WO2005031762A2 - 高周波用磁性薄膜およびその作製方法ならびに磁気素子 - Google Patents

高周波用磁性薄膜およびその作製方法ならびに磁気素子 Download PDF

Info

Publication number
WO2005031762A2
WO2005031762A2 PCT/JP2004/014405 JP2004014405W WO2005031762A2 WO 2005031762 A2 WO2005031762 A2 WO 2005031762A2 JP 2004014405 W JP2004014405 W JP 2004014405W WO 2005031762 A2 WO2005031762 A2 WO 2005031762A2
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
frequency
magnetic thin
magnetic
amorphous alloy
Prior art date
Application number
PCT/JP2004/014405
Other languages
English (en)
French (fr)
Other versions
WO2005031762A3 (ja
Inventor
Kyung-Ku Choi
Taku Murase
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to US10/573,801 priority Critical patent/US20070202359A1/en
Publication of WO2005031762A2 publication Critical patent/WO2005031762A2/ja
Publication of WO2005031762A3 publication Critical patent/WO2005031762A3/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/303Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices with exchange coupling adjustment of magnetic film pairs, e.g. interface modifications by reduction, oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/132Amorphous metallic alloys, e.g. glassy metals containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0066Printed inductances with a magnetic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/32Composite [nonstructural laminate] of inorganic material having metal-compound-containing layer and having defined magnetic layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/32Composite [nonstructural laminate] of inorganic material having metal-compound-containing layer and having defined magnetic layer
    • Y10T428/325Magnetic layer next to second metal compound-containing layer

Definitions

  • Magnetic thin film for high frequency method for producing the same, and magnetic element
  • the present invention relates to a high-frequency magnetic thin film used in a high-frequency region of the GHz band, a method for manufacturing the same, and a magnetic element having the high-frequency magnetic thin film. More specifically, the present invention relates to a high-frequency magnetic film such as a thin film inductor or a thin film transformer. The present invention relates to a high-frequency magnetic thin film preferably used for a planar magnetic element for use in a semiconductor device, a monolithic microwave integrated circuit (hereinafter abbreviated as MMIC), a method for manufacturing the same, and a magnetic element.
  • MMIC monolithic microwave integrated circuit
  • the demand for MMIC which is increasing mainly in wireless transmission / reception devices and portable information terminals, is based on a semiconductor substrate such as Si, GaAs or InP, on which active elements such as transistors, lines, resistors, capacitors, and inductors are mounted.
  • active elements such as transistors, lines, resistors, capacitors, and inductors are mounted.
  • passive elements such as inductors and capacitors, occupy a larger area than active elements, especially in this MMIC. ing.
  • the occupation of a large area of passive devices in an MMIC results in a large consumption of expensive semiconductor substrates, which leads to an increase in the cost of the MMIC.
  • To reduce the manufacturing cost of MMICs it is necessary to reduce the chip area. For that purpose, reducing the area occupied by passive elements is an issue.
  • a planar spiral coil is often used as an inductor.
  • the inductance is increased by providing a soft magnetic thin film on the upper and lower surfaces or on one surface in order to obtain the same inductance even in a small occupied area (for example, J. Appl. .Phys., 85, 7919 (1999)).
  • it is first necessary to develop soft magnetic thin film materials that have high permeability in the GHz band and low high-frequency loss.
  • high specific resistance is required to reduce eddy current loss at high frequencies. Is also required.
  • a Co-based amorphous alloy As a material having excellent soft magnetic properties, a Co-based amorphous alloy is known.
  • This Co-based non-crystalline alloy is mainly composed of Co and mainly non-crystalline containing one or more elements selected from Y, Ti, Zr, Hf, Nb, Ta, etc. It is.
  • the force loss component imaging part of magnetic permeability; z 2
  • a magnetic thin film is formed into a strip having a longitudinal direction parallel to the axis of easy magnetization. Attempts have been made to shift the resonance frequency to a higher frequency side by increasing the shape magnetic anisotropy energy (see, for example, Journal of the Japan Society of Applied Magnetics, 24,879 (2000)).
  • the resonance frequency could be raised to the GHz band, but the drawback is that it is necessary to fabricate strip-shaped micropatterns as complex as photolithography.
  • the present invention has been made to solve the above problems, and a first object of the present invention is to provide a high-frequency magnetic thin film that can be used in a high-frequency region in a GHz band.
  • a second object of the present invention is to provide a method for producing a high-frequency magnetic thin film having such characteristics.
  • a third object of the present invention is to provide a magnetic element using a high-frequency magnetic thin film having good high-frequency characteristics in the GHz band.
  • the inventor of the present invention has been conducting research on a high-frequency magnetic thin film using a Co-based amorphous alloy having soft magnetic properties. It was found that an anisotropic magnetic field appeared when multilayered with the oxidizing layer of the alloy, and as a result of further research on high-frequency magnetic thin films using the large anisotropic magnetic field, it was found that It was found that when the volume of the oxide layer is within a predetermined range, a large anisotropic magnetic field appears, and a magnetic thin film having excellent high-frequency characteristics in the GHz band can be obtained.
  • the high-frequency magnetic thin film of the present invention that achieves the first object is based on the above findings, and includes a Co-based amorphous alloy layer and an acid of the Co-based amorphous alloy.
  • a multilayer film comprising an iridani layer, wherein the ratio of the iridani layer to the entire volume of the multilayer film is 5 to 50%.
  • the multilayer film having the above-mentioned constitution has a high specific resistance and high! (4) Since an anisotropic magnetic field appears, a magnetic thin film having excellent high-frequency characteristics in the GHz band is obtained.
  • another magnetic thin film for high frequency wave includes a Co-based amorphous alloy layer having such a property that a magnetic field application direction during film formation is an easy axis of magnetization, and an acid of the Co-based amorphous alloy.
  • a multilayer film composed of a multilayer film and a magnetic layer which is formed so that the axis of easy magnetization of the manufactured multilayer film is orthogonal to the magnetic field application direction when the multilayer film is formed.
  • the Co-based amorphous alloy layer usually has a property that the direction of application of a magnetic field during film formation is an axis of easy magnetization.
  • the Co-based amorphous alloy layer is When a multilayer film is formed with the oxidation film and the multilayer film is formed in an applied magnetic field such that the ratio of the oxidation film to the entire volume of the multilayer film is in the range of 5 to 50%.
  • an inversion phenomenon of the magnetization easy axis Z hard axis in which the magnetization easy axis of the manufactured multilayer film is orthogonal to the magnetic field application direction at the time of forming the multilayer film, appears.
  • Such a phenomenon is considered to be the opposite effect of magnetostriction.
  • the high-frequency magnetic thin film of the present invention exhibits a large anisotropic magnetic field developed based on the phenomenon and also has a high specific resistance. It becomes an excellent magnetic thin film.
  • the Co-based amorphous alloy layer is formed of a CoZrNb alloy
  • the GO specific resistance is 150 ⁇ cm or more
  • the ferromagnetic resonance frequency is 2 GHz or more.
  • the method for producing a high-frequency magnetic thin film of the present invention that achieves the second object is characterized in that a multilayer film composed of a Co-based amorphous alloy layer and an oxide layer of the Co-based amorphous alloy is formed by applying a multilayer film in an applied magnetic field.
  • the method for producing a high-frequency magnetic thin film according to (1) characterized in that the oxide layer is formed so that the ratio of the oxide layer to the entire volume of the multilayer film falls within the range of 5 to 50%.
  • Another method for producing a high-frequency magnetic thin film according to the present invention is a method for forming a Co-based amorphous alloy layer having a property that the direction of application of an external magnetic field during film formation is an axis of easy magnetization under an external magnetic field.
  • a multilayer film composed of a layer and an oxide layer thereof is formed, and the axis of easy magnetization of the manufactured multilayer film as a whole is orthogonal to the direction in which an external magnetic field is applied.
  • the Co-based amorphous alloy layer is formed of a CoZrNb alloy.
  • a CoZrNb alloy is used, a composition such that the magnetostriction becomes zero can be easily realized, and as a result, the force is excellent in soft magnetic properties and high magnetic permeability can be obtained.
  • the magnetic element of the present invention that achieves the third object includes, in part, the high-frequency magnetic thin film of the present invention described above or the high-frequency magnetic thin film manufactured by the above-described method of the present invention. It is characterized by having.
  • the high-frequency magnetic thin film is disposed to face the coil, (b) the magnetic thin film is used for an inductor or a transformer, or (c) a monolithic magnetic thin film is used. It is preferably used for a microwave integrated circuit.
  • the high-frequency magnetic thin film of the present invention has a high anisotropic magnetic field and a high specific resistance. Can be offered.
  • the magnetic thin film for high frequency of the present invention can be preferably used as a magnetic thin film for the GHz band applied to, for example, an inductor having a planar spiral coil mounted on an MMIC.
  • the high-frequency magnetic thin film of the present invention can obtain good performance even in a state of being formed at room temperature (as-deposit), so that it can be used in a semiconductor process that dislikes a heating step, such as an MMIC. Ideal for manufactured high-frequency integrated circuits.
  • a high-frequency magnetic thin film exhibiting a large anisotropic magnetic field and a high specific resistance due to a phenomenon considered to be an adverse effect of magnetostriction can be produced.
  • Magnetic thin films with excellent high-frequency characteristics in the band can be produced by an extremely easy method.
  • the magnetic element of the present invention includes a high-frequency magnetic thin film having a high anisotropic magnetic field and a high specific resistance in a part thereof, so that a magnetic element having excellent high-frequency characteristics can be obtained. It can.
  • the high-frequency magnetic thin film is applied to a spiral coil in a planar inductor mounted on an MMIC, the inductor is connected to the resonance frequency in the GHz band. It can function well as a magnetic element having a number.
  • FIG. 1 is a schematic view showing an example of a cross-sectional structure of a high-frequency magnetic thin film according to an embodiment of the present invention.
  • FIG. 2 is a graph showing a magnetic hysteresis curve of a CoZrNb thin film (comparative example) obtained by forming a film on a substrate while applying a magnetic field from a certain direction during film formation.
  • FIG. 3 is a graph showing resonance frequency characteristics of the CoZrNb thin film in FIG.
  • FIG. 4 Magnetic hysteresis of a multilayer film (embodiment) composed of a CoZrNb thin film and a natural oxide layer obtained by forming a film on a substrate while applying a magnetic field from a certain direction during film formation. This is a graph showing a curve.
  • FIG. 5 is a graph showing resonance frequency characteristics of the multilayer film in FIG.
  • FIG. 6A is a plan view showing a configuration of an inductor when a planar magnetic element is applied to the inductor.
  • FIG. 6B is a sectional view showing the configuration of the inductor shown in FIG. 6A. This is an example.
  • FIG. 7 is a schematic cross-sectional view showing another example in which the planar magnetic element according to the embodiment of the present invention is applied to an inductor.
  • FIG. 8 is a schematic plan view showing a conductor layer portion of the inductor.
  • FIG. 9 is a schematic view of a cross section taken along the line AA of FIG. 8.
  • FIG. 10 shows the results of an experiment for confirming the magnetization reversal phenomenon.
  • FIG. 1 is a schematic sectional view showing an example of a sectional form of the magnetic thin film for high frequency wave of the present invention.
  • the high-frequency magnetic thin film 1 of the present invention comprises, on a substrate 4, a Co-based amorphous alloy layer 2 and a natural oxide layer of the Co-based amorphous alloy.
  • 3 is a multilayer film formed by alternately laminating 3 and 3. The characteristic is that the ratio of the natural oxide layer 3 to the volume of the entire multilayer film is 5—
  • the Co-based amorphous alloy layer 2 is a non-crystalline alloy containing Co, and has such a property that the direction of applying a magnetic field during film formation is the axis of easy magnetization. Since the Co-based amorphous alloy has a high magnetic permeability and a high resistance (specific resistance of 100-120 ⁇ « ⁇ ), it is effective in suppressing eddy current loss in a high frequency range, and is preferably applied in the present invention. You.
  • the Co-based amorphous alloy contains Co as a main component and includes B, C, Si, Ti, V, Cr, Mn, Fe, Ni, Y, Zr, Nb, Mo, Hf, Ta and W. It contains one or more added caro elements selected from the group, and is mainly composed of an amorphous phase.
  • an amorphous alloy or an amorphous phase generally refers to an aspect in which a diffraction pattern obtained by X-ray diffraction measurement does not have a remarkable crystalline peak, and a so-called broad diffraction peak appears.
  • the ratio (total amount in the case of two or more) of the elements added to the Co-based amorphous alloy is usually 5 to 50 at% (atomic%), preferably 10 to 30 at%. If the ratio of the added element exceeds 50 at%, there is a disadvantage that the saturation magnetization is reduced. On the other hand, if the ratio of the added element is less than 5 at%, it becomes difficult to control the magnetostriction, and there is a disadvantage that effective soft magnetic characteristics cannot be obtained.
  • Co-based amorphous alloy examples include CoZr, CoHf, CoNb, CoMo, CoZrNb, CoZrTa, CoFeZr, CoFeNb, CoTiNb, CoZrMo, CoFeB, CoZrNbMo, CoZr MoNi, CoFeZrB, CoFeSiB, CoZrCrMo and the like.
  • Particularly preferred is CoZrNb.
  • CoZrNb is suitable is that it is easy to realize a composition with zero magnetostriction (for example, Co87Zr5Nb8), and as a result, a high-frequency magnetic thin film with excellent soft magnetic properties and high magnetic permeability can be obtained. This is because there is an advantage.
  • the natural oxide layer 3 is an oxidation layer that is naturally generated when the surface of the Co-based amorphous alloy layer 2 comes into contact with oxygen, for example, in the air, in pure water, or in a chemical solution.
  • oxygen for example, in the air, in pure water, or in a chemical solution.
  • the oxide layer formed by the residual oxygen and residual moisture in the film forming apparatus Layers are also included.
  • the formed native oxide layer 3 is usually about 0.1-2. Onm thick, and is not formed so thick because it is a native oxide layer.
  • the specific resistance is about 10 3 to 10 6 ⁇ cm.
  • the multilayer film 1 according to the present invention is formed by alternately laminating Co-based amorphous alloy layers 2 and natural oxide layers 3. Specifically, a step of forming a Co-based amorphous alloy layer 2 on a substrate while applying a magnetic field from a certain direction during film formation, and a step of forming a natural oxide layer on the surface of the Co-based amorphous alloy layer. It is formed by performing the step of forming 3 alternately.
  • the multilayer film 1 is preferably formed by a vacuum thin film forming method, in particular, a sputtering method.
  • RF sputtering DC sputtering, magnetron sputtering, ion beam sputtering, inductively coupled RF plasma assisted sputtering, ECR ⁇ sputtering, facing target type sputtering, etc. are used. It is needless to say that sputtering is just one mode of the present embodiment, and other thin film formation processes can be applied.
  • a target for depositing a Co-based amorphous alloy layer As a target for depositing a Co-based amorphous alloy layer, a composite target in which pellets of a desired additive element are arranged on a Co target, or a Co alloy containing a desired additive component can be used. Use the target.
  • a glass substrate, a ceramic material substrate, a semiconductor substrate, a resin substrate and the like can be exemplified.
  • the ceramic material include alumina, zirconia, silicon carbide, silicon nitride, aluminum nitride, steatite, mullite, cordierite, forsterite, spinel, and ferrite.
  • aluminum nitride is preferable because of its high thermal conductivity and high bending strength.
  • the multilayer film of the present embodiment can exhibit its performance as it is formed at room temperature (about 15 to 35 ° C.). It is the best material for integrated circuits. Therefore, as the substrate 4, a semiconductor substrate such as Si, GaAs, InP, or SiGe can be exemplified.
  • the multilayer film 1 has a force formed by repeating such a process.
  • the number of layers is not particularly limited, and the thickness of the entire multilayer film is not particularly limited.
  • the specific resistance is equal to or greater than 0.99 Omega cm
  • the specific resistance of the Co-based amorphous alloy layer 2 itself is at 10 0 ⁇ ⁇ cm or higher
  • more natural resistivity of the oxide layer 3 is 10 3 mu Omega cm or more Because there is.
  • the reason why the anisotropic magnetic field is 10 5 ⁇ 4 ⁇ [AZm] or more is considered to be based on the following magnetization reversal phenomenon.
  • the produced multilayer film 1 is easy to make.
  • Axial force A magnetization reversal phenomenon that is perpendicular to the direction in which the magnetic field was applied during the formation of the multilayer film (meaning a 90 ° shift) appears. Such a phenomenon is considered to be a so-called reverse effect phenomenon of magnetostriction.
  • the natural oxide layer 3 is preferably at least 10% and at most 45% of the volume of the entire multilayer film.
  • FIG. 2 is a graph showing a magnetization hysteresis curve of a 500-nm-thick CoZrNb thin film (comparative example) obtained by forming a film on a substrate while applying a magnetic field from a certain direction during film formation.
  • FIG. 3 is a graph showing the resonance frequency characteristics of the obtained CoZrNb thin film.
  • Fig. 4 shows that an 8nm-thick CoZrNb thin film obtained by forming a film on a substrate while applying a constant directional magnetic field during film formation and a lnm-thick natural oxide layer are alternately laminated.
  • FIG. 1 is a graph showing a magnetization hysteresis curve of a 500-nm-thick CoZrNb thin film (comparative example) obtained by forming a film on a substrate while applying a magnetic field from a certain direction during film formation.
  • FIG. 3 is a graph showing the resonance frequency characteristics of the obtained CoZrNb thin film.
  • FIG. 5 is a graph showing a magnetic hysteresis curve of a multilayer film having a thickness of 450 nm (Example), and FIG. 5 is a graph showing resonance frequency characteristics of the obtained multilayer film.
  • the volume of the natural oxide layer is 11% of the total volume of the multilayer film.
  • the horizontal axis represents the externally applied magnetic field H (unit: Oe), and the vertical axis represents the magnetization (unit: G).
  • Symbol E indicates a magnetization curve in the direction of easy magnetization
  • symbol D indicates a magnetization curve in the direction of hard axis.
  • the horizontal axis represents the frequency (unit: MHz)
  • the vertical axis represents the real part 1 and the imaginary part 2 of the magnetic permeability.
  • the direction of the magnetic field Happl applied at the time of film formation generally coincides with the direction of the easy axis E, and therefore, the magnetization is difficult.
  • the direction of the axis H is orthogonal to the direction of the applied magnetic field Happl.
  • the direction of the magnetic field Happl applied at the time of film formation coincides with the direction of the magnetic easy axis E.
  • the two are orthogonal.
  • the direction of the magnetic field Happl applied at the time of film formation matches the direction of the hard axis H.
  • the anisotropic magnetic field Hk is larger, a multilayer film having higher high-frequency characteristics can be obtained, so that the resonance frequency characteristics do not actually drop even if fr exceeds 2 GHz, as shown in FIG. This has the effect.
  • the ratio of the natural oxide layer 3 is less than 5% of the whole, such a magnetization reversal phenomenon may not appear.
  • the ratio of the natural oxide layer 3 exceeds 50% of the whole, the ratio of the non-magnetic component becomes larger than the ratio of the magnetic component, so that it is difficult to use the soft magnetic material.
  • the magnetic element of the present invention is characterized in that a part of the above-described magnetic thin film for high frequency is provided.
  • FIG. 6A schematically illustrates a planar structure of an inductor to which a planar magnetic element is applied
  • FIG. 6B schematically illustrates a cross-sectional structure taken along line AA of FIG. 6A. is there.
  • the inductor 10 is formed so as to cover a substrate 11, planar coils 12 and 12 formed in a spiral shape on both surfaces of the substrate 11, and covering these planar coils 12 and 12 and the surface of the substrate 11. It comprises insulating films 13 and 13 and a pair of high-frequency magnetic thin films 1 formed so as to cover the insulating films 13 and 13 respectively.
  • the magnetic thin film for high frequency 1 is similar to that shown in FIG. Having a structure.
  • the two planar coils 12 and 12 are electrically connected to each other through a through hole 15 formed in a substantially central portion of the substrate 11. Furthermore, terminals 16 for connection are respectively drawn out of the substrate 11 from the planar coils 12 and 12 on both surfaces of the substrate 11.
  • Such an inductor 10 is configured such that the planar coils 12, 12 are sandwiched by a pair of high-frequency magnetic thin films 1 via insulating films 13, 13, and an inductor is formed between the connection terminals 16, 16. You.
  • the inductor thus formed is small, thin and lightweight, and exhibits excellent inductance particularly in a high frequency band of 1 GHz or more.
  • a transformer can be formed by providing a plurality of the planar coils 12 and 12 in parallel.
  • FIG. 7 is a schematic cross-sectional view showing another example in which the planar magnetic element of the present embodiment is applied to an inductor.
  • the inductor 20 shown in this figure includes a substrate 21, an oxide film 22 formed on the substrate 21 as necessary, and a high-frequency magnetic thin film formed on the oxide film 22. la, and an insulating film 23 formed on the high-frequency magnetic thin film la, and a planar coil 24 formed on the insulating film 23, and covering the planar coil 24 and the insulating film 23. And a high-frequency magnetic thin film lb formed on the insulating film 25.
  • the high-frequency magnetic thin films la and lb have the same structure as the above-described high-frequency magnetic thin film 1 (FIG. 1).
  • the inductor 20 thus formed is also small, thin and light, and exhibits excellent inductance particularly in a high frequency band of 1 GHz or more.
  • a transformer can be formed by providing a plurality of planar coils 24 in parallel.
  • FIGS. 8 and 9 show an embodiment in which the high-frequency magnetic thin film 1 is applied as an MMIC inductor.
  • FIG. 8 schematically shows a plan view of a conductor layer portion of the inductor.
  • FIG. 9 is a drawing schematically showing a cross section taken along line AA of FIG.
  • the inductor 30 shown in these drawings includes a substrate 31, an insulating oxide film 32 formed on the substrate 31 as necessary, and a high-frequency wave formed on the insulating oxide film 32.
  • the high-frequency magnetic thin films la and lb have the same structure as the above-described high-frequency magnetic thin film 1 (FIG. 1).
  • the spiral coil 34 is connected to a pair of electrodes 37 via a wiring 36.
  • a pair of ground patterns 39 provided so as to surround the spiral coil 34 are connected to a pair of ground electrodes 38, respectively, and a ground-signal ground (G—S—G) type probe is used. It has a shape to evaluate the frequency characteristics on the wafer!
  • the MMIC inductor that works in the shape of the present embodiment employs a cored structure in which the sinusoidal coil 34 is sandwiched between high-frequency magnetic thin films la and lb that are magnetic cores. Therefore, the inductance value is improved by about 50% as compared with an air-core inductor having no high-frequency magnetic thin films la and lb, although the spiral coil 34 has the same shape. Therefore, the area occupied by the spiral coil 34 required to obtain the same inductance value may be small, and as a result, the size of the spiral coil 34 can be reduced.
  • a material of the magnetic thin film applied to the inductor for the MMIC a material having a high magnetic permeability at a high frequency in a GHz band, a high performance index Q (low loss) characteristic, an integration by a semiconductor manufacturing process, etc. Is required.
  • a material having a high resonance frequency and a large saturation magnetization is advantageous, and it is necessary to control the uniaxial magnetic anisotropy. Also, in order to obtain a high figure of merit Q, it is important to suppress eddy current loss due to high resistance. Further, in order to apply to the integration process, it is desirable that the film can be formed at room temperature and can be used as it is. This is to ensure that the performance and fabrication process of other on-chip components that are already set are not adversely affected by heating.
  • the high-frequency magnetic thin film of Example 1 was produced according to the following film forming method.
  • a 500 nm thick SiO 2 film formed on a Si wafer was used as a substrate.
  • a high-frequency magnetic thin film was deposited on the substrate in the following manner using a facing target type sputtering apparatus. That is, the facing target in a sputtering apparatus 8 X 10 - were preliminarily evacuated to 5 Pa, the pressure introducing Ar gas until LOPA, RF Pawa one 10 minute 100W, the substrate surface was sputter etched. Next, adjust the flow rate of Ar gas so that the pressure becomes 0.4 Pa, and sputter the Co Zr Nb target with a power of 300 W.
  • the natural oxide layer is formed by forming each metal layer and then introducing 2 sccm O gas into the sputtering device for 30 seconds to oxidize the surface of the metal layer.
  • a DC bias of 0.8 V was applied to the substrate. Presputtering was performed for 10 minutes or more with the shutter closed to prevent the influence of impurities on the target surface. Thereafter, a film was formed on the substrate by opening the shutter. The film formation rate was 0.33 nmZ seconds when forming the CoZrNb layer. The thickness of the Co-based amorphous alloy layer was adjusted by controlling the opening and closing time of the shutter.
  • FIG. 4 described above is a hysteresis curve of the magnetic thin film obtained in Example 1, and FIG. 5 is a high-frequency characteristic of the magnetic thin film.
  • FIG. 5 is a high-frequency characteristic of the magnetic thin film.
  • the resonance frequency exceeded the measurement limit of 3 GHz, and the value of the real part (1) of the permeability was 1.
  • a value of 80 was obtained at OGHz. .
  • the specific resistance was 180 ⁇ cm.
  • the high-frequency magnetic permeability was measured using an ultrahigh-frequency band magnetic permeability measurement device (Ryowa Electronics, PMF-3000), and the magnetic properties were measured using a vibrating sample magnetometer (RIKEN ELECTRONICS, BHV-35).
  • Example 2 Based on the film forming method of Example 1 described above, 2.3 nm thick CoZrNb and 1. Onm natural oxidized layer were alternately formed 121 times in order to obtain a total film thickness of 400 nm (corresponding to a total of 242 layers). A magnetic thin film (Example 2) was formed. At this time, the ratio of the natural oxide layer to the total volume of the multilayer film was 30%.
  • Table 1 shows the magnetic properties of the obtained magnetic thin film.
  • a value of 40 was obtained at 1. OGHz as the value of the real part 1) of the magnetic permeability, and the specific resistance was 860 ⁇ cm.
  • m native oxide layer was formed.
  • a 1.6 nm thick CoZrNb layer and a 1.3 nm natural oxide layer were alternately formed 138 times alternately to form a magnetic thin film having a total film thickness of 400 nm (corresponding to a total of 276 layers) (Example 3).
  • the ratio of the natural oxide layer to the total volume of the multilayer film was 45%.
  • Table 1 shows the magnetic properties of the obtained magnetic thin film.
  • the value of the real part ( ⁇ 1) of the magnetic permeability is: 1.
  • a value of 25 is obtained at OGHz, and the specific resistance is 1416 Qcm.
  • Example 1 Based on the film forming method of Example 1 described above, a single layer of a CoZrNb film having a thickness of 500 / zm was formed, and a magnetic thin film of Comparative Example 1 was formed.
  • Example 1-3-1 is smaller than 1 of Comparative Example.
  • the example seems to have worse characteristics.
  • the imaginary part 2 represents the loss, and the smaller the imaginary part, the larger the Q value.
  • a large Q value means a small loss. That is, in the example, the loss at 1 GHz is reduced as compared with the comparative example, and it can be seen that the characteristics are remarkably improved.
  • FIG. 10 shows the results of an experiment for confirming the magnetization reversal phenomenon.
  • the sample was rotated in the in-plane direction using a vibrating sample magnetometer (RIKEN ELECTRONICS, BHV-35) (angle deviation with respect to the direction of the applied magnetic field during film formation is shown on the horizontal axis as ⁇ ).
  • the residual magnetism Mr
  • the value was standardized with the saturation magnetization (Ms) and the value was plotted on the vertical axis.
  • Ms saturation magnetization
  • the direction of application of the magnetic field during film formation is orthogonal to the direction of the easy axis of the obtained magnetic thin film (see FIG. 4). What is the direction of the applied magnetic field during film formation and the easy axis of the magnetic thin film obtained?
  • the present invention has been described with reference to some embodiments and examples.
  • the present invention is not limited to these embodiments and examples, and various modifications are possible.
  • the Co-based amorphous alloy is not limited to the materials and compositions described in the above embodiments and examples.
  • the oxidized layer of the Co-based amorphous alloy in the present invention is not limited to the natural oxide layer 3, and may be an oxide film generated by a forced oxidation treatment such as thermal oxidation.
  • the application of the high-frequency magnetic thin film is not limited to a high-frequency planar magnetic element such as a thin-film inductor or a thin-film transformer, or a device such as an MMIC, but can be applied to other devices.

Abstract

 基板(4)上に、Co系非晶質合金層(2)と、そのCo系非晶質合金(2)の自然酸化層(3)とを交互に積層して多層膜(1)を形成する。この多層膜(1)全体の体積に対する自然酸化層(3)の割合を5~50%とすることにより、GHz帯域の高周波領域で利用できる高周波用磁性薄膜および磁気素子が得られる。成膜時における磁場印加方向が磁化容易軸となる性質をもつCo系非晶質合金層(2)と、そのCo系非晶質合金の自然酸化層(3)とを交互に積層して多層膜(1)を形成し、この形成された多層膜(1)の磁化容易軸が、多層膜(1)の成膜時における磁場印加方向と直交するようにしてもよい。    

Description

明 細 書
高周波用磁性薄膜およびその作製方法ならびに磁気素子
技術分野
[0001] 本発明は、 GHz帯の高周波領域で利用される高周波用磁性薄膜およびその作製 方法、ならびにその高周波用磁性薄膜を有する磁気素子に関し、さらに詳しくは、薄 膜インダクタや薄膜トランス等の高周波用の平面型磁気素子やモノリシックマイクロ波 集積回路 (以下、 MMICと略す。)等に好ましく用いられる高周波用磁性薄膜および その作製方法、ならびに磁気素子に関するものである。
背景技術
[0002] 近年の磁気素子の小型化および高性能化への要求に伴い、 GHz帯域で高い透磁 率を示す磁性薄膜材料が求められて ヽる。
[0003] 例えば、ワイヤレス送受信装置や携帯情報端末を中心に需要が高まっている MMI Cは、 Si、 GaAsまたは InP等の半導体基板上に、トランジスタ等の能動素子と、線路 、抵抗、キャパシタ、インダクタ等の受動素子とを、一括的且つ一体的に作製して構 成される高周波集積回路である力 この MMICにおいては、特にインダクタやキャパ シタ等の受動素子が能動素子に比べて大きな面積を占めている。 MMICにおける 受動素子の大面積の占有は、結果として高価な半導体基板の大量消費、すなわち MMICのコストアップにつながることになる。 MMICの製造コストを低減するためには チップ面積を縮小することが必要である力 そのためには、受動素子が占める面積を 縮小することが課題となって 、る。
[0004] 上述した MMICには、平面型のスパイラルコイルがインダクタとして多く用いられて いる。こうした平面型のスパイラルコイルにおいては、小さな占有面積でも従来同様 のインダクタンスを得るために、その上下面または片面に軟磁性薄膜を設けることに よるインダクタンスの増加が図られている(例えば、 J.Appl.Phys.,85,7919 (1999)を参 照)。しかし、磁性材料を MMICのインダクタに応用するためには、先ず、 GHz帯域 における透磁率が高く且つ高周波損失が少ない軟磁性薄膜材料を開発することが 求められている。さらに、高周波での渦電流損失を減らすため、比抵抗が大きいこと も求められている。
[0005] 高い飽和磁化を持つ磁性材料として、 Feまたは FeCoを主成分とする合金がよく知 られている。しかし、 Fe系または FeCo系合金力もなる磁性薄膜をスパッタ等の成膜 技術により作製すると、得られた膜は飽和磁ィ匕が高いものの、膜の保磁力が大きぐ また、比抵抗が小さくなつてしまい、良好な高周波特性を得ることは困難であった。
[0006] 一方、軟磁気特性に優れる材料として、 Co系非結晶質合金が知られて 、る。この C o系非結晶質合金は、 Coを主成分とし、 Y、 Ti、 Zr、 Hf、 Nb、 Ta等から選択される 1 種または 2種以上の元素を含む非結晶質を主体とするものである。しかし、ゼロ磁歪 組成の Co系非結晶質合金の磁性薄膜をスパッタ等の成膜技術により作製すると、得 られた膜は透磁率が高いものの、飽和磁化が 1. 1T (テスラ)( = l lkG (キロガウス)) 程度であり、飽和磁化が Fe系材料に比べて小さいという難点がある。さらに、 100M Hz程度の周波数を超えて力 の損失成分 (透磁率の虚数部; z 2)が大きくなり、高周 波帯域で使用する磁性材料としては好適とはいえな力 た。
[0007] このような従来力 の実情のもとに、軟磁性薄膜の高周波特性を改良するための種 々の提案がなされている。その改良の基本方針としては、渦電流損失の抑制や共鳴 周波数の上昇等が挙げられて 、る。渦電流損失を抑制させる具体的な方策としては 、 ί列えば、 0. 01 μ m— 0. 3 μ mの Co系 晶質合金層と 0. 02 μ m— 0. 25 μ mの 絶縁層との積層による多層化 (例えば、特開平 7— 249516号公報 (第 1頁), 日本応 用磁気学会誌、 16,291 (1992) , 日本応用磁気学会誌、 17,489 (1993)を参照)が提案 されている。
[0008] 軟磁気特性に優れる Co系非結晶質合金を用いて GHz帯のインダクタの実現を図 つたものとして、磁性薄膜を磁ィ匕容易軸に平行な辺を長手方向とする短冊にマイクロ ノターンィ匕し、形状磁気異方性エネルギーを増大させて共鳴周波数を高周波側に シフトさせる試みが行われている(例えば、日本応用磁気学会誌、 24,879 (2000)を参 照)。
[0009] し力しながら、上記の特開平 7-249516号公報, 日本応用磁気学会誌、 16,291 ( 1992) , 日本応用磁気学会誌、 17,489 (1993)で提案された方法では、 MHz帯域で の応用の可能性はあるものの、 GHz帯域で使用する磁性薄膜としては好適とはいえ なかった。
[0010] また、上記の日本応用磁気学会誌、 24,879 (2000)で提案された方法では、マイクロ パターンィ匕により異方性磁界を 104 / π [A/m] ( = 40Oe (エルステッド))程度にま で挙げることができるので、共鳴周波数を GHz帯域まで挙げることができたが、短冊 状のマイクロパターンを複雑なフォトリソグラフイエ程で作製することが必要であるとい う難点がある。
発明の開示
[0011] 本発明は、上記課題を解決するためになされたものであって、その第 1の目的は、 GHz帯域の高周波領域で利用できる高周波用磁性薄膜を提供することにある。本 発明の第 2の目的は、そうした特性を有する高周波用磁性薄膜の作製方法を提供す ることにある。本発明の第 3の目的は、 GHz帯域での高周波特性のよい高周波用磁 性薄膜を用いた磁気素子を提供することにある。
[0012] 本発明者は、軟磁気特性を有する Co系非晶質合金を利用した高周波用磁性薄膜 についての研究を行っている過程で、 Co系非晶質合金層とその Co系非晶質合金の 酸ィ匕層とで多層化した場合に異方性磁界が現れることを見出し、その大きな異方性 磁界を利用した高周波用磁性薄膜の研究をさらに行った結果、多層膜全体に対す る酸化層の体積が所定の範囲内にある場合に大きな異方性磁界が現れ、 GHz帯域 での高周波特性に優れる磁性薄膜が得られることを知見した。
[0013] 上記第 1の目的を達成する本発明の高周波用磁性薄膜は、上記知見に基づいて なされたものであって、 Co系非晶質合金層と、この Co系非晶質合金の酸ィ匕層とから なる多層膜であって、多層膜全体の体積に対する酸ィ匕層の割合が 5— 50%であるよ うに構成されたものである。
[0014] 本発明によれば、上記構成カゝらなる多層膜には高 ヽ比抵抗と高!ヽ異方性磁界が現 れるので、 GHz帯域での高周波特性に優れた磁性薄膜となる。
[0015] また、本発明における他の高周波用磁性薄膜は、成膜時における磁場印加方向が 磁化容易軸となる性質をもつ Co系非晶質合金層と、この Co系非晶質合金の酸ィ匕層 とからなる多層膜であって、作製された多層膜の磁ィ匕容易軸が、この多層膜の成膜 時における磁場印加方向と直交するように構成されたものである。 [0016] Co系非晶質合金層は、通常、成膜時における磁場印加方向が磁化容易軸となる 性質をもつが、本発明の高周波磁性薄膜のように、 Co系非晶質合金層とその酸ィ匕 層とで多層膜を構成すると共に、多層膜全体の体積に対する酸ィ匕層の割合が 5— 5 0%の範囲内となるように印加磁場中で多層膜を成膜した場合には、作製された多 層膜の磁ィ匕容易軸が多層膜の成膜時における磁場印加方向と直交するという、磁ィ匕 容易軸 Z困難軸の反転現象が現れる。こうした現象は 、わゆる磁歪の逆効果と考え られる力 本発明の高周波磁性薄膜は、その現象に基づいて発現する大きな異方性 磁界を示すと共に比抵抗も高くなるので、 GHz帯域での高周波特性に優れた磁性 薄膜となる。
[0017] 本発明の高周波磁性薄膜では、特に、 (0 Co系非晶質合金層が CoZrNb合金で 形成されていること、 GO比抵抗が 150 Ω cm以上であり、異方性磁界が 105 Ζ4 π [ A/m] ( = 100Oe)以上であること、または、 (iii)強磁性共鳴周波数が 2GHz以上で あること、が好ましい。
[0018] 上記第 2の目的を達成する本発明の高周波用磁性薄膜の作製方法は、 Co系非晶 質合金層とこの Co系非晶質合金の酸化層とからなる多層膜を印加磁場中で作製す る高周波用磁性薄膜の作製方法であって、多層膜全体の体積に対する酸化層の割 合が 5— 50%の範囲内に入るように成膜することを特徴とするものである。
[0019] 本発明における他の高周波用磁性薄膜の作製方法は、成膜時における外部磁場 の印加方向が磁ィ匕容易軸となる性質をもつ Co系非晶質合金層を外部磁場の下で 形成する第 1の工程と、 Co系非晶質合金の酸ィ匕層を形成する第 2の工程とを含み、 第 1の工程および第 2の工程を交互に繰り返して Co系非晶質合金層およびその酸 化層からなる多層膜を形成し、その作製された多層膜全体としての磁化容易軸が外 部磁場の印加方向と直交するようにしたものである。
[0020] Co系非晶質合金層と酸ィ匕層とを、多層膜全体の体積に対する酸ィ匕層の割合が 5 一 50%の範囲内となるように印加磁場中で成膜すると、作製された多層膜の磁ィ匕容 易軸が多層膜の成膜時における磁場印加方向と直交するという、磁ィ匕容易軸 Z困 難軸の反転現象が現れる。こうした現象はいわゆる磁歪の逆効果と考えられるが、本 発明の高周波磁性薄膜の作製方法によれば、その現象に基づいて発現する大きな 異方性磁界と高!ヽ比抵抗を示す高周波磁性薄膜を作製できるので、 GHz帯域での 高周波特性に優れた磁性薄膜を極めて容易な方法で作製することができる。
[0021] 本発明の高周波磁性薄膜の作製方法では、特に、 Co系非晶質合金層を CoZrNb 合金で形成することが好ましい。 CoZrNb合金を用いた場合には、磁歪がゼロになる ような組成が容易に実現可能であり、その結果、軟磁気特性に優れ、高い透磁率が 得られる力 である。
[0022] 上記第 3の目的を達成する本発明の磁気素子は、上述した本発明の高周波用磁 性薄膜、または、上述した本発明の方法で作製された高周波用磁性薄膜、を一部に 有することを特徴とする。
[0023] 本発明の磁気素子では、(a)高周波用磁性薄膜がコイルを挟持するように対向配 置されていること、(b)インダクタまたはトランスに使用されること、または、(c)モノリシ ックマイクロ波集積回路に使用されること、が好ましい。
[0024] 以上のように、本発明の高周波用磁性薄膜によれば、高い異方性磁界と高い比抵 抗を有しているので、 GHz帯域の高周波領域で利用できる高周波用磁性薄膜を提 供することができる。その結果、本発明の高周波用磁性薄膜は、例えば MMICに搭 載される平面型スパイラルコイルを有するインダクタ等に適用される GHz帯域用の磁 性薄膜として好ましく利用可能である。なお、本発明の高周波用磁性薄膜は、室温 で成膜したまま (as-deposit)の状態であっても良好な性能が得られるので、例えば M MICのように、加熱工程を嫌う半導体プロセスで製作される高周波集積回路に最適 である。
[0025] また、本発明の高周波用磁性薄膜の製造方法によれば、磁歪の逆効果と考えられ る現象により大きな異方性磁界と高い比抵抗を示す高周波磁性薄膜を作製できるの で、 GHz帯域での高周波特性に優れた磁性薄膜を極めて容易な方法で作製するこ とがでさる。
[0026] また、本発明の磁気素子は、高い異方性磁界と高い比抵抗を有した高周波用磁性 薄膜をその一部に備えているので、優れた高周波特性をもつ磁気素子を得ることが できる。例えば MMICに搭載されるプレーナ型インダクタ中のスパイラルコイルにそ の高周波用磁性薄膜を適用した場合には、そのインダクタを、 GHz帯域に共鳴周波 数を有する磁気素子として良好に機能させることができる。
図面の簡単な説明
[0027] [図 1]本発明の一実施の形態における高周波用磁性薄膜の断面構造の一例を示す 模式図である。
[図 2]成膜時に一定方向から磁場を印カロしながら基板上に成膜して得られた CoZrN b薄膜 (比較例)の磁ィ匕ヒステリシス曲線を示すグラフである。
[図 3]図 2における CoZrNb薄膜の共鳴周波数特性を示すグラフである。
[図 4]成膜時に一定方向から磁場を印カロしながら基板上に成膜して得られた CoZrN b薄膜と自然酸ィ匕層とからなる多層膜 (実施の形態)の磁ィ匕ヒステリシス曲線を示すグ ラフである。
[図 5]図 4における多層膜の共鳴周波数特性を示すグラフである。
[図 6A]平面型の磁気素子をインダクタに応用した場合のインダクタの構成を示す平 面図である。
[図 6B]図 6Aに示したインダクタの構成を示す断面図である。一例である。
[図 7]本発明の実施の形態における平面型磁気素子をインダクタに応用した他の一 例を示す断面模式図である。
[図 8]インダクタの導体層部分を抜き出した模式的な平面図である。
[図 9]図 8の A— A矢視断面の模式図である。
[図 10]磁化反転現象の確認実験結果である。
発明を実施するための最良の形態
[0028] 以下、本発明の高周波用磁性薄膜およびその作製方法、ならびに磁気素子につ いて、図面を参照しつつ説明する。なお、本発明の範囲は、以下に説明する実施の 形態によって制限されるものではな 、。
[0029] 図 1は、本発明の高周波用磁性薄膜の断面形態の一例を示す模式断面図である。
[0030] 本発明の高周波用磁性薄膜 1は、図 1に示されるように、基板 4の上に、 Co系非晶 質合金層 2と、その Co系非晶質合金の自然酸ィ匕層 3とを交互に積層してなる多層膜 である。そして、その特徴は、多層膜全体の体積に対する自然酸化層 3の割合が 5—
50%であることにある。 [0031] (Co系非晶質合金層)
Co系非晶質合金層 2は、 Coを含有する非結晶質の合金であり、成膜時における 磁場印加方向が磁ィ匕容易軸となる性質を有するものである。 Co系非結晶質合金は、 透磁率が高く且つ高抵抗 (比抵抗が 100— 120 Ω «η)であるため、高周波域での 渦電流損失の抑制に効果があり、本発明において好ましく適用される。 Co系非結晶 質合金は、単層膜で透磁率 1000以上(10MHz)、飽和磁ィ匕 1. 0T( = 10kG)以上 、比抵抗 100 Ω cm以上の特性を有するものであることが望ましい。
[0032] この Co系非結晶質合金は、 Coを主成分とし、 B, C, Si, Ti, V, Cr, Mn, Fe, Ni , Y, Zr, Nb, Mo, Hf, Taおよび Wの群から選択される 1種または 2種以上の添カロ 元素を含んでおり、非晶質相を主体として構成されている。なお、非晶質合金ないし 非晶質相とは、一般に、 X線回折測定において得られる回折パターンが顕著な結晶 性ピークを有しない態様として表れるものであり、いわゆるブロードな回折ピークが表 れるものをいう。
[0033] Co系非晶質合金に添加される元素の割合(2種以上の場合は総和量)は、通常 5 一 50at% (原子%)、好ましくは 10— 30at%である。添加元素の割合が 50at%を超 えると、飽和磁化が小さくなるという不都合が生じる。一方、添加元素の割合が 5at% 未満では、磁歪の制御が困難となり、有効な軟磁気特性が得られなくなるという不都 合が生じる。
[0034] Co系非結晶質合金としては、例えば、 CoZr, CoHf, CoNb, CoMo, CoZrNb, CoZrTa, CoFeZr, CoFeNb, CoTiNb, CoZrMo, CoFeB, CoZrNbMo, CoZr MoNi, CoFeZrB, CoFeSiB, CoZrCrMo等が挙げられる。特に好ましくは、 CoZr Nbが挙げられる。 CoZrNbが好適である理由は、磁歪がゼロになるような組成(例え ば、 Co87Zr5 Nb8 )が容易に実現可能であり、その結果、軟磁気特性に優れ高い 透磁率の高周波用磁性薄膜が得られるという利点があるからである。
[0035] (自然酸化層)
自然酸化層 3は、上述した Co系非結晶質合金層 2の表面が酸素と接触することに よって自然に生成する酸ィ匕層のことであり、例えば、大気中、純水中または薬液中で 形成される酸化層の他、成膜装置内の残留酸素や残留水分により形成される酸ィ匕 層も含まれる。
[0036] 形成される自然酸化層 3は、通常、 0. 1-2. Onm程度の厚さであり、自然酸化層 であるためにあまり厚くは形成されない。また、その比抵抗は、およそ 103— 106 μ Ω cm程度である。
[0037] (多層膜)
本発明に係る多層膜 1は、 Co系非晶質合金層 2と自然酸ィ匕層 3とを交互に積層し て形成される。具体的には、成膜時に一定方向から磁場を印カロしながら基板上に Co 系非晶質合金層 2を形成する工程と、その Co系非晶質合金層の表面に自然酸ィ匕層 3を形成する工程とを交互に行うことにより形成される。
[0038] 多層膜 1は、真空薄膜形成方法、特にスパッタ法により形成されることが好ましい。
より具体的には、 RFスパッタ、 DCスパッタ、マグネトロンスパッタ、イオンビームスパッ タ、誘導結合 RFプラズマ支援スパッタ、 ECR^パッタ、対向ターゲット式スパッタ等が 用いられる。なお、スパッタリングはあくまで本実施の形態の一態様であり、他の薄膜 作成プロセスを適用できることは言うまでもな 、。
[0039] Co系非晶質合金層を堆積させるためのターゲットとしては、 Coターゲット上に、所 望の添加元素のペレットを配置した複合ターゲットを用いたり、所望の添加成分を含 有する Co合金のターゲットを用いればょ 、。
[0040] なお、本発明の多層膜 1が形成される基板 4 (図 1を参照)としては、ガラス基板、セ ラミタス材料基板、半導体基板、榭脂基板等が例示できる。セラミクス材料としては、 アルミナ、ジルコユア、炭化珪素、窒化珪素、窒化アルミニウム、ステアタイト、ムライト 、コージライト、フォルステライト、スピネル、フェライト等が挙げられる。中でも熱伝導 率が大きぐ曲げ強度も大き 、窒化アルミニウムを用いることが好ま U、。
[0041] また、本実施の形態の多層膜は、室温 (約 15— 35°C)で成膜したままの状態でそ の性能が発揮できるので、 MMICのような半導体プロセスで製作される高周波集積 回路に最適な材料である。したがって、、基板 4としては、 Si、 GaAs、 InP、 SiGe等 の半導体基板が例示できる。
[0042] 多層膜 1はこうしたプロセスを繰り返すことによって形成される力 その層数は特に 制限されず、また、多層膜全体の厚さについても特に制限されない。なお、 Co系非 晶質合金層 2とその自然酸ィ匕層 3とからなる多層膜 1の比抵抗は 150 Ω cm以上と なり、また、多層膜 1の異方性磁界 Hkは 105 Ζ4 π [A/m] ( = lOOOe)以上となる。 比抵抗が 150 Ω cm以上になる理由は、 Co系非晶質合金層 2自体の比抵抗が 10 0 μ Ω cm以上であり、さらに自然酸化層 3の比抵抗が 103 μ Ω cm以上であるからで ある。また、異方性磁界が 105 Ζ4 π [AZm]以上となる理由は、以下に示す磁化反 転現象に基づくものと考えられる。
[0043] すなわち、本発明の多層膜 1において、多層膜全体の体積に対する自然酸化層 3 の割合が 5— 50%の範囲内にある場合には、作製された多層膜 1の磁ィ匕容易軸力 その多層膜の成膜時における磁場印加方向と直交する(90° ずれることをいう。)磁 化反転現象が現れる。こうした現象は、いわゆる磁歪の逆効果現象と考えられる。な お、多層膜全体の体積に対する自然酸化層 3は、好ましくは 10%以上 45%以下で ある。
[0044] 図 2は、成膜時に一定方向から磁場を印カロしながら基板上に成膜して得られた厚さ 500nmの CoZrNb薄膜 (比較例)の磁化ヒステリシス曲線を示すグラフであり、図 3は 、得られた CoZrNb薄膜の共鳴周波数特性を示すグラフである。また、図 4は、成膜 時に一定方向力 磁場を印加しながら基板上に成膜して得られる厚さ 8nmの CoZr Nb薄膜と厚さ lnmの自然酸ィ匕層とを交互に積層してなる厚さ 450nmの多層膜 (実 施例)の磁ィ匕ヒステリシス曲線を示すグラフであり、図 5は得られた多層膜の共鳴周波 数特性を示すグラフである。図 4および図 5に使用した多層膜において、多層膜全体 の体積に対する自然酸化層の体積は 11 %である。なお、図 2および図 4において、 横軸は外部印加磁界 H (単位 Oe)を示し、縦軸は磁化 (単位 G)を示す。符号 Eは磁 化容易軸方向における磁化曲線を示し、符号 Dは磁化困難軸方向における磁化曲 線を示す。また、図 3および図 5において、横軸は周波数 (単位 MHz)を示し、縦軸 は透磁率の実部 1 ,虚部 2を示す。
[0045] 図 2中に示したように、 CoZrNb薄膜においては、成膜時に印加される磁場 Happl の方向が磁ィ匕容易軸 Eの方向と一致するのが一般的であり、したがって、磁化困難 軸 Hの方向は印加磁場 Happlの方向と直交する。しかし、 CoZrNb薄膜は、比抵抗 力 Q cmと比較的高いものの、異方性磁界 Hkは 15 Χ 103 Ζ4 π [A/m] ( = 150e)と小さいので、図 3に示すように、共鳴周波数特性は、 fr= lGHzを超えたと ころで落ち込んでしまう。
[0046] 一方、図 3に示したように、 CoZrNb薄膜 Z自然酸ィ匕層の多層膜においては、成膜 時に印加される磁場 Happlの方向と磁ィ匕容易軸 Eの方向とは一致せず、両者は直交 している。言い換えれば、成膜時に印加される磁場 Happlの方向と磁ィ匕困難軸 Hの 方向とがー致する。このとき、得られた多層膜は、比抵抗が 180 Ω cmと高く、しか も、異方性磁界 Hkも 105 Χ 103Ζ4 π [AZm] ( = 105Oe)と高くなつている。その 異方性磁界 Hkが大き 、ほど高周波特性に優れた多層膜が得られることから、実際 には図 5に示すように、共鳴周波数特性は、 fr= 2GHzを超えても、落ち込みが生じ ないという効果がある。
[0047] 本発明の多層膜において、自然酸ィ匕層 3の割合が全体の 5%未満では、そうした 磁化反転現象が現われないことがある。一方、自然酸化層 3の割合が全体の 50%を 超えた場合は、非磁性成分の割合が磁性成分の割合より多くなるため、軟磁性材料 としての使用が困難である。
[0048] (多層膜の高周波特性)
本発明の多層膜は、上述した構造を有するので、比抵抗が 150 Ω «η以上、異 方性磁界が 105 Ζ4 π [A/m] ( = 100Oe)以上、強磁性共鳴周波数が 2GHz以上 という優れた高周波特性を有している。このような特性は、熱処理等を施さない成膜 のままの状態で得ることができる。
[0049] (磁気素子)
本発明の磁気素子は、上述した高周波用磁性薄膜をその一部に備えていることに 特徴がある。
[0050] 図 6Aは、平面型の磁気素子を適用したインダクタの平面構造を模式的に示したも のであり、図 6Bは図 6Aの A— A矢視断面構造を模式的に示したものである。
[0051] このインダクタ 10は、基板 11と、この基板 11の両面にスパイラル状に形成された平 面コイル 12, 12と、これらの平面コイル 12, 12と基板 11面を覆うように形成された絶 縁膜 13, 13と、これの各々の絶縁膜 13, 13の上を覆うように形成された一対の高周 波用磁性薄膜 1とを備えている。高周波用磁性薄膜 1は、図 1に示したものと同様の 構造を有する。 2つの平面コイル 12, 12は、基板 11の略中央部分に形成されたスル 一ホール 15を介して電気的に接続されている。さら〖こ、基板 11の両面の平面コイル 12, 12からそれぞれ接続のための端子 16が基板 11の外方に引き出されている。こ のようなインダクタ 10は、一対の高周波用磁性薄膜 1によって、絶縁膜 13, 13を介し て平面コイル 12, 12を挟むように構成されており、接続端子 16, 16間にインダクタが 形成される。
[0052] このように形成されたインダクタは、小型かつ薄型軽量であり、特に 1GHz以上の高 周波帯域で優れたインダクタンスを示す。なお、上記説明したインダクタ 10において 、平面コイル 12, 12を並列的に複数設けることによりトランスを形成することができる
[0053] 図 7は、本実施の形態の平面型磁気素子をインダクタに応用した他の一例を示す 断面模式図である。
[0054] この図に示されるインダクタ 20は、基板 21と、この基板 21の上に必要に応じて形成 される酸化膜 22と、この酸ィ匕膜 22の上に形成された高周波用磁性薄膜 laと、この高 周波用磁性薄膜 laの上に形成された絶縁膜 23を備え、さらにこの絶縁膜 23の上に 形成された平面コイル 24と、これらの平面コイル 24と絶縁膜 23を覆うように形成され た絶縁膜 25と、この絶縁膜 25の上に形成された高周波用磁性薄膜 lbとを有してい る。高周波用磁性薄膜 la, lbは、上記した高周波用磁性薄膜 1 (図 1)と同様の構造 を有するものである。このように形成されたインダクタ 20もやはり、小型かつ薄型軽量 であり、特に 1GHz以上の高周波帯域で優れたインダクタンスを示す。そしてこのよう なインダクタ 20において、平面コイル 24を並列的に複数設けることによりトランスを形 成することができる。
[0055] 図 8および図 9は、高周波用磁性薄膜 1を MMIC用インダクタとして応用した実施 例であり、図 8はインダクタの導体層部分を抜き出した平面図を模式的に示したもの であり、図 9は図 8の A— A矢視断面を模式的に示した図面である。
[0056] これらの図面で示されているインダクタ 30は、基板 31と、この基板 31の上に必要に 応じて形成される絶縁酸化膜 32と、その絶縁酸化膜 32の上に形成された高周波用 磁性薄膜 laと、この高周波用磁性薄膜 laの上に形成された絶縁膜 33を備え、さら にこの絶縁膜 33の上に形成されたスパイラルコイル 34と、このスパイラルコイル 34と 絶縁膜 33を覆うように形成された絶縁膜 35a, 35bと、この絶縁膜 35bの上に形成さ れた高周波用磁性薄膜 lbとを有している。高周波用磁性薄膜 la, lbは、上記した 高周波用磁性薄膜 1 (図 1)と同様の構造を有するものである。
[0057] また、スパイラルコイル 34は、配線 36を介して一対の電極 37に接続されて ヽる。そ して、スパイラルコイル 34を囲むように設けられた一対のグラウンドパターン 39は、そ れぞれ一対のグラウンド電極 38に接続され、グラウンドーシグナル グラウンド (G— S— G)タイプのプローブにより、ウェハ上で周波数特性を評価する形状を有して!/、る。
[0058] 本実施の形状に力かる MMIC用インダクタにおいては、磁芯となる高周波用磁性 薄膜 la、 lbによってスノィラルコイル 34が挟み込まれた有芯構造を採用している。 そのため、スパイラルコイル 34が同じ形状でありながら、高周波用磁性薄膜 la、 lbが 形成されていない空芯構造のインダクタに比べて、インダクタンス値が約 50%向上さ れる。したがって、、同じインダクタンス値を得るために必要なスパイラルコイル 34の 占有面積は小さくてもよいことになり、その結果としてスパイラルコイル 34の小型化が 実現できる。
[0059] ところで、 MMIC用インダクタに適用する磁性薄膜の材料としては、 GHz帯域の高 周波数で高透磁率、力 高い性能指数 Q (低損失)特性を持つことや、半導体製造 プロセスによる集積ィ匕が可能であることが求められる。
[0060] GHz帯域の高周波数における高透磁率を実現するためには、共鳴周波数が高ぐ かつ飽和磁化が大きい材質が有利であり、一軸磁気異方性の制御が必要である。ま た、高い性能指数 Qを得るためには、高抵抗ィ匕による渦電流損失の抑制が重要であ る。さらに、集積ィ匕プロセスに適用するためには、室温で成膜でき成膜のままの状態 で使用できることが望まし 、。すでにセッティングされて 、る他のオンチップコンポ一 ネントの性能および作成プロセスに加熱による悪影響を及ぼさな 、ようにするためで ある。
実施例
[0061] 以下、本実施の形態の高周波用磁性薄膜について、実施例および比較例に基づ いてさらに詳細に説明する。 [0062] (実施例 1)
実施例 1の高周波用磁性薄膜を以下の成膜手法に従って作製した。
[0063] 先ず、 Siウェハの上に SiO を 500nmの厚さに成膜したものを基板として用いた。
2
次に、対向ターゲット式スパッタ装置を用いて、下記の要領で基板上に高周波用磁 性薄膜を成膜 (deposit)させた。すなわち、対向ターゲット式スパッタ装置内を 8 X 10 —5Paまで予備排気した後、圧力が lOPaになるまで Arガスを導入し、 100Wの RFパヮ 一で 10分間、基板表面をスパッタエッチングした。次いで、圧力が 0. 4Paになるよう に Arガスの流量を調整し、 300Wのパワーで Co Zr Nb ターゲットをスパッタリング
87 5 8
して、 Co Zr Nb組成力もなる非晶質膜を作製した。
87 5 8
[0064] 次 ヽで、 自然酸化層を形成した。 自然酸化層は、各金属層を成膜した後、スパッタ 装置内部に 2sccmの Oガスを 30秒間導入し金属層の表面を酸ィ匕させることで形成
2
した。 自然酸化層を形成してから、スパッタ装置を 10— 4Pa台まで排気した。
[0065] 成膜時には基板に 0 80Vの DCバイアスを印加した。また、ターゲット表面の不 純物の影響を防止するためにシャッターを閉めた状態で 10分以上プリスパッタリング を行った。その後、シャッターを開けることにより基板上に成膜を行った。成膜速度( rate)は、 CoZrNb層の成膜時で 0. 33nmZ秒とした。シャッターの開閉時間を制御 することで Co系非晶質合金層の膜厚を調整した。
[0066] 成膜は、約 35 X 103 Ζ4 π [A/m] ( = 350e)の強さの磁界を印加しながら、まず 、基板上の第 1層目として厚さ 8. Onmの CoZrNb層を成膜した後、その上に第 2層 目として厚さ 1. Onmの自然酸化層を形成し、さらにその自然酸ィ匕層上に CoZrNb層 を成膜すると!ヽぅ成膜サイクルを 50回繰り返し、表 1に示す特性の磁性薄膜 (実施例 1)を得た (総厚さ: 450nm)。このとき、多層膜全体の体積に対する自然酸化層の割 合は 11%であった。
[0067] 上述した図 4は、実施例 1で得られた磁性薄膜のヒステリシス曲線であり、図 5は、そ の磁性薄膜の高周波特性である。得られた磁ィ匕曲線カゝら明らかなように、堆積膜で は、印加磁場の方向と磁ィ匕容易軸方向とが 90° ずれる(直交する)現象が確認され た。このときの飽和磁化 4 π Msは 1. 01T( = 10. lkG)、磁化容易軸方向の保磁力 Hceは 63. 7A/m ( = 0. 80e)、磁化困難軸方向の保磁力 Hchは 382AZm(=4 . 80e)であった。また、異方性磁界 Hkは 8360AZm ( = 105Oe)であった。図 5の 高周波透磁率特性のグラフから明らかなように、共鳴周波数は測定限界の 3GHzを 超えており、透磁率の実数部( 1)の値として、 1. OGHzでは 80の値が得られた。ま た、比抵抗は 180 Ω cmであった。なお、高周波透磁率の測定は、超高周波帯域 透磁率測定装置 (菱和電子、 PMF - 3000)を用い、磁気特性は振動試料型磁力計 (理研電子、 BHV— 35)を用いて測定した。
[0068] (実施例 2)
上記実施例 1の成膜手法に基づき、 2. 3nm厚の CoZrNbと、 1. Onmの自然酸ィ匕 層とを交互に 121回ずつ順次形成して総膜厚 400nm (合計 242層相当)の磁性薄 膜 (実施例 2)を形成した。このとき、多層膜全体の体積に対する自然酸化層の割合 は 30%であった。
[0069] 得られた磁性薄膜の磁気特性を表 1に示した。飽和磁化 4 π Msは 0. 80T ( = 8. 0 kG)、磁ィ匕容易軸方向の保磁力 Hceは 1400AZm ( = 17. 60e)、磁ィ匕困難軸方 向の保磁力 Hchは 2950AZm ( = 37Oe)であった。高周波透磁率特性は、透磁率 の実数部 1)の値として、 1. OGHzでは 40の値が得られ、また、比抵抗は 860 Ω cmであった。
[0070] (実施例 3)
上記実施例 1の成膜手法に基づき、 1. 6nm厚の CoZrNb層を成膜後、スパッタ装 置内部に 5sccmの Oガスを 30秒間導入し金属層の表面を酸ィ匕させることで 1. 3n
2
mの自然酸化層を形成した。 1. 6nm厚の CoZrNb層と 1. 3nmの自然酸化層を交 互に 138回ずつ順次形成して総膜厚 400nm (合計 276層相当)の磁性薄膜 (実施 例 3)を形成した。このとき、多層膜全体の体積に対する自然酸化層の割合は 45% であった。
[0071] 得られた磁性薄膜の磁気特性を表 1に示した。飽和磁ィ匕は 0. 63T( = 6. 3kG)、 磁化容易軸方向の保磁力 Hceは 1750AZm ( = 220e)、磁化困難軸方向の保磁 力 Hchは 3260AZm(=41Oe)であった。高周波透磁率特性は、透磁率の実数部 ( μ 1)の値として、 1. OGHzでは 25の値が得られ、また、比抵抗は 1416 Q cmで めつに。 [0072] (比較例 1)
上記実施例 1の成膜手法に基づき、 500 /z m厚の CoZrNb膜を単層形成し、比較 例 1の磁性薄膜を形成した。
[0073] 上記の実施例に準じた方法によって、当該磁性薄膜の物性値を求めたところ、表 1 に示すように、 1. 15T ( = 11. 5kG)の飽和磁化と、 104A/m ( = l . 30e)の磁化 容易軸方向の保磁力 Hceと、 71. 6A/m ( = 0. 90e)の磁ィ匕困難軸方向の保磁力 Hchとがそれぞれ得られた。高周波透磁率特性は、透磁率の実数部 1)の値とし て、 1. 0GHzでは 1000の値が得られ、また、比抵抗は 120 Q cmであった。
[0074] (結果)
これらの結果を含めた測定値を表 1にまとめて示した。表 1に示すように、本実施の 形態における各実施例 1一 3によれば、高共鳴周波数かつ高抵抗の特性を得ること ができる。なお、表 1では、 1GHzにおける透磁率の実部/ z 1のみを示しており、比較 例の 1に対して実施例 1一 3の 1が小さくなつているので、一見すると比較例より も実施例の方が特性が悪いように見える。ところが、実際には、図 3および図 5に示し たように、実施例における 1GHzでの透磁率の虚部 2の値(< 2)が比較例におけ る虚部 2 ( ^ 1000)に比べて十分に小さくなつているので、性能指数 Q ( = μ 1/ μ 2)に着目すると、比較例の Q値に比べて実施例の Q値が十分大きくなつている。 虚部 2は損失を表すものであり、これが小さければ Q値が大きくなる。 Q値が大きい ということは、損失が小さいことを意味する。すなわち、実施例では、比較例に比べて 1GHzにおける損失が低減されており、特性が格段に改善されていることがわかる。
[0075] 図 10は、磁化反転現象の確認実験結果を表すものである。この確認実験では、振 動試料型磁力計 (理研電子、 BHV - 35)装置を用い、試料を面内方向で回転 (成膜 中の磁場印加方向に対する角度ズレを φとして横軸に示す)しながら残留磁ィ匕 (Mr) を測定し、その値を飽和磁化 (Ms)で規格ィ匕して縦軸に表記した。実施例 1一 3の磁 性薄膜と比較例 1の磁性薄膜とを対比した結果、図示したように、両者の磁化容易軸 には 90° のズレがあった。すなわち、実施例 1一 3においては、成膜時の磁場印加 方向と得られた磁性薄膜の磁ィ匕容易軸方向とは直交しているが(図 4参照)、比較例 1においては、成膜時の磁場印加方向と得られた磁性薄膜の磁ィヒ容易軸方向とは
Figure imgf000018_0001
〔0076 以上、 、くつかの実施の形態および実施例を挙げて本発明を説明した力 本発明 はこれらの実施の形態および実施例に限定されず、種々の変形が可能である。例え ば、 Co系非晶質合金は、上記実施の形態および実施例に挙げた材料や組成には 限定されない。また、本発明における Co系非晶質合金の酸ィ匕層は、自然酸化層 3に 限定されず、例えば加熱酸化等の強制的な酸化処理により生成される酸化膜であつ てもよい。また、高周波用磁性薄膜の適用対象は、薄膜インダクタや薄膜トランス等 の高周波用の平面型磁気素子や MMIC等のデバイスに限定されるものではなぐ他 のデバイスにも適用可能である。

Claims

請求の範囲
[1] Co系非晶質合金層と、この Co系非晶質合金の酸ィ匕層とからなる多層膜であって、 前記多層膜全体の体積に対する前記酸ィ匕層の割合が 5— 50%であることを特徴と する高周波用磁性薄膜。
[2] 成膜時における磁場印加方向が磁ィ匕容易軸となる性質をもつ Co系非晶質合金層 と、前記 Co系非晶質合金の酸ィ匕層とからなる多層膜であって、作製された多層膜の 磁ィ匕容易軸が、その多層膜の成膜時における磁場印加方向と直交することを特徴と する高周波用磁性薄膜。
[3] 前記 Co系非晶質合金層が CoZrNb合金で形成されて 、ることを特徴とする請求の 範囲第 1項に記載の高周波用磁性薄膜。
[4] 前記 Co系非晶質合金層が CoZrNb合金で形成されて 、ることを特徴とする請求の 範囲第 2項に記載の高周波用磁性薄膜。
[5] 比抵抗が 150 /z Q cm以上であり、異方性磁界の強さが 105 /4 π [AZm]以上で あることを特徴とする請求の範囲第 1項に記載の高周波用磁性薄膜。
[6] 比抵抗が 150 /z Q cm以上であり、異方性磁界の強さが 105 /4 π [AZm]以上で あることを特徴とする請求の範囲第 2項に記載の高周波用磁性薄膜。
[7] 強磁性共鳴周波数が 2GHz以上であることを特徴とする請求の範囲第 1項に記載 の高周波用磁性薄膜。
[8] 強磁性共鳴周波数が 2GHz以上であることを特徴とする請求の範囲第 2項に記載 の高周波用磁性薄膜。
[9] Co系非晶質合金層とこの Co系非晶質合金の酸ィ匕層とからなる多層膜を印加磁場 中で作製する高周波用磁性薄膜の作製方法であって、
前記多層膜全体の体積に対する前記酸ィ匕層の割合が 5— 50%の範囲内となるよう に成膜することを特徴とする高周波用磁性薄膜の作製方法。
[10] 成膜時における外部磁場の印加方向が磁ィ匕容易軸となる性質をもつ Co系非晶質 合金層を、前記外部磁場の下で形成する第 1の工程と、
前記 Co系非晶質合金の酸化層を形成する第 2の工程と
を含み、 前記第 1の工程および第 2の工程を交互に繰り返して Co系非晶質合金層およびそ の酸ィ匕層からなる多層膜を形成し、その作製された多層膜全体としての磁ィ匕容易軸 力 前記外部磁場の印加方向と直交するようにしたことを特徴とする高周波用磁性薄 膜の作製方法。
[11] 前記 Co系非晶質合金層を CoZrNb合金で形成したことを特徴とする請求の範囲 第 9項に記載の高周波用磁性薄膜の作製方法。
[12] 前記 Co系非晶質合金層を CoZrNb合金で形成したことを特徴とする請求の範囲 第 10項に記載の高周波用磁性薄膜の作製方法。
[13] 請求の範囲第 1項に記載の高周波用磁性薄膜を一部に有することを特徴とする磁 気素子。
[14] 請求の範囲第 2項に記載の高周波用磁性薄膜を一部に有することを特徴とする磁 気素子。
[15] コイルをさらに備え、
一対の前記高周波用磁性薄膜が、前記コイルを挟持するように対向配置されてい ることを特徴とする請求の範囲第 13項に記載の磁気素子。
[16] コイルをさらに備え、
一対の前記高周波用磁性薄膜が、前記コイルを挟持するように対向配置されてい ることを特徴とする請求の範囲第 14項に記載の磁気素子。
[17] インダクタまたはトランスに使用されることを特徴とする請求の範囲第 13項に記載の 磁気素子。
[18] インダクタまたはトランスに使用されることを特徴とする請求の範囲第 14項に記載の 磁気素子。
[19] モノリシックマイクロ波集積回路に使用されることを特徴とする請求の範囲第 13項に 記載の磁気素子。
[20] モノリシックマイクロ波集積回路に使用されることを特徴とする請求の範囲第 14項に 記載の磁気素子。
PCT/JP2004/014405 2003-09-30 2004-09-30 高周波用磁性薄膜およびその作製方法ならびに磁気素子 WO2005031762A2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/573,801 US20070202359A1 (en) 2003-09-30 2004-09-30 Magnetic Thin Film For High Frequency, and Method of Manufacturing Same, and Magnetic Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003342470A JP2005109246A (ja) 2003-09-30 2003-09-30 高周波用磁性薄膜、その作製方法及び磁気素子
JP2003-342470 2003-09-30

Publications (2)

Publication Number Publication Date
WO2005031762A2 true WO2005031762A2 (ja) 2005-04-07
WO2005031762A3 WO2005031762A3 (ja) 2005-06-30

Family

ID=34386248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014405 WO2005031762A2 (ja) 2003-09-30 2004-09-30 高周波用磁性薄膜およびその作製方法ならびに磁気素子

Country Status (5)

Country Link
US (1) US20070202359A1 (ja)
JP (1) JP2005109246A (ja)
KR (1) KR100742555B1 (ja)
CN (1) CN1860561A (ja)
WO (1) WO2005031762A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9812448B2 (en) 2014-12-17 2017-11-07 Samsung Electronics Co., Ltd. Semiconductor devices and methods for fabricating the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5156939B2 (ja) * 2006-02-06 2013-03-06 国立大学法人 名古屋工業大学 高周波軟磁性体膜の製造方法
EP2915212A4 (en) * 2012-11-01 2016-07-20 Indian Inst Scient INTEGRATED HIGH FREQUENCY FACILITY WITH IMPROVED INDUCTIVITY AND METHOD THEREFOR
KR102479826B1 (ko) * 2016-07-07 2022-12-21 주식회사 위츠 자성체 시트 및 전자기기
CN107907145A (zh) * 2017-11-06 2018-04-13 上海交通大学 低噪声平面磁传感器
EP3886126A4 (en) * 2018-12-17 2021-12-22 Huawei Technologies Co., Ltd. THIN FILM COIL AND MANUFACTURING PROCESS FOR IT, INTEGRATED CIRCUIT AND TERMINAL DEVICE
CN113996793B (zh) * 2021-10-15 2023-08-04 中国航发北京航空材料研究院 一种高熵非晶微叠层复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547555A (ja) * 1991-08-19 1993-02-26 Amorphous Denshi Device Kenkyusho:Kk 非晶質軟磁性多層薄膜及びその製造方法
JP2000054083A (ja) * 1998-08-07 2000-02-22 Alps Electric Co Ltd 軟磁性多層膜とこの軟磁性多層膜を用いた平面型磁気素子、フィルタ、及び薄膜磁気ヘッド、ならびに前記軟磁性多層膜の製造方法
JP2000252121A (ja) * 1999-02-26 2000-09-14 Alps Electric Co Ltd 高周波用Co基金属アモルファス磁性膜とそれを用いた磁気素子、インダクタ、トランス
WO2003060933A1 (fr) * 2002-01-16 2003-07-24 Tdk Corporation Film mince magnetique haute frequence, film mince magnetique composite et dispositif magnetique l'utilisant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547555A (ja) * 1991-08-19 1993-02-26 Amorphous Denshi Device Kenkyusho:Kk 非晶質軟磁性多層薄膜及びその製造方法
JP2000054083A (ja) * 1998-08-07 2000-02-22 Alps Electric Co Ltd 軟磁性多層膜とこの軟磁性多層膜を用いた平面型磁気素子、フィルタ、及び薄膜磁気ヘッド、ならびに前記軟磁性多層膜の製造方法
JP2000252121A (ja) * 1999-02-26 2000-09-14 Alps Electric Co Ltd 高周波用Co基金属アモルファス磁性膜とそれを用いた磁気素子、インダクタ、トランス
WO2003060933A1 (fr) * 2002-01-16 2003-07-24 Tdk Corporation Film mince magnetique haute frequence, film mince magnetique composite et dispositif magnetique l'utilisant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9812448B2 (en) 2014-12-17 2017-11-07 Samsung Electronics Co., Ltd. Semiconductor devices and methods for fabricating the same

Also Published As

Publication number Publication date
KR100742555B1 (ko) 2007-07-25
CN1860561A (zh) 2006-11-08
JP2005109246A (ja) 2005-04-21
KR20060054471A (ko) 2006-05-22
US20070202359A1 (en) 2007-08-30
WO2005031762A3 (ja) 2005-06-30

Similar Documents

Publication Publication Date Title
JP3971697B2 (ja) 高周波用磁性薄膜及び磁気素子
Korenivski GHz magnetic film inductors
JP3688732B2 (ja) 平面型磁気素子および非晶質磁性薄膜
Bae et al. High Q Ni-Zn-Cu ferrite inductor for on-chip power module
KR100742555B1 (ko) 고주파용 자성 박막 및 그 제작 방법 그리고 자기 소자
JP2004207651A (ja) 高周波用磁性薄膜、複合磁性薄膜およびそれを用いた磁気素子
Zhao et al. Radio-frequency planar integrated inductor with Permalloy-SiO/sub 2/granular films
US20170294504A1 (en) Laminated structures for power efficient on-chip magnetic inductors
KR100742554B1 (ko) 고주파용 자성박막, 그 제작방법 및 자기소자
JP2004235355A (ja) 軟磁性部材およびそれを用いた磁気素子
Ludwig et al. Magnetoelastic thin films for high-frequency applications
JPH0955316A (ja) 平面型磁気素子およびその製造方法
JPH0963844A (ja) 積層磁性膜およびそれを用いた薄膜磁気素子
Shin et al. Effect of magnetic anisotropy on the current capability of thin film inductor
JPH10289821A (ja) 高周波帯域用磁気デバイス
KR100776406B1 (ko) 마이크로 인덕터 및 그 제작 방법
JP2898129B2 (ja) 非晶質軟磁性多層薄膜及びその製造方法
JP2000114041A (ja) 薄膜積層体、薄膜積層体の製造方法、並びにこの薄膜積層体を用いた薄膜トランス、薄膜インダクタ、および薄膜磁気ヘッド
KR100332231B1 (ko) 초고주파용 자성박막의 재료와 그를 이용한 자성박막 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480028393.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067005910

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067005910

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 10573801

Country of ref document: US

Ref document number: 2007202359

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10573801

Country of ref document: US