WO2005036453A1 - Card incorporating semiconductor - Google Patents

Card incorporating semiconductor Download PDF

Info

Publication number
WO2005036453A1
WO2005036453A1 PCT/JP2004/015185 JP2004015185W WO2005036453A1 WO 2005036453 A1 WO2005036453 A1 WO 2005036453A1 JP 2004015185 W JP2004015185 W JP 2004015185W WO 2005036453 A1 WO2005036453 A1 WO 2005036453A1
Authority
WO
WIPO (PCT)
Prior art keywords
card
adhesive
resin
semiconductor
built
Prior art date
Application number
PCT/JP2004/015185
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Urakami
Original Assignee
Japan Gore-Tex Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Gore-Tex Inc. filed Critical Japan Gore-Tex Inc.
Publication of WO2005036453A1 publication Critical patent/WO2005036453A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/0772Physical layout of the record carrier
    • G06K19/07728Physical layout of the record carrier the record carrier comprising means for protection against impact or bending, e.g. protective shells or stress-absorbing layers around the integrated circuit
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07745Mounting details of integrated circuit chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor built-in card represented by an IC card and a memory card.
  • semiconductors used in cards with built-in semiconductors are required to have a large capacity and a small size, and a board on which such a semiconductor is mounted (semiconductor mounting board) is required.
  • the card frame for holding is required to be thin and small.
  • -notes are used for exchanging data between digital cameras and computers, etc., and devices (digital cameras and computers) are used.
  • the card frame is grasped with a finger.
  • the card frame portion is gripped by a finger when the card is taken out of the card case.
  • the card frame portion is usually gripped by a finger due to its usage, and at this time, stress is applied vertically to the card frame surface.
  • Card frame When a part of the semiconductor device is gripped by a finger and the other part is held by a slot of the device, the semiconductor built-in force K is subjected to bending stress.
  • a semiconductor mounting board has a high strength and is hardly deformed even when subjected to the bending stress as described above.
  • the force frame is usually smaller in strength than the semiconductor mounting board and easily deformable, when the semiconductor built-in force is subjected to the above-mentioned bending stress, the force of the card frame is reduced.
  • Techniques that can improve the overall strength of K include, for example,
  • a method of introducing and reinforcing a frame is disclosed in Japanese Patent Application Laid-Open No. 5_968889.
  • the first card frame holding the semiconductor mounting substrate is replaced with the second card frame.
  • There are a covering technique Japanese Patent Application Laid-Open No. Hei 6-15992
  • a method of introducing a rigid support into the card frame to reinforce it Japanese Patent Application Laid-Open No. Hei 7-17575. If these technologies are applied, it is possible to suppress the deformation of the card frame (the entire card with a built-in semiconductor) when receiving the above bending stress, and to suppress the separation between the semiconductor mounting board and the card frame. is there.
  • Japanese Patent Application Laid-Open Nos. Hei 5-966989 and Hei 6-96 introduce a reinforcing material such as a metal frame, a second card frame, and a support.
  • the technology of Japanese Patent Application Laid-Open No. 15992/1995 and Japanese Patent Application Laid-Open No. 7-171575 meet the demand for miniaturization and thinning in order to increase the size and thickness of the entire semiconductor built-in card. Is not enough.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to meet the demand for miniaturization and thinning, and to reduce the distance between a semiconductor mounting board and a card frame when a bending stress is applied.
  • An object of the present invention is to provide a semiconductor built-in card in which peeling of the semiconductor is highly suppressed. Disclosure of the invention
  • the card with a built-in semiconductor of the present invention which has achieved the above object, includes a substrate on which a semiconductor is mounted and a card frame as constituent elements, and a stress relaxation layer is interposed between the substrate and the force frame.
  • the gist exists where it is.
  • the stress relaxation layer is preferably made of a resin film.
  • the resin film has a tensile modulus of 1 to 130 MPa and a tensile elongation at break of 5%. It is desirable that this is the case.
  • the stress relaxation layer preferably has a porous structure-more preferably, is more preferably made of an expanded porous polytetrafluoroethylene (PTFE film). It is recommended that the porosity of the stretched porous polytetrafluoroethylene film be 30 to 95%, and the thickness of the resin film constituting the stress relaxation layer is 0%.
  • the adhesive layer A is interposed between the stress relieving layer and the substrate, and also between the stress relieving layer and the card frame. It is a preferred embodiment of the present invention that the adhesive layer B is interposed and the stress relaxation layer is fixed to the substrate and the card frame by the adhesive layers A and B.
  • the peel strength at interface with adhesive layer A is, for example, 0.4 N / mm or more.
  • the adhesive layer A and the adhesive layer B may be composed of different adhesives.
  • the adhesive of the adhesive layer A is a thermosetting resin (particularly preferably an epoxy resin), and the adhesive of the adhesive layer B is a thermoplastic. Resins (particularly preferably polyester resins) may be used. It is recommended that the product of the tensile modulus and the thickness of the adhesive layer B be 50 MPa amm or less.
  • the adhesive layer A and / or the adhesive layer B those obtained by filling an adhesive in pores of an expanded porous polytetrafluoroethylene film are usually used.
  • film in this specification is a concept that includes a so-called “sheet”.
  • FIG. 1 is a schematic diagram showing an example of the structure of a semiconductor built-in card (memory card) of the present invention.
  • FIG. 2 is a sectional view taken along line 11 of the memory card of FIG.
  • FIG. 3 is an enlarged view showing a state where the semiconductor built-in force of the present invention is subjected to bending stress.
  • the present inventor has realized the above-described semiconductor built-in card using a card frame having a lower strength than the semiconductor mounting substrate.
  • the stress relaxation layer is formed of the above-mentioned JP-A-5-96889, JP-A-6-15992, and JP-A-7-171975.
  • the thickness of the semiconductor built-in card can be reduced. Since the second card frame is not required as in Japanese Patent Publication No.
  • FIG. 1 shows an example of a semiconductor built-in card (memory card) of the present invention.
  • 10 is a semiconductor built-in card
  • FIG. 11 is a card frame
  • 12 is a semiconductor mounting board
  • 13 is a connection terminal.
  • FIG. 2 is a cross-sectional view taken along the line 11 in FIG. 1, and reference numeral 14 denotes a stress relaxation layer (layers to be described later are not shown).
  • a stress relaxation layer layers to be described later are not shown.
  • the above-mentioned semiconductor mounting board is one in which one or more semiconductor elements are mounted on a board (circuit board) on which a circuit is formed.
  • the semiconductor mounting board used for the semiconductor built-in card of the present invention is not particularly limited.
  • a card used for a semiconductor built-in card such as a conventionally known memory card or IC card can be applied as it is.
  • examples of semiconductor chips include a memory made of silicon arsenic arsenic and a computer with a V-chip microphone.
  • a memory made of silicon arsenic arsenic and a computer with a V-chip microphone.
  • F E R AM F e r o e l e c t r i c R AM
  • a CPU Central Integrated Circuit
  • resistors and capacitors are mounted on a semiconductor mounting board together with such a semiconductor element.
  • a glass fiber-epoxy resin composite (so-called glass epoxy) or glass BT (bismalei)
  • Known materials such as medium triazine), ceramics and polyimide film are applicable.
  • a sealing resin As the sealing resin, a conventionally known epoxy resin compound or the like can be applied.
  • the thickness of the semiconductor mounting board after resin sealing is generally 3 mm or less.
  • connection terminals for transmitting and receiving information to and from the outside should be provided on the opposite side of the component mounting side of the semiconductor mounting board.
  • Figure 1 illustrates this aspect.
  • the connection terminals are not limited to these locations, and may be formed on the component mounting surface side when the semiconductor mounting board has components mounted on both sides or depending on the structure of the semiconductor built-in card.
  • a non-contact type memory card or IC card a non-contact type data communication means having an antenna or the like can be provided instead of the connection terminal.
  • the card frame is generally made of resin.
  • a resin that satisfies the function as a frame of a semiconductor built-in card can be obtained. it can.
  • the card frame is generally formed by an injection molding method, a resin suitable for injection molding can be preferably used. Specific examples include ABS (acrylonitrile-butadiene-styrene), polycarbonate, polyester (polybutylene terephthalate, etc.).
  • ABS acrylonitrile-butadiene-styrene
  • polycarbonate polycarbonate
  • polyester polybutylene terephthalate, etc.
  • reinforcing or coloring the card frame various known reinforcing materials and coloring agents (such as rod-shaped, fibrous, and particulate boilers) can also be added.
  • the shape of the card frame is not particularly limited. Just do it. For example, there are shapes used in conventionally known semiconductor memory cards such as various memory cards and IC cards.
  • the stress relaxation layer preferably has a porous structure.
  • the shape of the force frame should be designed in the card frame semiconductor mounting board installation part so that after the semiconductor mounting board is installed, there is a gap to allow the above-mentioned expanded air to escape. Is recommended.
  • the width of the gap is preferably, for example, not less than 0.1 mm. If the width of the gap is smaller than the above range, the expanded air escapes. The width of the gap may be, for example, 0.2 mm or less.o The smaller the width of the gap, the easier the force frame becomes / J and molding.o
  • the stress relieving layer is a layer that relieves bending stress applied to the card frame (built-in semiconductor chip).
  • connection terminal 13 near-near the side is shown in an enlarged manner.
  • the stress relaxation layer 14 is an adhesive layer 15 , 15 and are bonded to the force frame 11 and the semiconductor mounting substrate 12.
  • the stress relaxation layer 14 is deformed without peeling off from the card frame 11, but the bending stress is reduced. Since the stress is relieved in the layer 14, the stress transmitted to the semiconductor mounting substrate 12 is greatly reduced. Therefore, the interface separation between the stress relaxation layer 14 and the semiconductor mounting substrate 12 is also suppressed, and as a result, the separation between the semiconductor mounting substrate and the card frame is high. Is suppressed. At this time, the stress relieving layer 14 extends in the thickness direction, and the elongation in the thickness direction greatly contributes to suppression of separation between the card frame 11 and the semiconductor mounting substrate 12.
  • the stress relaxation layer is formed of a resin film.
  • the force S is a resin film.
  • a resin film has a tensile elastic modulus of IMPa to 130 OMPa and a tensile elongation at break of 5% or more. Is preferred.
  • the present inventors have found that the presence or absence of the function of extending the stress relaxation layer in the thickness direction can be alternatively evaluated by the tensile elastic modulus and the tensile elongation at break of the resin film constituting the stress relaxation layer. Was found.
  • a stress relaxation layer composed of a resin film having a tensile elastic modulus satisfying the above range and a tensile elongation at break equal to or greater than the lower limit above has a good function of extending the stress relaxation layer in the thickness direction. Therefore, the separation between the semiconductor mounting substrate and the card frame can be more highly suppressed.
  • the tensile modulus is more preferably 5 MPa or more and 80 OMPa or less, and the tensile elongation at break is more preferably 20% or more, still more preferably 30% or more. .
  • the stress relaxation layer has a small elongation in the thickness direction. In addition, the relaxation of the bending stress in the stress relaxation layer may be insufficient. Furthermore, when the tensile rupture elongation is lower than the above lower limit value, the stress relaxation layer may be broken when the internal semiconductor card receives a large bending strain. If the tensile modulus is lower than the above range, the stress relaxation layer may be unnecessarily deformed and broken.
  • the resin film constituting the stress relaxation layer is an adhesive laminated film in which adhesive layers are provided on both sides in advance, and then is used for bonding the card frame to the semiconductor mounting substrate. (Details will be described later.)
  • the adhesive laminate film is used. If a compressive stress is applied during passage between rolls during the production of a roll, a production problem such as difficulty in maintaining the thickness may occur.
  • polyolefin resins such as polyethylene (PE) and polypropylene (PP); Nylon 6, Nylon 66, etc.
  • Polyamide resins Polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate; Polyurethane resins; Ataryl resins;
  • Fluorine-based resins such as TFE, tetrafluoroethylene, and polyethylene copolymers.
  • the stress relieving layer preferably has a porous structure.
  • a void-containing film such as a foam film, a woven fabric, a non-woven fabric, or a porous film such as a stretched porous finolem constitutes the stress relieving layer. It is mentioned.
  • the adhesive is used to integrate the semiconductor mounting board with the adhesive layer through the stress-relaxation process. The volatile components contained in the water can escape through the pores. As a result, it is difficult for voids to be formed at the interface between the adhesive and the adherend, and it is possible to prevent a decrease in adhesive strength due to generation of voids.
  • the semiconductor mounting board and the card frame are thermocompression bonded via a stress relaxation layer, there is a problem that the card frame is easily deformed by heat.
  • the layer has a porous structure, if it is heated from the semiconductor mounting substrate side, the stress relaxation layer plays the role of a heat insulating layer, making it difficult for heat to be transmitted to the card frame side. Can be prevented.
  • the stress relaxation layer having a porous structure a porous film made of a fibrous or fibrous resin is preferable.
  • the stress relaxation layer is formed of a porous film having extremely fine fibrils, the above-mentioned recovery effect is remarkable. Therefore, as the stress relaxation layer, a stretched porous PTFE film is particularly preferable because it can form an extremely thin fibril by stretching, has a large tensile elongation at break, and has an appropriate tensile modulus.
  • the card with a built-in semiconductor Since the card with a built-in semiconductor is gripped by a finger when using the card, it is usually made of a solid material so as to withstand the compressive force at this time.
  • the idea of forming a part with a porous structure is entirely new. -When the card with built-in semiconductor is crushed in the thickness direction when it is gripped by a finger-The position of the terminal part is lowered, and when the card with built-in semiconductor is inserted into the slot of the device, the built-in semiconductor Poor contact between the card terminals and equipment terminals may occur.
  • the present inventor has found that even when the material constituting the stress relaxation layer is a porous structure, the card with a built-in semiconductor is gripped with a finger by using a material having a tensile elasticity satisfying the above range. It has been found that it can withstand the compressive force at the time.
  • PTFE A paste obtained by mixing fine powder (having a crystallinity of 90% or more) with a molding aid is molded, the molding aid is removed from the molded body, and then a high temperature [melting point of PTFE (approximately 32) Temperature of less than 7 ° C), for example, about 300 ° C] It is obtained by stretching at a high speed and, if necessary, baking.
  • uniaxially stretched porous PTFE film can be obtained by stretching only in the MD direction (longitudinal direction at the time of manufacturing the stretched porous PTFE film) or TD direction (direction orthogonal to the MD direction). If the film is stretched biaxially in the direction and the TD direction, a biaxially stretched porous PTFE film can be obtained.
  • the stress relaxation layer of the present invention any of a uniaxially stretched and a biaxially stretched porous PTFE film may be used. However, since the mechanical anisotropy and the electrical anisotropy are small, biaxial stretching is preferred. Expanded porous PTFE films are more preferred.
  • the nodes are thin islands perpendicular to the stretching direction, and the interlocking buoyrils (folded crystals) are connected to connect the nodes.
  • a linear molecular bundle that has been melted and pulled out is oriented in the stretching direction.
  • the space between the fibers or the space defined by the buoyril and the suds has a fibrous structure with pores.
  • the fibrils spread radially, the nodes connecting the buibrils are scattered in islands, and the spider web has many spaces defined by the fibrils and the nodes. It has a fibrous structure.
  • the porosity of the expanded porous PTFE film is preferably from 30% to 95%, more preferably from 50% to 90%. If the porosity is too small, the tensile modulus may exceed the above range, and the stress relaxation layer using such a film may not sufficiently reduce the bending stress. On the other hand, the porosity is too large
  • the mechanical strength of the film is remarkably reduced, which may cause the film to fall below the lower limit of the tensile modulus, and may also deteriorate the handling property (handling property) at the time of processing.
  • the porosity is determined based on the apparent density P l (g / cm 3 ) of the expanded porous PTFE film measured according to the provisions of JISK6885 and the density of PTFE 0 (2.2 g / cm 3 ). 3 ) The following formula
  • the maximum pore size of the stretched porous P-TFE film is preferably from 0.1 ⁇ m to 20 ⁇ m, more preferably from 0.1 ⁇ m to 10 ⁇ m. . If the maximum pore size of the expanded porous PTFE film is out of the above range, it is difficult to make the tensile modulus and tensile elongation at break within the above ranges.
  • the adhesive of the adhesive layer (described later) adjacent to the stress relieving layer becomes the stress relieving layer.
  • the adhesion between the stress-relaxation layer and the adhesive layer is improved due to the An effect or the effect of the penetration into the pores.
  • the maximum pore diameter of the expanded porous PTFE film constituting the stress relaxation layer is less than the above range, the adhesive of the adhesive layer becomes difficult to penetrate into the pores, and the anchor effect tends to be insufficient. It is in.
  • the “maximum pore diameter” is a value measured according to the provisions of ASTM F-316.
  • the maximum pore diameter of the stretched porous PTFE film in this specification is a value measured by this method.
  • the preferred thickness of the resin film constituting the stress relaxation layer varies depending on the type of the resin film used, the porosity, and the like.
  • the thickness is generally from 0.05 mm to 0.5 mm. More preferably, the thickness is 0.01 mm or more and 0.3 mm or less, and more preferably 0.03 mm or more and 0.1 mm or less. Also, in the case of other resin films (especially porous films), it is desirable that the thickness is in the above range. If a resin film having a thickness exceeding the above range is used for the stress relaxation layer, it will be difficult to meet the demand for a thinner semiconductor built-in card. On the other hand, in the case of a resin film having a thickness less than the above range, the handleability is impaired due to a decrease in strength and the like.
  • the thickness of the porous film referred to here is the average thickness measured with a dial gauge (for example, 1/1000 mm Dianoresic Gage manufactured by Techloc) (other than the panel load on the main unit). (Measured under no load). All the thicknesses of the porous film in this specification are values measured by this method.
  • Adhesion between the stress relaxation layer and the card frame and between the stress relaxation layer and the semiconductor mounting substrate are desirably performed via an adhesive layer (15 in FIG. 3).
  • the adhesive layer is formed by applying a liquid adhesive to one or both of the contact surfaces of the card frame (semiconductor mounting g-plate), the stress relaxation layer, or the adhesive. A method using a film can be adopted.
  • An adhesive layer having a peel strength of 0.4 N / mm or more, preferably 0.8 N / mm or more is recommended. More specifically, when the adhesive layer between the stress relieving layer and the semiconductor mounting substrate is called an adhesive layer A, and the adhesive layer between the stress relieving layer and the card frame is called an adhesive layer B, the adhesive layer A and the semiconductor At least one (preferably both) of the peel strength A at the interface with the mounting board and the peel strength B at the interface between the adhesive layer B and the card frame are 0.4 N / mm or more (preferably 8 N / mm or more is recommended. Peel strength is too low
  • the peel strength is a value obtained by measuring under the conditions described in the examples described below, in accordance with the provisions of JIS C 6481.
  • the adhesive various adhesives known in the art can be used.
  • the adhesive (adhesive layer) A between the stress relieving layer and the semiconductor mounting substrate and the adhesive between the stress relieving layer and the card frame are used.
  • the agent (adhesive layer) B the same material or a different material may be used.
  • the adhesive is selected according to the material of the semiconductor mounting substrate (the sealing member, if the substrate is sealed as described below) and the card frame, as described later. Therefore, when the material of the semiconductor mounting substrate (or the sealing member) and the card frame are different, different adhesives A and B are often used.
  • the adhesive B used on the card frame side may be, for example, an epoxy resin, a polyurethane resin, an acrylic resin (a cyanoacrylate resin). And other acrylic resins), polyamide resins (such as nylon 6, nylon 66), -polyester resins-[polyethylene terephthalate-K (PET), Polybutylene terephthalate, a reactive polyester resin described below, etc.), and a nitrile rubber (NBR) resin.
  • the adhesive B may be epoxy resin, polyurethane resin, acrylic resin (cyanoacrylate resin, second generation reactive acrylic resin).
  • SGA Polyamide resin
  • PET polyethylene terephthalate
  • NBR resin reactive polyester resin described below, etc.
  • the material of the card frame is Even if different from the ABS resin, epoxy resin, polyurethane resin, acrylic resin, polyamide resin, polyester resin, nitrile rubber (NBR) resin, etc. are used as appropriate. I'm sorry.
  • thermoplastic resin such as a polycarbonate resin
  • a thermoplastic resin as the adhesive B.
  • the affinity with the force frame is improved, and the bonding strength to the card frame is improved.
  • the use of a polyester resin for the adhesive B is advantageous in improving the affinity (adhesion strength). Desirable.
  • the adhesive A for bonding the semiconductor mounting board and the stress relieving layer is an epoxy resin, a polyurethane resin, or an acrylic resin. Adhesives such as are preferred, and among them, thermosetting resins (particularly epoxy resins) are particularly preferred because of their excellent adhesiveness.
  • the sealing resin is other than the epoxy resin, or when the sealing resin is not used, the same resin as described above may be used as the adhesive A.
  • the epoxy resin used for the adhesive A and / or the adhesive B is a curable compound containing at least two epoxy groups in a molecule.
  • glycidyl ether of phenols is typical.
  • the glycidyl ethers of the phenols are particularly excellent in curability and cured product properties.
  • the phenols include bisphenol A such as bisphenol A, bisphenol S, bisphenol F, bisphenol AD, and bisphenol A such as hydrogenated bisphenol A.
  • bisphenol A such as bisphenol A, bisphenol S, bisphenol F, bisphenol AD, and bisphenol A such as hydrogenated bisphenol A.
  • Nopolak resins such as enol nopolak resin, cresol nopolak resin, and bisphenol A nopolak resin.
  • a compound having one epoxy group in the molecule may be used as a part of these epoxy resins (for example, about 50% by mass or less based on the total amount of the epoxy resin).
  • the curing agent include a phenol resin (a resin having at least two phenolic hydroxyl groups in a molecule), dicyandiamide, dicarboxylic dihydrazide, and a reaction product of an epoxy resin and an amide compound.
  • phenolic resin examples include phenolic phenolic resin, cresophenolic resin, bisphenol A phenolic resin, phenolic phenolic resin, and polyvinylphenol.
  • dicarponic acid diazide and razide examples include, for example, adipic dihydrazide, sebacic dihydrazide, and isophthalic dihydrid.
  • Drazid can be exemplified.
  • a reaction product of the epoxy group and the amine compound for example, a compound commercially available under the trade name of NOPOCURE J (manufactured by Asahi Kasei Corporation) is used.
  • curing agents have a functional group capable of reacting with the epoxy group of the epoxy resin in any case.-3 o
  • the curing agent is an equivalent ratio of the epoxy group of the epoxy resin to the reactive functional group of the curing agent. (Reactive functional group / epoxy group) is, for example, 03-1 to 5, preferably 05-1
  • various conventionally known compounds can be used as the curing accelerator for the epoxy resin.
  • imidazoles such as 2-ethyl-4-methylimidazole
  • dicyandiamide derivatives dicarboxylic dihydrazide
  • triphenylphosphine triphenylphosphine
  • tetratol Phenol phosphonimulet trafeborate 21-tetrafluoro-tetrafluorobutyrate
  • 1,8-diazabicyclo 5
  • Metal catalysts such as 4,0) pentacene-1 7-tetraphenyl ester and zinc octylate.
  • the amount of these curing accelerators used is preferably from 0.01 to 5.0 parts by mass, more preferably from 0.05 to 1.0 parts by mass, based on 100 parts by mass of the epoxy resin. Is more preferable.
  • a reactive thermoplastic resin for example, a saturated polyester resin “Hybon 766 3” manufactured by Hitachi Chemical Co., Ltd .; Generation-type reactive acrylic resin.
  • a cross-linking agent may be added as necessary to appropriately improve the adhesiveness, heat resistance, moisture absorption reliability, and the like.
  • the cross-linking agent include, in the case of a polyester resin, sociate, block succinate, and melamine resin.
  • thermoplastic resin may be added for the purpose of controlling the viscosity.
  • poly (ethylene terephthalate), poly (phenylene sulfide), polyester sulphone polyether ether ketone thermoplastic polyester, thermoplastic polyester resin, liquid crystalline polyester (liquid crystalline polyester), tetrafluoropropylene-hexafur.
  • various thermoplastic resins such as tetrapropylene copolymer, tetrafluoroethylene-perfluoroalkylvinylinoleate copolymer, and tetrafluoronorethylene-ethylene copolymer. They can be used alone or as a mixture of two or more.
  • urethane-based acrylic-based
  • acrylic-based acrylic-based
  • a flexible resin such as a rubber-based resin may be added. Furthermore, additives such as surfactants, coupling agents, plasticizers, and flame retardants; fillers such as organic and / or inorganic powders and fibers; May be calories.
  • these adhesives may be mixed with a component capable of exhibiting tackiness at room temperature, such as an acrylic resin, in order to improve the workability of application.
  • a component capable of exhibiting tackiness at room temperature such as an acrylic resin
  • the adhesive resin is set so that the softening point and the curing temperature after blending are 150 ° C. or less. If the temperature is higher than this, the processing temperature at the time of bonding becomes too high, and the card frame may be deformed.
  • the adhesive layer by coating As a method for forming the adhesive layer by coating, known coating methods such as roll coating, die coating, and spray coating can be employed.
  • the coating may be performed after the viscosity is reduced by adding an organic solvent to the adhesive resin to dilute the adhesive resin or by heating the adhesive resin.
  • an adhesive film for example, a casting method (formation of an adhesive resin-containing layer by coating on the surface of the release-film; drying if necessary) Can be used, but it is more preferable to use an adhesive film obtained by filling the pores of a porous base material with an adhesive.
  • an epoxy resin that is suitable as an adhesive has a low viscosity when heated and melted, so the resin flow is large, and it is easy for the resin to protrude from the area to be bonded during bonding. Problems such as dirt may occur.
  • an inorganic or organic filler or a rubber component is mixed into an epoxy resin.
  • the viscosity of the resin is too high, which tends to cause problems such as air bubbles during application.
  • an adhesive film formed by filling the pores of the porous substrate with an adhesive is used, the above problem is solved because the porous substrate plays a role in suppressing the opening of the adhesive resin. Can be avoided.
  • porous substrate used for the adhesive film examples include a porous film such as a void-containing film such as a foamed film, a woven fabric, a nonwoven fabric, and a stretched porous film. It is preferable to use a PTFE film. As described above, since the stretched porous PTFE film has a very fine fibril-node structure, the flow of the adhesive resin can be controlled extremely well. As the expanded porous PTFE film, the same one suitable for the above-mentioned stress relaxation layer can be used.
  • a kiss roll, a squeeze, a dip, a flow coat, a roll pressure impregnation, and a vacuum with a liquid adhesive resin (varnish) are used as a method of filling the adhesive resin into such a porous base material.
  • a method of impregnating the pores of the porous base material and drying (solidifying) by a method selected from various methods such as impregnation according to the required accuracy and the like can be adopted.
  • the adhesive resin may be provided as necessary.
  • the viscosity may be reduced by re-diluting the mechanical solvent or by heating, and then subjected to the impregnation.
  • the porous base material is a film made of a fluororesin such as an expanded porous PTFE film
  • the affinity with the bonding resin is low, so that repelling occurs and the bonding occurs. May not be sufficiently filled with resin for use. Therefore, it is recommended to apply a surface treatment to the porous resin film before impregnation to improve the wettability of the adhesive resin (varnish).
  • Such surface treatments include, for example, the following methods (I) to (III) for reducing water repellency.
  • the physicochemical method refers to a method of irradiating a porous resin film with plasma, ultraviolet rays, electron beams, or the like, or performing corona discharge treatment. This makes it possible to oxidize or radicalize the surface to lower the water repellency.
  • the chemical method is a method in which a compound having lower water repellency than the resin constituting the porous resin film is contained in the film, and the water repellency is reduced by the action of the compound.
  • a compound having such properties is dissolved in a solvent having wettability to the porous resin film, and the resultant is impregnated into a porous resin film. Then, only the solvent is removed to convert the compound into a porous resin film. It can be coated on the surface of the resin film skeleton (the surface of the node and the fiber).
  • Examples of such a compound include polymers having a hydrophilic group (such as a hydroxyl group, an ether group, and a ketone group), such as polyvinyl alcohol, polyvinylinolepyrrolidone, and vinylinoleate / recoholate phthalanolate.
  • a hydrophilic group such as a hydroxyl group, an ether group, and a ketone group
  • polyvinyl alcohol such as polyvinyl alcohol, polyvinylinolepyrrolidone, and vinylinoleate / recoholate phthalanolate.
  • organic polymers such as polyethylene block copolymers
  • inorganic polymers obtained by a sol-gel reaction from alkoxysilanes and the like can be mentioned.
  • a method in which a film (or a group of compounds) whose water repellency is reduced by irradiation or discharge treatment as described in (I) above is contained in the film in advance as in (II) above.
  • the group of compounds includes, for example, compounds that are activated by absorbing light of a specific wavelength (for example, photo-functionality such as 2,7—2—sodium anthraquinon-2-sulfonate). And a metal salt. If necessary, this compound group is mixed with a halogen ion source, a surfactant, a solvent, and the like, impregnated into a porous resin film, dried, and dried under a predetermined light (for example, a wavelength of 400 nm or less). UV light)
  • the metal ions can be reduced and the metal can be fixed on the surface of the porous resin film. Water repellency can be reduced by the action of the fixed metal.
  • Examples of the organic solvent used for diluting the adhesive resin include ketones such as acetone, methylethylketone (MEK), methylisobutylketone, cyclohexanone; toluene, xylene, and the like.
  • Aromatic hydrocarbons such as mesitylene; ethylene glycol monomethyl ether, ethylene glycol monoethylene glycol, etc.
  • Esters such as acetate and ethyl acetate; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; and the like, depending on the type of adhesive resin. Or a mixture of two or more. From the viewpoint of reducing the amount of residual solvent after drying, it is desirable to use a low-boiling solvent having a boiling point of 150 ° C or less (especially 130 ° C or less) such as MEK.
  • the volume filling ratio of the pores is preferably from 80 to 120% by volume, from 90 to L; more preferably from L to 10% by volume, and from 95 to 10%. More preferably, it is set to 5% by volume. If the filling rate is too low, it may cause porosity and poor adhesion, while if it is too high, the resin flow may become large and the connection terminals may be stained.
  • the case where the filling rate exceeds 100% by volume means a state where the adhesive resin is also present on the surface of the porous substrate.
  • an adhesive laminated film in which adhesive layers are formed on both sides of the resin film that constitutes the stress relaxation layer in advance is also preferable to prepare them. According to this method, the workability at the time of assembling is improved and the thickness accuracy of the adhesive layer is also improved, as compared with the case where a liquid adhesive is applied to the semiconductor mounting substrate or the card frame.
  • An adhesive layer is formed only on one side of the resin film (stress relieving layer) in advance, and when the resin film (stress relieving layer) is laminated on a semiconductor mounting board or a card frame, the remaining part of the resin film (stress relieving layer) is formed. A method of applying a liquid adhesive on one side can also be adopted.
  • an adhesive is applied to both sides of the resin film constituting the stress relaxation layer and dried (solidified), or an adhesive is applied to both sides of the resin film constituting the stress relaxation layer.
  • a film preferably, an adhesive film filled with an adhesive resin in pores of a porous base material
  • a method of melting and bonding and integrating can be adopted. It is also possible to apply an adhesive to one side of the resin film, dry it, and bond and integrate the adhesive film on the other side.
  • thermosetting resin When a thermosetting resin is used as the adhesive resin, it is preferable that after forming the adhesive layer, the solvent be dried to be in a semi-cured state (a so-called B stage) and then heat-cured when assembling the semiconductor built-in card.
  • the thickness of the adhesive layer is not less than 0.01 mm and not more than 0.2 mm.
  • the thickness is more preferably from 0.03 mm to 0.1 mm, and still more preferably from 0.005 mm to 0.05 mm. If the thickness of the adhesive layer is less than the above range, the adhesiveness may be insufficient. If the thickness of the adhesive layer exceeds the above range, the thickness of the semiconductor built-in card becomes too thick, and the resin flow also increases. Too big.
  • the thickness of the adhesive B on the card frame side may be adjusted according to the elastic modulus of the adhesive layer B.
  • the adhesive layer B When the elasticity of the adhesive layer B is high, the bending stress concentrates on the adhesive interface, and the stress relaxation layer tends not to function sufficiently.Therefore, the adhesive layer is made thinner as the elastic modulus of the adhesive layer becomes higher. It is recommended to avoid concentration of bending stress. For example, it is desirable that the product of the elastic modulus (unit: MPa) and the thickness (unit: mm) of the adhesive layer B is 100 or less, preferably 50 or less. The thickness of the adhesive layer A on the substrate side does not have to satisfy the above numerical range because the adhesive layer A does not actually bend.
  • a release finolem on the surface for the purpose of preventing stickiness and preventing self-adhesion due to aging.
  • the release finolem one obtained by subjecting a paper to a release treatment or a resin film is suitably used.
  • the material of the resin film is not particularly limited, but is generally a polyolefin-based resin such as PE or PP; a polyester-based resin such as PET; Also, the resin film has
  • V Mold resin may be subjected to a release treatment such as a single step of attaching a resin film surface to the resin film.
  • the following is an example of a method of manufacturing a card with a built-in semiconductor according to the present invention, in which the above-mentioned adhesive laminated film in which adhesive layers are formed on both surfaces of a resin film constituting a stress relaxation layer is used. To explain.
  • the adhesive laminated film is cut as necessary according to the size of the semiconductor mounting substrate or the mounting portion of the card mounting frame on the semiconductor mounting substrate.
  • the adhesive laminated film may be supplied in a state of being cut into such a size in advance.
  • the semiconductor mounting board and the card frame are bonded via the cut adhesive laminated film.
  • either one of the semiconductor mounting board and the card frame is attached to one surface of the adhesive laminated film. It is also possible to adopt a method in which one is adhered and then the other is attached to the other surface.
  • T Adhesion of semiconductor mounting substrate-adhesive laminated film-one-time frame * ST
  • the surface to be bonded of the semiconductor mounting board or force frame is pre-assembled as necessary to improve the bonding strength. Treatment, corona discharge treatment, and bramer treatment may be performed.
  • the resin used for the sealing resin of the semiconductor mounting substrate and the resin frame often contains a fox component for the purpose of improving the mold release from the mold during molding. Physical or chemical treatment for removal may be applied.
  • the encapsulation resin used for the semiconductor mounting board is cured after encapsulation molding with a transfer mold, but when bonding to the encapsulation surface, the curing time is shortened and cured to improve the bonding strength. It is also good to reduce the degree. For example, if an epoxy resin is used for both the sealing resin and the adhesive, if the degree of curing of the sealing resin is reduced, the unreacted groups of the sealing resin (epoxy resin) become The adhesive strength is stronger than the resin.
  • the temperature at the time of bonding is preferably set to 115 ° C. or less from the viewpoint of suppressing deformation of the card frame.
  • a thermosetting resin is used as the adhesive for the adhesive layer, it is necessary to perform a curing treatment.In this case, however, the temperature is set to 150 ° C. or less to suppress the deformation of the card frame. (Preferably below 130 ° C) is recommended.
  • the separation between the semiconductor mounting substrate and the card frame is highly suppressed even under the bending stress by introducing the stress relaxation layer. Even if such a stress relaxation layer is extremely thin, the above-mentioned effect can be sufficiently ensured, so that it is possible to meet the demand for miniaturization and thinning of a semiconductor built-in card.
  • the tensile modulus of the adhesive film before lamination with the stress relaxation layer was measured in the same manner as in the case of the _b ⁇ self-stress relaxation layer. However, if the adhesive layer contains epoxy resin, cure at 120 ° C for 90 minutes before measuring.
  • the measurement is performed in accordance with JIS K 6856, under the conditions of indenter tip: R 1 mm, distance between support points: 20 mm, measurement temperature: normal temperature, compression speed: 1 mm / min. . Also check which part of the built-in semiconductor card is the peeled surface after peeling.
  • the adhesive film (1) laminated with the stress relaxation layer is used.
  • a release polyester film was placed on one side of this adhesive finolem (however, if the adhesive finolem was produced by the cast method, the release polyester film used in the cast method was used as it was. Use),
  • a copper foil with a thickness of 35 ⁇ is placed on the other surface, and these are pressed using a roll laminator at a temperature of 100 ° C and a pressure of 1 MPa. This crimped body was cut to a width of 10 mm, and the release film was peeled off.
  • the sealing surface side of the model plate was pressed using a press at a temperature of 120 ° C and a pressure of 0 • 5 Bond under the conditions of MPa and time of 10 seconds to prepare a measurement sample. At this time, a thickness of 2 between the adhesive film and the model plate
  • the part where the release film is inserted is not bonded, so it will be a chucking part when measuring peel strength.
  • the copper foil is used as a reinforcing material for preventing the adhesive film from elongating when measuring the peel strength.
  • Epoxy resin (“EPICLON” manufactured by Dainippon Ink and Chemicals, Inc.
  • the viscosity of the above varnish was measured using a viscometer (“RE100L” manufactured by Toki Sangyo Co., Ltd.) at a sample volume of 1 mL and a temperature of 23 ° C. Yes, use a gelling tester (“Nichishin Kagaku Co., Ltd.“ 0-Choice 0-3 ”).]” Temperature of hot plate: 170 ° C according to the provisions of 13C6487 The gel time measured under the following conditions was 240 seconds.
  • Stretched porous p TFE film (“Gotex (registered trademark)” manufactured by Japan Goatex, thickness: 20 ⁇ , porosity: 70%, maximum pore size: 0.2 the zm), impregnated with the varnish using a kiss roll coater, 1 5 0 ° to 5 minutes and dried in C, and the volume filling ratio of the pores is 1 0 0 vol 0 /. (64% by mass) of an adhesive film (adhesive layer) was obtained.
  • Stretched porous PTFE film ("Gotex (registered trademark)", manufactured by Japan Gortex Co., Ltd.), thickness: 80111, porosity: 35 ° /., Maximum pore diameter: 0 as a stress relaxation layer 1 ⁇ m) with the above adhesive film on both sides, using a roll laminator, pressure bonding at a temperature of 100 ° C and a pressure of 1 MPa to form a 3-layer adhesive. A laminated film was obtained.
  • a silicon chip (thickness: 0 mm) viewed from the flash memory on the surface of an FR 4 glass epoxy circuit board ("EL-170" manufactured by Mitsubishi Gas Chemical Company) with a terminal circuit on the back. 4mm, width: 7mm, length: 10) mounted and sealed with epoxy resin compound (outer dimensions: thickness: 1.5mm, width: 10mm, length
  • the above adhesive laminated film cut to the same size as the substrate was placed on a sealing surface (length: 15 mm) (the surface opposite to the terminal surface) using a press machine at a temperature of 110 °. C, pressure: 0.5 MPa, time: 5 seconds, preliminarily bonded to obtain a substrate with an adhesive laminated film.
  • the poly carb seen on the card frame With the adhesive laminated film in the center of a net plate ("Gulliver 301-1-10" manufactured by Sumitomo Dow) (thickness: 1.0 mm, width: 20 mm, length: 30 mm)
  • the substrate is bonded with the adhesive film exposed side to the polycarbonate plate side using a press machine under the following conditions: temperature: 120 ° C, pressure: 0.5 MPa, and time: 10 seconds.
  • the substrate was cured at 120 ° C. for 90 minutes to obtain a semiconductor built-in card.
  • the above-described evaluation was performed on the above-mentioned expanded porous PTFE film and the semiconductor built-in card. Table 1 shows the results.
  • the expanded porous PTF Efinolem that constitutes the stress relaxation layer has a thickness of 8
  • Example 1 was changed to that of Example 1 except that it was changed to that of Jiannon Gotex Co., Ltd. Similarly, a semiconductor built-in power was obtained.
  • the expanded porous PTFE finolem that constitutes the stress relaxation layer has a thickness of 8 ⁇ m-and a void of: -85.
  • the largest pore-diameter 5 •-0 ⁇ -m.
  • Gotechx registered trademark
  • the built-in semiconductor power was obtained in the same manner as in Example 1.
  • the above-described evaluation was performed on the above-mentioned stretched porous PTFE film and the semiconductor built-in force. The results are shown in Table 1.
  • This varnish is applied to the surface of a PET film (release film, thickness: 50 ⁇ m) to a thickness of 20 ⁇ using a die coater, and then applied to a surface of 150 °. After drying at C for 5 minutes, an adhesive film was obtained.
  • Example 2 Toluene was added to a saturated polyester resin (“Hybon 766 3” manufactured by Hitachi Chemical Co., Ltd.) to prepare a 60% by mass solution (varnish).
  • the viscosity of this varnish measured in the same manner as in Example 1 was as follows: Viscosity: -36-0 cm-voise. -Apply this varnish to the surface of a PET film (release film, thickness: 50 ⁇ m) using a die coater to a thickness of 20 / xm. It was dried at 150 ° C. for 5 minutes to obtain an adhesive film.
  • Example 2 MEK was added to the same composition as that used for the varnish in Example 1 to prepare a solution (varnish) having a concentration of 65% by mass of components other than the MEK.
  • the viscosity and the gel time of this varnish measured in the same manner as in Example 1 were as follows: viscosity: 380 cmvoise; gel time: 230 seconds.
  • This varnish is applied to the surface of a PET film (release film, thickness: 50 ⁇ ) by a casting method to a thickness of 120 ⁇ using a die coater. 1 5 0 dried 1 0 minutes D C, to obtain an adhesive Fi Noremu.
  • a card with a built-in semiconductor was obtained in the same manner as in Example 1, except that the adhesive film peeled from the release film was used instead of the adhesive laminated film having a stress relaxation layer.
  • the above-described evaluation was performed on the semiconductor built-in card. The results are shown in Table 1.
  • the stress-relaxation-layer-stretched porous P T-FE film is composed of:-one thickness-:-80 / im, porosity: 20%, maximum pore size: 0.05
  • a card with a built-in semiconductor was obtained in the same manner as in Example 1 except that it was changed to ⁇ (“GATEX (registered trademark)” manufactured by Japan Gotex).
  • the above-described evaluation was performed on the above-mentioned stretched porous PTFE film and the semiconductor built-in card. The results are shown in Table 1.
  • the stretched porous PTFE film that constitutes the stress relaxation layer has a thickness of 80 ⁇ m, a porosity of 96%, and a maximum pore diameter of 10 // m (“Gotex (registered trademark)” manufactured by Japan Goretex. Change to ”)”) and glue
  • a card with a built-in semiconductor was obtained in the same manner as in Example 2, except that the thickness of the adhesive film used in Example 2 was changed to 30 ⁇ m.
  • the above-described evaluation was performed on the above-mentioned stretched porous PTFE film and the semiconductor built-in card. The results are shown in Table 1.
  • a polyester adhesive film was produced in the same manner as in Example 5, except that the thickness was set to 120 ⁇ .
  • a semiconductor built-in force was obtained in the same manner as in Example 1 except that the above-mentioned polyester-based adhesive film peeled from the release film was used in place of the above-mentioned adhesive laminated film having a stress relaxation layer. .
  • the above-described evaluation was performed on the semiconductor built-in card. Table 1 shows the results. IN3
  • the number in parentheses on the peeled surface indicates the type of peeled surface in the case of fe-bonding.
  • the column of peeling surface in Table 1 shows where the peeling occurred in the semiconductor built-in force after measuring the bending peeling strength.
  • adhesive interface means the interface between the adhesive layer (adhesive film) and the semiconductor mounting substrate, and the interface between the force and the frame.
  • the built-in semiconductor card in which the stress relaxation layer is interposed between the semiconductor mounting board and the frame has no stress relaxation layer.
  • the flexural peel strength is higher, and it can be confirmed that the effect of suppressing the peeling between the semiconductor mounting board and the frame is exhibited.
  • the adhesive resin flow has become smaller.
  • an adhesive layer having a stress relaxation layer of an expanded porous PTFE film having both favorable values of tensile elastic modulus and elongation at break, and a product of tensile elastic modulus and thickness being suitable is used.
  • the bending peel strength was very good, and the above peeling suppressing effect was remarkable.
  • the semiconductor built-in card of the present invention can be used for a conventionally known application as a memory card or an IC card.

Abstract

A card incorporating semiconductor comprising a substrate on which a semiconductor is mounted and a card frame, characterized in that a stress relaxation layer is interposed between the substrate and the card frame. The stress relaxation layer is a resin film, for example. It is recommended that it has a tensile elastic modulus of about 1-1300 Mpa and a tensile elongation at break of about 5% or above. The stress relaxation layer preferably has a porous structure. According to this inventive card, separation between the card frame and the substrate on which the semiconductor is mounted can be suppressed to a high degree when a bending stress is applied, while satisfying the requirement of reduction in size and thickness.

Description

明 細 書 半導体内蔵カー ド 技術分野  Description Technical field of semiconductor built-in card
本発明は、 I Cカー ドやメモリ ーカー ドに代表される半導体内蔵 カー ドに関するものである。  The present invention relates to a semiconductor built-in card represented by an IC card and a memory card.
- . 背景の技術 -. Background Technology
デジタルカメ ラや携帯電話などの電子機器に記録メディアと して 使用されるメモリーカー ドや、 I Cカー ドに代表される半導体内蔵 カー ドでは、 大記録容量化およぴ小型 · 薄型化の要求が年々高まつ ている。  For memory cards used as recording media in electronic devices such as digital cameras and mobile phones, and cards with built-in semiconductors such as IC cards, there is a demand for larger recording capacity and smaller and thinner devices. Are increasing year by year.
こ う した事情の下、 半導体内蔵カー ドに用いられる半導体 (半導 体素子) は、 大容量化且つ小型化が要求される と共に、 このよ う な 半導体を実装した基板 (半導体実装基板) を保持するためのカー ド フ レームでは、 薄く且つ小型であることが求められる。  Under these circumstances, semiconductors (semiconductor elements) used in cards with built-in semiconductors are required to have a large capacity and a small size, and a board on which such a semiconductor is mounted (semiconductor mounting board) is required. The card frame for holding is required to be thin and small.
-と .ろで、 -記メモ-リ 一 力一 - は、-デ-ジタノレカメ ラ一コ.ンピュ一 ター間などでのデータのやり取り に利用される場合が多く 、 装置 (デジタルカメ ラやコンピューターなど) のスロ ッ トに入れたり、 該スロ ッ トから取り 出したりする際には、 カー ドフ レーム部分を指 で把持するのが通常である。 また、 i cカー ドの場合にも、 カー ド ケースから取り 出したりする際などには、 カー ドフレーム部分が指 で把持される。  -In many cases, -notes are used for exchanging data between digital cameras and computers, etc., and devices (digital cameras and computers) are used. In general, when a card is inserted into or removed from a slot, the card frame is grasped with a finger. Also, in the case of an ic card, the card frame portion is gripped by a finger when the card is taken out of the card case.
このよ う に上記半導体内蔵カー ドでは、 その使用形態上、 カー ド フレーム部分が指で把持されるのが通常であり、 その際、 カー ドフ レーム面に垂直に応力が負荷されるため、 例えば、 カー ドフ レーム の一部が指で把持され、 他の部分が装置のス ロ ッ トなどに保持され てレ、る場合には、 半導体内蔵力一 Kは曲げ応力を受ける と となる。 一般に半導体実装基板は強度が大き く、 上記の如き曲げ応力を受 けても変形し難い。 これに対し、 力ー ドフ レームは半導体実装基板 よ り も強度が小さく変形し易いことが通常であるため 、 半導体内蔵 力一ドが上記の曲げ応力を受けた場合には、 カー ドフレ一ムの変形 に半導体実装基板が追随できず、 半導体実装基板一力 フ レ一ム 間での剥離が生じ易いといつた問題がある。 半導体内蔵力ー ドは、 装置ス ロ ッ ト での抜き差しなどが頻繁に行われるため 、 曲げ応力を 受ける頻度も高く (すなわち 、 繰り返し曲げ応力を受けること とな る ) 、 半導体実装基板一力一ドフ レ一ム間での剥離を高度に抑制す る とが求められている。 As described above, in the above-described card with a built-in semiconductor, the card frame portion is usually gripped by a finger due to its usage, and at this time, stress is applied vertically to the card frame surface. , Card frame When a part of the semiconductor device is gripped by a finger and the other part is held by a slot of the device, the semiconductor built-in force K is subjected to bending stress. Generally, a semiconductor mounting board has a high strength and is hardly deformed even when subjected to the bending stress as described above. On the other hand, since the force frame is usually smaller in strength than the semiconductor mounting board and easily deformable, when the semiconductor built-in force is subjected to the above-mentioned bending stress, the force of the card frame is reduced. There is a problem that the semiconductor mounting substrate cannot follow the deformation, and the semiconductor mounting substrate easily peels between frames. Since the built-in semiconductor chip is frequently inserted and removed in the device slot, it is frequently subjected to bending stress (that is, repeatedly subjected to bending stress). There is a demand for a high degree of suppression of delamination between frames.
う した半導体実装基板一力一ド、フレーム間の剥離を防止するに は 、 カー ドフレームの強度、 あるいは半導体内蔵カー ド、全体の強度  The strength of the card frame or the built-in semiconductor card and the strength of the whole
 >
を高め、 上記曲げ応力に対して変形し難くすることが考 られる。 半導体内蔵カー ドに係る力一ドフ レームの強度や半導体内蔵カー It is conceivable that the bending stress is increased to make it difficult to be deformed by the bending stress. The strength of the force frame related to the built-in semiconductor card and the built-in semiconductor card
K全体の強度を向上させ得る技術と しては、 例えば、 力一ド内部にTechniques that can improve the overall strength of K include, for example,
-金厲 -枠を導入レて補強す-る.方法 特開举 5 _ 9 6 8 8 9号公報) 半導体実装基板を保持した第 1 のカー ドフ レームを、 第 2 のカー ド フ レームで覆う技術 (特開平 6 — 1 5 9 9 2号公報) 、 カー ドフレ ームに剛性の高い支持物を導入して捕強する方法 (特開平 7 — 1 7 1 7 5公報) などがある。 これらの技術を応用すれば、 上記曲げ応 力を受けた際のカー ドフレーム (半導体内蔵カー ド全体) の変形を 抑制して、 半導体実装基板一カー ドフレーム間の剥離を抑制できる 可能性がある。 A method of introducing and reinforcing a frame is disclosed in Japanese Patent Application Laid-Open No. 5_968889. The first card frame holding the semiconductor mounting substrate is replaced with the second card frame. There are a covering technique (Japanese Patent Application Laid-Open No. Hei 6-15992) and a method of introducing a rigid support into the card frame to reinforce it (Japanese Patent Application Laid-Open No. Hei 7-17575). If these technologies are applied, it is possible to suppress the deformation of the card frame (the entire card with a built-in semiconductor) when receiving the above bending stress, and to suppress the separation between the semiconductor mounting board and the card frame. is there.
しかしながら、 金属枠や、 第 2のカー ドフレーム、 支持物といつ た補強材を導入する上記特開平 5 — 9 6 8 8 9号公報、 特開平 6 — 1 5 9 9 2号公報、 及び特開平 7— 1 7 1 7 5公報の技術では、 半 導体内蔵カー ド全体の大き さや厚さの増大をもたらすため、 小型 ィ匕 · 薄型化の要求に応えるには不十分である。 However, the above-mentioned Japanese Patent Application Laid-Open Nos. Hei 5-966989 and Hei 6-96 introduce a reinforcing material such as a metal frame, a second card frame, and a support. The technology of Japanese Patent Application Laid-Open No. 15992/1995 and Japanese Patent Application Laid-Open No. 7-171575 meet the demand for miniaturization and thinning in order to increase the size and thickness of the entire semiconductor built-in card. Is not enough.
本発明は、 上記事情に鑑みてなされたものであり、 その目的は、 小型化 · 薄型化の要請に応えつつ、 曲げ応力が負荷された際の半導 体実装基板とカー ドフ レーム と の間の剥離を高度に抑制した半導体 内蔵カー ドを提供することにある。 発明の開示  The present invention has been made in view of the above circumstances, and an object of the present invention is to meet the demand for miniaturization and thinning, and to reduce the distance between a semiconductor mounting board and a card frame when a bending stress is applied. An object of the present invention is to provide a semiconductor built-in card in which peeling of the semiconductor is highly suppressed. Disclosure of the invention
上記目的を達成し得た本発明の半導体内蔵カー ドは、 半導体を実 装した基板とカー ドフレームを構成要素に含み、 上記基板と上記力 一ドフ レームの間に、 応力緩和層が介在しているものであるところ に要旨が存在する。 上記応力緩和層は、 樹脂フ ィルムから構成され てなるものであるこ とが好ましく、 該榭脂フィ ルムは、 引張弾性率 が l〜 1 3 0 0 M P aであり、 引張破壊伸ぴが 5 %以上であるこ と が望ましい。  The card with a built-in semiconductor of the present invention, which has achieved the above object, includes a substrate on which a semiconductor is mounted and a card frame as constituent elements, and a stress relaxation layer is interposed between the substrate and the force frame. The gist exists where it is. The stress relaxation layer is preferably made of a resin film. The resin film has a tensile modulus of 1 to 130 MPa and a tensile elongation at break of 5%. It is desirable that this is the case.
また、 上記応力緩和層は、 多孔質構造を有するものであることが -好ましく、 延伸多孔—質ポリ 亍 トテフルォ口.ェチレ —( P T F E フ イルムよ り なるものであることが、 よ り好ましい。 上記延伸多孔質 ポリ テ トラフルォロエチレンフィルムは、 空孔率が 3 0〜 9 5 %で あることが推奨される。 さ らに、 上記応力緩和層を構成する樹脂フ イルムの厚さは、 0. 0 0 5〜 0. 5 mmであるこ とが望ましい。 上記応力緩和層と上記基板との間に接着層 Aが介挿され、 かつ上 記応力緩和層と上記カー ドフ レーム と の間にも接着層 Bが介揷され ており、 これら接着層 Aおよび Bによって、 上記応力緩和層が上記 基板および上記カー ドフ レームと固着されているこ とが、 本発明の 好ましい実施態様である。 基板と接着層 Aとの界面の引き剥がし強 度、 およびカー ドフレームと接着層 B との界面の引き剥がし強度は、 例えば、 いずれも 0 . 4 N / m m以上である。 接着層 Aと接着層 B は、 互いに異なる接着剤によって構成されていてもよく 、 接着層 A の接着剤が熱硬化性樹脂 (特に好ましく はエポキシ系樹脂) 、 接着 層 B の接着剤が熱可塑性樹脂 (特に好ま しく はポ リ エステル系樹 脂) であってもよい。 接着層 Bは、 その引張弾性率と厚さの積が、 5 0 M P a · m m以下であることが推奨される。 また上記接着層 A および/または接着層 Bには、 通常、 延伸多孔質ポリテ トラフルォ 口エチレンフ ィルムの空孔に接着剤が充填されてなるものが使用さ れる。 In addition, the stress relaxation layer preferably has a porous structure-more preferably, is more preferably made of an expanded porous polytetrafluoroethylene (PTFE film). It is recommended that the porosity of the stretched porous polytetrafluoroethylene film be 30 to 95%, and the thickness of the resin film constituting the stress relaxation layer is 0%. The adhesive layer A is interposed between the stress relieving layer and the substrate, and also between the stress relieving layer and the card frame. It is a preferred embodiment of the present invention that the adhesive layer B is interposed and the stress relaxation layer is fixed to the substrate and the card frame by the adhesive layers A and B. Peel strength at interface with adhesive layer A The peel strength at the interface between the card frame and the adhesive layer B is, for example, 0.4 N / mm or more. The adhesive layer A and the adhesive layer B may be composed of different adhesives. The adhesive of the adhesive layer A is a thermosetting resin (particularly preferably an epoxy resin), and the adhesive of the adhesive layer B is a thermoplastic. Resins (particularly preferably polyester resins) may be used. It is recommended that the product of the tensile modulus and the thickness of the adhesive layer B be 50 MPa amm or less. In addition, as the adhesive layer A and / or the adhesive layer B, those obtained by filling an adhesive in pores of an expanded porous polytetrafluoroethylene film are usually used.
なお、 本明細書でい う 「フィ ルム」 は、 所謂 「シー ト」 を含む概 念である。 図面の簡単な説明  The term “film” in this specification is a concept that includes a so-called “sheet”. Brief Description of Drawings
図 1 は、 本発明の半導体内蔵カー ド (メ モ リ ーカー ド) の構造の 一例を示す模式図である。  FIG. 1 is a schematic diagram showing an example of the structure of a semiconductor built-in card (memory card) of the present invention.
図 2は、 図 1 のメ モ リ ーカー ドの 1 一 1線断面図である。  FIG. 2 is a sectional view taken along line 11 of the memory card of FIG.
-図ー 3—ほ—、―本-発—明の半導体内蔵力 ドが曲-げ応力を受けた際の様子 を示す拡大図である。 発明を実施するための最良の形態 FIG. 3 is an enlarged view showing a state where the semiconductor built-in force of the present invention is subjected to bending stress. BEST MODE FOR CARRYING OUT THE INVENTION
本発明者は、 半導体実装基板とカー ドフ レームの間に応力緩和層 を介在させることで、 半導体実装基板に比して強度の弱いカー ドフ レームを用いた半導体内蔵カー ドであっても、 上記曲げ応力を受け た際の半導体実装基板一カー ドフレーム間の剥離を抑制できるこ と を見出した。 また、 上記応力緩和層は、 上記特開平 5— 9 6 8 8 9 号公報、 特開平 6 — 1 5 9 9 2号公報、 及び特開平 7— 1 7 1 7 5 公報に開示の補強材とは異なり、 比較的薄い形態で上記の剥離抑制 効果が確保可能であることから、 半導体内蔵カー ドの厚さを薄く で き、 さ らに特開平 6 — 1 5 9 9 2号公報のよ う に第 2 のカー ドフ レ ームを要しないため、 半導体内蔵カー ドを小型化できるこ とも見出 し、 本発明の完成に至った。 図 1 に本発明の半導体内蔵カー ド (メ モ リ ーカー ド) の一例を示す。 図 1 中、 1 0は半導体内蔵カー ド、By interposing a stress relaxation layer between the semiconductor mounting substrate and the card frame, the present inventor has realized the above-described semiconductor built-in card using a card frame having a lower strength than the semiconductor mounting substrate. We have found that peeling between the semiconductor mounting substrate and the card frame when subjected to bending stress can be suppressed. Further, the stress relaxation layer is formed of the above-mentioned JP-A-5-96889, JP-A-6-15992, and JP-A-7-171975. Unlike the reinforcing material disclosed in the gazette, since the above-mentioned peeling suppressing effect can be ensured in a relatively thin form, the thickness of the semiconductor built-in card can be reduced. Since the second card frame is not required as in Japanese Patent Publication No. 92, it has been found that the card with a built-in semiconductor can be reduced in size, and the present invention has been completed. FIG. 1 shows an example of a semiconductor built-in card (memory card) of the present invention. In Fig. 1, 10 is a semiconductor built-in card,
1 1 はカー ドフ レーム、 1 2は半導体実装基板、 1 3は接続端子で ある。 に 、 図 2は、 図 1 の 1 一 1線断面図であり 、 1 4が応力緩 和層である (後述の 層は図示しない) 。 以下、 本発明を詳細に 説明する。 11 is a card frame, 12 is a semiconductor mounting board, and 13 is a connection terminal. FIG. 2 is a cross-sectional view taken along the line 11 in FIG. 1, and reference numeral 14 denotes a stress relaxation layer (layers to be described later are not shown). Hereinafter, the present invention will be described in detail.
上記半導体実装基板は 、 回路が形成された基板 (回路基板) に半 導体素子を 1個または複数個搭載したものである 本発明の半導体 内蔵カー ドに用いられる半導体実装基板は特に限定されず、 例えば 従来公知のメモリーカー や I Cカー ドなどの半導体内蔵カー ドに 用いられているものがそのまま適用可能である。  The above-mentioned semiconductor mounting board is one in which one or more semiconductor elements are mounted on a board (circuit board) on which a circuit is formed. The semiconductor mounting board used for the semiconductor built-in card of the present invention is not particularly limited. For example, a card used for a semiconductor built-in card such as a conventionally known memory card or IC card can be applied as it is.
具体例を挙げる と、 半導体 子と しては、 シリ コンゃガリ ゥムノ ヒ素を素材と したメモリ一 、 Vンチップマイク口コンピューターな ど-がある。-メ-モ-リ——一力ー -の場合..には—、-通常、. N A D型や N O R 型のフラ ッシュメモリ ーのよ つ な不揮発性メモリ が用いられ、 こ の他、 不揮発性メモリ ーと しては、 M R A M ( M a g n e t i c As specific examples, examples of semiconductor chips include a memory made of silicon arsenic arsenic and a computer with a V-chip microphone. In the case of -memory-------------------------------------------------------------------------------------- MRAM (Magnetic
R AM) 、 F e R AM ( F e r r o e l e c t r i c R AM) も 使用され得る。 また、 I C力一 ドの場合には、 上記の如きメモ リ ー の他に、 C P U (中央集積回路 ) が用いられることもある。 半導体 実装基板には、 こ う した半導体素子と共に、 抵抗やコンデンサなど が実装される場合もある R AM), F E R AM (F e r o e l e c t r i c R AM) may also be used. In the case of an IC force, a CPU (Central Integrated Circuit) may be used in addition to the above memory. In some cases, resistors and capacitors are mounted on a semiconductor mounting board together with such a semiconductor element.
基板 (回路基板) の素材と しては、 例えば、 ガラス繊維—ェポキ シ樹脂複合体 (所謂ガラスェポキシ) や、 ガラス B T (ビスマレイ ミ ド一 ト リ アジン) 、 セラミ ックス、 ポリイ ミ ドフィルムなど、 公 知のものが適用可能である。 As a material of the substrate (circuit board), for example, a glass fiber-epoxy resin composite (so-called glass epoxy) or glass BT (bismalei) Known materials such as medium triazine), ceramics and polyimide film are applicable.
半導体を実装した基板では、 半導体素子などの実装部品を封止榭 脂によって封止するこ とが一般的である。 封止樹脂には、 従来公知 のエポキシ樹脂コンパウン ドなどが適用できる。 樹脂封止後の半導 体実装基板の厚さは、 3 m m以下であるのが一般的である。  On a substrate on which a semiconductor is mounted, it is common to seal mounting components such as semiconductor elements with a sealing resin. As the sealing resin, a conventionally known epoxy resin compound or the like can be applied. The thickness of the semiconductor mounting board after resin sealing is generally 3 mm or less.
外部との情報の送受信のための接続端子は、 半導体実装基板の片 面に部品 (半導体素子など) が実装されている場合には、 半導体実 装基板の部品実装面の反対面に設けるこ とが一般的である (図 1 は、 この態様を示している) 。 しかし、 接続端子の形成箇所はこれに限 定されず、 半導体実装基板が両面に部品を実装している場合や、 半 導体内蔵カー ドの構造によっては、 部品実装面側に形成してもよい。 また、 非接触型のメモリーカー ドや I Cカー ドの場合では、 接続端 子に代えて、 アンテナなどを備えた非接触型のデータ通信手段を有 すること もできる。  If components (such as semiconductor elements) are mounted on one side of the semiconductor mounting board, the connection terminals for transmitting and receiving information to and from the outside should be provided on the opposite side of the component mounting side of the semiconductor mounting board. (Figure 1 illustrates this aspect). However, the connection terminals are not limited to these locations, and may be formed on the component mounting surface side when the semiconductor mounting board has components mounted on both sides or depending on the structure of the semiconductor built-in card. . Further, in the case of a non-contact type memory card or IC card, a non-contact type data communication means having an antenna or the like can be provided instead of the connection terminal.
上記カー ドフレームは、 樹脂製のものが一般的である。 構成樹脂 と しては、 半導体内蔵カー ドのフレームと しての機能を満たす成形 ί本-が得られる一ものであれば—特に限定されず—、 ,従来—公—知のもの-が適用 できる。 カー ドフレームは、 射出成形法によ り形成することが一般 的であるこ とから、 射出成形に適した樹脂が好ましく用い得る。 具 体的には、 A B S (アク リ ロニ ト リル一ブタジエン一スチレン) 、 ポリ カーボネー ト、 ポリエステル (ポリ ブチレンテレフタ レー トな ど) などが挙げられる。 また、 カー ドフ レームの補強や着色を目的 と して、 公知の各種補強材ゃ着色剤 (棒状、 繊維状、 粒子状のブイ ラーなど) を添加することもできる。  The card frame is generally made of resin. As a constituent resin, a resin that satisfies the function as a frame of a semiconductor built-in card can be obtained. it can. Since the card frame is generally formed by an injection molding method, a resin suitable for injection molding can be preferably used. Specific examples include ABS (acrylonitrile-butadiene-styrene), polycarbonate, polyester (polybutylene terephthalate, etc.). For the purpose of reinforcing or coloring the card frame, various known reinforcing materials and coloring agents (such as rod-shaped, fibrous, and particulate boilers) can also be added.
カー ドフレームの形状も特に制限はなく 、 半導体内蔵カー ドに要 求される外観と、 半導体実装基板を設置する部分を有する形状であ ればよい。 例えば、 従来公知の各種メ モ リ ーカー ドや I Cカー ドな どの半導体内蔵カー ドで採用されている形状が挙げられる。 The shape of the card frame is not particularly limited. Just do it. For example, there are shapes used in conventionally known semiconductor memory cards such as various memory cards and IC cards.
なお、 後述するよ う に、 応力緩和層は多孔質構造を有しているこ とが好ましい。 ところが、 カー ドフレームと半導体実装基板との接 着の際には、 熱をかけるこ とが通常であるため、 応力緩和層の空孔 内の空気が膨張するこ とによる不具合が発生する ときがある。 よつ て、 カー ドフ レームの半導体実装基板設置部には、 半導体実装基板 を設置した後に、 上記の膨張した空気を逃がすための隙間ができる よ うに、 力ー ドフ レームの开 状を設計するこ とが推奨される。 隙間 の幅は、 例えば、 0 . O l m m以上とするこ とが好ま しい。 隙間の 幅が上記範囲を下回る と膨張した空気が逃げ く なる 。 また間隙の 幅は、 例えば、 0 . 2 m m以下と してもよい o 間隙の幅が小さ く な るほど、 力ー ドフ レームの/ J、型化が容易になる o  Note that, as described later, the stress relaxation layer preferably has a porous structure. However, when bonding the card frame to the semiconductor mounting board, heat is usually applied, so that a problem may occur due to expansion of the air in the pores of the stress relaxation layer. is there. Therefore, the shape of the force frame should be designed in the card frame semiconductor mounting board installation part so that after the semiconductor mounting board is installed, there is a gap to allow the above-mentioned expanded air to escape. Is recommended. The width of the gap is preferably, for example, not less than 0.1 mm. If the width of the gap is smaller than the above range, the expanded air escapes. The width of the gap may be, for example, 0.2 mm or less.o The smaller the width of the gap, the easier the force frame becomes / J and molding.o
上記応力緩和層は、 カー ドフ レーム (半導体内蔵力ー ド) に負荷 された曲げ応力を緩和する層である。  The stress relieving layer is a layer that relieves bending stress applied to the card frame (built-in semiconductor chip).
上 し げ応力が負荷された際の現象を図 3によつて説明する。 図 The phenomenon when an overstress is applied will be described with reference to FIG. Figure
3は、 本発明の半導体内蔵力ー ドが上記曲げ応力を受けた際の、 接3 is the connection when the semiconductor built-in power cord of the present invention is subjected to the above bending stress.
-続端子 1 3近-傍 ·の.様子-を拡大して示-している o なお 図- 3に示す半 導体内蔵力ー ド 1 0では、 応力緩和層 1 4は 、 接着層 1 5 , 1 5 を 介して力一ドフ レーム 1 1および半導体実装基板 1 2 と接着してい る。 -The appearance of the connection terminal 13 near-near the side is shown in an enlarged manner.- In the semiconductor built-in force 10 shown in Fig. 3, the stress relaxation layer 14 is an adhesive layer 15 , 15 and are bonded to the force frame 11 and the semiconductor mounting substrate 12.
半導体内蔵カー ドに上記曲げ応力が負荷され、 カー ドフ レーム 1 1 が変形した際には、 応力緩和層 1 4は、 カー ドフ レーム 1 1 から 剥離せずに変形するが、 曲げ応力は応力緩和層 1 4内で緩和される ため、 半導体実装基板 1 2側に伝達される応力は大幅に低減される。 よって、 応力緩和層 1 4 と半導体実装基板 1 2 の界面剥離も抑えら れ、 結果と して、 半導体実装基板一カー ドフ レーム間の剥離が高度 に抑制される。 この際、 応力緩和層 1 4は、 厚さ方向に伸びるが、 この厚さ方向の伸びがカー ドフレーム 1 1 と半導体実装基板 1 2 と の間の剥離抑制に大きく寄与する。 When the above-described bending stress is applied to the card with built-in semiconductor and the card frame 11 is deformed, the stress relaxation layer 14 is deformed without peeling off from the card frame 11, but the bending stress is reduced. Since the stress is relieved in the layer 14, the stress transmitted to the semiconductor mounting substrate 12 is greatly reduced. Therefore, the interface separation between the stress relaxation layer 14 and the semiconductor mounting substrate 12 is also suppressed, and as a result, the separation between the semiconductor mounting substrate and the card frame is high. Is suppressed. At this time, the stress relieving layer 14 extends in the thickness direction, and the elongation in the thickness direction greatly contributes to suppression of separation between the card frame 11 and the semiconductor mounting substrate 12.
応力緩和層は樹脂フィルムから構成されていることが好ましい力 S、 かかる樹脂フィルムは、 引張弾性率が I M P a以上 1 3 0 O M P a 以下であり、 且つ引張破壌伸びが 5 %以上であることが好ましい。 本発明者等は、 上述した応力緩和層が厚さ方向に伸びる機能の有無 が、 応力緩和層を構成する樹脂フ イ ルムの引張弾性率と引張破壊伸 びによって代替的に評価可能であるこ とを見出した。 すなわち、 引 張弾性率が上記範囲を満足する と共に、 引張破壊伸びが上記下限値 以上である樹脂フ ィルムから構成される応力緩和層であれば、 応力 緩和層が厚さ方向に伸びる機能が良好であるため、 半導体実装基板 —カー ドフレーム間の剥離抑制をよ り高度に達成できる。 引張弾性 率は 5 M P a以上 8 0 O M P a以下であるこ とがよ り好ましく 、 ま た、 引張破壊伸びは 2 0 %以上であることがよ り好ましく 、 3 0 % 以上であることが更に好ましい。  Preferably, the stress relaxation layer is formed of a resin film. The force S. Such a resin film has a tensile elastic modulus of IMPa to 130 OMPa and a tensile elongation at break of 5% or more. Is preferred. The present inventors have found that the presence or absence of the function of extending the stress relaxation layer in the thickness direction can be alternatively evaluated by the tensile elastic modulus and the tensile elongation at break of the resin film constituting the stress relaxation layer. Was found. In other words, a stress relaxation layer composed of a resin film having a tensile elastic modulus satisfying the above range and a tensile elongation at break equal to or greater than the lower limit above has a good function of extending the stress relaxation layer in the thickness direction. Therefore, the separation between the semiconductor mounting substrate and the card frame can be more highly suppressed. The tensile modulus is more preferably 5 MPa or more and 80 OMPa or less, and the tensile elongation at break is more preferably 20% or more, still more preferably 30% or more. .
なお、 引張弾性率が上記範囲を超えるか、 または引張破壊伸びが 上一記 限値を下.回る場—合-には、 -応力緩和層の.厚さ方向での伸 が小 -- さ く 、 応力緩和層における曲げ応力の緩和が不十分となるこ とがあ る。 さ らに、 引張破壌伸びが上記下限値を下回る場合には、 半導体 内蔵カー ドが受ける曲げによるひずみが大きい場合に、 応力緩和層 が破断することがある。 引張弾性率が上記範囲を下回る場合には、 応力緩和層が不必要に変形して破断することがある。 また、 応力緩 和層を構成する樹脂フィルムは、 予め両面に接着層を設けた接着性 積層フィルム と してから、 カー ドフ レーム と半導体実装基板との接 着に供されるこ とが好ましいが (詳しく は後述する) 、 引張弾性率 が上記範囲を下回る樹脂フ ィルムの場合には、 該接着性積層フィル ム製造時において、 ロール間を通過させる際などに圧縮応力が負荷 される と 、 厚さを保持し難いといつた製造上の問題が発生するこ と 力 Sある。 If the tensile modulus exceeds the above range or the tensile elongation at break falls below the upper limit, the stress relaxation layer has a small elongation in the thickness direction. In addition, the relaxation of the bending stress in the stress relaxation layer may be insufficient. Furthermore, when the tensile rupture elongation is lower than the above lower limit value, the stress relaxation layer may be broken when the internal semiconductor card receives a large bending strain. If the tensile modulus is lower than the above range, the stress relaxation layer may be unnecessarily deformed and broken. Further, it is preferable that the resin film constituting the stress relaxation layer is an adhesive laminated film in which adhesive layers are provided on both sides in advance, and then is used for bonding the card frame to the semiconductor mounting substrate. (Details will be described later.) In the case of a resin film having a tensile modulus lower than the above range, the adhesive laminate film is used. If a compressive stress is applied during passage between rolls during the production of a roll, a production problem such as difficulty in maintaining the thickness may occur.
なお、 上記引張弾性率および引張破壊伸びは、 J I S K 7 1 The above tensile modulus and tensile elongation at break were determined by JISK71
1 3の規定に準拠し、 後述の実施例に記載の条件で測定して得られ た値である o It is a value obtained by measuring under the conditions described in the examples described below in accordance with the provisions of 13 o
応力緩和層を構成する素材と しては 、 特に制限はなく 、 ポリェチ レン ( P E ) 、 ポ リ プロ ピレン ( P P ) な どのポ リ オレフ イ ン系樹 脂 ; ナイ ロン 6、 ナイ ロン 6 6などのポリアミ ド系樹脂 ; ポリェチ レンテ レフ タ レー ト ( P E T ) 、 ポ リ ブチレンテ レフタ レー トなど のポリエステル系樹脂 ; ポリ ゥレタン系樹脂 ; アタ リル系樹脂 ; P There is no particular limitation on the material constituting the stress relaxation layer, and polyolefin resins such as polyethylene (PE) and polypropylene (PP); Nylon 6, Nylon 66, etc. Polyamide resins; Polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate; Polyurethane resins; Ataryl resins;
T F E、 テ ト ラ フノレ才ロェチレン一パ一フノレ才ロ ァノレキゾレビニノレエ ーテノレ共重合体などのフッ素系樹脂が挙げられる。 Fluorine-based resins such as TFE, tetrafluoroethylene, and polyethylene copolymers.
応力緩和層は多孔質構造を有していることが好ましく 、 例えば、 発泡フィルムなどの空洞含有フィルム 織布、 不織布、 延伸多孔質 フイ ノレムなどの多孔質フィルムが 、 応力緩和層を構成するものと し て挙げられる。 応力緩和層が多孔質構造であれば、 半導体実装基板 と-一力—一—ドーフ-レ一—ムを、 応力—緩和 を介 て接着剤で積-層一体化する- 際に、 接着剤に含まれる揮発成分を、 その空孔を通過させて逃がす ことができる。 その結果、 接着剤と被着体との界面にポイ ドが形成 されにく く 、 ボイ ドの発生による接着強度の低下を防止できる。 ま た、 半導体内蔵カー ドを組み立てる際に、 半導体実装基板とカー ド フ レームを、 応力緩和層を介して熱圧着する場合、 カー ドフ レーム が熱で変形し易いという問題があるが、 応力緩和層が多孔質構造で あれば、 半導体実装基板側から加熱すれば、 応力緩和層が断熱層の 役割を果たし、 カー ドフ レーム側に熱が伝わり にく く なるため、 力 一ドフ レームの変形を防止するこ とができる。 多孔質構造を有した応力緩和層と しては、 繊維状あるいはフイブ リル状の樹脂によ り構成される多孔質フィルムが好ま しい。 このよ うな多孔質フィルムから構成される応力緩和層の場合には、 半導体 内蔵カー ドが曲げ応力を受けた際に、 変形が大きく 、 繊維ゃフイブ リルが解かれるよ う に伸びても、 該応力が除去された際には、 カー ドフ レームの弾性回復力によって繊維ゃフイブリルが折りたたまれ るよ う になり、 応力緩和層の形状が元の状態に回復し易いため、 半 導体内蔵カー ド全体に反り (永久ひずみ) が残り難いといった利点 がある。 The stress relieving layer preferably has a porous structure. For example, a void-containing film such as a foam film, a woven fabric, a non-woven fabric, or a porous film such as a stretched porous finolem constitutes the stress relieving layer. It is mentioned. If the stress relieving layer has a porous structure, the adhesive is used to integrate the semiconductor mounting board with the adhesive layer through the stress-relaxation process. The volatile components contained in the water can escape through the pores. As a result, it is difficult for voids to be formed at the interface between the adhesive and the adherend, and it is possible to prevent a decrease in adhesive strength due to generation of voids. Also, when assembling a semiconductor built-in card, if the semiconductor mounting board and the card frame are thermocompression bonded via a stress relaxation layer, there is a problem that the card frame is easily deformed by heat. If the layer has a porous structure, if it is heated from the semiconductor mounting substrate side, the stress relaxation layer plays the role of a heat insulating layer, making it difficult for heat to be transmitted to the card frame side. Can be prevented. As the stress relaxation layer having a porous structure, a porous film made of a fibrous or fibrous resin is preferable. In the case of a stress relaxation layer composed of such a porous film, when the built-in semiconductor card is subjected to bending stress, it is greatly deformed, and even if the fiber is stretched so that the fiber / fibril is released, the stress is reduced. When the stress is removed, the fiber / fibril is folded by the elastic recovery force of the card frame, and the shape of the stress relaxation layer is easily restored to the original state. There is an advantage that warpage (permanent strain) hardly remains.
特に極めて細いフィブリルを有する多孔質フィルムから構成され る応力緩和層であれば、 上記の回復効果が顕著である。 よって、 応 力緩和層と しては、 延伸によって極めて細いフィブリルを形成でき、 且つ引張破壊伸びが大き く 、 適度な引張弾性率も有する点で、 延伸 ' 多孔質 P T F E フ ィルムが特に好ま しい。  In particular, if the stress relaxation layer is formed of a porous film having extremely fine fibrils, the above-mentioned recovery effect is remarkable. Therefore, as the stress relaxation layer, a stretched porous PTFE film is particularly preferable because it can form an extremely thin fibril by stretching, has a large tensile elongation at break, and has an appropriate tensile modulus.
半導体内蔵カー ドは、 カー ド使用時に指で把持されるため、 この 際の圧縮力に耐え得るよ う にソ リ ッ ドな材料で構成されるのが通常 であり、 半導体內蔵カー ドの一部を多孔質構造体で形成する という 発-想は全 新規 も-のである。-半導体内蔵カ^ ドが指で把持ざれた - 際に厚さ方向に潰れる と、 端子部の位置が低く なり、 半導体内蔵力 ードを装置のス ロ ッ ト に差し込んだ際に、 半導体内蔵カー ドの端子 と装置の端子が接触不良を起こす場合がある。 本発明者は、 応力緩 和層を構成する素材が多孔質構造体であっても、 引張弾性率が上記 範囲を満足するものを用いることによ り、 半導体内蔵カー ドが指で 把持された際の圧縮力に耐え得ることを見出した。  Since the card with a built-in semiconductor is gripped by a finger when using the card, it is usually made of a solid material so as to withstand the compressive force at this time. The idea of forming a part with a porous structure is entirely new. -When the card with built-in semiconductor is crushed in the thickness direction when it is gripped by a finger-The position of the terminal part is lowered, and when the card with built-in semiconductor is inserted into the slot of the device, the built-in semiconductor Poor contact between the card terminals and equipment terminals may occur. The present inventor has found that even when the material constituting the stress relaxation layer is a porous structure, the card with a built-in semiconductor is gripped with a finger by using a material having a tensile elasticity satisfying the above range. It has been found that it can withstand the compressive force at the time.
上記延伸多孔質 P T F E フィルムと しては、 特開昭 4 6 — 7 2 8 4号公報、 特開昭 5 0— 2 2 8 8 1号公報、 特表平 3— 5 0 4 8 7 6号公報などに開示のものが挙げられる。 すなわち、 P T F Eのフ ァインパウダー (結晶化度 9 0 %以上) を成形助剤と混合して得ら れるペース トを成形し、 該成形体から成形助剤を除去した後、 高温 [ P T F Eの融点 (約 3 2 7 °C ) 未満の温度、 例えば 3 0 0 °C程 度] 高速度で延伸、 さ らに必要に応じて焼成するこ とによ り得られ るものである。 The above-mentioned expanded porous PTFE film is disclosed in JP-A-46-7284, JP-A-50-22881, and Tokuhyohei 3-5 0 4 876. Publications and the like include those disclosed. In other words, PTFE A paste obtained by mixing fine powder (having a crystallinity of 90% or more) with a molding aid is molded, the molding aid is removed from the molded body, and then a high temperature [melting point of PTFE (approximately 32) Temperature of less than 7 ° C), for example, about 300 ° C] It is obtained by stretching at a high speed and, if necessary, baking.
延伸の際、 M D方向 (延伸多孔質 P T F Eフ ィルム製造時の長手 方向) または T D方向 (M D方向に直交する方向) の一軸方向のみ に延伸すれば、 一軸延伸多孔質 P T F E フィルムが得られ、 M D方 向および T D方向の二軸方向に延伸すれば二軸延伸多孔質 P T F E フィルムが得られる。 本発明の応力緩和層と しては、 一軸延伸、 二 軸延伸のいずれの多孔質 P T F E フ ィルムを用いてもよいが、 機械 的異方性や電気的異方性が小さい点で、 二軸延伸多孔質 P T F Eフ イルムが、 よ り好適である。  At the time of stretching, uniaxially stretched porous PTFE film can be obtained by stretching only in the MD direction (longitudinal direction at the time of manufacturing the stretched porous PTFE film) or TD direction (direction orthogonal to the MD direction). If the film is stretched biaxially in the direction and the TD direction, a biaxially stretched porous PTFE film can be obtained. As the stress relaxation layer of the present invention, any of a uniaxially stretched and a biaxially stretched porous PTFE film may be used. However, since the mechanical anisotropy and the electrical anisotropy are small, biaxial stretching is preferred. Expanded porous PTFE films are more preferred.
ちなみに、 一軸延伸多孔質 P T F E フ ィルムでは、 ノー ド (折り 畳み結晶) が延伸方向に直角に細い島状となっており、 このノー ド 間を繋ぐよ う にすだれ状にブイブリル (折り畳み結晶が延伸によ り 解けて引き出された直鎖状の分子束) が延伸方向に配向している。 そして、 フィ-プリ.ル-間、 またはブイブリルとス一ドとで画さ-れる空 間が空孔となった繊維質構造となっている。 また、 二軸延伸多孔質 P T F Eフィルムでは、 フィブリルが放射状に広がり、 ブイブリル を繋ぐノー ドが島状に点在していて、 フィブリルとノー ドとで画さ れた空間が多数存在するクモの巣状の繊維質構造となっている。  By the way, in a uniaxially stretched porous PTFE film, the nodes (folded crystals) are thin islands perpendicular to the stretching direction, and the interlocking buoyrils (folded crystals) are connected to connect the nodes. (A linear molecular bundle that has been melted and pulled out) is oriented in the stretching direction. The space between the fibers or the space defined by the buoyril and the suds has a fibrous structure with pores. In the biaxially stretched porous PTFE film, the fibrils spread radially, the nodes connecting the buibrils are scattered in islands, and the spider web has many spaces defined by the fibrils and the nodes. It has a fibrous structure.
上記延伸多孔質 P T F E フ ィルムの空孔率は、 3 0 %以上 9 5 % 以下であることが好ま しく 、 5 0 %以上 9 0 %以下であることがよ り好ましい。 空孔率が小さ過ぎる と、 引張弾性率が上記範囲を超え ることがあり、 このよ うなフィルムを用いた応力緩和層では、 曲げ 応力を十分に緩和できない場合がある。 他方、 空孔率が大き過ぎる  The porosity of the expanded porous PTFE film is preferably from 30% to 95%, more preferably from 50% to 90%. If the porosity is too small, the tensile modulus may exceed the above range, and the stress relaxation layer using such a film may not sufficiently reduce the bending stress. On the other hand, the porosity is too large
1 と、 フ ィ ルムの機械的強度が著しく低下してしまい、 上記引張弾性 率の下限を下回ることがある他、 加工の際のハン ドリ ング性 (取り 扱い性) が損なわれることがある。 1 In this case, the mechanical strength of the film is remarkably reduced, which may cause the film to fall below the lower limit of the tensile modulus, and may also deteriorate the handling property (handling property) at the time of processing.
なお、 上記空孔率は、 J I S K 6 8 8 5の規定に準じて測定 される延伸多孔質 P T F Eフィルムの見掛け密度 P l ( g / c m3) と、 P T F Eの密度 0 ( 2. 2 g / c m3) 力 ら、 下式 The porosity is determined based on the apparent density P l (g / cm 3 ) of the expanded porous PTFE film measured according to the provisions of JISK6885 and the density of PTFE 0 (2.2 g / cm 3 ). 3 ) The following formula
空孔率 (%) = 1 0 0 X ( p 0- ι) / P 0  Porosity (%) = 1 0 0 X (p 0-ι) / P 0
を用いて求められる値である。 本明細書における延伸多孔質 P T F Eフィ ルムの空孔率の値は、 全てこの方法で測定したものである。 また、 延伸多孔質 P- T F Eフィルムの最大細孔径は、 0. Ο ΐ μ m以上 2 0 m以下であるこ とが好ましく 、 0. l At m以上 1 0 μ m以下であるこ とがよ り好ましい。 延伸多孔質 P T F Eフ ィルムの 最大細孔径が上記範囲外である と、 引張弾性率および引張破壊伸び を上記範囲内とするこ とが困難となる。 Is a value obtained by using The porosity values of the expanded porous PTFE film in this specification are all measured by this method. Further, the maximum pore size of the stretched porous P-TFE film is preferably from 0.1 μm to 20 μm, more preferably from 0.1 μm to 10 μm. . If the maximum pore size of the expanded porous PTFE film is out of the above range, it is difficult to make the tensile modulus and tensile elongation at break within the above ranges.
応力緩和層が延伸多孔質 P T F Eフ ィルムの如き多孔質構造を有 する樹脂フィルムによ り構成されている場合、 この応力緩和層に隣 接する接着層 (後述する) の接着剤が、 応力緩和層の空孔中に侵入 るこ と -によるアンか一効果によ-つて、 -応力-緩和層と接着層 の密- 着性が向上する。 しかし、 応力緩和層を構成する延伸多孔質 P T F Eフィルムの最大細孔径が上記範囲を下回る と、 接着層の接着剤が 空孔中に侵入し難く なるため、 上記アンカー効果が不十分となる傾 向にある。 なお、 こ こでいう 「最大細孔径」 は、 A S TM F— 3 1 6の規定に準じて測定される値である。 本明細書における延伸多 孔質 P T F Eフィルムの最大細孔径は、 全てこの方法で測定した値 である。  When the stress relieving layer is formed of a resin film having a porous structure such as an expanded porous PTFE film, the adhesive of the adhesive layer (described later) adjacent to the stress relieving layer becomes the stress relieving layer. The adhesion between the stress-relaxation layer and the adhesive layer is improved due to the An effect or the effect of the penetration into the pores. However, if the maximum pore diameter of the expanded porous PTFE film constituting the stress relaxation layer is less than the above range, the adhesive of the adhesive layer becomes difficult to penetrate into the pores, and the anchor effect tends to be insufficient. It is in. Here, the “maximum pore diameter” is a value measured according to the provisions of ASTM F-316. The maximum pore diameter of the stretched porous PTFE film in this specification is a value measured by this method.
応力緩和層を構成する樹脂フィルムの好適な厚さは、 使用する樹 脂フィルムの種類、 空孔率などに応じて変動するが、 例えば、 延伸  The preferred thickness of the resin film constituting the stress relaxation layer varies depending on the type of the resin film used, the porosity, and the like.
2 多孔質 P T F Eフィルムの場合には、 0. 0 0 5 mm以上 0. 5 m m以下とするこ とが一般的である。 よ り好ましい厚さは 0. 0 1 m m以上 0. 3 mm以下、 さ らに好ましく は 0. 0 3 mm以上 0. 1 m m以下である。 また、 他の樹脂フィルム (特に多孔質フィルム) の場合でも、 厚さを上記範囲程度とすることが望ましい。 厚さが上 記範囲を超える樹脂フィルムを応力緩和層に用いる と、 半導体内蔵 カー ドの薄型化の要請に応え難く なる。 他方、 厚さが上記範囲を下 回る樹脂フィルムでは、 強度が低下するなどの理由によ り、 取り扱 い性が損なわれたりする。 2 In the case of a porous PTFE film, the thickness is generally from 0.05 mm to 0.5 mm. More preferably, the thickness is 0.01 mm or more and 0.3 mm or less, and more preferably 0.03 mm or more and 0.1 mm or less. Also, in the case of other resin films (especially porous films), it is desirable that the thickness is in the above range. If a resin film having a thickness exceeding the above range is used for the stress relaxation layer, it will be difficult to meet the demand for a thinner semiconductor built-in card. On the other hand, in the case of a resin film having a thickness less than the above range, the handleability is impaired due to a decrease in strength and the like.
なお、 ここでいう多孔質フィルムの厚さは、 ダイヤルゲージ (例 えば、 テク ロ ッ ク社製 1 / 1 0 0 0 m mダイヤノレシックネ スゲー ジ) で測定した平均厚さ (本体パネ荷重以外の荷重をかけない状態 で測定した値) である。 本明細書における多孔質フィルムの厚さは、 全てこの方法で測定した値である。  The thickness of the porous film referred to here is the average thickness measured with a dial gauge (for example, 1/1000 mm Dianoresic Gage manufactured by Techloc) (other than the panel load on the main unit). (Measured under no load). All the thicknesses of the porous film in this specification are values measured by this method.
応力緩和層一カー ドフ レーム間、 および応力緩和層一半導体実装 基板間の接着は、 接着層を介して行う のが望ま しい (図 3 中、 1 5 ) 。 接着層の形成は、 応力緩和層、 カー ドフ レーム (半導体実装 g板)一の—い れ—か 方または両方の接-着面に液状の接着剤を—塗布す-— るか、 接着剤フィルムを用いる方法が採用できる。  Adhesion between the stress relaxation layer and the card frame and between the stress relaxation layer and the semiconductor mounting substrate are desirably performed via an adhesive layer (15 in FIG. 3). The adhesive layer is formed by applying a liquid adhesive to one or both of the contact surfaces of the card frame (semiconductor mounting g-plate), the stress relaxation layer, or the adhesive. A method using a film can be adopted.
接着層と しては、 引き剥がし強度が 0. 4 N /mm以上、 好まし く は 0. 8 N/mm以上になるものが推奨される。 よ り詳細には、 応力緩和層一半導体実装基板間の接着層を接着層 Aと称し、 応力緩 和層一カー ドフ レーム間の接着層を接着層 B と称したとき、 接着層 Aと半導体実装基板との界面の引き剥がし強度 A、 および接着層 B とカー ドフレーム と の界面の引き剥がし強度 Bの少なく と も一方 (好ましく は両方) が、 0. 4 N/mm以上 (好ましく は 0. 8 N /mm以上) であることが推奨される。 引き剥がし強度が低すぎる  An adhesive layer having a peel strength of 0.4 N / mm or more, preferably 0.8 N / mm or more is recommended. More specifically, when the adhesive layer between the stress relieving layer and the semiconductor mounting substrate is called an adhesive layer A, and the adhesive layer between the stress relieving layer and the card frame is called an adhesive layer B, the adhesive layer A and the semiconductor At least one (preferably both) of the peel strength A at the interface with the mounting board and the peel strength B at the interface between the adhesive layer B and the card frame are 0.4 N / mm or more (preferably 8 N / mm or more is recommended. Peel strength is too low
3 と、 接着界面での剥離が生じやすく なり、 応力緩和層による応力緩 和効果を十分に享受できなく なる。 Three In this case, separation at the bonding interface is likely to occur, and the stress relaxation effect of the stress relaxation layer cannot be sufficiently obtained.
なお上記引き剥がし強度は、 J I S C 6 4 8 1 の規定に準拠 し、 後述の実施例に記載の条件で測定して得られた値である。  The peel strength is a value obtained by measuring under the conditions described in the examples described below, in accordance with the provisions of JIS C 6481.
接着剤と しては、 当該技術分野において公知の各種接着剤が利用 可能であり、 応力緩和層一半導体実装基板間の接着剤 (接着層) A と、 応力緩和層一カー ドフレーム間の接着剤 (接着層) Bには、 互 いに同一のものを採用してもよく 、 互いに異なるものを採用しても よい。 ただし接着剤は、 被着体である半導体実装基板 (この基板が、 後述するよ う に封止されている場合には、 '封止部材) とカー ドフ レ ームの材質に応じて選択されるため、 半導体実装基板 (または封止 部材) とカー ドフレームの材質が異なる場合には、 接着剤 Aおよび Bには、 異なるものが採用されることが多い。  As the adhesive, various adhesives known in the art can be used. The adhesive (adhesive layer) A between the stress relieving layer and the semiconductor mounting substrate and the adhesive between the stress relieving layer and the card frame are used. As the agent (adhesive layer) B, the same material or a different material may be used. However, the adhesive is selected according to the material of the semiconductor mounting substrate (the sealing member, if the substrate is sealed as described below) and the card frame, as described later. Therefore, when the material of the semiconductor mounting substrate (or the sealing member) and the card frame are different, different adhesives A and B are often used.
カー ドフ レーム側に使用する接着剤 Bには、 カー ドフ レームの素 材がポリ カーボネー ト樹脂の場合、 例えば、 エポキシ系樹脂、 ポリ ウ レタン系樹脂、 アク リル系樹脂 (シァノアク リ レー ト系樹脂やそ の他のアク リル系樹脂) 、 ポリ アミ ド系樹脂 (ナイ ロ ン 6 、 ナイ 口 ン 6 6 など) -、 -ポ-リエステル系樹脂 - [ポリエチレンテレフタ レ—一 K ( P E T ) 、 ポリ ブチレンテレフタ レー ト、 後述の反応型ポリ エス テル系樹脂など] 、 二 ト リルゴム (N B R ) 系樹脂などが採用され る。 またカー ドフレームに A B S樹脂を用いた場合は、 接着剤 Bに は、 エポキシ系樹脂、 ポリ ウレタン系樹脂、 アク リル系樹脂 [シァ ノアク リ レー ト系樹脂、 第二世代の反応型アク リ ル系樹脂 ( S G A ) 、 その他のアク リル系樹脂] 、 ポリ アミ ド系樹脂、 ポリエステ ル系樹脂 [ポリ エチレンテレフタ レー ト ( P E T ) 、 ポリ プチレン テレフタ レー ト、 後述の反応型ポリエステル系樹脂など] 、 N B R 系樹脂などが採用される。 カー ドフレームの素材が上記ポリカーボ ネー トゃ A B S樹脂とは異なる場合でも、 エポキシ系樹脂、 ポリ ウ レタン系樹脂、 アク リル系樹脂、 ポリ アミ ド系樹脂、 ポリエステル 系樹脂、 二 ト リルゴム (N B R ) 系樹脂などを適宜採用してもよレ、。 When the card frame is made of polycarbonate resin, the adhesive B used on the card frame side may be, for example, an epoxy resin, a polyurethane resin, an acrylic resin (a cyanoacrylate resin). And other acrylic resins), polyamide resins (such as nylon 6, nylon 66), -polyester resins-[polyethylene terephthalate-K (PET), Polybutylene terephthalate, a reactive polyester resin described below, etc.), and a nitrile rubber (NBR) resin. If the card frame is made of ABS resin, the adhesive B may be epoxy resin, polyurethane resin, acrylic resin (cyanoacrylate resin, second generation reactive acrylic resin). Resin (SGA), other acrylic resins], polyamide resin, polyester resin [polyethylene terephthalate (PET), polybutylene terephthalate, reactive polyester resin described below, etc.] , NBR resin and the like are adopted. The material of the card frame is Even if different from the ABS resin, epoxy resin, polyurethane resin, acrylic resin, polyamide resin, polyester resin, nitrile rubber (NBR) resin, etc. are used as appropriate. I'm sorry.
カー ドフレームには、 上述したよ う にポリカーボネー ト樹脂など の熱可塑性樹脂が使用されるこ とが多いため、 接着剤 B と しても熱 可塑性樹脂を使用することが特に推奨される。 このよ う にすれば力 一ドフ レーム と の親和性が向上し、 カー ドフ レームに対する接着強 度が向上する。 特にカー ドフレームがポリカーボネー ト系樹脂の場 合、 該ポリカーボネー トがエステル結合を有するため、 接着剤 Bに はポ リ エステル系樹脂を採用するのが親和性 (接着強度) 向上の観 点から望ましい。  As described above, a thermoplastic resin such as a polycarbonate resin is often used for a card frame. Therefore, it is particularly recommended to use a thermoplastic resin as the adhesive B. By doing so, the affinity with the force frame is improved, and the bonding strength to the card frame is improved. In particular, when the card frame is made of a polycarbonate resin, since the polycarbonate has an ester bond, the use of a polyester resin for the adhesive B is advantageous in improving the affinity (adhesion strength). Desirable.
一方、 半導体実装基板と応力緩和層を接着する場合、 半導体実装 基板の封止樹脂面と応力緩和層を接着するのが一般的である。 封止 樹脂と してエポキシ樹脂コンパゥン ドを使う場合、 半導体実装基板 と応力緩和層を接着するための接着剤 Aと しては、 エポキシ系樹脂、 ポリ ウ レタ ン系樹脂、 アク リ ル系樹脂などの接着剤が好ましく 、 中 でも熱硬化性樹脂 (特にエポキシ系樹脂) が接着性に優れるため特 に好ましい。一な-お封止樹脂がエポキシ樹脂以外の場合、 或—いは封止 樹脂を使用しない場合であっても、 前記と同様の樹脂を接着剤 Aと して採用してもよい。  On the other hand, when bonding the semiconductor mounting substrate and the stress relaxation layer, it is common to bond the sealing resin surface of the semiconductor mounting substrate and the stress relaxation layer. When an epoxy resin compound is used as the sealing resin, the adhesive A for bonding the semiconductor mounting board and the stress relieving layer is an epoxy resin, a polyurethane resin, or an acrylic resin. Adhesives such as are preferred, and among them, thermosetting resins (particularly epoxy resins) are particularly preferred because of their excellent adhesiveness. First, even when the sealing resin is other than the epoxy resin, or when the sealing resin is not used, the same resin as described above may be used as the adhesive A.
接着剤 Aおよび/または接着剤 Bに採用される前記エポキシ樹脂 は、 分子内に少なく とも 2個のエポキシ基を含む硬化性化合物であ る。 該硬化性化合物と しては、 フエノ ール類のグリ シジルエーテル が代表的である。 このフエノ ール類のグリ シジルエーテルは、 硬化 性や硬化物特性に特に優れている。 前記フエ ノ ール類には、 ビスフ エ ノ 一ノレ A、 ビス フエ ノ ール S 、 ビス フエ ノ ーノレ F、 ビス フエ ノ ー ル A D 、 ノヽロ ゲン化ビスフエ ノ ール Aな どの ビス フエ ノール類 ; フ  The epoxy resin used for the adhesive A and / or the adhesive B is a curable compound containing at least two epoxy groups in a molecule. As the curable compound, glycidyl ether of phenols is typical. The glycidyl ethers of the phenols are particularly excellent in curability and cured product properties. The phenols include bisphenol A such as bisphenol A, bisphenol S, bisphenol F, bisphenol AD, and bisphenol A such as hydrogenated bisphenol A. Kind;
5 エノールノポラ ック樹脂、 ク レゾールノポラ ック樹脂、 ビスフエノ ール Aノポラ ック樹脂などのノポラ ック樹脂が挙げられる。 なお、 これらのエポキシ樹脂の一部 (例えば、 エポキシ樹脂全量に対して、 5 0質量%以下程度) には、 分子内にエポキシ基を 1個有する化合 物を用いてもよい。 Five Nopolak resins such as enol nopolak resin, cresol nopolak resin, and bisphenol A nopolak resin. A compound having one epoxy group in the molecule may be used as a part of these epoxy resins (for example, about 50% by mass or less based on the total amount of the epoxy resin).
また、 エポキシ樹脂を用いる場合には、 硬化剤および硬化促進剤 を併用するこ とが好ま しい。 硬化剤と しては、 例えば、 フエノール 樹脂 (分子内にフ ノール性水酸基を少なく と も 2個有する樹脂) 、 ジシアンジアミ ド、 ジカルボン酸ジヒ ドラジ ド、 エポキシ樹脂とァ ミ ン化合物の反応物などが げられる o  When an epoxy resin is used, it is preferable to use a curing agent and a curing accelerator together. Examples of the curing agent include a phenol resin (a resin having at least two phenolic hydroxyl groups in a molecule), dicyandiamide, dicarboxylic dihydrazide, and a reaction product of an epoxy resin and an amide compound. O
フヱノール樹脂と しては 、 例えばゝ フエノ一ノレノポラ ック樹脂、 ク レゾ一ノレノ ボラ ック樹脂 、 ビスフェノール Aノポラ ック樹脂、 フ エノ—ノレァラノレキノレ樹脂、 ポリ 一 ―ビ二ノレフエノールなどが挙げ られる。 また、 ジカルポン酸ジヒ ド、ラジ ドと しては、 例えば 、 アジ ピン酸ジヒ ドラジ ド 、 セバシン酸ジヒ ドラジ ド、 イ ソフタル酸ジヒ  Examples of the phenolic resin include phenolic phenolic resin, cresophenolic resin, bisphenol A phenolic resin, phenolic phenolic resin, and polyvinylphenol. No. Examples of dicarponic acid diazide and razide include, for example, adipic dihydrazide, sebacic dihydrazide, and isophthalic dihydrid.
,1./„,  , 1. / „,
ドラジ ドが例示できる。 ェポキシ基とァミ ン化合物の反応物と して は、 例えば、 「ノポキュア J の商口 名 (旭化成ェ業社製) で市販さ れて-い-る化合物が使甩 ^き-る 0  Drazid can be exemplified. As a reaction product of the epoxy group and the amine compound, for example, a compound commercially available under the trade name of NOPOCURE J (manufactured by Asahi Kasei Corporation) is used.
これら硬化剤は、 いずれ ェポキシ樹脂のェポキシ基と反応し得 る官能基を有してい -3 o 通常 、 硬化剤は、 ェポキシ樹脂のェポキシ 基と硬化剤の有する前記反応性官能基との当量比 (反応性官能基/ エポキシ基) が、 例えば、 0 3〜 1 - 5、 好ま しく は 0 5〜 1 These curing agents have a functional group capable of reacting with the epoxy group of the epoxy resin in any case.-3 o Usually, the curing agent is an equivalent ratio of the epoxy group of the epoxy resin to the reactive functional group of the curing agent. (Reactive functional group / epoxy group) is, for example, 03-1 to 5, preferably 05-1
2 になる範囲で使用する。 Use within the range of 2.
硬化促進剤と しては、 エポキシ樹脂の硬化促進剤と して従来公知 の各種化合物を用いるこ とができる。 例えば、 イ ミ ダゾール類 ( 2 ーェチルー 4 ーメチルイ ミ ダゾールなど) 、 ジシアンジアミ ド誘導 体、 ジカルボン酸ジヒ ドラジ ド、 ト リ フエニルホスフィ ン、 テ トラ フヱ二ノレホスホニゥムテ ト ラフェュボレー ト、 2 一ェチルー 4 —ィ ミ ダゾーノレテ トラフ エ二ノレボレー ト 、 1 , 8 —ジァザビシク ロ ( 5 ,As the curing accelerator, various conventionally known compounds can be used as the curing accelerator for the epoxy resin. For example, imidazoles (such as 2-ethyl-4-methylimidazole), dicyandiamide derivatives, dicarboxylic dihydrazide, triphenylphosphine, and tetratol Phenol phosphonimulet trafeborate, 21-tetrafluoro-tetrafluorobutyrate, 1,8-diazabicyclo (5,
4 , 0 ) ゥンデセン一 7—テ トラフェ二ルポレー 卜 、 ォクチル酸亜 鉛等の金属触媒などが挙げられる。 これら硬化促進剤の使用量は、 ェポキシ樹脂 1 0 0質量部に対して 、 0 . 0 1 〜 5 • 0質量部とす るこ とが好ましく 、 0 . 0 5 ~ 1 . 0質量部とする とがよ り好ま しい。 Metal catalysts such as 4,0) pentacene-1 7-tetraphenyl ester and zinc octylate. The amount of these curing accelerators used is preferably from 0.01 to 5.0 parts by mass, more preferably from 0.05 to 1.0 parts by mass, based on 100 parts by mass of the epoxy resin. Is more preferable.
また接着剤 Aおよびノまたは接着剤 B と して熱可塑性樹脂を使用 する場合、 反応型熱可塑性樹脂 (例えば、 日立化成ポリマー社製飽 和ポリエステル系樹脂 「ハイボン 7 6 6 3」 、 上記第二世代の反応 型アク リル樹脂など) を使用してもよい。 反応型熱可塑性樹脂を使 用する場合、 接着性、 耐熱性、 吸湿信頼性などを適宜を向上させる ため、 必要に応じて架橋剤を添加してもよい。 架橋剤と しては、 た とえばポリエステル系樹脂の場合 、 ソシァネー ト 、 ブロ ックイ ソ シァネー ト、 メ ラ ミ ン樹脂などが挙げられる。 なお架橋剤を使用す る場合、 架橋密度が高く なつて接着層の弾性率が高 < なり過ぎない よ う に、 適宜添加量を調整する必要がめ 。  When a thermoplastic resin is used as the adhesive A and the adhesive B or the adhesive B, a reactive thermoplastic resin (for example, a saturated polyester resin “Hybon 766 3” manufactured by Hitachi Chemical Co., Ltd .; Generation-type reactive acrylic resin). When a reactive thermoplastic resin is used, a cross-linking agent may be added as necessary to appropriately improve the adhesiveness, heat resistance, moisture absorption reliability, and the like. Examples of the cross-linking agent include, in the case of a polyester resin, sociate, block succinate, and melamine resin. When a cross-linking agent is used, it is necessary to appropriately adjust the addition amount so that the cross-linking density is not high and the elastic modulus of the adhesive layer is not too high.
- -これら -の接着剤には、 粘度をコン -ト口ールす—る-目的で- 、—熱可塑性 樹脂を添加してもよい。 例えば、 ポジエチレンテレフタ レー ト、 ポ リ フエ二レンサルフアイ ド 、 ポリ ェ一テルサルフォン ポリエーテ ルェーテルケ トン、 熱可塑性ポリィ へ、 ド、 サーモ ト ピック液晶樹 脂 (液晶ポリエステル) 、 テ 卜ラフルォロプロ ピレン ―へキサフル ォロプロ ピレン共重合体、 テ 卜ラフルォロエチレン一パ一フルォロ アルキルビニノレエーテノレ共重合体ヽ テ トラフノレォロェチレン一ェチ レン共重合体などの各種熱可塑性樹脂が挙げられ、 これらを単独で または 2種以上混合して用いるこ とができる。 また 、 応力緩和性や フ レキシプル性の向上を目的と して 、 ウ レタン系、 ァク リル系、 ゴ  To these adhesives, a thermoplastic resin may be added for the purpose of controlling the viscosity. For example, poly (ethylene terephthalate), poly (phenylene sulfide), polyester sulphone polyether ether ketone, thermoplastic polyester, thermoplastic polyester resin, liquid crystalline polyester (liquid crystalline polyester), tetrafluoropropylene-hexafur. And various thermoplastic resins such as tetrapropylene copolymer, tetrafluoroethylene-perfluoroalkylvinylinoleate copolymer, and tetrafluoronorethylene-ethylene copolymer. They can be used alone or as a mixture of two or more. In addition, for the purpose of improving stress relaxation and flexi- bility, urethane-based, acrylic-based, and
7 ム系などの可撓性樹脂を添加してもよい。 さ らに、 接着剤には、 必 要に応じて、 界面活性剤、 カップリ ング剤、 可塑剤、 難燃剤などの 添加剤 ; 有機および/または無機の粉体や繊維などの充填剤 ; を添 カロしてもよい。 7 A flexible resin such as a rubber-based resin may be added. Furthermore, additives such as surfactants, coupling agents, plasticizers, and flame retardants; fillers such as organic and / or inorganic powders and fibers; May be calories.
また、 これらの接着剤には、 貼り付け作業性を改善するために、 ァク リル系樹脂などの常温で粘着性を発現させ得る成分を混合して もよい。  Further, these adhesives may be mixed with a component capable of exhibiting tackiness at room temperature, such as an acrylic resin, in order to improve the workability of application.
接着剤樹脂は、 配合後の軟化点およびキュア温度が 1 5 0 °C以下 となるよ う に設定することが好ましい。 これ以上温度が高く なる と、 接着の際の加工温度が高く なり過ぎて、 カー ドフレームの変形が引 き起こされる虞がある。  It is preferable that the adhesive resin is set so that the softening point and the curing temperature after blending are 150 ° C. or less. If the temperature is higher than this, the processing temperature at the time of bonding becomes too high, and the card frame may be deformed.
接着層を塗布によ り形成する場合の方法と しては、 ロールコーテ イ ング、 ダイ コーティ ング、 スプレーコーティ ングなどの公知の塗 布方法が採用できる。 接着剤樹脂に有機溶剤を加えて希釈したり、 接着剤樹脂を加熱したり して粘度を下げてから、 上記塗布を行って もよい。  As a method for forming the adhesive layer by coating, known coating methods such as roll coating, die coating, and spray coating can be employed. The coating may be performed after the viscosity is reduced by adding an organic solvent to the adhesive resin to dilute the adhesive resin or by heating the adhesive resin.
接着層と して接着剤フィルムを用いる場合には、 例えば、 キャス ト法 (離型-フ-ィ-ルムの表面に塗布によ り接着剤樹脂含有層あ形成—し. 必要に応じて乾燥する方法) などによ り得られる接着剤フィルムを 用いるこ とができるが、 多孔質の基材の空孔に接着剤を充填してな る接着剤フィルムを用いるこ とがよ り好ましい。  When an adhesive film is used as the adhesive layer, for example, a casting method (formation of an adhesive resin-containing layer by coating on the surface of the release-film; drying if necessary) Can be used, but it is more preferable to use an adhesive film obtained by filling the pores of a porous base material with an adhesive.
例えば、 接着剤と して好適なエポキシ系樹脂は、 加熱溶融する と 粘度が低く なるため、 樹脂フローが大きく、 接着の際に接着すべき 領域からはみ出してしま う部分ができ易く、 接続端子の汚れなどの 問題が生じるこ とがある。 こ う した樹脂フローを制御する方法と し ては、 無機や有機のフィラー、 あるいはゴム成分をエポキシ系樹脂 中に混入することなどが行われているが、 この方法ではエポキシ系 樹脂の粘度が増大しすぎて、 塗布の際などに気泡をかむなどの問題 が発生し易い。 これに対し、 多孔質基材の空孔に接着剤を充填して なる接着剤フィルムを用いれば、 多孔質基材が接着剤樹脂のフ口一 を抑制する役割を果たすため、 上記の問題を回避することができる。 接着剤フィルムに用いる多孔質基材と しては、 発泡フ ィルムなど の空洞含有フィルム、 織布、 不織布、 延伸多孔質フ ィルムな どの多 孔質フ ィルムが挙げられるが、 中でも、 延伸多孔質 P T F E フィル ムを用いることが好ましい。 延伸多孔質 P T F Eフィルムは、 上記 の通り、 非常に微細なフィブリル一ノー ド構造を有しているため、 極めて良好に接着剤樹脂のフ ローを制御できる。 延伸多孔質 P T F E フ ィルム と しては、 上記の応力緩和層に好適なものと同じものが 使用可能である。 For example, an epoxy resin that is suitable as an adhesive has a low viscosity when heated and melted, so the resin flow is large, and it is easy for the resin to protrude from the area to be bonded during bonding. Problems such as dirt may occur. As a method of controlling such a resin flow, an inorganic or organic filler or a rubber component is mixed into an epoxy resin. The viscosity of the resin is too high, which tends to cause problems such as air bubbles during application. On the other hand, if an adhesive film formed by filling the pores of the porous substrate with an adhesive is used, the above problem is solved because the porous substrate plays a role in suppressing the opening of the adhesive resin. Can be avoided. Examples of the porous substrate used for the adhesive film include a porous film such as a void-containing film such as a foamed film, a woven fabric, a nonwoven fabric, and a stretched porous film. It is preferable to use a PTFE film. As described above, since the stretched porous PTFE film has a very fine fibril-node structure, the flow of the adhesive resin can be controlled extremely well. As the expanded porous PTFE film, the same one suitable for the above-mentioned stress relaxation layer can be used.
こ う した多孔質基材に接着剤樹脂を充填する方法と しては、 液状 の接着剤樹脂 (ワニス) を、 キス ロール、 スクイ ズ、 ディ ップ、 フ ローコー ト、 ロール加圧含浸、 真空含浸などの各種方法から要求精 度などに合わせて選択された方法で、 多孔質基材の空孔に含浸し、 乾燥 (固化) させる方法が採用できる。 接着剤樹脂は、 必要に応じ て一 有.機溶-剤を再いて希釈したり、 加熱した—り して粘度を-下 てか - ら、 上記含浸に供してもよい。  As a method of filling the adhesive resin into such a porous base material, a kiss roll, a squeeze, a dip, a flow coat, a roll pressure impregnation, and a vacuum with a liquid adhesive resin (varnish) are used. A method of impregnating the pores of the porous base material and drying (solidifying) by a method selected from various methods such as impregnation according to the required accuracy and the like can be adopted. The adhesive resin may be provided as necessary. The viscosity may be reduced by re-diluting the mechanical solvent or by heating, and then subjected to the impregnation.
なお、 多孔質基材が例えば延伸多孔質 P T F E フ ィルムなどのフ ッ素樹脂製フ ィ ルムの場合には、 接着用樹脂 (上記ワニス) と の親 和性が低く 、 弾きが生じて該接着用樹脂を十分に充填できない場合 がある。 よって、 含浸前に多孔質樹脂フィルムに表面処理を施して、 接着剤樹脂 (ワニス) の濡れ性を向上させておく こ とも推奨される。 このよ うな表面処理と しては、 例えば、 以下の ( I ) 〜 ( I I I ) の撥水性低下処理法が挙げられる。  When the porous base material is a film made of a fluororesin such as an expanded porous PTFE film, for example, the affinity with the bonding resin (the above-mentioned varnish) is low, so that repelling occurs and the bonding occurs. May not be sufficiently filled with resin for use. Therefore, it is recommended to apply a surface treatment to the porous resin film before impregnation to improve the wettability of the adhesive resin (varnish). Such surface treatments include, for example, the following methods (I) to (III) for reducing water repellency.
( I ) 物理化学的手法 物理化学的手法とは、 多孔質樹脂フィルムに、 プラズマ、 紫外線、 電子線などを照射したり、 コロナ放電処理を行う手法をいう。 これ によ り、 表面.を酸化あるいはラジカル化して、 撥水性を低下させる こ とができる。 (I) Physicochemical method The physicochemical method refers to a method of irradiating a porous resin film with plasma, ultraviolet rays, electron beams, or the like, or performing corona discharge treatment. This makes it possible to oxidize or radicalize the surface to lower the water repellency.
( I I ) 化学的手法  (I I) Chemical method
化学的手法とは、 多孔質樹脂フィルムを構成する樹脂よ り も撥水 性の小さな化合物を該フィルムに含有させ、 該化合物の作用によつ て撥水性を低下させる手法をいう。 このよ う な性質の化合物を多孔 質樹脂フィルムに対して濡れ性を有する溶媒に溶解させ、 これを多 孔質榭脂フィルムに含浸させた後、 溶媒のみを除去して、 該化合物 を多孔質樹脂フィルム骨格部分の表面 (ノー ドと フイ ブリルの表 面) に被覆させるこ とができる。 このよ うな化合物と しては、 親水 性基 ( ヒ ドロキシル基、 エーテル基、 ケ トン基など) を有するポリ マー、 例えば、 ポリ ビュルアルコール、 ポリ ビニノレピロ リ ドン、 ビ ニノレア/レコ ーノレーテ ト ラフノレォロエチレンブロ ック共重合体などの 有機ポリマー類の他、 アルコキシシランなどからゾルゲル反応によ つて得られる無機系のポリマーなどが挙げられる。  The chemical method is a method in which a compound having lower water repellency than the resin constituting the porous resin film is contained in the film, and the water repellency is reduced by the action of the compound. A compound having such properties is dissolved in a solvent having wettability to the porous resin film, and the resultant is impregnated into a porous resin film. Then, only the solvent is removed to convert the compound into a porous resin film. It can be coated on the surface of the resin film skeleton (the surface of the node and the fiber). Examples of such a compound include polymers having a hydrophilic group (such as a hydroxyl group, an ether group, and a ketone group), such as polyvinyl alcohol, polyvinylinolepyrrolidone, and vinylinoleate / recoholate phthalanolate. In addition to organic polymers such as polyethylene block copolymers, inorganic polymers obtained by a sol-gel reaction from alkoxysilanes and the like can be mentioned.
( I -H -) --上記 - ( I )…と ( I I - ) の組み合わせ  (I -H-)-Combination of the above-(I)… and (I I-)
上記 ( I ) のよ う な照射や放電処理によって撥水性低下作用が発 現するよ うな化合物 (または化合物群) を、 予め上記 ( I I ) のよ う にしてフィルムに含有させておく手法をいう。 前記化合物群と し ては、 例えば、 特定の波長の光を吸収することで活性化する化合物 (例えば、 2 , 7 — 2 —ナ ト リ ウムアン トラキノ ンー 2 —スルホン 酸塩のよ うな光官能性の還元剤) と金属塩が挙げられる。 この化合 物群を、 必要に応じて、 ハロゲンイオン源、 界面活性剤、 溶剤など と混合し、 多孔質樹脂フィルムに含浸させた後、 乾燥し、 所定の光 (例えば、 波長 4 0 0 n m以下の紫外線) を照射することによって、 金属イオンを還元し、 多孔質樹脂フィルム表面に金属を固定させる ことができる。 この固定金属の作用によって撥水性を低下させるこ とができる。 A method in which a film (or a group of compounds) whose water repellency is reduced by irradiation or discharge treatment as described in (I) above is contained in the film in advance as in (II) above. . The group of compounds includes, for example, compounds that are activated by absorbing light of a specific wavelength (for example, photo-functionality such as 2,7—2—sodium anthraquinon-2-sulfonate). And a metal salt. If necessary, this compound group is mixed with a halogen ion source, a surfactant, a solvent, and the like, impregnated into a porous resin film, dried, and dried under a predetermined light (for example, a wavelength of 400 nm or less). UV light) The metal ions can be reduced and the metal can be fixed on the surface of the porous resin film. Water repellency can be reduced by the action of the fixed metal.
接着剤樹脂の希釈に用いる有機溶剤と しては、 例えば、 アセ ト ン、 メ チルェチルケ ト ン (M E K ) 、 メ チルイ ソプチルケ ト ン、 シク ロ へキサノ ンな どのケ ト ン類 ; トルエン、 キシレン、 メ シチレンな ど の芳香族炭化水素類 ; エチレンダリ コールモノ メ チルエーテル、 ェ チレングリ コ ーノレモノ ィ ソブチノレエーテノレ、 プロ ピレンダ リ コ ーノレ モノ メ チノレエーテノレな どのグ リ コールエーテル類 ; エチレング リ コ ールモノ メ チルエーテル酢酸エステル、 酢酸ェチルな どのエステル 類 ; N , N—ジメ チルホルムアミ ド、 N , N —ジメ チルァセ トアミ ドなどのアミ ド類 ; などが挙げられ、 接着剤樹脂の種類に応じて、 これらを単独で、 または 2種以上混合して用いればよい。 なお、 乾 燥後の残存溶剤量を低減する観点から、 M E Kなどの沸点が 1 5 0 °C以下 (特に 1 3 0 °C以下) の低沸点溶剤を用いることが望まし い o  Examples of the organic solvent used for diluting the adhesive resin include ketones such as acetone, methylethylketone (MEK), methylisobutylketone, cyclohexanone; toluene, xylene, and the like. Aromatic hydrocarbons such as mesitylene; ethylene glycol monomethyl ether, ethylene glycol monoethylene glycol, etc. Esters such as acetate and ethyl acetate; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; and the like, depending on the type of adhesive resin. Or a mixture of two or more. From the viewpoint of reducing the amount of residual solvent after drying, it is desirable to use a low-boiling solvent having a boiling point of 150 ° C or less (especially 130 ° C or less) such as MEK.
多孔質基材の空孔に接着剤樹脂を充填した接着剤フィルムにあつ ては -、一接着剤樹脂で空-孔をできるだけ充填しておく ことが望ま—し-い—。 具体的には、 空孔の体積充填率で 8 0 〜 1 2 0体積%とすることが 好ま しく、 9 0〜; L 1 0体積%とするこ とがよ り好ましく、 9 5 〜 1 0 5体積%とすることが更に好ましい。 充填率が低過ぎると、 ポ イ ドや接着不良発生の原因となり、 高過ぎる と樹脂フ ローが大きく なって接続端子を汚すこ とがある。 なお、 上記充填率が 1 0 0体 積%を超える場合とは、 多孔質基材の表面にも接着剤樹脂が存在す る状態を意味している。  For an adhesive film in which the pores of a porous substrate are filled with an adhesive resin, it is desirable to fill the pores with one adhesive resin as much as possible. Specifically, the volume filling ratio of the pores is preferably from 80 to 120% by volume, from 90 to L; more preferably from L to 10% by volume, and from 95 to 10%. More preferably, it is set to 5% by volume. If the filling rate is too low, it may cause porosity and poor adhesion, while if it is too high, the resin flow may become large and the connection terminals may be stained. Here, the case where the filling rate exceeds 100% by volume means a state where the adhesive resin is also present on the surface of the porous substrate.
半導体内蔵カー ドの生産性を考慮すれば、 予め応力緩和層を構成 する樹脂フィルムの両面に接着層を形成した接着性積層フ ィルムを 作製しておく こと も好ましい。 この方法によれば、 液状の接着剤を 半導体実装基板またはカー ドフ レームに塗布するよ り も、 組み立て 時の作業性がよく なり、 また接着層の厚さ精度も向上する。 予め樹 脂フ ィルム (応力緩和層) の片面だけに接着層を形成しておき、 半 導体実装基盤またはカー ドフ レーム と積層する際に、 該樹脂フ ィル ム (応力緩和層) の残り の片面に液状の接着剤を塗布する方法も採 用できる。 上記接着性積層フ ィルムを得るには、 応力緩和層を構成 する樹脂フ ィルムの両面に接着剤を塗布 · 乾燥 (固化) するか、 応 力緩和層を構成する樹脂フ ィルムの両面に接着剤フィ ルム (好ま し く は多孔質基材の空孔に接着剤樹脂を充填した接着剤フ ィルム) を 重ね、 これを熱プレスや熱ロールなどで処理して接着剤樹脂 (の一 部) を溶融させ、 接着一体化させる方法が採用できる。 樹脂フ ィル ムの片面に接着剤を塗布 · 乾燥し、 残り片面に接着剤フ ィルムを接 着一体化させる方法も可能である。 なお延伸多孔質 P T F E フ ィル ムを応力緩和層とする接着性積層フィルムを形成する場合には、 こ の応力緩和層 (延伸多孔質 P T F E フィルム) と接着剤との塗れ性 を向上させてもよい。 接着剤との塗れ性を向上させる手法と しては、 前-記表-面処理 ( - ) 〜 (- I I— I ) が採用できる。 Considering the productivity of the built-in semiconductor card, an adhesive laminated film in which adhesive layers are formed on both sides of the resin film that constitutes the stress relaxation layer in advance It is also preferable to prepare them. According to this method, the workability at the time of assembling is improved and the thickness accuracy of the adhesive layer is also improved, as compared with the case where a liquid adhesive is applied to the semiconductor mounting substrate or the card frame. An adhesive layer is formed only on one side of the resin film (stress relieving layer) in advance, and when the resin film (stress relieving layer) is laminated on a semiconductor mounting board or a card frame, the remaining part of the resin film (stress relieving layer) is formed. A method of applying a liquid adhesive on one side can also be adopted. To obtain the adhesive laminated film, an adhesive is applied to both sides of the resin film constituting the stress relaxation layer and dried (solidified), or an adhesive is applied to both sides of the resin film constituting the stress relaxation layer. A film (preferably, an adhesive film filled with an adhesive resin in pores of a porous base material) is laminated, and this is treated with a hot press or a hot roll to remove the adhesive resin (part). A method of melting and bonding and integrating can be adopted. It is also possible to apply an adhesive to one side of the resin film, dry it, and bond and integrate the adhesive film on the other side. When forming an adhesive laminated film using a stretched porous PTFE film as a stress relaxation layer, it is possible to improve the wettability between the stress relaxation layer (stretched porous PTFE film) and the adhesive. Good. As a method for improving the wettability with the adhesive, the above-mentioned surface treatment (-) to (-II-I) can be adopted.
接着剤樹脂に熱硬化性樹脂を用いる場合は、 接着層形成後、 溶剤 を乾燥させて半硬化状態 (所謂 B ステージ) と し、 半導体内蔵カー ドを組み立てる際に加熱硬化させるのが好ましい。  When a thermosetting resin is used as the adhesive resin, it is preferable that after forming the adhesive layer, the solvent be dried to be in a semi-cured state (a so-called B stage) and then heat-cured when assembling the semiconductor built-in card.
接着層の厚さは、 0 . 0 0 l m m以上 0 . 2 m m以下とするこ と が一般的である。 よ り好ましい厚さは 0 . 0 0 3 m m以上 0 . l m m以下、 さ らに好ましく は 0 . 0 0 5 m m以上 0 . 0 5 m m以下で ある。 接着層の厚さが上記範囲を下回る と、 接着性が不十分となる 虞があり、 接着層の厚さが上記範囲を超える と半導体内蔵カー ドの 厚さが厚く なりすぎ、 樹脂フ ローも大き く なりすぎる。 またカー ドフ レ一ム側の接着 B の厚さは、 該接着層 B の弾性率 に応じて調整してもよい。 接着層 Bの弹性率が高いときは、 曲げ応 力が接着界面に集中し、 応力緩和層が十分に機能しなく なり易いた め 、 接着層の弾性率が高く なるほど接着層を薄く して、 曲げ応力の 集中を回避するこ とが推奨される 。 例えば、 接着層 B の弾性率 (単 位 : M P a ) と厚さ (単位 : m m ) の積は、 1 0 0以下、 好ましく は 5 0以下になるよ う にするのが望ましい。 なお基板側の接着層 A の厚さについては、 実暂的に接着層 Aは曲がらないため、 前記数値 範囲を満足している必要はない。 In general, the thickness of the adhesive layer is not less than 0.01 mm and not more than 0.2 mm. The thickness is more preferably from 0.03 mm to 0.1 mm, and still more preferably from 0.005 mm to 0.05 mm. If the thickness of the adhesive layer is less than the above range, the adhesiveness may be insufficient.If the thickness of the adhesive layer exceeds the above range, the thickness of the semiconductor built-in card becomes too thick, and the resin flow also increases. Too big. The thickness of the adhesive B on the card frame side may be adjusted according to the elastic modulus of the adhesive layer B. When the elasticity of the adhesive layer B is high, the bending stress concentrates on the adhesive interface, and the stress relaxation layer tends not to function sufficiently.Therefore, the adhesive layer is made thinner as the elastic modulus of the adhesive layer becomes higher. It is recommended to avoid concentration of bending stress. For example, it is desirable that the product of the elastic modulus (unit: MPa) and the thickness (unit: mm) of the adhesive layer B is 100 or less, preferably 50 or less. The thickness of the adhesive layer A on the substrate side does not have to satisfy the above numerical range because the adhesive layer A does not actually bend.
上記接着性積層フイ ルムでは ベた付さ防止や、 経時変化による 白己接着防止を目的と して離型フイ ノレムを两表面に用いることも好 ましい。 離型フィノレムと してはヽ 紙に離型処理をしたものや樹脂フ ィルムが好適に用いられる。 榭脂フィルムの素材は特に制限はない が 、 P E 、 P Pなどのポリオレフィ ン系樹脂 ; P E Tなどのポリエ ステル系樹脂 ; などが一般的であ Ο。 またヽ 樹脂フィルムには、 シ In the above adhesive laminated film, it is also preferable to use a release finolem on the surface for the purpose of preventing stickiness and preventing self-adhesion due to aging. As the release finolem, one obtained by subjecting a paper to a release treatment or a resin film is suitably used. The material of the resin film is not particularly limited, but is generally a polyolefin-based resin such as PE or PP; a polyester-based resin such as PET; Also, the resin film has
V コン系樹脂などを榭脂フィルム表面に 一ティ ングするなどの離 型処理を施してもよい。 V Mold resin may be subjected to a release treatment such as a single step of attaching a resin film surface to the resin film.
以下に-、 .·本発明—の半導体内蔵カー ドの製造方法を、―応力緩和層—を 構成する樹脂フ ィルムの両面に接着層を形成した上記接着性積層フ イルムを用いた場合を例にとって説明する。  The following is an example of a method of manufacturing a card with a built-in semiconductor according to the present invention, in which the above-mentioned adhesive laminated film in which adhesive layers are formed on both surfaces of a resin film constituting a stress relaxation layer is used. To explain.
上記接着性積層フ ィルムを、 必要に応じて、 半導体実装基板や、 カー ドフ レームの半導体実装基板設置部のサイズに合わせて裁断す る。 勿論、 接着性積層フィルムには、 予めこのよ う なサイズに裁断 された状態で供給されたものを用いてもよい。  The adhesive laminated film is cut as necessary according to the size of the semiconductor mounting substrate or the mounting portion of the card mounting frame on the semiconductor mounting substrate. Of course, the adhesive laminated film may be supplied in a state of being cut into such a size in advance.
次に、 裁断された上記接着性積層フ ィルムを介して半導体実装基 板とカー ドフレームを接着する。 この際、 まず、 上記接着性積層フ イルムの一方の面に半導体実装基板またはカー ドフレームのいずれ か一方を接着し、 その後他方の面に残り を 着 Tる方法を採用して もよ <、 半導体実装基板一接着性積層フィルム一力 ドフ レームの 接着 •ST |P]時に行う方法を用いても構わない これらの接着には熱プ レスや熱ロールを用いるこ とが推奨される o なお半導体実装基板や 力一ドフ レームの被接着面は、 接着強度向上のため 、 必要に応じて 予めブラズマ処理、 コロナ放電処理、 ブラィマ一処理などを施して おいてもよい。 また、 半導体実装基板の封止樹脂と力ー ドフ レーム に用いる樹脂には、 成型時の金型からの型離れを向上させる 目的で フ ックス成分が含まれる事が多いため、 このフ ックス成分を除去す るための物理的、 化学的な処理を施してもよい。 Next, the semiconductor mounting board and the card frame are bonded via the cut adhesive laminated film. At this time, first, either one of the semiconductor mounting board and the card frame is attached to one surface of the adhesive laminated film. It is also possible to adopt a method in which one is adhered and then the other is attached to the other surface. T <Adhesion of semiconductor mounting substrate-adhesive laminated film-one-time frame * ST | P] It is recommended to use a hot press or a hot roll for these bondings.o The surface to be bonded of the semiconductor mounting board or force frame is pre-assembled as necessary to improve the bonding strength. Treatment, corona discharge treatment, and bramer treatment may be performed. Also, the resin used for the sealing resin of the semiconductor mounting substrate and the resin frame often contains a fox component for the purpose of improving the mold release from the mold during molding. Physical or chemical treatment for removal may be applied.
半導体実装基板に用いる封止樹脂は、 トランス ファ一モール ドで 封止成型した後にキュアを行うが、 封止面と接着を行う場合は、 接 着強度向上のため、 キュア時間を短く して硬化度を下げておく こ と も好ま しい。 例えば、 封止樹脂と接着剤の両方にェポキシ系樹脂を 用いた場合、 封止樹脂の硬化度を下げてお < と、 封止樹脂 (ェポキ シ樹脂) の未反応基が、 接着剤のエポキシ樹脂と反 j¾、して接着強度 がよ り強固なもの となる。  The encapsulation resin used for the semiconductor mounting board is cured after encapsulation molding with a transfer mold, but when bonding to the encapsulation surface, the curing time is shortened and cured to improve the bonding strength. It is also good to reduce the degree. For example, if an epoxy resin is used for both the sealing resin and the adhesive, if the degree of curing of the sealing resin is reduced, the unreacted groups of the sealing resin (epoxy resin) become The adhesive strength is stronger than the resin.
接着時の温.度は、 カー ドフレームの変形.を抑制する観点から、 1一 5 0 °C以下とするこ とが好ましい。 また、 接着層の接着剤に熱硬化 性樹脂を用いた場合には、 硬化処理を行う必要があるが、 この場合 にもカー ドフレームの変形抑制のために、 温度を 1 5 0 °C以下 (好 ましく は 1 3 0 °C以下) とすることが推奨される。  The temperature at the time of bonding is preferably set to 115 ° C. or less from the viewpoint of suppressing deformation of the card frame. When a thermosetting resin is used as the adhesive for the adhesive layer, it is necessary to perform a curing treatment.In this case, however, the temperature is set to 150 ° C. or less to suppress the deformation of the card frame. (Preferably below 130 ° C) is recommended.
本発明の半導体內蔵カー ドは、 応力緩和層の導入によ り、 曲げ応 力を受けても半導体実装基板とカー ドフ レーム と の間での剥離が高 度に抑制される。 かかる応力緩和層は、 極めて薄いものであっても、 十分に上記効果が確保できるため、 半導体内蔵カー ドの小型化 · 薄 型化の要請にも応えるこ とができる。 実施例 In the semiconductor storage card of the present invention, the separation between the semiconductor mounting substrate and the card frame is highly suppressed even under the bending stress by introducing the stress relaxation layer. Even if such a stress relaxation layer is extremely thin, the above-mentioned effect can be sufficiently ensured, so that it is possible to meet the demand for miniaturization and thinning of a semiconductor built-in card. Example
以下、 実施例に基づいて本発明を詳細に述べる。 ただし、 下記実 施例は、 本発明を制限するものではなく 、 前 · 後記の趣旨を逸脱し ない範囲で変更実施をするこ とは、 全て本発明の技術的範囲に包含 され 。  Hereinafter, the present invention will be described in detail based on examples. However, the following embodiments do not limit the present invention, and all modifications and alterations that do not depart from the gist of the above and below are included in the technical scope of the present invention.
なお下記実施例 · 比較例 · 参考例で使用する延伸多孔質 P T F E フ イ ノレム (ジヤ ノ ン ゴァテ ッ ク ス社製 「 ゴァテ ッ ク ス (登録商 標 ) 」 ) は、 いずれも、 撥水性低下処理が施されていない。  Note that the expanded porous PTFE finolem (“Goatex (registered trademark)” manufactured by Jiannon Gotex), which is used in the following Examples, Comparative Examples, and Reference Examples, has a reduced water repellency. No processing has been performed.
また下記実施例 · 比較例 · 参考例で行った評価の方法は、 以下の 通り である。  The evaluation methods used in the following Examples, Comparative Examples, and Reference Examples are as follows.
<応力緩和層を構成する樹脂フ ィルムの引張弾性率および引張破 壌伸び >  <Tensile modulus and tensile elongation of the resin film constituting the stress relaxation layer>
接着剤フ ィルム と積層する 刖の応力緩和層の引張弾性率および引 張破壌伸びを測定する。 測定は 、 引張試験機に東洋精機社製 「 S T Measure the tensile modulus and tensile rupture elongation of the stress-relaxed layer 刖 laminated with the adhesive film. The measurement was performed using a tensile tester manufactured by Toyo Seiki Co., Ltd.
R ◦ G R A P H— R 3」 を用レ、 J I S K 7 1 1 3の規定に準 拠して、 サンプル形状 : 短冊状 ( 1 O mm X l 2 O mm) 、 チヤッ ク間距離 : -70 - m m、 測定温度 温、 引張速度.. 2 m m m 1 n 引張弾性率算出ひずみ量 : 0 - 1 m m〜 1 m m、 の条件で行 5 R ◦ GRAPH—R3 ”, according to the provisions of JISK7113, sample shape: strip shape (1 O mm X l 2 O mm), distance between chucks: -70-mm, Measurement temperature Temperature, tensile speed .. 2 mmm 1 n Calculated tensile elasticity Strain: 0-1 mm to 1 mm, row 5
ぐ接着層を構成する接着剤フィルムの引張弾性率 >  Tensile modulus of the adhesive film that forms the adhesive layer>
応力緩和層と積層する前の接着剤フィルムの引張弾性率を 、 _b π己 応力緩和層の場合と同様にして測定した。 ただし、 接着層がェポキ シ樹脂を含む場合は、 1 2 0 °cヽ 9 0分のキュアを行ってから測定 し 7 o  The tensile modulus of the adhesive film before lamination with the stress relaxation layer was measured in the same manner as in the case of the _bπ self-stress relaxation layer. However, if the adhesive layer contains epoxy resin, cure at 120 ° C for 90 minutes before measuring.
<曲げ剥離強度 >  <Bending peel strength>
圧縮試験機 (東洋精機社製 Γ S T R O G R A P H— R 3」 ) を用 い 、 半導体内蔵カー ドの半導体笋装基板側を下にしてカー ドフ レー ムに見たてたポリ カーボネー ト板 (後述する) に圧子が接触するよ うに 3点曲げ荷重を掛ける。 このとき半導体基板が支持台の支点間 の中心に来るよ う に試料をセッ トする。 基板が剥がれたときの最大 荷重を曲げ剥離強度と して読み取る。 また、 破断時のス ト ローク (圧子が試料に接触して荷重をかけてから破断するまでの圧子が動 いた距離) を測定する。 測定は、 J I S K 6 8 5 6 の規定に準 拠し、 圧子先端 : R 1 m m、 支持台支点間距離 : 2 0 m m、 測定温 度 : 常温、 圧縮速度 : 1 m m / m i n、 の条件で行う。 また、 剥離 した後の剥離面が、 半導体内蔵カー ドのどの部分であるかも確認す る。 Using a compression tester (“STROGRAPH—R3” manufactured by Toyo Seiki Co., Ltd.), place the card with the built-in semiconductor card on the semiconductor mounting board side down. A three-point bending load is applied so that the indenter contacts a polycarbonate plate (described later) viewed from the bottom. At this time, the sample is set so that the semiconductor substrate is at the center between the fulcrums of the support. Read the maximum load when the substrate comes off as the bending peel strength. Also, measure the stroke at break (the distance the indenter has moved from the time the indenter came into contact with the sample and applied a load to the time it broke). The measurement is performed in accordance with JIS K 6856, under the conditions of indenter tip: R 1 mm, distance between support points: 20 mm, measurement temperature: normal temperature, compression speed: 1 mm / min. . Also check which part of the built-in semiconductor card is the peeled surface after peeling.
ぐ接着剤樹脂フ口一〉  Glue resin
寸法測定機能のついた金属顕微鏡 (ォリ ンノヽ。ス社製 「 S T M— U Metallic microscope with dimensions measurement function (Olinno. STM-U
M J ) を用いて、 半導体実装基板からはみ出した接着剤樹脂のフロ 一寸法を測定する (顕微鏡倍率 : 1 0 0倍 ) 。 4辺方向の最大値を 夫々計測し、 これらの平均値を樹脂フ Π— ( β m ) とする o Using M J), measure the flow dimension of the adhesive resin protruding from the semiconductor mounting board (microscope magnification: 100 ×). Measure the maximum value in each of the four sides, and take the average value as resin resin (β m) o
<引き剥がし強度 >  <Peel strength>
( 1 ) 半導体実装基板 (封止面) と接着剤フィルムの引さ剥がし 強度  (1) Peeling strength between semiconductor mounting board (sealing surface) and adhesive film
半導体実装基板と しては 、 そのモデルと して、 厚さ 0 . 2 m mの As a semiconductor mounting board, its model is 0.2 mm thick.
F R 4ガラスェポキシ基板 (三菱ガス化学社製 「 E L — 1 7 0」 ) 上にヽ 各実験例 · 比較例 • または参考例で使用された封止樹脂と同 一の樹脂を圧縮成型した 厚さ 1 . 0 m mの板 (モデル板) を使用 する o 一方、 接着剤フィルムと しては、 各実験例 · 比較例 · または FR4 glass epoxy substrate ("EL-170" manufactured by Mitsubishi Gas Chemical Company) on each test example · Comparative example • Compression molding of the same resin as the sealing resin used in the reference example Thickness 1 Use a 0 mm plate (model plate) o On the other hand, as the adhesive film, use each experimental example, comparative example, or
 ,
参考例で応力緩和層と積層する刖の接着剤フィルムを使用する。 こ の接着剤フイ ノレムの片面に離型ポリ エステルフィルムを配置し (た だし 、 接着剤フィノレムがキャス 卜法によって作製されている場合は、 キャス 卜法で用いた離型ポリ ェステルフィルムをそのまま用い) 、 他方の面には、 厚さ 3 5 μ πιの銅箔を配置し、 これらを、 ロールラ ミネーターを用いて、 温度 : 1 0 0 °C、 圧力 : 1 M P a の条件で圧 着する。 この圧着体を 1 0 m m幅にカッ トし、 離型フ ィルムを剥が した後、 前記モデル板の封止面側にプレス機を用いて、 温度 : 1 2 0 °C、 圧力 : 0 • 5 M P a、 時間 1 0秒の条件で接着し測定試料 を作製する。 この際 、 接着剤フィルムとモデル板との間に、 厚さ 2In the reference example, the adhesive film (1) laminated with the stress relaxation layer is used. A release polyester film was placed on one side of this adhesive finolem (however, if the adhesive finolem was produced by the cast method, the release polyester film used in the cast method was used as it was. Use), A copper foil with a thickness of 35 μπι is placed on the other surface, and these are pressed using a roll laminator at a temperature of 100 ° C and a pressure of 1 MPa. This crimped body was cut to a width of 10 mm, and the release film was peeled off. The sealing surface side of the model plate was pressed using a press at a temperature of 120 ° C and a pressure of 0 • 5 Bond under the conditions of MPa and time of 10 seconds to prepare a measurement sample. At this time, a thickness of 2 between the adhesive film and the model plate
5 μ mの F E P フィルム (離型フィルム) を端面から 5 0 m mの位 置まで挟み込む 離型フィルムを挟み込んだ部分は接着されないた め、 引き剥がし強度測定時のチヤッキング部となる。 上記銅箔は、 引き剥がし強度測定時の接着剤フィルムの伸びを防止するための補 強材と して用いる。 Insert a 5 μm FEP film (release film) to a position 50 mm from the end face. The part where the release film is inserted is not bonded, so it will be a chucking part when measuring peel strength. The copper foil is used as a reinforcing material for preventing the adhesive film from elongating when measuring the peel strength.
J I S C 6 4 8 1 に準拠し、 モデル板から接着剤フイノレムを 銅箔ごと 9 0度方向引き剥がすこ とによって、 引き剥がし強度を測 £す。。  Measure the peel strength by peeling the adhesive finolem together with the copper foil in the direction of 90 degrees from the model board in accordance with JIS C 6481. .
( 2 ) カー ドフレームと接着剤フ ルムの引き剥がし強度 モデル板に代えて、 カー ドフ レームに見立てた厚さ 1 • 0 m mの ポリカーボネー ト板 (住友ダウ社製 Γガリパー 3 0 1 - 1 0」 ) を 用-いる—以—外..は.、—..—上記 に( 1 ) 半導体実装-基板. (封止面)' と接着剤フ イルムの引き剥がし強度」 と同様にす  (2) Peeling strength of card frame and adhesive film Instead of a model plate, a polycarbonate plate with a thickness of 1 • 0 mm (similar to Sumitomo Dow's ΓGaliper 310-1) 0 ”) is used. Others are the same as above (1) Semiconductor mounting board (sealing surface) 'and peeling strength of adhesive film.
実施例 1  Example 1
エポキシ樹脂 (大日本インキ化学ェ業社製 「 E P I C L O N 2 0 Epoxy resin (“EPICLON” manufactured by Dainippon Ink and Chemicals, Inc.
5 5 」 : ビスフエノール Α型) に、 フエノー/レノポラック樹脂 (硬 化剤、 大日本イ ンキ化学工業社製 「 T D— 2 1 9 3」 ) を 、 ェポキ シ基に対する反応性官能基の当量比で 1 . 0 となるよ うに配合し、 さ らにこの配合物 1 0 0質量部に対して 0 . 1 2質量部の硬化促進 剤 ( 2—ェチルー 4ーメチルイ ミダゾール) を配合した 次に、 こ こで得られた配合物に M E Kを加えて 、 該 M E K以外の成分の濃度 が 3 8質量0 /0の溶液 (ワニス) を作製した。 5 5 ": Bisphenol II type) and phenol / lenopollac resin (hardening agent," TD-21993 "manufactured by Dainippon Ink & Chemicals, Inc.) and the equivalent ratio of reactive functional groups to epoxy groups Then, 0.12 parts by mass of a curing accelerator (2-ethyl-4-methylimidazole) was added to 100 parts by mass of the mixture. MEK is added to the obtained composition, and the concentration of components other than MEK is added. There were prepared 3 8 mass 0/0 solution (varnish).
上記ワ ニ ス について、 粘度計 (東機産業社製 「 R E 1 0 0 L」 ) を用いて、 サンプル量 : 1 m L、 温度 : 2 3 °Cの条件で測定 した粘度は 1 5 センチボイズであり、 ゲル化試験機 (日新科学社製 「 0丁一 0 — 3 ?」 ) を用ぃ、 ]" 1 3 C 6 4 8 7 の規定に準じ て、 熱板温度 : 1 7 0 °Cの条件で測定したゲルタイムは、 2 4 0秒 であった。  The viscosity of the above varnish was measured using a viscometer (“RE100L” manufactured by Toki Sangyo Co., Ltd.) at a sample volume of 1 mL and a temperature of 23 ° C. Yes, use a gelling tester (“Nichishin Kagaku Co., Ltd.“ 0-Choice 0-3 ”).]” Temperature of hot plate: 170 ° C according to the provisions of 13C6487 The gel time measured under the following conditions was 240 seconds.
延伸多孔質 p T F E フィ ルム (ジャパンゴァテ ッ ク ス社製 「ゴァ テ ッ ク ス (登録商標) 」 、 厚さ : 2 0 μ ηι、 空孔率 : 7 0 %、 最大 細孔径 : 0 . 2 z m) に、 キス ロールコーターを用いて上記ワニス を含浸させ、 1 5 0 °Cで 5分乾燥させて、 空孔の体積充填率が 1 0 0体積0/。 ( 6 4質量%) の接着剤フ ィルム (接着層) を得た。 Stretched porous p TFE film (“Gotex (registered trademark)” manufactured by Japan Goatex, thickness: 20 μηι, porosity: 70%, maximum pore size: 0.2 the zm), impregnated with the varnish using a kiss roll coater, 1 5 0 ° to 5 minutes and dried in C, and the volume filling ratio of the pores is 1 0 0 vol 0 /. (64% by mass) of an adhesive film (adhesive layer) was obtained.
応力緩和層と して延伸多孔質 P T F E フ ィルム (ジャパンゴァテ ッ クス社製 「ゴァテ ッ クス (登録商標) 」 、 厚さ : 8 0 111、 空孔 率 : 3 5 °/。、 最大細孔径 : 0 . 1 μ m) の両面に上記の接着剤フィ ルムを配し、 ロールラ ミネーターを用いて、 温度 : 1 0 0 °C、 圧 力 : 1 M P aの条件で圧着して 3層構造の接着性積層フ ィルムを得 た。  Stretched porous PTFE film ("Gotex (registered trademark)", manufactured by Japan Gortex Co., Ltd.), thickness: 80111, porosity: 35 ° /., Maximum pore diameter: 0 as a stress relaxation layer 1 μm) with the above adhesive film on both sides, using a roll laminator, pressure bonding at a temperature of 100 ° C and a pressure of 1 MPa to form a 3-layer adhesive. A laminated film was obtained.
裏面に端子回路のついた F R 4ガラスエポキシ回路基板 (三菱ガ ス化学社製 「E L — 1 7 0 」 ) の表面にフラ ッシュメ モ リーに見た てたシ リ コ ンチップ (厚さ : 0 . 4 m m、 幅 : 7 m m、 長さ : 1 0 ) を実装し、 エポキシ樹脂コ ンパウン ドで封止した基板 (外形サ ィズが、 厚さ : 1 . 5 m m、 幅 : 1 0 m m、 長さ : 1 5 m m) の封 止面 (端子面とは反対の面) に、 該基板と同サイズに裁断した上記 の接着性積層フ ィルムを、 プレス機を用いて、 温度 : 1 1 0 °C、 圧 力 : 0 . 5 M P a、 時間 : 5秒の条件で仮接着して接着性積層ブイ ルム付き基板を得た。 次に、 カー ドフレームに見たてたポリ カーボ ネー ト板 (住友ダウ社製 「ガリバー 3 0 1 — 1 0」 ) (厚さ : 1 . O mm、 幅 : 2 0 mm、 長さ : 3 0 mm) の中央に、 該接着性積層 フィルム付き基板を、 その接着剤フ ィルム露出側をポリカーボネー ト板側にして、 プレス機を用いて、 温度 : 1 2 0 °C、 圧力 : 0 . 5 M P a、 時間 : 1 0秒の条件で接着し、 1 2 0 °C、 9 0分の条件で キュアして半導体内蔵カー ドを得た。 上記延伸多孔質 P T F E フィ ルム、 および半導体内蔵カー ドについて、 上述の評価を行った。 結 果を表 1 に示す。 A silicon chip (thickness: 0 mm) viewed from the flash memory on the surface of an FR 4 glass epoxy circuit board ("EL-170" manufactured by Mitsubishi Gas Chemical Company) with a terminal circuit on the back. 4mm, width: 7mm, length: 10) mounted and sealed with epoxy resin compound (outer dimensions: thickness: 1.5mm, width: 10mm, length The above adhesive laminated film cut to the same size as the substrate was placed on a sealing surface (length: 15 mm) (the surface opposite to the terminal surface) using a press machine at a temperature of 110 °. C, pressure: 0.5 MPa, time: 5 seconds, preliminarily bonded to obtain a substrate with an adhesive laminated film. Next, the poly carb seen on the card frame With the adhesive laminated film in the center of a net plate ("Gulliver 301-1-10" manufactured by Sumitomo Dow) (thickness: 1.0 mm, width: 20 mm, length: 30 mm) The substrate is bonded with the adhesive film exposed side to the polycarbonate plate side using a press machine under the following conditions: temperature: 120 ° C, pressure: 0.5 MPa, and time: 10 seconds. Then, the substrate was cured at 120 ° C. for 90 minutes to obtain a semiconductor built-in card. The above-described evaluation was performed on the above-mentioned expanded porous PTFE film and the semiconductor built-in card. Table 1 shows the results.
実施例 2  Example 2
応力緩和層を構成する延伸多孔質 P T F E フイノレムを、 厚さ : 8 The expanded porous PTF Efinolem that constitutes the stress relaxation layer has a thickness of 8
0 μ m、 空孔率 : 6 5 %、 最大細孔径 : 0 • 2 i mのもの (ジヤノ ンゴァテ ッ クス社製 厂ゴァテ ッ ク ス (登録商標) 」 ) に変更した他 は、 実施例 1 と同様にして半導体内蔵力一ド、を得た。 上記延伸多孔 質 P T F E フィルム 、 および半導体内蔵力一ドについて、 上述の評0 μm, porosity: 65%, maximum pore diameter: 0 • 2 im Example 1 was changed to that of Example 1 except that it was changed to that of Jiannon Gotex Co., Ltd. Similarly, a semiconductor built-in power was obtained. The above-mentioned evaluation of the above-mentioned stretched porous PTFE film and semiconductor built-in force
Ρ 4  Ρ 4
価を行った。 結果を表 1 に示す。 The price was done. The results are shown in Table 1.
実施例 3  Example 3
応力緩和層を構成する延伸多孔質 P T F E フ イノレムを、 厚さ : 8 ϋ μ m -、—空孔夸: - 8 5 最大細孔 -径 : 5 • - 0 μ- mのもの (ジャパ ンゴァテ ッ ク ス社製 Γゴァテ ッ ク ス (登録商標) 」 ) に変更した他 は、 実施例 1 と同様にして半導体内蔵力 を得た。 上記延伸多孔 質 P T F Eフィルム および半導体内蔵力一ドについて、 上述の評 価を行った。 結果を表 1 に示す。  The expanded porous PTFE finolem that constitutes the stress relaxation layer has a thickness of 8 μm-and a void of: -85. The largest pore-diameter: 5 •-0 μ-m. Except for changing to “Gotechx (registered trademark)” manufactured by Ksu Co., Ltd.), the built-in semiconductor power was obtained in the same manner as in Example 1. The above-described evaluation was performed on the above-mentioned stretched porous PTFE film and the semiconductor built-in force. The results are shown in Table 1.
実施例 4  Example 4
ウレタン系樹脂 (チッソ社製 「リ ク ソンポン ド U α - 1 1 0 1 Urethane resin (Rixon Pond U α-111
A」 ) 1 0 0質量部とエポキシ樹脂 (ダクケミカル社製 「 D Ε Ν 4A)) 100 parts by mass and epoxy resin (D 「CΝ 4
3 8 — E K 8 5 J J ) 3 2質量部を配合し 、 られた配合物 に M E Kを加え 6 5 量%の溶液 (ヮ -ス ) を作製した。 このヮニ スについて、 実施例 1 と同様にして測定した粘度は 3 3 0センチポ ィズであった。 3 8 — EK 85 JJ) 32 parts by mass were blended, and MEK was added to the resulting mixture to prepare a 65% by weight solution (poured). This peni And the viscosity measured in the same manner as in Example 1 was 330 centipoise.
こ の ワニスを、 P E T フ ィ ルム (離型フ ィ ルム、 厚さ : 5 0 μ m) の表面に、 ダイコーターを用いて 2 0 μ πιの厚さとなるよ うに 塗布し、 1 5 0 °Cで 5分乾燥させて、 接着剤フィルムを得た。  This varnish is applied to the surface of a PET film (release film, thickness: 50 μm) to a thickness of 20 μπι using a die coater, and then applied to a surface of 150 °. After drying at C for 5 minutes, an adhesive film was obtained.
接着性積層フ ィルムが有する接着層 (接着剤フ ィルム) の片方の みを、 上記キャス ト法によ り得られたウレタ ン系樹脂接着剤フ ィル ムに変更し、 さ らに応力緩和層を構成する延伸多孔質 P T F E フィ ルムを、 実施例 2で用いたのと同じものと した他は、 実施例 1 と同 様にして半導体内蔵カー ドを得た。 なお、 ウ レタ ン系接着剤フィル ムからなる接着層は、 カー ドフ レーム側と した。 上記延伸多孔質 P T F E フ ィルム、 および半導体内蔵カー ドについて、 上述の評価を 行った。 結果を表 1 に示す。  Only one of the adhesive layers (adhesive film) of the adhesive laminated film was changed to the urethane resin adhesive film obtained by the above casting method, and the stress was further reduced. A card with a built-in semiconductor was obtained in the same manner as in Example 1 except that the expanded porous PTFE film constituting the layer was the same as that used in Example 2. The adhesive layer made of the urethane adhesive film was on the card frame side. The above-described evaluation was performed on the above-mentioned stretched porous PTFE film and the card with a built-in semiconductor. The results are shown in Table 1.
実施例 5  Example 5
飽和ポリ エステル系樹脂 (日立化成ポリマー社製 「ハイ ボン 7 6 6 3」 ) に トルエンを加え 6 0質量%の溶液 (ワニス) を作製した。 このワニスについて、 実施例 1 と同様にして測定した粘度は、 粘 度 : -3 6-0センチ—ボイズであつた。 - こ のワ ニスを、 P E T フ ィ ルム (離型フ ィ ルム、 厚さ : 5 0 μ m) の表面に、 ダイ コーターを用いて 2 0 /x mの厚さ となるよ う に 塗布し、 1 5 0 °Cで 5分乾燥させて、 接着剤フ ィ ルムを得た。 接着 性積層フィルムが有する接着層の片方のみを、 上記キャス ト法によ り得られたポ リ エステル系接着剤フィルムに変更し、 さ らに応力緩 和層を構成する延伸多孔質 P T F E フ ィルムを、 実施例 2 で用いた のと同じものと した他は、 実施例 1 と同様にして半導体内蔵カー ド を得た。 なお、 ポリエステル系接着剤フィルムからなる接着層は、 カー ドフ レーム側と した。 上記延伸多孔質 P T F E フ ィルム、 およ び半導体内蔵カー ドについて、 上述の評価を行った。 結果を表 1 に 示す。 Toluene was added to a saturated polyester resin (“Hybon 766 3” manufactured by Hitachi Chemical Co., Ltd.) to prepare a 60% by mass solution (varnish). The viscosity of this varnish measured in the same manner as in Example 1 was as follows: Viscosity: -36-0 cm-voise. -Apply this varnish to the surface of a PET film (release film, thickness: 50 μm) using a die coater to a thickness of 20 / xm. It was dried at 150 ° C. for 5 minutes to obtain an adhesive film. Only one of the adhesive layers of the adhesive laminated film is changed to a polyester-based adhesive film obtained by the above-mentioned casting method, and further, an expanded porous PTFE film constituting a stress relaxation layer A card with a built-in semiconductor was obtained in the same manner as in Example 1, except that the same as that used in Example 2 was used. The adhesive layer made of the polyester adhesive film was on the card frame side. The above expanded porous PTFE film, and The above-mentioned evaluation was performed on the semiconductor and the semiconductor built-in card. Table 1 shows the results.
比較例 1  Comparative Example 1
実施例 1 におけるワニスに用いたのと同じ配合物に M E Kを加え て、 該 M E K以外の成分の濃度が 6 5質量%の溶液 (ワニス) を作 製した。 このワニスについて、 実施例 1 と同様にして測定した粘度 およびゲルタイムは、 粘度 : 3 8 0センチボイズ、 ゲルタイム : 2 3 0秒、、 であった。  MEK was added to the same composition as that used for the varnish in Example 1 to prepare a solution (varnish) having a concentration of 65% by mass of components other than the MEK. The viscosity and the gel time of this varnish measured in the same manner as in Example 1 were as follows: viscosity: 380 cmvoise; gel time: 230 seconds.
このワニスを、 キャス ト法によ り P E Tフィルム (離型フィルム、 厚さ : 5 0 μ πι) の表面に、 ダイコーターを用いて 1 2 0 μ πιの厚 さ となるよ う に塗布し、 1 5 0 DCで 1 0分乾燥させて、 接着剤フィ ノレムを得た。 This varnish is applied to the surface of a PET film (release film, thickness: 50 μπι) by a casting method to a thickness of 120 μππι using a die coater. 1 5 0 dried 1 0 minutes D C, to obtain an adhesive Fi Noremu.
離型フィルムから剥離した接着剤フィルムを、 応力緩和層を有す る上記接着性積層フィルムの代わり に用いた他は、 実施例 1 と同様 にして半導体内蔵カー ドを得た。 この半導体内蔵カー ドについて、 上述の評価を行った。 結果を表 1 に示す。  A card with a built-in semiconductor was obtained in the same manner as in Example 1, except that the adhesive film peeled from the release film was used instead of the adhesive laminated film having a stress relaxation layer. The above-described evaluation was performed on the semiconductor built-in card. The results are shown in Table 1.
実施例 6  Example 6
応力-緩和-層-を -構成する延伸多孔質 P T- F Eフイルムを、—一厚ざ-:—— 8一 0 /i m、 空孔率 : 2 0 %、 最大細孔径 : 0 . 0 5 μ πιのもの (ジャ パンゴァテックス社製 「ゴァテックス (登録商標) 」 ) に変更した 他は、 実施例 1 と同様にして半導体内蔵カー ドを得た。 上記延伸多 孔質 P T F Eフィルム、 および半導体内蔵カー ドについて、 上述の 評価を行った。 結果を表 1 に示す。  The stress-relaxation-layer-stretched porous P T-FE film is composed of:-one thickness-:-80 / im, porosity: 20%, maximum pore size: 0.05 A card with a built-in semiconductor was obtained in the same manner as in Example 1 except that it was changed to μπι (“GATEX (registered trademark)” manufactured by Japan Gotex). The above-described evaluation was performed on the above-mentioned stretched porous PTFE film and the semiconductor built-in card. The results are shown in Table 1.
参考例 1  Reference example 1
応力緩和層を構成する延伸多孔質 P T F Eフィルムを、 厚さ : 8 0 μ m、 空孔率 : 9 6 %、 最大細孔径 : 1 0 // mのもの (ジャパン ゴァテックス社製 「ゴァテックス (登録商標) 」 ) に変更して接着  The stretched porous PTFE film that constitutes the stress relaxation layer has a thickness of 80 μm, a porosity of 96%, and a maximum pore diameter of 10 // m (“Gotex (registered trademark)” manufactured by Japan Goretex. Change to ")") and glue
3 性積層フ ィルムを作製しょ う と したが、 接着剤フィルムを応力緩和 層 (延伸多孔質 P T F Eフィルム) に接着する際に、 ロール間で応 力緩和層 (延伸多孔質 P T F E フ ィルム) が潰されてしまい、 厚さ が十分に維持できなかったため、 これを用いた半導体内蔵カー ドの 作製は中止した。 Three Tried to make a flexible laminated film, but when bonding the adhesive film to the stress relaxation layer (stretched porous PTFE film), the stress relaxation layer (stretched porous PTFE film) was crushed between the rolls. As a result, the thickness could not be maintained sufficiently, so fabrication of a semiconductor built-in card using this was discontinued.
実施例 7  Example 7
実施例 2で使用した接着剤フィルムの厚さを 3 0 μ mに変更した 他は、 実施例 2 と同様にして半導体内蔵カー ドを得た。 上記延伸多 孔質 P T F Eフィルム、 および半導体内蔵カー ドについて、 上述の 評価を行った。 結果を表 1 に示す。  A card with a built-in semiconductor was obtained in the same manner as in Example 2, except that the thickness of the adhesive film used in Example 2 was changed to 30 μm. The above-described evaluation was performed on the above-mentioned stretched porous PTFE film and the semiconductor built-in card. The results are shown in Table 1.
実施例 8  Example 8
接着性積層フ ィ ルムの有する接着層の片方のみをポ リ エステル 系接着剤フ ィ ルム (実施例 5 と同様のも の。 ただし厚さは 5 0 ^ m ) に変更し、 さ らに応力緩和層を構成する延伸多孔質 P T F Eフ イルムを、 実施例 2で用いたのと同じものと した他は、 実施例 1 と 同様にして半導体内蔵カー ドを得た。 なお、 ポ リ エステル系接着剤 フィルムからなる接着層は、 カー ドフ レーム側と した。 上記延伸多 孔質 P F E-フ ルム、 および半導体内蔵力一ドにつレ .て、…上述の - 評価を行った。 結果を表 1 に示す。  Only one of the adhesive layers of the adhesive laminate film was changed to a polyester-based adhesive film (same as in Example 5, except that the thickness was 50 ^ m), and the stress was further increased. A card with a built-in semiconductor was obtained in the same manner as in Example 1, except that the expanded porous PTFE film constituting the relaxation layer was the same as that used in Example 2. The adhesive layer made of the polyester-based adhesive film was on the card frame side. With respect to the stretched porous PFE-film and the semiconductor built-in force, the above-mentioned evaluation was performed. The results are shown in Table 1.
比較例 2  Comparative Example 2
厚さを 1 2 0 μ πιと した以外は実施例 5 と同様にポリエステル系 接着剤フィルムを作製した。 離型フィルムから剥離した上記ポリェ ステル系接着剤フ ィルムを、 応力緩和層を有する上記接着性積層フ イルムの代わり に用いた他は、 実施例 1 と同様にして半導体内蔵力 ー ドを得た。 この半導体内蔵カー ドについて、 上述の評価を行った。 結果を表 1 に示す。 IN3 A polyester adhesive film was produced in the same manner as in Example 5, except that the thickness was set to 120 μπι. A semiconductor built-in force was obtained in the same manner as in Example 1 except that the above-mentioned polyester-based adhesive film peeled from the release film was used in place of the above-mentioned adhesive laminated film having a stress relaxation layer. . The above-described evaluation was performed on the semiconductor built-in card. Table 1 shows the results. IN3
O en
Figure imgf000035_0001
O en
Figure imgf000035_0001
剥離面の ()内は接着界面で剥離し fe塌合の剥離面の種類を示す。 The number in parentheses on the peeled surface indicates the type of peeled surface in the case of fe-bonding.
表 1 の剥離面の欄は、 曲げ剥離強度を測定した後の半導体内蔵力 一ドにおいて、 どの部分で剥離が生じているかを示して り 、 「接 着性積層フィルム」 は、 応力緩和層の材料破壌を、 「接着界面」 は、 接着層 (接着剤フ ィルム) と半導体実装基板あるレ、は力一ド、フ レ一 ムとの界面を意味している。 The column of peeling surface in Table 1 shows where the peeling occurred in the semiconductor built-in force after measuring the bending peeling strength. The term “adhesive interface” means the interface between the adhesive layer (adhesive film) and the semiconductor mounting substrate, and the interface between the force and the frame.
表 1から分かるよ う に、 半導体実装基板一力一ドフレ一ム間に応 力緩和層が介在している半導体内蔵カー ド (実施例 1〜 8 ) では、 応力緩和層を有しない半導体内蔵カー ド (比較例 1 、 2 ) に比べて、 曲げ剥離強度が大き く 、 半導体実装基板一力一ドフ レ一ム間の剥離 抑制効果が発揮されていることが確認できる。 また 、 接着剤樹脂フ ローも小さく なつている。 特に引張弾性率および引張破壌伸びの両 者が好適な値である延伸多孔質 P T F E フ ィルムの応力緩和層を有 し、 引張弾性率と厚さの積の値が好適である接着層を力一 Kフ レ一 ム側に形成した実施例 1〜 5および 8の半導体内蔵力一ド、では、 曲 げ剥離強度が非常に良好であり、 上記剥離抑制効果が顕 でめ 。 産業上の利用可能性  As can be seen from Table 1, the built-in semiconductor card in which the stress relaxation layer is interposed between the semiconductor mounting board and the frame (Examples 1 to 8) has no stress relaxation layer. As compared with the semiconductor wafers (Comparative Examples 1 and 2), the flexural peel strength is higher, and it can be confirmed that the effect of suppressing the peeling between the semiconductor mounting board and the frame is exhibited. Also, the adhesive resin flow has become smaller. In particular, an adhesive layer having a stress relaxation layer of an expanded porous PTFE film having both favorable values of tensile elastic modulus and elongation at break, and a product of tensile elastic modulus and thickness being suitable is used. In the semiconductor built-in force of Examples 1 to 5 and 8 formed on the 1K frame side, the bending peel strength was very good, and the above peeling suppressing effect was remarkable. Industrial applicability
本発明の半導体内蔵カー ドは、 メ モ リ ーカー ドゃ I C力一ドなど と して、 従来公知の用途に用いることができる。  The semiconductor built-in card of the present invention can be used for a conventionally known application as a memory card or an IC card.

Claims

1 . 半導体を実装した基板と力― ドフ レームを椿成要素に含む 半導体内蔵カー ドであって、 1. Substrate with semiconductor mounted on it
上記基板と上記カー ドフレームの間に、 応力緩和層が介在してい る のであるこ とを特徴とする半導体内蔵カー ド o  A semiconductor built-in card characterized in that a stress relaxation layer is interposed between the substrate and the card frame.
2 . 上記応力緩和層請は、 樹脂フイ ノレム力、ら構成されてなるもの である請求項 1 に記載の半導体内蔵力一ド。  2. The semiconductor built-in force according to claim 1, wherein the stress relaxation layer comprises a resin finolem force.
3 . 上記応力緩和層を構成すのる樹脂フィルムは 引張弾性率が 3. The tensile elastic modulus of the resin film that constitutes the stress relaxation layer is
1 〜 1 3 0 0 M P a であり、 且つ引張破壌伸びが 5 %以上である請 求項 1 に記載の半導体内蔵カー ド、。 3. The card with a built-in semiconductor according to claim 1, wherein the card has a value of 1 to 130 MPa and a tensile elongation at break of 5% or more.
 Enclosure
4 . 上記応力緩和層は、 多孔質構造を有する のである請求項 4. The stress relaxation layer has a porous structure.
1 に記載の半導体内蔵カー ド。 2. The card with a built-in semiconductor according to 1.
5 . 上記応力緩和層を構成する樹脂フィルムは 、 厚さが 0 . 0 5. The resin film constituting the stress relaxation layer has a thickness of 0.0.
0 5 〜0 . 5 m mである請求項 2に記載の半導体内蔵力一ド。 3. The built-in semiconductor power source according to claim 2, wherein the force is from 0.5 to 0.5 mm.
6 . 上記応力緩和層は、 延伸多孔質ポリテ トラフノレォロェチレ ンフイ ノレムよ りなるものである i 求項 1 に記載の半導体内蔵カー ド 6. The card with a built-in semiconductor according to claim 1, wherein the stress relaxation layer is made of expanded porous polytetrafluoroethylene.
7 . 一上記延伸多孔-質ポリテ トラフ-ノレ才口-.ェチレンフ―ィ—ノレムは、 空孔率が 3 0 ~ 9 5 %である請求項 6に記載の半導体内蔵カー ド。 7. The card with a built-in semiconductor according to claim 6, wherein the porosity of the stretched porous-porous polytetrafluoroethylene-ethylene-nolem is 30 to 95%.
8 . 上記応力緩和層と上記基板と の間に接着層 Aが介揷され、 かつ上記応力緩和層と上記カー ドフ レーム と の間に 接着層 Bが介 揷されており、 これら接着層 A •ioよぴ Bによって 、 上記応力緩和層 が上記基板おょぴ上記カー ドフ レーム と固着されている請求項 1 に 記載の半導体内蔵カー ド。  8. An adhesive layer A is interposed between the stress relieving layer and the substrate, and an adhesive layer B is interposed between the stress relieving layer and the card frame. The card with a built-in semiconductor according to claim 1, wherein the stress relaxation layer is fixed to the substrate and the card frame by io.
9 . 上記基板と上記接着層 Aとの界面の引き剥がし強度、 およ ぴ上記カー ドフ レーム と上記接着層 B との界面の引き剥がし強度力 いずれも 0 . N Z m m以上である請求項 8に記載の半導体内蔵力 一ド。 9. The peel strength at the interface between the substrate and the adhesive layer A and the peel strength at the interface between the card frame and the adhesive layer B are each at least 0.0 NZ mm. Built-in semiconductor power described One do.
1 0. 上記接着層 Aと接着層 Bが、 互いに異なる接着剤によつ て構成されている請求項 8に記載の半導体内蔵カー ド。  10. The card with a built-in semiconductor according to claim 8, wherein the adhesive layer A and the adhesive layer B are made of mutually different adhesives.
1 1 . 上記接着層 Aを構成する接着剤が、 熱硬化性樹脂である 請求項 8 に記載の半導体内蔵カー ド。  11. The card with a built-in semiconductor according to claim 8, wherein the adhesive constituting the adhesive layer A is a thermosetting resin.
1 2. 上記熱硬化性接着剤がエポキシ系樹脂である請求項 1 1 に記載の半導体内蔵カー ド。  12. The card with a built-in semiconductor according to claim 11, wherein the thermosetting adhesive is an epoxy resin.
1 3. 上記接着層 Bを構成する接着剤が、 熱可塑性樹脂である 請求項 8に記載の半導体内蔵カー ド。  1 3. The card with a built-in semiconductor according to claim 8, wherein the adhesive constituting the adhesive layer B is a thermoplastic resin.
1 4. 上記熱可塑性樹脂がポリエステル系樹脂である請求項 1 3に記載の半導体内蔵カー ド。  14. The card with a built-in semiconductor according to claim 13, wherein the thermoplastic resin is a polyester resin.
1 5. 上記接着層 Bの引張弾性率と厚さの積が、 5 0 M P a * mm以下である請求項 8 に記載の半導体内蔵カー ド。  1 5. The card with a built-in semiconductor according to claim 8, wherein the product of the tensile modulus and the thickness of the adhesive layer B is 50 MPa * mm or less.
1 6. 上記接着層 Aおよび接着層 Bは、 延伸多孔質ポリテ トラ フルォロエチレンフ ィルムの空孔に接着剤が充填されてなるもので ある請求項 8に記載の半導体内蔵カー ド。  1 9. The card with a built-in semiconductor according to claim 8, wherein the adhesive layer A and the adhesive layer B are formed by filling the pores of an expanded porous polytetrafluoroethylene film with an adhesive.
PCT/JP2004/015185 2003-10-07 2004-10-07 Card incorporating semiconductor WO2005036453A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-348536 2003-10-07
JP2003348536 2003-10-07

Publications (1)

Publication Number Publication Date
WO2005036453A1 true WO2005036453A1 (en) 2005-04-21

Family

ID=34430967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015185 WO2005036453A1 (en) 2003-10-07 2004-10-07 Card incorporating semiconductor

Country Status (1)

Country Link
WO (1) WO2005036453A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145197A (en) * 1987-06-11 1989-06-07 Dainippon Printing Co Ltd Ic card and manufacture thereof
JPH0516585A (en) * 1991-07-10 1993-01-26 Toppan Printing Co Ltd Ic card, module for ic card and manufacture of ic card
JPH0516584A (en) * 1991-07-10 1993-01-26 Toppan Printing Co Ltd Ic card, module for ic card and manufacture of ic card
JPH08267973A (en) * 1995-03-30 1996-10-15 Toppan Printing Co Ltd Ic card
JPH0995075A (en) * 1995-09-30 1997-04-08 Hitachi Maxell Ltd Ic card
JP2000251048A (en) * 1999-03-03 2000-09-14 Oji Paper Co Ltd Ic card
JP2002175510A (en) * 2000-12-05 2002-06-21 Konica Corp Personal identification card, image recording body, and method for manufacturing image recording body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145197A (en) * 1987-06-11 1989-06-07 Dainippon Printing Co Ltd Ic card and manufacture thereof
JPH0516585A (en) * 1991-07-10 1993-01-26 Toppan Printing Co Ltd Ic card, module for ic card and manufacture of ic card
JPH0516584A (en) * 1991-07-10 1993-01-26 Toppan Printing Co Ltd Ic card, module for ic card and manufacture of ic card
JPH08267973A (en) * 1995-03-30 1996-10-15 Toppan Printing Co Ltd Ic card
JPH0995075A (en) * 1995-09-30 1997-04-08 Hitachi Maxell Ltd Ic card
JP2000251048A (en) * 1999-03-03 2000-09-14 Oji Paper Co Ltd Ic card
JP2002175510A (en) * 2000-12-05 2002-06-21 Konica Corp Personal identification card, image recording body, and method for manufacturing image recording body

Similar Documents

Publication Publication Date Title
JP5605259B2 (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
JP2005154727A (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film, and prepreg
WO2000078887A1 (en) Adhesive, adhesive member, circuit substrate for semiconductor mounting having adhesive member, and semiconductor device containing the same
JP3617417B2 (en) Adhesive, adhesive member, wiring board for semiconductor mounting provided with adhesive member, and semiconductor device using the same
KR100845092B1 (en) Adhesive composition for a semiconductor packing, adhesive film, dicing die bonding film and semiconductor device using the same
JPH09298369A (en) Multilayer wiring board and its manufacture
JP2002265888A (en) Adhesive film and its use and method for producing semiconductor device
EP3726570A1 (en) Manufacturing method of mounting structure, and sheet used therein
EP1383844A1 (en) A thermosetting adhesive film, and an adhesive structure based on the use thereof
JP2008095014A (en) Thermosetting resin composition for qfn(quad flat non-lead) and adhesive sheet
TW200942109A (en) Procedure for adhesion of flexible printed circuit board with polymer materials for partial or entire hardening
JP4265397B2 (en) Semiconductor device and manufacturing method of semiconductor device
JPH09302313A (en) Metallic foil with adhesive, bonding sheet and multilayered wiring board
JP3539242B2 (en) Adhesive member, wiring board for mounting semiconductor provided with adhesive member, and semiconductor device using the same
JP2001279197A (en) Adhesive film, wiring substrate for mounting semiconductor and semiconductor device provided with adhesive film and method for fabricating them
EP3706164A1 (en) Method for producing package structure and sheet used in same
JP2001302998A (en) Adhesive film and its application
JP2003073641A (en) Flame-retardant adhesive film, wiring board for mounting semiconductor, semiconductor and method for manufacturing the semiconductor device
WO2005036453A1 (en) Card incorporating semiconductor
JP4699620B2 (en) Photosensitive adhesive film, use thereof and method for manufacturing semiconductor device
JP2000106372A (en) Both-sided adhesive film, organic board for mounting semiconductor and semiconductor device
JP4556472B2 (en) Adhesive, adhesive member, wiring board for semiconductor mounting provided with adhesive member, and semiconductor device using the same
JP2005135399A (en) Card with built-in semiconductor
JP4064228B2 (en) Wafer bonding sheet, wafer laminate, and semiconductor device
KR102265494B1 (en) Process for producing printed wiring board

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase