WO2005041204A1 - 相変化型メモリ - Google Patents

相変化型メモリ Download PDF

Info

Publication number
WO2005041204A1
WO2005041204A1 PCT/JP2004/015876 JP2004015876W WO2005041204A1 WO 2005041204 A1 WO2005041204 A1 WO 2005041204A1 JP 2004015876 W JP2004015876 W JP 2004015876W WO 2005041204 A1 WO2005041204 A1 WO 2005041204A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory element
voltage
pulse
recording medium
memory
Prior art date
Application number
PCT/JP2004/015876
Other languages
English (en)
French (fr)
Inventor
Kazuya Nakayama
Akio Kitagawa
Original Assignee
Kanazawa University Technology Licensing Organization Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University Technology Licensing Organization Ltd. filed Critical Kanazawa University Technology Licensing Organization Ltd.
Priority to JP2005515008A priority Critical patent/JP3995167B2/ja
Publication of WO2005041204A1 publication Critical patent/WO2005041204A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0076Write operation performed depending on read result
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor

Definitions

  • the present invention relates to a phase change memory using a phase change material for a recording medium.
  • Non-volatile memory flash memory and the memory is used such as FR AM, although information stored even after the power is OFF is maintained, it reads ⁇ Pi write speed is slow gutter cormorants drawback force s.
  • phase change type memory using a phase change material for a recording medium.
  • phase change material an alloy containing a so-called chalcogen-based material as a main component is used.
  • the resistance value in the amorphous state with low conductivity (high resistance) and the resistance in the crystalline state with high conductivity (low resistance) are used. Since there is a large difference in the values, each state (resistance value) can be assigned a logical value of “0” or “1”, for example, and used as a memory element.
  • Such a phase change can be caused by heating the recording medium, and the phase information is maintained even at the time of power supply OFF, so that the stored information is not lost.
  • phase change memory even when the phase change material is thinned, the phase change memory hardly deforms due to the phase change, the memory structure can be simplified, and the resistance change is large, so that it is easy to detect the phase change. Therefore, it is one of the promising non-volatile memories that can be highly integrated.
  • a recording medium is energized to detect a resistance value and read stored information.
  • a phase change material is disclosed.
  • Information is written by applying a current pulse to the recording medium and increasing the temperature of the recording medium to cause a reversible phase change between the crystalline phase and the amorphous phase. It describes that when the written information is read, the recording medium is energized, the resistance value is measured by a resistance measuring device, and the recorded information is determined.
  • it is difficult to increase the reading speed because the recording medium is energized and the resistance value is measured to make a determination.
  • the energization increases power consumption.
  • the writing method requires power supply for heating, and thus consumes a large amount of power. For this reason, it is conceivable to perform the writing process when the written information is different from the information to be read and written. It becomes like this.
  • the present invention provides a phase change type that enables high-speed reading processing of information stored in a memory element, and also enables efficient rewriting processing to reduce power consumption. It is intended to provide memory.
  • the present invention has the following features.
  • a phase change memory includes: a memory element that stores information according to a difference in phase state of a phase change recording medium; a pulse application circuit that applies a predetermined electric pulse to the memory element; A detecting circuit for detecting a voltage generated in the memory element in response to the detected electric pulse; and information stored in the memory element based on a voltage change at the time of rising or falling detected by the detecting circuit. And a read control circuit for reading the data.
  • phase-change memory includes a memory element that stores information by a difference in phase state of a phase-change recording medium, a reference memory element, and a memory element and a reference memory element.
  • a pulse application circuit for applying the electric pulse of the above, a detection circuit for detecting a voltage generated in the memory element and the reference memory element in response to the applied electric pulse, and both memories detected by the detection circuit The voltage change at the time of rise or fall of the element is compared to read the information stored in the memory element.
  • a control circuit for controlling the electric pulse of the above.
  • Still another phase change memory is a memory element that stores information according to a difference in phase state of a phase change recording medium, and a pulse application circuit that applies a predetermined electric pulse to the memory element.
  • a detecting circuit for detecting a voltage generated in the memory element in response to the applied electric pulse; and storing the voltage in the memory element based on a voltage change at the time of rising or falling detected by the detecting circuit.
  • a rewriting control circuit that stops the rewriting process when the information to be written matches the information to be written.
  • FIG. 1 is an explanatory diagram showing characteristics of a phase change recording medium used in the present invention.
  • FIG. 2 is a graph showing a voltage change at the time of rising of the phase change recording medium.
  • FIG. 3 is a graph in which the voltage change of the reference memory element is added to FIG.
  • FIG. 4 is a circuit configuration diagram according to the embodiment of the present invention.
  • FIG. 5 is a circuit diagram of another embodiment according to the present invention.
  • FIG. 6 is a circuit configuration diagram of still another embodiment according to the present invention.
  • FIG. 4 shows a circuit configuration according to the embodiment (1) of the present invention.
  • Reference numeral 1 denotes a word line
  • 2 denotes a bit line.
  • a plurality of each are arranged in a matrix.
  • a selection transistor 10 and a memory element 4 are arranged, respectively.
  • the gate of the selection transistor 10 is connected to the word line 1, the drain is connected to the bit line 2, and the source is connected to one electrode of the memory element 4.
  • the memory element 4 has a pair of electrodes sandwiching a phase-change recording medium made of a chalcogen-based material, and the other electrode is connected to a constant voltage source 3.
  • the bit line 2 is connected to a switch circuit 6 that applies electric pulses for reading and rewriting the memory element 4.
  • the switch circuit 6 includes a write switch 7, an erase switch 8, and a read switch 9.
  • Such a circuit configuration is similar to the existing switch circuit configuration for recording binary information. Further, the ground potential and the potential of the constant voltage source 3 can be set to be opposite.
  • a reset pulse can be applied, and as described above, a transition can be made from the low resistance state to the high resistance state.
  • the voltage generated in the memory element 4 when the read switch 9 is turned on is detected by the detection circuit 5.
  • the read control circuit 11 inputs a signal to the word line 1 to turn on the selection transistor 10, transmits a signal to the switch circuit 6, and turns on the read switch 9 for a predetermined time to generate an electric pulse to the memory element. Give to 4. At this time, the voltage generated in the memory element 4 is detected by the detection circuit 5 connected to the bit line 2.
  • the read control circuit 11 obtains a voltage value at a rise after a predetermined time (about 2 nanoseconds) has elapsed from the time when the read switch 9 is turned on from the detection signal from the detection circuit 5, and the voltage value is used as a reference. If the voltage is higher than the voltage, the information stored in the memory element 4 is output as the information corresponding to the low resistance state. Conversely, if the voltage value is smaller than the reference voltage, the information corresponding to the high resistance state is output.
  • reading control is performed based on a voltage change at the time of rising or falling of a voltage generated in the memory element by an electric pulse applied to the memory element.
  • the information stored in the memory element can be read in a short time, the reading speed is increased, and the time required for energization is short, so that power consumption can be suppressed.
  • phase-change material when used as a recording medium, a large difference occurs in voltage change at rising or falling depending on the phase state when an electric pulse is applied.
  • phase-change material when an alloy containing the above-described chalcogen-based material as a main component is used as the phase-change material, the resistance value of the crystalline phase and the amorphous phase are significantly different. Or, it clearly appears in the voltage change at the time of falling.
  • FIG. 1 is a circuit diagram in which an electric pulse is applied by a pulse generator 1 to a memory element having an upper electrode 2 and a lower electrode 4 formed on both sides of a recording medium 3 using a chalcogen-based material.
  • the capacitance (capacitance) of the wiring part is affected. Therefore, as shown in the equivalent circuit of Fig. 1 (b), the resistance R of the memory element and the wiring capacitance C are connected. State.
  • the voltage generated in the memory element to which the electric pulse is applied changes as shown in Fig. 2 due to the CR time constant at the time of rising.
  • FIG. 2 shows the result of a simulation in which the wiring capacitance C is set to 1.0 pF and the resistance R of the recording material is set to 1 k in a low resistance state and 100 k ⁇ in a high resistance state.
  • the vertical axis represents v / v d (V; voltage generated in the memory element, v d; voltage of supplied electric pulse), and the horizontal axis represents time (ns; nanosecond).
  • the voltage change at the time of rising greatly differs depending on the phase state of the recording medium. Therefore, if the voltage change at the time of rising is detected, the phase state (that is, stored information) of the recording material can be read within an extremely short time.
  • the structure of the memory element varies depending on the specifications of the pulse and the like to be applied, in practice, up to 1 0 one 7 seconds from the time when the pulse of the applying has been completed, in particular until 1 0 one eight seconds is the preferred time.
  • the electric pulse to be applied to the recording medium in order to examine the voltage change at the time of rising or falling is not limited because it differs depending on the material of the recording medium, the structure of the memory element, and the like.
  • the pulse voltage may be 0.01 to 0.5 (V), preferably 0.01 to 0.1 (V)
  • the pulse width may be 10 to 10 (V). 9 to 10 to 7 seconds, preferably 10 to 19 seconds to 10 to 18 seconds.
  • the prior confirmation of whether or not the recording medium has already been rewritten is performed by using a rewriting ⁇ pulse (set pulse, reset pulse) itself without using a pulse dedicated to confirmation (read pulse). Its rise time (or fall time It is proposed to do it based on
  • the present invention detects this difference, checks in advance whether the recording medium has already been rewritten, and determines whether to continue rewriting.
  • the sample voltage immediately rises. Therefore, the voltage value immediately after the pulse application is detected, and since the voltage has risen immediately, it is determined that the recording medium is in the set state, and the application of the set pulse is stopped.
  • the voltage and pulse of the rewriting pulse which can be used to rewrite the recording medium and can also be used to check beforehand whether to rewrite, depend on the material of the recording medium and the structure of the memory element, etc. Although not limited, an example of a general-purpose range is as follows.
  • the set pulse voltage for the set operation is, for example, 0.1 to 10 (V), preferably 1 to 3 (V), and the pulse width is 10 to 9 seconds to 10 to 3 seconds. , rather preferably is, 5 X 1 0 one 8 seconds ⁇ 1 X 1 0- 6 sec is illustrated.
  • the pulse voltage, 1 to 1 5 (V), preferred properly is illustrated 1 to 7 (V) is, as the pulse width 1 0 1 0 second to 1 0 2 Seconds, preferably 10 to 19 seconds to 10 to 16 seconds.
  • the main methods include the following methods for both the rising period and the falling period. 1.
  • the voltage value at the end of the period is simply compared with the set reference value.
  • FIG. 5 shows a circuit configuration according to the embodiment (2) of the present invention as a modified example of FIG.
  • FIG. 3 shows a diagram illustrating an embodiment in which a reference memory element is provided in addition to a memory element.
  • a resistance element 12 having a reference resistance value R f is provided in addition to the memory element 4 for storing information.
  • the reference resistance value R f is set to an intermediate value between the high resistance state and the low resistance state of the memory element 4 as shown in FIG.
  • the read control circuit 11 controls the switch circuit 6 so as to apply an electric pulse to the resistance element 12 as well as the memory element 4, and the detection circuit 5 detects the voltage generated in the memory element 4 and the resistance element 12 I do.
  • the read control circuit 11 obtains a voltage value at the time of rising of the memory element 4 and the resistance element 12 after a predetermined time elapses from the detection signal of the detection circuit 5, compares the two, and determines the memory value according to the magnitude.
  • the information stored in element 4 is determined. That is, when the voltage value of the memory element 4 is large, it is determined that the information corresponding to the low resistance state is stored, and when the voltage value is opposite, it is determined that the information corresponding to the high resistance state is stored.
  • the information stored in the memory element can be read reliably. Can be.
  • the resistance between the high resistance state 100 ⁇ : ⁇ and the low resistance state 1 ⁇ If a resistance value of 10 k ⁇ is given to the reference memory element, the voltage change of the reference memory element is intermediate between the voltage change in the high resistance state and the voltage change in the low resistance state as shown in FIG. Changes in the voltage of the memory element Comparing with the voltage change of the element, it can be determined that the resistance is higher when the voltage rises more rapidly than the reference memory element, and that the resistance is higher when the voltage rises more gradually than the reference memory element.
  • the reference memory element may be a memory element similar to the memory element to be read, or may be a resistance element.
  • the resistance value is a resistance value in a set state and a resistance value in a reset state. It shall be between the resistance value.
  • a plurality of elements in the set state (low resistance) are connected in series, and the resistance value is higher than the resistance in the set state. Or, multiple devices in reset are connected in parallel.
  • the resistance in the set state is 100 ⁇
  • the resistance value in the reset state is 10 Ok.
  • the reference resistance (R ref) must be between the set resistance and the reset resistance, for example, l to 3 kQ (ie, 100 Q ⁇ R ref ⁇ 100 k ⁇ ).
  • the reference resistance value is close to the resistance value in the set state or the resistance value in the reset state (for example, 110 ⁇ or 9.9 kQ), comparison becomes difficult, and it is preferable to avoid it.
  • the material of the reference memory element is the same as the material of the memory element to be read because the temperature characteristics are the same.
  • the electric pulse to be applied to the recording medium for examining the voltage change at the time of rising or falling is the same as in the case of the above-mentioned embodiment (1).
  • FIG. 6 shows a circuit configuration in the case where the memory element 4 is rewritten, as the circuit configuration according to the embodiment (3) of the present invention.
  • the rewrite control circuit 13 controls the write switch 7 or the erase switch 8 of the switch circuit 6 to supply a rewrite electric pulse to the memory element 4 to perform the rewrite control.
  • the detection circuit 5 is connected to the bit line 2 as in the case of FIG. 4, and the detection signal is transmitted to the rewrite control circuit 13.
  • the rewriting control circuit 13 inputs a signal to the word line 1 to turn on the selection transistor 10 and turns on the write switch 7 or the erase switch 8 according to the information to be written.
  • the control signal is transmitted to the switch circuit 6 so as to perform the control.
  • the write switch 7 or the erase switch 8 is turned on, an electric pulse is applied to the memory element 4 to generate a voltage.
  • the voltage is detected by the detection circuit 5 and transmitted to the rewrite control circuit 13.
  • the rewrite control circuit 13 obtains the voltage after a predetermined time (about 2 nanoseconds) has elapsed from the time when the write switch 7 or the erase switch 8 is turned on from the detection signal of the detection circuit 5, and calculates the voltage as shown in FIG. Similarly, it is compared with the reference voltage, and it is determined whether the memory element 4 is in the low resistance state or the high resistance state according to the magnitude. When the determined storage information of the memory element 4 matches the information to be written, the control signal to the switch circuit 6 is stopped, and the application of the electric pulse to the memory element 4 is stopped. The rewriting process is performed by applying a pulse. Therefore, when the information to be written is the same as the information stored in the memory element 4, the rewriting process does not need to be performed, so that the rewriting process is more efficient and the power consumption can be reduced.
  • the rewrite control of the memory element can be efficiently performed by utilizing the difference in voltage change at the time of rise or fall depending on the phase state of the recording material using the phase change material.
  • a phase change recording medium using a chalcogen-based material when a phase change recording medium using a chalcogen-based material is in an amorphous state, it is in a high resistance state. In this state, if the temperature of the phase-change type recording medium is maintained at a temperature equal to or higher than the crystallization temperature and equal to or lower than the melting point and maintained for a certain period of time or more, a low-resistance crystalline state is obtained. State. Therefore, an amorphous phase-change recording medium is converted into a crystalline state by applying an electric pulse that gives energy to generate heat so that the temperature of the phase-change recording medium is equal to or higher than the crystallization temperature and equal to or lower than the melting point. You can make a transition. Such an electric pulse is called a set pulse, and is determined by a predetermined pulse voltage and a predetermined pulse width (time) depending on conditions such as the material of the phase change recording medium and the structure of the memory element.
  • phase change recording medium using the chalcogen-based material when it is in a crystalline state, it is in a low resistance state. In this state, if the phase-change recording medium is heated to a temperature equal to or higher than the melting point and then rapidly cooled, the phase-change recording medium transitions to a high-resistance amorphous state. At this time, if the cooling rate is low, the memory element will crystallize. Therefore, the phase change type recording medium in a crystalline state can be changed to an amorphous state by applying an electric pulse that gives energy for generating heat quantity such that a memory element has a melting point or higher, with a reduced pulse width. Can be. Such an electric pulse is called a reset pulse, and is determined by a predetermined pulse voltage and a predetermined pulse width (time) depending on conditions such as the material of the phase change recording medium and the structure of the memory element.
  • the stored information is determined based on the voltage change at the time of rising or falling of the voltage generated in the memory element, and the information matches the information to be written. If the rewriting process is stopped in such a case, such useless rewriting process can be avoided, the rewriting process can be made more efficient, and the power consumption can be reduced.
  • the stored information can be determined in a very short time (about 2 nanoseconds), and compared with the pulse width required for rewriting (10 to 100 nanoseconds). Can be stopped with greatly reduced pulse width (2 ns to 8 ns)
  • phase change recording medium in addition to a change in temperature between a crystalline state and an amorphous state, such as a chalcogen-based material, melting (liquid phase) and recrystallization (solidification) Phase), and also includes a phase change such as a crystalline state and another crystalline state, and any of these is included if the recording medium is capable of a phase change that causes a large difference in voltage change at the time of rising or falling.
  • a phase change recording medium in addition to a change in temperature between a crystalline state and an amorphous state, such as a chalcogen-based material, melting (liquid phase) and recrystallization (solidification) Phase
  • phase change such as a crystalline state and another crystalline state
  • the following is an example of a specific material composition of an alloy containing a chalcogenide (chalcogenide) material as a main component.
  • (A) a material containing Te, for example, a Ge x Sb y Te z, when the x + y + z 100, X is 5 atomic% or more, y is 5 atomic% or more, z is 5 atomic% or more Stuff.
  • X is 5 atomic% or more
  • y is 5 atomic% or more
  • z is 5 atomic 0/0 or more.
  • X is 5 atomic% or more
  • y is 5 atomic% or more
  • z is 5 atomic% or more.
  • X is 5 atomic% or more
  • y is 5 atomic% or more
  • z is 5 atomic% or more.
  • the shape of the phase change recording medium is not limited, but from the viewpoint of applying a small set pulse and a small reset pulse effectively, the thickness of the phase change recording medium placed between the applied electrodes (- ) Is about l nm to l ⁇ m, especially 10 nm to 200 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)

Abstract

メモリ素子4は、相変化型記録媒体を備えており、高抵抗状態及び低抵抗状態によって情報を記憶する。読取制御回路11は、スイッチ回路6に制御信号を送信してメモリ素子4に電気パルスを与え、その際に発生する電圧を検知回路5により検知し、立ち上がり時の電圧変化からメモリ素子4に記憶された情報を判定する。したがって、数ナノ秒程度の高速読取処理が可能となる。また、書換処理の場合にも、書き込むべき情報が記憶された情報と一致すると判断した時点で書換処理を停止できるため無駄な消費電力が発生せず消費電力を節減できる。この相変化型メモリによって、メモリ素子に記憶された情報の高速の読取処理が可能になり、また、書換処理が効率化され、消費電力を低減することができる。

Description

相変化型メモリ
技術分野
本発明は、 相変化材料を記録媒体に用いた相変化型メモリに関する。
背景技術
近年、 高度情報化社会が進むに伴い、 大容量のメモリデパイスに関する需要は 増大の一途をたどり、 高集積ィ匕及ぴ高速化が要求されている。 さらに、 携帯電話 等への用途拡大に対応して消費電力を抑えることも重要視されている。
従来のメモリとしては、 揮発性メモリとしては D R AM、 S R AMといったメ モリが用いられており、 高速の情報読取り及ぴ書込みが可能であるが、 電源が O F Fされると記憶された情報が消失してしまう欠点がある。 また、 不揮発性メモ リとしてはフラッシュメモリ、 F R AMといったメモリが用いられており、 電源 O F F時でも記憶された情報が保持されるが、 読取り及ぴ書込み速度が遅いとい う欠点力 sある。
こうしたメモリのほかに、 相変化材料を記録媒体に用いた相変化型メモリが挙 げられる。 相変化材料には、 いわゆるカルコゲン系材料を主成分とした合金が使 用され、 低い伝導性 (高抵抗) の非晶質状態の抵抗値と、 高い伝導性 (低抵抗) の結晶状態の抵抗値には大きな差が存在するため、 それぞれの状態 (抵抗値) に 例えば論理値の 「0」 と 「1」 を割り当てて、 メモリ素子として使用することが できる。 そして、 こうした相変化は、 記録媒体を加熱して生じさせることができ 、 電源 O F F時でも相状態は維持されるため記憶された情報が消失することはな レ、。 また、 相変化メモリは、 相変化材料を薄膜化した場合でも相変化に伴う変形 はほとんどなく、 メモリ構造も単純化でき、 抵抗値の変化が大きいため相変化を 検知するのが容易である。 したがって、 高集積化可能な不揮発性メモリとして期 待されているものの 1つである。
相変化型メモリでは、 記録媒体に通電して抵抗値を検出し記憶された情報の読 取りを行っている。 例えば、 特開 2 0 0 2— 2 0 3 3 9 2号公報では、 相変化材 料を記録媒体として用い、 この記録媒体に電流パルスを印加することで記録媒体 の温度を上昇させて結晶相と非晶質相との間で可逆的な相変化を起こすようにし て情報を書込み、 書き込んだ情報を読み出す場合には記録媒体に通電して抵抗測 定器により抵抗値を測定して記録された情報を判定する点が記載されている。 上述した従来の相変化型メモリの読取方法では、 記録媒体に通電し抵抗値を測 定して判定するため読取速度の高速化を図ることが困難で、 通電するため消費電 力が大きくなる。 また、 書込み方法についても加熱させるための通電が必要とな るため消費電力が大きく、 そのため書き込まれた情報を読み出して書き込むべき 情報と異なる場合に書き込み処理を行うことも考えられるが、 処理時間がかかる ようになってしまう。
発明の開示
本発明は、 従来技術においてこうした課題があることに鑑み、 メモリ素子に記 憶された情報の高速の読取処理を可能にするとともに書換処理を効率化して消費 電力を低減することができる相変化型メモリを提供することを目的とする。 本発明は、 次の特徴を有するものである。
( 1 ) 本発明に係る相変化型メモリは、 相変化型記録媒体の相状態の違いにより 情報を記憶するメモリ素子と、 前記メモリ素子に所定の電気パルスを印加するパ ルス印加回路と、 印加された前記電気パルスに応答して前記メモリ素子に発生す る電圧を検知する検知回路と、 前記検知回路が検知した立ち上がり時又は立下り 時の電圧変化に基づいて前記メモリ素子に記憶された情報を読み出す読取制御回 路とを備えていることを特徴とする。
( 2 ) 本発明に係る別の相変化型メモリは、 相変化型記録媒体の相状態の違いに より情報を記憶するメモリ素子と、 参照メモリ素子と、 前記メモリ素子及び前記 参照メモリ素子に所定の電気パルスを印加するパルス印加回路と、 印加された前 記電気パルスに応答して前記メモリ素子及ぴ前記参照メモリ素子に発生する電圧 を検知する検知回路と、 前記検知回路が検知した両メモリ素子の立ち上がり時又 は立下り時の電圧変化を比較して前記メモリ素子に記憶された情報を読み出す読 取制御回路とを備えていることを特徴とする。
( 3 ) 本発明に係るさらに別の相変化型メモリは、 相変化型記録媒体の相状態の 違いにより情報を記憶するメモリ素子と、 該メモリ素子に所定の電気パルスを印 加するパルス印加回路と、 印加された前記電気パルスに応答して前記メモリ素子 に発生する電圧を検知する検知回路と、 前記検知回路が検知した立ち上がり時又 は立下り時の電圧変化に基づいて前記メモリ素子に記憶された情報を判定し書き 込むべき情報とが一致する場合には書換処理を停止する書換制御回路とを備えて いることを特徴とする。
図面の簡単な説明
図 1は、 本発明に用いる相変化型記録媒体の特性を示す説明図である。
図 2は、 相変化型記録媒体の立ち上がり時の電圧変化を示すグラフである。 図 3は、 図 2に参照メモリ素子の電圧変化を加えたグラフである。
図 4は、 本発明に係る実施形態に関する回路構成図である。
図 5は、 本発明に係る別の実施形態に関する回路構成図である。
図 6は、 本発明に係るさらに別の実施形態に関する回路構成図である。
図中の符号は、 それぞれ次のものを示している。 1 ;ワードライン、 2 ; ビッ トライン、 3 ;定電圧源、 4 ;メモリ素子、 5 ;検知回路、 6 ;スィッチ回路、 7 ;書き込みスィッチ、 8 ;消去スィッチ、 9 ;読み出しスィッチ、 1 0 ;選択 用トランジスタ、 1 1 ;読取制御回路、 1 2 ;参照抵抗素子、 1 3 ;書換制御回 路。
発明を実施するための最良の形態
以下、 本発明を添付図面に示す実施形態に基づいて詳しく説明する。 なお、 以 下に説明する実施形態は、 本発明を実施するにあたって好ましい具体例であるか ら、 技術的に種々の限定がなされているが、 本発明は、 以下の説明において特に 本発明を限定する旨明記されていない限り、 これらの形態に限定されるものでは ない。
図 4は、 本発明の上記 (1 ) に係る実施形態に関する回路構成を示している。 1はワードライン、 2はビットラインを示し、 図示されていないがそれぞれ複数 本配列されており、 マトリクス状になっている。 ワードライン 1及ぴビットライ ン 2の各交点には、 選択用トランジスタ 1 0及びメモリ素子 4がそれぞれ配置さ れている。
選択用トランジスタ 1 0のゲートはワードライン 1に接続され、 ドレインはビ ットライン 2に接続されており、 ソースはメモリ素子 4の一方の電極に接続され ている。 メモリ素子 4は、 図 1に示すように 1対の電極にカルコゲン系材料から なる相変化型記録媒体を挟んで構成されており、 他方の電極は定電圧源 3に接続 されている。 ビットライン 2は、 メモリ素子 4の読取用及ぴ書換用の電気パルス を印加するスィッチ回路 6に接続されている。 スィッチ回路 6は、 書き込みスィ ツチ 7、 消去スィツチ 8及ぴ読み出しスィツチ 9から構成される。
こうした回路構成は、 既存の 2値情報記録用のスィツチ回路構成と同様のもの である。 また、 接地電位と定電圧源 3の電位を逆に設定することもできる。
書き込みスィッチ 7がオンになると、 セットパルスを印加することができ、 上 述したように高抵抗状態から低抵抗状態へ遷移させることができる。
また、 消去スィッチ 8がオンになると、 リセットパルスを印加することができ 、 上述したように低抵抗状態から高抵抗状態へ遷移させることができる。
選択中のメモリ素子 4の抵抗値は、 読み出しスィツチ 9をオンにしてメモリ素 子 4に発生する電圧が検知回路 5で検知される。
読取制御回路 1 1は、 ワードライン 1に信号を入力して選択用トランジスタ 1 0をオンにし、 スィツチ回路 6に信号を送信して読み出しスィツチ 9を所定時間 オンにすることで電気パルスをメモリ素子 4に与える。 その際にメモリ素子 4に 発生する電圧をビットライン 2に接続した検知回路 5により検知する。
読取制御回路 1 1は、 読み出しスィッチ 9がオンになった時点から所定時間 ( 2ナノ秒程度) 経過後の立ち上がり時の電圧値を検知回路 5からの検知信号から 求めて、 その電圧値が基準電圧よりも大きい場合は、 メモリ素子 4に記憶された 情報は低抵抗状態に対応する情報であるとして該当する情報を出力する。 逆に、 電圧値が基準電圧よりも小さい場合には、 高抵抗状態に対応する情報を 出力する。
本発明は、 上記のような構成を有することで、 メモリ素子に印加された電気パ ルスによりメモリ素子に発生する電圧の立ち上がり時又は立下り時の電圧変化に 基づいて読取制御を行うので、 極めて短時間にメモリ素子に記憶された情報を読 取ることができ、 読取速度が高速化されるとともに通電に要する時間が短睁間で 済むので消費電力を抑えることが可能となる。
すなわち、 相変化材料を記録媒体として用いた場合、 電気パルスを印加すると 相状態により立ち上がり時又は立下り時の電圧変化に大きな相違が生じる。 例え ば、 相変化材料として上述したカルコゲン系材料を主成分とした合金を用いた場 合結晶相と非晶質相とでは抵抗値が大きく異なるが、 この抵抗値の相違が 5tち上 がり時又は立下り時の電圧変化に明瞭に現れてくる。
図 1は、 カルコゲン系材料を用いた記録媒体 3の両側に上部電極 2及び下部電 極 4を形成したメモリ素子にパルス発生器 1により電気パルスを印加する回路図 を示している。 この場合、 電気パルスを印加すると、 配線部分の容量 (キャパシ タンス) の影響が生じるため、 図 1 ( b ) の等価回路に示すように、 メモリ素子 の抵抗 R及ぴ配線容量 Cが接続された状態となる。 電気パルスを印加されたメモ リ素子に発生する電圧は、 立ち上がり時に C R時定数により図 2のように変化す る。
図 2では、 配線容量 Cを 1 . 0 p Fとして、 記録材料の抵抗 Rを低抵抗拔態で 1 k 高抵抗状態で 1 0 0 k Ωと設定してシミュレーションした結果である。 なお、 縦軸には v/v d (V ;メモリ素子に発生する電圧、 v d ;供給される電 気パルスの電圧) をとり、 横軸には時間 (n s ;ナノ秒) をとつている。
メモリ素子が低抵抗状態にある場合には電圧は急速に上昇しながら立ち上がつ ているが、 それに比べて高抵抗状態にある場合には電圧は徐々に上昇しな力 ら立 ち上がっており、 両者の間には明瞭な相違が認められる。
このように立ち上がり時の電圧変化が記録媒体の相状態で大きく異なっている ため、 立ち上がり時の電圧変化を検知すれば極めて短い時間内に記録材料の相状 態 (すなわち記憶された情報) を読み取ることができるようになる。
以上の例では、 立ち上がり時の電圧変化について説明したが、 立下り時におい ても電圧変化にこのような大きな違いが生じることから、 立下り時の電圧変化を 検知しても同様に極めて短い時間内に記憶された情報を読み取ることが可能であ る。
本発明でいう立ち上がり時とは、 該記録媒体の材料、 メモリ素子の構造、 印加 されるパルスの仕様等によって異なるが、 実用的には、 パルスを印加した時点か ら 1 0— 7秒まで、 特に 1 0一8秒までが好ましい期間である。
また、 立下り時も、 該記録媒体の材料、 メモリ素子の構造、 印加されるパルス の仕様等によって異なるが、 実用的には、 パルスの印加が終了した時点から 1 0 一7秒まで、 特に 1 0一8秒までが好ましい期間である。
立ち上がり時又は立下り時の電圧変化を調べるために、 該記録媒体に印加すベ き電気パルスは、 該記録媒体の材料及ぴメモリ素子の構造等によつて異なるので 限定はされないが、 汎用的な範囲の一例を挙げると、 該パルス電圧としては、 0 . 0 1〜0 . 5 (V) 、 好ましくは 0 . 0 1〜0 . 1 (V) が例示され、 パルス 幅としては 1 0一9秒〜 1 0— 7秒、 好ましくは、 1 0一9秒〜 1 0一8秒が例示され る。
また、 詳細な素子構成については後述するが、 本発明の上記 (3 ) に係る実施 形態では、 記録媒体の書き換えを行う際に、 その記録媒体が既に書き書き換えら れているかどうかを先に確認し、 無駄な二重の書き換えを省略することを提案し ている。 セット状態の記録媒体にセットパルスを加えることは、 記録媒体の状態 を何も変えることがなく、 書き換えパルスのエネルギーと印加時間が無駄になる からである。
そして本発明では、 記録媒体が既に書き書き換えられているかどうかの事前の 確認を、 確認専用のパルス (リードパルス) を用いず、 書き換え用の^^ルス (セ ットパルス、 リセットパルス) 自体を用い、 その立上がり時間 (または立下り時 間) に基づいて行なうことを提案している。
書き換えパルスを記録媒体に印加すると、 記録媒体が既にセット伏態であれば 早く電圧が上昇する。 逆に記録媒体がリセット状態であれば電圧の上昇は遅くな る。 本発明では、 この違いを検出して、 記録媒体が既に書き換えられているかど うかの事前の確認し、 書き換えを継続するかどうかを決定する。
より具体的には、 セット状態の記録媒体にセットパルスを印加すると、 試料電 圧はすぐに立上がる。 そこでパルス印加直後の電圧値を検出し、 電圧がすぐに上 がっていることから記録媒体がセット状態であると判断して、 セッ卜パルスの印 加を中止する。
セットパルス幅を約 1 0 0 u seeとすると、 記録媒体の電圧の検出に 1 0 u see 必要だったとし、 その後パルス印加を中止するために 1 0 n sec必要だとしても 、 8 0 n sec (= 1 0 0 n sec- 1 0 n sec- 1 0 n sec) のパルスエネノレギ一と時 間が省略できる。 これは、 本来無駄印加していたエネルギーとその印加時間を、 8 0 %省略できることになる。
記録媒体の書き換えが可能なパルスであって、 かつ、 書き換えをすべきかどう かの事前確認にも利用可能な書き換えパルスの電圧、 パルスは、 記録媒体の材料 及ぴメモリ素子の構造等によって異なるので限定はされないが、 汎用的な範囲の 一例を挙げると次のとおりである。
セット動作の場合のセットパルス電圧としては、 0 . 1〜1 0 (V) 、 好まし くは 1〜3 (V) が例示され、 パルス幅としては 1 0— 9秒〜 1 0— 3秒、 好まし くは、 5 X 1 0一8秒〜 1 X 1 0— 6秒が例示される。
また、 リセット動作の場合には、 パルス電圧としては、 1〜1 5 (V) 、 好ま しくは 1〜7 (V) が例示され、 パルス幅としては 1 0— 1 0秒〜 1 0—2秒、 好ま しくは、 1 0一9秒〜 1 0一6秒が例示される。
電圧の変化による判定の具体的な方法は、 種々挙げられ、 限定はされないが、 主な方法としては、 立ち上がり時の期間、 立下り時の期間共に、 次の方法が例示 される。 1 . 期間の最後の電圧値を、 単純に設定基準値と比べる。
2 . 期間全体の電圧値の変化グラフを積分して設定基準と比べる。 この場合、 期間全体にわたって変化する電圧をキャパシタに印加し、 それによつて充電され た電荷の値を設定基準と比べる方法が簡便である。
3 . 期間全体の電圧値の平均をとつて設定基準と比べる。
4 . 期間の最初と最後の電圧値の差と、 設定基準とを比べる。
図 5は、 図 4の変形例として、 本発明の上記 (2 ) に係る実施形態に関する回 路構成を示している。 メモリ素子のほかに参照メモリ素子を設けた態様を示す図 を示している。 この例では、 情報を記憶するメモリ素子 4以外に参照抵抗値 R f を有する抵抗素子 1 2を備えている。 参照抵抗値 R f は、 図 3に示すように、 メ モリ素子 4の高抵抗状態及ぴ低抵抗状態の中間の値に設定されている。 読取制御 回路 1 1は、 メモリ素子 4とともに抵抗素子 1 2にも電気パルスを与えるように スィッチ回路 6を制御し、 検知回路 5は、 メモリ素子 4及ぴ抵抗素子 1 2に発生 する電圧を検知する。 そして、 読取制御回路 1 1は、 所定時間経過後のメモリ素 子 4及ぴ抵抗素子 1 2の立ち上がり時の電圧値を検知回路 5の検知信号から求め て、 両者を比較してその大小によりメモリ素子 4に記憶された情報を判定する。 すなわち、 メモリ素子 4の電圧値が大きい場合には低抵抗状態に対応する情報が 記憶されているとし、 逆の場合には高抵抗状態に対応する情報が記憶されている と判定する。
上記のように、 メモリ素子のほかに参照メモリ素子を設けて、 両者のメモリ素 子の立ち上がり時又は立下り時の電圧変化を比較することで、 メモリ素子に記憶 された情報を確実に読み取ることができる。
例えば、 上記のカルコゲン系材料を用いた記録媒体 3のように抵抗値が相状態 により大きく異なるような場合には、 高抵抗状態 1 0 0 ¾: Ωと低抵抗状態 1 Ιί Ω との間の抵抗値 1 0 k Ωを参照メモリ素子に与えておけば、 図 3に示すように参 照メモリ素子の電圧変化は、 高抵抗状態の電圧変化と低抵抗状態の電圧変化との 間の中間的な変化をするようになるため、 メモリ素子の電圧変化を参照メモリ素 子の電圧変化と比較すれば、 参照メモリ素子よりも急速に上昇する場合は低抵抗 状態、 徐々に上昇する場合には高抵抗状態と判定することができ、 確実に読み取 ることができる。
参照メモリ素子は、 読み取るべきメモリ素子と同様の モリ素子であってもよ いし、 抵抗素子などであってもよく、 いずれの態様でも、 その抵抗値は、 セット 状態の抵抗値と、 リセット状態の抵抗値との間にあるものとする。
参照メモリ素子のより具体的な態様としては、 次のものが例示される。
(a) セット状態 (低抵抗) の素子を複数個直列接続して、 抵抗値をセット状 態の抵抗より高くしたもの。 または、 リセット状態の素子を複数個並列にしたも の。
(b) セット状態とリセット状態の中間的な状態にし广こ素子。
例えば、 説明のために、 セット状態 (結晶状態、 低抵抗状態) の抵抗値を 10 0 Ω、 リセット状態 (非晶質状態、 高抵抗状態) の抵抗値を 10 O kとする。 参 照抵抗 (R r e f ) は、 例えば、 l〜3 kQなど、 セット状態の抵抗値とリセッ ト状態の抵抗値との間にある必要がある (即ち、 100 Q<R r e f < 100 k Ω) 。 よって、 セット状態 (低抵抗) の素子を 2個直列にした物 (=200 Ω) や 10個直列にした物 (=1 ¾; Ω) などが好ましい態様となる。 参照抵抗値が、 セット状態の抵抗値やリセット状態の抵抗値に近い場合 (例えば、 1 10 Ωや 9 9 kQなど) 、 比較が困難になるので、 避けることが好ましい。 また参照メモリ 素子の材料は、 読み取るべきメモリ素子と同じ材料とする方が、 温度特性が同じ であるために、 好ましい場合がある。
立ち上がり時又は立下り時の電圧変化を調べるために、 該記録媒体に印加すベ き電気パルスは、 上記 (1) の態様の場合と同様である。
電圧変化を判定する場合には、 例えば、 メモリ素子に発生した電圧の発生時点 から所定時間 (数ナノ秒、 例えば、 1ナノ秒〜 3ナノ秒) 経過後に検知した電圧 値に基づいて判定すればよい。 抵抗値を読み取る場合で ίま定常状態になつてから 抵抗値を測定するため 4〜5ナノ秒かかるが、 図 2の場合では、 2ナノ秒程度の 短時間で判定可能で、 約 2倍の読取速度を実現することができる。
図 6は、 本発明の上記 (3 ) に係る実施形態に関する回路構成として、 メモリ 素子 4の書換処理を行う場合の回路構成を示している。 この例では、 書換制御回 路 1 3は、 スィッチ回路 6の書き込みスィッチ 7又は消去スィッチ 8を制御して 書換え用の電気パルスをメモリ素子 4に与えて書換制御を行う。
ビットライン 2には、 図 4の場合と同様に検知回路 5が接続されており、 その 検知信号は書換制御回路 1 3に送信される。 書換処理を行う場合に、 書換制御回 路 1 3は、 ワードライン 1に信号を入力して選択用トランジスタ 1 0をオンにし て、 書き込むべき情報に応じて書き込みスィツチ 7又は消去スィツチ 8をオンに するようにスィッチ回路 6に制御信号を送信する。 書き込みスィッチ 7又は消去 スィツチ 8をオンにすると、 電気パルスがメモリ素子 4に与えられて電圧が発生 し、 その電圧が検知回路 5により検知されて書換制御回路 1 3に送信される。 書 換制御回路 1 3は、 書き込みスィッチ 7又は消去スィッチ 8がオンになった時点 から所定時間 (2ナノ秒程度) 経過後の電圧を検知回路 5の検知信号から求めて 、 図 4の場合と同様に基準電圧と比較し、 その大小によりメモリ素子 4が低抵抗 状態であるか高抵抗状態であるか判定する。 判定されたメモリ素子 4の記憶情報 が書き込むべき情報と一致する場合はスィツチ回路 6への制御信号を停止し、 メ モリ素子 4への電気パルスの印加を停止し、 不一致の場合にはそのまま電気パル スを印加して書換処理を行うようになる。 したがって、 書き込むべき情報がメモ リ素子 4に記憶された情報と同じ場合には書換処理を行わずに済むようになるた め、 書換処理が効率化し消費電力を低減することができる。
上記のように、 相変化材料を用いた記録材料の相状態による立ち上がり時又は 立下り時の電圧変化の相違を利用すれば、 メモリ素子の書換制御を効率よく行う ことができる。
例えば、 カルコゲン系材料を用いた相変化型記録媒体が非晶質状態の時は、 高 抵抗状態となっている。 この状態において、 相変化型記録媒体の温度が結晶化温 度以上、 かつ融点以下の状態で、 ある一定時間以上保たれると、 低抵抗な結晶状 態へ遷移するようになる。 したがって、 相変化型記録媒体の温度を結晶化温度以 上かつ融点以下にするような熱量を発生させるエネルギーを与える電気パルスを 与えることで、 非晶質状態の相変化型記録媒体を結晶状態へ遷移させることがで きる。 このような電気パルスをセットパルスと称し、 相変化型記録媒体の材料及 ぴメモリ素子の構造等の条件により所定のパルス電圧及ぴパルス幅 (時間) で決 められる。
一方、 カルコゲン系材料を用いた相変化型記録媒体が結晶状態の時は、 低抵抗 状態となっている。 この状態において、 相変化型記録媒体の温度を融点以上に加 熱した後、 急冷させると、 相変^ ί匕型記録媒体は高抵抗な非晶質状態へ遷移する。 このとき、 冷却速度が遅いとメモリ素子は結晶化してしまう。 したがって、 メモ リ素子を融点以上にするような熱量を発生させるエネルギーを与える電気パルス をパルス幅を小さくして与えることで、 結晶状態の相変化型記録媒体を非晶質状 態へ遷移させることができる。 このような電気パルスをリセットパルスと称し、 相変化型記録媒体の材料及ぴメモリ素子の構造等の条件により所定のパルス電圧 及ぴパルス幅 (時間) で決められる。
したがって、 セットパルス又はリセットパルスを印加することで記録媒体の相 状態を変化させることができる力 低抵抗状態の記録媒体にセットパルスを印加 することは無駄になり、 同様に高抵抗状態でリセットパルスを印加することは無 駄になる。
そこで、 セットパルス又はリセットパルスといった電気パルスを印加した際に 、 メモリ素子に発生する電圧の立ち上がり時又は立下り時の電圧変化に基づいて 記憶された情報を判定し、 書き込むべき情報と一致する場合には書換処理を停止 するようにすれば、 こうした無駄な書換処理を行わずに済み、 その分書換処理が 効率化でき、 消費電力も低減することができる。
例えば、 図 2のグラフで示される場合では、 極めて短時間 (2ナノ秒程度) で 記憶された情報を判定可能で、 書換に必要なパルス幅 (1 0〜1 0 0ナノ秒) に 比べて大幅に短縮されたパルス幅 (2ナノ秒〜 8ナノ秒) で停止することができ る。
なお、 本発明では、 相変化型記録媒体としては、 カルコゲン系材料のように結 晶状態と非晶質状態との間の^ ¾変化以外にも、 融解 (液相) と再結晶化 (固相) 、 結晶状態と別の結晶状態といった相変化も含んでおり、 いずれも立ち上がり時 又は立下り時の電圧変化に大きな相違が生じる相変化が可能な記録媒体であれば 含まれる。
カルコゲン系 (カルコゲナイド系) 材料を主成分とした合金の具体的な材料組 成の例を次に挙げる。
( a ) Teを含む材料、 例えば GexSbyTezであって、 x + y + z =100とした場合、 Xが 5 atomic%以上、 yが 5 atomic%以上、 zが 5 atomic%以上のもの。
at0mic%は、 構成原素の原子数の比である。
( b ) 上記 (a ) の材料に、 添加物として、 Na, Mg, Al, P, S, Ca, Ga, As, Se, Cd, In, Sn, I, Cs, Ta, Re, Hg, Pb, Ag, W, Mo, Pt, Co, Ni, Si, Au, Cu , Fe, Bi, および Mnから選 ίまれる 1以上の元素が含まれた材料。
( c ) Teを含む材料、 例えば GexBiyTezであって、 x +y + z =100とした場合、
Xが 5 atomic%以上、 yが 5 atomic%以上、 zが 5 atomic0/0以上のもの。
( d ) 上記 (c ) の材料に、 添加物として、 Na, Mg, Al, P, S, Ca, Ga, As, Se, Cd, In, Sn, I, Cs, Ta, Re, Hg, Pb, Ag, W, Mo, Pt, Co, Ni, Si, Au, Cu , Fe, および Mnから選ばれる 1以上の元素が含まれた材料。
( e ) Teを含む材料、 例えば GexCuyTezであって、 x + y + z =100とした場合、
Xが 5 atomic%以上、 yが 5 atomic%以上、 zが 5 atomic%以上のもの。
( f ) 上記 (e ) の材料に、 添加物として、 Na, Mg, Al, P, S, Ca, Ga, As, Se, Cd, In, Sn, I, Cs, Ta, Re, Hg, Pb, Ag, W, Mo, Pt, Co, Ni, Si, Au, Fe , Bi, および Mnから選ばれる 1以上の元素が含まれた材料。
( g ) Teを含む材料、 例えば SexSbyTezであって、 x + y + z =100とした場合、
Xが 5 atomic%以上、 yが 5 atomic%以上、 zが 5 atomic%以上のもの。
( h ) 上記 (g ) の材料に、 添加物として、 Na, Mg, Al, P, S, Ca, Ga, As, Cd, In, Sn, I, Cs, Ta, Re, Hg, Pb, Ag, W, Mo, Pt, Co, Ni, Si, Au, Cu, Fe , Bi, およぴ Mnから選ばれる 1以上の元素が含まれた材料。
( i ) Te を含む材料、 例えば 3 1) 1^であって、 x + y + z=100とした場合、 Xが 5 atomic%以上、 yが 5 atomic%以上、 zが 5 atomic %以上のもの。
( j ) 上記 ( i ) の材料に、 添加物として、 Na, Mg, Al, P, S, Ca, Ga, Se, Cd, In, Sn, I, Cs, Ta, Re, Hg, Pb, Ag, W, Mo, Pt, Co, Ni, Si, Au, Cu, Fe , Bi, およぴ Mnから選ばれる 1以上の元素が含まれた材料。
相変化型記録媒体の形状は限定されないが、 小セットパルス、 小リセットパル スを効果的に印加する点からは、 印加電極間に配置される相変化型記録媒体の厚 さ (-電極間距離) は l nm〜l〃m程度、 特に 1 0 n m〜 2 0 0 n mが好まし い値である。
産業上の利用分野
以上説明したように、 本発明は、 従来の回路構成を大きく変更することなく、 読取速度の高速化、 書換処理の効率化及び消費電力の低減を図ることが可能とな る。
本出願は、 日本で出願された特願 2 0 0 3 - 3 6 5 1 4 6を基礎としておりそ の内容は本明細書に全て包含される。

Claims

請求の範囲
1 . 相変化型記録媒体の相状態の違いにより情報を記憶するメモリ素子と、 前記メモリ素子に所定の電気パルスを印加するパルス印加回路と、
印加された前記電気パルスに応答して前記メモリ素子に発生する電圧を検知す る検知回路と、
前記検知回路が検知した立ち上がり時又は立下り時の電圧変化に基づいて前記 メモリ素子に記憶された情報を読み出す読取制御回路とを、
備えていることを特徴とする相変化型メモリ。
2 . 相変化型記録媒体の相状態の違いにより情報を記憶するメモリ素子と、 参照メモリ素子と、
前記メモリ素子及ぴ前記参照メモリ素子に所定の電気パルスを印加するパルス 印加回路と、
印加された前記電気パルスに応答して前記メモリ素子及び前記参照メモリ素子 に発生する電圧を検知する検知回路と、
前記検知回路が検知した両メモリ素子の立ち上がり時又は立下り時の電圧変化 を比較して前記メモリ素子に記憶された情報を読み出す読取制御回路とを、 備えていることを特徴とする相変化型メモリ。
3 . 相変化型記録媒体の相状態の違いにより情報を記憶するメモリ素子と、 該メモリ素子に所定の電気パルスを印加するパルス印加回路と、
印加された前記電気パルスに応答して前記メモリ素子に発生する電圧を検知す る検知回路と、
前記検知回路が検知した立ち上がり時又は立下り時の電圧変化に基づいて前記 メモリ秦子に記憶された情報を判定し該情報と書き込むベき情報とが一致する場 合には書換処理を停止する書換制御回路とを、
備えていることを特徴とする相変化型メモリ。
PCT/JP2004/015876 2003-10-24 2004-10-20 相変化型メモリ WO2005041204A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515008A JP3995167B2 (ja) 2003-10-24 2004-10-20 相変化型メモリ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003365146 2003-10-24
JP2003-365146 2003-10-24

Publications (1)

Publication Number Publication Date
WO2005041204A1 true WO2005041204A1 (ja) 2005-05-06

Family

ID=34510151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015876 WO2005041204A1 (ja) 2003-10-24 2004-10-20 相変化型メモリ

Country Status (2)

Country Link
JP (1) JP3995167B2 (ja)
WO (1) WO2005041204A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052896A (ja) * 2006-08-21 2008-03-06 Qimonda Ag 抵抗メモリセルの記憶状態判定方法、ならびに記憶状態測定装置
EP2104109A1 (en) * 2006-08-08 2009-09-23 Nantero, Inc. Nonvolatile resistive memories, latch circuits, and operation circuits having scalable two-terminal nanotube switches
US8008745B2 (en) 2005-05-09 2011-08-30 Nantero, Inc. Latch circuits and operation circuits having scalable nonvolatile nanotube switches as electronic fuse replacement elements
US8102018B2 (en) 2005-05-09 2012-01-24 Nantero Inc. Nonvolatile resistive memories having scalable two-terminal nanotube switches
US8139404B2 (en) 2009-04-03 2012-03-20 Elpida Memory, Inc. Semiconductor memory device
JP2014526764A (ja) * 2011-09-09 2014-10-06 インテル・コーポレーション メモリデバイスにおけるパス分離

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002140888A (ja) * 2000-08-31 2002-05-17 Hewlett Packard Co <Hp> 情報記憶デバイス
JP2003187590A (ja) * 2001-10-31 2003-07-04 Hewlett Packard Co <Hp> 集積回路と、メモリアレイを有するデバイス及びメモリアレイのプログラム方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002140888A (ja) * 2000-08-31 2002-05-17 Hewlett Packard Co <Hp> 情報記憶デバイス
JP2003187590A (ja) * 2001-10-31 2003-07-04 Hewlett Packard Co <Hp> 集積回路と、メモリアレイを有するデバイス及びメモリアレイのプログラム方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8008745B2 (en) 2005-05-09 2011-08-30 Nantero, Inc. Latch circuits and operation circuits having scalable nonvolatile nanotube switches as electronic fuse replacement elements
US8102018B2 (en) 2005-05-09 2012-01-24 Nantero Inc. Nonvolatile resistive memories having scalable two-terminal nanotube switches
EP2104109A1 (en) * 2006-08-08 2009-09-23 Nantero, Inc. Nonvolatile resistive memories, latch circuits, and operation circuits having scalable two-terminal nanotube switches
JP2010515285A (ja) * 2006-08-08 2010-05-06 ナンテロ,インク. スケーラブルな2端子ナノチューブスイッチを有する、不揮発性抵抗変化メモリ、ラッチ回路、および動作回路
JP2008052896A (ja) * 2006-08-21 2008-03-06 Qimonda Ag 抵抗メモリセルの記憶状態判定方法、ならびに記憶状態測定装置
US7869253B2 (en) 2006-08-21 2011-01-11 Qimonda Ag Method of determining a memory state of a resistive memory cell and device measuring the memory state of a resistive memory cell
US8139404B2 (en) 2009-04-03 2012-03-20 Elpida Memory, Inc. Semiconductor memory device
JP2014526764A (ja) * 2011-09-09 2014-10-06 インテル・コーポレーション メモリデバイスにおけるパス分離

Also Published As

Publication number Publication date
JPWO2005041204A1 (ja) 2007-04-26
JP3995167B2 (ja) 2007-10-24

Similar Documents

Publication Publication Date Title
US7495944B2 (en) Reading phase change memories
US7660152B2 (en) Method and apparatus for implementing self-referencing read operation for PCRAM devices
JP5539610B2 (ja) 相変化メモリのプログラム方法と読み出し方法
US7190607B2 (en) Phase-change memory element driver circuits using measurement to control current and methods of controlling drive current of phase-change memory elements using measurement
US8036013B2 (en) Using higher current to read a triggered phase change memory
US7535756B2 (en) Method to tighten set distribution for PCRAM
US7679980B2 (en) Resistive memory including selective refresh operation
CN100514492C (zh) 相变存储器件及对其进行编程的方法
TWI451427B (zh) 用於減少相變化記憶體中瑕疵位元數的方法及其裝置
US8427862B2 (en) Reading a phase change memory
US7471557B2 (en) Reading phase change memories to reduce read disturbs
US7471553B2 (en) Phase change memory device and program method thereof
EP1895541A1 (en) Method for reading phase change memories and phase change memory
JP2009536466A (ja) 探査プローブ(ssp)記憶装置のためのビット消去アーキテクチャ
WO2007075392A1 (en) Writing phase change memories
US8625362B2 (en) Data sensing device non-volatile memory
US7843720B2 (en) Phase change memory and method discharging bitline
JP3995167B2 (ja) 相変化型メモリ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515008

Country of ref document: JP

122 Ep: pct application non-entry in european phase