous powder to fibrous polyimide, exhibits strength, has good shape retention, and has fibrous polyimide. And polytetrafluoroethylene fibrous powder were uniformly dispersed and blended.
  • the paper-like material obtained through this step is referred to as composite paper-like material A.
  • the composite paper A obtained by the wet papermaking method was preheated at 240 ° C. for 2 minutes under no pressure using a continuous belt press (manufactured by Sandvik), and then subjected to a pressure of 25 N / mm. The mixture was heated at 350 ° C. for 5 minutes under pressure, and then rapidly cooled to 50 ° C. while maintaining the pressure to obtain a densified composite paper continuously.
  • the polytetrafluoroethylene fibrous powder was melted and fused to the surface of the polyimide short fiber, and the surface was smooth and had a dense structure.
  • the densified paper obtained through this step is referred to as composite paper B.
  • the obtained paper-like composite B had a basis weight of 256 g / m 2 and a thickness of 154 ⁇ m.
  • the average linear expansion coefficient, breaking length, water absorption, and dielectric constant were measured. Table 1 summarizes the above results.
  • the thickness was measured by the method of averaging the 50 value obtained by measuring at intervals of 100cm 2 (10 X 10cm) Diary point at digital thickness meter.
  • the breaking length was measured using a universal testing machine (manufactured by Intesco Corporation) in accordance with JIS-P8113.
  • the average coefficient of linear expansion was measured according to JIS-K7197 using a TMA measuring device (manufactured by TA Instruments; TMA2940).
  • the water absorption was measured according to the above formula I.
  • the measurement of the dielectric constant was performed by a method using the above-mentioned cylindrical dielectric constant evaluation device. Note that the measurement sample was obtained by laminating the composite paper-like material A into a dense body with a thickness of 1.4 mm according to the procedure for preparing the composite paper-like material B, and cutting this into a 1.4 mm width. A 1.4 mm square rod was used as a sample.
  • a composite paper B was obtained in the same manner as in Example 1 except that the compounding ratio of the fibrous polyimide and the polytetrafluoroethylene fibrous powder was set to Table 1.
  • Table 1 summarizes the physical properties of the obtained composite paper.
  • Paper-like material A having polyimide short fiber strength was produced in the same manner as in Example 1 except that 4 parts by mass of polyimide short fiber was added without blending the polytetrafluoroethylene fibrous powder.
  • the paper-like material of Comparative Example 1 was prepared by blending polytetrafluoroethylene fibrous powder, and the fibers were not pressed together and did not retain the paper-like form. Paper A could not be obtained.
  • a paper B having a polytetrafluoroethylene fibrous powder strength was obtained in the same manner as in Example 1 except that 4 parts by mass of polytetrafluoroethylene fibrous powder was added without blending the polyimide short fiber. .
  • Table 1 summarizes the physical properties of the obtained paper-like material B.
  • a composite paper-like material A was prepared in the same manner as in Example 1 except that polytetrafluoroethylene short fibers (trade name: Toyofuron, manufactured by Toray Fine Chemical Co., Ltd.) were used instead of the polytetrafluoroethylene fibrous powder. Was made.
  • the polytetrafluoroethylene short fibers used in this comparative example are;
  • the composite paper-like material B obtained in Example 2 was cut into a length of 100 mm and a width of 10 mm and used as a sample.
  • the sample was immersed in an oxidizing agent solution obtained by dissolving 20 ppm of iron sulfate (II) in a 30% by mass aqueous solution of hydrogen peroxide, and kept at 70 ° C. for 80 hours. After that, the sample was taken out, washed with water, dried, and the breaking length was measured.
  • a composite paper was prepared in the same manner as in Example 2 except that an aramide fiber (trade name: Twaron; manufactured by Nippon Aramide Co.) having a fiber diameter of about 15 m and an average fiber length of 3 ⁇ 4 mm was used instead of the polyimide short fiber.
  • Form B was obtained.
  • the obtained composite paper had a basis weight of 296 g / m 2 , a thickness of 295 ⁇ m, and a breaking length of 1.9 km.
  • the obtained composite paper-like substance B was evaluated for acid resistance in the same manner as in Example 6, and found to be 63%, which was inferior to the acid resistance.
  • the composite paper-like material A of Example 1 was cut into 500 ⁇ 500 mm and two sheets were laminated, and one of the heating devices was used! Then, it was heated to 350 ° C. under a pressure of 3 MPa using a press having a press plate, and heated at 350 ° C. for 15 minutes to obtain a densified composite paper.
  • the density of the obtained composite paper was 1.60 g / m 2 , and the thickness was 322 ⁇ m.
  • a ring-shaped cross section of 25 mm in outer diameter and 20 mm in inner diameter was obtained by using a thrust friction and abrasion tester (manufactured by Toyo Boldwin Co., Ltd .; EMFIII-E) as a measurement sample.
  • a sliding test was performed using a jig made of carbon steel S45C with the sliding surface as a mating material.
  • the surface roughness of the sliding surface of the mating material was Ra 0.5a, and the measurement was performed without lubrication.
  • the sample was rubbed at room temperature for 20 hours at a peripheral speed of 100 m / min and a caro pressure of 0.49 MPa, and the wear amount and friction coefficient of the sample were measured.
  • the amount of wear was evaluated based on the weight change of the sample before and after the test.
  • the coefficient of friction was calculated by reading the stress (torque) generated in the rotation direction with respect to the sample at the time of measurement using a load cell attached to the device. Table 2 shows the obtained results.
  • a composite paper A was obtained in the same manner as in Example 1 except that an aramide fiber (trade name: Twaron; manufactured by Nippon Aramid) having a fiber diameter of about 15 m and an average fiber length of 3 ⁇ 4 mm was used instead of the polyimide short fiber. . Further, two sheets were laminated in the same manner as in Example 7 to obtain a composite paper. The density of the obtained composite paper was 1.45 g / m 2 , and the thickness was 353 m. The obtained composite paper was subjected to a sliding test in the same manner as in Example 7. Table 2 shows the obtained results.
  • an aramide fiber trade name: Twaron; manufactured by Nippon Aramid
  • Example 7 1.60 322 0.9 0.20
  • Comparative Example 5 1.45 353 3.1 0.23 Table 2 clearly shows that the composite paper of the present invention has excellent slidability and can be used under high sliding conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Paper (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is a composite papyraceous material composed of a fibrous polytetrafluoroethylene (in particular, a fibrous powder thereof) and a fibrous polyimide.

Description

明 細 書  Specification
複合紙状物  Composite paper
技術分野  Technical field
[0001] 本発明は、繊維状ポリイミドと繊維状ポリテトラフルォロエチレン (PTFE)力もなる複 合紙状物に関する。  [0001] The present invention relates to a fibrous polyimide and fibrous polytetrafluoroethylene (PTFE) composite paper which also has a force.
背景技術  Background art
[0002] 高性能なエンジニアリングプラスチック力もなる繊維を構成成分とする紙状物は、種 々提案されており、基板材料などの電子機器の部材や、耐熱性構造材などとしての 活用が期待されている。中でも、フッ素榭脂からなる繊維を構成成分とするものは、 誘電特性や摩擦特性などの点で有利であり、様々な検討が行われてきた。  [0002] Various paper-like materials containing fibers that also have the properties of high-performance engineering plastics have been proposed, and are expected to be used as members of electronic devices such as substrate materials and heat-resistant structural materials. I have. Among them, those containing a fiber made of fluororesin as a component are advantageous in terms of dielectric properties and friction properties, and various studies have been made.
[0003] 例えば、特許文献 1には、フッ素榭脂系繊維と耐熱性エンジニアリングプラスチック 繊維とからなる紙状物が提案されて 、る。  [0003] For example, Patent Document 1 proposes a paper-like material including a fluororesin-based fiber and a heat-resistant engineering plastic fiber.
[0004] 特許文献 2には、絶縁繊維とフッ素榭脂繊維との混成物からなる繊維基材に含浸 剤を含浸させたシート状絶縁体が提案されて 、る。  [0004] Patent Document 2 proposes a sheet-shaped insulator in which an impregnating agent is impregnated into a fiber base made of a hybrid of insulating fibers and fluororesin fibers.
[0005] 特許文献 3には、フッ素榭脂繊維と耐熱性エンジニアリングプラスチック繊維とから なる混抄不織布にシアン酸エステル系榭脂を組み合わせた低誘電率プリント配線板 材料が提案されている。  [0005] Patent Document 3 proposes a low dielectric constant printed wiring board material in which a mixed nonwoven fabric made of a fluorine resin fiber and a heat-resistant engineering plastic fiber is combined with a cyanate ester resin.
[0006] 特許文献 4には、摺動部材としてポリテトラフルォロエチレン榭脂にポリイミド繊維が 配合されたフッ素系榭脂組成物が提案されて ヽる。  [0006] Patent Document 4 proposes, as a sliding member, a fluorine-based resin composition in which a polyimide fiber is blended with polytetrafluoroethylene resin.
[0007] 一方ポリイミドからなる繊維を構成成分とする紙状物に関しては、例えば特許文献 5 に熱硬化性バインダーによりポリイミド繊維間を結合した積層板用基材不織布が提案 されている。  [0007] On the other hand, with regard to paper-like materials containing a fiber composed of polyimide as a constituent component, for example, Patent Document 5 proposes a substrate nonwoven fabric for a laminate in which polyimide fibers are bonded with a thermosetting binder.
[0008] しかしながら、特許文献 1一 3で採用されるフッ素榭脂繊維は実質的にチョップドスト ランドの形態であり、同一重量で比較すると繊維径がパルプ状物と比較して大幅に 大きぐ複合する場合その均質性に課題が残る。また、そのフッ素榭脂繊維の製法か らみると、適用するフッ素繊維は十分に焼成されたものであり、繊維同士を結着させ る結着材 (バインダー)としての機能は不十分である。湿式抄造法でシート状物を得 ようとすると、何らかのバインダー成分を配合せざるを得ない。多くの場合、バインダ 一成分が、得られる紙状物の特性を阻害する要因となっている。 [0008] However, the fluororesin fibers used in Patent Documents 13 to 13 are substantially in the form of chopped strands, and the fiber diameter is significantly larger than that of pulp-like material when compared under the same weight. If so, the problem remains in its homogeneity. Also, from the viewpoint of the production method of the fluorine resin fiber, the fluorine fiber to be applied is sufficiently baked, and its function as a binder for binding the fibers is insufficient. Sheet-like material obtained by wet papermaking If so, some sort of binder component must be added. In many cases, one component of the binder is a factor that impairs the properties of the resulting paper.
[0009] 特許文献 4においては、ポリテトラフルォロエチレン榭脂の形態等は、明示されてお らず不明ではあるが、その製法力 推察すると、薄い紙状の複合成形物を得ることは 実質的に不可能であると想定される。  [0009] In Patent Document 4, although the form of polytetrafluoroethylene resin and the like are not specified or unknown, it is not possible to obtain a thin paper-like composite molded article by estimating the manufacturing method. It is assumed to be virtually impossible.
[0010] また、特許文献 5では、ポリイミド繊維のバインダーとして熱硬化性榭脂を採用して いる。上記したようにかかる熱硬化性榭脂により、ポリイミド繊維が本来有する特性が 阻害された紙状物しか得ることが出来な!/、。 [0010] Further, in Patent Document 5, a thermosetting resin is employed as a binder for the polyimide fiber. As described above, such a thermosetting resin makes it possible to obtain only paper-like materials in which the inherent characteristics of polyimide fibers are impaired! /.
特許文献 1:特開平 10-212686号公報  Patent Document 1: JP-A-10-212686
特許文献 2:特開平 11-144529号公報  Patent Document 2: JP-A-11-144529
特許文献 3:特許 2762544号公報  Patent Document 3: Japanese Patent No. 2762544
特許文献 4:特許 2983900号公報  Patent Document 4: Japanese Patent No. 2983900
特許文献 5 :特開平 11-200210号公報  Patent Document 5: JP-A-11-200210
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 本発明は、上記従来技術の背景に鑑みなされたものであって、強度、熱寸法安定 性、耐薬品性、耐摩耗性に優れ、かつ吸水性、誘電特性において従来にない小さな 値を持つ、エンジニアリングプラスチック繊維力 なる紙状物を提供することを目的と する。 [0011] The present invention has been made in view of the background of the related art, and has excellent strength, thermal dimensional stability, chemical resistance, and abrasion resistance, and has an unprecedented small value in water absorption and dielectric properties. It is an object of the present invention to provide an engineering plastic fibrous paper having the following properties.
[0012] すなわち本発明は、共に繊維状のポリイミドとポリテトラフルォロエチレン力 なる複 合紙状物に関する。  [0012] That is, the present invention relates to a composite paper-like material comprising both fibrous polyimide and polytetrafluoroethylene.
[0013] 繊維状のポリイミドは、特に限定されるものではな 、が、熱可塑性ポリイミド榭脂を溶 融紡糸法等により繊維化したものを一定長にカットした繊維、好ましくは短繊維、特に 結晶性を有する繊維が好ま U、。  [0013] The fibrous polyimide is not particularly limited, but is a fiber obtained by cutting a thermoplastic polyimide resin into a fiber by a melt spinning method or the like and cutting it to a fixed length, preferably a short fiber, particularly a crystal. U, which is preferably a fiber having properties.
[0014] 熱可塑性ポリイミドは、ガラス転移温度が 230°C以上であり、融点が 400°C以下であ ることが好ましい。ガラス転移点が 230°Cより低いと耐熱性に乏しくなるので好ましくな い。一方、融点が 400°Cを超えると、熱による加工が困難となるため好ましくない。  [0014] The thermoplastic polyimide preferably has a glass transition temperature of 230 ° C or higher and a melting point of 400 ° C or lower. If the glass transition point is lower than 230 ° C, the heat resistance becomes poor, which is not preferable. On the other hand, if the melting point exceeds 400 ° C., processing by heat becomes difficult, which is not preferable.
[0015] 繊維状ポリイミドとしては、得られる複合紙状物の均一性を考慮すると、短繊維であ り、その平均繊維長は 1一 15mm、好ましくは 2— 8mmであり、平均繊維径は 3— 30 m 、好ましくは 4一 20 μ mであることが望ましい。 [0015] Fibrous polyimide is a short fiber in consideration of the uniformity of the obtained composite paper. The average fiber length is 1 to 15 mm, preferably 2 to 8 mm, and the average fiber diameter is 3 to 30 m, preferably 4 to 20 μm.
[0016] 結晶性を有する熱可塑性ポリイミド榭脂から溶融紡糸法等で得られる原糸は、適切 な条件で加熱延伸することにより、結晶部の配向を高めることができる。結晶部が高 度に配向した繊維状ポリイミドは、加熱、冷却時の寸法変化が小さぐ紙状物にした 場合の熱寸法安定性に寄与し、また、吸水性が小さいという特長を有しているので、 吸水による寸法変化や電気的特性の変化が極めて少ない。「結晶性を有する繊維」 とは、繊維状ポリイミドの有する結晶化度で表し、 X線回折法により測定した結晶化度 が 15%以上であることが好ましぐより好ましくは 20%以上、特に好ましくは 25%以上 であることを意味している。結晶化度が 15%未満では、熱寸法変化や吸水性が大きく なる傾向にあるので好ましくな 、。  [0016] The orientation of the crystal part of a raw yarn obtained from a thermoplastic polyimide resin having crystallinity by a melt spinning method or the like can be increased by heating and drawing under appropriate conditions. Fibrous polyimide with highly oriented crystal parts contributes to the thermal dimensional stability of paper-like materials with small dimensional changes during heating and cooling, and has the characteristics of low water absorption. Therefore, dimensional changes and changes in electrical characteristics due to water absorption are extremely small. `` Fiber having crystallinity '' is represented by the crystallinity of the fibrous polyimide, the crystallinity measured by X-ray diffraction method is preferably 15% or more, more preferably 20% or more, particularly It preferably means 25% or more. If the crystallinity is less than 15%, the thermal dimensional change and water absorption tend to increase, which is not preferable.
[0017] ポリイミドとしては、下記一般式(1)で表される化学構造を繰り返し単位として有する ポリイミドカ 上記特性を満たし得るものとして好ま 、。  [0017] The polyimide is preferably a polyimide having the chemical structure represented by the following general formula (1) as a repeating unit and capable of satisfying the above characteristics.
[化 1]  [Chemical 1]
Figure imgf000004_0001
Figure imgf000004_0001
(式中、 Rは単環式芳香族、縮合多環式芳香族、芳香環が直接もしくは架橋員により 結合された非縮合多環式芳香族から選ばれる 4価の芳香族残基を示す。また、 Xは 直接結合、炭化水素基、カルボ-ル基、エーテル基、チォ基もしくはスルホ -ル基か ら選ばれる 2価の残基を示し、 Y 素原子、アルキル基、アルコキシル基もし  (In the formula, R represents a tetravalent aromatic residue selected from a monocyclic aromatic, a condensed polycyclic aromatic, and a non-condensed polycyclic aromatic having an aromatic ring bonded directly or via a bridge member. X represents a divalent residue selected from a direct bond, a hydrocarbon group, a carboyl group, an ether group, a thio group or a sulfol group, and may be a Y atom, an alkyl group, an alkoxyl group.
1一 Yは水  1 Y is water
4  Four
くはハロゲン基から選ばれる 1価の残基を示す。 )  Or a monovalent residue selected from halogen groups. )
これらポリイミドのうち上記一般式(1)において Rは短環式芳香族であるものがより好 ましぐ Xは直接結合であるものがより好ましぐ Y がより  Among these polyimides, in the above general formula (1), R is more preferably a short cyclic aromatic compound. X is more preferably a direct bond.
1一 Yは水素原子であるもの  1- Y is a hydrogen atom
4  Four
好ましい。  preferable.
[0018] このようなポリイミドの特に好ましい具体例としては、下記化学構造式 (2)を繰り返し 単位として有するポリイミドが挙げられる。 [化 2] [0018] A particularly preferred specific example of such a polyimide is a polyimide having the following chemical structural formula (2) as a repeating unit. [Chemical 2]
Figure imgf000005_0001
Figure imgf000005_0001
(式中、好ましくは nは 5— 200である)  (Wherein n is preferably 5-200)
このようなポリイミドは、例えば、商標名オーラム(三井ィ匕学社製)として入手可能で める。  Such a polyimide is available, for example, under the trade name Aurum (manufactured by Mitsui Iridakusha).
[0019] ポリイミドを繊維化する際には、色々な化学構造を有するポリイミドをブレンドしても よぐまた、本発明で使用するポリイミドおよび紙状物に要求される特性を損なわない 範囲で、ポリエステル類、ポリオレフイン類、ポリアミド類、ポリフエ-レンサルファイド、 ポリエーテルイミド、ポリエーテルエーテルケトン、フッ素榭脂などの他のポリマー類を 配合してもよぐさらには酸ィ匕チタン、酸化亜鉛、酸化マグネシウム、アルミナ、シリカ 、窒化アルミ、窒化珪素、窒化ホウ素、炭化珪素、カーボンブラック、グラフアイト、マ イカなどの無機系フイラ一を配合してもよ 、。  [0019] When the polyimide is made into a fiber, a polyimide having various chemical structures may be blended. In addition, as long as the properties required for the polyimide and the paper-like material used in the present invention are not impaired, polyester may be used. , Polyolefins, polyamides, polyphenylene sulfide, polyether imide, polyether ether ketone, and other polymers such as fluororesin, and titanium oxide, zinc oxide, and magnesium oxide. An inorganic filler such as alumina, silica, aluminum nitride, silicon nitride, boron nitride, silicon carbide, carbon black, graphite and mica may be blended.
[0020] 本発明で使用する繊維状ポリテトラフルォロエチレンは、繊維状粉体である。ポリテ トラフルォロエチレン力 なる繊維状粉体は、例えば、ポリテトラフルォロエチレン粉 体を叩解して得られるものが好ましぐ不均一な髭状の分岐を有する一方で全体とし て繊維形態を有し、かつ目視レベルにおいては粉としての挙動を示すものである。こ の繊維状粉体は、平均繊維長 5— 2000 m、および平均形態係数が 5以上であること が好まし!/、。この範囲を下回れば抄紙工程にぉ 、て濾水性が悪く生産性が低下する だけでなぐ通気度の低い紙し力得られない。これを上回れば紙の表面状態が悪くな り、薄く均一な紙が得難い。また、窒素吸着法により測定される比表面積力 4.0m2/g以 上であると好ましい。これを下回れば結着機能の面で劣り、得られる紙状物の強度が 低下してしまう。なお、平均形態係数とは、繊維幅で繊維長を割って得られるもので める。 [0020] The fibrous polytetrafluoroethylene used in the present invention is a fibrous powder. Polytetrafluoroethylene fibrous powder is, for example, one obtained by beating polytetrafluoroethylene powder, which has non-uniform beard-like branches which are preferable, while having a fiber form as a whole. And at the visual level show behavior as a powder. The fibrous powder preferably has an average fiber length of 5 to 2000 m and an average view factor of 5 or more! If the ratio is below this range, in the paper making process, the drainage is poor and the productivity is lowered, but the paper strength with low air permeability cannot be obtained. If it exceeds this, the surface condition of the paper deteriorates, and it is difficult to obtain thin and uniform paper. Further, the specific surface area force measured by a nitrogen adsorption method is preferably 4.0 m 2 / g or more. If it is lower than this, the binding function is inferior, and the strength of the obtained paper-like material is reduced. The average form factor is obtained by dividing the fiber length by the fiber width.
[0021] 上記ポリテトラフルォロエチレンは、テトラフルォロエチレン単独重合体であってもよ いし、テトラフルォロエチレンと、テトラフルォロエチレン以外の微量モノマーとの共重 合体であって、非溶融カ卩ェ性であるもの(以下、変性ポリテトラフルォロエチレンという 。)であってもよい。 [0021] The polytetrafluoroethylene may be a tetrafluoroethylene homopolymer, or a copolymer of tetrafluoroethylene and a trace monomer other than tetrafluoroethylene. It may be unified and non-melting (hereinafter, referred to as modified polytetrafluoroethylene).
上記微量モノマーとしては、例えば、パーフルォロォレフイン、パーフルォロ(アルキ ルビ-ルエーテル)、環式のフッ素化された単量体、パーフルォロアルキルエチレン 等が挙げられる。  Examples of the trace monomer include perfluoroolefin, perfluoro (alkyl vinyl ether), a cyclic fluorinated monomer, perfluoroalkylethylene, and the like.
上記パーフルォロォレフインとしては、へキサフルォロプロピレン等が挙げられ、ノ 一フルォロ(アルキルビュルエーテル)としては、パーフルォロ(メチルビ-ルエーテ ル)、パーフルォロ(プロピルビュルエーテル)等が挙げられ、環式のフッ素化された 単量体としては、フルォロジォキソール等が挙げられ、パーフルォロアルキルェチレ ンとしては、パーフルォロメチルエチレン等が挙げられる。  Examples of the above perfluoroolefin include hexafluoropropylene and the like, and examples of monofluoro (alkylbutyl ether) include perfluoro (methylbiruether), perfluoro (propylbutylether) and the like. Examples of the cyclic fluorinated monomer include fluorodixole and the like, and examples of perfluoroalkylethylene include perfluoromethylethylene.
[0022] 繊維状ポリテトラフルォロエチレンは、毎分 5°Cの昇温速度で為される示差走査型 熱量計 (DSC)分析にぉ 、て得られる溶融吸熱曲線の低温側のピーク面積比率が、 全ピーク面積の 88.5%以上である部分焼成済のものであることが好ま 、。抄造した 場合に表面が滑らかで、通気性に優れる紙状物を得ることができる。上限は好ましく は 99.0%である。これらの範囲を下回れば平滑な紙を得ることが困難で、上回れば紙 としてのまとまりを欠き著しくその操作性が損なわれる。  [0022] Fibrous polytetrafluoroethylene has a low-temperature-side peak area in a melting endothermic curve obtained by differential scanning calorimetry (DSC) analysis performed at a heating rate of 5 ° C per minute. It is preferred that the ratio is 88.5% or more of the total peak area and that the partially-baked one is used. When the paper is formed, a paper-like material having a smooth surface and excellent air permeability can be obtained. The upper limit is preferably 99.0%. If the ratio is below these ranges, it is difficult to obtain smooth paper. If the ratio is above these ranges, the unity of the paper is lost, and the operability is significantly impaired.
[0023] 示差走査型熱量計で示されるピーク面積は、その熱量と正比例し、また一般に許 容される範囲においてその分子の数に比例するものであると言える。したがって解き ほぐされたポリテトラフルォロエチレン分子の比率は、示差走査型熱量計から得られ る低温側ピークの面積と全ピーク面積とのピーク比によって評価することが可能であ る。ダブルピークあるいは明確なショルダーを持つシングルピークは、数学的には 3 つ以上の複数の正規分布による合成曲線として理解することも可能である力 2つの 頂点を持つことから 2つの正規分布あるいはそれに類する分布曲線として分離するこ とは十分妥当であると考えられ、本発明の検討においても妥当な結果が得られてい る。これは部分的に解きほぐされた分子も、評価上は解きほぐしに必要な熱量の小さ V、ものとして、解きほぐされて 、な 、分子の正規分布に含まれて!/、るものと理解すれ ばよい。  It can be said that the peak area indicated by the differential scanning calorimeter is directly proportional to the calorific value, and is proportional to the number of molecules in a generally accepted range. Therefore, the ratio of unraveled polytetrafluoroethylene molecules can be evaluated by the peak ratio between the area of the low-temperature side peak obtained from the differential scanning calorimeter and the total peak area. A double peak or a single peak with well-defined shoulders can be mathematically understood as a composite curve of three or more multiple normal distributions. Separation as a distribution curve is considered to be sufficiently valid, and reasonable results have been obtained in the study of the present invention. This means that even partially disentangled molecules are disassembled as small V, which is the calorific value required for disentanglement in evaluation, and are included in the normal distribution of molecules! / Just fine.
[0024] 前記複合吸収ピークは、通常は Gaussian-Lorentian型の曲線を用いて近似すること で分離することが可能である。 Gaussian型ある!/、は Lorentian型の曲線の!/、ずれかの みを用いる場合に比べて乖離の度合いが少ない特徴があり、市販される分析機器に 附属の計算ソフトウェアの殆どでもこの手法が用いられて 、る。本件にぉ 、ては原料 となるポリテトラフルォロエチレン粉体に見られる見掛け上の二つの頂点を初期値と して与え、これに制限を与えず近似を行うことで、基本的なピーク位置を決定した。こ れによって得られた基本ピーク位置は例えば本発明の実施例 1で使用する繊維状ポ リテトラフルォロエチレンの場合、 339.14°Cと 343.01°Cであり、これを基準として線形' 半値幅は制限なし、ピーク温度のみ初期値から 0.6— 0.7°C以下に制限して近似を行 うことで、複合曲線を二つに分離し、そのピーク面積を求めた。上記検討では値の収 束に要する時間の短縮のために原料粉体の情報を利用したが、直接的に繊維状粉 体の融解曲線力も求めることもできる。 [0024] The complex absorption peak is usually approximated using a Gaussian-Lorentian type curve. Can be separated by The Gaussian type! / Has a feature that the degree of deviation is smaller than when using only the Lorentian type curve! /, And only the deviation is used.Therefore, this method can be applied to most calculation software attached to commercially available analytical instruments. Used. In this case, the two peaks apparent in the polytetrafluoroethylene powder used as the raw material are given as initial values, and approximation is performed without any restriction to obtain the basic peaks. The position was determined. For example, in the case of the fibrous polytetrafluoroethylene used in Example 1 of the present invention, the basic peak positions thus obtained are 339.14 ° C. and 343.01 ° C. By limiting the peak temperature to 0.6-0.7 ° C or less from the initial value, approximation was performed to separate the composite curve into two, and the peak area was determined. In the above study, the information on the raw material powder was used to shorten the time required for convergence of the values, but the melting curve force of the fibrous powder can also be obtained directly.
[0025] 本発明の複合紙状物は上記繊維状ポリイミドとポリテトラフルォロエチレンを紙状に 複合ィ匕して得られるものである。その複合ィ匕方法は特に限定されるものではな 、が、 抄紙法を適用して混抄することにより容易に生産性良く得ることができる。薄く均一な 地合いの複合紙状物を得る観点から、特に抄紙法の中でも、湿式抄紙法を適用する ことが好ましい。 [0025] The composite paper-like material of the present invention is obtained by combining the above fibrous polyimide and polytetrafluoroethylene into a paper-like composite. The composite method is not particularly limited, but can be easily obtained with high productivity by mixing and applying a papermaking method. From the viewpoint of obtaining a thin and uniform formation of a composite paper-like material, it is particularly preferable to use a wet papermaking method among the papermaking methods.
[0026] 湿式抄紙法は、少なくとも繊維状ポリテトラフルォロエチレンを水に分散させる分散 工程、繊維状ポリイミドの混合工程、抄紙工程および乾燥工程力もなる。  [0026] The wet papermaking method includes at least a dispersion step of dispersing fibrous polytetrafluoroethylene in water, a mixing step of fibrous polyimide, a papermaking step, and a drying step.
[0027] 分散工程では、水に繊維状ポリテトラフルォロエチレンを加え、攪拌装置を備えたパ ルパーやリファイナーなどを用いて解繊することにより繊維状ポリテトラフルォロェチ レンのスラリーを得る。通常、ポリテトラフルォロエチレンは水に対する接触角が大きく 、水中に均一に分散させることが困難であるので、予め分散剤を繊維あるいは繊維 状粉体に付与しておくか、分散させる水に配合しておくことが好ましい。適用する分 散剤は、特に限定されないが、ノ-オン系のポリオキシエチレンアルキルエーテル類 が少量の添加で分散効果を発揮する点で好ま ヽ。  [0027] In the dispersing step, fibrous polytetrafluoroethylene slurry is added to water and fibrillated using a parper or a refiner equipped with a stirrer to thereby disperse the fibrous polytetrafluoroethylene slurry. obtain. Usually, polytetrafluoroethylene has a large contact angle with water and is difficult to disperse uniformly in water. Therefore, a dispersing agent is added to fibers or fibrous powder in advance, or It is preferable to mix them. The dispersant to be applied is not particularly limited, but is preferred in that non-ionic polyoxyethylene alkyl ethers exhibit a dispersing effect when added in a small amount.
[0028] 繊維状ポリイミドを混合する混合工程では、分散工程で得られた繊維状ポリテトラフ ルォロエチレンのスラリーに繊維状ポリイミドをカ卩え、分散工程同様の処理を行い混 合スラリーとする。通常、繊維状ポリイミドは分散剤を適用しなくても上記スラリーへ均 一〖こ分散させることができる。 [0028] In the mixing step of mixing the fibrous polyimide, the fibrous polyimide is added to the slurry of the fibrous polytetrafluoroethylene obtained in the dispersing step, and the same treatment as in the dispersing step is performed to obtain a mixed slurry. Normally, fibrous polyimide is evenly applied to the above slurry without using a dispersant. It can be dispersed all over.
[0029] 繊維状ポリイミドとポリテトラフルォロエチレンの配合比は、使用目的に応じて適宜 調整すればよいが、繊維状ポリイミドの配合比の下限値は、 5質量%、好ましくは 10質 量%とすることが望ましい。また、上限値としては、 90質量%、より好ましくは 80質量% とすることが望ましい。繊維状ポリイミドの配合比力 ^質量%未満であると、熱寸法安 定性や強度面が不十分になることがあり、 90質量%を超えると、製造工程における複 合紙状物の取扱い性や強度面また誘電特性が不十分となる場合がある。  [0029] The mixing ratio of the fibrous polyimide and polytetrafluoroethylene may be appropriately adjusted according to the purpose of use, but the lower limit of the mixing ratio of the fibrous polyimide is 5% by mass, preferably 10% by mass. % Is desirable. The upper limit is preferably 90% by mass, more preferably 80% by mass. If the compounding power of the fibrous polyimide is less than ^% by mass, the thermal dimensional stability and strength may be insufficient. If it exceeds 90% by mass, the handling of the composite paper in the manufacturing process may become poor. The strength and dielectric properties may be insufficient.
[0030] 次に、混合スラリーを円網式湿式抄紙機、短網式湿式抄紙機、短網傾斜式湿式抄 紙機もしくは長網傾斜式湿式抄紙機等に例示される公知の湿式抄造装置を用いて 抄造する抄紙工程を経て紙状物 (抄紙物)に成形し、得られた抄紙物を、抄紙機に 併設された熱風式、接触式もしくは輻射式の乾燥機で乾燥する乾燥工程により複合 紙状物を得る。この抄紙法において、 1対の金属製ロール力 なる-ップロールにて 抄紙物を厚み方向に加圧する加圧工程を設けると繊維状ポリテトラフルォロエチレン が繊維状ポリイミドに圧着し、形態保持性に優れた複合紙状物とすることが出来る。 加圧は室温で行えばよぐ加圧力は通常 1一 10kgf/cm程度で良いが、もちろん、可能 であれば加熱下に加圧しても良い。この加圧工程は、抄紙工程と乾燥工程の間に行 つてもよいし、乾燥工程後におこなってもよい。  [0030] Next, a known wet papermaking apparatus exemplified by a circular net wet paper machine, a short net wet paper machine, a short net inclined wet paper machine, or a long net inclined wet paper machine is used for the mixed slurry. The papermaking process is used to form a paper-like material (papermaking product), and the resulting papermaking product is combined by a drying process in which the papermaking machine is dried by a hot-air, contact, or radiation dryer attached to the papermaking machine. Obtain a paper. In this papermaking method, if a pressurizing step of pressing the papermaking material in the thickness direction with a pair of metal rolls is provided, the fibrous polytetrafluoroethylene is pressed against the fibrous polyimide, and the shape retention It is possible to obtain a composite paper-like material excellent in quality. Pressing may be performed at room temperature, and the pressing force may be generally about 110 kgf / cm. However, if possible, the pressure may be applied while heating. This pressing step may be performed between the paper making step and the drying step, or may be performed after the drying step.
[0031] 抄紙は、乾燥後の紙状物の坪量が、 50— 1500g/m2、好ましくは 100— 1200g/m2とな るように行う。坪量がその値より小さいと、抄紙法における操作性が低下し安定して製 造することが困難となる傾向にある。また、坪量が大きすぎると、抄紙工程における濾 水の低下や乾燥が不十分になるといった製造上の問題が顕著になる傾向にある。 [0031] paper had a basis weight of the paper-like material after drying, 50- 1500 g / m 2, preferably carried out so that Do a 100- 1200g / m 2. If the basis weight is smaller than that value, the operability in the papermaking method tends to decrease, and it tends to be difficult to manufacture stably. On the other hand, if the basis weight is too large, there is a tendency that production problems such as a decrease in drainage and insufficient drying in the papermaking process become remarkable.
[0032] 次に、 1対の金属ロールからなるカレンダーロール等ロール状プレス装置もしくは対 向する一対の金属製等のベルト間で加熱プレスの行えるダブルベルトプレス装置な どに例示される加熱加圧装置を用いて、上記にて得られる複合紙状物を厚み方向に 加熱下加圧することで、ポリテトラフルォロエチレン力 なる繊維状粉体が繊維状ポリ イミドに融着されて複合紙状物の強度が著しく増大する。すなわち、上記湿式抄紙法 により複合紙状物を得る工程に加え、得られた紙状物を加熱下加圧する工程を行う ことにより、ポリテトラフルォロエチレン力 なる繊維状粉体が繊維状ポリイミドに融着 された、すなわち緻密化された複合紙状物を得る。なお、加熱加圧工程は、抄造ェ 程に続 、て連続で行っても良 、し、別ラインにして行っても良 、のは言うまでもな 、。 [0032] Next, heating and pressurization is exemplified by a roll-shaped press device such as a calender roll composed of a pair of metal rolls or a double belt press device capable of performing a heat press between a pair of opposed metal-made belts. Using a device, the composite paper obtained above is heated and pressed in the thickness direction, so that the fibrous powder of polytetrafluoroethylene is fused to the fibrous polyimide to form the composite paper. The strength of the object is significantly increased. That is, in addition to the step of obtaining a composite paper-like material by the above-mentioned wet papermaking method, by performing a step of pressurizing the obtained paper-like material under heating, the fibrous powder of polytetrafluoroethylene power is converted into a fibrous polyimide. Fused to Obtained, ie, a densified composite paper. It is needless to say that the heating and pressurizing step may be performed continuously after the papermaking step, or may be performed on a separate line.
[0033] 加熱加圧する際の加熱温度としては、ポリテトラフルォロエチレンの融点以上の温 度で行うことが好ましい。最終の加熱温度が当該融点未満の温度であると、機械的 強度特性を向上させる効果が得難い傾向にある。これは一方で最終の加熱工程まで は融点未満の熱処理を施しても結着力がある一定範囲にぉ ヽて維持され得る事を 示しており、こうした中間体を用いて積層物などの加工品を得ることは可能である。ま た、加熱温度としては、繊維状ポリイミドを形成するポリイミドが溶融する温度以下で あることが好ましぐそのポリイミドが結晶性ポリイミドの場合には、そのポリイミドの融 点以下の温度、さらには融点より 10°C以上低い温度であることが好ましい。加熱温度 がポリイミドの融点を超えると、繊維状ポリイミドが極度に融解し、繊維状ポリイミドの 配合効果を発揮できなくなる傾向にあるので好ましくな 、。通常 340— 380°C程度の 加熱温度を採用すれば良い。なお、ここでいう融点とは、示差走査熱量分析装置 (パ 一キンエルマ一社製、 Pyrisl DSC)を用いて測定される値をいう。  [0033] The heating temperature at the time of heating and pressing is preferably performed at a temperature equal to or higher than the melting point of polytetrafluoroethylene. If the final heating temperature is lower than the melting point, the effect of improving the mechanical strength characteristics tends to be hardly obtained. On the other hand, this indicates that the binding force can be maintained within a certain range even if a heat treatment below the melting point is performed until the final heating step. It is possible to get. The heating temperature is preferably lower than the temperature at which the polyimide forming the fibrous polyimide melts.If the polyimide is a crystalline polyimide, the heating temperature is lower than the melting point of the polyimide, and furthermore, the melting point. Preferably, the temperature is at least 10 ° C lower. If the heating temperature exceeds the melting point of the polyimide, the fibrous polyimide is extremely melted, and the compounding effect of the fibrous polyimide tends not to be exerted. Usually, a heating temperature of about 340-380 ° C may be used. The melting point referred to here is a value measured using a differential scanning calorimeter (Pykinl DSC, manufactured by Pakinkin Elma).
[0034] また、加熱加圧する際の加圧圧力としては、特に限定されるものではないが、加圧 圧力が高いほど得られる複合紙状物の空孔率が減少する傾向にあり、緻密化される 傾向にあり、例えば 0.05— lOMPa程度の加圧圧力を採用することができる。  [0034] Further, the pressurizing pressure at the time of heating and pressurizing is not particularly limited, but the higher the pressurizing pressure, the lower the porosity of the obtained composite paper-like material tends to be. For example, a pressurized pressure of about 0.05-lOMPa can be adopted.
[0035] さらに上記した工程において、本発明の複合紙状物を 2層以上に積層したものをカロ 熱下加圧すると、層間の無い一体の緻密化された紙状物となるので、積層枚数を変 えることによって所望の厚みの緻密化された紙状物を得ることができる。この際、各層 に組成比の異なる本発明の複合紙状物を適用することにより、ポリイミドとポリテトラフ ルォロエチレンの組成が厚み方向に変化している複合紙状物を得ることも出来る。  [0035] Further, in the above-described process, when the composite paper-like material of the present invention is laminated into two or more layers and pressed under caloric heat, the resulting composite paper-like material becomes an integrated and densified paper-like material having no interlayer. By changing the density, a densified paper having a desired thickness can be obtained. At this time, by applying the composite paper-like material of the present invention having a different composition ratio to each layer, a composite paper-like material in which the composition of polyimide and polytetrafluoroethylene changes in the thickness direction can be obtained.
[0036] このようにして得られる紙状物の厚みは、抄紙工程の坪量および加熱下加圧する 場合、積層枚数や緻密化の度合によって決定されるが、使用する用途や生産効率 および物性の均一性の面から 20— 2000 μ mのものが好ましぐより好ましくは 25— 800 /z mである。下限を下回れば、工程中における操作性が低く歩留まりが低下してしま う傾向にあり、また、上限を上回れば、加熱下の加圧工程において寸法の不均一な ものし力得られない傾向にある。また、見かけ密度は 0.3— 2.1g/cm3であることが好ま しぐこの範囲を下回れば強度に優れたものとならない傾向にあり、この範囲を上回る ものは実質的に製造ができな 、傾向にある。 [0036] The thickness of the paper-like material obtained in this manner is determined by the number of layers and the degree of densification when pressed under heating in the papermaking process and under heating. From the viewpoint of uniformity, those having a thickness of 20 to 2000 μm are more preferable, and more preferably 25 to 800 / zm. If the value is below the lower limit, the operability during the process tends to be low and the yield tends to decrease.If the value exceeds the upper limit, the dimensions tend to be non-uniform in the pressurizing step under heating and the force tends not to be obtained. is there. The apparent density is preferably 0.3-2.1 g / cm 3. If it falls below this range, the strength tends not to be excellent, and if it exceeds this range, it tends to be practically impossible to produce.
[0037] 本発明の複合紙状物には、本発明の目的を損なわない範囲で種々添加物を配合 することができる。すなわち、他の有機物もしくは無機物カゝらなる短繊維やパルプ状 物、例えばァラミド、ポリエステル、ポリエーテルイミド、ポリエーテルエーテルケトン、 ポリスルフォン、ポリフエ-レンスルフイド、ポリケトン、カーボン、ガラス、アルミナ等に 例示される短繊維もしくはパルプ状物、さらには、酸化チタン、酸化亜鉛、酸化マグ ネシゥム、アルミナ、シリカ、窒化アルミ、窒化珪素、窒化ホウ素、炭化珪素、カーボン ブラック、グラフアイト、マイ力、二硫ィ匕モリブデンなど力もなる種々の粒子状物(フイラ 一)が配合されていてもよい。  [0037] Various additives can be added to the composite paper-like material of the present invention as long as the object of the present invention is not impaired. That is, it is exemplified by other organic or inorganic short fibers or pulp-like materials such as aramide, polyester, polyetherimide, polyetheretherketone, polysulfone, polyphenylenesulfide, polyketone, carbon, glass, and alumina. Staple fiber or pulp-like material, furthermore, titanium oxide, zinc oxide, magnesium oxide, alumina, silica, aluminum nitride, silicon nitride, boron nitride, silicon carbide, carbon black, graphite, my power, disulfide, etc. Various particulate matter (filaments) which also has a strong property such as molybdenum may be blended.
[0038] また、強度を付与する等の目的で、 目的に応じて熱可塑性榭脂、例えばポリイミド 榭脂もしくはその前駆体や熱硬化性榭脂、例えばエポキシ榭脂等が含まれていても よい。この場合のポリイミド榭脂もしくはその前駆体やエポキシ榭脂等は、通常エマル ジョンや溶液の状態で塗布、スプレーもしくは含浸される。  [0038] Further, for the purpose of imparting strength or the like, a thermoplastic resin such as a polyimide resin or a precursor thereof or a thermosetting resin such as an epoxy resin may be contained according to the purpose. . In this case, the polyimide resin or its precursor, epoxy resin, or the like is usually applied, sprayed, or impregnated in the form of an emulsion or a solution.
[0039] これらの添加物は、本発明の目的を損なわない範囲で 1種もしくは数種配合しても よいが、その乾燥時の合計質量が本発明の複合紙の全質量に対して 30質量%以下 にとどめることが、種々特性を維持する観点から好ましい。  [0039] One or more of these additives may be blended as long as the object of the present invention is not impaired, but the total weight of the additives when dried is 30% by mass relative to the total mass of the composite paper of the present invention. % Is preferred from the viewpoint of maintaining various characteristics.
[0040] 本発明の複合紙状物は、上記したように加熱加圧工程によりポリテトラフルォロェチ レン力もなる繊維状粉体が繊維状ポリイミドに融着された形態とすることができ、この ように緻密化された紙状物は強度に優れたものとなる。また、加熱加圧工程において 積層しても、使用時に層間から破壊される現象は見られず、実質的に 1層のものと同 程度の強度レベルを有するものとなる。強度は、ポリテトラフルォロエチレン力もなる 繊維状粉体と繊維状ポリイミドの配合比や緻密化の度合 \もしくは配合する第三成 分の量などにより決定される力 例えば、 JIS-P8113に規定される測定方法により得ら れる平均裂断長で示すと、通常 0.5— 7kmの範囲にある。  [0040] The composite paper-like material of the present invention can be in a form in which a fibrous powder having polytetrafluoroethylene force is fused to fibrous polyimide by the heating and pressurizing step as described above, The paper-like material thus densified has excellent strength. Further, even when the layers are laminated in the heating and pressing step, no phenomenon of destruction between the layers during use is observed, and the layer has substantially the same strength level as that of a single layer. The strength is determined by the compounding ratio of the fibrous powder and the fibrous polyimide and the degree of densification or the amount of the third component to be compounded, for example, specified in JIS-P8113. The average breaking length obtained by the measurement method used is usually in the range of 0.5 to 7 km.
[0041] 本発明の複合紙状物は、熱による寸法変化が少なぐ高温使用下での寸法安定性 に優れたものである。寸法安定性としては、 20— 230°Cにおける平均線膨張係数が、 複合紙状物の製造方向および巾方向のいずれについても 20— 30 m/m'°C ( JIS-K7197に従って測定された値)の範囲内にあることが好ましい。上記の平均線膨 張係数が 20— 30 m/m'°Cの範囲を外れると、高温使用下での寸法変化が大きく なり、使用に適さなくなる傾向にある。 [0041] The composite paper-like material of the present invention is excellent in dimensional stability under high-temperature use with little dimensional change due to heat. As the dimensional stability, the average coefficient of linear expansion at 20-230 ° C is 20-30 m / m '° C in both the production direction and the width direction of the composite paper. (Value measured according to JIS-K7197). If the above average linear expansion coefficient is out of the range of 20-30 m / m '° C, the dimensional change under high temperature use tends to be large, making it unsuitable for use.
[0042] 本発明においては、上記したような繊維状ポリイミドとポリテトラフルォロエチレンが ランダムに分散して構成された紙状物とすることにより、寸法安定性とその方向性の ノランスに優れた紙状物を得ることができる。 [0042] In the present invention, by providing a paper-like material constituted by randomly dispersing the above-mentioned fibrous polyimide and polytetrafluoroethylene, the dimensional stability and the directional tolerance are excellent. Paper can be obtained.
[0043] 複合紙状物は、吸水性が小さいことが好ましぐ 25°C、相対湿度 60%の環境下に 24 時間放置したときの下記計算式で算出される吸水率力 以下であることは、本発 明の好ましい態様である。 [0043] It is preferable that the composite paper has a low water absorption. When the composite paper is left in an environment of 25 ° C and a relative humidity of 60% for 24 hours, the water absorption capacity is not more than the water absorption capacity calculated by the following formula. Is a preferred embodiment of the present invention.
[0044] [数 1] 吸水率 = W ~ Wo X 100 (o/o) (式 υ [Equation 1] Water absorption = W ~ Wo X 100 (o / o) (Equation υ
Wo  Wo
(式中、 Wは吸湿後の不織布の質量を示し、 Wは絶乾時の不織布の質量を示す。 ) (In the formula, W represents the mass of the nonwoven fabric after moisture absorption, and W represents the mass of the nonwoven fabric at the time of absolute drying.)
0  0
[0045] 一般にポリイミドは、そのイミド基に強 、極性を有することから吸水性が比較的高!、 ことが知られており、成形品とした場合、吸水時の寸法変化や電気的特性の変化が 問題となる傾向にあった。従来の非晶性ポリイミド繊維力 構成された紙状物にぉ 、 ても同様に吸水性の大きさが問題となっていたが、本発明においては、吸水性の小 さな結晶性ポリイミド繊維とポリテトラフルォロエチレン力もなる繊維状粉体を主たる構 成成分とすることにより、従来になく吸水性の低い高性能な複合紙状物とすることが 可能になった。特に、前記したィ匕学式(1)または化学式 (2)で表されるポリイミドは、結 晶性を有しかつ、化学構造に占めるイミド基の割合が小さいことから、ポリイミドの中 でも特に吸水性力 、さぐこの観点力 これらからなる繊維状ポリイミドを使用すること が好ましい。  [0045] In general, it is known that polyimide has a relatively high water absorbency due to its imide group's strong and polar properties. In the case of a molded product, a dimensional change and a change in electrical characteristics at the time of water absorption are known. Tended to be a problem. Conventional amorphous polyimide fiber strength The size of the water absorption has also been a problem in the paper-like material formed, but in the present invention, a crystalline polyimide fiber having a small water absorption is used. By using a fibrous powder that also has polytetrafluoroethylene power as the main constituent, it has become possible to obtain a high-performance composite paper with low water absorption unlike before. In particular, the polyimide represented by the above formula (1) or the chemical formula (2) has crystallinity and a small proportion of imide groups in the chemical structure. It is preferable to use a fibrous polyimide made of these properties.
[0046] 誘電率はポリイミド、ポリテトラフルォロエチレン共に低い値を示し絶縁性能に優れ る。本発明の紙状物は、バインダーとなる第三成分を含まないことからその複合紙状 物にも同様の特性を期待することが出来る。その電気特性は円筒型誘電率評価装 置 ((株)関東電子応用開発製の共振器と、アジレントテクノロジ一社製のネットワーク アナライザとから成る)を用いて、室温下、 2.45GHzにて測定することで評価すること が出来る。本発明の複合紙状物では、繊維状ポリイミドとポリテトラフルォロエチレン からなる繊維状粉体の含有比や複合紙状物の見かけ密度に応じて変化するが、通 常緻密化した複合紙状物の場合、上記測定法により得られる誘電率は 2.0— 3.1の範 囲となる。また、同様の測定により得られる誘電損失は 1 X 10— 5— 3 X 10— 3の範囲となる The dielectric constant is low for both polyimide and polytetrafluoroethylene, and is excellent in insulation performance. Since the paper-like material of the present invention does not contain the third component serving as a binder, similar properties can be expected from the composite paper-like material. Its electrical characteristics are measured by a cylindrical dielectric constant evaluation device (a resonator manufactured by Kanto Electronics Co., Ltd.) and a network manufactured by Agilent Technologies, Inc. And an analyzer) at room temperature at 2.45 GHz. The composite paper of the present invention varies depending on the content ratio of the fibrous powder composed of fibrous polyimide and polytetrafluoroethylene and the apparent density of the composite paper, but usually the densified composite paper. In the case of a solid, the dielectric constant obtained by the above measurement method is in the range of 2.0-3.1. Further, the dielectric loss obtained by the same measurement 1 X 10- 5 - in the range of 3 X 10- 3
[0047] 耐薬品性や耐酸化性もポリイミド、ポリテトラフルォロエチレン共に優れることが知ら れており、本発明の複合紙状物はこれら特性に優れたものとすることができる。耐薬 品性は、試験する薬剤に複合紙状物を浸漬し室温下にて 1週間放置した後の重量 変化や色、形状の変化で評価することができ、例えば極度に薬剤に侵された場合は 大きな重量変化や寸法変化が見られ、膨潤する場合には若干の重量増が見られる 力 一般的に用いられるアルコール系溶剤、エーテル系溶剤、ケトン系溶剤、エステ ル系溶剤、アミド系溶剤などに例示される極性溶剤や炭化水素系溶剤、種々オイル や燃料などの非極性溶剤の多くに対して優れた特性を持つことが判明して 、る。また 、耐酸化性は、過酸ィ匕水素水にごく少量の硫酸鉄 (ΠΙ)などの活性化剤を配合したい わゆる Fenton試薬に複合紙状物を浸漬し、その酸ィ匕による劣化具合を見ることにより 評価することができるが、例えば、 70°Cで 48時間浸漬しても殆ど劣化は確認できな ヽ ものであった。 It is known that both polyimide and polytetrafluoroethylene are excellent in chemical resistance and oxidation resistance, and the composite paper of the present invention can be excellent in these properties. Chemical resistance can be evaluated by weight change, color, or shape change after immersing the composite paper in the drug to be tested and leaving it to stand at room temperature for one week. Shows a large change in weight and dimensional change, and a slight increase in weight when swelling Force Generally used alcohol solvents, ether solvents, ketone solvents, ester solvents, amide solvents, etc. It has been found that it has excellent properties with respect to many of the non-polar solvents such as polar solvents and hydrocarbon solvents, and various oils and fuels. Further, the oxidation resistance is determined by immersing the composite paper-like material in a so-called Fenton reagent in which a very small amount of an activator such as iron sulfate (ΠΙ) is mixed with hydrogen peroxide and the degree of deterioration due to the oxidation. Can be evaluated by observing, for example, almost no deterioration was observed even when immersed at 70 ° C. for 48 hours.
[0048] 本発明の複合紙状物は耐磨耗性に優れたポリイミドと潤滑性に優れたポリテトラフ ルォロエチレンが均一に配合された形態を有するので、摩擦磨耗特性に優れたもの となる。例えばスラスト摩擦磨耗試験機 (東洋ボールドウィン製; EMFIII-E)にて、室 温下、無潤滑下にて評価することができ、相手材として SUS材ゃアルミ材を使用して 加圧下一定の摺動速度で、 48時間摺動させても良好な耐摩耗性を示し、また、相手 材を傷めるということもない。  [0048] Since the composite paper-like material of the present invention has a form in which polyimide having excellent abrasion resistance and polytetrafluoroethylene having excellent lubricity are uniformly mixed, the composite paper-like material has excellent friction and wear characteristics. For example, a thrust friction and wear tester (Toyo Baldwin; EMFIII-E) can be used to evaluate at room temperature and without lubrication. It shows good wear resistance even when slid for 48 hours at a dynamic speed, and does not damage the mating material.
[0049] 本発明の複合紙状物は上記したような特性を兼ね備えているので、強力、耐熱性 や熱寸法安定性の要求されるシームレスベルト、スタンビングモールド、ガードチュー ブ、難燃紙材、バルブシート、半田型紙や緩衝材に最適な素材である。またこれに加 えて電気的特性にも優れているので、回路基板にも適用することができる。さらに、耐 薬品性ゃ耐磨耗性にも優れているので、フィルター、研磨用紙材、電解質膜ゃシー ル材としても優れた素材である。 [0049] Since the composite paper-like material of the present invention has the above-mentioned properties, a seamless belt, a stamping mold, a guard tube, a flame-retardant paper material which is required to have strong strength, heat resistance and thermal dimensional stability. It is the best material for, valve seat, solder pattern and cushioning material. In addition, since it has excellent electrical characteristics, it can be applied to a circuit board. In addition, Since it has excellent chemical properties and abrasion resistance, it is also an excellent material for filters, abrasive paper materials, electrolyte membranes and seal materials.
[0050] 以下、本発明を実施例を用いて説明する。  Hereinafter, the present invention will be described with reference to examples.
[0051] (繊維状ポリイミドの製造例)  (Example of Production of Fibrous Polyimide)
ポリイミド榭脂としてオーラム (商標名;三井ィ匕学製)を用いた。該ポリイミド榭脂を 415°Cに溶融させた後に 0.2mm径の口金より押し出して得られるストランドを 700m/min の速度で引き取り、冷却固化させた後、紙管に巻き取り、繊維径がおおよそ 23 mの 繊維状ポリイミドを得た。次に、この繊維状ポリイミドを 350°Cのヒーター中で約 3倍に 延伸させて、繊維径がおおよそ 12 mの繊維状ポリイミドを得た。得られた繊維状ポリ イミドは延伸により結晶配向が進んだものであった。本実施例では、この繊維状ポリイ ミドを 5mm長にカットした短繊維を使用した。なお、この短繊維の結晶化度は 26%、 融点は 389°Cであった。  Aurum (trade name; manufactured by Mitsui Iridaku) was used as the polyimide resin. After the polyimide resin is melted at 415 ° C, a strand obtained by extruding from a 0.2 mm diameter die is drawn at a speed of 700 m / min, cooled and solidified, wound around a paper tube, and wound with a fiber diameter of about 23. m of fibrous polyimide was obtained. Next, the fibrous polyimide was stretched about three times in a heater at 350 ° C. to obtain a fibrous polyimide having a fiber diameter of about 12 m. The crystal orientation of the obtained fibrous polyimide was advanced by stretching. In this example, short fibers obtained by cutting this fibrous polyimide into a length of 5 mm were used. The short fiber had a crystallinity of 26% and a melting point of 389 ° C.
[0052] (ポリテトラフルォロエチレン繊維状粉体の製造例)  (Example of Producing Polytetrafluoroethylene Fibrous Powder)
テトラフルォロエチレン 100モル%を乳化重合させた重合体を、原料ポリテトラフル ォロエチレン粉体 (平均粒径 570 m)とした。得られた原料ポリテトラフルォロェチレ ン粉体を供給機によりホッパーに送り込んだ。つぎに、前記ポリテトラフルォロェチレ ン粉体を適宜乾燥空気により補助しながら回転翼を備えた延伸処理槽 (槽内径 160mm φ )に供給し延伸処理した。この際、延伸処理槽の下面は一部メッシュとなつ ており、一定サイズよりも小さなもののみ延伸処理槽から出るようにした。これを標準 分級ふるいにて処理することで 5 μ m以下の粉体を除去することにより原料ポリテトラ フルォロエチレン繊維状粉体を得た。  A polymer obtained by emulsion polymerization of 100 mol% of tetrafluoroethylene was used as a raw material polytetrafluoroethylene powder (average particle size: 570 m). The obtained raw material polytetrafluoroethylene powder was fed into a hopper by a feeder. Next, the polytetrafluoroethylene powder was supplied to a stretching tank equipped with rotating blades (tank inner diameter: 160 mmφ) while being appropriately assisted by dry air, and stretched. At this time, the lower surface of the stretching tank was partly meshed, and only those smaller than a certain size were allowed to exit the stretching tank. This was treated with a standard classification sieve to remove powder having a size of 5 μm or less to obtain a raw material polytetrafluoroethylene fibrous powder.
[0053] 得られたポリテトラフルォロエチレン繊維状粉体は、  [0053] The obtained polytetrafluoroethylene fibrous powder is
平均繊維長: 1.5 m  Average fiber length: 1.5 m
平均形態係数: 40  Average view factor: 40
比表面積: 6.38m2/g Specific surface area: 6.38m 2 / g
低温側のピーク面積比率: 92.3%  Low temperature side peak area ratio: 92.3%
であった。  Met.
[0054] (実施例 1) 水 1000質量部に対して 0.1質量部のポリオキシエチレンアルキルエーテルを配合し た水にポリテトラフルォロエチレン繊維状粉体 3.2質量部を加え、攪拌装置 (パルパ一(Example 1) 3.2 parts by mass of polytetrafluoroethylene fibrous powder is added to water in which 0.1 parts by mass of polyoxyethylene alkyl ether is added to 1000 parts by mass of water, and the mixture is stirred.
)を用 、て攪拌して均一に分散させた。 ) And uniformly dispersed by stirring.
[0055] 次 、で、 5mm長さにカットされたポリイミド短繊維 0.8質量部を系内にカ卩えて攪拌し、 均一に各原料が混合分散されたスラリーを得た。 Next, 0.8 parts by mass of the polyimide short fiber cut into a length of 5 mm was added into the system and stirred to obtain a slurry in which each raw material was uniformly mixed and dispersed.
[0056] このスラリーを、さらに水でスラリー濃度 0.02質量%になるように希釈して短網傾斜 式連続抄紙機に供給し、連続で抄紙物を得た。なお、得られた抄紙物は含水率が約[0056] This slurry was further diluted with water to a slurry concentration of 0.02% by mass, and supplied to a short net inclined continuous paper machine to continuously obtain a paper product. The obtained paper has a moisture content of about
30質量%であった。 It was 30% by mass.
[0057] 次いで、 1対のステンレス製ロールからなる-ップロールにて線圧 0.1N/mmの加圧 処理を室温下連続で行!、、ポリテトラフルォロエチレン繊維状粉体とポリイミド短繊維 を圧着させた。  Next, a pressure treatment of a linear pressure of 0.1 N / mm was continuously performed at room temperature with a pair of stainless steel rolls, and a polytetrafluoroethylene fibrous powder and a polyimide short fiber were processed. Was crimped.
[0058] さらに、抄紙機に付設されたコンベア式熱風乾燥機に供給して乾燥を行い、ほぼ含 水率が 0質量%の複合紙状物とした。  Further, the paper was supplied to a conveyor-type hot air dryer attached to a paper machine and dried to obtain a composite paper having a water content of almost 0% by mass.
[0059] 得られた複合紙状物は繊維状ポリイミドにポリテトラフルォロエチレン繊維状粉体が 圧着されて強度を発現し、良好な形態保持性を有しており、かつ、繊維状ポリイミドと ポリテトラフルォロエチレン繊維状粉体が均一に分散配合されたものであった。この 工程を経て得られた紙状物を、複合紙状物 Aとする。  [0059] The obtained composite paper-like material is obtained by compressing polytetrafluoroethylene fibrous powder to fibrous polyimide, exhibits strength, has good shape retention, and has fibrous polyimide. And polytetrafluoroethylene fibrous powder were uniformly dispersed and blended. The paper-like material obtained through this step is referred to as composite paper-like material A.
[0060] 上記、湿式抄紙法により得られた複合紙状物 Aを、連続ベルトプレス機 (サンドビッ ク製)を用いて 240°Cで 2分間無加圧下で予熱した後、 25N/mmの圧力で加圧下 350 °Cで 5分間加熱し、次いで加圧を保持した状態で 50°Cまで急冷させて、緻密化され た複合紙状物を連続的に得た。得られた複合紙状物は、ポリテトラフルォロエチレン 繊維状粉体が溶融してポリイミド短繊維表面に融着しており、表面が平滑であり、緻 密な構造を有していた。この工程を経て得られる緻密化した紙状物を、複合紙状物 B とする。  The composite paper A obtained by the wet papermaking method was preheated at 240 ° C. for 2 minutes under no pressure using a continuous belt press (manufactured by Sandvik), and then subjected to a pressure of 25 N / mm. The mixture was heated at 350 ° C. for 5 minutes under pressure, and then rapidly cooled to 50 ° C. while maintaining the pressure to obtain a densified composite paper continuously. In the obtained composite paper-like material, the polytetrafluoroethylene fibrous powder was melted and fused to the surface of the polyimide short fiber, and the surface was smooth and had a dense structure. The densified paper obtained through this step is referred to as composite paper B.
[0061] 得られた紙状複合物 Bは、坪量 256g/m2、厚さ 154 μ mであった。また、平均線膨張 係数、裂断長、吸水率、誘電率を測定した。以上の結果を表 1にまとめた。 [0061] The obtained paper-like composite B had a basis weight of 256 g / m 2 and a thickness of 154 µm. In addition, the average linear expansion coefficient, breaking length, water absorption, and dielectric constant were measured. Table 1 summarizes the above results.
[0062] なお、厚さは、デジタル式厚み計にて 100cm2 (10 X 10cm)にっき 1点の間隔で測定 して得られた 50個の値を平均する方法により測定した。 裂断長は、万能試験機 (インテスコ社製)を用いて JIS- P8113に従い測定した。 平均線膨張係数は、 TMA測定装置 (TAインスツルメント社製; TMA2940)を用いて JIS-K7197に従って測定した。 [0062] The thickness was measured by the method of averaging the 50 value obtained by measuring at intervals of 100cm 2 (10 X 10cm) Diary point at digital thickness meter. The breaking length was measured using a universal testing machine (manufactured by Intesco Corporation) in accordance with JIS-P8113. The average coefficient of linear expansion was measured according to JIS-K7197 using a TMA measuring device (manufactured by TA Instruments; TMA2940).
吸水率は、上記式 Iに従って測定した。  The water absorption was measured according to the above formula I.
誘電率の測定は、前記した円筒型誘電率評価装置を用いた方法により行なった。 なお、測定用試料については、複合紙状物 Aを積層したものを上記複合紙状物 Bを 作製する要領にて厚さ 1.4mmの緻密体とし、これを 1.4mm幅に裁断して得られた 1.4mm角の棒状物を試料とした。  The measurement of the dielectric constant was performed by a method using the above-mentioned cylindrical dielectric constant evaluation device. Note that the measurement sample was obtained by laminating the composite paper-like material A into a dense body with a thickness of 1.4 mm according to the procedure for preparing the composite paper-like material B, and cutting this into a 1.4 mm width. A 1.4 mm square rod was used as a sample.
[0063] (実施例 2— 5) (Example 2-5)
繊維状ポリイミドとポリテトラフルォロエチレン繊維状粉体の配合比を表 1とした他は 実施例 1同様にして複合紙状物 Bを得た。得られた複合紙状物の諸物性を、表 1にま とめた。  A composite paper B was obtained in the same manner as in Example 1 except that the compounding ratio of the fibrous polyimide and the polytetrafluoroethylene fibrous powder was set to Table 1. Table 1 summarizes the physical properties of the obtained composite paper.
[0064] (比較例 1) (Comparative Example 1)
ポリテトラフルォロエチレン繊維状粉体を配合せずにポリイミド短繊維を 4質量部加 えた他は実施例 1同様にしてポリイミド短繊維力もなる紙状物 Aを抄造した。  Paper-like material A having polyimide short fiber strength was produced in the same manner as in Example 1 except that 4 parts by mass of polyimide short fiber was added without blending the polytetrafluoroethylene fibrous powder.
[0065] 比較例 1の紙状物は、ポリテトラフルォロエチレン繊維状粉体を配合して 、な 、の で繊維同士が圧着しておらず、紙状の形態を保持せず、満足な紙状物 Aを得ること ができなかった。  [0065] The paper-like material of Comparative Example 1 was prepared by blending polytetrafluoroethylene fibrous powder, and the fibers were not pressed together and did not retain the paper-like form. Paper A could not be obtained.
[0066] (比較例 2)  (Comparative Example 2)
ポリイミド短繊維を配合せずにポリテトラフルォロエチレン繊維状粉体を 4質量部加 えた他は実施例 1同様にしてポリテトラフルォロエチレン繊維状粉体力 なる紙状物 B を得た。得られた紙状物 Bの諸物性を表 1にまとめた。  A paper B having a polytetrafluoroethylene fibrous powder strength was obtained in the same manner as in Example 1 except that 4 parts by mass of polytetrafluoroethylene fibrous powder was added without blending the polyimide short fiber. . Table 1 summarizes the physical properties of the obtained paper-like material B.
[0067] (比較例 3) (Comparative Example 3)
ポリテトラフルォロエチレン繊維状粉体の代わりに、平均繊維長力 mmのポリテトラ フルォロエチレン短繊維(商標名トヨフロン、東レファインケミカル社製)を用いた他は 実施例 1同様にして複合紙状物 Aを抄造した。  A composite paper-like material A was prepared in the same manner as in Example 1 except that polytetrafluoroethylene short fibers (trade name: Toyofuron, manufactured by Toray Fine Chemical Co., Ltd.) were used instead of the polytetrafluoroethylene fibrous powder. Was made.
なお、本比較例で使用したポリテトラフルォロエチレン短繊維は;  The polytetrafluoroethylene short fibers used in this comparative example are;
平均形態係数: 250 比表面積: 0.1m2/g Average view factor: 250 Specific surface area: 0.1m 2 / g
低温側のピーク面積比率: 100%  Low temperature side peak area ratio: 100%
を有していた。  Had.
[0068] 本比較例では、ポリテトラフルォロエチレン短繊維がバインダーとして十分に機能し ないため力繊維同士が圧着せず紙状の形態を保持することが難しぐ満足な紙状物 Aを得ることができな力つた。  [0068] In this comparative example, since the polytetrafluoroethylene short fibers did not function sufficiently as a binder, the force fibers were not pressed together and it was difficult to maintain a paper-like form. I could not get the power.
[0069] [表 1]  [Table 1]
Figure imgf000016_0001
Figure imgf000016_0001
1 )繊維状ポリイミド; 2)ポリテトラフルォロエチレン  1) Fibrous polyimide; 2) Polytetrafluoroethylene
[0070] (耐酸化性の評価)  (Evaluation of oxidation resistance)
(実施例 6)  (Example 6)
実施例 2で得られた複合紙状物 Bを長さ 100mm、巾 10mmに裁断したものを試料とし て用いた。該試料を、 30質量%の過酸ィ匕水素水の水溶液に硫酸鉄 (Π)を 20ppm溶解 した酸化剤溶液に浸漬し、 70°Cに保温して 80時間放置した。その後、試料を取り出し 、水洗、乾燥後、裂断長を測定した。  The composite paper-like material B obtained in Example 2 was cut into a length of 100 mm and a width of 10 mm and used as a sample. The sample was immersed in an oxidizing agent solution obtained by dissolving 20 ppm of iron sulfate (II) in a 30% by mass aqueous solution of hydrogen peroxide, and kept at 70 ° C. for 80 hours. After that, the sample was taken out, washed with water, dried, and the breaking length was measured.
[0071] 酸化剤溶液の代わりに純水に浸漬し、同様の処理を施した試料の裂断長を 100% とし、酸化剤溶液に浸漬する処理を経た試料の裂断長の相対値をもって、耐酸化性 の指標とした。その結果、 95%と高い耐酸化性を示した。高分子型燃料電池など、高 い耐酸化性が要求される電解質膜用基材として有用である。  [0071] A sample subjected to the same treatment, immersed in pure water instead of the oxidizing agent solution, was set to have a breaking length of 100%. It was used as an index of oxidation resistance. As a result, it showed high oxidation resistance of 95%. It is useful as a substrate for electrolyte membranes requiring high oxidation resistance, such as polymer fuel cells.
[0072] (比較例 4)  (Comparative Example 4)
ポリイミド短繊維の代わりに、繊維径がおおよそ 15 m、平均繊維長力 ¾mmのァラミ ド繊維 (商標名トワロン;日本ァラミド社製)を用いた他は実施例 2同様にして複合紙 状物 Bを得た。 A composite paper was prepared in the same manner as in Example 2 except that an aramide fiber (trade name: Twaron; manufactured by Nippon Aramide Co.) having a fiber diameter of about 15 m and an average fiber length of ¾ mm was used instead of the polyimide short fiber. Form B was obtained.
[0073] 得られた複合紙状物の坪量は 296g/m2、厚さは 295 μ m、裂断長 1.9kmであった。得 られた複合紙状物 Bを実施例 6同様に耐酸ィ匕性の評価をしたところ、 63%であり、耐 酸ィ匕性に劣るものであった。 [0073] The obtained composite paper had a basis weight of 296 g / m 2 , a thickness of 295 μm, and a breaking length of 1.9 km. The obtained composite paper-like substance B was evaluated for acid resistance in the same manner as in Example 6, and found to be 63%, which was inferior to the acid resistance.
[0074] (摺動性の評価)  (Evaluation of slidability)
(実施例 7)  (Example 7)
実施例 1の複合紙状物 Aを 500 X 500mmに裁断し 2枚積層したものを、加熱装置の つ!、たプレス板を有するプレス機を用いて 3MPaの加圧下 350°Cまで加熱し、 350°Cに て 15分加圧下加熱し、緻密化された複合紙状物を得た。  The composite paper-like material A of Example 1 was cut into 500 × 500 mm and two sheets were laminated, and one of the heating devices was used! Then, it was heated to 350 ° C. under a pressure of 3 MPa using a press having a press plate, and heated at 350 ° C. for 15 minutes to obtain a densified composite paper.
[0075] 得られた複合紙状物の密度は 1.60g/m2、厚さは 322 μ mであった。得られた複合紙 状物を 30 X 30mmに裁断したものを測定試料としてスラスト摩擦磨耗試験機 (東洋ボ 一ルドウィン社製; EMFIII-E)を用いて、外径 25mm、内径 20mmのリング状断面を摺 動面とする炭素鋼 S45C製の治具を相手材とした摺動試験を行った。なお、相手材の 摺動面の表面粗さは Ra0.5aとし、無潤滑下にて測定を行った。周速度 100m/分、カロ 圧力 0.49MPaとし、常温下で 20時間摺動させた後の試料の磨耗量および摩擦係数を 測定した。磨耗量は、試験前後での試料の重量変化量をもって評価した。摩擦係数 は測定時の試料に対して回転方向に発生する応力(トルク)を装置に付属のロードセ ルにて読み取り算出した。得られた結果を表 2に示した。 [0075] The density of the obtained composite paper was 1.60 g / m 2 , and the thickness was 322 μm. A ring-shaped cross section of 25 mm in outer diameter and 20 mm in inner diameter was obtained by using a thrust friction and abrasion tester (manufactured by Toyo Boldwin Co., Ltd .; EMFIII-E) as a measurement sample. A sliding test was performed using a jig made of carbon steel S45C with the sliding surface as a mating material. The surface roughness of the sliding surface of the mating material was Ra 0.5a, and the measurement was performed without lubrication. The sample was rubbed at room temperature for 20 hours at a peripheral speed of 100 m / min and a caro pressure of 0.49 MPa, and the wear amount and friction coefficient of the sample were measured. The amount of wear was evaluated based on the weight change of the sample before and after the test. The coefficient of friction was calculated by reading the stress (torque) generated in the rotation direction with respect to the sample at the time of measurement using a load cell attached to the device. Table 2 shows the obtained results.
[0076] (比較例 5)  (Comparative Example 5)
ポリイミド短繊維の代わりに繊維径がおおよそ 15 m、平均繊維長力 ¾mmのァラミド 繊維 (商標名トワロン;日本ァラミド社製)を用いた他は実施例 1同様にして複合紙状 物 Aを得た。さらに実施例 7同様にして 2枚積層して複合紙状物を得た。得られた複 合紙状物の密度は 1.45g/m2、厚さは 353 mであった。得られた複合紙状物を実施 例 7同様にして摺動試験を行った。得られた結果を表 2に示した。 A composite paper A was obtained in the same manner as in Example 1 except that an aramide fiber (trade name: Twaron; manufactured by Nippon Aramid) having a fiber diameter of about 15 m and an average fiber length of ¾ mm was used instead of the polyimide short fiber. . Further, two sheets were laminated in the same manner as in Example 7 to obtain a composite paper. The density of the obtained composite paper was 1.45 g / m 2 , and the thickness was 353 m. The obtained composite paper was subjected to a sliding test in the same manner as in Example 7. Table 2 shows the obtained results.
[0077] [表 2] 厚み よ [0077] [Table 2] Thickness
(pm) (mg) 摩擦係数  (pm) (mg) Coefficient of friction
実施例 7 1.60 322 0.9 0.20  Example 7 1.60 322 0.9 0.20
比較例 5 1.45 353 3.1 0.23 表 2から明らかな ϋコΆよ.うに、本発明の複合紙状物は摺動性に優れ、高摺動条件下でも  Comparative Example 5 1.45 353 3.1 0.23 Table 2 clearly shows that the composite paper of the present invention has excellent slidability and can be used under high sliding conditions.
_  _
低磨耗性であり、かつ摩擦係数が小さい。 Low wear and low coefficient of friction.

Claims

請求の範囲 The scope of the claims
[1] 共に繊維状のポリテトラフルォロエチレンとポリイミドからなる複合紙状物。  [1] A composite paper comprising both fibrous polytetrafluoroethylene and polyimide.
[2] 繊維状のポリイミドが結晶性を有する繊維であることを特徴とする、請求項 1記載の 複合紙状物。 [2] The composite paper-like material according to claim 1, wherein the fibrous polyimide is a fiber having crystallinity.
[3] ポリイミドが熱可塑性であることを特徴とする、請求項 1または請求項 2記載の複合 紙状物。  [3] The composite paper-like material according to claim 1 or 2, wherein the polyimide is thermoplastic.
[4] ポリイミドが下記化学式(1)に記載されるものであることを特徴とする、請求項 1一請 求項 3 、ずれかに記載の複合紙状物;  [4] The composite paper according to claim 1, wherein the polyimide is represented by the following chemical formula (1):
[化 1]  [Chemical 1]
Figure imgf000019_0001
Figure imgf000019_0001
(式中、 Rは単環式芳香族、縮合多環式芳香族、芳香環が直接もしくは架橋員により 結合された非縮合多環式芳香族から選ばれる 4価の芳香族残基を示す。また、 Xは 直接結合、炭化水素基、カルボ-ル基、エーテル基、チォ基もしくはスルホ -ル基か ら選ばれる 2価の残基を示し、 Y 水素、アルキル基、アルコキシル基もしくは  (In the formula, R represents a tetravalent aromatic residue selected from a monocyclic aromatic, a condensed polycyclic aromatic, and a non-condensed polycyclic aromatic having an aromatic ring bonded directly or via a bridge member. X represents a divalent residue selected from a direct bond, a hydrocarbon group, a carboyl group, an ether group, a thio group or a sulfo group, and Y represents a hydrogen, an alkyl group, an alkoxyl group or
1一 Yは  1 Y
4  Four
ハロゲン基から選ばれる 1価の残基を示す。 ) 0 Indicates a monovalent residue selected from a halogen group. ) 0
[5] ポリイミドが下記化学式 (2)に示されるものであることを特徴とする、請求項 1一請求 I14V、ずれかに記載の複合紙状物;  [5] The composite paper-like material according to claim 1, wherein the polyimide is represented by the following chemical formula (2):
[化 2]  [Formula 2]
Figure imgf000019_0002
Figure imgf000019_0002
[6] 繊維状ポリイミド力 平均繊維径が 3— 30 mであり、平均繊維長力 S1— 15mmの短 繊維である、請求項 1一請求項 5いずれかに記載の複合紙状物。  6. The composite paper according to claim 5, wherein the fibrous polyimide force is a short fiber having an average fiber diameter of 3 to 30 m and an average fiber length S1 to 15 mm.
[7] 繊維状ポリテトラフルォロエチレンは、繊維状粉体であって、平均繊維長が 100— 5000 ^ m,平均形態係数が 5以上であることを特徴とする、請求項 1一 6いずれかに 記載の複合紙状物。 [7] Fibrous polytetrafluoroethylene is a fibrous powder having an average fiber length of 100 The composite paper-like material according to any one of claims 16 to 15, wherein the composite paper-like material has a size of 5000 ^ m and an average shape factor of 5 or more.
[8] ポリテトラフルォロエチレンは、示差走査型熱量計分析において毎分 5°Cの昇温速 度で測定して得られる溶融吸熱曲線の低温側のピーク面積比率力 全ピーク面積の 88.5%以上であることを特徴とする、請求項 1一 7のいずれかに記載の複合紙状物。  [8] Polytetrafluoroethylene has a peak area ratio force of 88.5% of the total peak area on the low-temperature side of the melting endotherm curve obtained by differential scanning calorimeter analysis at a heating rate of 5 ° C / min. The composite paper-like material according to any one of claims 17 to 17, wherein the content is at least 30%.
[9] 繊維状ポリテトラフルォロエチレンが繊維状ポリイミドに熱融着して 、ることを特徴と する、請求項 1一 8いずれかに記載の複合紙状物。  [9] The composite paper according to any one of claims 18 to 18, wherein the fibrous polytetrafluoroethylene is thermally fused to the fibrous polyimide.
[10] 繊維状のポリテトラフルォロエチレンとポリイミドを抄紙法により製造されることを特徴 とする、請求項 1一 8いずれかに記載の複合紙状物の製造方法。  [10] The method for producing a composite paper according to any one of claims 18 to 18, wherein fibrous polytetrafluoroethylene and polyimide are produced by a papermaking method.
[11] 抄紙法が湿式抄紙法であることを特徴とする、請求項 10記載の複合紙状物の製造 方法。  [11] The method for producing a composite paper-like material according to claim 10, wherein the papermaking method is a wet papermaking method.
[12] 抄紙法が、繊維状ポリテトラフルォロエチレンの分散工程、繊維状ポリイミドの混合 工程、抄紙工程、加圧工程および乾燥工程カゝら構成されることを特徴とする、請求項 11記載の複合紙状物の製造方法。  12. The papermaking method according to claim 11, wherein the method comprises a dispersion step of fibrous polytetrafluoroethylene, a mixing step of fibrous polyimide, a papermaking step, a pressing step and a drying step. A method for producing the composite paper-like material according to the above.
[13] 乾燥工程後に、加熱下に加圧処理工程を含むことを特徴とする、請求項 12記載の 複合紙状物の製造方法。  13. The method for producing a composite paper-like material according to claim 12, comprising a pressure treatment step under heating after the drying step.
[14] シームレスベルト、回路基板、スタンビングモールド、フィルター、ガードチューブ、 難燃紙材、半田型紙、研磨用紙材、電解質膜、摺動部材、シール部材および緩衝 材からなる群より選ばれる何れか 1つに用いられる、請求項 1一 9の複合紙状物。  [14] Any one selected from the group consisting of a seamless belt, a circuit board, a stamping mold, a filter, a guard tube, a flame-retardant paper material, a solder pattern paper, an abrasive paper material, an electrolyte membrane, a sliding member, a sealing member, and a cushioning material 10. The composite paper-like article according to claim 11, which is used for one.
PCT/JP2004/015841 2003-10-31 2004-10-26 Composite papyraceous material WO2005042839A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/577,399 US20070084575A1 (en) 2003-10-31 2004-10-26 Composite papyraceous material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-372813 2003-10-31
JP2003372813A JP2005133260A (en) 2003-10-31 2003-10-31 Composite paper-like material

Publications (1)

Publication Number Publication Date
WO2005042839A1 true WO2005042839A1 (en) 2005-05-12

Family

ID=34544051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015841 WO2005042839A1 (en) 2003-10-31 2004-10-26 Composite papyraceous material

Country Status (3)

Country Link
US (1) US20070084575A1 (en)
JP (1) JP2005133260A (en)
WO (1) WO2005042839A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080105395A1 (en) * 2005-01-18 2008-05-08 Naoyuki Shiratori Polyketone Fiber Paper, Polyketone Fiber Paper Core Material For Printed Wiring Board, And Printed Wiring Board
JP2009190212A (en) * 2008-02-13 2009-08-27 Toho Kasei Kk Insulated substrate material for high-frequency band
CN102587217B (en) * 2012-03-28 2014-04-02 天津工业大学 Preparation method of polyimide fiber insulating paper
JP2014099282A (en) * 2012-11-13 2014-05-29 Tomoegawa Paper Co Ltd Insulation sheet and method for manufacturing the same
JP6298011B2 (en) * 2015-05-28 2018-03-20 イチカワ株式会社 Wet paper transport belt
JP6580643B2 (en) * 2017-08-10 2019-09-25 東レ・デュポン株式会社 Polyimide fiber paper
WO2019188923A1 (en) * 2018-03-30 2019-10-03 東洋紡株式会社 Wet non-woven fabric for filter, filter medium for filter, and filter
CN116134075A (en) * 2020-07-31 2023-05-16 松下知识产权经营株式会社 PTFE powder, method for producing electrode, and electrode
JP7560635B1 (en) 2023-09-29 2024-10-02 ソフトバンク株式会社 Fiber structure, thermal insulation material, storage device, battery, flying vehicle, and method for producing the fiber structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259199A (en) * 1988-04-13 1990-10-19 Lenzing Ag Flame retardant and heat resistant sheetform material and manufacture thereof
JP2000154491A (en) * 1998-11-18 2000-06-06 Tomoegawa Paper Co Ltd Heat-resistant papery material and its production
JP2001032189A (en) * 1999-05-20 2001-02-06 Tomoegawa Paper Co Ltd Heat-resistant paper-like material and its production
JP2003096698A (en) * 2001-09-27 2003-04-03 Unitika Ltd Heat-resistant insulating paper sheet and method for producing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533902A (en) * 1969-05-29 1970-10-13 Grace W R & Co Impregnated fibrous materials and process of making the same
AT395178B (en) * 1990-10-15 1992-10-12 Chemiefaser Lenzing Ag FIRE-RESISTANT, HIGH-TEMPERATURE-RESISTANT POLYIMIDE FIBERS, AND METHOD FOR THE PRODUCTION THEREOF
JP2951484B2 (en) * 1991-08-28 1999-09-20 ユニチカ株式会社 Powder and granules of polyimide precursor, mixture thereof and production method thereof
CA2097994A1 (en) * 1992-06-09 1993-12-10 Isao Tomioka Polyimide precursor fibrid, polyimide paper, polyimide composite paper and polyimide composite board obtained therefrom, and process for producing the fibrid and the paper products
US5562986A (en) * 1993-04-05 1996-10-08 Daikin Industries, Ltd. Polytetrafluoroethylene fibers, polytetrafluoroethylene materials and process for preparation of the same
ATE233333T1 (en) * 1994-06-30 2003-03-15 Daikin Ind Ltd VOLUMINOUS LONG FIBER AND SPLIT YARN MADE OF POLYTETRAFLUORETHYTENE, METHOD FOR PRODUCING SAME AND PRODUCING COTTON-LIKE MATERIAL USING SUCH FIBER AND YARN AND FABRIC FOR DUST FILTER
JP3840569B2 (en) * 1997-08-21 2006-11-01 ダイキン工業株式会社 Polytetrafluoroethylene tube and extruder therefor
US6528148B2 (en) * 2001-02-06 2003-03-04 Hewlett-Packard Company Print media products for generating high quality visual images and methods for producing the same
DE602004024468D1 (en) * 2003-01-20 2010-01-21 Yeu Ming Tai Chemical Ind Co L Polytetrafluoroethylene fiber and process for its preparation
US7108912B2 (en) * 2004-03-09 2006-09-19 Yeu Ming Tai Chemical Industrial Co., Ltd. Polytetrafluoroethylene fiber and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259199A (en) * 1988-04-13 1990-10-19 Lenzing Ag Flame retardant and heat resistant sheetform material and manufacture thereof
JP2000154491A (en) * 1998-11-18 2000-06-06 Tomoegawa Paper Co Ltd Heat-resistant papery material and its production
JP2001032189A (en) * 1999-05-20 2001-02-06 Tomoegawa Paper Co Ltd Heat-resistant paper-like material and its production
JP2003096698A (en) * 2001-09-27 2003-04-03 Unitika Ltd Heat-resistant insulating paper sheet and method for producing the same

Also Published As

Publication number Publication date
JP2005133260A (en) 2005-05-26
US20070084575A1 (en) 2007-04-19

Similar Documents

Publication Publication Date Title
KR102003097B1 (en) Aramid-resin film laminate and method for producing same
US20140299820A1 (en) Graphene nanoparticles as conductive filler for resistor materials and a method of preparation
MX2007014659A (en) Electroconductive aramid paper.
Mo et al. Preparation of composite insulating paper with decreased permittivity, good mechanical and thermal properties by Kevlar/nano cellulose fibrils/softwood pulp hybrid
EP2222918B1 (en) Papers containing floc derived from diamino diphenyl sulfone
TWI296449B (en) Porous carbon electrode substrates and methods for preparing the same
WO2005042839A1 (en) Composite papyraceous material
KR101891813B1 (en) Conductive non-woven fabric and its manufacturing method
Shui et al. Submicron nickel filaments made by electroplating carbon filaments as a new filler material for electromagnetic interference shielding
JP2008208159A (en) Heat-resistant heat-conductive composite sheet and heat-resistant heat-conductive sheet
CN115785671B (en) Aerogel/polyphenylene sulfide self-lubricating friction material and preparation method thereof
KR20160033856A (en) Conducting film and method of manufacturing the same
JP2008308543A (en) Carbon fiber composite sheet and its manufacturing method
JPH08508214A (en) Wet deposited sheet material and composites thereof
Huang et al. Study on the hardness and wear behavior of eco-friendly poly (butylenes Succinate)-based bamboo carbon composites
JP2010257748A (en) Porous electrode base material and method of manufacturing the same
Li et al. Improved strength, toughness and electrical properties of rigid polyurethane composites reinforced with Ni-coated carbon fibers
KR102295504B1 (en) Polymer composite containing carbon nanorod, and Preparation method thereof
WO2009069565A1 (en) Molded articles, process for producing the molded articles, and use of the molded articles
Scherschel et al. Exploration of fibers produced from petroleum based-mesophase pitch and pet blends for carbon fiber production
KR100250898B1 (en) Process for making fluoropolymer composites
Liu et al. Preparation and thermal conductivity properties of CF/SR composites with high orientation and low interfacial thermal resistance based on the synergistic effect of magnetic field, torsional vibration and Diels-Alder reaction
Yan et al. Preparation and properties of aluminum phosphate‐polyethersulfone laminated composites modified by aluminosilicate fiber fabric
DK181031B1 (en) Precursor and production for a single layer separator plate for a fuel cell
WO2024128171A1 (en) Sizing agent-attached carbon short fiber

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007084575

Country of ref document: US

Ref document number: 10577399

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10577399

Country of ref document: US