WO2005036781A1 - Appareil et procede d'integration de trafics multiports - Google Patents

Appareil et procede d'integration de trafics multiports Download PDF

Info

Publication number
WO2005036781A1
WO2005036781A1 PCT/CN2004/000896 CN2004000896W WO2005036781A1 WO 2005036781 A1 WO2005036781 A1 WO 2005036781A1 CN 2004000896 W CN2004000896 W CN 2004000896W WO 2005036781 A1 WO2005036781 A1 WO 2005036781A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
data
clock
branch
clock frequency
Prior art date
Application number
PCT/CN2004/000896
Other languages
English (en)
French (fr)
Inventor
Li Zeng
Jingling Liao
Xiaohong Wei
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP04762033A priority Critical patent/EP1655864B1/en
Priority to DE602004009198T priority patent/DE602004009198T2/de
Publication of WO2005036781A1 publication Critical patent/WO2005036781A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1611Synchronous digital hierarchy [SDH] or SONET
    • H04J3/1617Synchronous digital hierarchy [SDH] or SONET carrying packets or ATM cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/062Synchronisation of signals having the same nominal but fluctuating bit rates, e.g. using buffers

Definitions

  • the present invention relates to Dense Wavelength Division Multiplexing (DWDM) technology, and in particular, to a transmission device and a transmission method for implementing multi-port service convergence.
  • DWDM Dense Wavelength Division Multiplexing
  • optical fiber can be used to transmit various services such as data, voice and image.
  • Table 1 shows the current common services and their transmission rates.
  • FIG. 1 is a schematic diagram showing the transmission principle of the prior art DWDM system.
  • An optical forwarding unit (OTU) used for transmission at a transmitting end receives a signal from a service side, and a multiplexing unit combines signal optical carriers of different wavelengths and sends it to a single optical fiber for propagation.
  • a demultiplexing unit will The optical carriers carrying different signals at different wavelengths are separated, and the received signals are transmitted to different branches by the OTU for receiving, so that multiple optical signals can be multiplexed and transmitted in one optical fiber.
  • the first transmission method is transparent transmission at any rate and wavelength.
  • 3R Re-sharping, Re-amplifying, Re-timing
  • FIG. 2 is a schematic diagram of an OTU that realizes transparent transmission at any rate and wavelength in the prior art.
  • the branch is connected to the service side, and the high-speed link is connected to the DWDM side.
  • the receiving module 201 of the service-side interface in the OTU converts the received optical signal into an electrical signal
  • the clock data recovery (CDR) module 202 extracts the clock frequency information from the service data
  • the service-side transmission The module 203 converts the electric signal processed by the CDR module 202 into an optical signal that conforms to the standard and is suitable for transmission in a DWDM system, and then uses the frequency of the extracted clock to send out service data.
  • CDR clock data recovery
  • the DWDM side After receiving the signal, the receiving module 204 converts the optical signal into an electrical signal and transmits it to the CDR module 205.
  • the CDR module 205 sends the received service data to the sending module 206 on the DWDM side according to the clock frequency of the service data.
  • the electro-optical conversion processing of the side transmitting module 206 is transmitted to the corresponding port.
  • a CDR module can realize data recovery and clock frequency extraction for data services of any rate, which avoids designing wavelength conversion boards with different OTUs for accessing different services in the same system, which makes the system better. compatibility.
  • a CDR module can be designed to support the extraction of the clock frequency of service data at any rate between 10M and 2.7Gbps.
  • one OTU can receive or send service data of different rates to meet the needs of services of different rates.
  • this method has the following disadvantages: When a low-speed service, such as a Fast Ethernet (FE) service with a rate of 125 Mbps, accesses the OTU, a 125 Mbps will occupy a wavelength resource, and thus the bandwidth resource of the wavelength will be seriously wasted.
  • FE Fast Ethernet
  • the transmitting / receiving module on the DWDM side is a dedicated module that conforms to the standard wavelength, and the use of these dedicated modules to transmit low-speed services is costly.
  • the second transmission method is the aggregation of multi-port services.
  • several low-speed services are usually aggregated into a high-speed channel and then transmitted.
  • FIG. 3 is a schematic diagram of an OTU unit that implements multi-port service convergence in the prior art. Each port corresponds to a branch. Different branches can transmit service data at different rates, but each branch can only transmit service data at a fixed rate.
  • the photoelectric conversion module 301a first converts the received optical signal into an electrical signal and transmits it to the CDR module 302a that receives the fixed rate.
  • the CDR module 302a receiving the fixed rate extracts the clock frequency information of the service data from the received service data, and removes the padding characters or overhead characters from the service data to obtain pure service data.
  • the pure service data is serially-parallel converted.
  • the encapsulation module 304 applies a pre-defined encapsulation format to encapsulate the service data received by each port.
  • the encapsulation format includes information such as the frame header, frame tail, and channel, which facilitates the correct recovery of the service data in the downstream direction. Encapsulation is performed by access procedures (HDLC), link access procedures-SDH (LAPS), general frame encapsulation processing (GFP), or other encapsulation formats approved by OTU.
  • the mapped service data is mapped into a high-speed channel container by the mapping module 305, and after the parallel-to-serial and electro-optical conversion module 306 performs parallel-to-serial conversion processing and electro-optic conversion processing, the high-speed in the clock module 307 is sent according to the high-speed channel.
  • the clock frequency of the channel sends out business data.
  • the encapsulated service data may be mapped into a container in a transmission format under the SDH format, such as a VC3 VC4 container of STM-16.
  • mapping process if the receiving service bandwidth is greater than the container capacity, multiple containers are bundled for use; If the received service bandwidth is less than the container capacity, a padding byte or a gap packet is inserted in the format defined by the encapsulation to perform bandwidth adaptation.
  • the conversion module 308 first performs photoelectric conversion on the received service data, extracts the line clock frequency, and performs serial-parallel conversion processing. Ensure that the clock frequency of the data sent in the downstream direction is the same as the clock frequency of the high-speed channel, and then perform the demapping by the demapping module 309, that is, restore the service data of each branch from the container of the high-speed channel, while discarding the mapping process may increase.
  • the padding bytes or gap packets are then decapsulated by the decapsulation module 310 according to the encapsulated format, so as to recover specific service data of each branch.
  • the service data is processed, pure service data is extracted from it, and pure service data is encapsulated and mapped. deal with.
  • the clock frequency information of each branch has been completely lost.
  • the clock frequency of each branch should be the same as the clock frequency of each branch during the uplink transmission.
  • the clock frequency information of each uplink branch has been completely lost, the uplink cannot be recovered during the downlink transmission.
  • the clock frequency information of the transmission process in this case, only rate adaptation can be performed in the decapsulation module 310.
  • the rate adaptation module in the decapsulation module 310 interleaves some gap packets that conform to the stipulation of the transmitted service, so as to eliminate the frequency deviation.
  • Fibre Channel Fibre Channel
  • SDH / SONET synchronous optical transport network
  • bit adjustments can be made.
  • the service data adjusted by the rate adaptation module is processed by the parallel-to-serial conversion module 312a and the electro-optical conversion module 313a. Go out.
  • This method also has a disadvantage. Because the clock frequency of the tributary services corresponding to each port of the OTU cannot be transparently transmitted, the receiver cannot identify the frequency offset from the sender.
  • the unit receiver must perform rate adaptation, and achieve the purpose of eliminating frequency offset through rate adaptation.
  • the rate adaptation operation is associated with the service type, so it is difficult to design an OTU module that can adapt to any rate. For this purpose, several common module types are usually designed, such as: 2xGE is converged into STM-16, lOxESCON is converged into STM-16, and 4> ⁇ STM-4 is converged into STM-16. But various modules are difficult to be compatible. In this way, the OTU module has poor flexibility in use, and it is difficult to realize the transmission of mixed services.
  • a main object of the present invention is to provide a transmission device that implements multi-port service aggregation.
  • the device can implement aggregation of services at any rate, thereby making the use of the device more flexible and lower in cost.
  • Another object of the present invention is to provide a transmission method for achieving multi-port service aggregation, by which an aggregation of services at any rate can be achieved, so that service data can be transmitted more flexibly and transmission costs are lower.
  • the device includes an uplink transmission unit and a downlink transmission unit, wherein the uplink transmission unit at least includes a clock data recovery module for extracting clock frequency information from tributary service data in series, and is configured to perform processing on the received service data.
  • the uplink transmission unit at least includes a clock data recovery module for extracting clock frequency information from tributary service data in series, and is configured to perform processing on the received service data.
  • a decapsulation module for restoring branch data and further includes:
  • the branch clock generating and adjusting part is used to determine the sending clock frequency information of the decapsulated service data, and adjust the local branch clock frequency according to the sending clock frequency, so that the local branch clock frequency and the sending clock frequency are kept consistent;
  • the de-mapping module, de-encapsulation module, and branch clock generation and adjustment part of the downstream transmission unit are connected in series in sequence, and the clock data recovery module of the upstream transmission unit supports an arbitrary rate service.
  • the branch clock generation and adjustment part of the downlink transmission unit in the above device includes: a rate frequency discriminating module, located inside the decapsulation module, for determining a difference between the local branch clock frequency of the receiver and the send clock frequency of the sender;
  • the tributary clock generation and adjustment module is used to generate a local tributary clock and adjust the local tributary clock according to the difference determined by the rate frequency discrimination module, so that the local tributary clock frequency is consistent with the sender's sending clock frequency.
  • each branch has an independent clock data recovery module, a rate discriminating module, and a branch clock generating and adjusting module corresponding to each branch.
  • the uplink transmission unit of the device further includes:
  • a plurality of photoelectric conversion modules connected to the clock data recovery module for converting received optical signals into electrical signals
  • serial-parallel conversion modules connected between the clock data recovery module and the packaging module for converting serial signals into parallel signals
  • Parallel-to-serial and electro-optical conversion module connected to the mapping module for parallel-to-serial and electro-optical conversion of the mapped data packets;
  • High-speed channel transmission clock module connected to the parallel and electro-optical conversion module for providing high-speed channel clock
  • the downlink transmission unit of the device further includes:
  • Photoelectric conversion, line clock extraction and serial-parallel conversion module connected to the demapping module for photoelectric conversion, line clock extraction and serial-parallel conversion of the received data packet;
  • Multiple parallel-to-serial conversion modules connected to the decapsulation module and the branch clock generation and adjustment module for parallel-to-serial conversion of the decapsulated branch service data;
  • a plurality of electro-optical conversion modules connected to the parallel-to-serial conversion module for electro-optical conversion of the decapsulated branch service data.
  • Different branches of the device according to the invention support the processing of different rate services.
  • the method for implementing multi-port service aggregation according to the present invention at least includes:
  • the above method further includes the step of setting a buffer with a watermark value in advance, and adjusting the local branch clock frequency according to the sending clock frequency in step b includes:
  • a clock module and the module for generating a local branch clock adjusts the local branch clock frequency according to the received waterline value.
  • the method further includes a step of performing photoelectric conversion on branch service data, and after the mapping processing, further includes a step of performing electro-optical conversion on the mapped data packet;
  • the mapping process further includes a step of photoelectric conversion, and after the demapping, it further includes performing an electro-optical conversion on the branch service data.
  • the method further includes a step of performing serial-to-parallel conversion on the tributary service data, and after the mapping processing, further includes the step of performing parallel-to-serial conversion on the mapped data packet;
  • Step b further includes a step of serial-parallel conversion before the demapping process, and further includes a step of parallel-serial conversion of the tributary service data after the demapping process.
  • the transparent package in the present invention includes:
  • the decapsulation described in step b includes: determining the end of the frame according to the start of the frame header boundary and the data area, and dividing the predetermined length, and then removing the frame header.
  • the uplink transmission method of the present invention does not extract the service data. Pure service data, but the encapsulation and mapping of the complete service data, so that the clock frequency of the upstream branch is kept in the downstream direction, because the data packets in the high-speed channel retain the original clock frequency information of the upstream branch. Therefore, the original uplink branch clock frequency information can be extracted through demapping and decapsulation, and the clock frequency is discriminated by the frequency discriminating module, so that the downlink branch clock frequency and the extracted uplink clock frequency are kept completely consistent.
  • the present invention can ensure that the clock frequency information of the uplink branch and the downlink branch are the same. Based on this, the service data written in the uplink branch can be read normally without the need for rate adaptation processing in the prior art. It also eliminates the inability to process any rate service due to the need for rate adaptation processing in the prior art. The disadvantage is that it can perform aggregation processing on services at any rate, which improves the flexibility of service aggregation and reduces costs.
  • FIG. 1 is a schematic diagram of the transmission principle of the prior art DWDM system.
  • FIG. 2 is a schematic diagram of an OTU that implements transparent transmission at any rate and wavelength in the prior art.
  • FIG. 3 is a schematic diagram of an OTU that implements multi-port service convergence in the prior art.
  • FIG. 4 is a schematic diagram of the transmission principle of a DWDM system to which the present invention is applied.
  • FIG. 5 is a schematic diagram of an OTU to which a multi-port application of the present invention accesses services of an arbitrary rate and aggregates the accessed services.
  • FIG. 6 is a schematic diagram of a rate discriminating module to which the present invention is applied.
  • FIG. 7 is a schematic diagram of a transparent packaging process according to the present invention.
  • FIG. 8 is a schematic diagram of decapsulating a transparently encapsulated data packet according to the present invention. Mode of Carrying Out the Invention
  • FIG. 4 is a schematic diagram showing the transmission principle of a DWDM system to which the present invention is applied.
  • Each OTU for sending can simultaneously receive service data at any rate from multiple ports, and after converging the received data, send the service data to the high-speed channel via the multiplexing unit; After receiving the data sent by the high-speed channel, the OTU directly distributes the received service data of different rates to each corresponding port without the need for rate adaptation.
  • FIG. 5 is a schematic diagram of an OTU to which the multi-port of the present invention accesses services of an arbitrary rate and aggregates the accessed services.
  • Each port corresponds to a branch, and different branches can transmit service data at different rates, and each branch can transmit service data at any rate.
  • the OTU includes an uplink transmission unit for uplink transmission and a downlink transmission unit for downlink transmission.
  • the uplink transmission refers to sending information on the service side
  • the downlink transmission method refers to receiving on the service side. information.
  • the uplink transmission unit includes a serial-to-serial photoelectric conversion module 501, CDR 502, a serial-to-parallel conversion module 503, a packaging module 504, a mapping module 505, and a parallel-to-serial and electro-optic conversion module 506.
  • High-speed channel transmission clock module 507 where there are multiple branches on the service side, that is, branches 1 to n, corresponding to each branch there is a photoelectric conversion module 501, a CDR 502, and a serial-to-parallel conversion
  • the modules 503 are the photoelectric conversion modules 501a to 501n, the CDRs 502a to 502n, and the serial-to-parallel conversion modules 503a to 503n.
  • the downlink transmission unit includes a serial-to-serial conversion, a photoelectric conversion, a line clock extraction, and a serial-to-parallel conversion module 508, a demapping module 509, a decapsulation module 510, a parallel-to-serial conversion module 512, and an electro-optic conversion module 513.
  • each branch there is a branch clock generation and adjustment module 511a ⁇ 511n, a parallel-to-serial conversion module 512a ⁇ 512n, and an electro-optical conversion Modules 513a ⁇ 513n.
  • the photoelectric conversion module 501 and the electro-optical conversion module 513 can be combined together to form a photoelectric conversion module with a bi-directional photoelectric conversion function; the serial-to-parallel conversion module 503 and the parallel-to-serial conversion module 512 can also be merged together and parallel
  • the electro-optical conversion module 506 and the photoelectric conversion, line clock extraction, and serial-parallel conversion module 508 can also be combined together.
  • the encapsulation module 504 and the de-encapsulation module 510, the mapping module 505, and the de-mapping module 509 can be physically integrated in a module, respectively, and the integrated module has the ability to work in both directions.
  • the CDR 502 supports clock extraction and data recovery for services of any rate.
  • all services are transparently encapsulated, unlike in the prior art, when only encapsulating pure business data during encapsulation, discarding the original business data Fill characters or overhead characters in. In this way, the uplink branch clock frequency information of the present invention is retained during encapsulation, unlike the prior art, where the idle signal is discarded and the uplink branch clock frequency information is lost.
  • the upstream branch clock frequency information Since the upstream branch clock frequency information is retained in the encapsulated data, the upstream branch clock frequency information can be recovered from the decapsulated data during decapsulation, and the branch clock generation and adjustment module 511 is based on the upstream
  • the branch clock frequency information adjusts the downstream branch clock so as to keep the read speed and write speed consistent. In this way, it is not necessary to perform rate adaptation when reading data, thereby avoiding the disadvantage that in the prior art, it is impossible to implement aggregation of services at any rate due to rate adaptation. It is precisely because the aggregation of services at any rate can be achieved, the OTU according to the present invention has the advantages of flexible use and low cost.
  • the optical conversion module 501a first converts the received optical signal into an electrical signal, and then transmits the electrical signal to the CDR module 502a.
  • the module can receive business data at any rate.
  • the CDR module 502a extracts the clock frequency information in the service data from the received service data, and sends the service data to the encapsulation module 504 after serial-to-parallel conversion processing of the serial-to-parallel conversion module 503a.
  • the encapsulation module 504 encapsulates the received service data in the order of the bit stream, such as encapsulating according to the format of the GFP protocol.
  • the encapsulation performed by the encapsulation module 504 here is transparent encapsulation, that is, the encapsulated business data includes not only pure business data, but also free characters or overhead characters in the original business data. The data keeps the original upstream branch clock frequency information. The specific method of transparent packaging will be described in detail later.
  • the encapsulation module 504 sends the encapsulated data packet to the mapping module 505.
  • the mapping module 505 maps the encapsulated data packet to a high-speed channel In the container, such as the VC3 / VC4 container of STM-16, after the parallel-serial conversion and the electro-optical conversion processing of the electro-optical conversion module 506, the high-speed channel clock frequency in the clock module 507 is sent according to the high-speed channel. Send service data to the peer device.
  • the mapping process if the receiving service bandwidth is greater than the container capacity, multiple containers are bundled for use; if the receiving service bandwidth is less than the container capacity, padding bytes or gap packets are inserted in the format defined by the encapsulation for bandwidth adaptation.
  • the photoelectric conversion, line clock extraction, and serial-parallel conversion module 508 first performs photoelectric conversion, line clock on the service data received from the opposite device.
  • Frequency extraction and serial-parallel conversion processing to ensure that the clock frequency of the data transmitted in the downstream direction is consistent with the clock frequency of the high-speed channel, and then demapped by the demapping module 509, that is, the service data of each branch is removed from the container of each high-speed channel It recovers the data at the same time, discards the padding bytes or gap packets at the same time, and then de-encapsulates the de-encapsulation module 510 according to the encapsulation definition to recover the specific service data of each branch.
  • the specific processing of decapsulation will be described later together with transparent packaging.
  • a service rate frequency identification module is set for each branch in the decapsulation module 510.
  • Each rate frequency discrimination module is equivalent to a buffer, and the decapsulated service data enters the rate frequency discrimination module. Because there is a rate difference between the service data written by the sender and the service data read by the receiver, the service data in the rate discriminating module will inevitably be changed to a waterline value.
  • the receiver's branch clock generation and adjustment module 511a will make corresponding adjustments to eliminate the frequency deviation between the receiver and the sender, so that the frequency of the receiver's branch clock always tracks the sender.
  • the clock frequency of the received service that is, the clock frequency of the read service data is equal to the clock frequency of the written service data in the uplink direction.
  • the parallel-to-serial conversion module 512a and the electro-optical conversion module 513a perform parallel-to-serial conversion and electro-optical conversion on the received service data, respectively, and the branch is converted according to the clock frequency of the branch. Road's business data is sent out.
  • FIG. 6 is a schematic diagram of a rate discriminating module to which the present invention is applied.
  • the rate discrimination module is equivalent to a buffer to adjust the frequency offset between the sender and receiver.
  • Each rate discriminating module has a preset standard watermark value. If the clock frequency of the sender is faster than the clock frequency of the receiver, the transmitted service data is de-mapped and written into the rate discriminating module. There is more business data, and the watermark value of the data change in the rate frequency discrimination module will be higher than the reference watermark value.
  • the data bus between the rate frequency discrimination module and the branch clock generation and adjustment module 512 will be used to transfer the water
  • the line value is sent to the branch clock generation and adjustment module 512, and the branch clock generation and adjustment module 512 makes corresponding adjustments according to the change of the waterline value, that is, to accelerate the clock frequency of the corresponding branch, so that the rate in the frequency discrimination module
  • the changed waterline value is close to the reference waterline value to eliminate the frequency deviation.
  • the clock frequency of the sender is slower than the clock frequency of the receiver, the transmitted service data is de-mapped and written into the rate discriminating module. There is less service data in the data, and the watermark value of the data change in the rate discriminating module will be lower than the reference watermark value.
  • the branch clock of the receiver will do according to the change of the watermark value. Adjusted, i.e. slowing down the clock frequency of corresponding branch to make the changing waterline value rate discriminator module waterline close to the reference value, in order to eliminate the frequency offset. This ensures that the read speed and write speed of the branch are consistent, that is, transparent transmission of the clock frequency of the branch is achieved.
  • FIG. 7 shows a schematic diagram of transparently encapsulating a data stream by applying the present invention.
  • the serial electrical signal at the service receiving end is converted into a parallel signal by the serial-parallel conversion module 503 and then sent to the packaging module 504 to facilitate the processing of the packaging module.
  • the encapsulation module 504 is actually a FIFO buffer.
  • a byte counter is set, and the counter value N is the length of the data area of the encapsulated frame.
  • the count value N is set according to the relationship between the actual transmission efficiency and cost, so its value is different for different services, but it is fixed during the transmission of the same service.
  • a low watermark value is set in the FIFO buffer 504.
  • the data stored in the FIFO reaches the low watermark, the data in the FIFO buffer is sliced according to the set count value N in the first-in-first-out order.
  • a frame header and a payload field header are added to the sliced data, thereby achieving data encapsulation.
  • the data is merged and processed in the next slicing process.
  • FIG. 8 is a schematic diagram of decapsulating a data stream at a service transmitting end by applying the present invention.
  • the sender After receiving the data frame transmitted from the remote end, the sender starts by defining the data area through the frame header, finds the end of the frame according to the length N of the data, and then removes the frame header and the payload field header to obtain the data Enter the decapsulation module 510.
  • the decapsulation module 510 is actually also a FIFO buffer. Since the idle frame data between the packets has been identified and discarded before entering the buffer 510, the pure payload data is stored in the buffer 510.
  • the data stream is in FIFO order, and the parallel data is converted into serial data by the parallel-to-serial conversion module 512 and then sent.
  • the OTU directly receives an electrical signal, there is no need to perform processes such as photoelectric conversion and electro-optical conversion, and thus no photoelectric conversion module is required. If the present invention is applied to a low-speed occasion, signals can be processed directly without the need for processing such as serial-to-parallel conversion and parallel-to-serial conversion, so that a corresponding serial-to-parallel conversion module is not required.

Description

一种实现多端口业务汇聚的传送装置和方法
技术领域
本发明涉及密集波分复用 (DWDM )技术, 具体涉及一种实现多端 口业务汇聚的传送装置和传送方法。 发明背景
随着通信技术的不断发展, 可以用光纤来传送数据、 语音和图像等 各种业务。 表 1所示为目前常见的业务及其传送速率。
Figure imgf000003_0001
表 1
如果利用一根光纤传送一种业务, 将造成光纤资源的严重浪费, 现 在通常采用 DWDM系统进行传送, 这样能够极大节省光纤资源。 图 1 所示为现有技术 DWDM系统传送原理的示意图。 在发送端用于发送的 光转发单元(OTU )从业务侧接收信号, 由合波单元将不同波长的信号 光载波合并起来送入一根光纤进行传播。 在接收端, 由一个分波单元将 不同波长承载不同信号的光载波分开, 并由用于接收的 OTU将接收到 的信号传送到各个不同的支路中, 从而在一根光纤中可以实现多路光信 号的复用传输。
应用 DWDM系统传送业务数据时, 通常有以下两种传送方式: 第一种传送方式是对任意速率波长进行透传。通过光 /电 /光( 0/E/0 ) 方式将非标准波长业务转换为符合 DWDM系统传送的标准波长后, 利 用 3R ( Re-sharping、 Re-amplifying、 Re-timing )技术实现对各种业务的 传送。
图 2所示为现有技术的实现任意速率波长透传的 OTU的示意图。与 支路相连的为业务侧, 与高速通道相连的为 DWDM侧。 在发送方向, OTU中业务侧接口的接收模块 201 ,将所接收的光信号转换为电信号后, 由时钟数据恢复(CDR )模块 202从业务数据中将时钟频率信息提取出 来, 业务侧的发送模块 203将经 CDR模块 202处理后的电信号转换为 符合标准并适合在 DWDM系统中传输的光信号后, 利用所提取时钟的 频率将业务数据发送出去; 同理, 在接收方向, DWDM侧的接收模块 204 收到信号后, 将光信号转换为电信号后传送给 CDR模块 205, 由 CDR模块 205 按照该业务数据的时钟频率将收到的业务数据发送给 DWDM侧的发送模块 206, 经 DWDM侧发送模块 206的电光转换处理 后传送给对应的端口。
一个 CDR模块可实现对任意速率的数据业务进行数据恢复和时钟 频率的提取, 这样避免了在同一系统中为接入不同业务而设计装有不同 的 OTU的波长转换板, 使系统具有更好的兼容性。 例如, 可以设计一 个 CDR模块,令其支持 10M ~ 2.7Gbps之间任意速率业务数据的时钟频 率的提取。 这样 1个 OTU可接收或发送不同速率的业务数据, 以满足 不同速率业务的需求。 但是这种方法存在以下缺点: 当一个低速业务, 如速率为 125Mbps 的快速以太网 (FE )业务接入 OTU时, 则一个 125Mbps将占用一个波 长资源, 这样, 波长的带宽资源将被严重浪费。 同时由于 DWDM侧的 发送 /接收模块是符合标准波长的专用模块,而利用这些专用模块传送低 速业务, 成本也是 ί艮高的。
第二种传送方式是对多端口业务进行汇聚。 为了解决带宽利用率, 通常将几个低速的业务汇聚到一个高速通道中后再传送。
图 3为现有技术的实现多端口业务汇聚的 OTU单元示意图。每一个 端口对应一条支路, 不同支路可传送不同速率的业务数据, 但每条支路 只能传递固定速率的业务数据。 对于上行传送方向, 即 OTU单元发送 业务侧的信息时, 以支路 1为例,首先由光电转换模块 301a将收到的光 信号转换为电信号后传送给接收固定速率的 CDR模块 302a, 由接收固 定速率的 CDR模块 302a从接收到的业务数据中提取出该业务数据的时 钟频率信息, 并去掉业务数据中的填充字符或开销字符之后得到纯业务 数据 ,将纯业务数据经串并转换模块 303a的串并转换处理后,送入封装 模块 304。 封装模块 304应用预先定义的封装格式对每个端口接收的业 务数据进行封装, 通常封装格式中包括便于下行方向正确恢复该业务数 据的帧头、帧尾和通道等信息,如采用高级数据链路接入规程(HDLC )、 链路接入规程 - SDH ( LAPS )、 一般帧封装处理( GFP )或 OTU认可的 其它封装格式进行封装。 然后, 由映射模块 305将封装好的业务数据映 射到高速通道的容器中, 经并串及电光转换模块 306的并串转换处理和 电光转换处理后, 再根据高速通道发送时钟模块 307中的高速通道的时 钟频率将业务数据发送出去。 例如, 可将封装好的业务数据映射到 SDH 制式下的一种传送格式中的容器中,如 STM-16的 VC3 VC4容器中。在 映射过程中, 若接收业务带宽大于容器容量, 则将多个容器捆绑使用; 若接收业务带宽小于容器容量, 则在封装定义的格式中插入填充字节或 间隙包以进行带宽适配。
同理, 对于下行传送方向, 即 OTU的 DWDM侧接收到高速通道发 送来的业务数据时, 首先由转换模块 308对接收的业务数据进行光电转 换、 线路时钟频率的提取及串并转换处理, 以保证下行方向发送数据的 时钟频率同高速通道的发送时钟频率一致, 再由解映射模块 309进行解 映射, 即将各个支路的业务数据从高速通道的容器中恢复出来, 同时丢 弃映射过程中可能增加的填充字节或间隙包, 然后由解封装模块 310按 照所封装的格式进行解封装, 以恢复出各个支路的具体业务数据。 由于 在上行传送过程中, 不是对各个支路的所有业务数据进行封装和映射等 处理, 而是对业务数据进行了处理, 从中提取出了纯业务数据, 并对纯 业务数据进行封装和映射等处理。 这样各个支路的时钟频率信息已经完 全丟失。 而在下行传送过程中, 各个支路的时钟频率应该与上行传送时 的各个支路的时钟频率相同, 但由于上行各个支路的时钟频率信息已经 完全丢失, 因此下行传送过程中不能恢复出上行传送过程的时钟频率信 息, 在这种情况下只能在解封装模块 310中进行速率适配。 具体地说, 按照不同协议的要求, 由解封装模块 310中的速率适配模块间插一些符 合所传送业务规定的间隙包, 以使其消除频偏。 如对于光纤通道协议 ( Fibre Channel )业务,可以间插一些 Fibre Channel的空闲(Idle )信号; 如对于同步数字系列或同步光传送网 (SDH/SONET ) 业务, 可进行比 特调整。经速率适配模块调整后的业务数据由并串转换模块 312a和电光 转换模块 313a进行并串转换处理和电光转换处理后,按照所在支路的支 路时钟产生模块 311a产生的频率将业务数据发送出去。
这种方法也具有一个缺点,由于 OTU的每个端口所对应支路业务的 时钟频率无法透传, 因此, 接收方无法识别其与发送方的频偏, 在 OTU 单元接收方必须要进行速率适配, 通过速率适配来达到消除频偏的目 的。 而速率适配操作是同业务类型相关联的, 这样很难设计一个能够适 应任意速率的 OTU模块。为此通常设计出几种常用模块类型,如: 2xGE 汇聚到 STM-16 中, lOxESCON汇聚到 STM-16 中, 4><STM-4汇聚到 STM-16中。 但各种模块很难兼容。 这样, OTU模块使用灵活性差, 很 难实现混合业务的传送, 例如要实现 lxGE + l STM-4到 STM-16的汇 聚就非常困难。 如果要适应各种业务汇聚, 则必须设计出各种类型的 OTU模块, 以使其能够对各种类型的业务都可进行速率适配, 这必将使 系统设计成本增加。 总之, 这种方法不能实现对任意速率业务的汇聚, 因而使用灵活性差, 并且成本高。 发明内容
有鉴于此, 本发明的主要目的是提供一种实现多端口业务汇聚的传 送装置, 该装置能实现任意速率业务的汇聚, 从而使装置的使用更加灵 活, 并且成本更低。
本发明的另一个目的是提供一种实现多端口业务汇聚的传送方法, 通过该方法能实现任意速率业务的汇聚, 从而可以更加灵活地进行业务 数据的传送, 并且传送成本更低。
根据本发明的装置包括上行传送单元和下行传送单元, 其中上行传 送单元至少包括顺序串联连接的用于从支路业务数据中提取时钟频率 信息的时钟数据恢复模块、 用于对接收的业务数据进行封装的封装模 块、 用于将封装后的数据包映射到高速通道的容器中的映射模块, 下行 传送单元至少包括用于从高速通道的容器中恢复数据包的解映射模块、 用于解除数据包的封装格式并恢复支路数据的解封装模块, 并进一步包 括: 支路时钟产生和调整部分, 用于确定解封装后的业务数据的发送时 钟频率信息, 并根据所述发送时钟频率调整本地支路时钟频率, 使本地 支路时钟频率和发送时钟频率保持一致; 其中下行传送单元的解映射模 块、 解封装模块以及支路时钟产生和调整部分顺序串联连接, 所述上行 传送单元的时钟数据恢复模块支持任意速率业务。
上述装置中下行传送单元的支路时钟产生和调整部分包括: 速率鉴频模块, 位于解封装模块内部, 用于确定接收方本地支路时 钟频率和发送方发送时钟频率之间的差;
支路时钟产生和调整模块, 用于产生本地支路时钟并根据速率鉴频 模块确定的差调整本地支路时钟, 使本地支路时钟频率和发送方发送时 钟频率一致。
较佳地, 对应于每一个支路具有一个独立的时钟数据恢复模块、 速 率鉴频模块以及支路时钟产生和调整模块。 在这种情况下, 该装置的上 行传送单元进一步包括:
多个连接到时钟数据恢复模块的用于将接收的光信号转换为电信号 的光电转换模块;
多个连接在时钟数据恢复模块和封装模块之间用于将串联信号转换 为并联信号的串并转换模块;
连接到映射模块用于将映射后的数据包进行并串及电光转换的并串 及电光转换模块;
连接到并串及电光转换模块用于提供高速通道时钟的高速通道发送 时钟模块;
该装置的下行传送单元进一步包括:
连接到解映射模块用于对接收的数据包进行光电转换、 线路时钟提 取及串并转换的光电转换、 线路时钟提取及串并转换模块; 多个连接到解封装模块以及支路时钟产生和调整模块用于对解封装 后的支路业务数据进行并串转换的并串转换模块;
多个连接到并串转换模块用于对解封装后的支路业务数据进行电光 转换的电光转换模块。
根据本发明的装置的不同支路支持不同速率业务的处理。
才艮据本发明的实现多端口业务汇聚的方法至少包括:
a. 在从对应多个端口的多个支路分别接收到不同速率的业务数据 后,提取业务数据的发送时钟频率信息,然后对业务数据进行透明封装, 并将封装后的数据包映射到高速通道的容器中并在所述容器中将该数 据包发送到对端设备;
b. 从对端设备接收到来自高速通道的容器的数据包后,对所述数据 包进行解映射, 并对解映射后得到的数据包进行解封装; 确定解封装后 的业务数据的发送时钟频率信息, 并根据所述发送时钟频率调整本地支 路时钟频率, 使本地支路时钟频率和发送时钟频率保持一致; 然后按照 经过调整的本地支路时钟频率接收所述支路业务数据。
上述方法进一步包括预先设置一个带有水线值的緩沖区的步骤, 步 骤 b中根据发送时钟频率调整本地支路时钟频率包括:
根据发送时钟频率向緩冲区中写入数据, 并根据本地支路时钟从緩 沖区读取数据, 将反映写入速度和读取速度之差的水线值的数值发送到 用于产生本地支路时钟的模块, 所述用于产生本地支路时钟的模块根据 接收到的水线值调整本地支路时钟频率。
较佳地, 步骤 a中在提取发送时钟频率信息之前进一步包括对支路 业务数据进行光电转换的步骤, 在映射处理之后进一步包括对映射后的 数据包进行电光转换的步骤; 步骤 b中在解映射处理之前进一步包括光 电转换的步骤, 在解映射之后进一步包括对支路业务数据进行电光转换 的步骤。
较佳地, 步骤 a中在提取发送时钟频率信息之后和封装之前进一步 包括对支路业务数据进行串并转换的步骤, 在映射处理之后进一步包括 对映射后的数据包进行并串转换的步骤; 步骤 b中在解映射处理之前进 一步包括串并转换的步骤, 在解映射处理之后进一步包括对支路业务数 据进行并串转换的步骤。
本发明中的透明封装包括:
预先设置一个緩冲区, 并在緩沖区中预先设置一个低水线值; 判断緩冲区中所存储数据是否达到低水线值, 如果是, 则对緩沖区 中的数据按照小于等于低水线值的预定长度进行分割处理, 并为分割后 的数据添加帧头, 否则对缓冲区的数据不进行分割处理;
步骤 b中所述解封装包括: 根据帧头界^数据区的开始, 根据所分 割的预定长度确定帧的结束, 然后去掉帧头。
从上述技术方案可以看出,由于本发明的 CDR模块可以对任意速率 业务进行处理, 而且本发明的封装模块所进行的封装是透明封装, 这样 本发明在上行传送方法并不从业务数据中提取纯业务数据, 而是对完整 的业务数据进行封装和映射等处理, 从而保留了上行支路的时钟频率信 在下行方向, 由于高速通道中的数据包保留了原来的上行支路的时 钟频率信息, 因此可以通过解映射和解封装提取出原来的上行支路时钟 频率信息, 并通过鉴频模块对时钟频率的鉴频, 使下行支路时钟频率和 提取出来的上行时钟频率保持完全一致。 这样本发明即可保证上行支路 和下行支路的时钟频率信息的相同, 据此可以正常读出在上行支路写入 的业务数据, 而不需要现有技术中的速率适配处理, 从而也消除了现有 技术中由于需要进行速率适配处理而不能对任意速率业务进行处理的 缺陷, 而能实现对任意速率业务进行汇聚处理, 提高了业务汇聚的灵活 性, 并降低了成本。 附图简要说明
图 1为现有技术 DWDM系统传送原理的示意图。
图 2为现有技术的实现任意速率波长透传的 OTU示意图。
图 3为现有技术的实现多端口业务汇聚的 OTU示意图。
图 4为应用本发明的 DWDM系统传送原理的示意图。
图 5为应用本发明的多端口接入任意速率的业务并将接入的业务进 行汇聚的 OTU示意图。
图 6为应用本发明的速率鉴频模块的示意图。
图 7为根据本发明进行透明封装处理的示意图。
图 8为才艮据本发明对透明封装的数据包进行解封装处理的示意图。 实施本发明的方式
下面结合附图和具体实施例对本发明进行进一步的说明。
图 4所示为应用本发明的 DWDM系统传送原理的示意图。 每个用 于发送的 OTU可同时接收多个端口发送来的任意速率的业务数据, 并 把接收到的数据做汇聚处理后, 经合波单元将业务数据发送到高速通道 中; 用于接收的 OTU接收到高速通道发送来的数据后, 将所接收到的 不同速率的业务数据直接分配给各个相应的端口即可, 而无须速率适 配。
图 5所示为应用本发明的多端口接入任意速率的业务并将接入的业 务进行汇聚的 OTU示意图。 每一个端口对应一条支路, 不同支路可传 送不同速率的业务数据, 而且每条支路可以传递任意速率的业务数据。 从图 5中可以看出, 该 OTU包括用于上行传送的上行传送单元和用于 下行传送的下行传送单元, 这里的上行传送是指发送业务侧的信息, 而 下行传送方法是指业务侧接收信息。 上行传送单元包括顺序串行连接的 光电转换模块 501、 CDR 502、 串并转换模块 503、 封装模块 504、 映射 模块 505和并串及电光转换模块 506, 以及连接到并串及电光转换模块 506 的高速通道发送时钟模块 507; 其中由于业务侧有多个支路, 也就 是支路 1至支路 n, 相应地对应于每一个支路有一个光电转换模块 501、 一个 CDR 502 和一个串并转换模块 503 , 也就是光电转换模块 501a〜501n、 CDR 502a〜502n和串并转换模块 503a~503n。 下行传送单元 包括顺序串行连接的光电转换、 线路时钟提取及串并转换模块 508、 解 映射模块 509、解封装模块 510、并串转换模块 512和电光转换模块 513 , 另外还包括同时连接到并串转换模块 512和解封装模块 510的支路时钟 产生和调整模块 511。和上行传送方向类似,由于业务侧有多个支路 l~n, 相应地对应每一个支路有一个支路时钟产生和调整模块 511a~511n、 一 个并串转换模块 512a~512n以及一个电光转换模块 513a~513n。
在该装置中, 光电转换模块 501和电光转换模块 513可以合并在一 起,形成具有光电双向转换功能的光电转换模块;同样串并转换模块 503 和并串转换模块 512也可以合并在一起, 并串及电光转换模块 506和光 电转换、线路时钟提取及串并转换模块 508也可以合在一起。与此类似, 封装模块 504和解封装模块 510、 映射模块 505和解映射模块 509在物 理上都可以分别集成在一个模块中, 所集成的模块具有双向工作的能 力。
在根据本发明的 OTU中, CDR 502支持对任意速率的业务的时钟 提取和数据恢复。 在封装模块 504中对所有的业务进行透明封装, 而不 像现有技术中在进行封装时仅仅提取纯业务数据, 而丢弃原有业务数据 中的填充字符或者开销字符。 这样本发明的上行支路时钟频率信息在封 装时得到了保留, 而不像现有技术中由于丟弃了空闲信号从而丧失了上 行支路时钟频率信息。 由于封装的数据中保留了上行支路时钟频率信 息, 因此在解封装时可以从解封装后的数据中恢复出该上行支路时钟频 率信息, 并由支路时钟产生和调整模块 511根据该上行支路时钟频率信 息对下行支路时钟进行调整, 从而使读出速度和写入速度保持一致。 这 样在读出数据时不需要进行速率适配, 从而避免了现有技术中由于要进 行速率适配而不能实现对任意速率业务进行汇聚的缺点。 而正是由于可 以实现对任意速率的业务进行汇聚, 根据本发明的 OTU具有使用灵活 和成本低等优点。
上面说明了根据本发明的装置, 下面说明根据本发明的方法的处理 过程。
对于上行传送方向即 OTU发送业务侧的信息时, 以支路 1为例,首 先由光电转换模块 501a将收到的光信号转换为电信号,然后将电信号传 送给 CDR模块 502a, 这里的 CDR模块可以接收任意速率的业务数据。 CDR模块 502a从所接收到的业务数据中提取出该业务数据中的时钟频 率信息,将业务数据经串并转换模块 503a的串并转换处理后,送入封装 模块 504。 封装模块 504将所接收的业务数据按照比特流的顺序进行封 装,如按照 GFP协议的格式进行封装。需要说明的是,和现有技术不同, 这里封装模块 504所进行的封装是透明封装, 也就是封装的业务数据不 仅包括纯业务数据 , 同时包括原业务数据中的空闲字符或者开销字符, 这样封装的数据保持了原有的上行支路时钟频率信息。 关于透明封装的 具体方法将在稍后详细说明。
在对业务数据进行透明封装之后, 封装模块 504将封装后的数据包 发送到映射模块 505。 映射模块 505将封装好的数据包映射到高速通道 中的容器中, 如 STM-16的 VC3/VC4容器中, 经并串及电光转换模块 506 的并串转换处理和电光转换处理后, 再根据高速通道发送时钟模块 507 中的高速通道的时钟频率将业务数据发送到对端设备。 在映射过程 中, 若接收业务带宽大于容器容量, 则将多个容器捆绑使用; 若接收业 务带宽小于容器容量, 则在封装定义的格式中插入填充字节或间隙包以 进行带宽适配。
对于下行传送方向即 OTU单元的 DWDM侧接收到高速通道发送来 的业务数据时, 首先由光电转换、 线路时钟提取及串并转换模块 508对 从对端设备接收的业务数据进行光电转换、 线路时钟频率的提取及串并 转换处理, 以保证下行方向发送数据的时钟频率同高速通道的发送时钟 频率一致, 再由解映射模块 509进行解映射, 即将各个支路的业务数据 从各个高速通道的容器中恢复出来, 同时丢弃填充字节或间隙包, 然后 由解封装模块 510按照封装定义进行解封装, 以恢复出各个支路的具体 业务数据。 关于解封装的具体处理将在稍后和透明封装一起进行说明。
在解封装模块 510对业务数据进行解封装之后, 由于接收方本地支 路产生时钟和发送方时钟存在频率偏差, 因此在解封装模块 510中对应 每一个支路设置一个业务速率鉴频模块。 每个速率鉴频模块相当于一个 緩沖区, 解封装后的业务数据进入速率鉴频模块。 由于发送方写入的业 务数据和接收方读出的业务数据存在速率差异, 因此, 必然造成该速率 鉴频模块中的业务数据呈水线值变化。 根据该变化的水线值, 接收方的 支路时钟产生和调整模块 511a将做相应的调整,以消除接收方与发送方 之间的频偏, 使接收方支路时钟的频率时时跟踪发送方接收业务的时钟 频率, 也就是使读出业务数据的时钟频率等于上行方向写入业务数据的 时钟频率。 最后由并串转换模块 512a和电光转换模块 513a分别对收到 的业务数据进行并串转换和电光转换, 并按照该支路的时钟频率将该支 路的业务数据发送出去。
图 6为应用本发明的速率鉴频模块的示意图。 速率鉴频模块相当于 一个緩沖区, 以调整发送方与接收方之间的频偏。 每个速率鉴频模块中 有预先设定的标准水线值, 如果发送方的时钟频率比接收方的时钟频率 快, 则所传送的业务数据经解映射后, 写入速率鉴频模块中的业务数据 较多, 速率鉴频模块中的数据变化的水线值会高于基准水线值, 此时, 通过速率鉴频模块和支路时钟产生和调整模块 512之间的数据总线, 将 水线值发送给支路时钟产生和调整模块 512, 支路时钟产生和调整模块 512根据水线值的变化做出相应的调整, 即加快相应支路的时钟频率, 使该速率鉴频模块中的变化的水线值接近基准水线值, 以消除频偏; 同 理, 如果发送方的时钟频率比接收方的时钟频率慢, 则所传送的业务数 据经解映射后, 写入速率鉴频模块中的业务数据较少, 速率鉴频模块中 的数据变化的水线值会低于基准水线值, 此时, 接收方的支路时钟会根 据水线值的变化做出相应的调整, 即减慢相应支路的时钟频率, 使该速 率鉴频模块中的变化的水线值接近基准水线值, 以消除频偏。 由此保证 了支路读出速度和写入速度的一致, 也就是实现了支路时钟频率的透明 传送。
图 7示出了应用本发明的对数据流进行透明封装的示意图。 这里以 GFP封装为例。 业务接收端的串行电信号经串并转换模块 503将串行信 号转换为并行信号后, 送入封装模块 504, 以便于封装模块的处理。 封 装模块 504实际上是一个 FIFO緩冲区。 同时设置一个字节计数器, 该 计数器的计数值 N为所封装帧的数据区的长度。该计数值 N是根据实际 传送的效率与成本的关系来设定的, 因而对于不同的业务其取值亦不 同, 但在同一业务的传送过程中是固定不变的。
为了保证包中间传送数据的连续需要通过緩存进行控制, 且要求映 射带宽大于客户数据编码前的基本数据速率。 在 FIFO緩沖区 504中设 置一个低水线值, 当 FIFO中所存储的数据达到低水线值后, 按照先进 先出顺序, 对 FIFO緩沖区的数据按照所设定的计数值 N进行切片, 以 保证帧中间数据连续, 并为切片后的数据添加帧头和有效负荷域头, 从 而实现了对数据的封装。 对于緩沖区中未被切片的数据, 则合并在下一 次的切片过程中进行处理。
图 8所示为应用本发明的对业务发送端的数据流进行解封装的示意 图。 对于 GFP协议而言, 发送端接收到远端传送来的数据帧后, 通过帧 头界定数据区开始, 根据数据的长度 N找到帧尾, 然后除去帧头和有效 负荷域头, 将得到的数据送入解封装模块 510。 解封装模块 510实际上 也是一个 FIFO緩沖区。 由于包之间的空闲帧数据在进入緩冲区 510之 前就已经被识别出并被丢弃, 所以緩冲区 510内存储的是纯净荷数据。 数据流按照先进先出的顺序, 由并串转换模块 512将并行数据转换为串 行数据后发送出去。
对于本发明而言,如果 OTU直接接收电信号,则不需要进行光电转 换和电光转换等处理, 从而也不需要光电转换模块。 如果本发明应用于 低速场合, 可以直接处理信号而不需要进行串并转换和并串转换等处 理, 从而也不需要相应的串并转换模块。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡 在本发明的精神和原则之内, 所做的任何修改、 等同替换和改进, 均应 包含在本发明的保护范围之内。

Claims

权利要求书
1 .一种实现多端口业务汇聚的装置, 包括上行传送单元和下行传送 中提取时钟频率信息的时钟数据恢复模块、 用于对接收的业务数据进行 封装的封装模块、 用于将封装后的数据包映射到高速通道的容器中的映 射模块, 下行传送单元至少包括用于从高速通道的容器中恢复数据包的 解映射模块、 用于解除数据包的封装格式并恢复支路数据的解封装模 块, 其特征是, 下行传送单元进一步包括:
支路时钟产生和调整部分, 用于确定解封装后的业务数据的发送时 钟频率信息, 并根据所述发送时钟频率调整本地支路时钟频率, 使本地 支路时钟频率和发送时钟频率保持一致;
所述下行传送单元的解映射模块、 解封装模块以及支路时钟产生和 调整部分顺序串联连接, 所述上行传送单元的时钟数据恢复模块支持任 意速率业务。
2. 根据权利要求 1所述的实现多端口业务汇聚的装置, 其特征是, 所述下行传送单元的支路时钟产生和调整部分包括:
速率鉴频模块, 位于解封装模块内部, 用于确定接收方本地支路时 钟频率和发送方发送时钟频率之间的差;
支路时钟产生和调整模块, 用于产生本地支路时钟并根据速率鉴频 模块确定的差调整本地支路时钟, 使本地支路时钟频率和发送方发送时 钟频率一致。
3. 根据权利要求 1所述的实现多端口业务汇聚的装置, 其特征是, 对应于每一个支路具有一个独立的时钟数据恢复模块、 速率鉴频模块以 及支路时钟产生和调整模块。
4. 根据权利要求 3所述的实现多端口业务汇聚的装置, 其特征是, 该装置的上行传送单元进一步包括:
多个连接到时钟数据恢复模块的用于将接收的光信号转换为电信号 的光电转换模块;
多个连接在时钟数据恢复模块和封装模块之间用于将串联信号转换 为并联信号的串并转换模块;
连接到映射模块用于将映射后的数据包进行并串及电光转换的并串 及电光转换模块;
连接到并串及电光转换模块用于提供高速通道时钟的高速通道发送 时钟模块;
所述下行传送单元进一步包括:
连接到解映射模块用于对接收的数据包进行光电转换、 线路时钟提 取及串并转换的光电转换、 线路时钟提取及串并转换模块;
多个连接到解封装模块以及支路时钟产生和调整模块用于对解封装 后的支路业务数据进行并串转换的并串转换模块;
多个连接到并串转换模块用于对解封装后的支路业务数据进行电光 转换的电光转换模块。
5. 根据权利要求 1所述的实现多端口业务汇聚的装置, 其特征是, 所述不同支路支持不同速率业务的处理。
6. 一种实现多端口业务汇聚的方法, 至少包括:
a. 在从对应多个端口的多个支路分别接收到不同速率的业务数据 后,提取业务数据的发送时钟频率信息,然后对业务数据进行透明封装, 并将封装后的数据包映射到高速通道的容器中并在所述容器中将该数 据包发送到对端设备;
b. 从对端设备接收到来自高速通道的容器的数据包后,对所述数据 包进行解映射, 并对解映射后得到的数据包进行解封装; 确定解封装后 的业务数据的发送时钟频率信息, 并根据所述发送时钟频率调整本地支 路时钟频率, 使本地支路时钟频率和发送时钟频率保持一致; 然后按照 经过调整的本地支路时钟频率接收所述支路业务数据。
7. 根据权利要求 6所述的方法, 其特征是, 该方法进一步包括预先 设置一个带有水线值的緩冲区的步骤, 步骤 b中根据发送时钟频率调整 本地支路时钟频率包括:
根据发送时钟频率向緩冲区中写入数据, 并根据本地支路时钟从緩 沖区读取数据, 将反映写入速度和读取速度之差的水线值的数值发送到 用于产生本地支路时钟的模块, 所述用于产生本地支路时钟的模块根据 接收到的水线值调整本地支路时钟频率。
8. 根据权利要求 6所述的方法, 其特征是, 步骤 a中在提取发送时 钟频率信息之前进一步包括对支路业务数据进行光电转换的步骤, 在映 射处理之后进一步包括对映射后的数据包进行电光转换的步骤; 步骤 b 中在解映射处理之前进一步包括光电转换的步骤, 在解封装之后进一步 包括对支路业务数据进行电光转换的步骤。
9. 根据权利要求 6所述的方法, 其特征是, 步骤 a中在提取发送时 钟频率信息之后和封装之前进一步包括对支路业务数据进行串并转换 的步骤, 在映射处理之后进一步包括对映射后的数据包进行并串转换的 步骤; 步骤 b中在解映射处理之前进一步包括串并转换的步骤, 在解封 装之后进一步包括对支路业务数据进行并串转换的步骤。
10. 根据权利要求 6所述的方法, 其特征是, 步骤 a中所述透明封 装包括:
预先设置一个緩冲区, 并在緩沖区中预先设置一个低水线值; 判断緩沖区中所存储数据是否达到低水线值, 如果是, 则对缓冲区 中的数据按照小于等于低水线值的预定长度进行分割处理, 并为分割后 的数据添加帧头, 否则对緩沖区的数据不进行分割处理;
步骤 b中所述解封装包括: 根据帧头界定数据区的开始, 居所分 割的预定长度确定帧的结束, 然后去掉帧头。
PCT/CN2004/000896 2003-08-14 2004-08-04 Appareil et procede d'integration de trafics multiports WO2005036781A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04762033A EP1655864B1 (en) 2003-08-14 2004-08-04 Apparatus and method for carrying out integration of multi-ports traffics
DE602004009198T DE602004009198T2 (de) 2003-08-14 2004-08-04 Vorrichtung und verfahren zum ausführen einer integration von mehrportverkehr

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB031532942A CN100499436C (zh) 2003-08-14 2003-08-14 一种实现多端口任意速率汇聚的传送方法
CN03153294.2 2003-08-14

Publications (1)

Publication Number Publication Date
WO2005036781A1 true WO2005036781A1 (fr) 2005-04-21

Family

ID=34121284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/000896 WO2005036781A1 (fr) 2003-08-14 2004-08-04 Appareil et procede d'integration de trafics multiports

Country Status (6)

Country Link
US (1) US7542479B2 (zh)
EP (1) EP1655864B1 (zh)
CN (1) CN100499436C (zh)
AT (1) ATE374469T1 (zh)
DE (1) DE602004009198T2 (zh)
WO (1) WO2005036781A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8914330B2 (en) * 2004-09-17 2014-12-16 International Business Machines Corporation Bulk deletion through segmented files
US7660312B2 (en) * 2005-06-20 2010-02-09 At&T Intellectual Property, I, L.P. Method and apparatus for reshaping cell-based traffic
US7769256B2 (en) * 2007-04-13 2010-08-03 Futurewei Technologies, Inc. Method and system for performance monitor for digital optical DWDM networks
CN101087177B (zh) * 2007-07-09 2010-12-29 中国人民解放军国防科学技术大学 Sdh信号中存在频偏的多路e1数据的汇聚传输方法
CN101145857B (zh) * 2007-09-14 2012-01-18 中兴通讯股份有限公司 一种节省核心路由器端口的业务汇聚系统
CN101605276B (zh) * 2008-06-13 2013-04-24 华为技术有限公司 光信号的传输方法和装置
CN101350691B (zh) * 2008-09-05 2013-04-24 华为技术有限公司 一种业务汇聚和adm分插复用方法及设备
CN101489157B (zh) * 2009-02-13 2011-06-08 华为技术有限公司 将业务复用映射到光通道传送单元的方法和装置
WO2010149204A1 (en) * 2009-06-23 2010-12-29 Telefonaktiebolaget Lm Ericsson (Publ) Clock recovery in a system which transports tdm data over a packet-switched network
ES2558482T3 (es) * 2009-07-27 2016-02-04 Huawei Technologies Co. Ltd. Método y dispositivo de tratamiento de transmisión de señal y estación base distribuida
CN102546022B (zh) * 2010-12-27 2015-02-25 上海鼎频通信技术有限公司 一种光纤传输子系统的传输方法
EP2618536A4 (en) * 2012-04-25 2014-02-19 Huawei Tech Co Ltd METHOD AND DEVICE FOR UNIFIEDING IMAGE RATES
US9055346B2 (en) * 2012-05-18 2015-06-09 Google Technology Holdings LLC Array of transcoder instances with internet protocol (IP) processing capabilities
CN104796211B (zh) * 2014-01-16 2019-01-08 中兴通讯股份有限公司 调整差分时钟频率方法、装置、系统和互通修改器
CN104243502A (zh) * 2014-10-16 2014-12-24 成都思迈科技发展有限责任公司 一种协议转换系统
CN109818941B (zh) * 2019-01-04 2021-07-06 烽火通信科技股份有限公司 实现10ge接口设备支持25ge接口的系统及方法
CN111475447B (zh) * 2019-01-24 2021-10-22 广州彩熠灯光股份有限公司 一种基于lvds的高速串行传输的装置及数据传输方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1345142A (zh) * 2000-09-08 2002-04-17 朗迅科技公司 混合速率光通信网络中的电路
CN1367961A (zh) * 1999-08-20 2002-09-04 富士通株式会社 光通信系统、光接收器、和波长变换器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2293521A1 (en) * 1999-12-29 2001-06-29 Phil Campbell Asynchronous payload mapping using direct phase transfer
US7164860B1 (en) * 2001-12-21 2007-01-16 Raza Microelectronics, Inc. Advanced multi-protocol optical transport network
US7227876B1 (en) * 2002-01-28 2007-06-05 Pmc-Sierra, Inc. FIFO buffer depth estimation for asynchronous gapped payloads
US6956847B2 (en) * 2003-06-19 2005-10-18 Cisco Technology, Inc. Multi-rate, multi-protocol, multi-port line interface for a multiservice switching platform
US7486718B2 (en) * 2003-08-04 2009-02-03 Marvell International Ltd. Architectures, circuits, systems and methods for reducing latency in data communications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1367961A (zh) * 1999-08-20 2002-09-04 富士通株式会社 光通信系统、光接收器、和波长变换器
CN1345142A (zh) * 2000-09-08 2002-04-17 朗迅科技公司 混合速率光通信网络中的电路

Also Published As

Publication number Publication date
EP1655864A1 (en) 2006-05-10
EP1655864B1 (en) 2007-09-26
CN100499436C (zh) 2009-06-10
DE602004009198D1 (de) 2007-11-08
ATE374469T1 (de) 2007-10-15
EP1655864A4 (en) 2006-10-18
DE602004009198T2 (de) 2008-06-19
US20050036520A1 (en) 2005-02-17
US7542479B2 (en) 2009-06-02
CN1581758A (zh) 2005-02-16

Similar Documents

Publication Publication Date Title
WO2005036781A1 (fr) Appareil et procede d&#39;integration de trafics multiports
CN103795605B (zh) 将otn信号转换为以太网净荷的方法及系统
WO2010105546A1 (zh) 光通道传送单元信号的传输方法和装置
WO2008110119A1 (en) A method for transporting multiple channels ethernet data, the device and the system thereof
WO2006015549A1 (fr) Procede de transmission de signaux de trafic a faible debit dans un reseau de transmission optique et dispositif correspondant
WO2019071870A1 (zh) 光网络中数据传输方法及光网络设备
US20020085563A1 (en) Packet processing method and engine
JP2007533179A (ja) 無線周波数伸張基地局に基づく信号伝送方法およびシステム
CN102468899B (zh) 通道化stm-1接入分发方法与系统
WO2011035603A1 (zh) 一种实现数据业务透明传送的方法、系统及装置
WO2009021376A1 (fr) Dispositif ethernet et procédé de traitement d&#39;affaire ethernet basé sur l hiérarchie numérique synchrone (sdh)
WO2006056135A1 (fr) Procede, appareil et systeme de multiplexage d&#39;apres une procedure de mise en trame a insertion-extraction (gfp)
WO2009074002A1 (fr) Dispositif et procédé de mise en œuvre d&#39;un canal de réseau de communication de signalisation et d&#39;un réseau de communication de gestion
EP2334010B1 (en) Method and device for adjusting the data transmission in the transport network
CN100568841C (zh) 一种以太网业务的汇聚装置及方法
CN101707553A (zh) 异步业务数据的传输方法、装置和系统
WO2012155710A1 (zh) 一种实现otn业务映射及解映射的方法和装置
EP1701495B1 (en) Hybrid digital cross-connect for switching circuit and packet based data traffic
WO2008055441A1 (fr) Procede et appareil de transmission de services de canal de fibres et systeme associe
WO2022143046A1 (zh) 一种多路业务传输方法、系统、存储介质及电子装置
US20020089715A1 (en) Fiber optic communication method
WO2007006177A1 (fr) Procédé et système permettant d’obtenir un multiplexage croisé et transparent conformément au protocole générique de verrouillage de trames
JP3876414B2 (ja) データ伝送方法及びデータ伝送装置
US20030058865A1 (en) Transport of SONET signals over an optical communications network
JP2001103028A (ja) 信号多重方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004762033

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004762033

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2004762033

Country of ref document: EP