WO2005039323A1 - Thermoresistometer for measuring the resistance to heat of micro-organisms in temperature controlled conditions and for simulating isothermal and non-isothermal treatment conditions - Google Patents

Thermoresistometer for measuring the resistance to heat of micro-organisms in temperature controlled conditions and for simulating isothermal and non-isothermal treatment conditions Download PDF

Info

Publication number
WO2005039323A1
WO2005039323A1 PCT/ES2004/000472 ES2004000472W WO2005039323A1 WO 2005039323 A1 WO2005039323 A1 WO 2005039323A1 ES 2004000472 W ES2004000472 W ES 2004000472W WO 2005039323 A1 WO2005039323 A1 WO 2005039323A1
Authority
WO
WIPO (PCT)
Prior art keywords
isothermal
conditions
simulating
under controlled
resistance
Prior art date
Application number
PCT/ES2004/000472
Other languages
Spanish (es)
French (fr)
Inventor
Alfredo Palop Gomez
José Fermín MORENO CLARES
Pablo Salvador Fernandez Escamez
Arturo Esnoz Nicuesa
Original Assignee
Universidad Politecnica De Cartagena
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politecnica De Cartagena filed Critical Universidad Politecnica De Cartagena
Publication of WO2005039323A1 publication Critical patent/WO2005039323A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature

Definitions

  • thermoresistometer allows simulating the heat treatments applied to food (both batch and continuous) and obtaining reliable data on the lethality achieved in these treatments that allow its optimization, which is one of the greatest current concerns of companies in the food sector.
  • the microbial suspension introduced into thin capillaries or glass tubes, is heated as they are introduced into a thermostated bath at the treatment temperature.
  • the main drawback of these methods is the inherent delay in heating and cooling the samples, which prevents their use at elevated temperatures, in the UHT range.
  • the capillary method was designed by Stern and Prqctor in 1954 and has been frequently referred to as a reference method. With the use of thin-walled capillaries (0.15 mm) the times required for heating and cooling or inertia phases are considerably reduced. However, closing, opening and emptying tubes is a laborious task, especially when working with viscous foods.
  • thermometer resistors of which there are different types, such as:
  • the Stumbo thermometer resistor was designed to study the thermometer resistance at temperatures between 104 and 150 ° C (Stumbo, 1948), where the counts of viable endosporos are determined by the most probable number technique.
  • the Pflug and Esselen thermometer resistor (1953) is based on the Stumbo thermometer resistor, with a series of modifications, which allow the temperature to be controlled with a minor error.
  • the thermometer resistor of David and Merson (1990) was specially developed to study the thermometer resistance parameters at temperatures up to 155 ° C.
  • Brown ei ai. (1988) developed a thermometer resistor that incorporates some notable improvements over previous designs.
  • the steam tank or tank is at the same time the treatment chamber, which is a great advantage to keep the temperature stable during the heat treatment. It is a pipe placed in an upright position, which saves space in the laboratory and improves temperature control.
  • the loading and unloading is done by the antechamber, which is also water cooled and has a pressurized air injection system.
  • the sample is placed on a paper disk, as do David and Merson (1990), but without placing it between hydrophobic discs In this way the steam comes into contact with both sides of the paper disk and favors almost instantaneous heating.
  • a type T thermocouple obtains a thermal record of the sample.
  • four platinum resistance thermometers are used, which are located very close to the samples.
  • the signals they send are processed by .
  • a computer that adjusts the temperature by opening or closing solenoid valves connected to the steam boiler. All control and execution of treatments is managed by a computer.
  • ITTs time-temperature integrators
  • the mixing methods are intended to reduce the heating inertia phase of the microorganism suspension by mixing small volumes thereof with much larger volumes of preheated substrates.
  • mixing methods such as the flask method, which is only used to study the heat resistance of bacteria at temperatures below the boiling point of water, generally non-sporulated or sporulated organisms of low heat resistance.
  • the Ko ⁇ iman and Geers (1975) method is an effective system to establish the thermal resistance of microorganisms and does not require expensive facilities.
  • the limitation derives from the inertia time during cooling. Sowing and counting survivors is laborious.
  • the TR-SC thermometer resistor was put into operation by the team of Drs. Sala y Condón, at the University of Zaragoza.
  • Its operation consists in preheating, with an electrical resistance (5) arranged in a small tank, the substrate where the heat resistance is to be determined.
  • the heating of the microorganisms is instantaneous, when they come into contact with the preheated substrate at the treatment temperature, and the substrates can be fluid or viscous liquids, or liquids with particles. Its design allows to work from pasteurization temperatures to temperatures of the UHT range (135.8 °), as well as sterilize the substrate to be used inside. It also provides constant monitoring of the evolution of the substrate pH.
  • thermometer resistor consists of a main vessel in which the heat treatments are applied, a motor to guarantee the homogeneity of the heating medium, a main control unit, through which heating, sampling and agitation are regulated, a external source of pressure and a fraction collector, to allow samples to be taken in short duration experiments.
  • the cover also houses another 7 ports: two of them are for the electric resistance arms (5), two for the cooling coil arms (6), with one.
  • valve (16) one for a Pt-100 probe (7) that determines the temperature during the treatment, one for the injection of microorganisms and one for the sampling tube (9).
  • the lid is equipped with a Quick pressure connector through which the instrument is connected to the external pressure source (dry nitrogen bottle) (10).
  • thermometer resistor Agitation of the contents of the thermometer resistor is achieved by means of a motor (4) that drives the shaft with the propeller (3), through a steel wire.
  • the motor speed (4) is regulated by a frequency inverter through the automaton (11). Homogeneity is favored by " the presence inside the instrument of a deflector screen that improves turbulence.
  • the sampling tube (9) is made of stainless steel, with interchangeable tubes of different internal diameters, from 0.5 to 2 mm, and is extended at its end by a silicone tube.
  • the latter is closed by a pinch solenoid valve (12), the opening of which can be operated through a switch in the main control unit or automaton (11).
  • the normally closed solenoid valve keeps the extraction tube closed, even when the main vessel (1) is pressurized, and only opens when it is operated from the main unit, to take samples.
  • the opening time of the solenoid valve can be regulated by means of a timer through the automaton (11).
  • the automaton (11) also allows temperature control. To do this, it has a PID connected to the electrical resistance (5) of 1100 w, a valve that regulates the flow of cooling water (17) through the cooling coil (6), and the Pt-100 probe (7 ).
  • the PID, as well as the sampling valve and the stirring motor (4) are controlled by a programmable automaton (11) that allows heating ramps and complex temperature profiles.
  • the automaton (11) can be connected to a computer and, by means of a specific Scada software, allows the recording of the temperature and treatment time data of the sample. This software also allows the programming of the temperature profiles to be carried out, directly through the computer.
  • the instrument can be kept under pressure thanks to the existence of Teflon gaskets (PTFE) in all ports, including the shaft.
  • PTFE Teflon gaskets
  • the injection port (14) of microorganisms (8) is closed by a chromatography septum.
  • the external pressure is provided by a bottle of dry nitrogen (10) and is regulated by a hand reducer (15). This pressure allows the extraction of samples at low working temperatures (below 100 ° C) or when the heating medium is too viscous.
  • the maintenance of a constant working pressure throughout an experiment and an opening time of the solenoid valve (12) also constant, allow to obtain samples of identical volume throughout the experiment.
  • the injection of samples can be done by means of a sterile medical syringe (8) or by a Hamilton type, when the instrument is under pressure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The new thermoresistometer is comprised of a refrigeration serpentine (6) and controls the temperature with a PID unit through a programmable automaton unit (11) and monitors by means a Scada system. In addition to carrying out thermal treatments at constant temperature, the new thermoresistometer can simulate complex heating and cooling ramps and complete thermal treatments, both discontinued and continued and record the evolution of the temperature reached.

Description

TERMORRESISTO ETRO PARA LA MEDIDA DE LA RESISTENCIA AL CALOR DE MICROORGANISMOS EN CONDICIONES CONTROLADAS DE TEMPERATURA, CAPAZ DE SIMULAR CONDICIONES DE TRATAMIENTO ISOTÉRMICO Y NO ISOTERMO. ETRO THERMORESIST FOR THE MEASUREMENT OF HEAT RESISTANCE OF MICROORGANISMS IN CONTROLLED CONDITIONS OF TEMPERATURE, ABLE TO SIMULATE ISOTHERMAL AND NON-ISOTHERMAL TREATMENT CONDITIONS.
OBJETO DE LA INVENCION.-OBJECT OF THE INVENTION.-
El Termorresistómetro que se propone, permite simular los tratamientos térmicos aplicados a los alimentos (tanto por lotes como en continuo) y obtener datos fiables sobre la letalidad alcanzada en estos tratamientos que permitan su optimización, lo cual es una de las mayores preocupaciones actuales de las empresas del sector alimentario.The proposed thermoresistometer allows simulating the heat treatments applied to food (both batch and continuous) and obtaining reliable data on the lethality achieved in these treatments that allow its optimization, which is one of the greatest current concerns of companies in the food sector.
ANTECEDENTES DE LA INVENCIÓN.- La determinación de la resistencia áí calor de los microorganismos resulta de vital importancia a la hora de establecer la intensidad de los tratamientos térmicos a aplicar a los alimentos apertizados. Existen en la actualidad diversos métodos disponibles para determinar la resistencia microbiana al calor, que pueden ser agrupados en: indirectos, directos, de partícula y de mezcla, pero en ninguno de ellos se consigue simulación de rampas de calentamiento y de enfriamiento complejas ni tratamientos térmicos completos, tanto discontinuos como continuos.BACKGROUND OF THE INVENTION.- The determination of the heat resistance of the microorganisms is of vital importance when establishing the intensity of the heat treatments to be applied to the opened foods. There are currently several methods available to determine microbial heat resistance, which can be grouped into: indirect, direct, particle and mixing, but none of them achieves simulation of complex heating and cooling ramps or heat treatments complete, both discontinuous and continuous.
En los métodos indirectos, la suspensión microbiana, introducida en finos capilares o en tubos de vidrio, se calienta al ser éstos introducidos én un baño termostatado a la temperatura de tratamiento. El principal inconveniente de estos métodos es el retraso inherente en el calentamiento y enfriamiento de las muestras, lo que impide su uso a temperaturas elevadas, en el rango UHT. El método de los capilares fue diseñado por Stern y Prqctor en 1954 y ha sido denominado frecuentemente como método de referencia. Con el uso de capilares de paredes finas (0,15 mm) se reducen considerablemente los tiempos requeridos para el calentamiento y el enfriamiento o fases de inercia. Sin embargo, el cierre, la apertura y .el vaciado de tubos es una tarea laboriosa, especialmente cuando se trabaja con alimentos viscosos.In indirect methods, the microbial suspension, introduced into thin capillaries or glass tubes, is heated as they are introduced into a thermostated bath at the treatment temperature. The main drawback of these methods is the inherent delay in heating and cooling the samples, which prevents their use at elevated temperatures, in the UHT range. The capillary method was designed by Stern and Prqctor in 1954 and has been frequently referred to as a reference method. With the use of thin-walled capillaries (0.15 mm) the times required for heating and cooling or inertia phases are considerably reduced. However, closing, opening and emptying tubes is a laborious task, especially when working with viscous foods.
Los métodos directos son complejos, no permiten trabajar a temperaturas bajas (por debajo de 100°C) y, en la mayoría de ellos, no se puede trabajar con alimentos. Se trata de los denominados termorresistómetros, de los cuales existen distintos tipos, como son: El termorresistómetro de Stumbo fue diseñado para estudiar la termorresistencia a temperaturas comprendidas entre 104 y 150°C (Stumbo, 1948), donde los recuentos de los endosporos viables se determinan por la técnica del número más probable. El termorresistómetro de Pflug y Esselen (1953) está basado en el termorresistómetro de Stumbo, con una serie de modificaciones, que permiten controlar la temperatura con un error menor. El termorresistómetro de David y Merson (1990) fue especialmente desarrollado para estudiar los parámetros de termorresistencia a temperaturas de hasta 155°C. Basándose en las ¡deas anteriores, Brown eí ai. (1988) desarrollaron un termorresistómetro que incorpora unas notables mejoras respecto a los diseños anteriores. En el denominado termorresistómetro de Campdem, el depósito o tanque de vapor es al mismo tiempo la cámara de tratamiento, lo cual es una gran ventaja para mantener estable la temperatura durante el tratamiento térmico. Es una tubería colocada en posición vertical, lo que logra un ahorro de espacio en el laboratorio y mejora el control de la temperatura. Al igual que el modelo anterior, la carga y descarga se realiza por la antecámara, que también está refrigerada por agua y posee un sistema de inyección de aire a presión. La muestra se coloca en un disco de papel, al igual que lo hacen David y Merson (1990), pero sin situarla entre discos hidrófobos. De esta forma el vapor entra en contactó con las dos caras del disco de papel y favorece un calentamiento casi instantáneo. Un termopar tipo T obtiene un registro térmico de la muestra. Para controlar la temperatura de la cámara se emplean cuatro termómetros de resistencia de platino, que se sitúan muy próximos a las muestras. Las señales que envían son procesadas por. un ordenador que ajusta la temperatura mediante la apertura o cierre de unas electroválvulas conectadas a la caldera de vapor. Todo el control y ejecución de los tratamientos está dirigido por un ordenador.Direct methods are complex, do not allow working at low temperatures (below 100 ° C) and, in most of them, you can not work with food. These are called thermometer resistors, of which there are different types, such as: The Stumbo thermometer resistor was designed to study the thermometer resistance at temperatures between 104 and 150 ° C (Stumbo, 1948), where the counts of viable endosporos are determined by the most probable number technique. The Pflug and Esselen thermometer resistor (1953) is based on the Stumbo thermometer resistor, with a series of modifications, which allow the temperature to be controlled with a minor error. The thermometer resistor of David and Merson (1990) was specially developed to study the thermometer resistance parameters at temperatures up to 155 ° C. Based on the previous ideas, Brown ei ai. (1988) developed a thermometer resistor that incorporates some notable improvements over previous designs. In the so-called Campdem thermoresistometer, the steam tank or tank is at the same time the treatment chamber, which is a great advantage to keep the temperature stable during the heat treatment. It is a pipe placed in an upright position, which saves space in the laboratory and improves temperature control. Like the previous model, the loading and unloading is done by the antechamber, which is also water cooled and has a pressurized air injection system. The sample is placed on a paper disk, as do David and Merson (1990), but without placing it between hydrophobic discs In this way the steam comes into contact with both sides of the paper disk and favors almost instantaneous heating. A type T thermocouple obtains a thermal record of the sample. To control the temperature of the chamber, four platinum resistance thermometers are used, which are located very close to the samples. The signals they send are processed by . a computer that adjusts the temperature by opening or closing solenoid valves connected to the steam boiler. All control and execution of treatments is managed by a computer.
Los métodos de partícula son los denominados ¡ntegradores tiempo- temperatura (ITTs). Se trata de partículas con compuestos (substancias químicas o microorganismos) de termorresistencia conocida que se introducen en los alimentos para evaluar la intensidad del tratamiento térmico a que son sometidos. Más que métodos de determinación de termorresistencia se han empleado como sistemas para validar los tratamientos térmicos.Particle methods are called time-temperature integrators (ITTs). These are particles with compounds (chemical substances or microorganisms) of known heat resistance that are introduced into food to assess the intensity of the heat treatment to which they are subjected. More than heat resistance determination methods, they have been used as systems to validate heat treatments.
Los métodos de mezcla pretenden reducir la fase de inercia de calentamiento de la suspensión de microorganismos al mezclar pequeños volúmenes de la misma con volúmenes mucho mayores de substratos precalentados. Existen distintos métodos de mezcla tales como el método del matraz, que únicamente se emplea para estudiar la termorresistencia de bacterias a temperaturas inferiores al punto de ebullición del agua, generalmente organismos no esporulados o esporulados de baja termorresistencia. El método de Koόiman y Geers (1975) es un sistema eficaz para establecer la resistencia térmica de microorganismos y que no requiere de unas instalaciones costosas. No obstante, la limitación deriva del tiempo de inercia durante el enfriamiento. La siembra y recuento de supervivientes es laborioso. El termorresistómetro TR-SC,. fue puesto., en funcionamiento por el equipo de los Dres. Sala y Condón, en la Universidad de Zaragoza. Su funcionamiento consiste en precalentar, con una resistencia eléctrica (5) dispuesta en un pequeño tanque, el substrato donde se va a determinar la termorresistencia. El calentamiento de los microorganismos es instantáneo, al entrar éstos en contacto con el substrato precalentado a la temperatura de tratamiento, y los substratos pueden ser líquidos fluidos o viscosos, o líquidos con partículas. Su diseño permite trabajar desde temperaturas de pasteurización hasta temperaturas de la gama de UHT (135.8°), así como esterilizar en su interior el substrato a emplear. También proporciona un seguimiento constante de la evolución del pH del substrato.The mixing methods are intended to reduce the heating inertia phase of the microorganism suspension by mixing small volumes thereof with much larger volumes of preheated substrates. There are different mixing methods such as the flask method, which is only used to study the heat resistance of bacteria at temperatures below the boiling point of water, generally non-sporulated or sporulated organisms of low heat resistance. The Koόiman and Geers (1975) method is an effective system to establish the thermal resistance of microorganisms and does not require expensive facilities. However, the limitation derives from the inertia time during cooling. Sowing and counting survivors is laborious. The TR-SC thermometer resistor ,. was put into operation by the team of Drs. Sala y Condón, at the University of Zaragoza. Its operation consists in preheating, with an electrical resistance (5) arranged in a small tank, the substrate where the heat resistance is to be determined. The heating of the microorganisms is instantaneous, when they come into contact with the preheated substrate at the treatment temperature, and the substrates can be fluid or viscous liquids, or liquids with particles. Its design allows to work from pasteurization temperatures to temperatures of the UHT range (135.8 °), as well as sterilize the substrate to be used inside. It also provides constant monitoring of the evolution of the substrate pH.
DESCRIPCIÓN DE LA INVENCIÓN.- El instrumento que deseamos patentar es un equipo diseñado para simular tratamientos térmicos que se aplican habitualménte en la industria alimentaria. Su diseño permite trabajar con medios de calentamiento líquidos tales como tampones o alimentos líquidos o finamente particulados e inocular microorganismos o compuestos diversos y obtener muestras para estudiar la evolución de esos microorganismos o compuestos a lo largo del tratamiento térmico. El termorresistómetro consta de un vaso principal en el que se aplican los tratamientos térmicos, un motor para garantizar la homogeneidad del medio de calentamiento, una unidad principal de control, mediante la que se regulan el calentamiento, la toma de muestras y la agitación, una fuente externa de presión y un colector de fracciones, para permitir tomar muestras en experimentos de corta duración. BREVE DESCRIPCIÓN DE LOS DIBUJOS.- Fig. 1 - Corresponde al vaso principal, unido por una unidad principal de control que conecta a un ordenador mediante software SCADA. En dichas figuras, las referencias numéricas corresponden a las siguientes partes y elementos: 1.. Vaso principal. 2. Eje de agitación. 3. Hélice 4. Motor 5. Resistencia eléctrica 6. Serpentín de refrigeración 7. Sonda 8. Jeringuilla de inyección de microorganismos 9. Tubo de muestreo 10. Nitrógeno seco. 11. Unidad principal de control o autómata 12. Válvula solenoide de pinzamiento 13. Ordenador 14. Puerto de inyección 15. Manoreductor 16. Válvula del serpentín de refrigeración (6) 17. Agua de refrigeración FORMA DE REALIZACIÓN.- El vaso principal (1) es de acero inoxidable de 400 mi (medidas externas: 8,5 cm de diámetro x 12 cm de altura) con una tapa roscada, cerrada mediante una junta tórica de estanqueidad. La tapa alberga un tubo que sirve de guía para el eje de agitaciónDESCRIPTION OF THE INVENTION.- The instrument we wish to patent is a device designed to simulate thermal treatments that are usually applied in the food industry. Its design allows to work with liquid heating means such as buffers or liquid or finely particulate foods and inoculate microorganisms or diverse compounds and obtain samples to study the evolution of those microorganisms or compounds throughout the heat treatment. The thermometer resistor consists of a main vessel in which the heat treatments are applied, a motor to guarantee the homogeneity of the heating medium, a main control unit, through which heating, sampling and agitation are regulated, a external source of pressure and a fraction collector, to allow samples to be taken in short duration experiments. BRIEF DESCRIPTION OF THE DRAWINGS.- Fig. 1 - Corresponds to the main vessel, connected by a main control unit that connects to a computer through SCADA software. In these figures, the numerical references correspond to the following parts and elements: 1 .. Main vessel. 2. Shaking shaft. 3. Propeller 4. Motor 5. Electrical resistance 6. Cooling coil 7. Probe 8. Microorganism injection syringe 9. Sampling tube 10. Dry nitrogen. 11. Main control unit or automaton 12. Pinch solenoid valve 13. Computer 14. Injection port 15. Manoreductor 16. Cooling coil valve (6) 17. Cooling water FORM OF REALIZATION.- The main vessel (1 ) It is made of 400 ml stainless steel (external dimensions: 8.5 cm in diameter x 12 cm in height) with a threaded cover, closed by an O-ring seal. The lid houses a tube that serves as a guide for the agitation shaft
(2), el cual está dotado de una hélice (3) en su extremo inferior y es accionado por el motor (4). La tapa además alberga otros 7 puertos: dos de ellos son para los brazos de la resistencia eléctrica (5), dos para los brazos del serpentín de refrigeración (6), con una. válvula (16), uno para una sonda Pt-100 (7) que determina la temperatura durante el tratamiento, uno para la inyección de microorganismos y un último para el tubo de muestreo (9). Finalmente la tapa está dotada de un conector rápido de presión a través del cual se conecta el instrumento a la fuente de presión externa (botella de nitrógeno seco) (10).(2), which is provided with a propeller (3) at its lower end and is driven by the motor (4). The cover also houses another 7 ports: two of them are for the electric resistance arms (5), two for the cooling coil arms (6), with one. valve (16), one for a Pt-100 probe (7) that determines the temperature during the treatment, one for the injection of microorganisms and one for the sampling tube (9). Finally the lid is equipped with a Quick pressure connector through which the instrument is connected to the external pressure source (dry nitrogen bottle) (10).
La agitación del contenido del termorresistómetro se consigue mediante un motor (4) que acciona al eje con la hélice (3), a través de un alambre acerado. La velocidad del motor (4) es regulada por un variador de frecuencia a través del autómata (11). La homogeneidad se ve favorecida por" la presencia en el interior del instrumento de una pantalla deflectora que mejora la turbulencia.Agitation of the contents of the thermometer resistor is achieved by means of a motor (4) that drives the shaft with the propeller (3), through a steel wire. The motor speed (4) is regulated by a frequency inverter through the automaton (11). Homogeneity is favored by " the presence inside the instrument of a deflector screen that improves turbulence.
El tubo de muestreo (9) es de acero inoxidable, disponiéndose de tubos intercambiables de distintos diámetros internos, desde 0,5 hasta 2 mm, y es prolongado en su extremo final por un tubo de silicona. Este último es cerrado por una válvula solenoide de pinzamiento (12), cuya apertura puede ser accionada a través de un interruptor en la unidad principal de control ó autómata (11). La electroválvula, normalmente cerrada, mantiene cerrado el tubo de extracción, incluso cuando el vaso principal (1) está presurizado, y únicamente se abre cuando es accionada desde la unidad principal, para tomar muestras. El tiempo de apertura de la electroválvula puede ser regulado mediante un temporizador a través del autómata (11).The sampling tube (9) is made of stainless steel, with interchangeable tubes of different internal diameters, from 0.5 to 2 mm, and is extended at its end by a silicone tube. The latter is closed by a pinch solenoid valve (12), the opening of which can be operated through a switch in the main control unit or automaton (11). The normally closed solenoid valve keeps the extraction tube closed, even when the main vessel (1) is pressurized, and only opens when it is operated from the main unit, to take samples. The opening time of the solenoid valve can be regulated by means of a timer through the automaton (11).
El autómata (11) permite también el control de la temperatura. Para ello dispone de un PID conectado a la resistencia eléctrica (5) de 1100 w, a una válvula que regula el flujo de agua de refrigeración (17) a través del serpentín de refrigeración (6), y a la sonda Pt-100 (7). El PID, así como la válvula de muestreo y el motor (4) de agitación son controlados mediante un autómata (11) programable que permite realizar rampas de calentamiento y perfiles de temperatura complejos. El autómata (11) se puede conectar a un ordenador y, mediante un software específico Scada, permite el registro de los datos de temperatura y tiempo de tratamiento de la muestra. Este software también permite la programación de los perfiles de temperatura a realizar, directamente a través del ordenador. El instrumento se puede mantener bajo presión gracias a la existencia de juntas de teflón (PTFE) en todos los puertos, incluido el del eje. El puerto de inyección (14) de microorganismos (8) se cierra mediante un septo de cromatografía. La presión externa la proporciona una botella de nitrógeno seco (10) y se regula mediante un manoreductor (15). Esta presión permite la extracción de muestras a bajas temperaturas de trabajo (inferiores a 100°C) o cuando el medio de calentamiento es demasiado viscoso. El mantenimiento de una presión constante de trabajo a lo largo de un experimento y de un tiempo de apertura de la válvula solenoide (12) también constante, permiten obtener muestras de idéntico volumen a lo largo del experimento. La inyección de muestras se puede realizar mediante una jeringuilla (8) médica estéril o bien mediante una tipo Hamilton, cuando el instrumento se haya bajo presión. The automaton (11) also allows temperature control. To do this, it has a PID connected to the electrical resistance (5) of 1100 w, a valve that regulates the flow of cooling water (17) through the cooling coil (6), and the Pt-100 probe (7 ). The PID, as well as the sampling valve and the stirring motor (4) are controlled by a programmable automaton (11) that allows heating ramps and complex temperature profiles. The automaton (11) can be connected to a computer and, by means of a specific Scada software, allows the recording of the temperature and treatment time data of the sample. This software also allows the programming of the temperature profiles to be carried out, directly through the computer. The instrument can be kept under pressure thanks to the existence of Teflon gaskets (PTFE) in all ports, including the shaft. The injection port (14) of microorganisms (8) is closed by a chromatography septum. The external pressure is provided by a bottle of dry nitrogen (10) and is regulated by a hand reducer (15). This pressure allows the extraction of samples at low working temperatures (below 100 ° C) or when the heating medium is too viscous. The maintenance of a constant working pressure throughout an experiment and an opening time of the solenoid valve (12) also constant, allow to obtain samples of identical volume throughout the experiment. The injection of samples can be done by means of a sterile medical syringe (8) or by a Hamilton type, when the instrument is under pressure.

Claims

REIVINDICACIONES.-CLAIMS.-
l.-Termorresistómetro para la medida de la resistencia al calor de microorganismos en condiciones controladas de temperatura, capaz de simular condiciones de tratamiento isotérmico y no isotérmico, de forma que una vez conocida la termorresistencia de la especie microbiana y de su tasa de contaminación en un alimento determinado, se caracteriza porque permitirá calcular y ajustar el tratamiento térmico que será preciso aplicar para reducir su alteración a límites comercialmente tolerables.l.-Thermometer resistor for the measurement of the heat resistance of microorganisms under controlled temperature conditions, capable of simulating conditions of isothermal and non-isothermal treatment, so that once the thermo-resistance of the microbial species and its contamination rate is known in a particular food is characterized in that it will allow to calculate and adjust the heat treatment that will be necessary to apply its alteration to commercially tolerable limits.
2.-Termorresistómetro para la medida de la resistencia al calor de microorganismos en condiciones controladas de temperatura, capaz simular condiciones de tratamiento isotérmico y no isotérmico, según la reivindicación 1, que se caracteriza esencialmente, porque está constituido por un recipiente herméticamente cerrado calentado por una resistencia eléctrica (5) y enfriado por un serpentín de refrigeración (6), que son regulados por un autómata (11) programable, la temperatura del recipiente es leída por una sonda Pt 100 y monitorizada por un sistema Scada, de modo que el instrumento es capaz de realizar tratamientos térmicos a temperatura constante, procesos de calentamiento y enfriamiento, y simulación de tratamientos industriales completos, en lotes, en el rango de 20 a 150°C, con un elevado grado de precisión.2. Thermorresistometer for the measurement of heat resistance of microorganisms under controlled temperature conditions, capable of simulating conditions of isothermal and non-isothermal treatment, according to claim 1, which is essentially characterized, because it is constituted by a tightly sealed container heated by an electrical resistance (5) and cooled by a cooling coil (6), which are regulated by a programmable automaton (11), the temperature of the container is read by a Pt 100 probe and monitored by a Scada system, so that the The instrument is capable of performing heat treatments at constant temperature, heating and cooling processes, and simulation of complete industrial treatments, in batches, in the range of 20 to 150 ° C, with a high degree of precision.
3.- Termorresistómetro para la medida de la resistencia al calor de microorganismos en condiciones controladas de temperatura, capaz simular condiciones de tratamiento isotérmico y no isotérmico, según las reivindicaciones 1 y 2, capaz de simular condiciones de tratamiento isotérmico y no isotérmico, de forma que una vez conocida la termorresistencia de la especie microbiana y de su tasa de contaminación en un alimento determinado, según las reivindicaciones 1 y 2, caracterizado esencialmente, porque es caoaz de simular tratamientos térmicos en continuo, en el mismo rango de temperaturas, con el mismo elevado grado de precisión.3. Thermometer resistor for the measurement of heat resistance of microorganisms under controlled temperature conditions, capable of simulating conditions of isothermal and non-isothermal treatment, according to claims 1 and 2, capable of simulating conditions of isothermal and non-isothermal treatment, in a way that once the thermo-resistance of the microbial species and its contamination rate in a given food is known, according to claims 1 and 2, essentially characterized in that it is difficult to simulate heat treatments in continuous, in the same temperature range, with the same high degree of precision.
4.- Termorresistómetro para la medida de la resistencia al calor de microorganismos en condiciones controladas de temperatura, capaz simular condiciones de tratamiento isotérmico y no isotérmico, según las reivindicaciones 1 y 2, se caracteriza esencialmente, porque permite también realizar estudios de inactivación térmica y compuestos diversos, tales como enzimas, proteínas, vitaminas o antibióticos.4. Thermometer resistor for the measurement of the heat resistance of microorganisms under controlled temperature conditions, capable of simulating conditions of isothermal and non-isothermal treatment, according to claims 1 and 2, is essentially characterized, because it also allows thermal inactivation studies and various compounds, such as enzymes, proteins, vitamins or antibiotics.
5,. Termorresistómetro para la medida de la resistencia al calor de microorganismos en condiciones controladas de temperatura, capaz simular condiciones de tratamiento isotérmico y no isotérmico se caracteriza esencialmente según las reivindicaciones 1 y 2, porque permite realizar estudios de procesos termodinámicos en fluidos y de transmisión de calor.5,. Thermometer resistometer for the measurement of heat resistance of microorganisms under controlled temperature conditions, capable of simulating conditions of isothermal and non-isothermal treatment is essentially characterized according to claims 1 and 2, because it allows studies of thermodynamic processes in fluids and heat transmission .
6. Termorresistómetro para la medida de la resistencia al calor de microorganismos en condiciones controladas de temperatura, capaz simular condiciones de tratamiento isotérmico y no isotérmico según las reivindicaciones 1 y 2 se caracteriza esencialmente porque permite realizar la validación de Integradores Tiempo-Temperatura de tipo biológico y químico.6. Thermometer resistometer for the measurement of heat resistance of microorganisms under controlled temperature conditions, capable of simulating conditions of isothermal and non-isothermal treatment according to claims 1 and 2 is essentially characterized in that it allows the validation of Biological Time-Temperature Integrators and chemical
7. Termorresistómetro para la medida de la resistencia al calor de microorganismos en condiciones controladas de temperatura, capaz simular condiciones de tratamiento isotérmico y no isotérmico, según las reivindicaciones 1 y 2, se caracteriza esencialmente, porque permite realizar curvas de crecimiento de microorganismos (8) y procesos de fermentación en condiciones controladas. 7. Thermometer resistometer for the measurement of heat resistance of microorganisms under controlled temperature conditions, capable of simulating conditions of isothermal and non-isothermal treatment, according to claims 1 and 2, is essentially characterized, because it allows microorganism growth curves (8 ) and fermentation processes under controlled conditions.
PCT/ES2004/000472 2003-10-29 2004-10-28 Thermoresistometer for measuring the resistance to heat of micro-organisms in temperature controlled conditions and for simulating isothermal and non-isothermal treatment conditions WO2005039323A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200302529 2003-10-29
ES200302529A ES2231030B1 (en) 2003-10-29 2003-10-29 THERMRESISTOMETER FOR MEASURING THE HEAT RESISTANCE OF MICROORGANISMS IN TEMPERATURE CONTROLLED CONDITIONS, ABLE TO SIMULATE ISOTHERMAL AND NON-ISOTHERMAL TREATMENT CONDITIONS.

Publications (1)

Publication Number Publication Date
WO2005039323A1 true WO2005039323A1 (en) 2005-05-06

Family

ID=34507901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/000472 WO2005039323A1 (en) 2003-10-29 2004-10-28 Thermoresistometer for measuring the resistance to heat of micro-organisms in temperature controlled conditions and for simulating isothermal and non-isothermal treatment conditions

Country Status (2)

Country Link
ES (1) ES2231030B1 (en)
WO (1) WO2005039323A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2648968A1 (en) * 2016-07-05 2018-01-09 Inbiolev, S.L. Biorreactor for the multiplication of yeasts and lactic bacteria (Machine-translation by Google Translate, not legally binding)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4212950A (en) * 1978-05-08 1980-07-15 The Virtis Company, Inc. Fermenting apparatus
US4424559A (en) * 1981-02-27 1984-01-03 New Brunswick Scientific Co., Inc. Modular instrumentation for monitoring and control of biochemical processes
ES2004913A6 (en) * 1987-04-02 1989-02-16 Univ Zaragoza Thermotresistometer for measuring microbial thermal resistance in foods in controlled ph and temperature conditions (Machine-translation by Google Translate, not legally binding)
ES2046944A1 (en) * 1992-03-31 1994-02-01 Univ Zaragoza Method for the destruction of microorganisms and enzymes: mts process (mano-thermo-sonication).
US20020138207A1 (en) * 1998-03-10 2002-09-26 Barry Bratcher Flexible processing apparatus for isolating and purifying viruses, soluble proteins and peptides from plant sources
US20020156542A1 (en) * 2001-02-23 2002-10-24 Nandi Hill K. Methods, devices and systems for monitoring, controlling and optimizing processes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4212950A (en) * 1978-05-08 1980-07-15 The Virtis Company, Inc. Fermenting apparatus
US4424559A (en) * 1981-02-27 1984-01-03 New Brunswick Scientific Co., Inc. Modular instrumentation for monitoring and control of biochemical processes
ES2004913A6 (en) * 1987-04-02 1989-02-16 Univ Zaragoza Thermotresistometer for measuring microbial thermal resistance in foods in controlled ph and temperature conditions (Machine-translation by Google Translate, not legally binding)
ES2046944A1 (en) * 1992-03-31 1994-02-01 Univ Zaragoza Method for the destruction of microorganisms and enzymes: mts process (mano-thermo-sonication).
US20020138207A1 (en) * 1998-03-10 2002-09-26 Barry Bratcher Flexible processing apparatus for isolating and purifying viruses, soluble proteins and peptides from plant sources
US20020156542A1 (en) * 2001-02-23 2002-10-24 Nandi Hill K. Methods, devices and systems for monitoring, controlling and optimizing processes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2648968A1 (en) * 2016-07-05 2018-01-09 Inbiolev, S.L. Biorreactor for the multiplication of yeasts and lactic bacteria (Machine-translation by Google Translate, not legally binding)

Also Published As

Publication number Publication date
ES2231030A1 (en) 2005-05-01
ES2231030B1 (en) 2006-07-16

Similar Documents

Publication Publication Date Title
US20080095676A1 (en) Multiple Bio-Reactor Device
US5206479A (en) Microwave heating system
US9011796B2 (en) Device for analysing a chemical or biological sample
US5108701A (en) Process for rapid sterilization of biological media
JPH01500295A (en) Temperature control device for automated clinical analyzers
WO2009075001A1 (en) Method of collection and preservation of fluids and/or materials, in particular of organic fluids and/or materials containing stem cells, and device employable in such method
ES2231030B1 (en) THERMRESISTOMETER FOR MEASURING THE HEAT RESISTANCE OF MICROORGANISMS IN TEMPERATURE CONTROLLED CONDITIONS, ABLE TO SIMULATE ISOTHERMAL AND NON-ISOTHERMAL TREATMENT CONDITIONS.
KR100585216B1 (en) Apparatus for cultivating micro organism fast
Patching et al. Chapter II The Effects and Control of Temperature
CN111278964A (en) Incubator, sample container, kit and method for testing sample material
Van Hemert The “Bilthoven Unit” for submerged cultivation of microorganisms
JP2014502512A (en) Cell culture tank
EP2260254B1 (en) Thermal systems using thermally-conductive particulate thermal media and methods
CN107942082A (en) Biochemical analyzer
CN211936984U (en) Low-temperature water bath kettle
KR101961658B1 (en) Apparatus for detecting a microbe
KR20000034779A (en) Heat exchanger
JP4617008B2 (en) Small test equipment
US20110311927A1 (en) Methods for Supporting a Vessel Within a Laboratory Bath
Oberholzer Development of a continuous flow sterilisation system using microwaves
CN204732056U (en) Simulation superhigh temperature experimental provision
RU2099773C1 (en) Apparatus for controlling temperature of object
SU1227662A1 (en) Device for taking samples from apparatus
JP4988991B2 (en) Small test equipment
Gopika et al. Apparatus used in microbiology laboratory

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase