JP4556472B2 - Adhesive, adhesive member, wiring board for semiconductor mounting provided with adhesive member, and semiconductor device using the same - Google Patents

Adhesive, adhesive member, wiring board for semiconductor mounting provided with adhesive member, and semiconductor device using the same Download PDF

Info

Publication number
JP4556472B2
JP4556472B2 JP2004105514A JP2004105514A JP4556472B2 JP 4556472 B2 JP4556472 B2 JP 4556472B2 JP 2004105514 A JP2004105514 A JP 2004105514A JP 2004105514 A JP2004105514 A JP 2004105514A JP 4556472 B2 JP4556472 B2 JP 4556472B2
Authority
JP
Japan
Prior art keywords
adhesive
film
adhesive member
weight
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004105514A
Other languages
Japanese (ja)
Other versions
JP2004238634A (en
Inventor
裕子 田中
禎一 稲田
靖 島田
弘之 栗谷
恭 神代
和徳 山本
圭二 住谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004105514A priority Critical patent/JP4556472B2/en
Publication of JP2004238634A publication Critical patent/JP2004238634A/en
Application granted granted Critical
Publication of JP4556472B2 publication Critical patent/JP4556472B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83856Pre-cured adhesive, i.e. B-stage adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an adhesive which is usable for at least three months at 25&deg;C without deteriorating low elasticity, heat resistance and moisture resistance which are required in packaging a semiconductor chip onto a wiring board, called an interposer, such as a glass-epoxy board, a flexible board, having a thermal expansion coefficient largely differ from that of the chip. <P>SOLUTION: The adhesive contains (1) 100 pts.wt. epoxy resin and its curing agent, (2) 75-300 pts.wt. epoxy group-containing acrylic copolymer containing 0.5-6 wt.% glycidyl (meth)acrylate and having a Tg (glass transition temperature) of -10&deg;C or higher and a weight average molecular weight of at least 800,000, and (3) 0.1-20 pts.wt. latent curing accelerator. <P>COPYRIGHT: (C)2004,JPO&amp;NCIPI

Description

本発明は、接着剤、接着部材、接着部材を備えた半導体搭載用配線基板及びこの接着部材を用いて半導体チップと配線基板とを接着させた半導体装置に関する。   The present invention relates to an adhesive, an adhesive member, a semiconductor mounting wiring board provided with an adhesive member, and a semiconductor device in which a semiconductor chip and a wiring board are bonded using the adhesive member.

近年、電子機器の発達に伴い電子部品の搭載密度が高くなり、チップスケールパッケージやチップサイズパッケージ(以下CSPと呼ぶ)と呼ばれるような半導体チップサイズとほぼ同等なサイズを有する半導体パッケージや半導体のベアチップ実装など新しい形式の実装方法が採用され始めている。   In recent years, with the development of electronic equipment, the mounting density of electronic components has increased, and a semiconductor package or semiconductor bare chip having a size substantially equivalent to a semiconductor chip size called a chip scale package or a chip size package (hereinafter referred to as CSP). New forms of implementation, such as implementation, are beginning to be adopted.

半導体素子をはじめとする各種電子部品を搭載した実装基板として最も重要な特性の一つとして信頼性がある。その中でも、熱疲労に対する接続信頼性は実装基板を用いた機器の信頼性に直接関係するため非常に重要な項目である。この接続信頼性を低下させる原因として、熱膨張係数の異なる各種材料を用いていることから生じる熱応力が挙げられる。これは、半導体チップの熱膨張係数が約4ppm/℃と小さいのに対し、電子部品を実装する配線板の熱膨張係数が15ppm/℃以上と大きいことから熱衝撃に対して熱ひずみが発生し、その熱ひずみによって熱応力が発生するものである。従来のQFPやSOP等のリードフレームを有する半導体パッケージを実装した基板では、リードフレームの変形により熱応力を吸収し信頼性を保っていた。しかし、ベアチップ実装では、はんだボールを用いて半導体チップの電極と配線板の配線パッドを接続する方式やバンプと称する小突起を作製して導電ペーストで接続する方式をとっており、熱応力がこの接続部に集中して接続信頼性を低下させていた。この熱応力を分散させるためにアンダーフィルと呼ばれる樹脂をチップと配線板の間に注入させることが有効であることがわかっているが、実装工程を増やし、コストアップを招いていた。また、従来のワイヤボンディングを用いて半導体チップの電極と配線板の配線パッドを接続する方式もあるが、ワイヤを保護するために封止材樹脂を被覆せねばならずやはり実装工程を増やしていた。   Reliability is one of the most important characteristics as a mounting board on which various electronic components such as semiconductor elements are mounted. Among them, the connection reliability against thermal fatigue is a very important item because it is directly related to the reliability of the equipment using the mounting substrate. As a cause of lowering the connection reliability, there is a thermal stress generated by using various materials having different thermal expansion coefficients. This is because the thermal expansion coefficient of the semiconductor chip is as small as about 4 ppm / ° C., whereas the thermal expansion coefficient of the wiring board on which the electronic component is mounted is as large as 15 ppm / ° C. or more. The thermal strain is generated by the thermal strain. In a substrate on which a conventional semiconductor package having a lead frame such as QFP or SOP is mounted, the thermal stress is absorbed by the deformation of the lead frame and the reliability is maintained. However, in bare chip mounting, solder balls are used to connect the semiconductor chip electrodes to the wiring pads of the wiring board, or small bumps called bumps are formed and connected using a conductive paste. The connection reliability was reduced by concentrating on the connection part. In order to disperse the thermal stress, it has been found that it is effective to inject a resin called underfill between the chip and the wiring board. However, this has increased the number of mounting steps and increased the cost. In addition, there is a method of connecting the electrode of the semiconductor chip and the wiring pad of the wiring board using conventional wire bonding, but the mounting process has been increased because the sealing material resin must be coated to protect the wire. .

CSPは他の電子部品と一括して実装できるために、各種構造が提案されている(例えば、非特許文献1参照。)。その中でも、インターポーザと呼ばれる配線基板にテープやキャリア基板を用いた方式の実用化が進んでいる。これは、前述表の中で、テセラ社やTI社などが開発している方式を含むものである。これらはインターポーザと呼ばれる配線基板を介するために、優れた接続信頼性を示している(例えば、非特許文献2、非特許文献3参照。)。これらのCSPの半導体チップとインターポーザと呼ばれる配線基板との間には、それぞれの熱膨張率差から生じる熱応力を低減するような接着部材が使われる。このような接着部材には耐湿性や高温耐久性が要求され、さらに、製造工程管理のしやすさから、フィルムタイプの接着部材が求められている。   Since CSP can be mounted together with other electronic components, various structures have been proposed (for example, see Non-Patent Document 1). Among them, a system using a tape or a carrier substrate for a wiring substrate called an interposer has been put into practical use. This includes the methods developed by Tessera and TI in the above table. Since these are connected via a wiring board called an interposer, they exhibit excellent connection reliability (see, for example, Non-Patent Document 2 and Non-Patent Document 3). An adhesive member is used between these CSP semiconductor chips and a wiring board called an interposer to reduce the thermal stress caused by the difference in thermal expansion coefficient between them. Such an adhesive member is required to have moisture resistance and high-temperature durability, and further, a film-type adhesive member is required for ease of manufacturing process management.

フィルムタイプの接着剤は、フレキシブルプリント配線板等で用いられており、アクリロニトリルブタジエンゴムを主成分とする系が多く用いられている。プリント配線板関連材料として耐湿性を向上させたものとしては、アクリル系樹脂、エポキシ樹脂、ポリイソシアネート及び無機フィラーを含む接着剤があり(例えば、特許文献1参照。)、またアクリル系樹脂、エポキシ樹脂、分子中にウレタン結合を有する両末端が第1級アミン化合物及び無機フィラーを含む接着剤がある(例えば、特許文献2参照。)。   Film type adhesives are used in flexible printed wiring boards and the like, and a system mainly composed of acrylonitrile butadiene rubber is used. Examples of the printed wiring board-related material having improved moisture resistance include an acrylic resin, an epoxy resin, an adhesive containing a polyisocyanate and an inorganic filler (for example, see Patent Document 1), an acrylic resin, and an epoxy. There is an adhesive in which both ends having a urethane bond in a resin and a molecule contain a primary amine compound and an inorganic filler (for example, see Patent Document 2).

上記の接着部材には、熱応力の緩和の作用、耐熱性や耐湿性を有することが必要である。それに加え、製造プロセスの上からは、半導体チップに設けられた電気信号を出力するための電極部分に接着剤が流出してこないことが必要であり、かつ、配線基板に設けられた回路との間に空隙を残してはならない。電極部分に接着剤が流出すると電極の接続不良が発生し、回路と接着剤との間に空隙があると耐熱性、耐湿性の低下が起こりやすい。このため、接着剤のフロー量をコントロールすることが重要である。また、熱硬化性樹脂を含むフィルム状接着剤は、経時変化によるフロー量や接着強度の低下が起こりやすい。そのため、接着部材には、その可使期間を通したフロー量や接着強度のコントロールが必要となっている。   The adhesive member described above needs to have a thermal stress relaxation effect, heat resistance, and moisture resistance. In addition, from the top of the manufacturing process, it is necessary that the adhesive does not flow out to the electrode portion for outputting the electrical signal provided on the semiconductor chip, and the circuit provided on the wiring board There should be no gaps in between. If the adhesive flows out to the electrode portion, poor connection of the electrode occurs, and if there is a gap between the circuit and the adhesive, heat resistance and moisture resistance are likely to be lowered. For this reason, it is important to control the flow rate of the adhesive. Moreover, the film adhesive containing a thermosetting resin tends to cause a decrease in flow amount and adhesive strength due to a change with time. Therefore, it is necessary for the adhesive member to control the flow amount and the adhesive strength throughout the usable period.

熱硬化性樹脂を含むフィルム状接着剤は、保管中に少しずつ硬化が進行する。また、半導体チップをインターポーザと呼ばれる配線基板へ実装する行程及びパッケージ組立て等、パッケージが完成するまでの数々の行程を経るうちに接着剤の硬化が進行する。接着剤の取扱い性の向上や半導体チップの接続信頼性を高めるために、接着剤の可使期間はできるだけ長い方がよい。すなわち、可使期間が長いということは経時変化によるフロー量や接着強度の低下が少ないということであり、フロー量や接着強度のコントロールが容易になる。従来のフィルム状接着剤では、接着剤組成中の硬化促進剤添加量を低減すれば可使期間を長くできたが、その場合には接着剤硬化時の硬化速度が遅く発泡が生じるという問題点があった。発泡することなく可使期間を長くでき、かつ、低弾性、耐熱性、耐湿性等を満足することができる接着剤が求められていた。   The film-like adhesive containing the thermosetting resin is gradually cured during storage. Also, curing of the adhesive proceeds through a number of steps until the package is completed, such as a step of mounting a semiconductor chip on a wiring board called an interposer and a package assembly. In order to improve the handling property of the adhesive and increase the connection reliability of the semiconductor chip, the usable period of the adhesive should be as long as possible. That is, a long pot life means that there is little decrease in the flow amount and adhesive strength due to changes over time, and it becomes easy to control the flow amount and adhesive strength. In conventional film adhesives, if the amount of curing accelerator added in the adhesive composition is reduced, the pot life can be lengthened, but in that case, the problem is that the curing speed is slow when the adhesive is cured and foaming occurs. was there. There has been a demand for an adhesive that can extend the service life without foaming and can satisfy low elasticity, heat resistance, moisture resistance, and the like.

また、半導体パッケージや配線に使用する接着剤には耐熱性を向上させるため、エポキシ樹脂などの熱硬化性を有する高分子量成分を含んでいる場合が多い。しかし熱硬化性を有する高分子量成分は硬化に高温と長時間を要するという欠点を抱えていた。この欠点を解消するために、従来から熱硬化性樹脂に加えて硬化促進剤を配合する手法が用いられてきた。しかし、硬化促進剤を配合することによって硬化性は大幅に改善されるが、室温においても反応が進行することから、室温で保存した場合に接着剤の流動性が変化し、製品として使用できなくなることがあるという新たな問題が生じていた。この新たな問題の対策として、室温で不活性な潜在性硬化促進剤を用いることが検討された(例えば、特許文献3参照。)。ここでは接着剤組成物中のエポキシ樹脂の硬化促進剤として、潜在性の高いイミダゾールを使用している。しかし、潜在性硬化剤によって保存安定性は改善されるものの、接着フィルムの製造工程においては、接着剤組成物を熱処理してBステージまで硬化させる工程があるため、反応が一部進行した潜在性硬化剤が室温においても活性を有するため、反応が徐々に進行して、保存安定性が低下していることがわかった。このことから、さらなる保存安定性の向上が求められていた。
日刊工業新聞社発行表面実装技術1997−3号記事「実用化に入ったCSP(ファインピッチBGA)のゆくえ」中の5ページ表1 信学技報CPM96−121,ICD96−160(1996−12)「テープBGAタイプCSPの開発」 シャープ技報第66号(1996−12)「チップサイズパッケージ(Chip Size Package)開発」 特開昭60−243180号公報 特開昭61−138680号公報 特開平9−302313号公報
Moreover, in order to improve heat resistance, the adhesive used for a semiconductor package or wiring often includes a high molecular weight component such as an epoxy resin. However, the high molecular weight component having thermosetting has a drawback that it takes a high temperature and a long time for curing. In order to eliminate this drawback, conventionally, a method of blending a curing accelerator in addition to a thermosetting resin has been used. However, by adding a curing accelerator, the curability is greatly improved, but the reaction proceeds even at room temperature, so the fluidity of the adhesive changes when stored at room temperature, making it unusable as a product. There was a new problem that happened. As a countermeasure against this new problem, it has been studied to use a latent curing accelerator that is inert at room temperature (for example, see Patent Document 3). Here, imidazole having high potential is used as a curing accelerator for the epoxy resin in the adhesive composition. However, although the storage stability is improved by the latent curing agent, in the production process of the adhesive film, there is a process in which the adhesive composition is heat-treated and cured to the B stage. It was found that since the curing agent has activity even at room temperature, the reaction gradually proceeds and the storage stability is lowered. For this reason, further improvement in storage stability has been demanded.
Table 1 on page 5 in the article "Surface of fine pitch BGA" that has been put into practical use, published by Nikkan Kogyo Shimbun, Ltd. IEICE Technical Report CPM 96-121, ICD 96-160 (1996-12) "Development of Tape BGA Type CSP" Sharp Technical Report No. 66 (1996-12) “Development of Chip Size Package” JP-A-60-243180 JP-A-61-138680 JP-A-9-302313

本発明は、ガラスエポキシ基板やフレキシブル基板等のインターポーザと呼ばれる配線基板に熱膨張係数の差が大きい半導体チップを実装する場合に必要な低弾性、耐熱性、耐湿性を損なうことなく25℃における可使期間3ヶ月以上を確保することができる接着剤、接着部材、この接着部材を備えた半導体搭載用配線基板、及びこの接着部材を用いて半導体チップと配線基板を接着させた半導体装置の提供を目的とした。   The present invention is possible at 25 ° C. without impairing the low elasticity, heat resistance, and moisture resistance necessary for mounting a semiconductor chip having a large difference in thermal expansion coefficient on a wiring board called an interposer such as a glass epoxy board or a flexible board. Provided are an adhesive capable of ensuring a period of use of 3 months or more, an adhesive member, a wiring board for mounting a semiconductor provided with the adhesive member, and a semiconductor device in which a semiconductor chip and the wiring board are bonded using the adhesive member It was aimed.

接着フィルムの製造工程では、塗工乾燥炉で高温で熱処理する工程において硬化促進剤の反応が一部進行するため、室温で保管している際にも硬化促進剤が分解するなどして活性を有しており、それが潜在性硬化促進剤であっても同様である。特に、フィルム中の架橋性高分子成分の反応性が高いため、それらが架橋し、流動性が大きく変化し、保存安定性が低下することが解った。本発明は、この問題を鑑み、保存安定性に優れた接着フィルムの製造に用いる接着剤を提供するものである。   In the adhesive film manufacturing process, the reaction of the curing accelerator partially proceeds in the process of heat treatment at a high temperature in the coating drying furnace, so that the curing accelerator is decomposed even when stored at room temperature. It is the same even if it is a latent curing accelerator. In particular, it has been found that since the crosslinkable polymer component in the film has high reactivity, they crosslink, the fluidity changes greatly, and the storage stability decreases. In view of this problem, the present invention provides an adhesive used for producing an adhesive film having excellent storage stability.

本発明は、次のものに関する。
1. (1)エポキシ樹脂及びその硬化剤100重量部、(2)グリシジル(メタ)アクリレート0.5〜6重量%を含むTg(ガラス転移温度)が−10℃以上でかつ重量平均分子量が10万以上であるエポキシ基含有アクリル共重合体75〜300重量部、(3)潜在性硬化促進剤0.1〜20重量部を含有する接着剤。
2. (1)エポキシ樹脂及びその硬化剤100重量部、(2)エポキシ樹脂と相溶性がありかつ重量平均分子量が3万以上の高分子量樹脂5〜40重量部、(3)グリシジル(メタ)アクリレート0.5〜6重量%を含むTg(ガラス転移温度)が−10℃以上でかつ重量平均分子量が10万以上であるエポキシ基含有アクリル共重合体75〜300重量部、(4)潜在性硬化促進剤0.1〜20重量部を含有する接着剤。
3. 潜在性硬化促進剤がアダクト型である項1又は項2のいずれかに記載の接着剤。
4. 潜在性硬化促進剤がアミンアダクトである項3に記載の接着剤。
5. 潜在性硬化促進剤がアミン−エポキシアダクトである項4に記載の接着剤。
6. 無機フィラーを、接着剤樹脂分100体積部に対して1〜20体積部含む項1乃至項5のいずれかに記載の接着剤。
7. 無機フィラーがアルミナ、シリカ、水酸化アルミ、アンチモン酸化物のいずれかである項6に記載の接着剤。
8. 接着剤を、DSCを用いて測定した場合の全硬化発熱量の10〜40%の発熱を終えた状態にした項1乃至項7のいずれかに記載の接着剤。
9. 残存溶媒量が5重量%以下である項1乃至項8のいずれかに記載の接着剤。
10. 動的粘弾性測定装置を用いて測定した場合の接着剤硬化物の貯蔵弾性率が25℃で20〜2000MPaであり、260℃で3〜50MPaである項1乃至項9のいずれかに記載の接着剤。
11. Bステージ状態で相分離する2種類の樹脂及び硬化剤、硬化促進剤を必須成分とする接着剤組成物であり、Bステージ状態において硬化促進剤が分散相に相溶性を有し、連続相とは相分離することを特徴とする接着剤。
12. Bステージ状態で、分散相がエポキシ樹脂及び硬化剤を主成分とする相となり、連続相が重量平均分子量10万以上の高分子量成分を主成分とする相となることを特徴とする項11記載の接着剤。
13. 重量平均分子量10万以上の高分子量成分がグリシジルメタクリレート又はグリシジルアクリレート2〜6重量%を含むアクリル系共重合体であることを特徴とする項2記載の接着剤。
14. 硬化促進剤がエポキシアミンアダクト化合物である項11乃至項13いずれかに記載の接着剤。
15. 項1乃至項14のいずれかに記載の接着剤をキャリアフィルム上に形成して得られるフィルム状の接着部材。
16. 項1乃至項14のいずれかに記載の接着剤をコア材の両面に形成して得られる接着部材。
17. コア材が耐熱性熱可塑フィルムである項16に記載の接着部材。
18. 耐熱性熱可塑フィルム材料の軟化点が260℃以上である項17に記載の接着部材。
19. コア材または耐熱性熱可塑フィルムが多孔質フィルムである項17又は項18のいずれかに記載の接着部材。
20. 耐熱性熱可塑フィルムが液晶ポリマである項17乃至項19のいずれかに記載の接着部材。
21. 耐熱性熱可塑フィルムがポリアミドイミド、ポリイミド、ポリエーテルイミドまたはポリエーテルスルホンのいずれかである項17乃至項20のいずれかに記載の接着部材。
22. 耐熱性熱可塑フィルムがポリテトラフルオロエチレン、エチレンテトラフルオロエチレンコポリマー、テトラフルオロエチレン−ヘキサフルオロプロピレンコポリマー、テトラフルオロエチレン−パーフルオロアルキルビニルエーテルコポリマーのいずれかである項17乃至項20のいずれかに記載の接着部材。
23. 配線基板の半導体チップ搭載面に項15乃至項22のいずれかに記載の接着部材を備えた半導体搭載用配線基板。
24. 半導体チップと配線基板を項15乃至項22のいずれかに記載の接着部材を用いて接着させた半導体装置。
25. 半導体チップの面積が、配線基板の面積の70%以上である半導体チップと配線基板を項15乃至項22のいずれかに記載の接着部材を用いて接着させた半導体装置。
The present invention relates to the following.
1. (1) Epoxy resin and 100 parts by weight of its curing agent, (2) Tg (glass transition temperature) containing 0.5 to 6% by weight of glycidyl (meth) acrylate is −10 ° C. or more and weight average molecular weight is 100,000 or more An adhesive containing 75 to 300 parts by weight of an epoxy group-containing acrylic copolymer and (3) 0.1 to 20 parts by weight of a latent curing accelerator.
2. (1) 100 parts by weight of an epoxy resin and its curing agent, (2) 5 to 40 parts by weight of a high molecular weight resin compatible with the epoxy resin and having a weight average molecular weight of 30,000 or more, (3) glycidyl (meth) acrylate 0 75 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a Tg (glass transition temperature) of 5 to 6% by weight of −10 ° C. or more and a weight average molecular weight of 100,000 or more, (4) Latent curing acceleration An adhesive containing 0.1 to 20 parts by weight of an agent.
3. Item 3. The adhesive according to any one of Items 1 and 2, wherein the latent curing accelerator is an adduct type.
4). Item 4. The adhesive according to Item 3, wherein the latent curing accelerator is an amine adduct.
5). Item 5. The adhesive according to Item 4, wherein the latent curing accelerator is an amine-epoxy adduct.
6). Item 6. The adhesive according to any one of Items 1 to 5, wherein the inorganic filler is contained in an amount of 1 to 20 parts by volume with respect to 100 parts by volume of the adhesive resin.
7). Item 7. The adhesive according to Item 6, wherein the inorganic filler is any one of alumina, silica, aluminum hydroxide, and antimony oxide.
8). Item 8. The adhesive according to any one of Items 1 to 7, wherein the adhesive is in a state in which heat generation of 10 to 40% of the total curing heat generation amount when measured using DSC is finished.
9. Item 9. The adhesive according to any one of Items 1 to 8, wherein the residual solvent amount is 5% by weight or less.
10. Item 10. The storage elastic modulus of the adhesive cured product when measured using a dynamic viscoelasticity measuring device is 20 to 2000 MPa at 25 ° C., and 3 to 50 MPa at 260 ° C. adhesive.
11. It is an adhesive composition having two types of resins that are phase-separated in the B-stage state, a curing agent, and a curing accelerator as essential components, and the curing accelerator has compatibility with the dispersed phase in the B-stage state, Is an adhesive characterized by phase separation.
12 Item 11. The dispersed phase is a phase mainly composed of an epoxy resin and a curing agent in a B-stage state, and the continuous phase is a phase mainly composed of a high molecular weight component having a weight average molecular weight of 100,000 or more. Glue.
13. Item 3. The adhesive according to Item 2, wherein the high molecular weight component having a weight average molecular weight of 100,000 or more is an acrylic copolymer containing 2 to 6% by weight of glycidyl methacrylate or glycidyl acrylate.
14 Item 14. The adhesive according to any one of Items 11 to 13, wherein the curing accelerator is an epoxyamine adduct compound.
15. Item 15. A film-like adhesive member obtained by forming the adhesive according to any one of Items 1 to 14 on a carrier film.
16. Item 15. An adhesive member obtained by forming the adhesive according to any one of items 1 to 14 on both surfaces of a core material.
17. Item 17. The adhesive member according to Item 16, wherein the core material is a heat-resistant thermoplastic film.
18. Item 18. The adhesive member according to Item 17, wherein the softening point of the heat-resistant thermoplastic film material is 260 ° C or higher.
19. Item 19. The adhesive member according to any one of Item 17 or Item 18, wherein the core material or the heat-resistant thermoplastic film is a porous film.
20. Item 20. The adhesive member according to any one of Items 17 to 19, wherein the heat-resistant thermoplastic film is a liquid crystal polymer.
21. Item 21. The adhesive member according to any one of Items 17 to 20, wherein the heat-resistant thermoplastic film is any one of polyamideimide, polyimide, polyetherimide, or polyethersulfone.
22. Item 21. The item 17 to item 20, wherein the heat-resistant thermoplastic film is any one of polytetrafluoroethylene, ethylenetetrafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer. Adhesive member.
23. Item 23. A semiconductor mounting wiring board comprising the bonding member according to any one of Items 15 to 22 on a semiconductor chip mounting surface of the wiring board.
24. 23. A semiconductor device in which a semiconductor chip and a wiring board are bonded using the bonding member according to any one of items 15 to 22.
25. Item 23. A semiconductor device in which a semiconductor chip whose area of the semiconductor chip is 70% or more of the area of the wiring substrate and the wiring substrate are bonded using the bonding member according to any one of Items 15 to 22.

本発明における接着剤は潜在性硬化促進剤を用いることでBステージフィルムの保存安定性を高めることができた。アミンアダクト系のMY−24及びFXR−1030を用いたものは耐熱性、耐湿性が良好であった。特にアミン−エポキシアダクト系潜在性硬化促進剤を使用した場合には、接着剤硬化時の硬化速度が十分に大きいために発泡することなく完全な硬化物を得ることができる。特にアダクト型、アミンアダクト系、アミン−エポキシアダクト系の潜在性硬化促進剤を使用した本発明の接着剤を用いた接着部材は、耐熱性、耐湿性が良好である。これらの効果により、優れた信頼性を発現する半導体装置に必要な接着材料を効率良く提供することができる。   The adhesive in the present invention was able to improve the storage stability of the B stage film by using a latent curing accelerator. Those using amine adduct type MY-24 and FXR-1030 had good heat resistance and moisture resistance. In particular, when an amine-epoxy adduct-based latent curing accelerator is used, a completely cured product can be obtained without foaming because the curing rate during curing of the adhesive is sufficiently high. In particular, an adhesive member using the adhesive of the present invention using an adduct type, amine adduct type, or amine-epoxy adduct type latent curing accelerator has good heat resistance and moisture resistance. With these effects, it is possible to efficiently provide an adhesive material necessary for a semiconductor device that exhibits excellent reliability.

請求項11〜14の接着剤を用いた接着フィルムは可使期間が長いため、長期にわたり保存でき、生産管理がしやすい点で従来の接着フィルムに比べて大きな効果が有る。よって、保存安定性に優れる接着剤、接着フィルムを作成することができる。請求項12に記載の接着剤によって、さらに、接着性、耐熱性とフィルムとしての取り扱い性に優れる接着フィルムを作成することができる。請求項13に記載の接着剤は、これを用いることによって接着性、耐熱性がさらに高い接着フィルムを作成できる点で優れる。また、請求項14に記載の接着剤組成物は、さらに硬化時に発泡せず、かつ低弾性を有し耐熱性、耐湿性が良好な接着剤、接着フィルムを作成できる点で優れる。よって、これらの発明により、保存安定性が特に高い接着フィルム、半導体搭載用配線基板及び半導体装置を作成することができる。   Since the adhesive film using the adhesive according to claims 11 to 14 has a long usable period, it can be stored for a long period of time and has a great effect as compared with the conventional adhesive film in that production management is easy. Therefore, an adhesive and an adhesive film having excellent storage stability can be produced. With the adhesive according to claim 12, an adhesive film excellent in adhesiveness, heat resistance and handleability as a film can be produced. The adhesive according to claim 13 is excellent in that an adhesive film having higher adhesiveness and heat resistance can be produced by using this adhesive. In addition, the adhesive composition according to claim 14 is excellent in that an adhesive or an adhesive film that does not foam when cured and has low elasticity and good heat resistance and moisture resistance can be produced. Therefore, according to these inventions, an adhesive film, a semiconductor mounting wiring board, and a semiconductor device having particularly high storage stability can be produced.

本発明において使用するエポキシ樹脂は、硬化して接着作用を呈するものであればよく、二官能以上で、好ましくは分子量が5000未満(例えば、300以上5000未満)、より好ましくは3000未満のエポキシ樹脂が使用できる。二官能エポキシ樹脂としては、ビスフェノールA型またはビスフェノールF型樹脂等が例示される。ビスフェノールA型またはビスフェノールF型液状樹脂は、油化シェルエポキシ株式会社から、エピコート807、エピコート827、エピコート828という商品名で市販されている。また、ダウケミカル日本株式会社からは、D.E.R.330、D.E.R.331、D.E.R.361という商品名で市販されている。さらに、東都化成株式会社から、YD8125、YDF8170という商品名で市販されている。   The epoxy resin used in the present invention may be any epoxy resin that cures and exhibits an adhesive action, and is bifunctional or higher, preferably having a molecular weight of less than 5000 (for example, 300 or more and less than 5000), more preferably less than 3000. Can be used. Examples of the bifunctional epoxy resin include bisphenol A type or bisphenol F type resin. The bisphenol A type or bisphenol F type liquid resin is commercially available from Yuka Shell Epoxy Co., Ltd. under the trade names of Epicoat 807, Epicoat 827, and Epicoat 828. In addition, from Dow Chemical Japan, D.C. E. R. 330, D.E. E. R. 331, D.D. E. R. It is marketed under the trade name 361. Further, they are commercially available from Toto Kasei Co., Ltd. under the trade names YD8125 and YDF8170.

エポキシ樹脂としては、高Tg化を目的に多官能エポキシ樹脂を加えてもよく、多官能エポキシ樹脂としては、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等が例示される。フェノールノボラック型エポキシ樹脂は、日本化薬株式会社から、EPPN−201という商品名で市販されている。クレゾールノボラック型エポキシ樹脂は、住友化学工業株式会社から、ESCN−190、ESCN−195という商品名で市販されている。また、前記日本化薬株式会社から、EOCN1012、EOCN1025、EOCN1027という商品名で市販されている。さらに、前記東都化成株式会社から、YDCN701、YDCN702、YDCN703、YDCN704という商品名で市販されている。   As the epoxy resin, a polyfunctional epoxy resin may be added for the purpose of increasing the Tg. Examples of the polyfunctional epoxy resin include a phenol novolac epoxy resin and a cresol novolac epoxy resin. The phenol novolac type epoxy resin is commercially available from Nippon Kayaku Co., Ltd. under the trade name EPPN-201. Cresol novolac type epoxy resins are commercially available from Sumitomo Chemical Co., Ltd. under the trade names ESCN-190 and ESCN-195. The products are commercially available from Nippon Kayaku Co., Ltd. under the trade names EOCN1012, EOCN1025, and EOCN1027. Furthermore, it is commercially available from Toto Kasei Co., Ltd. under the trade names YDCN701, YDCN702, YDCN703, and YDCN704.

エポキシ樹脂の硬化剤は、エポキシ樹脂の硬化剤として通常用いられているものを使用でき、アミン、ポリアミド、酸無水物、ポリスルフィッド、三弗化硼素及びフェノール性水酸基を1分子中に2個以上有する化合物であるビスフェノールA、ビスフェノールF、ビスフェノールS等が挙げられる。特に吸湿時の耐電食性に優れるためフェノール樹脂であるフェノールノボラック樹脂、ビスフェノールノボラック樹脂、クレゾールノボラック樹脂等を用いるのが好ましい。 このような好ましいとした硬化剤は、大日本インキ化学工業株式会社から、フェノールノボラック樹脂は、バーカムTD2090,バーカムTD2131、プライオーフェンLF2882という商品名で、ビスフェノールノボラック樹脂はフェノライトLF2882、フェノライトLF2822、フェノライトTD−2090、フェノライトTD−2149、フェノライトVH4150、フェノライトVH4170という商品名で市販されている。フェノールノボラック樹脂、ビスフェノールノボラック樹脂またはクレゾールノボラック樹脂としては、例えば、重量平均分子量が500〜2000のものが好ましく、特に700〜1400のものが好ましく用いられる。硬化剤は、エポキシ樹脂のエポキシ基1当量に対して、硬化剤のエポキシ基との反応基が0.6〜1.4当量使用することが好ましく、0.8〜1.2当量使用することが好ましい。硬化剤が少なすぎたり多すぎると耐熱性が低下する傾向がある。   As the curing agent for the epoxy resin, those usually used as a curing agent for the epoxy resin can be used, and have at least two amines, polyamides, acid anhydrides, polysulfides, boron trifluoride, and phenolic hydroxyl groups in one molecule. Examples of the compound include bisphenol A, bisphenol F, and bisphenol S. In particular, phenolic novolac resin, bisphenol novolak resin, cresol novolac resin, and the like, which are phenol resins, are preferably used because of their excellent electric corrosion resistance when absorbing moisture. Such preferable curing agents are from Dainippon Ink & Chemicals, Inc., phenol novolak resins are trade names Barcam TD2090, Barcam TD2131, and Priofen LF2882, and bisphenol novolac resins are phenolite LF2882, phenolite LF2822, Phenolite TD-2090, Phenolite TD-2149, Phenolite VH4150, and Phenolite VH4170 are commercially available. As a phenol novolak resin, a bisphenol novolak resin, or a cresol novolak resin, for example, those having a weight average molecular weight of 500 to 2000 are preferable, and those having a weight average molecular weight of 700 to 1400 are particularly preferable. The curing agent is preferably used in an amount of 0.6 to 1.4 equivalents, and 0.8 to 1.2 equivalents of the reactive group with the epoxy group of the curing agent with respect to 1 equivalent of the epoxy group of the epoxy resin. Is preferred. If the curing agent is too little or too much, the heat resistance tends to decrease.

エポキシ樹脂と相溶性がありかつ重量平均分子量が3万以上の高分子量樹脂としては、フェノキシ樹脂、高分子量エポキシ樹脂、超高分子量エポキシ樹脂、極性の大きい官能基含有ゴム、極性の大きい官能基含有反応性ゴムなどが挙げられる。Bステージにおける接着剤のタック性の低減や硬化時の可撓性を向上させるため重量平均分子量が3万以上とされる。エポキシ樹脂と相溶性がありかつ重量平均分子量が3万以上の高分子量樹脂は、重量平均分子量が50万以下が好ましく、3万〜10万であることがさらに好ましい。この樹脂の分子量が大きすぎると樹脂流動性が低下する。前記極性の大きい官能基含有反応性ゴムは、アクリルゴムにカルボキシル基のような極性が大きい官能基を付加したゴムが挙げられる。ここで、エポキシ樹脂と相溶性があるとは、硬化後にエポキシ樹脂と分離して二つ以上の相に分かれることなく、均質混和物を形成する性質を言う。エポキシ樹脂と相溶性がありかつ重量平均分子量が3万以上の高分子量樹脂の配合量は、エポキシ樹脂と硬化剤の合計量100重量部に対して、エポキシ樹脂を主成分とする相(以下エポキシ樹脂相という)の可撓性の不足、タック性の低減やクラック等による絶縁性の低下を防止するため5重量部以上、エポキシ樹脂相のTgの低下を防止するため40重量部以下とされ、好ましくは10〜20重量部とされる。フェノキシ樹脂は、東都化成株式会社から、フェノトートYP−40、フェノトートYP−50という商品名で市販されている。また、フェノキシアソシエート社から、PKHC、PKHH、PKHJいう商品名で市販されている。高分子量エポキシ樹脂は、分子量が3万〜8万の高分子量エポキシ樹脂、さらには、分子量が8万を超える超高分子量エポキシ樹脂(特公平7−59617号、特公平7−59618号、特公平7−59619号、特公平7−59620号、特公平7−64911号、特公平7−68327号公報参照)があり、何れも日立化成工業株式会社で製造している。極性の大きい官能基含有反応性ゴムとして、カルボキシル基含有アクリルゴムは、帝国化学産業株式会社から、HTR−860Pという商品名で市販されている。   High molecular weight resins compatible with epoxy resins and having a weight average molecular weight of 30,000 or more include phenoxy resins, high molecular weight epoxy resins, ultrahigh molecular weight epoxy resins, highly polar functional group-containing rubbers, and highly polar functional group containing Examples include reactive rubber. The weight average molecular weight is 30,000 or more in order to reduce the tackiness of the adhesive in the B stage and improve the flexibility at the time of curing. The high molecular weight resin that is compatible with the epoxy resin and has a weight average molecular weight of 30,000 or more preferably has a weight average molecular weight of 500,000 or less, and more preferably 30,000 to 100,000. If the molecular weight of the resin is too large, the resin fluidity is lowered. Examples of the functional group-containing reactive rubber having a large polarity include a rubber obtained by adding a functional group having a large polarity such as a carboxyl group to an acrylic rubber. Here, having compatibility with the epoxy resin means a property of forming a homogeneous mixture without separating from the epoxy resin after curing and separating into two or more phases. The blending amount of the high molecular weight resin having compatibility with the epoxy resin and having a weight average molecular weight of 30,000 or more is a phase mainly composed of the epoxy resin (hereinafter referred to as epoxy) with respect to 100 parts by weight of the total amount of the epoxy resin and the curing agent. Insufficient flexibility of the resin phase), 5 parts by weight or more to prevent a decrease in insulation due to a reduction in tackiness or cracks, and 40 parts by weight or less to prevent a decrease in Tg of the epoxy resin phase, The amount is preferably 10 to 20 parts by weight. The phenoxy resin is commercially available from Toto Kasei Co., Ltd. under the trade names Phenototo YP-40 and Phenototo YP-50. Further, they are commercially available from Phenoxy Associates under the trade names PKHC, PKHH, and PKHJ. The high molecular weight epoxy resin is a high molecular weight epoxy resin having a molecular weight of 30,000 to 80,000, and an ultra high molecular weight epoxy resin having a molecular weight exceeding 80,000 (Japanese Patent Publication No. 7-59617, Japanese Patent Publication No. 7-59618, Japanese Patent Publication No. 7-59619, Japanese Patent Publication No. 7-59620, Japanese Patent Publication No. 7-64911, and Japanese Patent Publication No. 7-68327), all of which are manufactured by Hitachi Chemical Co., Ltd. As a functional group-containing reactive rubber having a large polarity, a carboxyl group-containing acrylic rubber is commercially available from Teikoku Chemical Industry Co., Ltd. under the trade name HTR-860P.

グリシジル(メタ)アクリレート0.5〜6重量%を含むTgが−10℃以上でかつ重量平均分子量が10万以上であるエポキシ基含有アクリル共重合体は、帝国化学産業株式会社から市販されている商品名HTR−860P−3を使用することができる。官能基モノマーが、カルボン酸タイプのアクリル酸や、水酸基タイプのヒドロキシメチル(メタ)アクリレートを用いると、架橋反応が進行しやすく、ワニス状態でのゲル化、Bステージ状態での硬化度の上昇による接着力の低下等の問題があるため好ましくない。また、官能基モノマーとして用いるグリシジル(メタ)アクリレートの量は、0.5〜6重量%の共重合体比とする。耐熱性を確保するため、0.5重量%以上とし、ゴム添加量を低減し、ワニス固形分比を上げるために6重量%以下とされる。6重量%を超えた場合には、接着剤硬化物の弾性率を低減させるために多量のエポキシ基含有アクリル共重合体が必要となる。エポキシ基含有アクリル共重合体は分子量が高いため、重量比率が高くなると接着剤ワニスの粘度が上昇する。このワニス粘度が高いと、フィルム化が困難になるため、粘度低下を目的に適量の溶剤で希釈する。この場合、接着剤ワニスの固形分が低下し、接着剤ワニス作製量が増大し、製造の効率が低下する問題が発生する。グリシジル(メタ)アクリレート以外の残部は、メチルアクリレート、メチルメタクリレートなどの炭素数1〜8のアルキル基をもつアルキルアクリレート又はアルキルメタクリレート、およびこれらとスチレンやアクリロニトリルなどとの混合物を用いることができる。これらの混合比率は、共重合体のTgを考慮して決定する。Tgが−10℃未満であるとBステージ状態での接着フィルムのタック性が大きくなり取扱性が悪化するので、−10℃以上とされる。このTgは40℃以下であることが好ましく、さらに、−10℃〜20℃が好ましい。このTgが高すぎるとフィルムの取り扱い時室温で破断しやすくなる。重合方法はパール重合、溶液重合等が挙げられ、これらにより得ることができる。例えば、(a)アクリロニトリル18〜40重量%、(b)グリシジル(メタ)アクリレート0.5〜6重量%及び(c)エチルアクリレート、エチルメタクリレート、ブチルアクリレート又はブチルメタクリレート54〜80重量%を共重合させて得られる共重合体が好適である。エポキシ基含有アクリル共重合体の重量平均分子量は、10万以上とされ、特に80万以上であることが好ましい。この範囲では、シート状、フィルム状での強度や可撓性の低下やタック性の増大が少ないからである。また、分子量が大きくなるにつれフロー性が小さく配線の回路充填性が低下してくるので、エポキシ基含有アクリル共重合体の重量平均分子量は、200万以下であることが好ましい。上記エポキシ基含有アクリル共重合体配合量は、エポキシ樹脂と硬化剤の合計量100重量部に対して、弾性率低減や成形時のフロー性抑制のため75重量部以上とされ、エポキシ基含有アクリル共重合体の配合量が増えると、ゴム成分の相が多くなり、エポキシ樹脂相が少なくなるため、高温での取扱性の低下が起こるため、300重量部以下とされることが好ましく、さらに、100〜250重量部とされることが好ましい。   An epoxy group-containing acrylic copolymer having a Tg containing glycidyl (meth) acrylate of 0.5 to 6% by weight of −10 ° C. or more and a weight average molecular weight of 100,000 or more is commercially available from Teikoku Chemical Co., Ltd. The trade name HTR-860P-3 can be used. When the functional group monomer is carboxylic acid type acrylic acid or hydroxyl group type hydroxymethyl (meth) acrylate, the crosslinking reaction is likely to proceed, resulting in gelation in the varnish state and an increase in the degree of cure in the B stage state. This is not preferable because of problems such as a decrease in adhesive strength. The amount of glycidyl (meth) acrylate used as the functional group monomer is a copolymer ratio of 0.5 to 6% by weight. In order to ensure heat resistance, the content is 0.5% by weight or more, and in order to reduce the amount of rubber added and increase the varnish solid content ratio, the content is 6% by weight or less. When it exceeds 6% by weight, a large amount of an epoxy group-containing acrylic copolymer is required to reduce the elastic modulus of the cured adhesive. Since the epoxy group-containing acrylic copolymer has a high molecular weight, the viscosity of the adhesive varnish increases as the weight ratio increases. When this varnish viscosity is high, film formation becomes difficult, and therefore, the solution is diluted with an appropriate amount of solvent for the purpose of reducing the viscosity. In this case, the solid content of the adhesive varnish is reduced, the amount of adhesive varnish produced is increased, and the production efficiency is reduced. As the balance other than glycidyl (meth) acrylate, alkyl acrylate or alkyl methacrylate having an alkyl group having 1 to 8 carbon atoms such as methyl acrylate and methyl methacrylate, and a mixture of these with styrene or acrylonitrile can be used. These mixing ratios are determined in consideration of the Tg of the copolymer. When Tg is less than −10 ° C., the tackiness of the adhesive film in the B-stage state is increased and the handleability is deteriorated. The Tg is preferably 40 ° C. or lower, and more preferably −10 ° C. to 20 ° C. If this Tg is too high, the film tends to break at room temperature during handling. Examples of the polymerization method include pearl polymerization and solution polymerization, and these can be obtained. For example, (a) 18-40% by weight of acrylonitrile, (b) 0.5-6% by weight of glycidyl (meth) acrylate and (c) 54-80% by weight of ethyl acrylate, ethyl methacrylate, butyl acrylate or butyl methacrylate The copolymer obtained by making it suitable is suitable. The weight average molecular weight of the epoxy group-containing acrylic copolymer is 100,000 or more, particularly preferably 800,000 or more. This is because within this range, there is little decrease in strength and flexibility and increase in tackiness in sheet and film forms. Further, as the molecular weight is increased, the flowability is reduced and the circuit filling property of the wiring is lowered. Therefore, the weight average molecular weight of the epoxy group-containing acrylic copolymer is preferably 2 million or less. The amount of the epoxy group-containing acrylic copolymer is 75 parts by weight or more for reducing the elastic modulus and suppressing the flow property during molding with respect to 100 parts by weight of the total amount of the epoxy resin and the curing agent. When the blending amount of the copolymer is increased, the phase of the rubber component is increased, and the epoxy resin phase is decreased. Therefore, the handleability is lowered at a high temperature, so that the amount is preferably 300 parts by weight or less. The amount is preferably 100 to 250 parts by weight.

潜在性硬化促進剤とは、接着剤の硬化温度での反応速度を維持したまま室温における反応速度を極めて低くできる硬化促進剤のことであり、室温ではエポキシ樹脂に不溶の固体の硬化促進剤で、加熱することで可溶化し促進剤として機能するものである。本発明に用いられる潜在性硬化促進剤としては、従来から提案されている潜在性硬化剤を用いることができ、その代表例としてはジシアンジミド、アジピン酸ジヒドラジド等のジヒドラジド化合物、グアナミン酸、メラミン酸、エポキシ化合物とイミダゾールの化合物との付加化合物、エポキシ化合物とジアルキルアミン類との付加化合物、アミンと尿素、チオ尿素又はこれらの誘導体との付加化合物(アミン−ウレイドアダクト系潜在性硬化促進剤)、アミンとイソシアネートとの付加化合物(アミン−ウレタンアダクト系潜在性硬化促進剤)が挙げられるが、これらに限定されるものではない。室温での活性を低減できる点でアダクト型の構造をとっているものが好ましい。アダクト型の構造とは、触媒活性を有する化合物と種々の化合物を反応させて得られる付加化合物のことであり、触媒活性を有する化合物がイミダゾール化合物や1,2,3,級アミノ基を有する化合物などのアミン類であればアミンアダクト型という。さらに、アダクトしている化合物の種類によりアミン−エポキシアダクト系、アミン−ウレイドアダクト系、アミン−ウレタンアダクト系等がある。硬化時に発泡せず、かつ低弾性を有し、耐熱性、耐湿性が良好な接着剤硬化物を得られる点でアミン−エポキシアダクト系が最も好ましい。さらにエポキシ化合物が長鎖であるものが潜在性がより高く優れている。   A latent curing accelerator is a curing accelerator that can extremely reduce the reaction rate at room temperature while maintaining the reaction rate at the curing temperature of the adhesive, and is a solid curing accelerator that is insoluble in epoxy resin at room temperature. It is solubilized by heating and functions as an accelerator. As the latent curing accelerator used in the present invention, conventionally proposed latent curing agents can be used, and typical examples thereof include dihydrazide compounds such as dicyandiimide and adipic acid dihydrazide, guanamic acid, melamic acid, Addition compound of epoxy compound and imidazole compound, addition compound of epoxy compound and dialkylamines, addition compound of amine and urea, thiourea or their derivatives (amine-ureadduct-based latent curing accelerator), amine And an addition compound (amine-urethane adduct-based latent curing accelerator) of styrene and isocyanate, but is not limited thereto. What has the adduct type structure from the point which can reduce activity at room temperature is preferable. An adduct type structure is an addition compound obtained by reacting a compound having catalytic activity with various compounds, and the compound having catalytic activity has an imidazole compound or a 1,2,3, or a secondary amino group. Such amines are called amine adduct types. Furthermore, there are an amine-epoxy adduct system, an amine-ureido duct system, an amine-urethane adduct system, etc., depending on the type of adducted compound. The amine-epoxy adduct system is most preferable in that it can be obtained as an adhesive cured product that does not foam during curing, has low elasticity, and has good heat resistance and moisture resistance. In addition, a long-chain epoxy compound has a higher potential and is superior.

本発明に用いられるアミン−エポキシアダクト系潜在性硬化促進剤とは、室温ではエポキシ樹脂に不溶性の固体で、加熱することで可溶化し促進剤として機能する、アミン類とエポキシ化合物を反応させて得られる付加物であり、これらの付加物の表面をイソシアネート化合物や酸性化合物で処理したもの等も含まれる。   The amine-epoxy adduct-based latent curing accelerator used in the present invention is a solid that is insoluble in an epoxy resin at room temperature, solubilized by heating, and functions as an accelerator, by reacting an amine with an epoxy compound. The resulting adducts include those obtained by treating the surface of these adducts with an isocyanate compound or an acidic compound.

アミン−エポキシアダクト系潜在性硬化促進剤の製造原料として用いられるエポキシ化合物としては、例えば、ビスフェノールA、ビスフェノールF、カテコール、レゾルシノール等の多価フェノール、またはグリセリンやポリエチレングリコール等の多価アルコールとエピクロルヒドリンを反応させて得られるポリグリシジルエーテル、あるいはp−ヒドロキシ安息香酸、β−ヒドロキシナフトエ酸等のヒドロキシカルボン酸とエピクロルヒドリンを反応させて得られるグリシジルエーテルエステル、あるいはフタル酸、テレフタル酸等のポリカルボン酸とエピクロルヒドリンを反応させて得られるポリグリシジルエステル、あるいは4,4'−ジアミノジフェニルメタンやm−アミノフェノールなどとエピクロルヒドリンを反応させて得られるグリシジルアミン化合物、さらにはエポキシ化フェノールノボラック樹脂、エポキシ化クレゾールノボラック樹脂、エポキシ化ポリオレフィン等の多官能性エポキシ化合物や、ブチルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルメタクリレート等の単官能性エポキシ化合物等が挙げられるが、これらに限定されるものではない。   Examples of the epoxy compound used as a raw material for producing an amine-epoxy adduct-based latent curing accelerator include polyhydric phenols such as bisphenol A, bisphenol F, catechol, and resorcinol, or polyhydric alcohols such as glycerin and polyethylene glycol and epichlorohydrin. Polyglycidyl ether obtained by reacting glycidyl ether, or glycidyl ether ester obtained by reacting hydroxycarboxylic acid such as p-hydroxybenzoic acid or β-hydroxynaphthoic acid with epichlorohydrin, or polycarboxylic acid such as phthalic acid or terephthalic acid It is obtained by reacting epichlorohydrin with polyglycidyl ester obtained by reacting chlorohydrin with epichlorohydrin or 4,4′-diaminodiphenylmethane or m-aminophenol. Glycidylamine compounds, polyfunctional epoxy compounds such as epoxidized phenol novolak resin, epoxidized cresol novolak resin, epoxidized polyolefin, and monofunctional epoxy compounds such as butyl glycidyl ether, phenyl glycidyl ether, glycidyl methacrylate, etc. Although it is mentioned, it is not limited to these.

アミン−エポキシアダクト系潜在性硬化促進剤の製造原料として用いられるアミン類は、エポキシ基と付加反応しうる活性水素を分子内に1個以上有し、かつ1級アミノ基、2級アミノ基、3級アミノ基の中から選ばれた置換基を分子内に少なくとも1個以上有するものであれば良い。このようなアミン類としては、例えば、ジエチレントリアミン、トリエチレンテトラミン、n−プロピルアミン、2−ヒドロキシエチルアミノプロピルアミン、シクロヘキシルアミン、4,4'−ジアミノ−ジシクロヘキシルメタン、の等の脂肪族アミン類、4,4'−ジアミノジフェニルメタン、2−メチルアニリン等の芳香族アミン類、2−エチル−4−メチルイミダゾール、2−メチルイミダゾール、2−エチル−4−メチルイミダゾリン、2,4−ジメチルイミダゾリン、ピペリジン、ピペラジン等の窒素含有複素環化合物等が挙げられるが、これらに限定されるものではない。これらの化合物の中でも特に3級アミノ基を有する化合物は潜在性が極めて高い硬化促進剤を与える原料であり、そのような化合物の例を以下に示すがこれらに限定されるものではない。例えば、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ジ−n−プロピルアミノプロピルアミン、ジブチルアミノプロピルアミン、ジメチルアミノエチルアミン、ジエチルアミノエチルアミン、N−メチルピペラジン等のようなアミン化合物や、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール等のイミダゾール化合物等のような、分子内に3級アミノ基を有する1級もしくは2級アミン類などがある。アミン−ウレイドアダクト系潜在性硬化促進剤、アミン−ウレタンアダクト系潜在性硬化促進剤の原料となるアミン化合物も同様のものが使用できる。   The amines used as a raw material for producing an amine-epoxy adduct-based latent curing accelerator have at least one active hydrogen capable of addition reaction with an epoxy group in the molecule, and a primary amino group, a secondary amino group, Any one having at least one substituent selected from tertiary amino groups in the molecule may be used. Examples of such amines include aliphatic amines such as diethylenetriamine, triethylenetetramine, n-propylamine, 2-hydroxyethylaminopropylamine, cyclohexylamine, and 4,4′-diamino-dicyclohexylmethane. Aromatic amines such as 4,4′-diaminodiphenylmethane and 2-methylaniline, 2-ethyl-4-methylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazoline, 2,4-dimethylimidazoline, piperidine And nitrogen-containing heterocyclic compounds such as piperazine, but are not limited thereto. Among these compounds, a compound having a tertiary amino group is a raw material that provides a curing accelerator having a very high potential. Examples of such compounds are shown below, but are not limited thereto. For example, amine compounds such as dimethylaminopropylamine, diethylaminopropylamine, di-n-propylaminopropylamine, dibutylaminopropylamine, dimethylaminoethylamine, diethylaminoethylamine, N-methylpiperazine, 2-methylimidazole, There are primary or secondary amines having a tertiary amino group in the molecule, such as imidazole compounds such as ethylimidazole, 2-ethyl-4-methylimidazole, and 2-phenylimidazole. The same thing can be used for the amine compound used as a raw material of an amine-ureidoduct type latent curing accelerator and an amine-urethane adduct type latent curing accelerator.

アミン−ウレタンアダクト系潜在性硬化促進剤の原料となるイソシアネート化合物としては、トリレンジイソシアネート、ジフエニルメタンジイソシアネート、ナフタレンジイソシアネート、キシリレンジイソシアネート、ジフエニルスルホンジイソシアネート、トリフエニルメタンジイソシアネート、へキサメチレンジイソシアネート、3−イソシアネートメチル−3,5,5−トリメチルシクロヘキシルイソシアネート、3−イソシアネートエチル−3,5,5一トリメチルシクロヘキシルイソシアネート、3−イソシアネートエチル−3,5,5−トリエチルシクロヘキシルイソシアネート、ジフエニルプロパンジイソシアネート、フエニレンジイソシアネート、シクロヘキシリレンジイソシアネート、3,3’−ジイソシアネートジプロピルエーテル、トリフェニルメタントリイソシアネート、ジフエニルエーテル−4,4’−ジイソシアネート等のポリイソシアネート化合物、これらの二量体又は三量体、これらのポリイソシアネート化合物のトリメチロールプロパン、グリセリン等の多価アルコールとの付加物などがある。   Examples of the isocyanate compound used as a raw material for the amine-urethane adduct-based latent curing accelerator include tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, xylylene diisocyanate, diphenylsulfone diisocyanate, triphenylmethane diisocyanate, hexamethylene diisocyanate, 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate, 3-isocyanatoethyl-3,5,5-trimethylcyclohexyl isocyanate, 3-isocyanatoethyl-3,5,5-triethylcyclohexyl isocyanate, diphenylpropane diisocyanate, Phenylylene diisocyanate, cyclohexylene diisocyanate, 3,3′-diisocyanate di Polyisocyanate compounds such as propyl ether, triphenylmethane triisocyanate, diphenyl ether-4,4′-diisocyanate, dimers or trimers thereof, polyhydric alcohols such as trimethylolpropane and glycerin of these polyisocyanate compounds There are additions.

本発明に用いられるアダクト型硬化促進剤の代表的な例を以下に示すがこれらに限定されるものではない。アミン−エポキシアダクト系としては、味の素株式会社からはアミキュアPN−23、アミキュアMY−24、アミキュアMY−D、アミキュアMY−H等、エー・シー・アール株式会社からはハードナーX−3615S、ハードナーX−3293S等、旭化成株式会社からはノバキュアHX−3748、ノバキュアHX−3088等、パシフィック アンカー ケミカルからはAncamine 2014AS、Ancamine 2014FG等がそれぞれ上記の商品名で市販されている。また、アミン−ウレイド型アダクト系としては富士化成株式会社からフジキュアFXE−1000、フジキュアFXR−1030という商品名で市販されている。   Representative examples of the adduct type curing accelerator used in the present invention are shown below, but are not limited thereto. Amine-epoxy adducts include Amicure PN-23, Amicure MY-24, Amicure MY-D, Amicure MY-H, etc. from Ajinomoto Co., and Hardener X-3615S, Hardener X from ACR Co., Ltd. Asahi Kasei Co., Ltd. sells NovaCure HX-3748 and NovaCure HX-3088, and Pacific Anchor Chemical sells Ancamine 2014AS, Ancamine 2014FG and the like under the above-mentioned trade names. Further, amine-ureido type adduct systems are commercially available from Fuji Kasei Co., Ltd. under the trade names Fujicure FXE-1000 and Fujicure FXR-1030.

潜在性硬化促進剤の配合量は、エポキシ樹脂及びその硬化剤100重量部に対して、0.1〜20重量部、好ましくは1.0〜15重量部であり、0.1重量部未満であると硬化速度が極めて遅くなり良好な接着剤硬化物が得られず、また20重量部を超えると可使期間が短くなるため不適である。   The blending amount of the latent curing accelerator is 0.1 to 20 parts by weight, preferably 1.0 to 15 parts by weight, and less than 0.1 parts by weight with respect to 100 parts by weight of the epoxy resin and its curing agent. If it is, the curing rate is extremely slow and a good cured adhesive cannot be obtained. If it exceeds 20 parts by weight, the usable life is shortened, which is not suitable.

接着剤には、異種材料間の界面結合をよくするために、カップリング剤を配合することもできる。カップリング剤としては、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤が挙げられ、その中でもシランカップリング剤が好ましい。シランカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−ウレイドプロピルトリエトキシシラン、N−β−アミノエチル−γ−アミノプロピルトリメトキシシラン等が挙げられる。前記したシランカップリング剤は、γ−グリシドキシプロピルトリメトキシシランがNUC A−187、γ−メルカプトプロピルトリメトキシシランがNUC A−189、γ−アミノプロピルトリエトキシシランがNUC A−1100、γ−ウレイドプロピルトリエトキシシランがNUC A−1160、N−β−アミノエチル−γ−アミノプロピルトリメトキシシランがNUC A−1120という商品名で、いずれも日本ユニカ−株式会社から市販されている。カップリング剤の配合量は、添加による効果や耐熱性およびコストから、樹脂100重量部に対し0.1〜10重量部を配合するのが好ましい。   In order to improve the interfacial bond between different materials, a coupling agent can be blended in the adhesive. Examples of the coupling agent include a silane coupling agent, a titanate coupling agent, and an aluminum coupling agent, and among them, a silane coupling agent is preferable. As silane coupling agents, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-ureidopropyltriethoxysilane, N-β-aminoethyl-γ- Examples include aminopropyltrimethoxysilane. In the silane coupling agent, γ-glycidoxypropyltrimethoxysilane is NUC A-187, γ-mercaptopropyltrimethoxysilane is NUC A-189, γ-aminopropyltriethoxysilane is NUC A-1100, γ. -Ureidopropyltriethoxysilane is a product name of NUC A-1160 and N-β-aminoethyl-γ-aminopropyltrimethoxysilane is a product name of NUC A-1120. The amount of the coupling agent is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the resin from the effects of addition, heat resistance and cost.

さらに、イオン性不純物を吸着して、吸湿時の絶縁信頼性をよくするために、イオン捕捉剤を配合することができる。イオン捕捉剤の配合量は、添加による効果や耐熱性、コストより、エポキシ樹脂及びその硬化剤100重量部に対して、1〜10重量部が好ましい。イオン捕捉剤としては、銅がイオン化して溶け出すのを防止するため銅害防止剤として知られる化合物、例えば、トリアジンチオール化合物、ビスフェノール系還元剤を配合することもできる。ビスフェノール系還元剤としては、2,2’−メチレン−ビス−(4−メチル−6−第3−ブチルフェノール)、4,4’−チオ−ビス−(3−メチル−6−第3−ブチルフェノール)等が挙げられる。また、無機イオン吸着剤を配合することもできる。無機イオン吸着剤としては、ジルコニウム系化合物、アンチモンビスマス系化合物、マグネシウムアルミニウム系化合物等が挙げられる。トリアジンチオール化合物を成分とする銅害防止剤は、三協製薬株式会社から、ジスネットDBという商品名で市販されている。ビスフェノール系還元剤を成分とする銅害防止剤は、吉富製薬株式会社から、ヨシノックスBBという商品名で市販されている。また、無機イオン吸着剤は、東亜合成化学工業株式会社からIXEという商品名で各種市販されている。   Furthermore, an ion scavenger can be blended in order to adsorb ionic impurities and improve insulation reliability during moisture absorption. The compounding amount of the ion scavenger is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin and its curing agent, from the effect of addition, heat resistance, and cost. As the ion scavenger, a compound known as a copper damage inhibitor, for example, a triazine thiol compound or a bisphenol-based reducing agent can be blended to prevent copper from being ionized and dissolved. Examples of the bisphenol-based reducing agent include 2,2′-methylene-bis- (4-methyl-6-tert-butylphenol), 4,4′-thio-bis- (3-methyl-6-tert-butylphenol). Etc. An inorganic ion adsorbent can also be blended. Examples of inorganic ion adsorbents include zirconium compounds, antimony bismuth compounds, magnesium aluminum compounds, and the like. A copper damage inhibitor comprising a triazine thiol compound as a component is commercially available from Sankyo Pharmaceutical Co., Ltd. under the trade name Disnet DB. A copper damage inhibitor containing a bisphenol-based reducing agent as a component is commercially available from Yoshitomi Pharmaceutical Co., Ltd. under the trade name Yoshinox BB. Various inorganic ion adsorbents are commercially available from Toa Gosei Chemical Co., Ltd. under the trade name IXE.

さらに、本発明の接着剤には、接着剤の取扱性の向上、熱伝導性の向上、溶融粘度の調整、チクソトロピック性の付与などを目的として、無機フィラーを配合することが好ましい。無機フィラーとしては、水酸化アルミ(水酸化アルミニウム)、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、アルミナ、窒化アルミニウム、ほう酸アルミウイスカ、窒化ホウ素、結晶性シリカ、非晶性シリカ、アンチモン酸化物などが挙げられる。熱伝導性向上のためには、アルミナ、窒化アルミニウム、窒化ホウ素、結晶性シリカ、非晶性シリカ等が好ましい。溶融粘度の調整やチクソトロピック性の付与の目的には、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、アルミナ、結晶性シリカ、非晶性シリカ等が好ましい。また、上記に加え耐湿性を向上させるアルミナ、シリカ、水酸化アルミ、アンチモン酸化物が好ましい。上記無機フィラー配合量は、接着剤樹脂分100体積部に対して1〜20体積部が好ましい。配合の効果の点から配合量が1体積部以上、配合量が多くなると、接着剤の貯蔵弾性率の上昇、接着性の低下、ボイド残存による電気特性の低下等の問題を起こすので20体積部以下とするのが好ましい。   Furthermore, the adhesive of the present invention preferably contains an inorganic filler for the purpose of improving the handling property of the adhesive, improving the thermal conductivity, adjusting the melt viscosity, and imparting thixotropic properties. As inorganic filler, aluminum hydroxide (aluminum hydroxide), magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina, aluminum nitride, aluminum borate whisker, boron nitride, Examples thereof include crystalline silica, amorphous silica, and antimony oxide. In order to improve thermal conductivity, alumina, aluminum nitride, boron nitride, crystalline silica, amorphous silica and the like are preferable. For the purpose of adjusting melt viscosity and imparting thixotropic properties, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina, crystalline silica, non-crystalline silica Crystalline silica and the like are preferred. In addition to the above, alumina, silica, aluminum hydroxide, and antimony oxide that improve moisture resistance are preferable. The inorganic filler content is preferably 1 to 20 parts by volume with respect to 100 parts by volume of the adhesive resin. From the viewpoint of blending effect, if the blending amount is 1 volume part or more and the blending amount increases, problems such as an increase in the storage elastic modulus of the adhesive, a decrease in adhesiveness, a decrease in electrical characteristics due to residual voids, etc. will occur. The following is preferable.

硬化促進剤を不連続に分散する樹脂相に選択的に入れることにより接着剤及び接着フィルムの保存安定性を向上できることを見出した。このためには、接着剤は、Bステージ状態で相分離する2種類の樹脂及び硬化剤、硬化促進剤を必須成分とする接着剤組成物であり、Bステージ状態において硬化促進剤が分散相に相溶性を有し、連続相とは相分離することを特徴とする。   It has been found that the storage stability of an adhesive and an adhesive film can be improved by selectively putting a curing accelerator in a discontinuously dispersed resin phase. For this purpose, the adhesive is an adhesive composition containing two types of resins that are phase-separated in a B-stage state, a curing agent, and a curing accelerator as essential components. In the B-stage state, the curing accelerator becomes a dispersed phase. It has compatibility and is characterized by phase separation from the continuous phase.

上記の分散相に使用する樹脂としてはエポキシ樹脂、シアネートエステル樹脂、シアネート樹脂、シリコーン樹脂、エポキシ基やカルボキシル基などの官能基を有するアクリルゴム、エポキシ基やカルボキシル基などの官能基を有するブタジエンゴム、シリコーン変性ポリアミドイミドなどの変性樹脂などが使用できる。接着性、耐熱性が高い点でエポキシ樹脂が好ましい。エポキシ樹脂としては、前記に記載したものが使用できる。また、エポキシ樹脂の硬化剤も前記したものが使用できる。これらの配合割合も前記の通りである。   Examples of the resin used in the above dispersed phase include epoxy resins, cyanate ester resins, cyanate resins, silicone resins, acrylic rubbers having functional groups such as epoxy groups and carboxyl groups, and butadiene rubbers having functional groups such as epoxy groups and carboxyl groups. Further, modified resins such as silicone-modified polyamideimide can be used. Epoxy resins are preferred because of their high adhesiveness and heat resistance. As the epoxy resin, those described above can be used. Also, the epoxy resin curing agent described above can be used. These blending ratios are also as described above.

Bステージ状態で上記樹脂相と相分離する樹脂としては、アクリル酸エステルやメタクリル酸エステル及びアクリロニトリルなどの共重合体であるアクリルゴム、スチレンやアクリロニトリルなどを含むブタジエンゴム、シリコーン樹脂、シリコーン変性ポリアミドイミドなどの変性樹脂が挙げられ、前記樹脂層との組み合わせが適宜決定される。また、重量平均分子量が10万以上の高分子量成分を使用した場合、フィルムとしての取り扱い性が良好である。さらにまた、グリシジルメタクリレート又はグリシジルアクリレート2〜6重量%を含むTgが−10℃以上でかつ重量平均分子量が10万以上(特に好ましくは80万以上)であるアクリル系共重合体を用いた場合、接着性、耐熱性が高い点で特に好ましい。グリシジルメタクリレート又はグリシジルアクリレート2〜6重量%を含むTgが−10℃以上でかつ重量平均分子量が10万以上(特に好ましくは80万以上)であるアクリル系共重合体としては、前記したものが使用できる。   Examples of the resin that is phase-separated from the resin phase in the B-stage state include acrylic rubber that is a copolymer of acrylic acid ester, methacrylic acid ester and acrylonitrile, butadiene rubber containing styrene or acrylonitrile, silicone resin, silicone-modified polyamideimide Modified resins such as these are mentioned, and the combination with the resin layer is appropriately determined. Moreover, when a high molecular weight component having a weight average molecular weight of 100,000 or more is used, the handleability as a film is good. Further, when an acrylic copolymer having a Tg containing glycidyl methacrylate or glycidyl acrylate of 2 to 6% by weight of −10 ° C. or more and a weight average molecular weight of 100,000 or more (particularly preferably 800,000 or more) is used, It is particularly preferable in terms of high adhesiveness and heat resistance. As the acrylic copolymer having a Tg containing glycidyl methacrylate or glycidyl acrylate of 2 to 6% by weight of −10 ° C. or more and a weight average molecular weight of 100,000 or more (particularly preferably 800,000 or more), those described above are used. it can.

これらの樹脂相を形成する樹脂はBステージ状態で相分離する必要があり、また、一方の樹脂が不連続に分散する分散相を形成し、他方が連続相を形成する必要がある。なお本発明でいうBステージ状態とはDSCを用いて、硬化発熱量を測定した値が、未硬化状態での組成物の硬化発熱量の10〜40%である状態である。Bステージ状態となったときに連続相を形成する樹脂と分散相を形成する樹脂(それぞれの相において、硬化剤を含むときはそれを含む)は、これらの総量に対して連続相を形成する樹脂が20〜85重量%であることが好ましい。   The resin forming these resin phases needs to be phase-separated in a B-stage state, and one resin needs to form a dispersed phase in which the resin is discontinuously dispersed, and the other needs to form a continuous phase. The B-stage state in the present invention is a state in which the value obtained by measuring the heating value using DSC is 10 to 40% of the heating value of the composition in the uncured state. The resin that forms the continuous phase and the resin that forms the dispersed phase when in the B-stage state (in each phase, including the curing agent if included) form a continuous phase with respect to the total amount of these. The resin is preferably 20 to 85% by weight.

硬化促進剤はBステージ状態で島状に不連続に分散する分散相と相溶性を有し、海状の相とは相分離する物質である必要がある。島状の相と同様の極性、分子構造を有し、他方とは大きく異なる極性、分子構造を有するものであることが好ましい。例えば島状に不連続に分散する樹脂相がエポキシ樹脂及び硬化剤を主成分とする相であり、もう一方の相がアクリルゴムの場合には、硬化促進剤はエポキシ化合物とイミダゾール化合物との付加化合物、エポキシ化合物とジアルキルアミン類との付加化合物などが好ましい。さらにエポキシ化合物が長鎖であるものが特に好ましい。特に室温での活性を低減できる点で、前記したアダクト型の構造をとっているものが好ましく、アミン−エポキシ付加化合物、アミン−ウレイド付加化合物、アミン−ウレタン付加化合物等がある。硬化時に発泡せず、かつ低弾性を有し、耐熱性、耐湿性が良好な接着剤硬化物を得られる点でアミン−エポキシ付加化合物が特に好ましい。   The curing accelerator needs to be a substance having compatibility with a disperse phase dispersed discontinuously in an island shape in the B-stage state and phase-separating from the sea-like phase. It preferably has the same polarity and molecular structure as the island-like phase, but has a polarity and molecular structure that is significantly different from the other. For example, when the resin phase discontinuously dispersed in an island shape is a phase mainly composed of an epoxy resin and a curing agent and the other phase is an acrylic rubber, the curing accelerator is an addition of an epoxy compound and an imidazole compound. Compounds, addition compounds of epoxy compounds and dialkylamines, and the like are preferable. Further, those in which the epoxy compound is a long chain are particularly preferred. In particular, those having an adduct type structure described above are preferable in that the activity at room temperature can be reduced, and examples include amine-epoxy addition compounds, amine-ureido addition compounds, and amine-urethane addition compounds. An amine-epoxy addition compound is particularly preferred in that an adhesive cured product that does not foam during curing, has low elasticity, and has good heat resistance and moisture resistance can be obtained.

アミン−エポキシアダクト系潜在性硬化促進剤、アダクト型硬化促進剤の代表的な例は、前記したとおりのものである。   Typical examples of the amine-epoxy adduct-based latent curing accelerator and adduct type curing accelerator are as described above.

硬化促進剤(潜在性硬化促進剤を包含する)の配合量は好ましくは、分散相の樹脂及び硬化剤の合計100重量部に対して0.1〜20重量部、より好ましくは1.0〜15重量部である。0.1重量部未満であると硬化速度が遅くなる傾向にあり、また20重量部を超えると可使期間が短くなる傾向がある。   The blending amount of the curing accelerator (including the latent curing accelerator) is preferably 0.1 to 20 parts by weight, more preferably 1.0 to 100 parts by weight with respect to a total of 100 parts by weight of the resin and the curing agent in the dispersed phase. 15 parts by weight. If it is less than 0.1 parts by weight, the curing rate tends to be slow, and if it exceeds 20 parts by weight, the pot life tends to be short.

硬化促進剤としては上記したアダクト型の潜在性硬化促進剤が好ましく、その他の硬化促進剤として各種イミダゾール類などを適宜併用することが好ましく、その量は、所望の保存安定性が得られること考慮して決定することが好ましい。イミダゾールとしては、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾリウムトリメリテート等が挙げられる。イミダゾール類は、四国化成工業株式会社から、2E4MZ、2PZ−CN、2PZ−CSNという商品名で市販されている。   As the curing accelerator, the above-described adduct-type latent curing accelerator is preferable, and it is preferable to appropriately use various imidazoles as other curing accelerators in consideration of the fact that the desired storage stability can be obtained. Is preferably determined. Examples of imidazole include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, and the like. Imidazoles are commercially available from Shikoku Chemical Industry Co., Ltd. under the trade names 2E4MZ, 2PZ-CN, and 2PZ-CSN.

このほかに、流動性の調節、耐湿性の向上を目的に、フィラーを添加しても良い。このようなフィラーとしては、シリカ、三酸化二アンチモン等がある。   In addition, a filler may be added for the purpose of adjusting fluidity and improving moisture resistance. Examples of such a filler include silica and antimony trioxide.

接着剤には、異種材料間の界面結合をよくするために、カップリング剤を配合することもできる。さらに、イオン性不純物を付着して、吸湿時の絶縁信頼性をよくするために、イオン補足剤を配合することができる。カップリング剤の使用量は、分散相と連続相のそれぞれを形成する樹脂成分及び硬化剤成分の総量に対して、0.1〜10重量%が好ましい。イオン補足剤の使用量は、分散相と連続相のそれぞれを形成する樹脂成分及び硬化剤成分の総量に対して、1〜10重量%が好ましい。   In order to improve the interfacial bond between different materials, a coupling agent can be blended in the adhesive. Furthermore, in order to adhere ionic impurities and improve the insulation reliability at the time of moisture absorption, an ion scavenger can be blended. The amount of the coupling agent used is preferably 0.1 to 10% by weight with respect to the total amount of the resin component and the curing agent component forming each of the dispersed phase and the continuous phase. The amount of the ion scavenger used is preferably 1 to 10% by weight with respect to the total amount of the resin component and the curing agent component forming each of the dispersed phase and the continuous phase.

硬化促進剤を不連続に分散する樹脂相に選択的に入れることによる作用については明確ではないが、以下のように推測される。島状の分散相に大部分の硬化促進剤が含まれており、連続相に存在する硬化促進剤は非常に少ない。分散相において保管中に硬化が進行しても流動性に及ぼす影響は小さく、一方、硬化温度においては、分散相から開始された反応によってできた活性基が連続相と反応することで、連続相の硬化も進行すると考えられる。   Although it is not clear about the effect | action by selectively putting a hardening accelerator in the resin phase disperse | distributed discontinuously, it estimates as follows. Most of the curing accelerator is contained in the island-like dispersed phase, and very few curing accelerators exist in the continuous phase. Even if curing proceeds during storage in the dispersed phase, the influence on the fluidity is small. On the other hand, at the curing temperature, the active group formed by the reaction initiated from the dispersed phase reacts with the continuous phase, so that the continuous phase It is considered that the curing of the resin proceeds.

本発明におけるフィルム状の接着部材は、接着剤の各成分を溶剤に溶解ないし分散してワニスとし、キャリアフィルム上に塗布、加熱し溶剤を除去することにより、接着剤層をキャリアフィルム上に形成して得られる。加熱温度は、100〜180℃が好ましく、130〜160℃が特に好ましい。加熱時間は適宜決定されるが、好ましくは3〜15分間、特に好ましくは4〜10分間である。この加熱による溶剤除去後の接着剤は、DSC(示差走査熱分析)を用いて測定した全硬化発熱量の10〜40%の発熱を終えた状態とすることが好ましい。また、フィルム状となった接着剤の残存溶媒量は、5重量%以下であることが好ましい。キャリアフィルムとしては、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、離型処理したポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリイミドフィルムなどのプラスチックフィルムが使用できる。キャリアフィルムは、使用時に剥離して接着フィルムのみを使用することもできるし、キャリアフィルムとともに使用し、後で除去することもできる。本発明で用いるキャリアフィルムの例として、ポリイミドフィルムは、東レ・デュポン株式会社からカプトンという商品名で、鐘淵化学工業株式会社からアピカルという商品名で市販されている。ポリエチレンテレフタレートフィルムは、東レ・デュポン株式会社からルミラーという商品名で、帝人株式会社からピューレックスという商品名で市販されている。   In the film-like adhesive member of the present invention, each component of the adhesive is dissolved or dispersed in a solvent to form a varnish, which is applied on the carrier film and heated to remove the solvent, thereby forming an adhesive layer on the carrier film. Is obtained. The heating temperature is preferably from 100 to 180 ° C, particularly preferably from 130 to 160 ° C. The heating time is appropriately determined, but is preferably 3 to 15 minutes, particularly preferably 4 to 10 minutes. The adhesive after removal of the solvent by heating is preferably in a state in which the heat generation of 10 to 40% of the total curing heat value measured using DSC (differential scanning calorimetry) has been completed. Moreover, it is preferable that the residual solvent amount of the adhesive agent used as the film form is 5 weight% or less. As the carrier film, a plastic film such as a polytetrafluoroethylene film, a polyethylene terephthalate film, a release-treated polyethylene terephthalate film, a polyethylene film, a polypropylene film, a polymethylpentene film, or a polyimide film can be used. The carrier film can be peeled off at the time of use, and only the adhesive film can be used, or it can be used together with the carrier film and removed later. As an example of the carrier film used in the present invention, a polyimide film is commercially available from Toray DuPont under the trade name Kapton and from Kaneka Chemical Co., Ltd. under the trade name Apical. The polyethylene terephthalate film is commercially available from Toray DuPont under the trade name Lumirror and from Teijin under the trade name Purex.

ワニス化の溶剤は、比較的低沸点の、メチルエチルケトン、アセトン、メチルイソブチルケトン、2−エトキシエタノール、トルエン、ブチルセルソルブ、メタノール、エタノール、2−メトキシエタノールなどを用いるのが好ましい。また、塗膜性を向上するなどの目的で、高沸点溶剤を加えても良い。高沸点溶剤としては、ジメチルアセトアミド、ジメチルホルムアミド、メチルピロリドン、シクロヘキサノンなどが挙げられる。ワニスの製造は、無機フィラーの分散を考慮した場合には、らいかい機、3本ロール及びビーズミル等により、またこれらを組み合わせて行なうことができる。フィラーと低分子量物をあらかじめ混合した後、高分子量物を配合することにより、混合に要する時間を短縮することも可能となる。また、ワニスとした後、真空脱気によりワニス中の気泡を除去することが好ましい。   As the varnishing solvent, methyl ethyl ketone, acetone, methyl isobutyl ketone, 2-ethoxyethanol, toluene, butyl cellosolve, methanol, ethanol, 2-methoxyethanol or the like having a relatively low boiling point is preferably used. Moreover, you may add a high boiling point solvent for the purpose of improving coating-film property. Examples of the high boiling point solvent include dimethylacetamide, dimethylformamide, methylpyrrolidone, and cyclohexanone. When considering dispersion of the inorganic filler, the varnish can be manufactured using a raking machine, a three-roller, a bead mill, or the like, or a combination thereof. By mixing the filler and the low molecular weight material in advance and then blending the high molecular weight material, the time required for mixing can be shortened. In addition, after forming the varnish, it is preferable to remove bubbles in the varnish by vacuum degassing.

フィルム状接着剤のみからなる接着部材の厚みは、25〜250μmが好ましいが、これに限定されるものではない。25μmよりも薄いと応力緩和効果に乏しく、厚いと経済的でなくなる。また、複数の接着フィルムを貼合わせることにより、所望の膜厚の接着部材を得ることもできる。この場合には、接着フィルム同士の剥離が発生しないような貼合わせ条件が必要である。   The thickness of the adhesive member consisting only of the film adhesive is preferably 25 to 250 μm, but is not limited thereto. If it is thinner than 25 μm, the stress relaxation effect is poor, and if it is thick, it is not economical. Moreover, the adhesive member of a desired film thickness can also be obtained by bonding a some adhesive film. In this case, it is necessary to have a bonding condition that does not cause peeling between the adhesive films.

本発明の接着部材は、コア材の両面に接着剤を形成したものであってもよい。コア材の厚みは5〜200μmの範囲内であることが好ましいが、これに限定されるものではない。コア材の両面に形成される接着剤の厚みは、各々10〜200μmの範囲が好ましい。これより薄いと接着性や応力緩和効果に乏しく、厚いと経済的でなくなるが、これに限定されるものではない。   The adhesive member of the present invention may be one in which an adhesive is formed on both surfaces of the core material. The thickness of the core material is preferably in the range of 5 to 200 μm, but is not limited thereto. As for the thickness of the adhesive agent formed in both surfaces of a core material, the range of 10-200 micrometers is preferable respectively. If it is thinner than this, the adhesiveness and stress relaxation effect are poor, and if it is thicker, it is not economical, but it is not limited to this.

本発明でコア材に用いられるフィルムとしては、耐熱性ポリマまたは液晶ポリマ、フッ素系ポリマなどを用いた耐熱性熱可塑フィルムが好ましく、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリエーテルスルホン、全芳香族ポリエステル、ポリテトラフルオロエチレン、エチレンテトラフルオロエチレンコポリマー、テトラフルオロエチレン−ヘキサフルオロプロピレンコポリマー、テトラフルオロエチレン−パーフルオロアルキルビニルエーテルコポリマーなどが好適に用いられる。また、コア材は、接着部材の弾性率低減のために多孔質フィルムを用いることもできる。好ましくは軟化点温度が260℃以上の特性を有するものが使用される。軟化点温度が260℃未満の熱可塑性フィルムをコア材に用いた場合は、はんだリフロー時などの高温時に接着剤との剥離を起こす場合がある。ポリイミドフィルムは、宇部興産株式会社からユーピレックスという商品名で、東レ・デュポン株式会社からカプトンという商品名で、鐘淵化学工業株式会社からアピカルという商品名で市販されている。ポリテトラフルオロエチレンフィルムは、三井・デュポンフロロケミカル株式会社からテフロン(R)という商品名で、ダイキン工業株式会社からポリフロンという商品名で市販されている。エチレンテトラフルオロエチレンコポリマーフィルムは、旭硝子株式会社からアフロンCOPという商品名で、ダイキン工業株式会社からネオフロンETFEという商品名で市販されている。テトラフルオロエチレン−ヘキサフルオロプロピレンコポリマーフィルムは、三井・デュポンフロロケミカル株式会社からテフロン(R)FEPという商品名で、ダイキン工業株式会社からネオフロンFEPという商品名で市販されている。テトラフルオロエチレン−パーフルオロアルキルビニルエーテルコポリマーフィルムは、三井・デュポンフロロケミカル株式会社からテフロン(R)PFAという商品名で、ダイキン工業株式会社からネオフロンPFAという商品名で市販されている。液晶ポリマフィルムは、株式会社クラレからベクトラという商品名で市販されている。さらに、多孔質ポリテトラフルオロエチレンフィルムは、住友電気工業株式会社からポアフロンという商品名で、ジャパンゴアテックス株式会社からゴアテックスという商品名で市販されている。   The film used for the core material in the present invention is preferably a heat-resistant thermoplastic film using a heat-resistant polymer, a liquid crystal polymer, a fluorine polymer, or the like, such as polyamideimide, polyimide, polyetherimide, polyethersulfone, wholly aromatic. Polyester, polytetrafluoroethylene, ethylenetetrafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer and the like are preferably used. Moreover, a porous film can also be used for a core material for the elastic modulus reduction of an adhesive member. Preferably, those having a softening point temperature of 260 ° C. or higher are used. When a thermoplastic film having a softening point temperature of less than 260 ° C. is used as the core material, peeling from the adhesive may occur at a high temperature such as during solder reflow. The polyimide film is commercially available from Ube Industries, Ltd. under the trade name Upilex, from Toray DuPont Co., Ltd. as Kapton, and from Kaneka Chemical Co., Ltd. under the trade name Apical. The polytetrafluoroethylene film is commercially available from Mitsui DuPont Fluorochemical Co., Ltd. under the trade name Teflon (R) and from Daikin Industries, Ltd. under the trade name Polyflon. The ethylene tetrafluoroethylene copolymer film is commercially available from Asahi Glass Co., Ltd. under the trade name Aflon COP and from Daikin Industries, Ltd. under the trade name Neoflon ETFE. The tetrafluoroethylene-hexafluoropropylene copolymer film is commercially available from Mitsui DuPont Fluorochemical Co., Ltd. under the trade name Teflon (R) FEP and from Daikin Industries, Ltd. under the trade name Neoflon FEP. The tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer film is commercially available from Mitsui DuPont Fluorochemical Co., Ltd. under the trade name Teflon (R) PFA and from Daikin Industries, Ltd. under the trade name Neoflon PFA. The liquid crystal polymer film is commercially available from Kuraray Co., Ltd. under the trade name Vectra. Furthermore, the porous polytetrafluoroethylene film is marketed by Sumitomo Electric Industries, Ltd. under the trade name of PORFLON and from Japan Gore-Tex Co., Ltd. under the trade name of GORE-TEX.

コア材の両面に形成される接着剤は、接着剤の各成分を溶剤に溶解ないし分散してワニスとすることができる。このワニスをコア材となる耐熱性熱可塑フィルム上に塗布、加熱し溶剤を除去することにより接着剤層を耐熱性熱可塑フィルム上に形成することができる。この工程を耐熱性熱可塑フィルムの両面について行うことにより、コア材の両面に接着剤を形成した接着部材を作製することができる。この場合には、両面の接着剤層同士がブロッキングしないようにカバーフィルムで表面を保護することが望ましい。しかし、ブロッキングが起こらない場合には、経済的な理由からカバーフィルムを用いないことが好ましく、制限を加えるものではない。また、接着剤の各成分を溶剤に溶解ないし分散してワニスとしたものを、前述のキャリアフィルム上に塗布、加熱し溶剤を除去することにより接着剤層をキャリアフィルム上に形成し、この接着剤層をコア材の両面に貼合わせることによりコア材の両面に接着剤を形成した接着部材を作製することができる。この場合には、キャリアフィルムをカバーフィルムとして用いることもできる。コア材の両面に形成した接着剤は、フィルム状接着剤のみからなる接着部材と同様、DSCを用いて測定した全硬化発熱量の10〜40%の発熱を終えた状態とするのが好ましい。   The adhesive formed on both surfaces of the core material can be made into a varnish by dissolving or dispersing each component of the adhesive in a solvent. The adhesive layer can be formed on the heat-resistant thermoplastic film by applying this varnish on the heat-resistant thermoplastic film serving as the core material and heating to remove the solvent. By performing this process on both sides of the heat-resistant thermoplastic film, an adhesive member in which an adhesive is formed on both sides of the core material can be produced. In this case, it is desirable to protect the surface with a cover film so that the adhesive layers on both sides do not block each other. However, when blocking does not occur, it is preferable not to use a cover film for economic reasons, and no limitation is imposed. Also, an adhesive layer is formed on the carrier film by dissolving or dispersing each component of the adhesive in a solvent to form a varnish on the carrier film and heating to remove the solvent. By bonding the agent layer to both surfaces of the core material, an adhesive member in which an adhesive is formed on both surfaces of the core material can be produced. In this case, a carrier film can also be used as a cover film. The adhesive formed on both surfaces of the core material is preferably in a state in which the heat generation of 10 to 40% of the total curing heat generation amount measured using DSC is finished, as in the case of the adhesive member made of only the film adhesive.

本発明の接着剤硬化物の動的粘弾性測定装置で測定した貯蔵弾性率は、25℃で20〜2000MPa、260℃で3〜50MPaの低弾性率であると好ましい。貯蔵弾性率の測定は、接着剤硬化物に引張り荷重をかけて、周波数10Hz、昇温速度5〜10℃/分で−50℃から300℃まで測定する温度依存性測定モードで行った。貯蔵弾性率が25℃で2000MPaを超えるものと260℃で50MPaを超えるものでは、半導体チップと配線基板であるインターポーザとの熱膨張係数の差によって発生する熱応力を緩和させる効果が小さくなり、剥離やクラックを発生する恐れがある。一方、貯蔵弾性率が25℃で20MPa未満では接着剤の取扱性や接着剤層の厚み精度が悪くなり、260℃で3MPa未満ではリフロークラックを発生しやすくなる。   The storage elastic modulus measured by the dynamic viscoelasticity measuring device for the cured adhesive of the present invention is preferably a low elastic modulus of 20 to 2000 MPa at 25 ° C. and 3 to 50 MPa at 260 ° C. The storage elastic modulus was measured in a temperature-dependent measurement mode in which a tensile load was applied to the cured adhesive and the temperature was measured from −50 ° C. to 300 ° C. at a frequency of 10 Hz and a temperature increase rate of 5 to 10 ° C./min. When the storage elastic modulus exceeds 2000 MPa at 25 ° C. and exceeds 50 MPa at 260 ° C., the effect of relaxing the thermal stress due to the difference in the thermal expansion coefficient between the semiconductor chip and the interposer that is the wiring substrate is reduced, and peeling Or cracks. On the other hand, when the storage elastic modulus is less than 20 MPa at 25 ° C., the handling property of the adhesive and the thickness accuracy of the adhesive layer are deteriorated, and when it is less than 3 MPa at 260 ° C., reflow cracks are likely to occur.

本発明おける半導体搭載用配線基板は、配線基板の半導体搭載面に本発明の接着部材を備えたものである。本発明の半導体搭載用配線基板に用いる配線基板としては、セラミック基板や有機基板など基板材質に限定されることなく用いることができる。セラミック基板としては、アルミナ基板、窒化アルミ基板などを用いることができる。有機基板としては、ガラスクロスにエポキシ樹脂を含浸させたFR−4基板、ビスマレイミド−トリアジン樹脂を含浸させたBT基板、さらにはポリイミドフィルムを基材として用いたポリイミドフィルム基板などを用いることができる。配線の形状としては、片面配線、両面配線、多層配線いずれの構造でもよく、必要に応じて電気的に接続された貫通孔、非貫通孔を設けてもよい。さらに、配線が半導体装置の外部表面に現われる場合には、保護樹脂層を設けることが好ましい。接着部材を配線基板へ張り付ける方法としては、接着部材を所定の形状に切断し、その切断された接着部材を配線基板の所望の位置に熱圧着する方法が一般的ではあるが、これに限定されるものではない。   The wiring board for mounting a semiconductor according to the present invention includes the bonding member of the present invention on the semiconductor mounting surface of the wiring board. The wiring board used for the semiconductor mounting wiring board of the present invention can be used without being limited to a substrate material such as a ceramic substrate or an organic substrate. As the ceramic substrate, an alumina substrate, an aluminum nitride substrate, or the like can be used. As the organic substrate, an FR-4 substrate in which a glass cloth is impregnated with an epoxy resin, a BT substrate in which a bismaleimide-triazine resin is impregnated, a polyimide film substrate using a polyimide film as a base material, or the like can be used. . The shape of the wiring may be a single-sided wiring, double-sided wiring, or multilayer wiring structure, and a through hole or a non-through hole that is electrically connected may be provided as necessary. Further, when the wiring appears on the outer surface of the semiconductor device, it is preferable to provide a protective resin layer. As a method of attaching the adhesive member to the wiring board, a method of cutting the adhesive member into a predetermined shape and thermocompression bonding the cut adhesive member to a desired position on the wiring board is not limited thereto. Is not to be done.

本発明の半導体装置は、本発明の接着部材を用いて互いに接着された半導体チップと配線基板を有するものであれば、その構造に特に制限はない。例えば、本発明の半導体装置の構造としては、半導体チップの電極と配線基板とがワイヤボンディングで接続されている構造、半導体チップの電極と配線基板とがテープオートメーテッドボンディング(TAB)のインナーリードボンディングで接続されている構造等があるがこれらに限定されるものではなくいずれでも効果がある。接着部材を用いて半導体装置を組み立てる方法を図1〜図3を例に説明するが、本発明はこれらに限定されるものではない。接着部材は、図1(a)に示すようにフィルム状の接着剤1である接着部材でも、図1(b)に示すようにコア材2の両面に接着剤1を備えた接着部材でも良く、図2(a)、(b)に示す配線3を形成した配線基板4の配線側に、所定の大きさに切り抜いた接着部材を例えば100〜150℃、0.01〜3MPa、0.5〜10秒の条件で熱圧着し接着部材を備えた半導体搭載用配線基板を得、接着部材の配線基板と反対側に半導体チップ5を例えば120〜200℃、0.1〜3MPa、1〜10秒の条件で熱圧着し、150〜200℃、0.5〜2時間加熱して接着部材の接着剤層を硬化させた後、図3(a)、(b)では半導体チップのパッドと配線基板上の配線とをボンディングワイヤ6で接続し、図3(c)、(d)では半導体チップのパッドに基板のインナーリード6’をボンディングして、封止材7で封止、外部接続端子8であるはんだボールを設けて半導体装置を得ることができる。熱圧着の条件は、配線3側に張り合わせるときの方が、半導体チップ5を張り合わせるときよりも緩やかな方が好ましく、特に温度は低い方が好ましい。半導体チップと配線基板の間に発生する熱応力は、半導体チップと配線基板の面積差が小さい場合に著しいが、本発明による半導体装置は低弾性率の電子部品用接着部材を用いることによりその熱応力を緩和して信頼性を確保するものである。さらに、その接着部材が難燃化されている場合、半導体装置としての難燃性を有するものである。これらの効果は、半導体チップの面積が、配線基板の面積の70%以上である場合に非常に有効に現われるものである。ここで、半導体チップの面積及び配線基板の面積とは、半導体チップと配線基板の互いに向かい合った面の面積を意味する。また、このように半導体チップと配線基板の面積差が小さい半導体装置においては、外部接続端子はエリア状に設けられる場合が多い。   The semiconductor device of the present invention is not particularly limited in its structure as long as it has a semiconductor chip and a wiring board bonded to each other using the adhesive member of the present invention. For example, the structure of the semiconductor device according to the present invention includes a structure in which an electrode of a semiconductor chip and a wiring board are connected by wire bonding, and an inner lead bonding by tape automated bonding (TAB) between the electrode of the semiconductor chip and the wiring board. However, the structure is not limited to these, and any of them is effective. Although a method for assembling a semiconductor device using an adhesive member will be described with reference to FIGS. 1 to 3, the present invention is not limited to these. The adhesive member may be an adhesive member that is a film-like adhesive 1 as shown in FIG. 1A, or an adhesive member that is provided with the adhesive 1 on both surfaces of the core material 2 as shown in FIG. 1B. An adhesive member cut out to a predetermined size is provided on the wiring side of the wiring board 4 on which the wiring 3 shown in FIGS. 2A and 2B is formed, for example, 100 to 150 ° C., 0.01 to 3 MPa, 0.5 The semiconductor mounting wiring board provided with the adhesive member is obtained by thermocompression bonding under the conditions of 10 seconds to 10 seconds, and the semiconductor chip 5 is placed on the side opposite to the wiring board of the adhesive member, for example, 120 to 200 ° C., 0.1 to 3 MPa, After thermocompression bonding under conditions of seconds and heating at 150 to 200 ° C. for 0.5 to 2 hours to cure the adhesive layer of the adhesive member, in FIG. 3A and FIG. The wiring on the substrate is connected by the bonding wire 6, and in FIGS. 3 (c) and 3 (d), the semiconductor is connected. By bonding the inner leads 6 'of the substrate to the chip pads, sealing with sealant 7, it is possible to obtain a semiconductor device provided with a solder ball, which is an external connection terminal 8. The conditions for thermocompression bonding are preferably gentler when bonding to the wiring 3 side than when the semiconductor chip 5 is bonded, and particularly preferably lower in temperature. The thermal stress generated between the semiconductor chip and the wiring board is significant when the area difference between the semiconductor chip and the wiring board is small, but the semiconductor device according to the present invention has its thermal stress by using an adhesive member for electronic parts having a low elastic modulus. It relieves stress and ensures reliability. Further, when the adhesive member is flame retardant, it has flame retardancy as a semiconductor device. These effects appear very effectively when the area of the semiconductor chip is 70% or more of the area of the wiring board. Here, the area of the semiconductor chip and the area of the wiring board mean the areas of the surfaces of the semiconductor chip and the wiring board facing each other. In such a semiconductor device in which the difference in area between the semiconductor chip and the wiring board is small, the external connection terminals are often provided in an area.

本発明の接着部材を用いて半導体チップと配線基板を接着させた半導体装置は、耐リフロー性、温度サイクルテスト、耐湿性(耐PCT性)等に優れていた。さらに接着剤の可使期間が長く、25℃で3ヶ月保管後のものを用いて作製した半導体装置も初期とほぼ同等の特性を示していた。本発明おいて、重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより、標準ポリスチレンの検量線を用いて測定したものである。   A semiconductor device in which a semiconductor chip and a wiring board are bonded using the adhesive member of the present invention was excellent in reflow resistance, temperature cycle test, moisture resistance (PCT resistance), and the like. Further, the usable life of the adhesive was long, and the semiconductor device manufactured using the adhesive after being stored at 25 ° C. for 3 months showed almost the same characteristics as the initial stage. In the present invention, the weight average molecular weight is measured by gel permeation chromatography using a standard polystyrene calibration curve.

以下、実施例により本発明をさらに具体的に説明する。
(接着剤ワニス1の調製)
エポキシ樹脂としてビスフェノールA型エポキシ樹脂(エポキシ当量175、東都化成株式会社製商品名YD−8125を使用)45重量部、クレゾールノボラック型エポキシ樹脂(エポキシ当量210、東都化成株式会社製商品名YDCN−703を使用)15重量部、エポキシ樹脂の硬化剤としてフェノールノボラック樹脂(大日本インキ化学工業株式会社製商品名プライオーフェンLF2882を使用)40重量部、エポキシ基含有アクリル系重合体としてエポキシ基含有アクリルゴム(分子量100万、グリシジルメタクリレート1重量%、Tg−7℃、帝国化学産業株式会社製商品名HTR−860P−3を使用)220重量部、潜在性硬化促進剤としてアミン−ウレイドアダクト系硬化促進剤(富士化成株式会社製商品名フジキュアFXR−1030を使用)5重量部からなる組成物に、メチルエチルケトンを加えて撹拌混合し、真空脱気した。この接着剤ワニスを、厚さ75μmの離型処理したポリエチレンテレフタレートフィルム上に塗布し、140℃で5分間加熱乾燥して膜厚が80μmの塗膜とし、接着剤フィルムを作製した。この接着剤フィルムを170℃で1時間加熱硬化させてその貯蔵弾性率を動的粘弾性測定装置(レオロジ社製、DVE−V4)を用いて測定(サンプルサイズ:長さ20mm、幅4mm、膜厚80μm、昇温速度5℃/分、引張りモード、10Hz、自動静荷重)した結果、25℃で600MPa、260℃で5MPaであった。この接着剤ワニスの固形分は32重量%であった。この接着剤ワニスの固形分は、ワニス粘度が約100ポイズ(25℃)になるようにした値であり、これより固形分を高めて粘度を上げると厚みのばらつきが大きくなる(以下同じ)。
Hereinafter, the present invention will be described more specifically with reference to examples.
(Preparation of adhesive varnish 1)
45 parts by weight of bisphenol A type epoxy resin (epoxy equivalent 175, product name YD-8125 manufactured by Toto Kasei Co., Ltd.) as an epoxy resin, cresol novolac type epoxy resin (epoxy equivalent 210, product name YDCN-703 manufactured by Toto Kasei Co., Ltd.) 15 parts by weight, phenol novolac resin (using Dainippon Ink Chemical Co., Ltd., trade name Pryofen LF2882) as epoxy resin curing agent, epoxy group-containing acrylic rubber as epoxy group-containing acrylic polymer (Molecular weight 1 million, glycidyl methacrylate 1% by weight, Tg-7 ° C., using the trade name HTR-860P-3 manufactured by Teikoku Chemical Industry Co., Ltd.) 220 parts by weight, amine-ureidoduct type curing accelerator as latent curing accelerator (Fuji Chemical Co., Ltd. product name Fujiki The composition comprising an A FXR-1030 used) from 5 parts by weight, and mixed by stirring methyl ethyl ketone and vacuum degassed. This adhesive varnish was applied onto a 75 μm-thick polyethylene terephthalate film subjected to a release treatment, and dried by heating at 140 ° C. for 5 minutes to form a coating film having a thickness of 80 μm, thereby producing an adhesive film. This adhesive film was cured by heating at 170 ° C. for 1 hour, and its storage elastic modulus was measured using a dynamic viscoelasticity measuring device (DVE-V4, manufactured by Rheology) (sample size: length 20 mm, width 4 mm, membrane) As a result of a thickness of 80 μm, a heating rate of 5 ° C./min, a tensile mode, 10 Hz, automatic static load), it was 600 MPa at 25 ° C. and 5 MPa at 260 ° C. The adhesive varnish had a solid content of 32% by weight. The solid content of the adhesive varnish is a value such that the varnish viscosity is about 100 poise (25 ° C.). If the solid content is increased to increase the viscosity, the variation in thickness increases (hereinafter the same).

(接着剤ワニス2の調製)
接着剤ワニス1の調製において、潜在性硬化促進剤として、アミン−ウレイドアダクト系硬化促進剤の代わりにアミン−エポキシアダクト系硬化促進剤(味の素株式会社製商品名アミキュアMY−24を使用)5重量部を使用したこと以外は、接着剤ワニス1の調製に従って、接着剤ワニス2の調製を行った。また、この接着剤ワニスを利用して、接着剤ワニス1の調製における方法と同様に接着剤フィルムを作製した。この接着剤フィルムを使用して前記と同様にしてその貯蔵弾性率を動的粘弾性測定装置を用いて測定した結果、25℃で360MPa、260℃で4MPaであった。この接着剤ワニス2の固形分は30重量%であった。
(Preparation of adhesive varnish 2)
In the preparation of the adhesive varnish 1, 5 wt. Of an amine-epoxy adduct curing accelerator (trade name Amicure MY-24 manufactured by Ajinomoto Co., Inc.) is used as a latent curing accelerator instead of an amine-ureadduct curing accelerator. The adhesive varnish 2 was prepared according to the preparation of the adhesive varnish 1 except that the parts were used. Moreover, the adhesive film was produced similarly to the method in preparation of the adhesive varnish 1 using this adhesive varnish. Using this adhesive film, the storage elastic modulus was measured using a dynamic viscoelasticity measuring apparatus in the same manner as described above. As a result, it was 360 MPa at 25 ° C. and 4 MPa at 260 ° C. The adhesive varnish 2 had a solid content of 30% by weight.

(接着剤ワニス3)
接着剤ワニス2の調製において、潜在性硬化促進剤として、アミン−エポキシアダクト系硬化促進剤の使用量を3重量部としたこと以外は、接着剤ワニス2の調製に従って、接着剤ワニス3の調製を行った。また、この接着剤ワニスを利用して、製膜時の乾燥温度を140℃から160℃としたこと以外は、接着剤ワニス1の調製における方法と同様に接着剤フィルムを作製した。この接着剤フィルムを使用して前記と同様にしてその貯蔵弾性率を動的粘弾性測定装置を用いて測定した結果、25℃で360MPa、260℃で4MPaであった。この接着剤ワニスの固形分は28重量%であった。
(Adhesive varnish 3)
In the preparation of the adhesive varnish 2, the adhesive varnish 3 was prepared according to the preparation of the adhesive varnish 2 except that the amount of the amine-epoxy adduct curing accelerator used was 3 parts by weight as the latent curing accelerator. Went. Moreover, using this adhesive varnish, an adhesive film was produced in the same manner as in the preparation of the adhesive varnish 1 except that the drying temperature during film formation was changed from 140 ° C. to 160 ° C. Using this adhesive film, the storage elastic modulus was measured using a dynamic viscoelasticity measuring apparatus in the same manner as described above. As a result, it was 360 MPa at 25 ° C. and 4 MPa at 260 ° C. This adhesive varnish had a solid content of 28% by weight.

(接着剤ワニス4)
接着剤ワニス2の調製において、潜在性硬化促進剤として、アミン−エポキシアダクト系硬化促進剤の使用量を10重量部としたこと以外は、接着剤ワニス2の調製に従って、接着剤ワニス4の調製を行った。また、この接着剤ワニスを利用して、製膜時の乾燥温度を140℃から120℃としたこと以外は、接着剤ワニス1の調製における方法と同様に接着剤フィルムを作製した。この接着剤フィルムを使用して前記と同様にしてその貯蔵弾性率を動的粘弾性測定装置を用いて測定した結果、25℃で360MPa、260℃で4MPaであった。この接着剤ワニスの固形分は28重量%であった。
(Adhesive varnish 4)
In the preparation of the adhesive varnish 2, the adhesive varnish 4 was prepared according to the preparation of the adhesive varnish 2 except that the amount of the amine-epoxy adduct curing accelerator used was 10 parts by weight as the latent curing accelerator. Went. Moreover, using this adhesive varnish, an adhesive film was produced in the same manner as in the preparation of the adhesive varnish 1 except that the drying temperature during film formation was changed from 140 ° C. to 120 ° C. Using this adhesive film, the storage elastic modulus was measured using a dynamic viscoelasticity measuring apparatus in the same manner as described above. As a result, it was 360 MPa at 25 ° C. and 4 MPa at 260 ° C. This adhesive varnish had a solid content of 28% by weight.

(接着剤ワニス5)
接着剤ワニス1の調製において、潜在性硬化促進剤として、アミン−ウレイドアダクト系硬化促進剤の代わりに2−フェニルイミダゾール0.5重量部を使用したこと以外は、接着剤ワニス1の調製に従って、接着剤ワニス5の調製を行った。また、この接着剤ワニスを利用して、接着剤ワニス1の調製における方法と同様に接着剤フィルムを作製した。この接着剤フィルムを使用して前記と同様にしてその貯蔵弾性率を動的粘弾性測定装置を用いて測定した結果、25℃で360MPa、260℃で4MPaであった。この接着剤ワニスの固形分は28重量%であった。
(Adhesive varnish 5)
In the preparation of the adhesive varnish 1, according to the preparation of the adhesive varnish 1, except that 0.5 parts by weight of 2-phenylimidazole was used as a latent curing accelerator instead of the amine-ureidoduct type curing accelerator. The adhesive varnish 5 was prepared. Moreover, the adhesive film was produced similarly to the method in preparation of the adhesive varnish 1 using this adhesive varnish. Using this adhesive film, the storage elastic modulus was measured using a dynamic viscoelasticity measuring apparatus in the same manner as described above. As a result, it was 360 MPa at 25 ° C. and 4 MPa at 260 ° C. This adhesive varnish had a solid content of 28% by weight.

(実施例1)
接着剤ワニス1を、厚さ75μmの離型処理したポリエチレンテレフタレートフィルム上に塗布し、140℃で5分間加熱乾燥して、膜厚が75μmのBステージ状態の塗膜を形成し、キャリアフィルムを備えた接着フィルムを作製した。この接着フィルムを温度110℃、圧力0.3MPa、速度0.3m/分の条件でホットロールラミネーターを用いて貼り合わせ、厚さ150μmの単層フィルム状の接着部材を作製した。なおこの状態での接着剤の硬化度は、DSC(デュポン社製912型DSC)を用いて測定(昇温速度、10℃/分)した結果、全硬化発熱量の20%の発熱を終えた状態であった。また、接着剤のみの残存溶媒量は、120℃で60分間加熱前後の重量変化より1.5重量%であった。
Example 1
The adhesive varnish 1 is applied onto a 75 μm thick polyethylene terephthalate film that has been subjected to a release treatment, and is heated and dried at 140 ° C. for 5 minutes to form a B-stage coating film having a thickness of 75 μm. The provided adhesive film was produced. This adhesive film was bonded using a hot roll laminator under the conditions of a temperature of 110 ° C., a pressure of 0.3 MPa, and a speed of 0.3 m / min to produce a single-layer film-like adhesive member having a thickness of 150 μm. The degree of cure of the adhesive in this state was measured using DSC (912 type DSC manufactured by DuPont) (temperature increase rate, 10 ° C./min), and as a result, heat generation of 20% of the total heat generation amount was finished. It was in a state. The residual solvent amount of the adhesive alone was 1.5% by weight based on the weight change before and after heating at 120 ° C. for 60 minutes.

(実施例2)
接着剤ワニス1を接着剤ワニス2とした以外は実施例1と同様にして、単層フィルム状の接着部材を作製した。なおこの状態での接着剤の硬化度は、DSC(デュポン社製912型DSC)を用いて測定(昇温速度、10℃/分)した結果、全硬化発熱量の20%の発熱を終えた状態であった。残存溶媒量は、1.4重量%であった。
(Example 2)
A single-layer film-like adhesive member was produced in the same manner as in Example 1 except that the adhesive varnish 1 was changed to the adhesive varnish 2. The degree of cure of the adhesive in this state was measured using DSC (912 type DSC manufactured by DuPont) (temperature increase rate, 10 ° C./min), and as a result, heat generation of 20% of the total heat generation amount was finished. It was in a state. The amount of residual solvent was 1.4% by weight.

(実施例3)
接着剤ワニス2を、厚さ25μmのポリイミドフィルム(宇部興産株式会社製商品名ユーピレックスSGA−25を使用)上に塗布し、120℃で5分間加熱乾燥して、膜厚が50μmのBステージ状態の塗膜を形成し、さらに接着剤層を形成した反対面に同じワニスを塗布し、140℃で5分間加熱乾燥して、膜厚が70μmのBステージ状態の塗膜を形成し、コア材として用いたポリイミドフィルムの両面に接着剤層を備えた接着部材を作製した。なおこの状態での接着剤の硬化度は、DSC(デュポン社製912型DSC)を用いて測定(昇温速度、10℃/分)した結果、50μm層で全硬化発熱量の25%、75μm層で全硬化発熱量の20%の発熱を終えた状態であった。残存溶媒量は、何れも1.3〜1.6重量%であった。
(Example 3)
Adhesive varnish 2 is applied onto a polyimide film having a thickness of 25 μm (using Ube Industries, Ltd., trade name Upilex SGA-25), and heated and dried at 120 ° C. for 5 minutes to form a B-stage with a film thickness of 50 μm. The same varnish was applied to the opposite surface on which the adhesive layer was formed, and heated and dried at 140 ° C. for 5 minutes to form a B-stage coating film with a film thickness of 70 μm. An adhesive member provided with an adhesive layer on both sides of the polyimide film used as was prepared. The degree of cure of the adhesive in this state was measured using DSC (912 type DSC manufactured by DuPont) (temperature increase rate, 10 ° C./min), and as a result, 25% of the total curing heating value in the 50 μm layer was 75 μm. The layer was in a state where heat generation of 20% of the total heat generation amount was finished. The residual solvent amount was 1.3 to 1.6% by weight in all cases.

(実施例4)
接着剤ワニス2を、厚さ75μmの離型処理したポリエチレンテレフタレートフィルム上に塗布し、140℃で5分間加熱乾燥して、膜厚が75μmのBステージ状態の塗膜を形成し、キャリアフィルムを備えた接着フィルムを作製した。この接着フィルムを、厚さ25μmのポリイミドフィルム(宇部興産株式会社製商品名ユーピレックスSGA−25を使用)の両面に温度110℃、圧力0.3MPa、速度0.2m/分の条件でホットロールラミネーターを用いて貼り付け、コア材として用いたポリイミドフィルムの両面に接着剤層を備えた接着部材を作製した。なおこの状態での接着剤の硬化度は、DSC(デュポン社製912型DSC)を用いて測定(昇温速度、10℃/分)した結果、両面の接着剤層ともに全硬化発熱量の20%の発熱を終えた状態であった。残存溶媒量は、1.4重量%であった。
Example 4
Adhesive varnish 2 was applied onto a 75 μm thick release-treated polyethylene terephthalate film, dried by heating at 140 ° C. for 5 minutes to form a B-stage coating film having a thickness of 75 μm, and a carrier film The provided adhesive film was produced. This adhesive film is a hot roll laminator under conditions of a temperature of 110 ° C., a pressure of 0.3 MPa, and a speed of 0.2 m / min on both sides of a polyimide film having a thickness of 25 μm (using Ube Industries, Ltd., trade name Upilex SGA-25). An adhesive member having adhesive layers on both sides of a polyimide film used as a core material was prepared. The degree of cure of the adhesive in this state was measured using DSC (912 type DSC manufactured by DuPont) (temperature increase rate, 10 ° C./min). % Heat generation was completed. The amount of residual solvent was 1.4% by weight.

(実施例5)
コア材のポリイミドフィルムを厚さ25μmの液晶ポリマフィルム(株式会社クラレ製商品名ベクトラLCP−Aを使用)にしたこと以外は実施例4と同様にしてコア材として用いた液晶ポリマフィルム両面に接着剤層を備えた接着部材を作製した。なおこの状態での接着剤の硬化度は、DSC(デュポン社製912型DSC)を用いて測定(昇温速度、10℃/分)した結果、両面の接着剤層ともに全硬化発熱量の20%の発熱を終えた状態であった。残存溶媒量は、1.4重量%であった。
(Example 5)
Adhered to both sides of the liquid crystal polymer film used as the core material in the same manner as in Example 4 except that the polyimide film of the core material was a liquid crystal polymer film having a thickness of 25 μm (using Kuraray's trade name Vectra LCP-A). An adhesive member provided with an agent layer was produced. The degree of cure of the adhesive in this state was measured using DSC (912 type DSC manufactured by DuPont) (temperature increase rate, 10 ° C./min). % Heat generation was completed. The amount of residual solvent was 1.4% by weight.

(実施例6)
コア材のポリイミドフィルムを厚さ25μmのテトラフルオロエチレン−ヘキサフルオロプロピレンコポリマーフィルム(三井・デュポンフロロケミカル株式会社製商品名テフロン(R)FEPを使用)にしたこと以外は実施例4と同様にしてテトラフルオロエチレン−ヘキサフルオロプロピレンコポリマーフィルム両面に接着剤層を備えた接着部材を作製した。テトラフルオロエチレン−ヘキサフルオロプロピレンコポリマーフィルムについては、濡れ性を向上して接着性を上げるのためにその両面を化学処理(株式会社潤工社製商品名テトラエッチを使用)したものを用いた。なおこの状態での接着剤の硬化度は、DSC(デュポン社製912型DSC)を用いて測定(昇温速度、10℃/分)した結果、両面の接着剤層ともに全硬化発熱量の20%の発熱を終えた状態であった。残存溶媒量は、1.5重量%であった。
(Example 6)
Except that the polyimide film of the core material is a 25 μm thick tetrafluoroethylene-hexafluoropropylene copolymer film (trade name Teflon (R) FEP manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) is used, the same as in Example 4. An adhesive member having an adhesive layer on both sides of a tetrafluoroethylene-hexafluoropropylene copolymer film was produced. About the tetrafluoroethylene-hexafluoropropylene copolymer film, in order to improve wettability and to improve adhesiveness, a film subjected to chemical treatment (using a trade name “Tetra Etch” manufactured by Junko Co., Ltd.) was used. The degree of cure of the adhesive in this state was measured using DSC (912 type DSC manufactured by DuPont) (temperature increase rate, 10 ° C./min). % Heat generation was completed. The amount of residual solvent was 1.5% by weight.

(実施例7)
接着剤ワニス2を、厚さ75μmの離型処理したポリエチレンテレフタレートフィルム上に塗布し、140℃で5分間加熱乾燥して、膜厚が60μmのBステージ状態の塗膜を形成し、キャリアフィルムを備えた単層フィルム状の接着部材を作製した。 この単層フィルムを、厚さ100μmの多孔質ポリテトラフルオロエチレンフィルム(住友電気工業株式会社製商品名ポアフロンWP−100−100を使用)の両面に温度110℃、圧力0.3MPa、速度0.2m/分の条件でホットロールラミネーターを用いて貼り付け、コア材として用いた多孔質ポリテトラフルオロエチレンフィルムの両面に接着剤層を備えた接着部材を作製した。なおこの状態での接着剤の硬化度は、DSC(デュポン社製912型DSC)を用いて測定(昇温速度、10℃/分)した結果、両面の接着剤層ともに全硬化発熱量の20%の発熱を終えた状態であった。残存溶媒量は、1.4重量%であった。
(Example 7)
Adhesive varnish 2 was applied onto a 75 μm thick release-treated polyethylene terephthalate film, dried by heating at 140 ° C. for 5 minutes to form a B-stage coating film having a thickness of 60 μm, and a carrier film The provided single-layer film-like adhesive member was prepared. This single-layer film was formed on both surfaces of a porous polytetrafluoroethylene film having a thickness of 100 μm (using Sumitomo Electric Industries, Ltd. trade name Poreflon WP-100-100) at a temperature of 110 ° C., a pressure of 0.3 MPa, and a speed of 0.8. Adhesion members were prepared by using a hot roll laminator under the condition of 2 m / min to provide an adhesive layer on both sides of the porous polytetrafluoroethylene film used as the core material. The degree of cure of the adhesive in this state was measured using DSC (912 type DSC manufactured by DuPont) (temperature increase rate, 10 ° C./min). % Heat generation was completed. The amount of residual solvent was 1.4% by weight.

(実施例8)
接着剤ワニス1を接着剤ワニス3とした以外は実施例1と同様にして、単層フィルム状の接着部材を作製した。なおこの状態での接着剤の硬化度は、DSC(デュポン社製912型DSC)を用いて測定(昇温速度、10℃/分)した結果、全硬化発熱量の20%の発熱を終えた状態であった。
(Example 8)
A single-layer film-like adhesive member was produced in the same manner as in Example 1 except that the adhesive varnish 1 was changed to the adhesive varnish 3. The degree of cure of the adhesive in this state was measured using DSC (912 type DSC manufactured by DuPont) (temperature increase rate, 10 ° C./min), and as a result, heat generation of 20% of the total heat generation amount was finished. It was in a state.

(実施例9)
接着剤ワニス1を接着剤ワニス4とした以外は実施例1と同様にして、単層フィルム状の接着部材を作製した。なおこの状態での接着剤の硬化度は、DSC(デュポン社製912型DSC)を用いて測定(昇温速度、10℃/分)した結果、全硬化発熱量の20%の発熱を終えた状態であった。
Example 9
A single-layer film-like adhesive member was produced in the same manner as in Example 1 except that the adhesive varnish 1 was changed to the adhesive varnish 4. The degree of cure of the adhesive in this state was measured using DSC (912 type DSC manufactured by DuPont) (temperature increase rate, 10 ° C./min), and as a result, heat generation of 20% of the total heat generation amount was finished. It was in a state.

(参考例1)
接着剤ワニス1を接着剤ワニス5とした以外は実施例1と同様にして、単層フィルム状の接着部材を作製した。なお、この状態での接着剤の硬化度は、DSC(デュポン社製912型DSC)を用いて測定(昇温速度、10℃/分)した結果、全硬化発熱量の20%の発熱を終えた状態であった。
(Reference Example 1)
A single-layer film-like adhesive member was produced in the same manner as in Example 1 except that the adhesive varnish 1 was changed to the adhesive varnish 5. The degree of curing of the adhesive in this state was measured using a DSC (912 type DSC manufactured by DuPont) (temperature increase rate, 10 ° C./min), and as a result, the heat generation of 20% of the total heating value was finished. It was in a state.

得られた接着部材を用いて図3(c)、(d)に示すような半導体チップと厚み25μmのポリイミドフィルムを基材に用いた配線基板を接着部材を用いて、温度160℃、圧力1.5MPa及び時間3秒の条件で貼り合せた半導体装置サンプル(片面にはんだボールを形成)を作製し、耐熱性、難燃性、耐湿性、発泡の有無を調べた。耐熱性の評価方法には、耐リフロークラック性と温度サイクル試験を適用した。耐リフロークラック性の評価は、サンプル表面の最高温度が240℃でこの温度を20秒間保持するように温度設定したIRリフロー炉にサンプルを通し、室温で放置することにより冷却する処理を2回繰り返したサンプル中のクラックを目視と超音波顕微鏡で観察した。クラックの発生していないものを○とし、発生していたものを×とした。耐温度サイクル性は、サンプルを−55℃雰囲気に30分間放置し、その後125℃の雰囲気に30分間放置する工程を1サイクルとして、1000サイクル後において超音波顕微鏡を用いて剥離やクラック等の破壊が発生していないものを○、発生したものを×とした。また、耐湿性評価は、温度121℃、湿度100%、2気圧の雰囲気(プレッシャークッカーテスト: PCT処理)で72時間処理後に剥離を観察することにより行った。接着部材の剥離の認められなかったものを○とし、剥離のあったものを×とした。発泡の有無は超音波顕微鏡を用いて確認し、接着部材に発泡が認められなかったものを○とし、発泡のあったものを×とした。また可使期間の評価は、得られた接着部材を25℃で3ヶ月保管したものを用いて同様な半導体装置サンプルを作製し、超音波顕微鏡を用いて接着剤の回路への埋め込み性を確認した。配線基板に設けられた回路との間に空隙がなかったものを○、空隙が認められたものを×とした。その結果を表1に示す。   Using the obtained adhesive member, a wiring board using a semiconductor chip as shown in FIGS. 3C and 3D and a polyimide film having a thickness of 25 μm as a base material is used at a temperature of 160 ° C. and a pressure of 1 A semiconductor device sample (formed with solder balls formed on one side) bonded under the conditions of 0.5 MPa and time of 3 seconds was prepared and examined for heat resistance, flame retardancy, moisture resistance, and foaming. As a heat resistance evaluation method, reflow crack resistance and a temperature cycle test were applied. The evaluation of reflow crack resistance was repeated twice by passing the sample through an IR reflow furnace set at a maximum temperature of 240 ° C. and maintaining the temperature for 20 seconds, and then allowing it to cool at room temperature. The cracks in the samples were observed visually and with an ultrasonic microscope. The thing which did not generate | occur | produce the crack was set to (circle), and the thing which had generate | occur | produced was set to x. The temperature cycle resistance is that the sample is left in a −55 ° C. atmosphere for 30 minutes and then left in a 125 ° C. atmosphere for 30 minutes. After 1000 cycles, an ultrasonic microscope is used to destroy peeling or cracks. The case where no occurred was marked with ◯, and the case where it occurred was marked with ×. The moisture resistance was evaluated by observing peeling after treatment for 72 hours in an atmosphere of 121 ° C., 100% humidity and 2 atmospheres (pressure cooker test: PCT treatment). The case where peeling of the adhesive member was not recognized was rated as ◯, and the case where peeling was observed as x. The presence / absence of foaming was confirmed using an ultrasonic microscope. The case where foaming was not observed in the adhesive member was evaluated as ◯, and the case where foaming was present was evaluated as x. For the evaluation of the pot life, a similar semiconductor device sample was prepared using the obtained adhesive member stored at 25 ° C. for 3 months, and the embedding property of the adhesive in the circuit was confirmed using an ultrasonic microscope. did. The case where there was no space between the circuit provided on the wiring board and the case where the space was recognized was rated as x. The results are shown in Table 1.

Figure 0004556472
Figure 0004556472

実施例1はアミン−ウレイドアダクト系潜在性硬化促進剤を用いたものであり、可使期間は長く良好であったが、硬化時の発泡が認められた。実施例2〜9はアミン−エポキシアダクト系潜在性硬化促進剤を用いたものであり、可使期間が長く、硬化時の発泡もなく良好な結果を示した。これらの接着剤硬化物は、本発明で好ましいと規定した25℃及び260℃での貯蔵弾性率を示しており、さらにこれらの接着部材を用いた半導体装置は、耐リフロークラック性、耐温度サイクル性、耐湿性が良好であった。また、実施例3〜7はコア材を備えた接着部材であるが、取扱性が良好であった。参考例1は硬化促進剤にアダクトがないイミダゾール化合物を使用した例であり、可使期間が短かった。   In Example 1, an amine-ureidoduct-based latent curing accelerator was used. The pot life was long and good, but foaming during curing was observed. In Examples 2 to 9, amine-epoxy adduct-based latent curing accelerators were used, and the pot life was long and there was no foaming at the time of curing, and good results were shown. These cured adhesives have storage elastic moduli at 25 ° C. and 260 ° C. that are defined as preferable in the present invention, and semiconductor devices using these adhesive members have reflow crack resistance and temperature cycle resistance. Property and moisture resistance were good. Moreover, although Examples 3-7 were the adhesive members provided with the core material, the handleability was favorable. Reference Example 1 was an example in which an imidazole compound having no adduct was used as the curing accelerator, and the pot life was short.

実施例10
エポキシ樹脂としてビスフェノールA型エポキシ樹脂(エポキシ当量190、油化シェルエポキシ株式会社製のエピコート828を使用)45重量部、クレゾールノボラック型エポキシ樹脂(エポキシ当量195、住友化学工業株式会社製のESCN195を使用)15重量部、エポキシ樹脂の硬化剤としてフェノールノボラック樹脂(大日本インキ化学工業株式会社製のプライオーフェンLF2882を使用)40重量部、シランカップリング剤としてγ−グリシドキシプロピルトリメトキシシラン(日本ユニカー株式会社製のNUCA−187を使用)0.7重量部からなる組成物に、メチルエチルケトンを加えて攪拌混合し、これにグリシジルメタクリレート又はグリシジルアクリレート2〜6重量%を含むアクリルゴム(重量平均分子量100万、帝国化学産業株式会社製のHTR−860P−3を使用)150重量部、硬化促進剤としてエポキシアミンアダクト化合物である味の素株式会社製のアミキュアMY−24を4重量部添加し、攪拌モータで30分混合し、ワニスを得た。このワニスをキャリアフィルム(厚さ75μmの表面処理したポリエチレンテレフタレートフィルム)上に塗布して、140℃で5分間加熱乾燥し、厚さ75μmのBステージ状態の塗膜を形成し、接着フィルムを作成した。アミキュアMY−24はエポキシ樹脂及び硬化剤の混合物には均一に溶解したが、アクリルゴムには溶解せず、粒子状に析出した。また、上記接着剤は硬化後にエポキシ樹脂が分散相、アクリルゴムが連続相に相分離した。
Example 10
As epoxy resin, 45 parts by weight of bisphenol A type epoxy resin (epoxy equivalent 190, using Epicoat 828 manufactured by Yuka Shell Epoxy Co., Ltd.), cresol novolac type epoxy resin (epoxy equivalent 195, ESCN195 manufactured by Sumitomo Chemical Co., Ltd.) ) 15 parts by weight, 40 parts by weight of a phenol novolac resin (using Daiofen Ink Chemical Co., Ltd., priofen LF2882) as a curing agent for epoxy resin, and γ-glycidoxypropyltrimethoxysilane (Japan) as a silane coupling agent (Uses NUCA-187 manufactured by Unicar Co., Ltd.) To a composition consisting of 0.7 parts by weight, methyl ethyl ketone is added and mixed with stirring, and acrylic rubber containing 2 to 6% by weight of glycidyl methacrylate or glycidyl acrylate (weight average fraction) Amount of 1 million, using HTR-860P-3 manufactured by Teikoku Chemical Industry Co., Ltd.) 150 parts by weight, 4 parts by weight of Amicure MY-24 manufactured by Ajinomoto Co., Inc., which is an epoxyamine adduct compound, is added as a curing accelerator and stirred The mixture was mixed with a motor for 30 minutes to obtain a varnish. This varnish is coated on a carrier film (75 μm thick surface-treated polyethylene terephthalate film) and dried by heating at 140 ° C. for 5 minutes to form a 75 μm thick B-stage coating film to create an adhesive film did. Amicure MY-24 was uniformly dissolved in the mixture of the epoxy resin and the curing agent, but was not dissolved in the acrylic rubber but deposited in the form of particles. Further, after curing, the adhesive was phase-separated into an epoxy resin dispersed phase and acrylic rubber into a continuous phase.

実施例11
硬化促進剤としてアミン−ウレイド系のアダクト系化合物である富士化成株式会社のフジキュアFXR−1030を使用した他は実施例10と同様にして作製した。フジキュアFXR−1030はエポキシ樹脂及び硬化剤の混合物には均一に溶解したが、アクリルゴムには溶解せず、粒子状に析出した。
Example 11
It was produced in the same manner as in Example 10 except that Fuji Cure FXR-1030 (Fuji Kasei Co., Ltd.), which is an amine-ureido adduct compound, was used as a curing accelerator. Fuji Cure FXR-1030 was uniformly dissolved in the mixture of the epoxy resin and the curing agent, but was not dissolved in the acrylic rubber but precipitated in the form of particles.

参考例2
硬化促進剤として1−シアノエチル−2−フェニルイミダゾール(四国化成工業株式会社製キュアゾール2PZ−CNを使用)0.5重量部を使用した他は実施例1と同様にしてフィルムを作製した。キュアゾール2PZ−CNは、エポキシ樹脂、アクリルゴム両方に溶解した。
Reference example 2
A film was prepared in the same manner as in Example 1 except that 0.5 part by weight of 1-cyanoethyl-2-phenylimidazole (using Surekoku Kasei Kogyo Co., Ltd., Curazole 2PZ-CN) was used as a curing accelerator. Curesol 2PZ-CN was dissolved in both epoxy resin and acrylic rubber.

可使期間の評価は、得られた接着部材を25℃で1〜6ヶ月保管したものを用いて、半導体チップと厚み25μmのポリイミドフィルムを基材に用いた配線基板とを、温度160℃、圧力1.5MPa及び時間3秒の条件で貼りあわせ、超音波顕微鏡を用いて接着剤の回路への埋め込み性を確認した。配線基板に設けられた回路との間に空隙がなかった物を○、空隙が認められたものを×とした。その結果を表1に示す。   The evaluation of the pot life is carried out by using the obtained adhesive member stored at 25 ° C. for 1 to 6 months, and using a semiconductor chip and a wiring board using a polyimide film having a thickness of 25 μm as a base material at a temperature of 160 ° C., Bonding was performed under conditions of a pressure of 1.5 MPa and a time of 3 seconds, and the embedding property of the adhesive into the circuit was confirmed using an ultrasonic microscope. The thing which did not have a space | gap between the circuits provided in the wiring board was set as (circle), and the thing in which the space | gap was recognized was set as x. The results are shown in Table 1.

Figure 0004556472
実施例10はアミン−エポキシアダクト系潜在性硬化促進剤を用いたものであり、可使期間は長く良好であった。実施例11はアミン−ウレイドアダクト系潜在性硬化促進剤を用いたものであり、可使期間は長く良好であった。参考例2は、分子量が小さく、ゴム、エポキシの両方に溶解性のあるイミダゾール系の硬化促進剤を使用したものであり、可使期間が短い。
Figure 0004556472
In Example 10, an amine-epoxy adduct-based latent curing accelerator was used, and the pot life was long and good. In Example 11, an amine-ureadoduct latent curing accelerator was used, and the pot life was long and good. Reference Example 2 uses an imidazole-based curing accelerator having a low molecular weight and solubility in both rubber and epoxy, and has a short pot life.

(a)は本発明による接着剤単層からなるフィルム状の接着部材を示す断面図、(b)は本発明によるコア材の両面に接着剤を備えた接着部材を示す断面図。(A) is sectional drawing which shows the film-like adhesive member which consists of an adhesive single layer by this invention, (b) is sectional drawing which shows the adhesive member provided with the adhesive agent on both surfaces of the core material by this invention. (a)は本発明による接着剤単層からなるフィルム状の接着部材を用いた半導体搭載用配線基板を示す断面図、(b)は本発明によるコア材の両面に接着剤を備えた接着部材を用いた半導体搭載用配線基板を示す断面図。(A) is sectional drawing which shows the wiring board for semiconductor mounting using the film-shaped adhesive member which consists of an adhesive single layer by this invention, (b) is the adhesive member provided with the adhesive agent on both surfaces of the core material by this invention Sectional drawing which shows the wiring board for semiconductor mounting using this. (a)は本発明による接着剤単層からなるフィルム状の接着部材を用いて半導体チップと配線基板を接着させ、半導体チップのパッドと基板上の配線とをボンディングワイヤで接続した半導体装置の断面図、(b)は本発明によるコア材の両面に接着剤を備えた接着部材を用いて半導体チップと配線基板を接着させ、半導体チップのパッドと基板上の配線とをボンディングワイヤで接続した半導体装置の断面図、(c)は本発明による接着剤単層からなるフィルム状の接着部材を用いて半導体チップと配線基板を接着させ、半導体チップのパッドに基板のインナーリードをボンディングした半導体装置の断面図、(d)は本発明によるコア材の両面に接着剤を備えた接着部材を用いて半導体チップと配線基板を接着させ、半導体チップのパッドに基板のインナーリードをボンディングした半導体装置の断面図。(A) is a cross section of a semiconductor device in which a semiconductor chip and a wiring board are bonded using a film-like adhesive member made of an adhesive single layer according to the present invention, and the pads of the semiconductor chip and wiring on the board are connected by bonding wires. FIG. 4B shows a semiconductor in which a semiconductor chip and a wiring substrate are bonded using an adhesive member having an adhesive on both surfaces of the core material according to the present invention, and the pads of the semiconductor chip and the wiring on the substrate are connected by bonding wires. FIG. 4C is a cross-sectional view of the device, in which a semiconductor chip and a wiring board are bonded using a film-like adhesive member made of a single adhesive layer according to the present invention, and an inner lead of the substrate is bonded to a pad of the semiconductor chip A cross-sectional view, (d) shows a semiconductor chip and a wiring board bonded by using an adhesive member having an adhesive on both sides of the core material according to the present invention. Sectional view of a semiconductor device bonding inner leads of the substrate.

符号の説明Explanation of symbols

1 . 接着剤
2 . コア材(耐熱性熱可塑フィルム)
3 . 配線
4 . 配線基板
5 . 半導体チップ
6 . ボンディングワイヤ
6’. インナリード
7 . 封止材
8 . 外部接続端子
1. Adhesive 2. Core material (heat-resistant thermoplastic film)
3. Wiring 4. Wiring board 5. Semiconductor chip 6. Bonding wire 6 '. Inner lead 7. Sealing material 8. External connection terminal

Claims (10)

Bステージ状態で連続相と分散相に相分離する2種類の樹脂及び硬化促進剤を含有してなる接着剤組成物をキャリアフィルム上に形成又はコア材の両面に形成してBステージ状態としたフィルム状の接着部材であって、
上記Bステージ状態で連続相となる成分は、重量平均分子量が10万以上で、かつエポキシ基含有アクリル共重合体であり、
Bステージ状態で分散相となる成分はエポキシ樹脂を主成分とする熱硬化性樹脂であり、
上記硬化促進剤は、Bステージ状態において分散相に相溶性を有し、連続相とは相分離するアダクト化合物であることを特徴とするフィルム状の接着部材。
An adhesive composition containing two types of resin and a curing accelerator that are phase-separated into a continuous phase and a dispersed phase in a B-stage state is formed on a carrier film or formed on both sides of a core material to obtain a B-stage state. A film-like adhesive member,
The component that becomes a continuous phase in the B-stage state is an epoxy group-containing acrylic copolymer having a weight average molecular weight of 100,000 or more and
The component that becomes the dispersed phase in the B stage state is a thermosetting resin mainly composed of an epoxy resin,
The film-like adhesive member, wherein the curing accelerator is an adduct compound that is compatible with the dispersed phase in the B-stage state and phase-separated from the continuous phase.
エポキシ基含有アクリル共重合体が、グリシジルメタクリレート又はグリシジルアクリレートを含むエポキシ基含有アクリル共重合体である請求項1記載の接着部材。   The adhesive member according to claim 1, wherein the epoxy group-containing acrylic copolymer is an epoxy group-containing acrylic copolymer containing glycidyl methacrylate or glycidyl acrylate. 重量平均分子量10万以上の高分子量成分がグリシジルメタクリレート又はグリシジルアクリレート2〜6重量%を含むエポキシ基含有アクリル共重合体であることを特徴とする請求項1記載の接着部材。   2. The adhesive member according to claim 1, wherein the high molecular weight component having a weight average molecular weight of 100,000 or more is an epoxy group-containing acrylic copolymer containing 2 to 6% by weight of glycidyl methacrylate or glycidyl acrylate. 潜在性硬化促進剤がアミンアダクトである請求項1に記載の接着部材。   The adhesive member according to claim 1, wherein the latent curing accelerator is an amine adduct. 潜在性硬化促進剤がアミン−エポキシアダクトである請求項1に記載の接着部材。   The adhesive member according to claim 1, wherein the latent curing accelerator is an amine-epoxy adduct. エポキシ樹脂が分子量が300以上5000未満である請求項1記載の接着部材。   The adhesive member according to claim 1, wherein the epoxy resin has a molecular weight of 300 or more and less than 5000. エポキシ基含有アクリル共重合体の重量平均分子量が80万以上である請求項1記載の接着部材。   The adhesive member according to claim 1, wherein the epoxy group-containing acrylic copolymer has a weight average molecular weight of 800,000 or more. 熱硬化性樹脂が硬化剤を含有する請求項1〜7のいずれかに記載の接着部材。   The adhesive member according to claim 1, wherein the thermosetting resin contains a curing agent. (1)エポキシ樹脂及び硬化剤100重量部、(2)エポキシ基含有アクリル共重合体75〜300重量部、(3)潜在性硬化促進剤0.1〜20重量部を含有する請求項1〜8のいずれかに記載の接着部材。   (1) 100 parts by weight of an epoxy resin and a curing agent, (2) 75 to 300 parts by weight of an epoxy group-containing acrylic copolymer, and (3) 0.1 to 20 parts by weight of a latent curing accelerator. The adhesive member according to any one of 8. 接着部材を、DSCを用いて測定した場合の全硬化発熱量の10〜40%の発熱を終えた状態にした請求項1〜9のいずれかに記載の接着部材。   The adhesive member according to any one of claims 1 to 9, wherein the adhesive member is in a state in which heat generation of 10 to 40% of a total amount of heat generated by heating is measured using DSC.
JP2004105514A 1999-06-18 2004-03-31 Adhesive, adhesive member, wiring board for semiconductor mounting provided with adhesive member, and semiconductor device using the same Expired - Fee Related JP4556472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004105514A JP4556472B2 (en) 1999-06-18 2004-03-31 Adhesive, adhesive member, wiring board for semiconductor mounting provided with adhesive member, and semiconductor device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17281599 1999-06-18
JP33787899 1999-11-29
JP2004105514A JP4556472B2 (en) 1999-06-18 2004-03-31 Adhesive, adhesive member, wiring board for semiconductor mounting provided with adhesive member, and semiconductor device using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000180777A Division JP3617417B2 (en) 1999-06-18 2000-06-16 Adhesive, adhesive member, wiring board for semiconductor mounting provided with adhesive member, and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2004238634A JP2004238634A (en) 2004-08-26
JP4556472B2 true JP4556472B2 (en) 2010-10-06

Family

ID=32966184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004105514A Expired - Fee Related JP4556472B2 (en) 1999-06-18 2004-03-31 Adhesive, adhesive member, wiring board for semiconductor mounting provided with adhesive member, and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP4556472B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110062A (en) * 2005-09-15 2007-04-26 Hitachi Chem Co Ltd Die bonding resin paste, semiconductor device manufacturing method using the same, and semiconductor device
JP2007146121A (en) * 2005-11-01 2007-06-14 Hitachi Chem Co Ltd Viscoelastic resin composition, metal foil-clad laminate using same, prepreg, resin-coated metal foil, and resin film
JP5109572B2 (en) * 2006-10-20 2012-12-26 日立化成工業株式会社 Adhesive composition, adhesive composition semi-cured product, adhesive film, laminated adhesive film, and production method thereof
JP5019363B2 (en) * 2007-02-22 2012-09-05 信越化学工業株式会社 Epoxy resin adhesive composition
JP5728804B2 (en) * 2009-10-07 2015-06-03 デクセリアルズ株式会社 Thermosetting adhesive composition, thermosetting adhesive sheet, method for producing the same, and reinforced flexible printed wiring board
JP5946688B2 (en) * 2011-04-26 2016-07-06 積水化学工業株式会社 Post-curing tape and joining member joining method
CN103923592A (en) * 2014-05-08 2014-07-16 耿庆宏 Efficient air filtering device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996031574A1 (en) * 1995-04-04 1996-10-10 Hitachi Chemical Company, Ltd. Adhesive, adhesive film and adhesive-backed metal foil
JPH10137410A (en) * 1996-11-14 1998-05-26 Toyomaru Sangyo Kk Game machine
JPH10183086A (en) * 1996-12-24 1998-07-07 Hitachi Chem Co Ltd Heat-conductive adhesive composition and heat-conductive adhesive film using the composition
JPH10251610A (en) * 1997-03-07 1998-09-22 Hitachi Chem Co Ltd Adhesive for connecting circuit member
JPH10298369A (en) * 1997-04-30 1998-11-10 Arai Pump Mfg Co Ltd Heat-resistant rubber alloy composition
JPH11130841A (en) * 1997-10-29 1999-05-18 Hitachi Chem Co Ltd Epoxy resin composition, adhesive, composition for circuit connection and film using the same
JP3617417B2 (en) * 1999-06-18 2005-02-02 日立化成工業株式会社 Adhesive, adhesive member, wiring board for semiconductor mounting provided with adhesive member, and semiconductor device using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996031574A1 (en) * 1995-04-04 1996-10-10 Hitachi Chemical Company, Ltd. Adhesive, adhesive film and adhesive-backed metal foil
JPH10137410A (en) * 1996-11-14 1998-05-26 Toyomaru Sangyo Kk Game machine
JPH10183086A (en) * 1996-12-24 1998-07-07 Hitachi Chem Co Ltd Heat-conductive adhesive composition and heat-conductive adhesive film using the composition
JPH10251610A (en) * 1997-03-07 1998-09-22 Hitachi Chem Co Ltd Adhesive for connecting circuit member
JPH10298369A (en) * 1997-04-30 1998-11-10 Arai Pump Mfg Co Ltd Heat-resistant rubber alloy composition
JPH11130841A (en) * 1997-10-29 1999-05-18 Hitachi Chem Co Ltd Epoxy resin composition, adhesive, composition for circuit connection and film using the same
JP3617417B2 (en) * 1999-06-18 2005-02-02 日立化成工業株式会社 Adhesive, adhesive member, wiring board for semiconductor mounting provided with adhesive member, and semiconductor device using the same

Also Published As

Publication number Publication date
JP2004238634A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
JP3617417B2 (en) Adhesive, adhesive member, wiring board for semiconductor mounting provided with adhesive member, and semiconductor device using the same
US6673441B1 (en) Adhesive, adhesive member, interconnecting substrate for semiconductor mounting having adhesive member, and semiconductor device containing the same
TWI332521B (en) Adhesive films for semiconductor
JP4165072B2 (en) Adhesive composition, adhesive film, wiring board for semiconductor mounting, semiconductor device and manufacturing method thereof
KR20060024464A (en) Semiconductor device, semiconductor chip mounting substrate, methods of manufacturing the device and substrate, adhesive, and adhesive double coated film
JP2008193105A (en) Adhesive composition, manufacturing method thereof, adhesive film using the same, substrate for loading semiconductor, and semiconductor device
JP4994743B2 (en) Film adhesive and method of manufacturing semiconductor package using the same
JP3528639B2 (en) Adhesive, adhesive member, wiring board for mounting semiconductor provided with adhesive member, and semiconductor device using the same
JP3539242B2 (en) Adhesive member, wiring board for mounting semiconductor provided with adhesive member, and semiconductor device using the same
JP4265397B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP4505769B2 (en) Adhesive film, wiring board for semiconductor mounting provided with adhesive film, semiconductor device, and manufacturing method thereof
JP2002060716A (en) Low-elastic adhesive, low-elastic adhesive member, substrate for loading semiconductor having low-elastic adhesive member and semiconductor device using the same
JPH11209724A (en) Flame retarded adhesive, flame retarded bonding member, wiring board for loading semiconductor having flame retarded bonding member and semiconductor device using the same
JP4556472B2 (en) Adhesive, adhesive member, wiring board for semiconductor mounting provided with adhesive member, and semiconductor device using the same
JP2003073641A (en) Flame-retardant adhesive film, wiring board for mounting semiconductor, semiconductor and method for manufacturing the semiconductor device
JP4934895B2 (en) Adhesive composition, adhesive film, wiring board for semiconductor mounting, and semiconductor device
JP4699620B2 (en) Photosensitive adhesive film, use thereof and method for manufacturing semiconductor device
JP2000154360A (en) Adhesive, adhesive member, wiring board equipped with the adhesive member for semiconductor, and semiconductor equipment
JP2001279217A (en) Adhesive composition, flame retardant adhesive composition, adhesive film, printed circuit board for mounting semiconductor, semiconductor device and method for producing the same
JP2002146324A (en) Adhesive composition and adhesive member using the same and substrate for loading semiconductor and semiconductor device
JPH11209723A (en) Flame retarded adhesive, flame retarded bonding member, wiring board for loading semiconductor having flame retarded bonding member and semiconductor device using the same
JP2000164607A (en) Electronic part adhesive member, semiconductor mounting wiring board equipped therewith, and semiconductor device provided therewith
JP2008227513A (en) Photosensitive adhesive film, its use and manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees