JP2005133260A - Composite paper-like material - Google Patents

Composite paper-like material Download PDF

Info

Publication number
JP2005133260A
JP2005133260A JP2003372813A JP2003372813A JP2005133260A JP 2005133260 A JP2005133260 A JP 2005133260A JP 2003372813 A JP2003372813 A JP 2003372813A JP 2003372813 A JP2003372813 A JP 2003372813A JP 2005133260 A JP2005133260 A JP 2005133260A
Authority
JP
Japan
Prior art keywords
paper
polyimide
fibrous
composite paper
polytetrafluoroethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003372813A
Other languages
Japanese (ja)
Inventor
Mikio Furukawa
幹夫 古川
Katsuyuki Toma
克行 当麻
Yoshihisa Yamada
良尚 山田
Akira Ito
顕 伊藤
Norihiko Miki
規彦 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Unitika Ltd
Original Assignee
Daikin Industries Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Unitika Ltd filed Critical Daikin Industries Ltd
Priority to JP2003372813A priority Critical patent/JP2005133260A/en
Priority to US10/577,399 priority patent/US20070084575A1/en
Priority to PCT/JP2004/015841 priority patent/WO2005042839A1/en
Publication of JP2005133260A publication Critical patent/JP2005133260A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/12Organic non-cellulose fibres from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/12Organic non-cellulose fibres from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/14Polyalkenes, e.g. polystyrene polyethylene
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/22Condensation polymers of aldehydes or ketones
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/26Polyamides; Polyimides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/015Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/0278Polymeric fibers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Paper (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a paper-like material composed of an engineering plastic fiber and having excellent strength, thermal dimensional stability, chemical resistance and abrasion resistance and unprecedentedly small water absorption and dielectric properties. <P>SOLUTION: The composite paper-like material is composed of a fibrous polytetrafluoroethylene (especially fibrous powder) and a fibrous polyimide. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、繊維状ポリイミドと繊維状ポリテトラフルオロエチレン(PTFE)からなる複合紙状物に関する。   The present invention relates to a composite paper-like material composed of fibrous polyimide and fibrous polytetrafluoroethylene (PTFE).

高性能なエンジニアリングプラスチックからなる繊維を構成成分とする紙状物は、種々提案されており、基板材料などの電子機器の部材や、耐熱性構造材などとしての活用が期待されている。中でも、フッ素樹脂からなる繊維を構成成分とするものは、誘電特性や摩擦特性などの点で有利であり、様々な検討が行われてきた。   Various paper-like materials comprising fibers made of high-performance engineering plastics as a constituent component have been proposed, and are expected to be used as members of electronic devices such as substrate materials, heat-resistant structural materials, and the like. Among them, those using a fiber made of fluororesin as a constituent component are advantageous in terms of dielectric properties and friction properties, and various studies have been conducted.

例えば、特許文献1には、フッ素樹脂系繊維と耐熱性エンジニアリングプラスチック繊維とからなる紙状物が提案されている。   For example, Patent Document 1 proposes a paper-like material made of a fluororesin fiber and a heat-resistant engineering plastic fiber.

特許文献2には、絶縁繊維とフッ素樹脂繊維との混成物からなる繊維基材に含浸剤を含浸させたシ−ト状絶縁体が提案されている。   Patent Document 2 proposes a sheet-like insulator obtained by impregnating a fiber base material composed of a mixture of insulating fibers and fluororesin fibers with an impregnating agent.

特許文献3には、フッ素樹脂繊維と耐熱性エンジニアリングプラスチック繊維とからなる混抄不織布にシアン酸エステル系樹脂を組み合わせた低誘電率プリント配線板材料が提案されている。   Patent Document 3 proposes a low dielectric constant printed wiring board material in which a cyanate ester resin is combined with a mixed nonwoven fabric made of fluororesin fibers and heat-resistant engineering plastic fibers.

特許文献4には、摺動部材としてポリテトラフルオロエチレン樹脂にポリイミド繊維が配合されたフッ素系樹脂組成物が提案されている。   Patent Document 4 proposes a fluorine-based resin composition in which polyimide fibers are blended with polytetrafluoroethylene resin as a sliding member.

一方ポリイミドからなる繊維を構成成分とする紙状物に関しては、例えば特許文献5に熱硬化性バインダーによりポリイミド繊維間を結合した積層板用基材不織布が提案されている。   On the other hand, as for a paper-like material having a fiber made of polyimide as a constituent component, for example, Patent Document 5 proposes a base material nonwoven fabric for laminated plates in which polyimide fibers are bonded with a thermosetting binder.

しかしながら、特許文献1〜3で採用されるフッ素樹脂繊維は実質的にチョップドストランドの形態であり、同一重量で比較すると繊維径がパルプ状物と比較して大幅に大きく、複合する場合その均質性に課題が残る。また、そのフッ素樹脂繊維の製法からみると、適用するフッ素繊維は十分に焼成されたものであり、繊維同士を結着させる結着材(バインダー)としての機能は不十分である。湿式抄造法でシート状物を得ようとすると、何らかのバインダー成分を配合せざるを得ない。多くの場合、バインダー成分が、得られる紙状物の特性を阻害する要因となっている。   However, the fluororesin fibers employed in Patent Documents 1 to 3 are substantially in the form of chopped strands. When compared at the same weight, the fiber diameter is significantly larger than that of pulp-like materials, and the homogeneity when combined The problem remains. Further, from the viewpoint of the production method of the fluororesin fibers, the applied fluorofibers are sufficiently fired, and the function as a binder (binder) for binding the fibers to each other is insufficient. In order to obtain a sheet-like material by a wet papermaking method, some binder component must be blended. In many cases, the binder component is a factor that inhibits the properties of the obtained paper.

特許文献4においては、ポリテトラフルオロエチレン樹脂の形態等は、明示されておらず不明ではあるが、その製法から推察すると、薄い紙状の複合成形物を得ることは実質的に不可能であると想定される。   In Patent Document 4, the form and the like of the polytetrafluoroethylene resin are not clearly shown and are unknown, but it is practically impossible to obtain a thin paper-like composite molded product as inferred from the production method. It is assumed.

また、特許文献5では、ポリイミド繊維のバインダーとして熱硬化性樹脂を採用している。上記したようにかかる熱硬化性樹脂により、ポリイミド繊維が本来有する特性が阻害された紙状物しか得ることが出来ない。
特開平10-212686号公報 特開平11-144529号公報 特許2762544号公報 特許2983900号公報 特開平11-200210号公報
Patent Document 5 employs a thermosetting resin as a binder for polyimide fibers. As described above, only the paper-like material in which the properties inherent to the polyimide fiber are hindered can be obtained by the thermosetting resin.
Japanese Patent Laid-Open No. 10-212686 Japanese Patent Laid-Open No. 11-144529 Japanese Patent No. 2762544 Japanese Patent No. 2983900 Japanese Patent Laid-Open No. 11-200210

本発明は、上記従来技術の背景に鑑みなされたものであって、強度、熱寸法安定性、耐薬品性、耐摩耗性に優れ、かつ吸水性、誘電特性において従来にない小さな値を持つ、エンジニアリングプラスチック繊維からなる紙状物を提供することを目的とする。   The present invention has been made in view of the background of the above-described prior art, and is excellent in strength, thermal dimensional stability, chemical resistance, wear resistance, and has a small value that has not been obtained in water absorption and dielectric properties. The object is to provide a paper-like material made of engineering plastic fibers.

すなわち本発明は、共に繊維状のポリイミドとポリテトラフルオロエチレンからなる複合紙状物に関する。   That is, the present invention relates to a composite paper-like material composed of both fibrous polyimide and polytetrafluoroethylene.

繊維状のポリイミドは、特に限定されるものではないが、熱可塑性ポリイミド樹脂を溶融紡糸法等により繊維化したものを一定長にカットした繊維、好ましくは短繊維、特に結晶性を有する繊維が好ましい。   The fibrous polyimide is not particularly limited, but a fiber obtained by fiberizing a thermoplastic polyimide resin by a melt spinning method or the like is cut into a certain length, preferably a short fiber, particularly a fiber having crystallinity. .

熱可塑性ポリイミドは、ガラス転移温度が230℃以上であり、融点が400℃以下であることが好ましい。ガラス転移点が230℃より低いと耐熱性に乏しくなるので好ましくない。一方、融点が400℃を超えると、熱による加工が困難となるため好ましくない。   The thermoplastic polyimide preferably has a glass transition temperature of 230 ° C. or higher and a melting point of 400 ° C. or lower. A glass transition point lower than 230 ° C. is not preferable because the heat resistance is poor. On the other hand, when the melting point exceeds 400 ° C., it is not preferable because processing by heat becomes difficult.

繊維状ポリイミドとしては、得られる複合紙状物の均一性を考慮すると、短繊維であり、その平均繊維長は1〜15mm、好ましくは2〜8mmであり、平均繊維径は3〜30μm、好ましくは4〜20μmであることが望ましい。   As the fibrous polyimide, considering the uniformity of the resulting composite paper-like material, it is a short fiber, the average fiber length is 1 to 15 mm, preferably 2 to 8 mm, and the average fiber diameter is 3 to 30 μm, preferably Is preferably 4 to 20 μm.

結晶性を有する熱可塑性ポリイミド樹脂から溶融紡糸法等で得られる原糸は、適切な条件で加熱延伸することにより、結晶部の配向を高めることができる。結晶部が高度に配向した繊維状ポリイミドは、加熱、冷却時の寸法変化が小さく、紙状物にした場合の熱寸法安定性に寄与し、また、吸水性が小さいという特長を有しているので、吸水による寸法変化や電気的特性の変化が極めて少ない。「結晶性を有する繊維」とは、繊維状ポリイミドの有する結晶化度で表し、X線回折法により測定した結晶化度が15%以上であることが好ましく、より好ましくは20%以上、特に好ましくは25%以上であることを意味している。結晶化度が15%未満では、熱寸法変化や吸水性が大きくなる傾向にあるので好ましくない。   The raw yarn obtained from a thermoplastic polyimide resin having crystallinity by a melt spinning method or the like can enhance the orientation of the crystal part by heating and drawing under appropriate conditions. Fibrous polyimide with highly oriented crystal parts has small dimensional changes during heating and cooling, contributes to thermal dimensional stability when made into paper, and has low water absorption. Therefore, there is very little change in dimensions and electrical characteristics due to water absorption. “Fiber having crystallinity” is expressed by the crystallinity of the fibrous polyimide, and the crystallinity measured by the X-ray diffraction method is preferably 15% or more, more preferably 20% or more, and particularly preferably Means 25% or more. If the degree of crystallinity is less than 15%, the thermal dimensional change and water absorption tend to increase, which is not preferable.

ポリイミドとしては、下記一般式(1)で表される化学構造を繰り返し単位として有するポリイミドが、上記特性を満たし得るものとして好ましい。

Figure 2005133260
(式中、Rは単環式芳香族、縮合多環式芳香族、芳香環が直接もしくは架橋員により結合された非縮合多環式芳香族から選ばれる4価の芳香族残基を示す。また、Xは直接結合、炭化水素基、カルボニル基、エーテル基、チオ基もしくはスルホニル基から選ばれる2価の残基を示し、Y〜Yは水素原子、アルキル基、アルコキシル基もしくはハロゲン基から選ばれる1価の残基を示す。)
これらポリイミドのうち上記一般式(1)においてRは短環式芳香族であるものがより好ましく、Xは直接結合であるものがより好ましく、Y〜Yは水素原子であるものがより好ましい。 As the polyimide, a polyimide having a chemical structure represented by the following general formula (1) as a repeating unit is preferable because it can satisfy the above characteristics.
Figure 2005133260
(In the formula, R represents a tetravalent aromatic residue selected from a monocyclic aromatic group, a condensed polycyclic aromatic group, and a non-condensed polycyclic aromatic group in which an aromatic ring is bonded directly or by a bridging member. X represents a divalent residue selected from a direct bond, a hydrocarbon group, a carbonyl group, an ether group, a thio group or a sulfonyl group, and Y 1 to Y 4 represent a hydrogen atom, an alkyl group, an alkoxyl group or a halogen group. A monovalent residue selected from:
Among these polyimides, in the above general formula (1), R is more preferably a short-ring aromatic, X is more preferably a direct bond, and Y 1 to Y 4 are more preferably hydrogen atoms. .

このようなポリイミドの特に好ましい具体例としては、下記化学構造式(2)を繰り返し単位として有するポリイミドが挙げられる。

Figure 2005133260
(式中、好ましくはnは5〜200である)
このようなポリイミドは、例えば、商標名オーラム(三井化学社製)として入手可能である。 A particularly preferred specific example of such a polyimide is a polyimide having the following chemical structural formula (2) as a repeating unit.
Figure 2005133260
(Wherein n is preferably 5 to 200)
Such a polyimide is available, for example, under the trade name Aurum (manufactured by Mitsui Chemicals).

ポリイミドを繊維化する際には、色々な化学構造を有するポリイミドをブレンドしてもよく、また、本発明で使用するポリイミドおよび紙状物に要求される特性を損なわない範囲で、ポリエステル類、ポリオレフィン類、ポリアミド類、ポリフェニレンサルファイド、ポリエーテルイミド、ポリエーテルエーテルケトン、フッ素樹脂などの他のポリマー類を配合してもよく、さらには酸化チタン、酸化亜鉛、酸化マグネシウム、アルミナ、シリカ、窒化アルミ、窒化珪素、窒化ホウ素、炭化珪素、カーボンブラック、グラファイト、マイカなどの無機系フィラーを配合してもよい。   When fiberizing polyimide, polyimides having various chemical structures may be blended, and polyesters and polyolefins may be used as long as the properties required for the polyimide and paper-like material used in the present invention are not impaired. Other polymers such as polyamides, polyphenylene sulfide, polyether imide, polyether ether ketone, fluororesin may be blended, and further, titanium oxide, zinc oxide, magnesium oxide, alumina, silica, aluminum nitride, Inorganic fillers such as silicon nitride, boron nitride, silicon carbide, carbon black, graphite, mica may be blended.

本発明で使用する繊維状ポリテトラフルオロエチレンは、繊維状粉体である。ポリテトラフルオロエチレンからなる繊維状粉体は、例えば、ポリテトラフルオロエチレン粉体を叩解して得られるものが好ましく、不均一な髭状の分岐を有する一方で全体として繊維形態を有し、かつ目視レベルにおいては粉としての挙動を示すものである。この繊維状粉体は、平均繊維長5〜2000μm、および平均形態係数が5以上であることが好ましい。この範囲を下回れば抄紙工程において濾水性が悪く生産性が低下するだけでなく、通気度の低い紙しか得られない。これを上回れば紙の表面状態が悪くなり、薄く均一な紙が得難い。また、窒素吸着法により測定される比表面積が4.0m2/g以上であると好ましい。これを下回れば結着機能の面で劣り、得られる紙状物の強度が低下してしまう。なお、平均形態係数とは、繊維幅で繊維長を割って得られるものである。 The fibrous polytetrafluoroethylene used in the present invention is a fibrous powder. The fibrous powder made of polytetrafluoroethylene is preferably obtained by beating polytetrafluoroethylene powder, for example, and has a fiber shape as a whole while having non-uniform cocoon-shaped branches, and On the visual level, it shows the behavior as a powder. This fibrous powder preferably has an average fiber length of 5 to 2000 μm and an average form factor of 5 or more. Below this range, not only is the drainage poor in the papermaking process, the productivity is reduced, but only paper with a low air permeability can be obtained. If it exceeds this, the surface condition of the paper will deteriorate, making it difficult to obtain a thin and uniform paper. The specific surface area measured by the nitrogen adsorption method is preferably 4.0 m 2 / g or more. Below this value, the binding function is inferior, and the strength of the resulting paper-like material is reduced. The average form factor is obtained by dividing the fiber length by the fiber width.

上記ポリテトラフルオロエチレンは、テトラフルオロエチレン単独重合体であってもよいし、テトラフルオロエチレンと、テトラフルオロエチレン以外の微量モノマーとの共重合体であって、非溶融加工性であるもの(以下、変性ポリテトラフルオロエチレンという。)であってもよい。
上記微量モノマーとしては、例えば、パーフルオロオレフィン、パーフルオロ(アルキルビニルエーテル)、環式のフッ素化された単量体、パーフルオロアルキルエチレン等が挙げられる。
上記パーフルオロオレフィンとしては、ヘキサフルオロプロピレン等が挙げられ、パーフルオロ(アルキルビニルエーテル)としては、パーフルオロ(メチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)等が挙げられ、環式のフッ素化された単量体としては、フルオロジオキソール等が挙げられ、パーフルオロアルキルエチレンとしては、パーフルオロメチルエチレン等が挙げられる。
The polytetrafluoroethylene may be a tetrafluoroethylene homopolymer, or a copolymer of tetrafluoroethylene and a trace monomer other than tetrafluoroethylene, which is non-melt-processable (hereinafter referred to as “melt-processable”). Or modified polytetrafluoroethylene).
Examples of the trace monomer include perfluoroolefin, perfluoro (alkyl vinyl ether), cyclic fluorinated monomer, and perfluoroalkylethylene.
Examples of the perfluoroolefin include hexafluoropropylene, and examples of the perfluoro (alkyl vinyl ether) include perfluoro (methyl vinyl ether), perfluoro (propyl vinyl ether), and the like. Examples of the monomer include fluorodioxole, and examples of the perfluoroalkylethylene include perfluoromethylethylene.

繊維状ポリテトラフルオロエチレンは、毎分5℃の昇温速度で為される示差走査型熱量計(DSC)分析において得られる溶融吸熱曲線の低温側のピーク面積比率が、全ピーク面積の88.5%以上である部分焼成済のものであることが好ましい。抄造した場合に表面が滑らかで、通気性に優れる紙状物を得ることができる。上限は好ましくは99.0%である。これらの範囲を下回れば平滑な紙を得ることが困難で、上回れば紙としてのまとまりを欠き著しくその操作性が損なわれる。   Fibrous polytetrafluoroethylene has a peak area ratio on the low temperature side of the melting endotherm curve obtained by differential scanning calorimetry (DSC) analysis performed at a heating rate of 5 ° C. per minute, which is 88.5% of the total peak area. It is preferable that it is a thing which has been partially baked as described above. A paper-like material having a smooth surface and excellent breathability can be obtained when papermaking. The upper limit is preferably 99.0%. If it is below these ranges, it is difficult to obtain smooth paper, and if it exceeds this range, the paper is lacking a unit and its operability is significantly impaired.

示差走査型熱量計で示されるピーク面積は、その熱量と正比例し、また一般に許容される範囲においてその分子の数に比例するものであると言える。したがって解きほぐされたポリテトラフルオロエチレン分子の比率は、示差走査型熱量計から得られる低温側ピークの面積と全ピーク面積とのピーク比によって評価することが可能である。ダブルピークあるいは明確なショルダーを持つシングルピークは、数学的には3つ以上の複数の正規分布による合成曲線として理解することも可能であるが、2つの頂点を持つことから2つの正規分布あるいはそれに類する分布曲線として分離することは十分妥当であると考えられ、本発明の検討においても妥当な結果が得られている。これは部分的に解きほぐされた分子も、評価上は解きほぐしに必要な熱量の小さいものとして、解きほぐされていない分子の正規分布に含まれているものと理解すればよい。   It can be said that the peak area indicated by the differential scanning calorimeter is directly proportional to the amount of heat and is generally proportional to the number of molecules in an allowable range. Therefore, the ratio of the polytetrafluoroethylene molecules unraveled can be evaluated by the peak ratio between the area of the low temperature side peak obtained from the differential scanning calorimeter and the total peak area. A double peak or a single peak with a clear shoulder can be mathematically understood as a composite curve of three or more normal distributions, but since it has two vertices, two normal distributions or It is considered that separation as a similar distribution curve is sufficiently valid, and reasonable results have been obtained in the study of the present invention. This may be understood as that the partially undissolved molecules are included in the normal distribution of the molecules that have not been unconstrained as having a small amount of heat necessary for unraveling in the evaluation.

前記複合吸収ピークは、通常はGaussian-Lorentian型の曲線を用いて近似することで分離することが可能である。Gaussian型あるいはLorentian型の曲線のいずれかのみを用いる場合に比べて乖離の度合いが少ない特徴があり、市販される分析機器に附属の計算ソフトウェアの殆どでもこの手法が用いられている。本件においては原料となるポリテトラフルオロエチレン粉体に見られる見掛け上の二つの頂点を初期値として与え、これに制限を与えず近似を行うことで、基本的なピーク位置を決定した。これによって得られた基本ピーク位置は例えば本発明の実施例1で使用する繊維状ポリテトラフルオロエチレンの場合、339.14℃と343.01℃であり、これを基準として線形・半値幅は制限なし、ピーク温度のみ初期値から0.6〜0.7℃以下に制限して近似を行うことで、複合曲線を二つに分離し、そのピーク面積を求めた。上記検討では値の収束に要する時間の短縮のために原料粉体の情報を利用したが、直接的に繊維状粉体の融解曲線から求めることもできる。   The composite absorption peak can usually be separated by approximating using a Gaussian-Lorentian type curve. Compared to the case of using only Gaussian type or Lorentian type curves, there is a feature that the degree of deviation is small, and this method is used in most of the calculation software attached to commercially available analytical instruments. In this case, the basic peak position was determined by giving two apparent vertices found in the polytetrafluoroethylene powder as a raw material as initial values, and performing approximation without limiting this. For example, in the case of fibrous polytetrafluoroethylene used in Example 1 of the present invention, the basic peak positions obtained by this are 339.14 ° C and 343.01 ° C, and the linear and half-value widths are not limited based on this, and the peak temperature Only by limiting to 0.6 to 0.7 ° C. or less from the initial value, the composite curve was separated into two, and the peak area was obtained. In the above examination, information on the raw material powder is used to shorten the time required for convergence of the value, but it can also be obtained directly from the melting curve of the fibrous powder.

本発明の複合紙状物は上記繊維状ポリイミドとポリテトラフルオロエチレンを紙状に複合化して得られるものである。その複合化方法は特に限定されるものではないが、抄紙法を適用して混抄することにより容易に生産性良く得ることができる。薄く均一な地合いの複合紙状物を得る観点から、特に抄紙法の中でも、湿式抄紙法を適用することが好ましい。 The composite paper-like material of the present invention is obtained by combining the above fibrous polyimide and polytetrafluoroethylene into paper. The compounding method is not particularly limited, but can be easily obtained with good productivity by applying paper making and mixing. From the viewpoint of obtaining a thin and uniform composite paper-like material, it is preferable to apply the wet papermaking method among the papermaking methods.

湿式抄紙法は、少なくとも繊維状ポリテトラフルオロエチレンを水に分散させる分散工程、繊維状ポリイミドの混合工程、抄紙工程および乾燥工程からなる。   The wet papermaking method comprises at least a dispersion step in which fibrous polytetrafluoroethylene is dispersed in water, a fibrous polyimide mixing step, a papermaking step, and a drying step.

分散工程では、水に繊維状ポリテトラフルオロエチレンを加え、攪拌装置を備えたパルパーやリファイナーなどを用いて解繊することにより繊維状ポリテトラフルオロエチレンのスラリーを得る。通常、ポリテトラフルオロエチレンは水に対する接触角が大きく、水中に均一に分散させることが困難であるので、予め分散剤を繊維あるいは繊維状粉体に付与しておくか、分散させる水に配合しておくことが好ましい。適用する分散剤は、特に限定されないが、ノニオン系のポリオキシエチレンアルキルエーテル類が少量の添加で分散効果を発揮する点で好ましい。 In the dispersion step, fibrous polytetrafluoroethylene is added to water and fibrillated using a pulper or refiner equipped with a stirrer to obtain a fibrous polytetrafluoroethylene slurry. Usually, polytetrafluoroethylene has a large contact angle with water, and it is difficult to disperse it uniformly in water. Therefore, a dispersant is applied to the fiber or fibrous powder in advance or is added to the water to be dispersed. It is preferable to keep it. Although the dispersing agent to apply is not specifically limited, Nonionic polyoxyethylene alkyl ethers are preferable at the point which exhibits a dispersion effect by addition of a small amount.

繊維状ポリイミドを混合する混合工程では、分散工程で得られた繊維状ポリテトラフルオロエチレンのスラリーに繊維状ポリイミドを加え、分散工程同様の処理を行い混合スラリーとする。通常、繊維状ポリイミドは分散剤を適用しなくても上記スラリーへ均一に分散させることができる。   In the mixing step of mixing the fibrous polyimide, the fibrous polyimide is added to the fibrous polytetrafluoroethylene slurry obtained in the dispersing step, and the same treatment as in the dispersing step is performed to obtain a mixed slurry. Usually, the fibrous polyimide can be uniformly dispersed in the slurry without applying a dispersant.

繊維状ポリイミドとポリテトラフルオロエチレンの配合比は、使用目的に応じて適宜調整すればよいが、繊維状ポリイミドの配合比の下限値は、5質量%、好ましくは10質量%とすることが望ましい。また、上限値としては、90質量%、より好ましくは80質量%とすることが望ましい。繊維状ポリイミドの配合比が5質量%未満であると、熱寸法安定性や強度面が不十分になることがあり、90質量%を超えると、製造工程における複合紙状物の取扱い性や強度面また誘電特性が不十分となる場合がある。   The blending ratio of fibrous polyimide and polytetrafluoroethylene may be appropriately adjusted according to the purpose of use, but the lower limit of the blending ratio of fibrous polyimide is 5% by mass, preferably 10% by mass. . The upper limit is preferably 90% by mass, more preferably 80% by mass. If the blending ratio of the fibrous polyimide is less than 5% by mass, the thermal dimensional stability and strength may be insufficient, and if it exceeds 90% by mass, the handling and strength of the composite paper-like material in the manufacturing process may be insufficient. The surface and dielectric properties may be insufficient.

次に、混合スラリーを円網式湿式抄紙機、短網式湿式抄紙機、短網傾斜式湿式抄紙機もしくは長網傾斜式湿式抄紙機等に例示される公知の湿式抄造装置を用いて抄造する抄紙工程を経て紙状物(抄紙物)に成形し、得られた抄紙物を、抄紙機に併設された熱風式、接触式もしくは輻射式の乾燥機で乾燥する乾燥工程により複合紙状物を得る。この抄紙法において、1対の金属製ロールからなるニップロールにて抄紙物を厚み方向に加圧する加圧工程を設けると繊維状ポリテトラフルオロエチレンが繊維状ポリイミドに圧着し、形態保持性に優れた複合紙状物とすることが出来る。加圧は室温で行えばよく、加圧力は通常1〜10kgf/cm程度で良いが、もちろん、可能であれば加熱下に加圧しても良い。この加圧工程は、抄紙工程と乾燥工程の間に行ってもよいし、乾燥工程後におこなってもよい。   Next, the mixed slurry is made using a known wet papermaking apparatus exemplified by a circular net type wet paper machine, a short net type wet paper machine, a short net tilt type wet paper machine, or a long net tilt type wet paper machine. A composite paper-like material is formed by a drying process in which a paper-like material (paper-made material) is formed through a paper-making process, and the obtained paper-made material is dried by a hot-air type, contact type or radiation type dryer attached to the paper machine. obtain. In this papermaking method, when a pressurizing step for pressurizing the papermaking material in the thickness direction with a nip roll consisting of a pair of metal rolls is provided, fibrous polytetrafluoroethylene is pressure-bonded to the fibrous polyimide and has excellent shape retention. It can be a composite paper. The pressurization may be performed at room temperature, and the applied pressure is usually about 1 to 10 kgf / cm. Of course, if possible, the pressurization may be performed under heating. This pressurizing step may be performed between the paper making step and the drying step, or may be performed after the drying step.

抄紙は、乾燥後の紙状物の坪量が、50〜1500g/m2、好ましくは100〜1200g/m2となるように行う。坪量がその値より小さいと、抄紙法における操作性が低下し安定して製造することが困難となる傾向にある。また、坪量が大きすぎると、抄紙工程における濾水の低下や乾燥が不十分になるといった製造上の問題が顕著になる傾向にある。 Paper had a basis weight of the paper-like material after drying, 50 to 1500 g / m 2, preferably carried out such that the 100~1200g / m 2. When the basis weight is smaller than the value, the operability in the papermaking method is lowered and it tends to be difficult to produce stably. On the other hand, if the basis weight is too large, production problems such as reduction in drainage and insufficient drying in the paper making process tend to become prominent.

次に、1対の金属ロールからなるカレンダーロール等ロール状プレス装置もしくは対向する一対の金属製等のベルト間で加熱プレスの行えるダブルベルトプレス装置などに例示される加熱加圧装置を用いて、上記にて得られる複合紙状物を厚み方向に加熱下加圧することで、ポリテトラフルオロエチレンからなる繊維状粉体が繊維状ポリイミドに融着されて複合紙状物の強度が著しく増大する。すなわち、上記湿式抄紙法により複合紙状物を得る工程に加え、得られた紙状物を加熱下加圧する工程を行うことにより、ポリテトラフルオロエチレンからなる繊維状粉体が繊維状ポリイミドに融着された、すなわち緻密化された複合紙状物を得る。なお、加熱加圧工程は、抄造工程に続いて連続で行っても良いし、別ラインにして行っても良いのは言うまでもない。   Next, using a heating and pressurizing device exemplified by a roll press device such as a calender roll consisting of a pair of metal rolls or a double belt press device capable of performing a heat press between a pair of opposing metal belts, etc. By pressurizing the composite paper-like material obtained above under heating in the thickness direction, the fibrous powder made of polytetrafluoroethylene is fused to the fibrous polyimide, and the strength of the composite paper-like material is remarkably increased. That is, in addition to the step of obtaining a composite paper-like material by the wet papermaking method, a step of pressurizing the obtained paper-like material under heating causes the fibrous powder made of polytetrafluoroethylene to be melted into the fibrous polyimide. A composite paper material is obtained which has been applied, ie densified. In addition, it cannot be overemphasized that a heat pressurization process may be performed continuously following a papermaking process, and may be performed on another line.

加熱加圧する際の加熱温度としては、ポリテトラフルオロエチレンの融点以上の温度で行うことが好ましい。最終の加熱温度が当該融点未満の温度であると、機械的強度特性を向上させる効果が得難い傾向にある。これは一方で最終の加熱工程までは融点未満の熱処理を施しても結着力がある一定範囲において維持され得る事を示しており、こうした中間体を用いて積層物などの加工品を得ることは可能である。また、加熱温度としては、繊維状ポリイミドを形成するポリイミドが溶融する温度以下であることが好ましく、そのポリイミドが結晶性ポリイミドの場合には、そのポリイミドの融点以下の温度、さらには融点より10℃以上低い温度であることが好ましい。加熱温度がポリイミドの融点を超えると、繊維状ポリイミドが極度に融解し、繊維状ポリイミドの配合効果を発揮できなくなる傾向にあるので好ましくない。通常340〜380℃程度の加熱温度を採用すれば良い。なお、ここでいう融点とは、示差走査熱量分析装置(パーキンエルマー社製、Pyrisl DSC)を用いて測定される値をいう。   The heating temperature at the time of heating and pressing is preferably performed at a temperature equal to or higher than the melting point of polytetrafluoroethylene. When the final heating temperature is lower than the melting point, the effect of improving mechanical strength characteristics tends to be difficult to obtain. On the other hand, it shows that even if heat treatment below the melting point is performed until the final heating step, the binding force can be maintained within a certain range, and using such an intermediate, it is possible to obtain a processed product such as a laminate. Is possible. The heating temperature is preferably not higher than the temperature at which the polyimide forming the fibrous polyimide melts. When the polyimide is crystalline polyimide, the temperature is not higher than the melting point of the polyimide, and further 10 ° C. from the melting point. It is preferable that the temperature is lower. If the heating temperature exceeds the melting point of the polyimide, the fibrous polyimide is extremely melted, and the blending effect of the fibrous polyimide tends not to be exhibited. Usually, a heating temperature of about 340 to 380 ° C. may be adopted. In addition, melting | fusing point here means the value measured using a differential scanning calorimeter (the Perkin Elmer company make, Pyrisl DSC).

また、加熱加圧する際の加圧圧力としては、特に限定されるものではないが、加圧圧力が高いほど得られる複合紙状物の空孔率が減少する傾向にあり、緻密化される傾向にあり、例えば0.05〜10MPa程度の加圧圧力を採用することができる。   Further, the pressurizing pressure at the time of heating and pressurizing is not particularly limited, but the higher the pressurizing pressure, the lower the porosity of the composite paper-like material obtained, and the tendency to be densified. For example, a pressurizing pressure of about 0.05 to 10 MPa can be employed.

さらに上記した工程において、本発明の複合紙状物を2層以上に積層したものを加熱下加圧すると、層間の無い一体の緻密化された紙状物となるので、積層枚数を変えることによって所望の厚みの緻密化された紙状物を得ることができる。この際、各層に組成比の異なる本発明の複合紙状物を適用することにより、ポリイミドとポリテトラフルオロエチレンの組成が厚み方向に変化している複合紙状物を得ることも出来る。   Furthermore, in the above-described steps, when the composite paper-like material of the present invention laminated in two or more layers is heated and pressurized, it becomes an integrated densified paper-like material with no layers. A densified paper material having a desired thickness can be obtained. At this time, by applying the composite paper material of the present invention having a different composition ratio to each layer, a composite paper material in which the composition of polyimide and polytetrafluoroethylene is changed in the thickness direction can also be obtained.

このようにして得られる紙状物の厚みは、抄紙工程の坪量および加熱下加圧する場合、積層枚数や緻密化の度合によって決定されるが、使用する用途や生産効率および物性の均一性の面から20〜2000μmのものが好ましく、より好ましくは25〜800μmである。下限を下回れば、工程中における操作性が低く歩留まりが低下してしまう傾向にあり、また、上限を上回れば、加熱下の加圧工程において寸法の不均一なものしか得られない傾向にある。また、見かけ密度は0.3〜2.1g/cm3であることが好ましく、この範囲を下回れば強度に優れたものとならない傾向にあり、この範囲を上回るものは実質的に製造ができない傾向にある。 The thickness of the paper-like material obtained in this way is determined by the basis weight of the paper making process and the pressure applied under heating, depending on the number of laminated sheets and the degree of densification. From the surface, it is preferably 20 to 2000 μm, more preferably 25 to 800 μm. If the lower limit is not reached, the operability in the process tends to be low and the yield tends to decrease. If the upper limit is exceeded, only non-uniform dimensions tend to be obtained in the pressurizing step under heating. Further, the apparent density is preferably 0.3 to 2.1 g / cm 3 , and if it falls below this range, it tends not to be excellent in strength, and those exceeding this range tend to be substantially impossible to produce.

本発明の複合紙状物には、本発明の目的を損なわない範囲で種々添加物を配合することができる。すなわち、他の有機物もしくは無機物からなる短繊維やパルプ状物、例えばアラミド、ポリエステル、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリスルフォン、ポリフェニレンスルフィド、ポリケトン、カーボン、ガラス、アルミナ等に例示される短繊維もしくはパルプ状物、さらには、酸化チタン、酸化亜鉛、酸化マグネシウム、アルミナ、シリカ、窒化アルミ、窒化珪素、窒化ホウ素、炭化珪素、カーボンブラック、グラファイト、マイカ、二硫化モリブデンなどからなる種々の粒子状物(フィラー)が配合されていてもよい。   Various additives can be blended in the composite paper-like material of the present invention within a range not impairing the object of the present invention. That is, short fibers and pulps made of other organic or inorganic substances, such as aramid, polyester, polyetherimide, polyetheretherketone, polysulfone, polyphenylene sulfide, polyketone, carbon, glass, alumina, etc. Or pulp-like materials, and various particles made of titanium oxide, zinc oxide, magnesium oxide, alumina, silica, aluminum nitride, silicon nitride, boron nitride, silicon carbide, carbon black, graphite, mica, molybdenum disulfide, etc. A thing (filler) may be mix | blended.

また、強度を付与する等の目的で、目的に応じて熱可塑性樹脂、例えばポリイミド樹脂もしくはその前駆体や熱硬化性樹脂、例えばエポキシ樹脂等が含まれていてもよい。この場合のポリイミド樹脂もしくはその前駆体やエポキシ樹脂等は、通常エマルジョンや溶液の状態で塗布、スプレーもしくは含浸される。   For the purpose of imparting strength, a thermoplastic resin such as a polyimide resin or a precursor thereof, or a thermosetting resin such as an epoxy resin may be included depending on the purpose. In this case, the polyimide resin or a precursor thereof, an epoxy resin or the like is usually applied, sprayed or impregnated in the state of an emulsion or a solution.

これらの添加物は、本発明の目的を損なわない範囲で1種もしくは数種配合してもよいが、その乾燥時の合計質量が本発明の複合紙の全質量に対して30質量%以下にとどめることが、種々特性を維持する観点から好ましい。   These additives may be used alone or in combination within a range that does not impair the object of the present invention, but the total mass during drying is 30% by mass or less based on the total mass of the composite paper of the present invention. It is preferable from the viewpoint of maintaining various characteristics.

本発明の複合紙状物は、上記したように加熱加圧工程によりポリテトラフルオロエチレンからなる繊維状粉体が繊維状ポリイミドに融着された形態とすることができ、このように緻密化された紙状物は強度に優れたものとなる。また、加熱加圧工程において積層しても、使用時に層間から破壊される現象は見られず、実質的に1層のものと同程度の強度レベルを有するものとなる。強度は、ポリテトラフルオロエチレンからなる繊維状粉体と繊維状ポリイミドの配合比や緻密化の度合い、もしくは配合する第三成分の量などにより決定されるが、例えば、JIS-P8113に規定される測定方法により得られる平均裂断長で示すと、通常0.5〜7kmの範囲にある。   As described above, the composite paper-like material of the present invention can be made into a form in which the fibrous powder made of polytetrafluoroethylene is fused to the fibrous polyimide by the heating and pressing step, and is thus densified. The paper is excellent in strength. Further, even when the layers are laminated in the heating and pressurizing step, the phenomenon of destruction from the layers during use is not observed, and the strength level is substantially the same as that of the single layer. The strength is determined by the blending ratio and the degree of densification of the fibrous powder made of polytetrafluoroethylene and the fibrous polyimide, or the amount of the third component to be blended, etc., but is defined in, for example, JIS-P8113 In terms of the average breaking length obtained by the measurement method, it is usually in the range of 0.5 to 7 km.

本発明の複合紙状物は、熱による寸法変化が少なく、高温使用下での寸法安定性に優れたものである。寸法安定性としては、20〜230℃における平均線膨張係数が、複合紙状物の製造方向および巾方向のいずれについても−20〜30μm/m・℃(JIS-K7197に従って測定された値)の範囲内にあることが好ましい。上記の平均線膨張係数が−20〜30μm/m・℃の範囲を外れると、高温使用下での寸法変化が大きくなり、使用に適さなくなる傾向にある。   The composite paper-like material of the present invention has little dimensional change due to heat and is excellent in dimensional stability under high temperature use. As for dimensional stability, the average linear expansion coefficient at 20 to 230 ° C. is −20 to 30 μm / m · ° C. (value measured according to JIS-K7197) in both the production direction and the width direction of the composite paper-like material. It is preferable to be within the range. If the average linear expansion coefficient is out of the range of −20 to 30 μm / m · ° C., the dimensional change under high temperature use becomes large and tends to be unsuitable for use.

本発明においては、上記したような繊維状ポリイミドとポリテトラフルオロエチレンがランダムに分散して構成された紙状物とすることにより、寸法安定性とその方向性のバランスに優れた紙状物を得ることができる。   In the present invention, by making a paper-like material constituted by randomly dispersing fibrous polyimide and polytetrafluoroethylene as described above, a paper-like material having an excellent balance between dimensional stability and directionality is obtained. Can be obtained.

複合紙状物は、吸水性が小さいことが好ましく、25℃、相対湿度60%の環境下に24時間放置したときの下記計算式で算出される吸水率が0.5%以下であることは、本発明の好ましい態様である。   The composite paper-like material preferably has low water absorption, and the water absorption calculated by the following formula when left in an environment of 25 ° C. and 60% relative humidity for 24 hours is 0.5% or less. This is a preferred embodiment of the invention.

Figure 2005133260
(式中、Wは吸湿後の不織布の質量を示し、W0は絶乾時の不織布の質量を示す。)
Figure 2005133260
(Wherein, W represents the mass of the nonwoven fabric after moisture absorption, and W 0 represents the mass of the nonwoven fabric when absolutely dry.)

一般にポリイミドは、そのイミド基に強い極性を有することから吸水性が比較的高いことが知られており、成形品とした場合、吸水時の寸法変化や電気的特性の変化が問題となる傾向にあった。従来の非晶性ポリイミド繊維から構成された紙状物においても同様に吸水性の大きさが問題となっていたが、本発明においては、吸水性の小さな結晶性ポリイミド繊維とポリテトラフルオロエチレンからなる繊維状粉体を主たる構成成分とすることにより、従来になく吸水性の低い高性能な複合紙状物とすることが可能になった。特に、前記した化学式(1)または化学式(2)で表されるポリイミドは、結晶性を有しかつ、化学構造に占めるイミド基の割合が小さいことから、ポリイミドの中でも特に吸水性が小さく、この観点からこれらからなる繊維状ポリイミドを使用することが好ましい。   In general, polyimide is known to have a relatively high water absorption due to its strong polarity in its imide group, and when used as a molded product, dimensional changes and changes in electrical characteristics tend to become a problem. there were. Similarly, in the paper-like material composed of conventional amorphous polyimide fibers, the size of water absorption has been a problem, but in the present invention, from crystalline polyimide fibers having low water absorption and polytetrafluoroethylene. By using the fibrous powder as a main constituent, it has become possible to obtain a high-performance composite paper-like material with low water absorption, which has never been achieved before. In particular, the polyimide represented by the chemical formula (1) or the chemical formula (2) has crystallinity and has a small proportion of imide groups in the chemical structure. From the viewpoint, it is preferable to use a fibrous polyimide composed of these.

誘電率はポリイミド、ポリテトラフルオロエチレン共に低い値を示し絶縁性能に優れる。本発明の紙状物は、バインダーとなる第三成分を含まないことからその複合紙状物にも同様の特性を期待することが出来る。その電気特性は円筒型誘電率評価装置((株)関東電子応用開発製の共振器と、アジレントテクノロジー社製のネットワークアナライザとから成る)を用いて、室温下、2.45GHzにて測定することで評価することが出来る。本発明の複合紙状物では、繊維状ポリイミドとポリテトラフルオロエチレンからなる繊維状粉体の含有比や複合紙状物の見かけ密度に応じて変化するが、通常緻密化した複合紙状物の場合、上記測定法により得られる誘電率は2.0〜3.1の範囲となる。また、同様の測定により得られる誘電損失は1×10-5〜3×10-3の範囲となる。 The dielectric constant of both polyimide and polytetrafluoroethylene is low and excellent in insulation performance. Since the paper-like material of the present invention does not contain a third component serving as a binder, the composite paper-like material can be expected to have the same characteristics. The electrical characteristics were measured at 2.45 GHz at room temperature using a cylindrical dielectric constant evaluation device (consisting of a resonator manufactured by Kanto Electronics Co., Ltd. and a network analyzer manufactured by Agilent Technologies). Can be evaluated. In the composite paper-like material of the present invention, it varies depending on the content ratio of the fibrous powder composed of fibrous polyimide and polytetrafluoroethylene and the apparent density of the composite paper-like material. In this case, the dielectric constant obtained by the above measurement method is in the range of 2.0 to 3.1. Moreover, the dielectric loss obtained by the same measurement is in the range of 1 × 10 −5 to 3 × 10 −3 .

耐薬品性や耐酸化性もポリイミド、ポリテトラフルオロエチレン共に優れることが知られており、本発明の複合紙状物はこれら特性に優れたものとすることができる。耐薬品性は、試験する薬剤に複合紙状物を浸漬し室温下にて1週間放置した後の重量変化や色、形状の変化で評価することができ、例えば極度に薬剤に侵された場合は大きな重量変化や寸法変化が見られ、膨潤する場合には若干の重量増が見られるが、一般的に用いられるアルコール系溶剤、エーテル系溶剤、ケトン系溶剤、エステル系溶剤、アミド系溶剤などに例示される極性溶剤や炭化水素系溶剤、種々オイルや燃料などの非極性溶剤の多くに対して優れた特性を持つことが判明している。また、耐酸化性は、過酸化水素水にごく少量の硫酸鉄(III)などの活性化剤を配合したいわゆるFenton試薬に複合紙状物を浸漬し、その酸化による劣化具合を見ることにより評価することができるが、例えば、70℃で48時間浸漬しても殆ど劣化は確認できないものであった。   It is known that both chemical resistance and oxidation resistance are excellent in both polyimide and polytetrafluoroethylene, and the composite paper-like material of the present invention can be excellent in these characteristics. The chemical resistance can be evaluated by the change in weight, color, and shape after the composite paper-like material is immersed in the drug to be tested and left at room temperature for 1 week. There are large weight changes and dimensional changes, and in the case of swelling, there is a slight increase in weight, but generally used alcohol solvents, ether solvents, ketone solvents, ester solvents, amide solvents, etc. Have been found to have excellent properties with respect to many of the nonpolar solvents such as polar solvents, hydrocarbon solvents, and various oils and fuels. In addition, oxidation resistance is evaluated by immersing the composite paper-like material in a so-called Fenton reagent that contains a very small amount of an activator such as iron sulfate (III) in hydrogen peroxide water, and observing its deterioration due to oxidation. For example, even when immersed for 48 hours at 70 ° C., almost no deterioration was observed.

本発明の複合紙状物は耐磨耗性に優れたポリイミドと潤滑性に優れたポリテトラフルオロエチレンが均一に配合された形態を有するので、摩擦磨耗特性に優れたものとなる。例えばスラスト摩擦磨耗試験機(東洋ボールドウイン製;EMFIII-E)にて、室温下、無潤滑下にて評価することができ、相手材としてSUS材やアルミ材を使用して加圧下一定の摺動速度で、48時間摺動させても良好な耐摩耗性を示し、また、相手材を傷めるということもない。   Since the composite paper-like material of the present invention has a form in which polyimide having excellent wear resistance and polytetrafluoroethylene having excellent lubricity are uniformly blended, the frictional wear characteristics are excellent. For example, it can be evaluated with a thrust friction and wear tester (Toyo Baldwin; EMFIII-E) at room temperature and under non-lubricated conditions. Even if it slides at a moving speed for 48 hours, it shows good wear resistance and does not damage the mating material.

本発明の複合紙状物は上記したような特性を兼ね備えているので、強力、耐熱性や熱寸法安定性の要求されるシームレスベルト、スタンピングモールド、ガードチューブ、難燃紙材、バルブシート、半田型紙や緩衝材に最適な素材である。またこれに加えて電気的特性にも優れているので、回路基板にも適用することができる。さらに、耐薬品性や耐磨耗性にも優れているので、フィルター、研磨用紙材、電解質膜やシール材としても優れた素材である。   Since the composite paper-like material of the present invention has the above-described characteristics, it is required to have a seamless belt, stamping mold, guard tube, flame retardant paper material, valve sheet, solder, which requires strength, heat resistance and thermal dimensional stability. It is the best material for pattern paper and cushioning materials. In addition, since it has excellent electrical characteristics, it can also be applied to circuit boards. Furthermore, since it is excellent also in chemical resistance and abrasion resistance, it is an excellent material as a filter, abrasive paper material, electrolyte membrane or sealing material.

以下、本発明を実施例を用いて説明する。   Hereinafter, the present invention will be described using examples.

(繊維状ポリイミドの製造例)
ポリイミド樹脂としてオーラム(商標名;三井化学製)を用いた。該ポリイミド樹脂を415℃に溶融させた後に0.2mm径の口金より押し出して得られるストランドを700m/minの速度で引き取り、冷却固化させた後、紙管に巻き取り、繊維径がおおよそ23μmの繊維状ポリイミドを得た。次に、この繊維状ポリイミドを350℃のヒーター中で約3倍に延伸させて、繊維径がおおよそ12μmの繊維状ポリイミドを得た。得られた繊維状ポリイミドは延伸により結晶配向が進んだものであった。本実施例では、この繊維状ポリイミドを5mm長にカットした短繊維を使用した。なお、この短繊維の結晶化度は26%、融点は389℃であった。
(Production example of fibrous polyimide)
Aurum (trade name; manufactured by Mitsui Chemicals) was used as the polyimide resin. After the polyimide resin is melted at 415 ° C., a strand obtained by extruding from a 0.2 mm diameter die is taken up at a rate of 700 m / min, cooled and solidified, and then wound around a paper tube to obtain a fiber having a fiber diameter of approximately 23 μm. A polyimide was obtained. Next, this fibrous polyimide was stretched about 3 times in a heater at 350 ° C. to obtain a fibrous polyimide having a fiber diameter of approximately 12 μm. The obtained fibrous polyimide was advanced in crystal orientation by stretching. In this example, short fibers obtained by cutting this fibrous polyimide into 5 mm lengths were used. The short fiber had a crystallinity of 26% and a melting point of 389 ° C.

(ポリテトラフルオロエチレン繊維状粉体の製造例)
テトラフルオロエチレン100モル%を乳化重合させた重合体を、原料ポリテトラフルオロエチレン粉体(平均粒径570μm)とした。得られた原料ポリテトラフルオロエチレン粉体を供給機によりホッパーに送り込んだ。つぎに、前記ポリテトラフルオロエチレン粉体を適宜乾燥空気により補助しながら回転翼を備えた延伸処理槽(槽内径160mmφ)に供給し延伸処理した。この際、延伸処理槽の下面は一部メッシュとなっており、一定サイズよりも小さなもののみ延伸処理槽から出るようにした。これを標準分級ふるいにて処理することで5μm以下の粉体を除去することにより原料ポリテトラフルオロエチレン繊維状粉体を得た。
(Production example of polytetrafluoroethylene fibrous powder)
A polymer obtained by emulsion polymerization of 100 mol% of tetrafluoroethylene was used as a raw material polytetrafluoroethylene powder (average particle size: 570 μm). The obtained raw material polytetrafluoroethylene powder was fed into a hopper by a feeder. Next, the polytetrafluoroethylene powder was supplied to a stretching tank (rotor inner diameter: 160 mmφ) equipped with a rotating blade while being appropriately supported by dry air, and stretched. At this time, the lower surface of the stretching tank was partially meshed, and only those smaller than a certain size were allowed to exit the stretching tank. By treating this with a standard classification sieve, the powder of 5 μm or less was removed to obtain a raw material polytetrafluoroethylene fibrous powder.

得られたポリテトラフルオロエチレン繊維状粉体は、
平均繊維長:1.5μm
平均形態係数:40
比表面積:6.38m2/g
低温側のピーク面積比率:92.3%
であった。
The resulting polytetrafluoroethylene fibrous powder is
Average fiber length: 1.5μm
Average form factor: 40
Specific surface area: 6.38m 2 / g
Low-temperature peak area ratio: 92.3%
Met.

(実施例1)
水1000質量部に対して0.1質量部のポリオキシエチレンアルキルエーテルを配合した水にポリテトラフルオロエチレン繊維状粉体3.2質量部を加え、攪拌装置(パルパー)を用いて攪拌して均一に分散させた。
(Example 1)
Add 3.2 parts by mass of polytetrafluoroethylene fibrous powder to water containing 0.1 parts by mass of polyoxyethylene alkyl ether per 1000 parts by mass of water, and stir using a stirrer (pulper) to disperse uniformly. It was.

次いで、5mm長さにカットされたポリイミド短繊維0.8質量部を系内に加えて攪拌し、均一に各原料が混合分散されたスラリーを得た。   Next, 0.8 parts by mass of polyimide short fibers cut to a length of 5 mm were added to the system and stirred to obtain a slurry in which the raw materials were uniformly mixed and dispersed.

このスラリーを、さらに水でスラリー濃度0.02質量%になるように希釈して短網傾斜式連続抄紙機に供給し、連続で抄紙物を得た。なお、得られた抄紙物は含水率が約30質量%であった。   This slurry was further diluted with water to a slurry concentration of 0.02% by mass and supplied to a short mesh inclined continuous paper machine to obtain a paper product continuously. The obtained paper product had a water content of about 30% by mass.

次いで、1対のステンレス製ロールからなるニップロールにて線圧0.1N/mmの加圧処理を室温下連続で行い、ポリテトラフルオロエチレン繊維状粉体とポリイミド短繊維を圧着させた。   Subsequently, pressure treatment with a linear pressure of 0.1 N / mm was continuously performed at room temperature with a nip roll composed of a pair of stainless steel rolls, and the polytetrafluoroethylene fibrous powder and the polyimide short fibers were pressure-bonded.

さらに、抄紙機に付設されたコンベア式熱風乾燥機に供給して乾燥を行い、ほぼ含水率が0質量%の複合紙状物とした。   Furthermore, it supplied to the conveyor type hot air dryer attached to the paper machine, and it dried, and it was set as the composite paper-like thing with a moisture content of 0 mass%.

得られた複合紙状物は繊維状ポリイミドにポリテトラフルオロエチレン繊維状粉体が圧着されて強度を発現し、良好な形態保持性を有しており、かつ、繊維状ポリイミドとポリテトラフルオロエチレン繊維状粉体が均一に分散配合されたものであった。この工程を経て得られた紙状物を、複合紙状物Aとする。   The resulting composite paper-like material is obtained by press-bonding polytetrafluoroethylene fibrous powder to fibrous polyimide to develop strength, and has good shape retention, and fibrous polyimide and polytetrafluoroethylene. The fibrous powder was uniformly dispersed and blended. A paper-like material obtained through this process is referred to as a composite paper-like material A.

上記、湿式抄紙法により得られた複合紙状物Aを、連続ベルトプレス機(サンドビック製)を用いて240℃で2分間無加圧下で予熱した後、25N/mmの圧力で加圧下350℃で5分間加熱し、次いで加圧を保持した状態で50℃まで急冷させて、緻密化された複合紙状物を連続的に得た。得られた複合紙状物は、ポリテトラフルオロエチレン繊維状粉体が溶融してポリイミド短繊維表面に融着しており、表面が平滑であり、緻密な構造を有していた。この工程を経て得られる緻密化した紙状物を、複合紙状物Bとする。   The composite paper-like material A obtained by the wet papermaking method was preheated at 240 ° C. for 2 minutes under no pressure using a continuous belt press (Sandvik), and then pressurized under a pressure of 25 N / mm. Heating was performed at 5 ° C. for 5 minutes, and then rapidly cooling to 50 ° C. while maintaining the pressurization, whereby a densified composite paper was continuously obtained. In the obtained composite paper-like material, the polytetrafluoroethylene fibrous powder was melted and fused to the polyimide short fiber surface, and the surface was smooth and had a dense structure. A dense paper-like material obtained through this step is referred to as a composite paper-like material B.

得られた紙状複合物Bは、坪量256g/m2、厚さ154μmであった。また、平均線膨張係数、裂断長、吸水率、誘電率を測定した。以上の結果を表1にまとめた。 The obtained paper-like composite B had a basis weight of 256 g / m 2 and a thickness of 154 μm. In addition, the average linear expansion coefficient, breaking length, water absorption, and dielectric constant were measured. The above results are summarized in Table 1.

なお、厚さは、デジタル式厚み計にて100cm2(10×10cm)につき1点の間隔で測定して得られた50個の値を平均する方法により測定した。
裂断長は、万能試験機(インテスコ社製)を用いてJIS-P8113に従い測定した。
平均線膨張係数は、TMA測定装置(TAインスツルメント社製;TMA2940)を用いてJIS-K7197に従って測定した。
吸水率は、上記式Iに従って測定した。
誘電率の測定は、前記した円筒型誘電率評価装置を用いた方法により行なった。なお、測定用試料については、複合紙状物Aを積層したものを上記複合紙状物Bを作製する要領にて厚さ1.4mmの緻密体とし、これを1.4mm幅に裁断して得られた1.4mm角の棒状物を試料とした。
The thickness was measured by a method of averaging 50 values obtained by measuring at a point interval of 100 cm 2 (10 × 10 cm) with a digital thickness gauge.
The breaking length was measured according to JIS-P8113 using a universal testing machine (manufactured by Intesco).
The average linear expansion coefficient was measured according to JIS-K7197 using a TMA measuring apparatus (TA Instruments; TMA2940).
The water absorption was measured according to the above formula I.
The dielectric constant was measured by a method using the above-described cylindrical dielectric constant evaluation apparatus. The sample for measurement is obtained by laminating the composite paper-like material A into a dense body having a thickness of 1.4 mm in the same manner as the composite paper-like material B, and cutting this into a 1.4 mm width. A 1.4 mm square rod was used as a sample.

(実施例2〜5)
繊維状ポリイミドとポリテトラフルオロエチレン繊維状粉体の配合比を表1とした他は実施例1同様にして複合紙状物Bを得た。得られた複合紙状物の諸物性を、表1にまとめた。
(Examples 2 to 5)
A composite paper B was obtained in the same manner as in Example 1 except that the blending ratio of the fibrous polyimide and the polytetrafluoroethylene fibrous powder was changed to Table 1. Various physical properties of the obtained composite paper-like material are summarized in Table 1.

(比較例1)
ポリテトラフルオロエチレン繊維状粉体を配合せずにポリイミド短繊維を4質量部加えた他は実施例1同様にしてポリイミド短繊維からなる紙状物Aを抄造した。
(Comparative Example 1)
A paper-like material A composed of polyimide short fibers was made in the same manner as in Example 1 except that 4 parts by mass of polyimide short fibers were added without blending the polytetrafluoroethylene fibrous powder.

比較例1の紙状物は、ポリテトラフルオロエチレン繊維状粉体を配合していないので繊維同士が圧着しておらず、紙状の形態を保持せず、満足な紙状物Aを得ることができなかった。   Since the paper-like material of Comparative Example 1 does not contain polytetrafluoroethylene fibrous powder, the fibers are not pressure-bonded to each other, do not maintain the paper-like form, and obtain a satisfactory paper-like material A. I could not.

(比較例2)
ポリイミド短繊維を配合せずにポリテトラフルオロエチレン繊維状粉体を4質量部加えた他は実施例1同様にしてポリテトラフルオロエチレン繊維状粉体からなる紙状物Bを得た。得られた紙状物Bの諸物性を表1にまとめた。
(Comparative Example 2)
A paper-like material B made of polytetrafluoroethylene fibrous powder was obtained in the same manner as in Example 1 except that 4 parts by mass of polytetrafluoroethylene fibrous powder was added without blending the polyimide short fibers. Various physical properties of the obtained paper B are summarized in Table 1.

(比較例3)
ポリテトラフルオロエチレン繊維状粉体の代わりに、平均繊維長が5mmのポリテトラフルオロエチレン短繊維(商標名トヨフロン、東レファインケミカル社製)を用いた他は実施例1同様にして複合紙状物Aを抄造した。
なお、本比較例で使用したポリテトラフルオロエチレン短繊維は;
平均形態係数:250
比表面積:0.1m2/g
低温側のピーク面積比率:100%
を有していた。
(Comparative Example 3)
A composite paper-like material A was prepared in the same manner as in Example 1 except that polytetrafluoroethylene short fibers (trade name Toyoflon, manufactured by Toray Fine Chemical Co., Ltd.) having an average fiber length of 5 mm were used instead of the polytetrafluoroethylene fibrous powder. Made.
The polytetrafluoroethylene short fibers used in this comparative example are:
Average form factor: 250
Specific surface area: 0.1m 2 / g
Peak area ratio on the low temperature side: 100%
Had.

本比較例では、ポリテトラフルオロエチレン短繊維がバインダーとして十分に機能しないためか繊維同士が圧着せず紙状の形態を保持することが難しく、満足な紙状物Aを得ることができなかった。   In this comparative example, because the polytetrafluoroethylene short fibers do not function sufficiently as binders, it is difficult to maintain a paper-like form because the fibers are not pressure-bonded, and a satisfactory paper-like product A could not be obtained. .

Figure 2005133260
Figure 2005133260

(耐酸化性の評価)
(実施例6)
実施例2で得られた複合紙状物Bを長さ100mm、巾10mmに裁断したものを試料として用いた。該試料を、30質量%の過酸化水素水の水溶液に硫酸鉄(II)を20ppm溶解した酸化剤溶液に浸漬し、70℃に保温して80時間放置した。その後、試料を取り出し、水洗、乾燥後、裂断長を測定した。
(Evaluation of oxidation resistance)
(Example 6)
The composite paper B obtained in Example 2 was cut into a length of 100 mm and a width of 10 mm as a sample. The sample was immersed in an oxidizing agent solution in which 20 ppm of iron (II) sulfate was dissolved in an aqueous solution of 30% by mass of hydrogen peroxide, kept at 70 ° C. and left for 80 hours. Thereafter, the sample was taken out, washed with water and dried, and then the fracture length was measured.

酸化剤溶液の代わりに純水に浸漬し、同様の処理を施した試料の裂断長を100%とし、酸化剤溶液に浸漬する処理を経た試料の裂断長の相対値をもって、耐酸化性の指標とした。その結果、95%と高い耐酸化性を示した。高分子型燃料電池など、高い耐酸化性が要求される電解質膜用基材として有用である。   Oxidation resistance with the relative value of the fracture length of the sample that has been immersed in pure water instead of the oxidizer solution and the sample that has been treated in the same way has a fracture length of 100% and is immersed in the oxidizer solution. It was used as an index. As a result, it showed high oxidation resistance of 95%. It is useful as a substrate for an electrolyte membrane that requires high oxidation resistance, such as a polymer fuel cell.

(比較例4)
ポリイミド短繊維の代わりに、繊維径がおおよそ15μm、平均繊維長が6mmのアラミド繊維(商標名トワロン;日本アラミド社製)を用いた他は実施例2同様にして複合紙状物Bを得た。
(Comparative Example 4)
A composite paper-like material B was obtained in the same manner as in Example 2 except that an aramid fiber (trade name: Twaron; manufactured by Nihon Aramid Co., Ltd.) having a fiber diameter of approximately 15 μm and an average fiber length of 6 mm was used instead of the polyimide short fiber. .

得られた複合紙状物の坪量は296g/m2、厚さは295μm、裂断長1.9kmであった。得られた複合紙状物Bを実施例6同様に耐酸化性の評価をしたところ、63%であり、耐酸化性に劣るものであった。 The obtained composite paper-like product had a basis weight of 296 g / m 2 , a thickness of 295 μm, and a breaking length of 1.9 km. The obtained composite paper B was evaluated for oxidation resistance in the same manner as in Example 6. As a result, it was 63%, which was inferior in oxidation resistance.

(摺動性の評価)
(実施例7)
実施例1の複合紙状物Aを500×500mmに裁断し2枚積層したものを、加熱装置のついたプレス板を有するプレス機を用いて3MPaの加圧下350℃まで加熱し、350℃にて15分加圧下加熱し、緻密化された複合紙状物を得た。
(Slidability evaluation)
(Example 7)
The composite paper-like material A of Example 1 cut to 500 × 500 mm and laminated two times was heated to 350 ° C. under a pressure of 3 MPa using a press machine having a press plate with a heating device, and the temperature was increased to 350 ° C. And heated under pressure for 15 minutes to obtain a densified composite paper.

得られた複合紙状物の密度は1.60g/m2、厚さは322μmであった。得られた複合紙状物を30×30mmに裁断したものを測定試料としてスラスト摩擦磨耗試験機(東洋ボールドウィン社製;EMFIII-E)を用いて、外径25mm、内径20mmのリング状断面を摺動面とする炭素鋼S45C製の治具を相手材とした摺動試験を行った。なお、相手材の摺動面の表面粗さはRa0.5aとし、無潤滑下にて測定を行った。周速度100m/分、加圧力0.49MPaとし、常温下で20時間摺動させた後の試料の磨耗量および摩擦係数を測定した。磨耗量は、試験前後での試料の重量変化量をもって評価した。摩擦係数は測定時の試料に対して回転方向に発生する応力(トルク)を装置に付属のロードセルにて読み取り算出した。得られた結果を表2に示した。 The resulting composite paper-like material had a density of 1.60 g / m 2 and a thickness of 322 μm. Using a thrust frictional wear tester (manufactured by Toyo Baldwin; EMFIII-E) as a measurement sample, the resulting composite paper-like material cut into 30 x 30 mm was slid into a ring-shaped cross section with an outer diameter of 25 mm and an inner diameter of 20 mm. A sliding test was conducted using a jig made of carbon steel S45C as the moving surface. The surface roughness of the sliding surface of the counterpart material was Ra 0.5a, and the measurement was performed without lubrication. The wear amount and coefficient of friction of the sample were measured after sliding at room temperature for 20 hours at a peripheral speed of 100 m / min and a pressure of 0.49 MPa. The amount of wear was evaluated by the amount of change in the weight of the sample before and after the test. The coefficient of friction was calculated by reading the stress (torque) generated in the rotational direction with respect to the sample at the time of measurement using a load cell attached to the apparatus. The obtained results are shown in Table 2.

(比較例5)
ポリイミド短繊維の代わりに繊維径がおおよそ15μm、平均繊維長が6mmのアラミド繊維(商標名トワロン;日本アラミド社製)を用いた他は実施例1同様にして複合紙状物Aを得た。さらに実施例7同様にして2枚積層して複合紙状物を得た。得られた複合紙状物の密度は1.45g/m2、厚さは353μmであった。得られた複合紙状物を実施例7同様にして摺動試験を行った。得られた結果を表2に示した。
(Comparative Example 5)
A composite paper-like material A was obtained in the same manner as in Example 1 except that an aramid fiber (trade name: Twaron; manufactured by Nihon Aramid Co., Ltd.) having a fiber diameter of approximately 15 μm and an average fiber length of 6 mm was used instead of the polyimide short fiber. Furthermore, two sheets were laminated in the same manner as in Example 7 to obtain a composite paper. The density of the obtained composite paper-like material was 1.45 g / m 2 and the thickness was 353 μm. The resulting composite paper-like material was subjected to a sliding test in the same manner as in Example 7. The obtained results are shown in Table 2.

Figure 2005133260
Figure 2005133260

表2から明らかなように、本発明の複合紙状物は摺動性に優れ、高摺動条件下でも低磨耗性であり、かつ摩擦係数が小さい。

As is clear from Table 2, the composite paper-like material of the present invention is excellent in slidability, has low wear even under high sliding conditions, and has a small friction coefficient.

Claims (14)

共に繊維状のポリテトラフルオロエチレンとポリイミドからなる複合紙状物。   A composite paper-like material made of both polytetrafluoroethylene and polyimide. 繊維状のポリイミドが結晶性を有する繊維であることを特徴とする、請求項1記載の複合紙状物。   The composite paper-like product according to claim 1, wherein the fibrous polyimide is a fiber having crystallinity. ポリイミドが熱可塑性であることを特徴とする、請求項1または請求項2記載の複合紙状物。   3. The composite paper-like material according to claim 1, wherein the polyimide is thermoplastic. ポリイミドが下記化学式(1)に記載されるものであることを特徴とする、請求項1〜請求項3いずれかに記載の複合紙状物;
Figure 2005133260
(式中、Rは単環式芳香族、縮合多環式芳香族、芳香環が直接もしくは架橋員により結合された非縮合多環式芳香族から選ばれる4価の芳香族残基を示す。また、Xは直接結合、炭化水素基、カルボニル基、エーテル基、チオ基もしくはスルホニル基から選ばれる2価の残基を示し、Y〜Yは水素、アルキル基、アルコキシル基もしくはハロゲン基から選ばれる1価の残基を示す。)。
The composite paper-like material according to any one of claims 1 to 3, wherein the polyimide is one represented by the following chemical formula (1):
Figure 2005133260
(In the formula, R represents a tetravalent aromatic residue selected from a monocyclic aromatic group, a condensed polycyclic aromatic group, and a non-condensed polycyclic aromatic group in which an aromatic ring is bonded directly or by a bridging member. X represents a divalent residue selected from a direct bond, a hydrocarbon group, a carbonyl group, an ether group, a thio group or a sulfonyl group, and Y 1 to Y 4 represent a hydrogen, alkyl group, alkoxyl group or halogen group. Indicates a monovalent residue selected.)
ポリイミドが下記化学式(2)に示されるものであることを特徴とする、請求項1〜請求項4いずれかに記載の複合紙状物;
Figure 2005133260
The composite paper-like material according to any one of claims 1 to 4, wherein the polyimide is represented by the following chemical formula (2);
Figure 2005133260
繊維状ポリイミドが、平均繊維径が3〜30μmであり、平均繊維長が1〜15mmの短繊維である、請求項1〜請求項5いずれかに記載の複合紙状物。   6. The composite paper-like product according to claim 1, wherein the fibrous polyimide is a short fiber having an average fiber diameter of 3 to 30 μm and an average fiber length of 1 to 15 mm. 繊維状ポリテトラフルオロエチレンは、繊維状粉体であって、平均繊維長が100〜5000μm、平均形態係数が5以上であることを特徴とする、請求項1〜6いずれかに記載の複合紙状物。   The composite paper according to any one of claims 1 to 6, wherein the fibrous polytetrafluoroethylene is a fibrous powder having an average fiber length of 100 to 5000 µm and an average form factor of 5 or more. State. ポリテトラフルオロエチレンは、示差走査型熱量計分析において毎分5℃の昇温速度で測定して得られる溶融吸熱曲線の低温側のピーク面積比率が、全ピーク面積の88.5%以上であることを特徴とする、請求項1〜7のいずれかに記載の複合紙状物。   For polytetrafluoroethylene, the peak area ratio on the low temperature side of the melting endotherm curve obtained by measuring at a rate of temperature increase of 5 ° C. per minute in differential scanning calorimetry analysis is 88.5% or more of the total peak area. The composite paper-like material according to any one of claims 1 to 7, characterized in that 繊維状ポリテトラフルオロエチレンが繊維状ポリイミドに熱融着していることを特徴とする、請求項1〜8いずれかに記載の複合紙状物。   9. The composite paper-like material according to claim 1, wherein the fibrous polytetrafluoroethylene is thermally fused to the fibrous polyimide. 繊維状のポリテトラフルオロエチレンとポリイミドを抄紙法により製造されることを特徴とする、請求項1〜8いずれかに記載の複合紙状物の製造方法。   9. The method for producing a composite paper-like material according to any one of claims 1 to 8, wherein fibrous polytetrafluoroethylene and polyimide are produced by a papermaking method. 抄紙法が湿式抄紙法であることを特徴とする、請求項10記載の複合紙状物の製造方法。   11. The method for producing a composite paper-like material according to claim 10, wherein the papermaking method is a wet papermaking method. 抄紙法が、繊維状ポリテトラフルオロエチレンの分散工程、繊維状ポリイミドの混合工程、抄紙工程、加圧工程および乾燥工程から構成されることを特徴とする、請求項11記載の複合紙状物の製造方法。   12. The composite paper-like material according to claim 11, wherein the paper-making method comprises a dispersion step of fibrous polytetrafluoroethylene, a mixing step of fibrous polyimide, a paper-making step, a pressing step, and a drying step. Production method. 乾燥工程後に、加熱下に加圧処理工程を含むことを特徴とする、請求項12記載の複合紙状物の製造方法。   13. The method for producing a composite paper-like material according to claim 12, further comprising a pressure treatment step under heating after the drying step. シームレスベルト、回路基板、スタンピングモールド、フィルター、ガードチューブ、難燃紙材、半田型紙、研磨用紙材、電解質膜、摺動部材、シール部材および緩衝材からなる群より選ばれる何れか1つに用いられる、請求項1〜9の複合紙状物。

Used for any one selected from the group consisting of seamless belts, circuit boards, stamping molds, filters, guard tubes, flame retardant paper materials, solder paper, polishing paper materials, electrolyte membranes, sliding members, seal members, and cushioning materials. The composite paper-like material according to claim 1 to 9.

JP2003372813A 2003-10-31 2003-10-31 Composite paper-like material Pending JP2005133260A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003372813A JP2005133260A (en) 2003-10-31 2003-10-31 Composite paper-like material
US10/577,399 US20070084575A1 (en) 2003-10-31 2004-10-26 Composite papyraceous material
PCT/JP2004/015841 WO2005042839A1 (en) 2003-10-31 2004-10-26 Composite papyraceous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003372813A JP2005133260A (en) 2003-10-31 2003-10-31 Composite paper-like material

Publications (1)

Publication Number Publication Date
JP2005133260A true JP2005133260A (en) 2005-05-26

Family

ID=34544051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003372813A Pending JP2005133260A (en) 2003-10-31 2003-10-31 Composite paper-like material

Country Status (3)

Country Link
US (1) US20070084575A1 (en)
JP (1) JP2005133260A (en)
WO (1) WO2005042839A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190212A (en) * 2008-02-13 2009-08-27 Toho Kasei Kk Insulated substrate material for high-frequency band
JP2014099282A (en) * 2012-11-13 2014-05-29 Tomoegawa Paper Co Ltd Insulation sheet and method for manufacturing the same
JP2016223048A (en) * 2015-05-28 2016-12-28 イチカワ株式会社 Wet paper conveyance belt
WO2019188923A1 (en) * 2018-03-30 2019-10-03 東洋紡株式会社 Wet non-woven fabric for filter, filter medium for filter, and filter
WO2022024520A1 (en) * 2020-07-31 2022-02-03 パナソニックIpマネジメント株式会社 Ptfe powder, method for producing electrode, and electrode

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080105395A1 (en) * 2005-01-18 2008-05-08 Naoyuki Shiratori Polyketone Fiber Paper, Polyketone Fiber Paper Core Material For Printed Wiring Board, And Printed Wiring Board
CN102587217B (en) * 2012-03-28 2014-04-02 天津工业大学 Preparation method of polyimide fiber insulating paper
JP6580643B2 (en) * 2017-08-10 2019-09-25 東レ・デュポン株式会社 Polyimide fiber paper

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533902A (en) * 1969-05-29 1970-10-13 Grace W R & Co Impregnated fibrous materials and process of making the same
FI89526C (en) * 1988-11-29 1993-10-11 Chemiefaser Lenzing Ag Highly flammable, high temperature resistant paper-based materials based on thermostable polymers
AT395178B (en) * 1990-10-15 1992-10-12 Chemiefaser Lenzing Ag FIRE-RESISTANT, HIGH-TEMPERATURE-RESISTANT POLYIMIDE FIBERS, AND METHOD FOR THE PRODUCTION THEREOF
JP2951484B2 (en) * 1991-08-28 1999-09-20 ユニチカ株式会社 Powder and granules of polyimide precursor, mixture thereof and production method thereof
EP0573974B1 (en) * 1992-06-09 1998-09-02 Unitika Ltd. Polyimide paper, polyimide composite paper and process for producing these products
KR100341078B1 (en) * 1993-04-05 2002-11-29 다이킨 고교 가부시키가이샤 Polytetrafluoroethylene fiber, a planar material containing the same, and a process for producing the same
WO1996000807A1 (en) * 1994-06-30 1996-01-11 Daikin Industries, Ltd. Bulky long fiber and split yarn of polytetrafluoroethylene, method of manufacturing the same, cotton-like material manufacturing method using the fiber and yarn, and dust collecting filter cloth
JP3840569B2 (en) * 1997-08-21 2006-11-01 ダイキン工業株式会社 Polytetrafluoroethylene tube and extruder therefor
JP2000154491A (en) * 1998-11-18 2000-06-06 Tomoegawa Paper Co Ltd Heat-resistant papery material and its production
JP2001032189A (en) * 1999-05-20 2001-02-06 Tomoegawa Paper Co Ltd Heat-resistant paper-like material and its production
US6528148B2 (en) * 2001-02-06 2003-03-04 Hewlett-Packard Company Print media products for generating high quality visual images and methods for producing the same
JP2003096698A (en) * 2001-09-27 2003-04-03 Unitika Ltd Heat-resistant insulating paper sheet and method for producing the same
US6949287B2 (en) * 2003-01-20 2005-09-27 Yeu Ming Tai Chemical Industrial Co., Ltd. Polytetrafluoroethylene fiber and method for manufacturing the same
US7108912B2 (en) * 2004-03-09 2006-09-19 Yeu Ming Tai Chemical Industrial Co., Ltd. Polytetrafluoroethylene fiber and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190212A (en) * 2008-02-13 2009-08-27 Toho Kasei Kk Insulated substrate material for high-frequency band
JP2014099282A (en) * 2012-11-13 2014-05-29 Tomoegawa Paper Co Ltd Insulation sheet and method for manufacturing the same
JP2016223048A (en) * 2015-05-28 2016-12-28 イチカワ株式会社 Wet paper conveyance belt
WO2019188923A1 (en) * 2018-03-30 2019-10-03 東洋紡株式会社 Wet non-woven fabric for filter, filter medium for filter, and filter
WO2022024520A1 (en) * 2020-07-31 2022-02-03 パナソニックIpマネジメント株式会社 Ptfe powder, method for producing electrode, and electrode

Also Published As

Publication number Publication date
US20070084575A1 (en) 2007-04-19
WO2005042839A1 (en) 2005-05-12

Similar Documents

Publication Publication Date Title
EP1756360B1 (en) Aramid paper blend
KR101720369B1 (en) Composite with low content of metal
US10173403B2 (en) Aramid resin film laminate and method for producing the same
JP6813056B2 (en) How to wind up the porous carbon fiber sheet
WO2005071028A1 (en) Particulate filled fluoropolymer coating composition and method of making article therefrom
CN109155163B (en) Dielectric substrate comprising unsintered polytetrafluoroethylene and method for manufacturing same
MX2007014659A (en) Electroconductive aramid paper.
EP2222918B1 (en) Papers containing floc derived from diamino diphenyl sulfone
US20100122769A1 (en) Processes for Making Sheet Structures having Improved Compression Performance
JP2005133260A (en) Composite paper-like material
KR20210137426A (en) Liquid composition, powder, and method for preparing powder
WO2017004112A1 (en) Methods of manufacture of prepregs and composites from polyimide particles, and articles prepared therefrom
KR20170018479A (en) Semiconductor manufacture component
KR100250898B1 (en) Process for making fluoropolymer composites
US8431213B2 (en) Sheet structures having improved compression performance
JP7421156B1 (en) Dielectric and its manufacturing method
KR20220162146A (en) Flexible Dielectric Material Comprising a Biaxially-Oriented Polytetrafluoroethylene Reinforced Layer
JP3839890B2 (en) Paper sheet
JP2023056159A (en) Insulating resin material, circuit board including insulating resin material, and method for producing insulating resin material
EP3929354A1 (en) Method for producing aramid paper
WO2022009918A1 (en) Sizing agent, sized fibers, prepreg, and dispersion
JP2005042235A (en) Heat-resistant nonwoven fabric
JP2003183966A (en) Polyimide nonwoven fabric having improved texture and method for producing polyimide nonwoven fabric