WO2005037732A1 - Multilayer ceramic electronic component/film electronic component and its manufacturing method - Google Patents

Multilayer ceramic electronic component/film electronic component and its manufacturing method Download PDF

Info

Publication number
WO2005037732A1
WO2005037732A1 PCT/JP2004/015499 JP2004015499W WO2005037732A1 WO 2005037732 A1 WO2005037732 A1 WO 2005037732A1 JP 2004015499 W JP2004015499 W JP 2004015499W WO 2005037732 A1 WO2005037732 A1 WO 2005037732A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
laminated structure
multilayer
fired product
shrinkage
Prior art date
Application number
PCT/JP2004/015499
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiaki Kinemuchi
Koji Watari
Shoji Uchimura
Hirohide Ishiguro
Hideki Morimitsu
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Sinto V-Cerax, Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology, Sinto V-Cerax, Ltd filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2005037732A1 publication Critical patent/WO2005037732A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

The invention provides a baking method comprising a baking step for multilayer ceramic electronic components such as multilayer piezoelectric ceramic actuators and multilayer piezoelectric ceramic transformers and film-structure electronic components while suppressing cracking in layers and separation of layers due to contraction difference during heating. The inventions relates to a baking method including a baking step for baking a film or a multilayer structural body on a substrate, wherein a centrifugal force is exerted on the film or the interface of the multilayer in a vertical direction to effect pressure-sintering, and the contraction of the film or the interface between layers in a horizontal direction is significantly decreased so as to prevent defects. The intention further relates to a baking method improving the interface adhesion by matching the junction interface and to a film or multilayer structural body and a filmy or multilayer electronic member fabricated by the baking method. According to the invention, a multilayer ceramic electronic component and a film electronic component hardly causing defects such as cracking and delaminating can be manufactured and provided.

Description

明 細 書  Specification
積層型セラミックス電子部品 '膜電子部品及びその製造方法  Multilayer ceramic electronic components '' Membrane electronic components and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、基板上の膜又は積層構造体の焼成方法及びその膜又は積層構造体の 焼成物に関するものであり、更に詳しくは、基板上の膜ないし積層構造体を焼成して それらの焼結体を製造する方法であって、収縮率差に起因するクラック及びデラミネ ーシヨンなどの欠陥の発生を抑制することが可能な膜ないし積層構造体を製造する ことを可能とする新規焼成方法、及び該方法を使用することによって製造してなる基 板に対する接線方向の収縮が抑制された膜ないし積層構造体及びその応用製品に 関するものである。  The present invention relates to a method for firing a film or a multilayer structure on a substrate and a fired product of the film or the multilayer structure. More specifically, the present invention relates to a method for firing a film or a multilayer structure on a substrate to fire them. And a new firing method capable of manufacturing a film or a laminated structure capable of suppressing generation of defects such as cracks and delamination due to a difference in shrinkage ratio. The present invention also relates to a film or a laminated structure in which shrinkage in a tangential direction with respect to a substrate manufactured by using the method is suppressed, and an applied product thereof.
[0002] 本発明は、例えば、高機能性を有する積層構造電子セラミックスや膜電子部品の 材料である、基板上の膜な ヽし積層構造体の脱脂及び焼成方法の技術分野にぉ ヽ て、収縮率差に起因するクラック及びデラミネーシヨンなどの欠陥の発生を抑制すると 共に、膜ないし層の接着力を増加させ、膜ないし層が使用中に剥離することがない 高信頼性を備えた膜ないし積層構造体を製造することを可能とする積層電子セラミツ タス部品'膜電子部品の材料に好適な新素材の製造方法及びその製品を提供する ものとして有用である。本発明は、例えば、積層セラミックコンデンサー、積層圧電ァ クチユエ一ター、積層圧電トランス等の積層セラミック電子部品や、膜ガスセンサー、 固体燃料電池電極などの膜状電子部材の製造方法、脱脂及び焼成方法、及びそれ らの製品を提供するものである。  The present invention relates to, for example, a technical field of a method for degreasing and firing a laminated structure without a film on a substrate, which is a material for a laminated electronic ceramic or a film electronic component having high functionality, Highly reliable film that suppresses the occurrence of defects such as cracks and delamination due to the difference in shrinkage, increases the adhesion of the film or layer, and does not peel off during use. In addition, the present invention is useful as a method for producing a new material suitable for a material of a film electronic component and a product thereof, which is capable of producing a multilayer structure. The present invention relates to a method for producing a multilayer ceramic electronic component such as a multilayer ceramic capacitor, a multilayer piezoelectric actuator, a multilayer piezoelectric transformer, and a film-shaped electronic member such as a membrane gas sensor and a solid fuel cell electrode, and a method for degreasing and firing. And their products.
背景技術  Background art
[0003] 積層型圧電セラミックァクチユエ一タゃ積層型圧電セラミックトランス等の、従来の一 般の積層セラミック電子部品は、複数のセラミックシートを積層するとともに、各セラミ ックシート間に内部電極を介在させた構造を有している。これらの積層構造体を加熱 すると、各層は焼結し、その結果、収縮が起こり、緻密な製品が得られる。しかし、そ の収縮挙動の温度依存性は、材料により異なるため、一方の材料が収縮する際に、 他の材料が収縮せず、したがって、収縮差による応力が発生する。この応力により、 積層構造体の製造中に、層内にクラックが発生したり、層の剥離が起こったりする場 合がある。 [0003] A conventional general multilayer ceramic electronic component such as a multilayer piezoelectric ceramic unit and a multilayer piezoelectric ceramic transformer has a structure in which a plurality of ceramic sheets are stacked and an internal electrode is interposed between the ceramic sheets. It has the structure made to be. When these laminated structures are heated, each layer sinters, resulting in shrinkage and a dense product. However, since the temperature dependence of the shrinkage behavior differs depending on the material, when one material shrinks, the other material does not shrink, and thus a stress is generated due to the difference in shrinkage. Due to this stress, During the production of the laminated structure, cracks may occur in the layers or the layers may peel off.
[0004] また、層界面における付着力が弱い場合には、部品の使用中に界面で剥離してし まう(この現象をデラミネーシヨンと称する)こともあり、特に、積層型圧電セラミックァク チュエータゃ積層型圧電セラミックトランスのように、素子自体が振動するものは、駆 動中にデラミネーシヨンが発生する恐れがあった。同様の問題は、基板上で膜を焼 成する場合にも起こり、膜デバイスの作製においては、解決困難な問題であった。  [0004] Further, when the adhesive force at the layer interface is weak, the component may be peeled off at the interface during use of the component (this phenomenon is referred to as delamination). In the case where the element itself vibrates, such as a tutor-multilayer piezoelectric ceramic transformer, there is a possibility that delamination may occur during operation. A similar problem occurs when a film is formed on a substrate, and is a difficult problem to be solved in fabricating a film device.
[0005] このような問題を解決するために、例えば、先行文献では、界面部に凹凸形状を付 与した層を追加し、機械的なかみ合わせによる接着力の強化を図り、界面の剥離を 抑制することを試みている(特許文献 1)。また、他の文献では、電極材料の組成を調 整することにより収縮率の差を低減することを試みている(特許文献 2、 3、及び 4)。ま た、他の文献では、昇温中の雰囲気を調整することにより層の可塑性を増加させ、こ れにより、応力の発生を緩和し、クラックの発生を抑制することが提案されている(特 許文献 5)。更に、他の文献では、マイクロ波照射による焼成によりクラックの発生を抑 制することが提案されて 、る (特許文献 6)。  [0005] In order to solve such a problem, for example, in the prior art document, a layer having a concavo-convex shape at an interface portion is added to enhance the adhesive force by mechanical engagement to suppress the separation of the interface. (Patent Document 1). In addition, other documents attempt to reduce the difference in shrinkage by adjusting the composition of the electrode material (Patent Documents 2, 3, and 4). In addition, other documents propose that the plasticity of the layer is increased by adjusting the atmosphere during the temperature increase, thereby alleviating the occurrence of stress and suppressing the occurrence of cracks. Licensing 5). Further, another document proposes to suppress generation of cracks by firing by microwave irradiation (Patent Document 6).
[0006] しかし、界面に凹凸形状を付与する方法は、焼結挙動が全く考慮されておらず、本 質的な解決方法、すなわち内部応力の緩和には全く寄与しない。一方、組成の制御 や雰囲気の調整により収縮率のミスマッチを低減させるという方法は、本質的な解決 方法であり、巧妙である。しかし、特性改善などの目的で、一方の材料組成を変更し た場合には、他方の組成も応力が発生しないための新たな組成とする必要がある、と いう問題がある。マイクロ波照射を利用した焼成では、試料温度を均一に保ち、急速 に加熱することを特徴としているが、内部応力の緩和には全く寄与せず、本質的な解 決策とはならない。  [0006] However, the method of imparting an uneven shape to the interface does not consider the sintering behavior at all, and does not contribute to the fundamental solution, that is, the relaxation of internal stress at all. On the other hand, reducing the mismatch in shrinkage by controlling the composition and adjusting the atmosphere is an essential solution and is subtle. However, when one material composition is changed for the purpose of improving characteristics, there is a problem that the other composition needs to be a new composition so that no stress is generated. Firing using microwave irradiation is characterized by maintaining the sample temperature uniformly and heating rapidly, but does not contribute to the relaxation of internal stress at all, and is not an essential solution.
[0007] 特許文献 1 :特許第 3006518号公報  Patent Document 1: Patent No. 3006518
特許文献 2:特開平 8— 255509号公報  Patent Document 2: JP-A-8-255509
特許文献 3:特開平 9— 290985号公報  Patent Document 3: JP-A-9-290985
特許文献 4:特許第 3397753号公報  Patent Document 4: Patent No. 3397753
特許文献 5 :特開 2003— 17358号公報 特許文献 6:特開平 6- 267785号公報 Patent Document 5: JP-A-2003-17358 Patent Document 6: JP-A-6-267785
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来技術に おける諸問題を抜本的に解決することを可能とする新しい積層構造電子セラミックス 、及び膜電子部品の製造技術を開発することを目標として、鋭意研究を重ねた結果 、試料の加熱時に遠心力を負荷することにより所期の目的を達成し得ることを見出し 、本発明を完成するに至った。本発明は、焼成中に発生するクラック及び層の剥離な どの欠陥の発生を抑制することが可能な膜又は積層構造体の焼成方法、該方法を 使用して作製された膜又は積層構造体、及び膜状又は積層電子部材を提供するこ とを目的とするものである。 [0008] In such a situation, the present inventors, in view of the above-mentioned prior art, have developed a new multilayer structure electronic ceramic and a film that can drastically solve the problems in the above-mentioned prior art. As a result of intensive studies with the aim of developing a manufacturing technology for electronic components, it was found that the intended purpose could be achieved by applying a centrifugal force when heating the sample, and the present invention was completed. Was. The present invention relates to a method for firing a film or a laminated structure capable of suppressing the occurrence of defects such as cracks and layer separation occurring during firing, a film or a laminated structure manufactured using the method, And a film-shaped or laminated electronic member.
課題を解決するための手段  Means for solving the problem
[0009] 上記課題を解決するための本発明は、 基板上の膜又は積層構造体の焼成物に おいて、収縮率の異方性を有し、基板に対する接線方向の収縮がほとんどなぐ焼 成中に発生する欠陥の生成が抑制されていることを特徴とする上記膜又は積層構造 体の焼成物、である。本焼成物は、焼成中に発生するクラック及び層の剥離の生成 が抑制されていること、脱脂中の気体の発生によるクラック及び層の剥離の生成が抑 制されていること、基板に対する膜又は積層構造体の接着力を向上させたこと、膜又 は積層構造体の材料が、セラミックス、金属、又はこれらを含む複合材料であること、 を好適な態様としている。また、本発明は、上記の接線方向の収縮が抑制された膜 又は積層構造体を具備してなることを特徴とする膜状又は積層電子部材、である。本 部材は、コンデンサー、サーミスター、ノリスター、インダクター、圧電ァクチユエータ 一、圧電トランス、センサー、又は電極であること、を好適な態様としている。  [0009] The present invention for solving the above-mentioned problems is characterized in that, in a fired product of a film or a laminated structure on a substrate, the film has anisotropy in shrinkage and hardly shrinks in a tangential direction to the substrate. A fired product of the above-mentioned film or laminated structure, wherein generation of defects generated therein is suppressed. In the fired product, the generation of cracks and peeling of layers during firing is suppressed, the generation of cracks and peeling of layers due to the generation of gas during degreasing is suppressed, In a preferred embodiment, the adhesive strength of the laminated structure is improved, and the material of the film or the laminated structure is ceramics, metal, or a composite material containing these. Further, the present invention is a film-shaped or laminated electronic member comprising the film or the laminated structure in which the above-mentioned contraction in the tangential direction is suppressed. In a preferred embodiment, the member is a capacitor, a thermistor, a Nolister, an inductor, a piezoelectric actuator, a piezoelectric transformer, a sensor, or an electrode.
[0010] 本発明は、基板上の膜又は積層構造体の焼成行程において、試料を回転体内に 設置し、回転体の高速回転運動により膜又は積層構造体に遠心力を加え、同時に 加熱し、遠心力の作用による収縮率の異方性を利用することにより、焼成中に発生す るクラック及び層の剥離などの欠陥の発生を抑制した焼成物を得ることを特徴とする 膜又は積層構造体の焼成物の製造方法、である。本方法は、基板上の膜又は積層 構造体の脱脂行程に置いて、試料を回転体内に設置し、回転体の高速回転運動に より膜又は積層構造体に遠心力を加え、同時に加熱し、遠心力の作用により該試料 を加圧することにより、脱脂中の気体の発生によるクラック及び層の剥離などの欠陥 の発生を抑制した焼成物を得ること、基板上の膜又は積層構造体の焼結行程にお いて、試料を回転体内に設置し、回転体の高速回転運動により膜又は積層構造体 に遠心力を加え、同時に加熱することにより、膜又は層の接着力を増加させた焼成 物を得ること、回転体の回転数が、 500— 100, OOOrpmであること、膜又は積層界 面と垂直方向に遠心力を加えること、膜又は積層界面に加える圧力が、 0. 1一 100 MPaであること、膜又は積層構造体の材料が、セラミックス、金属、又はセラミックスと 金属の複合材料であること、を好適な態様としている。 [0010] In the present invention, in a baking process of a film or a laminated structure on a substrate, a sample is placed in a rotating body, and a centrifugal force is applied to the film or the laminated structure by high-speed rotational movement of the rotating body, and simultaneously the heating is performed. A film or a laminated structure characterized by obtaining a fired product in which the occurrence of defects such as cracks and delamination during firing is suppressed by utilizing the anisotropy of shrinkage due to the action of centrifugal force. And a method for producing a fired product. The method comprises the steps of: The sample is placed in a rotating body during the degreasing process of the structure, and a centrifugal force is applied to the membrane or the laminated structure by the high-speed rotating motion of the rotating body, and at the same time, the sample is heated and the sample is pressurized by the action of the centrifugal force. As a result, a fired product that suppresses the occurrence of defects such as cracks and layer delamination due to the generation of gas during degreasing is obtained, and the sample is placed in the rotating body during the sintering process of the film or laminated structure on the substrate. Installed, applying a centrifugal force to the film or laminated structure by the high-speed rotation of the rotating body and simultaneously heating it to obtain a fired product with an increased adhesive strength of the film or layer. 500-100, OOOrpm, centrifugal force applied perpendicular to the membrane or laminated interface, pressure applied to the membrane or laminated interface should be 0.1 to 100 MPa, material of membrane or laminated structure Is ceramics, metal, or ceramics and gold And a composite material of the genus.
[0011] 次に、本発明について更に詳細に説明する。  Next, the present invention will be described in more detail.
本発明は、積層構造電子セラミックス、あるいは膜電子部品の加熱行程において、 遠心加速度をカ卩えることにより試料を加圧し、同時に加熱することを特徴とするもので ある。即ち、本発明では、積層構造セラミックス又は膜電子部品の試料を、回転体内 に設置し、回転体の高速運動により積層構造セラミックス又は膜電子部品の試料に 遠心力を加え、同時に加熱する。該試料に成形性を付与するためのバインダーが使 用されている場合には、脱脂行程が必要であるが、一般に、積層構造電子セラミック ス、あるいは膜電子部品の製造においては、脱脂行程中のガスの発生によるデラミネ ーシヨンがまず問題となる。本発明では、脱脂行程中に、遠心圧力を該試料中の界 面と垂直方向に加えることにより、ガスの発生による該試料の変形を抑制することが 可能となり、それによつて、脱脂行程中の欠陥発生を抑制することが可能となる。  The present invention is characterized in that in a heating process of a laminated electronic ceramic or a film electronic component, a sample is pressurized by heating a centrifugal acceleration and simultaneously heated. That is, in the present invention, a sample of a laminated ceramic or a membrane electronic component is placed in a rotating body, and a centrifugal force is applied to the sample of the laminated ceramic or the membrane electronic component by high-speed motion of the rotating body to simultaneously heat the sample. When a binder for imparting moldability to the sample is used, a degreasing step is required. Generally, in the production of a laminated electronic ceramics or a membrane electronic component, a degreasing step is required. Delamination due to gas generation is the first problem. In the present invention, by applying a centrifugal pressure in a direction perpendicular to the interface in the sample during the degreasing process, it is possible to suppress the deformation of the sample due to the generation of gas, and thereby, during the degreasing process. Defect generation can be suppressed.
[0012] 更に、焼結行程で、温度を上昇させると、該試料は焼結を始め、試料の収縮が起こ る。その際、積層構造電子セラミックスの場合には、試料が異種材料で構成されてい るため、材料の焼結性の違いに起因して、収縮率の差が本質的に発生する。また、 膜電子部品の場合には、基板が全く収縮せず、一方、膜は焼結により収縮するため 、この場合にも収縮率の差が現れる。いずれの場合も、この収縮率の差により、層あ るいは膜内に応力が発生し、この応力を解放するために、材料にクラックゃデラミネ ーシヨンが発生したり、粗大な気孔が形成されたりするが、このような問題を解決する には、これらの試料を、本質的に収縮率差をなくすように製造する必要がある。 [0012] Further, when the temperature is increased in the sintering process, the sample starts sintering and the sample shrinks. In this case, in the case of a laminated electronic ceramic, since the sample is composed of a different material, a difference in shrinkage is essentially generated due to a difference in sinterability of the material. In the case of a film electronic component, the substrate does not shrink at all, while the film shrinks due to sintering. In either case, this difference in shrinkage causes stress in the layer or film, and in order to relieve this stress, cracks and delamination occur in the material, and coarse pores are formed. To solve such problems Requires that these samples be manufactured to essentially eliminate the difference in shrinkage.
[0013] 本発明では、焼結行程中に遠心力を該試料中の界面と垂直方向に加えることによ り、それらの問題の発生を抑制することができる。さて、ここで問題となる収縮率の差 は、詳しくは層や膜の界面に平行な方向の収縮率差である。例えば、一軸加圧焼結 では、収縮は加圧方向にのみ起こり、加圧方向と垂直方向には全く収縮しない。本 発明では、層又は膜界面に垂直に加圧しながら焼結することにより、層や膜の界面 に平行な方向の収縮率差は全く発生しない。したがって、クラックゃデラミネーシヨン の発生や、粗大な気孔の形成は起こらない。  [0013] In the present invention, by applying a centrifugal force in a direction perpendicular to the interface in the sample during the sintering process, it is possible to suppress the occurrence of these problems. By the way, the difference in the shrinkage rate that matters here is specifically the difference in the shrinkage rate in the direction parallel to the interface between the layers and the films. For example, in uniaxial pressure sintering, shrinkage occurs only in the pressing direction, and does not shrink at all in the direction perpendicular to the pressing direction. In the present invention, by performing sintering while applying pressure perpendicular to the layer or film interface, there is no difference in shrinkage in the direction parallel to the layer or film interface. Therefore, generation of cracks and delamination and formation of coarse pores do not occur.
[0014] 従来、加圧方法は、機械的な方法、すなわちプレス法により行われてきた力 電子 材料においては、不純物の混入による特性の劣化が問題となるので、プレス法のよう な固体接触による加圧は不純物混入の観点力も非常に不利である。一方、本発明で は、遠心力による加圧が用いられるので、加圧のための固体接触は不必要であり、 非常に有利である。材料が磁性や電荷を持っている場合には、電磁力により非接触 で加圧が可能である力 一般に焼結を行うような高温では、このような力は有効には 働かず、また、適用可能な材料が限定されるので不利である。  [0014] Conventionally, the pressurizing method is a mechanical method, that is, in the case of force electronic materials that have been performed by a pressing method, there is a problem of deterioration of characteristics due to contamination of impurities. Pressurization is very disadvantageous in terms of impurity contamination. On the other hand, in the present invention, since pressurization by centrifugal force is used, solid contact for pressurization is unnecessary, which is very advantageous. If the material has magnetism or charge, it can be pressed in a non-contact manner by electromagnetic force. Generally, at high temperatures such as sintering, such force does not work effectively. This is disadvantageous because the possible materials are limited.
[0015] 前述のように、積層型圧電セラミックァクチユエ一タゃ積層型圧電セラミックトランス のように、素子自体が振動するものは、層又は膜の界面における接着力が十分でな い場合、駆動中にデラミネーシヨンが発生するため、界面の接着力の向上が必要とな る。セラミックスを接着 (接合)する方法に、拡散接合がある。これは、加圧を行いなが ら加熱することにより、クリープや拡散などの物質移動を促進させ、界面の整合をは かる方法であり、強固な接着界面が得られる方法である。本発明においても、試料の 加熱中に遠心力による加圧を行うので、拡散接合と同様な物理現象が起こり、界面 における強固な接着が達成される。  [0015] As described above, a device in which the element itself vibrates, such as a multi-layer piezoelectric ceramic actuator and a multi-layer piezoelectric ceramic transformer, has a problem in that the bonding force at the interface between layers or films is insufficient. Since delamination occurs during driving, it is necessary to improve the adhesive force at the interface. Diffusion bonding is a method of bonding (joining) ceramics together. In this method, mass transfer such as creep and diffusion is promoted by heating while applying pressure to achieve interface matching, and a method of obtaining a strong adhesive interface. Also in the present invention, since the pressurization by centrifugal force is performed during the heating of the sample, a physical phenomenon similar to that of diffusion bonding occurs, and strong adhesion at the interface is achieved.
[0016] 試料としては、例えば、ホウケィ酸ガラス及びアルミナで構成される LTCCセラミック ス、 BaTiO、 PbTiO— PbZrO、フェライト、ァノレミナ、 Niゝ Cuゝ Al、 Agゝ Ag— Pd、 A  Examples of the sample include LTCC ceramics composed of borosilicate glass and alumina, BaTiO, PbTiO—PbZrO, ferrite, anoremina, Ni—Cu—Al, Ag—Ag—Pd, A
3 3 3  3 3 3
u、 Pt、 RuO、ガラス、 PZT、 ZrO、 CeOが例示されるが、これらに制限されるもの  u, Pt, RuO, glass, PZT, ZrO, CeO, but are limited to these
2 2 2  2 2 2
ではなぐ本発明は、任意のセラミックス、金属材料、及びセラミックスと金属の複合材 料に適用可能である。また、基板としては、アルミナ、窒化アルミニウム、窒化ケィ素、 PZT、シリコン、石英、ガラス、 MgO等が例示される力 本発明は、これらに制限され ない。 The present invention can be applied to any ceramics, metal materials, and composite materials of ceramics and metals. Further, as the substrate, alumina, aluminum nitride, silicon nitride, The force exemplified by PZT, silicon, quartz, glass, MgO, etc. The present invention is not limited to these.
[0017] 本発明では、遠心力を試料の層又は膜界面に垂直方向に加える。遠心力は、試料 の質量に比例するため、層及び界面における圧力を制御するために、回転数を適宜 調整する必要があり、また、圧力は、界面に対し垂直に加える必要がある。本発明で は、これらの特定の条件下で、基板上の膜又は積層構造体を焼成することが重要で ある。この場合、回転数は 500— 100, 000rpm、また、層及び界面における圧力は 、 0. 1一 lOOMPaが好適である力 本発明は、これらに制限されるものではない。ま た、試料によっては、成形体の強度が低い場合があり、このような場合は、低温では、 圧力を成形体が破壊されない程度に調整する必要があり、 IMPa以下で行うことが 好適である。しかし、本発明は、これらに制限されるものではない。  [0017] In the present invention, a centrifugal force is applied to the sample layer or membrane interface in a vertical direction. Since the centrifugal force is proportional to the mass of the sample, it is necessary to adjust the number of rotations appropriately to control the pressure at the layer and at the interface, and the pressure needs to be applied perpendicular to the interface. In the present invention, it is important to fire the film or the laminated structure on the substrate under these specific conditions. In this case, the number of rotations is 500-100,000 rpm, and the pressure at the layer and the interface is preferably 0.1 to 100 MPa. The present invention is not limited to these. Also, depending on the sample, the strength of the molded body may be low.In such a case, it is necessary to adjust the pressure at a low temperature so that the molded body is not destroyed, and it is preferable to perform the operation at IMPa or lower. . However, the present invention is not limited to these.
[0018] 本発明では、上記遠心力下で、積層構造電子セラミックス又は膜電子部品の試料 を加熱する。この加熱の条件は、圧力が低い場合、すなわち lOMPa以下の場合は、 通常の焼結温度と同様の温度で行うことが望ましいが、それ以上の圧力を加える場 合には、加圧により焼結が促進されるため、焼結温度を下げることが可能となる。焼 結温度を下げた場合、材料間の熱膨張率の差による残留応力が低減できるため、特 に、微小欠陥が問題となる場合に有効である。例えば、 30MPa程度の圧力を加えた 場合には、焼結温度を 20%程度下げても良い。加熱方式としては、例えば、抵抗力口 熱、誘導加熱、マイクロ波加熱、赤外線加熱、レーザー加熱等が例示される。  In the present invention, the sample of the multilayer electronic ceramic or the film electronic component is heated under the centrifugal force. When the pressure is low, that is, when the pressure is lower than lOMPa, it is preferable to perform the heating at the same temperature as the normal sintering temperature. , The sintering temperature can be lowered. When the sintering temperature is lowered, the residual stress due to the difference in the coefficient of thermal expansion between the materials can be reduced, which is particularly effective when micro defects become a problem. For example, when a pressure of about 30 MPa is applied, the sintering temperature may be lowered by about 20%. Examples of the heating method include resistance heating, induction heating, microwave heating, infrared heating, and laser heating.
[0019] しかし、本発明は、これらに制限されるものではない。また、遠心焼結手段としては 、試料に遠心力を付加する手段及び試料をこれらの加熱方式で加熱する手段を有 する装置であれば、使用可能であり、その種類に制限されない。本発明により、収縮 率差に起因するクラック及びデラミネーシヨンなどの欠陥の発生のない積層構造体な いし膜材料を製造することが可能であり、それにより、それらの欠陥のない積層構造 電子セラミックス、及び膜電子部品等を製造し、提供することが可能となる。  However, the present invention is not limited to these. Further, as the centrifugal sintering means, any apparatus having a means for applying a centrifugal force to the sample and a means for heating the sample by these heating methods can be used, and the type thereof is not limited. According to the present invention, it is possible to produce a laminated structure or a film material free of defects such as cracks and delamination due to a difference in shrinkage ratio, thereby producing a laminated structure free of those defects. And film electronic components can be manufactured and provided.
発明の効果  The invention's effect
[0020] 本発明の積層構造電子セラミックスでは、膜電子部品の試料の製造方法によれば 、(1)遠心力の作用により該試料を加圧し、脱脂中の気体の発生による試料の変形 を抑えることにより、クラック及びデラミネーシヨンなどの欠陥の発生を抑制することが できる、(2)また、焼結行程では、遠心力の作用による収縮率の異方性を利用するこ とにより、収縮率差に起因するクラック及びデラミネーシヨンなどの欠陥の発生を抑制 することが可能となる、(3)更に、加圧作用により界面の整合がは力もれるため、膜及 び層の接着力を増力 tlさせ、層及び膜が使用中に剥離することがない高信頼性を備え た積層構造電子セラミックス、膜電子部品を製造し、提供することが可能となる、とい う効果が奏される。 [0020] In the multilayer electronic ceramic of the present invention, according to the method for manufacturing a sample of a film electronic component, (1) the sample is pressurized by the action of centrifugal force, and the sample is deformed due to generation of gas during degreasing. By suppressing the cracking, it is possible to suppress the occurrence of defects such as cracks and delaminations. (2) In the sintering process, the anisotropy of the shrinkage due to the action of centrifugal force is used. It is possible to suppress the occurrence of defects such as cracks and delaminations due to the difference in shrinkage. (3) Further, since the interface is weakened by the pressing action, the adhesive strength of the film and the layer is reduced. To produce and provide highly reliable multilayer electronic ceramics and membrane electronic components with high reliability without the layers and films peeling during use. .
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例 によって何ら限定されるものではな 、。  Next, the present invention will be specifically described based on examples, but the present invention is not limited by the following examples.
実施例 1  Example 1
[0022] 本実施例では、 LTCCセラミックスを本発明の焼成方法を使用して遠心焼結して焼 結体を製造した。  In this example, a sintered body was manufactured by centrifugally sintering LTCC ceramics using the firing method of the present invention.
この LTCCは、ホウケィ酸ガラス 70mass%及び 30mass%のアルミナで構成され、 ホウケィ酸ガラスの組成は、 SiO: B O: K 0 = 78 : 20 : 2であった。遠心加速度は、  This LTCC was composed of 70 mass% and 30 mass% alumina of borosilicate glass, and the composition of the borosilicate glass was SiO: BO: K0 = 78: 20: 2. The centrifugal acceleration is
2 2 3 2  2 2 3 2
87kmZsとした。比較例として、遠心加速度が Okm/s こおいても焼結を行った。 図 1に、 LTCCセラミックスを本発明の焼成方法を使用して遠心焼結した場合の焼結 温度 (T)と線収縮率(ΔΐΖΐο)の関係を示す。図中、 rは回転半径方向の線収縮率を 、 Θは回転接線方向の収縮率を示している。遠心力の負荷により、収縮は、主に回 転半径方向で起こり、回転接線方向にはほとんど収縮していないことがわかる。一方 、通常の焼結では、一様に収縮している。これにより、本発明の焼成方法による遠心 焼結は、粘性焼結に有効であることがわかる。  87 kmZs. As a comparative example, sintering was performed even at a centrifugal acceleration of Okm / s. FIG. 1 shows the relationship between the sintering temperature (T) and linear shrinkage (ΔΐΖΐο) when LTCC ceramics are centrifugally sintered using the firing method of the present invention. In the figure, r indicates the linear shrinkage in the rotational radius direction, and Θ indicates the shrinkage in the rotational tangential direction. It can be seen that due to the centrifugal force, the shrinkage occurs mainly in the radial direction of rotation and hardly shrinks in the tangential direction of rotation. On the other hand, in normal sintering, it shrinks uniformly. This indicates that centrifugal sintering by the firing method of the present invention is effective for viscous sintering.
実施例 2  Example 2
[0023] 本実施例では、 BaTiOを本発明の焼成方法を使用して遠心焼結して焼結体を製  In this example, a sintered body was manufactured by centrifugally sintering BaTiO using the firing method of the present invention.
3  Three
した。  did.
BaTiOには、焼結助剤として、 LiFと BaCOを添カ卩した。これらの添加量は、 BaC BaTiO was added with LiF and BaCO as sintering aids. The amount of these additives
3 3 3 3
Oを BaTiOに対して 2mol%、 LiFを BaTiOと BaCO混合物に対して 0. 5mass% O is 2mol% for BaTiO, LiF is 0.5mass% for BaTiO and BaCO mixture
3 3 3 3 3 3 3 3
とした。この組成では、 610°Cで液相が生成する。遠心加速度は、 87kmZs2とした。 比較例として、遠心加速度が Okm/s2においても焼結を行った。図 2に、 BaTiOを And With this composition, a liquid phase forms at 610 ° C. Centrifugal acceleration was set 87kmZs 2. As a comparative example, the centrifugal acceleration is also performed sintered at Okm / s 2. Figure 2 shows BaTiO
3 本発明の焼成方法を使用して遠心焼結した場合の焼結温度 (T)と線収縮率( Δ 1/1 o)の関係を示す。図中、 rは回転半径方向の線収縮率を、 Θは回転接線方向の収 縮率を示している。遠心力の負荷により、収縮は、主に回転半径方向で起こり、回転 接線方向には、ほとんど収縮していないことがわかる。一方、通常の焼結では、一様 に収縮している。これにより、本発明の焼成方法による遠心焼結は、液相焼結にも有 効であることがわかる。  3 shows the relationship between the sintering temperature (T) and the linear shrinkage (Δ 1/1 o) when centrifugal sintering is performed using the firing method of the present invention. In the figure, r indicates the linear shrinkage in the radial direction of rotation, and 示 し indicates the shrinkage in the rotational tangential direction. Due to the centrifugal force, the contraction occurs mainly in the radial direction of rotation, and almost no contraction occurs in the tangential direction of rotation. On the other hand, in normal sintering, it shrinks uniformly. This shows that centrifugal sintering by the firing method of the present invention is also effective for liquid phase sintering.
実施例 3  Example 3
[0024] 本実施例では、フ ライトを本発明の焼成方法を使用して遠心焼結して焼結体を製 した。  In this example, a sintered body was manufactured by centrifugally sintering the fly using the firing method of the present invention.
フェライト組成は、モル比で Fe O: CuO: ZnO: NiO =49 : 6 : 25 : 20とした。遠心  The ferrite composition was FeO: CuO: ZnO: NiO = 49: 6: 25: 20 in molar ratio. Centrifugation
2 3  twenty three
加速度は、 87kmZs2とした。比較例として、遠心加速度が Okm/s2においても焼結 を行った。図 3に、フェライトを本発明の焼成方法を使用して遠心焼結した場合の焼 結温度 (T)と線収縮率(Δ ΐΖΐο)の関係を示す。図中、 rは回転半径方向の線収縮 率を、 Θは回転接線方向の収縮率を示している。遠心力の負荷により、収縮は、主に 回転半径方向で起こり、回転接線方向にはほとんど収縮していないことがわかる。一 方、通常の焼結では、一様に収縮している。これにより、本発明の焼成方法による遠 心焼結は、固相焼結にも有効であることがわかる。 Acceleration, was 87kmZs 2. As a comparative example, the centrifugal acceleration is also performed sintered at Okm / s 2. FIG. 3 shows the relationship between the sintering temperature (T) and the linear shrinkage (ΔΐΖΐο) when ferrite is sintered by centrifugation using the sintering method of the present invention. In the figure, r indicates the linear shrinkage in the rotational radius direction, and Θ indicates the shrinkage in the rotational tangential direction. Due to the centrifugal force, the contraction occurs mainly in the radial direction of rotation, and almost no contraction occurs in the rotational tangential direction. On the other hand, in normal sintering, it shrinks uniformly. This shows that centrifugal sintering by the firing method of the present invention is also effective for solid phase sintering.
実施例 4  Example 4
[0025] 本実施例では、 Niを本発明の焼成方法を使用して遠心焼結して焼結体を製造した 遠心加速度は、 87km/s2とした。比較例として、遠心加速度が Okm/s2において も焼結を行った。図 4に、 Niを本発明の焼成方法を使用して遠心焼結した場合の焼 結温度 (T)と線収縮率(Δ ΐΖΐο)の関係を示す。図中、 rは回転半径方向の線収縮 率を、 Θは回転接線方向の収縮率を示している。遠心力の負荷により、収縮は、主に 回転半径方向で起こり、回転接線方向にはほとんど収縮していないことがわかる。一 方、通常の焼結では、一様に収縮している。これにより、本発明の焼成方法による遠 心焼結は、冶金にも有効であることがわかる。 実施例 5 In the present example, Ni was centrifugally sintered using the firing method of the present invention to produce a sintered body. The centrifugal acceleration was 87 km / s 2 . As a comparative example, sintering was performed at a centrifugal acceleration of Okm / s 2 . FIG. 4 shows the relationship between the sintering temperature (T) and the linear shrinkage (ΔΐΖΐο) when Ni is sintered by centrifugation using the sintering method of the present invention. In the figure, r indicates the linear shrinkage in the rotational radius direction, and Θ indicates the shrinkage in the rotational tangential direction. Due to the centrifugal force, the contraction occurs mainly in the radial direction of rotation, and almost no contraction occurs in the rotational tangential direction. On the other hand, in normal sintering, it shrinks uniformly. This shows that centrifugal sintering by the firing method of the present invention is also effective for metallurgy. Example 5
[0026] 本実施例では、 BaTiOと Niの積層セラミックスを、これらのシート成形体を積層す  In the present embodiment, a laminated ceramic of BaTiO and Ni is laminated with these sheet compacts.
3  Three
ることにより作製した。 BaTiOには、焼結助剤として LiFと BaCOを添カ卩した。シート  It produced by doing. BaTiO was added with LiF and BaCO as sintering aids. Sheet
3 3  3 3
厚さはいずれも約 60 mであり、これらを積層後、成形体は、およそ 1. 3mmの厚さ となった。同成形体を、本発明の焼成方法を使用して 87kmZs2の遠心加速度下、 温度 1000°C、保持時間 20min、真空中で焼成した。また、同成形体を遠心加速度 を加えずに焼成し、比較試料とした。図 5に、その焼結体の断面組織を示す。本発明 の焼成方法を使用した遠心焼結により、気孔構造が均一になっていることが特徴とし て挙げられる。一方、通常焼結では、クラックの原因となる粗大な気孔の連結組織が 観測される。この組織的特徴は、遠心力下では半径方向の収縮により緻密化が進行 し、接線方向には収縮のミスマッチが発生しな 、ことに起因して 、る。 The thickness was about 60 m in each case, and after laminating them, the molded product was about 1.3 mm thick. The molded body was fired in a vacuum at a temperature of 1000 ° C. for a holding time of 20 minutes at a centrifugal acceleration of 87 kmZs 2 using the firing method of the present invention. The molded body was fired without applying a centrifugal acceleration to obtain a comparative sample. FIG. 5 shows a cross-sectional structure of the sintered body. The pore structure is made uniform by centrifugal sintering using the firing method of the present invention. On the other hand, in normal sintering, a coarse pore connected structure that causes cracks is observed. This organizational feature is due to the fact that under centrifugal force, densification progresses due to radial contraction, and no contraction mismatch occurs in the tangential direction.
実施例 6  Example 6
[0027] 銅粉末を石英基板上にスクリーン印刷し (膜厚 10 m)、本発明の焼成方法を使用 して遠心焼結した。遠心加速度は 0, 56,及び 87km/s2の 3条件とした。焼結温度 は、 850°Cであり、保持時間を 20minとした。焼結後の膜表面写真を図 6に示す。遠 心力を負荷しない場合には、顕著なクラック及び層の剥離が観察されるが、遠心力口 速度の増加に伴 、、クラックが減少して 、くことがわかる。 [0027] Copper powder was screen-printed on a quartz substrate (film thickness 10 m) and centrifugally sintered using the firing method of the present invention. Centrifugal acceleration 0, 56, and was three conditions 87km / s 2. The sintering temperature was 850 ° C and the holding time was 20 minutes. Figure 6 shows a photograph of the film surface after sintering. When no centrifugal force is applied, remarkable cracks and delamination are observed, but it can be seen that the cracks decrease and increase as the centrifugal port speed increases.
実施例 7  Example 7
[0028] Al Oをステンレス鋼に本発明の焼成方法を使用して遠心加圧下で接合した。ここ  [0028] Al O was bonded to stainless steel under centrifugal pressure using the firing method of the present invention. here
2 3  twenty three
では、アルミニウムを中間層に用いた。接合温度は 650°Cであり、保持時間を 2時間 とした。図 7に、接合体の引っ張り強度( σ f)の遠心圧力(Pc )依存性を示す。遠心 圧力の増加に伴い、引っ張り強度、すなわち界面の接着力が増カロしていることがわ かる。また、遠心力を負荷しない場合には、試料は全く接着しなかった。  Used aluminum for the intermediate layer. The bonding temperature was 650 ° C and the holding time was 2 hours. FIG. 7 shows the centrifugal pressure (Pc) dependence of the tensile strength (σ f) of the joined body. It can be seen that as the centrifugal pressure increases, the tensile strength, ie, the adhesive strength at the interface, increases. When no centrifugal force was applied, the sample did not adhere at all.
実施例 8  Example 8
[0029] 銅粉末を石英基板上にスクリーン印刷し (膜厚 10 m)、本発明の焼成方法を使用 して遠心焼結した。遠心加速度は 87kmZs2とし、焼結温度を 600°C、保持時間を 1 Ominとした。その後、スクラッチテストにより膜接着力の評価を行った。比較例として 、遠心加速度を加えない場合の試料を測定した。図 8に、その結果を示す。横軸は 押しつけ力(Fn)、縦軸は接線方向の力(Ft)を示す。 Ftが高いほど、接着力が高い ことを示すが、本発明の焼成方法を使用した遠心焼結により接着力が増カロしているこ とがわかる。 [0029] Copper powder was screen-printed on a quartz substrate (film thickness 10 m) and centrifugally sintered using the firing method of the present invention. Centrifugal acceleration a 87kmZs 2, sintering temperature 600 ° C, the retention time was 1 Omin. Thereafter, the film adhesion was evaluated by a scratch test. As a comparative example The sample was measured when no centrifugal acceleration was applied. Figure 8 shows the results. The horizontal axis shows the pressing force (Fn), and the vertical axis shows the tangential force (Ft). The higher the Ft, the higher the adhesive strength, but it can be seen that the adhesive strength is increased by centrifugal sintering using the firing method of the present invention.
産業上の利用可能性  Industrial applicability
[0030] 以上詳述したように、本発明は、膜又は積層構造体の焼成方法、該焼成方法を使 用して作製した積層型セラミックス電子部品 '膜電子部品及びその製造方法に係るも のであり、本発明により、脱脂行程における、脱脂中の気体の発生による試料の変形 を抑えることができ、また、焼結行程における、収縮率差に起因するクラック及びデラ ミネーシヨンなどの欠陥の発生を抑制することができる。本発明の焼成方法を使用す ることにより、層又は膜界面の整合がは力もれるため、層又は膜の接着力を増加させ 、層又は膜が使用中に剥離することがな 、高信頼性電子部材を製造することができ る。本発明は、積層セラミックコンデンサー、積層圧電ァクチユエ一ター、積層圧電ト ランス等の積層セラミック電子部品や、膜ガスセンサー、固体燃料電池電極などの膜 状電子部材の製造において、欠陥の低減、すなわち歩留の向上、更には、高信頼 性の製品の製造を実現するものとして有用である。 As described in detail above, the present invention relates to a method for firing a film or a multilayer structure, a multilayer ceramic electronic component manufactured using the firing method, a film electronic component, and a method for manufacturing the same. According to the present invention, it is possible to suppress the deformation of the sample due to the generation of gas during degreasing in the degreasing process, and to suppress the occurrence of defects such as cracks and delamination due to the difference in shrinkage in the sintering process. can do. By using the sintering method of the present invention, the alignment of the interface of the layer or the film is enhanced, so that the adhesive force of the layer or the film is increased, and the layer or the film is not peeled during use, and high reliability is obtained. Electronic components can be manufactured. The present invention is intended to reduce defects, that is, to reduce the number of defects in the production of multilayer ceramic electronic components such as multilayer ceramic capacitors, multilayer piezoelectric actuators and multilayer piezoelectric transformers, and membrane electronic members such as membrane gas sensors and solid fuel cell electrodes. This is useful for improving the retention and, further, for realizing the production of highly reliable products.
図面の簡単な説明  Brief Description of Drawings
[0031] [図 1]LTCCの線収縮率を示した図である。横軸は焼結温度、縦軸は線収縮率であ る(実施例 1)。  FIG. 1 is a view showing a linear shrinkage ratio of LTCC. The horizontal axis is the sintering temperature and the vertical axis is the linear shrinkage (Example 1).
[図 2]BaTiOの線収縮率を示した図である。横軸は焼結温度、縦軸は線収縮率であ  FIG. 2 is a view showing a linear shrinkage ratio of BaTiO. The horizontal axis is the sintering temperature, and the vertical axis is the linear shrinkage.
3  Three
る(実施例 2)。  (Example 2).
[図 3]フ ライトの線収縮率を示した図である。横軸は焼結温度、縦軸は線収縮率で ある(実施例 3)。  FIG. 3 is a view showing a linear shrinkage ratio of a flight. The horizontal axis is the sintering temperature, and the vertical axis is the linear shrinkage (Example 3).
[図 4]Niの線収縮率を示した図である。横軸は焼結温度、縦軸は線収縮率である(実 施例 4)。  FIG. 4 is a view showing a linear shrinkage ratio of Ni. The horizontal axis is the sintering temperature, and the vertical axis is the linear shrinkage (Example 4).
[図 5]BaTiOと Niの積層セラミックスの断面写真である。図(a)は通常焼結、図(b)は  FIG. 5 is a cross-sectional photograph of a laminated ceramic of BaTiO and Ni. Figure (a) is normal sintering, Figure (b) is
3  Three
本発明の焼成方法を使用した遠心焼結である。図 (c)及び (d)はそれぞれ図 (a)及 び (b)の拡大図である。図(b)中の矢印は遠心力の加圧方向を示している(実施例 5 ) o It is centrifugal sintering using the firing method of the present invention. Figures (c) and (d) are enlarged views of Figures (a) and (b), respectively. Arrows in the figure (b) indicate the direction in which the centrifugal force is applied (Example 5). ) o
[図 6]銅厚膜の焼結後の表面写真である。図の上部の数値は遠心加速度を示してレ、 る(実施例 6)。  FIG. 6 is a photograph of the surface of a copper thick film after sintering. The numerical value at the top of the figure indicates the centrifugal acceleration (Example 6).
[図 7]A1 Oのステンレスへの接合強度を示す。横軸は遠心圧力、縦軸は引っ張り強 FIG. 7 shows the bonding strength of A1 O to stainless steel. The horizontal axis is the centrifugal pressure and the vertical axis is the tensile strength
2 3 twenty three
度を示している(実施例 7)。 The degree is shown (Example 7).
[図 8]銅厚膜のスクラッチテスト結果を示す。横軸は押しつけ力、横軸は押しつけ力、 縦軸は接線方向の力を示して!/、る(実施例 8)。  FIG. 8 shows a scratch test result of a copper thick film. The horizontal axis shows the pressing force, the horizontal axis shows the pressing force, and the vertical axis shows the tangential force! /, (Example 8).

Claims

請求の範囲 The scope of the claims
[1] 基板上の膜又は積層構造体の焼成物において、収縮率の異方性を有し、基板に 対する接線方向の収縮がほとんどなぐ焼成中に発生する欠陥の生成が抑制されて [1] A fired product of a film or a laminated structure on a substrate has anisotropy in shrinkage and suppresses generation of defects that occur during firing when shrinkage in the tangential direction to the substrate is almost negligible.
V、ることを特徴とする上記膜又は積層構造体の焼成物。 V. A fired product of the above film or laminated structure, characterized in that:
[2] 焼成中に発生するクラック及び層の剥離の生成が抑制されている請求項 1記載の 膜又は積層構造体の焼成物。 2. The fired product of the film or the laminated structure according to claim 1, wherein generation of cracks and delamination occurring during firing is suppressed.
[3] 脱脂中の気体の発生によるクラック及び層の剥離の生成が抑制されている請求項 1 記載の膜又は積層構造体の焼成物。 [3] The fired product of the film or the multilayer structure according to claim 1, wherein generation of cracks and delamination due to generation of gas during degreasing is suppressed.
[4] 基板に対する膜又は積層構造体の接着力を向上させた請求項 1記載の膜又は積 層構造体の焼成物。 [4] The fired product of the film or the laminated structure according to claim 1, wherein the adhesive strength of the film or the laminated structure to the substrate is improved.
[5] 膜又は積層構造体の材料が、セラミックス、金属、又はこれらを含む複合材料であ る請求項 1記載の膜又は積層構造体の焼成物。  [5] The fired product of the film or the laminated structure according to claim 1, wherein the material of the film or the laminated structure is a ceramic, a metal, or a composite material containing these.
[6] 請求項 1から 5のいずれかに記載の、接線方向の収縮が抑制された膜又は積層構 造体を具備してなることを特徴とする膜状又は積層電子部材。 [6] A film-shaped or laminated electronic member comprising the film or the laminated structure in which shrinkage in the tangential direction is suppressed according to any one of claims 1 to 5.
[7] 電子部材が、コンデンサー、サーミスター、ノ《リスター、インダクター、圧電ァクチュ エーター、圧電トランス、センサー、又は電極である請求項 6記載の膜状又は積層電 子部材。 7. The film-shaped or laminated electronic member according to claim 6, wherein the electronic member is a capacitor, a thermistor, a resistor, an inductor, a piezoelectric actuator, a piezoelectric transformer, a sensor, or an electrode.
[8] 基板上の膜又は積層構造体の焼成行程において、試料を回転体内に設置し、回 転体の高速回転運動により膜又は積層構造体に遠心力を加え、同時に加熱し、遠 心力の作用による収縮率の異方性を利用することにより、焼成中に発生するクラック 及び層の剥離などの欠陥の発生を抑制した焼成物を得ることを特徴とする膜又は積 層構造体の焼成物の製造方法。  [8] In the baking process of the film or the laminated structure on the substrate, the sample is placed in a rotating body, centrifugal force is applied to the film or the laminated structure by the high-speed rotation of the rotating body, and the centrifugal force is applied to the film or the laminated structure at the same time. By using the anisotropy of shrinkage due to the action, it is possible to obtain a fired product in which the occurrence of defects such as cracks and delamination during firing is suppressed, and a fired product of a film or multilayer structure is characterized. Manufacturing method.
[9] 基板上の膜又は積層構造体の脱脂行程に置いて、試料を回転体内に設置し、回 転体の高速回転運動により膜又は積層構造体に遠心力を加え、同時に加熱し、遠 心力の作用により該試料を加圧することにより、脱脂中の気体の発生によるクラック及 び層の剥離などの欠陥の発生を抑制した焼成物を得る請求項 8記載の方法。  [9] The sample is placed in a rotating body in the degreasing process of the film or laminated structure on the substrate, and centrifugal force is applied to the film or laminated structure by the high-speed rotation of the rotating body. 9. The method according to claim 8, wherein the sample is pressurized by the action of a cardiac force to obtain a fired product in which generation of cracks and delamination such as delamination due to generation of gas during degreasing is suppressed.
[10] 基板上の膜又は積層構造体の焼結行程において、試料を回転体内に設置し、回 転体の高速回転運動により膜又は積層構造体に遠心力を加え、同時に加熱すること により、膜又は層の接着力を増加させた焼成物を得る請求項 8記載の方法。 [10] In the sintering process of a film or a laminated structure on a substrate, a sample is placed in a rotating body, and centrifugal force is applied to the film or the laminated structure by high-speed rotation of the rotating body, and heating is performed simultaneously. 9. The method according to claim 8, wherein a fired product having an increased adhesive strength of the film or layer is obtained.
[11] 回転体の回転数が、 500— 100, OOOrpmである請求項 8記載の方法。 [11] The method according to claim 8, wherein the rotation speed of the rotating body is 500-100, OOOrpm.
[12] 膜又は積層界面と垂直方向に遠心力を加える請求項 8記載の方法。 [12] The method according to claim 8, wherein a centrifugal force is applied in a direction perpendicular to the interface of the film or the lamination.
[13] 膜又は積層界面に加える圧力力 0. 1— lOOMPaである請求項 8記載の方法。 [13] The method according to claim 8, wherein the pressure applied to the film or the lamination interface is 0.1 to 100 MPa.
[14] 膜又は積層構造体の材料が、セラミックス、金属、又はセラミックスと金属の複合材 料である請求項 8記載の方法。 14. The method according to claim 8, wherein the material of the film or the laminated structure is ceramic, metal, or a composite material of ceramic and metal.
PCT/JP2004/015499 2003-10-21 2004-10-20 Multilayer ceramic electronic component/film electronic component and its manufacturing method WO2005037732A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003361311A JP2005126255A (en) 2003-10-21 2003-10-21 Laminated ceramic electronic component/film-form electronic component and its manufacturing method
JP2003-361311 2003-10-21

Publications (1)

Publication Number Publication Date
WO2005037732A1 true WO2005037732A1 (en) 2005-04-28

Family

ID=34463487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015499 WO2005037732A1 (en) 2003-10-21 2004-10-20 Multilayer ceramic electronic component/film electronic component and its manufacturing method

Country Status (2)

Country Link
JP (1) JP2005126255A (en)
WO (1) WO2005037732A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106478095A (en) * 2016-09-28 2017-03-08 陕西科技大学 Ba0.9Ca0.1Ti0.9Zr0.1O3/CoFe2O4Layered electromagnetic composite and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071365A (en) * 2009-09-28 2011-04-07 Taiheiyo Cement Corp Method of manufacturing internal electrode of electronic component, and electronic component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330805A (en) * 1997-05-28 1998-12-15 Komatsu Ltd Manufacture of cylindrical composite material, and cylindrical composite member to be obtained thereby
JP2002193680A (en) * 2000-12-26 2002-07-10 National Institute Of Advanced Industrial & Technology Sintering method and device therefor
WO2003040061A1 (en) * 2001-11-09 2003-05-15 National Institute Of Advanced Industrial Science And Technology Production of oriented material or composite material through centrifugal burning

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330805A (en) * 1997-05-28 1998-12-15 Komatsu Ltd Manufacture of cylindrical composite material, and cylindrical composite member to be obtained thereby
JP2002193680A (en) * 2000-12-26 2002-07-10 National Institute Of Advanced Industrial & Technology Sintering method and device therefor
WO2003040061A1 (en) * 2001-11-09 2003-05-15 National Institute Of Advanced Industrial Science And Technology Production of oriented material or composite material through centrifugal burning

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106478095A (en) * 2016-09-28 2017-03-08 陕西科技大学 Ba0.9Ca0.1Ti0.9Zr0.1O3/CoFe2O4Layered electromagnetic composite and preparation method thereof

Also Published As

Publication number Publication date
JP2005126255A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
WO2005086247A1 (en) Multilayer piezoelectric element and its manufacturing method
WO2005093866A1 (en) Multilayer piezoelectric element and its manufacturing method
WO2005011009A1 (en) Laminate type electronic component and production method therefor and laminate type piezoelectric element
JP3760942B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4771649B2 (en) Manufacturing method of multilayer electronic component
JP2966375B2 (en) LAMINATED CERAMIC AND PROCESS FOR PRODUCING THE SAME
WO2005037732A1 (en) Multilayer ceramic electronic component/film electronic component and its manufacturing method
CN114988854B (en) Alumina ceramic substrate and preparation method thereof
TW200932081A (en) Multilayer ceramic substrate, method for manufacturing multilayer ceramic substrate and method for suppressing warpage of multilayer ceramic substrate
TW200831441A (en) Method for manufacturing ceramic compact
JP3062139B2 (en) Manufacturing method of multilayer ceramics
Pope et al. Laminated object manufacturing of Si3N4 with enhanced properties
JP3849446B2 (en) Manufacturing method of multilayer ceramic electronic component
Sergent Ceramic materials
JP4889200B2 (en) Multilayer piezoelectric element and injection device
JP4715128B2 (en) Method for manufacturing piezoelectric element
JP4419372B2 (en) Method for manufacturing thin ceramic plate
JP3854199B2 (en) Glass ceramic substrate and manufacturing method thereof
JP2551431B2 (en) Method for manufacturing high density piezoelectric ceramics
CN106032327B (en) Ceramic-based metamaterial and manufacturing method thereof
JP4543447B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4161618B2 (en) Method for producing multilayer ceramic fired body
JPH11106265A (en) Sintering of ceramic alternate laminate
JP4341282B2 (en) Manufacturing method of ceramic electronic component
JP3878916B2 (en) Manufacturing method of multilayer electronic components

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase