WO2005031442A1 - Dispositif ophtalmique comprenant un capteur holographique - Google Patents

Dispositif ophtalmique comprenant un capteur holographique Download PDF

Info

Publication number
WO2005031442A1
WO2005031442A1 PCT/GB2004/004093 GB2004004093W WO2005031442A1 WO 2005031442 A1 WO2005031442 A1 WO 2005031442A1 GB 2004004093 W GB2004004093 W GB 2004004093W WO 2005031442 A1 WO2005031442 A1 WO 2005031442A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
glucose
holographic
acid
analyte
Prior art date
Application number
PCT/GB2004/004093
Other languages
English (en)
Inventor
Christopher Robin Lowe
Satyamoorthy Kabilan
Jeffrey Blyth
Angelika Domschke
Dawn Smith
Njeri Karangu
Original Assignee
Smart Holograms Limited
Ciba Vision Corporation
Cambridge University Technical Services Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0322488A external-priority patent/GB0322488D0/en
Priority claimed from GB0401399A external-priority patent/GB0401399D0/en
Application filed by Smart Holograms Limited, Ciba Vision Corporation, Cambridge University Technical Services Ltd. filed Critical Smart Holograms Limited
Priority to CA002540076A priority Critical patent/CA2540076A1/fr
Priority to AU2004276949A priority patent/AU2004276949B2/en
Priority to JP2006527481A priority patent/JP4566996B2/ja
Priority to EP04768637A priority patent/EP1664909A1/fr
Publication of WO2005031442A1 publication Critical patent/WO2005031442A1/fr
Priority to US12/032,650 priority patent/US7998412B2/en
Priority to US13/192,992 priority patent/US8241574B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N2021/758Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated using reversible reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • G01N2021/7706Reagent provision
    • G01N2021/7723Swelling part, also for adsorption sensor, i.e. without chemical reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7773Reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Definitions

  • OPHTHALMIC DEVICE COMPRISING A HOLOGRAPHIC SENSOR Field of the Invention This invention relates to an ophthalmic device comprising a holographic sensor.
  • Ophthalmic devices for example contact lenses, comprising holographic elements are known.
  • a holographic element is used to focus incoming light.
  • the holographic element may have a programmed activating angle providing two or more optical powers.
  • the use of a holographic element allows the user to see clear and unimpaired images, thereby overcoming many of the shortfalls of traditional simultaneous vision and translating lenses.
  • Holographic optical inserts are described, for example, in WO-A-99/34239, WO-A-99/34244, WO-A-02/054137 and WO-A-99/34248.
  • ophthalmic glucose sensors i.e. those for the detection of glucose in the eye.
  • the levels of glucose in the eye are known to correlate with those in the blood, and thus blood levels of glucose can be monitored indirectly by measuring the levels in an ocular fluid such as tears.
  • US-A-2003/0027240 describes an ocular insert for the detection of glucose.
  • the insert comprises a polymerised crystalline colloidal array (PCCA) which is polymerised in a hydrogel, and a molecular recognition component capable of responding to glucose.
  • the array has a lattice spacing that changes when the volume of the hydrogel changes, causing the diffracted wavelength of the array to change.
  • PCCA polymerised crystalline colloidal array
  • WO-A-95/26499 discloses a holographic sensor, based on a volume hologram. This sensor comprises an analyte-sensitive matrix having an optical transducing structure disposed throughout its volume. Because of this physical arrangement of the transducer, the optical signal generated by the sensor is very sensitive to volume changes or structural rearrangements taking place in the analyte-sensitive matrix as a result of interaction or reaction with the analyte.
  • a sensor comprising a gelatin-based holographic medium may be used to detect trypsin. Trypsin acts on the gelatin medium, irreversibly destroying the integrity of the holographic support medium.
  • Holographic sensors may also be used to detect changes in, for example, pH.
  • sensors of the kind described in US-A-2003/0027240 may be used to detect levels of glucose in the eye, there remains the need for ophthalmic sensors which allowfor accurate, real-time detection of analytes such as glucose.
  • Summary of the Invention The present invention is based on the realisati on that holographic sensing technology, when incorporated into a contact lens or other ophthalmic device, provides an accurate yet minimally invasive method of detection of an ocular analyte.
  • a first aspect of the invention is an ophthalmic device which comprises a holographic element comprising a medium and, disposed therein, a hologram, wherein an optical characteristic of the element changes as a result of a variation of a physical property of the medium, and wherein the variation arises as a result of interaction between the medium and an analyte present in an ocular fluid.
  • the device may be a contact lens or an ocular implant.
  • Another aspect of the invention is a method of detection of an analyte in an ocular fluid, the method comprising detecting any change of the optical characteristic of the holographic element of a device of the invention with the fluid, in the eye.
  • Another aspect of the invention is a method for the production of a device of the invention which comprises contacting the holographic element with a contact lens, wherein the contacted regions of the element and the lens are cross-linkable; and cross-linking said regions.
  • at least one of the contacted regions comprises PVA, more preferably Nelfilcon.
  • the invention may be used for the detection of ocular analytes such as glucose or lactate.
  • the interaction is preferably reversible so that both the interaction and reverse interaction can occur, allowing the analyte to be continuously detected, preferably in real time.
  • the interaction is preferably a chemical reaction.
  • glucose refers to the known cyclic and linear forms of glucose.
  • ophthalmic device refers to contact lenses (both hard and soft), corneal onlays, implantable ophthalmic devices and the like.
  • contact lens refers to any hard or soft lens used on the eye or ocular vicinity for vision correction, diagnosis, sample collection, drug delivery, wound healing, cosmetic appearance or other ophthalmic application.
  • the lens may be a daily-disposable, daily-wear or extended-wear lens.
  • implantable ophthalmic device refers to an ophthalmic device which is used in, on or about the eye or ocular vicinity. Such devices include intraocular lenses, subconjunctival lenses, intracorneal lenses, and shunts/implants (e.g. a stent or glaucoma shunt) that can rest in the cul de sac of an eye.
  • the insert is in the form of a contact lens.
  • the lens may be manufactured using any suitable material known in the art.
  • the lens material may be formed by the polymerisation of one or more monomers and optionally one or more prepolymers.
  • the material may comprise a photoinitiator, visibility tinting agent, UV-blocking agent and/or a photosensitiser.
  • a preferred group of lens materials are prepolymers which are water- soluble and/or meltable. It is preferred that the material comprises one or more prepolymers which are in a substantially pure form (e.g. purified by ultrafiltration).
  • Preferred prepolymers include water-soluble crosslinkable poly(vinyl alcohol) prepolymers (as described in US5583163 and US6303687); a water-soluble vinyl group-terminated polyurethane, obtainable by reacting an isocyanate-capped polyurethane with an ethylenically unsaturated amine (primary or secondary amine) or an ethylenically unsaturated monohydroxy compound, wherein the isocyanate-capped polyurethane can be a copolymerisation product of at least one polyalkylene glycol, a compound containing at least 2 hydroxyl groups, and at least one compound with two or more isocyanate groups; derivatives of a polyvinyl alcohol, polyethyleneimine or polyvinylamine (see, for example, US5849841); a water-soluble crosslinkable polyurea prepolymer as described in US6479587; crosslinkable polyacrylamide; crosslinkable statistical copolymers of vinyl lactam, MMAand a
  • the lens may comprise a hydrogel material.
  • hydrogel materials are polymeric materials which are capable of absorbing at least 10% by weight of water when fully hydrated.
  • Hydrogel materials include poly(vinyl alcohol) (PVA), modified PVA (e.g. nelfilcon A), poly(hydroxyethyl methacrylate), poly(vinyl pyrrolidone), PVA with a poly(carboxylic acid) (e.g. carbopol), poly(ethylene glycol), polyacrylamide, polymethacrylamide, silicone-containing hydrogels, polyurethane, polyurea, and the like.
  • the device may be an implantable ophthalmic device. Glucose levels in tears may be much lower than blood glucose levels.
  • the device is in the form of a subconjunctive implant, intracorneal lens, stent or glaucoma shunt.
  • the holographic support medium is one in which a hologram can be made and which is capable of exhibiting one or more of the properties of the sensitive mechanisms described herein.
  • the hologram may be disposed on or in, part of or throughout the bulk of the volume of the support medium.
  • the support medium may be an integral part of the device, e.g. the body of a lens may itself comprise or form a holographic support medium.
  • the support medium preferably comprises a native or modified matrix with viscoelastic properties which alter as a result of an interaction with an analyte species.
  • the matrix may be formed from the copolymerisation of (meth)acrylamide and/or (meth)acrylate-derived comonomers.
  • the monomer HEMA hydroxyethyl methacrylate
  • PolyHEMA is a versatile support material since it is swellable, hydrophilic and widely biocompatible.
  • a device in the form of a contact lens is preferably obtained by forming a holographic element and then embedding the element into a contact lens.
  • a contact lens sensor may be obtained using the following protocol: (a) forming a polymeric holographic sensor (e.g. using phenylboronate ligands) on a glass slide or similar surface; (b) coating a layer of polyvinylalcohol (PVA), preferably "Nelfilcon", onto the surface of the sensor, with subsequent cross-linking of the layer; (c) extracting any toxic components from the coated sensor (e.g.
  • PVA polyvinylalcohol
  • a holographic sensor of the type used in the invention generally comprises a medium and, disposed throughout the volume of the medium, a hologram.
  • the support medium may interact with an analyte resulting in a variation of a physical property of the medium.
  • This variation induces a change in an optical characteristic of the holographic element, such as its polarisability, reflectance, refractance or absorbance. If any change occurs whilst the hologram is being replayed by incident broad band, non-ionising electromagnetic radiation, then a colour or intensity change, for example, may be observed.
  • the sensor may be prepared according to the methods disclosed in WO- A-95/26499, WO-A-99/63408 and WO-A-03/087789. The contents of these specifications are incorporated herein by reference. More than one hologram may be supported on, or in, a holographic element.
  • Means may be provided to detect the or each variation in radiation emanating from the or each hologram, arising as a result of a variation in the or each optical characteristic.
  • the holographic elements may be dimensioned and arranged so as to sense two independent events/species and to affect, simultaneously, or otherwise, radiation in two different ways.
  • Holographic elements may be provided in the form of an array.
  • An illuminating source of non-ionising radiation for example visible light, may be used to observe variation(s) in the, or each, optical characteristic of the holographic element.
  • the extent of interaction between the holographic medium and the analyte species is reflected in the degree of change of the physical property, which is detected as a variation in an optical characteristic, preferably a shift in wavelength of non-ionising radiation.
  • the property of the holographic element which varies may be its charge density, volume, shape, density, viscosity, strength, hardness, charge, hydrophobicity, swellability, integrity, cross-link density or any other physical property. Variation of the or each physical property, in turn, causes a variation of an optical characteristic, such as the polarisability, reflectance, refractance or absorbance of the holographic element. There are a number of basic ways to change a physical property, and thus vary an optical characteristic.
  • the physical property that varies is preferably the volume of the support medium and, in turn, the spacing of the holographic fringes of the holographic element.
  • This variation may be achieved by incorporating specific groups into the support matrix, where these groups undergo a change in, for example, conformation, charge or the degree of cross- linking upon interaction with the analyte, and cause an expansion or contraction of the support medium.
  • An example of such a group is the specific binding conjugate of an analyte species.
  • Another variation is in th e active water, solvent or charge content of the support medium.
  • the holographic support medium is preferably in the form of a gel. Analyte molecules that can react with at least two functional groups in the element may form a reversible cross-link between separate parts of the support matrix, thereby altering the visco-elastic properties of the support matrix.
  • the support medium may comprise a receptor which is capable of binding or interacting specifically with the analyte. Suitable receptors include antibodies, lectins, hormone receptors, drug receptors, enzymes, aptamers, nucleic acids, nucleic acid analogues, and fragments thereof.
  • a receptor may be incorporated into a support med ium using any suitable method known in the art. For example, a prepolymer and receptor may comprise matching functional groups; the two components can then be covalently linked with one another.
  • a receptor may be incorporated in a vinylic monomer which a component of the lens-forming material.
  • One parameter determining the response of the system is the extent of cross-linking.
  • the number of cross-linking points due to polymerisation of monomers should not be so great that complex formation between polymer and analyte-binding groups is relatively low, since the polymer film may become too rigid. This may inhibit the swelling of the support medium.
  • a hydroge l-based hologram may have a support medium comprising pendant glucose groups and a lectin, preferably concanavalin A (con A). The lectin binds to the pendant glucose groups and acts as a cross-linker in the polymer structure.
  • Dextran having no inherent polymerisable functionality, can be entrapped during the polymerisation of acrylamide-based monomers; allylglucoside and GEMA can be polymerised either individually or together with comonomers.
  • the polymers are preferably prepared as thin films on glass supports.
  • a holographic glucose sensor may comprise any suitable glucose receptor, particularly one which allows a reversible change in a physical property of the support medium upon binding with glucose.
  • the support medium may comprise pendant boronic acid groups, such as phenylboronic acid or a derivative thereof. Two adjacent diol groups in glucose bind with a boronic acid group in a reversible condensation reaction.
  • reaction of glucose with pendant phenylboronic acid groups causes an expansion of the support medium, due to the formation of boronate esters.
  • boronate esters are negatively charged and effect a Donan potential, causing water to partition into the support medium. This expansion is observed as a shift in the reflectance maxima to longer wavelengths.
  • the sensing ability of boronic acid groups is strongly dependent on the molecular geometry and the aromatic species where the boronic acid group is present.
  • glucose sensitive probes can be made with a variety of affinities, in the mM range for blood glucose, and in the ⁇ M range for tear glucose.
  • Preferred boronic acid groups include those described in WO-A-04/081624.
  • Boronic acid compounds in particular phenylboronic acid compounds, are versatile receptors since they may be used for the detection of a variety of carbohydrates. In physiological fluids, this lack of selectivity is not a problem because most sugars are found on glycoproteins and other macromolecular structures, i.e. they are already bound and thus cannot bind to the boronic groups of the support medium.
  • Glucose is the only sugar that is found free in relatively high concentration. Lactate (lactic acid), however, may pose a problem since it is an ⁇ -hydroxy acid which binds to boronic acid groups and is, in ocular fluids, generally present in a greater concentration than glucose.
  • lactate interference can be addressed by incorporating, in the device, a group which repels lactate.
  • Lactate carries an overall negative charge in physiological fluids and thus, for example, the support medium may carry a group having a negative charge, the magnitude of which will be apparent to those skilled in the art.
  • An example of such a group is glycolic acid, which can be incorporated into the support medium by the polymerisation of monomers including, for example, acrylamidoglycolic acid.
  • the glycolic acid moiety competes with glucose and lactate for available phenylboronic acid sites however, since the moiety carries a negative charge, it repels lactate but not glucose.
  • the boronic receptor may itself carry a substantial negative charge or polarisation, e.g.
  • a sensor can also be made more selective for glucose by incorporating pendant amine groups in the support medium. The nitrogen atom of the amine group may form an intramolecular bond with the boron atom, thereby promoting formation of the more reactive tetrahedral conformation about the boron atom.
  • the support medium may comprise one or more macrocyclic groups such as crown ethers, which reversibly bind a range of ionic species. Crown ethers are well known to reversibly bind Group I and Group II metal ions. Therefore a crown ether which is specific to an ionic analyte can be immobilised in the support medium and used to continuously monitor the presence of the analyte.
  • the following Examples illustrate the invention.
  • Example 1 A contact lens was produced according to the protocol described above.
  • the embedded holographic element comprised 12% mol of 3- acrylamidophenylboronic acid, the synthesis of which is described in WO-A- 04/081624.
  • Example 2 An experiment similar to that of Example 1 was performed, using an ophthalmic implant comprising the sensor.
  • the support medium was coated with Nelfilcon (Cibavision). The experiment was conducted on a rabbit, instead of a human volunteer, the device implanted subcutaneously just below the eye.
  • Fig. 3 shows the response of the holographic implant, Fig. 4 that of the blood glucose sensor. As in Example 1 , the responses of the two sensors are similar.
  • a holographic support medium was formed by copolymerising 13 mol% 5-fluoro-2-methylacrylamidophenylboronic acid (the synthesised according to WO-A-04/081624) and 3% MBA in acrylamide.
  • Example 4 A medium was obtained by polymerising 12 mol% 3- acrylamidophenylboronic acid, 12 mol% acrylamidoglycolic acid and 76 mol% acrylamide, using 2% (w/v) of 2-dimethoxy-2-phenyl-acetophenone (a free radical initiator) in dimethyl sulphoxide. A hologram was recorded in the medium, and the resulting sensor tested for its response to glucose and lactate. The results are shown in Fig. 6. The presence of acrylamidoglycolic acid reduced the response of the sensor to the two analytes, as the negative charge of the acidic moiety causes a significant degree of swelling of the polymeric medium.
  • Example 5 A support medium was formed by copolymerising 11.9 mol% 3- acrylamidophenylboronicacid, 9.2 mol% N-[3-(dimethyIamino)propyl]acrylamide, 2.9 mol% methylenebisacrylamide and 76 mol % acrylamide, by exposure to UV light for 1 hour. Silver ions, present in an acetic acid solution, were diffused into the medium, the acidic solution present to prevent "fogging" of the silver by the amine component.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Prostheses (AREA)
  • Eyeglasses (AREA)

Abstract

L'invention concerne un dispositif ophtalmique qui comprend un élément holographique consistant en un support dans lequel un hologramme est disposé. Dans ce dispositif, une caractéristique optique de l'élément se modifie du fait de la variation d'une propriété physique du support, et cette variation est entraînée par l'interaction entre le support et un analyte présent dans le fluide oculaire. Ce dispositif peut être utilisé dans la détection d'analytes tels que le glucose.
PCT/GB2004/004093 2000-01-07 2004-09-27 Dispositif ophtalmique comprenant un capteur holographique WO2005031442A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002540076A CA2540076A1 (fr) 2003-09-25 2004-09-27 Dispositif ophtalmique comprenant un capteur holographique
AU2004276949A AU2004276949B2 (en) 2003-09-25 2004-09-27 Ophthalmic device comprising a holographic sensor
JP2006527481A JP4566996B2 (ja) 2003-09-25 2004-09-27 ホログラフィックセンサを含む眼科装置
EP04768637A EP1664909A1 (fr) 2003-09-25 2004-09-27 Dispositif ophtalmique comprenant un capteur holographique
US12/032,650 US7998412B2 (en) 2000-01-07 2008-02-16 Ophthalmic device comprising a holographic sensor
US13/192,992 US8241574B2 (en) 2000-01-07 2011-07-28 Ophthalmic device comprising a holographic sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB0322488A GB0322488D0 (en) 2003-09-25 2003-09-25 Ophthalmic device
GB0322488.8 2003-09-25
GB0401399.1 2004-01-22
GB0401399A GB0401399D0 (en) 2004-01-22 2004-01-22 Ophthalmic device

Related Child Applications (5)

Application Number Title Priority Date Filing Date
PCT/GB2001/000061 Continuation-In-Part WO2001050113A1 (fr) 2000-01-07 2001-01-08 Capteur avec un affichage d'image multiplexee holographique
US10/169,502 Continuation-In-Part US20030103868A1 (en) 2000-01-07 2001-01-08 Sensor with holographic multiplexed image display
US10573097 A-371-Of-International 2004-09-27
US12/032,650 Continuation-In-Part US7998412B2 (en) 2000-01-07 2008-02-16 Ophthalmic device comprising a holographic sensor
US13/192,992 Continuation-In-Part US8241574B2 (en) 2000-01-07 2011-07-28 Ophthalmic device comprising a holographic sensor

Publications (1)

Publication Number Publication Date
WO2005031442A1 true WO2005031442A1 (fr) 2005-04-07

Family

ID=34395443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2004/004093 WO2005031442A1 (fr) 2000-01-07 2004-09-27 Dispositif ophtalmique comprenant un capteur holographique

Country Status (5)

Country Link
EP (1) EP1664909A1 (fr)
JP (1) JP4566996B2 (fr)
AU (1) AU2004276949B2 (fr)
CA (1) CA2540076A1 (fr)
WO (1) WO2005031442A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121753A1 (fr) * 2004-06-07 2005-12-22 Cambridge Enterprise Limited Procede permettant de detecter un analyte a l'aide d'un capteur holographique
WO2006027575A1 (fr) * 2004-09-07 2006-03-16 Cambridge Enterprise Limited . Detecteur holographique
WO2007010241A2 (fr) * 2005-07-18 2007-01-25 Smart Holograms Limited Detecteurs holographiques et leurs utilisations
WO2007039717A1 (fr) * 2005-10-03 2007-04-12 Smart Holograms Limited Utilisation de capteurs holographiques
WO2007054689A1 (fr) * 2005-11-08 2007-05-18 Smart Holograms Limited Nouveau complexe de boronate et son utilisation dans une sonde à glucose
WO2008079495A2 (fr) * 2006-12-20 2008-07-03 Bausch & Lomb Incorporated Revêtements et solutions pour lentilles de contact
JP2009526965A (ja) * 2005-11-08 2009-07-23 スマート ホログラムズ リミテッド 新規なボロン酸複合体、及び、グルコースセンサー中でのその使用
JP2010502978A (ja) * 2006-09-08 2010-01-28 スマート ホログラムズ リミテッド 検体の検出方法
US7671156B2 (en) 2005-08-10 2010-03-02 Novartis Ag Silicone hydrogels
US7744785B2 (en) 2005-12-14 2010-06-29 Novartis Ag Method for preparing silicone hydrogels
US20100168855A1 (en) * 2008-12-30 2010-07-01 Mcgee Joseph A Method of Applying Renewable Polymeric Lens Coating
US20100168356A1 (en) * 2008-12-30 2010-07-01 Yu-Chin Lai Biomedical Devices
EP2467054A1 (fr) * 2009-09-18 2012-06-27 University Of Akron Dispositif optique et méthode d'analyse non invasive en temps réel des taux de glycémie
EP2522679A4 (fr) * 2010-01-05 2014-03-05 Nat Inst For Materials Science Monomère acide phénylboronique et polymère d'acide phénylboronique
US9248614B2 (en) 2004-06-30 2016-02-02 Novartis Ag Method for lathing silicone hydrogel lenses

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8454689B2 (en) * 2008-12-30 2013-06-04 Bausch & Lomb Incorporated Brush copolymers
US8410190B2 (en) * 2009-09-22 2013-04-02 Coopervision International Holding Company, Lp Wettable hydrogel materials for use in ophthalmic applications and methods
JP6194127B2 (ja) * 2015-08-10 2017-09-06 株式会社メニコン グルコース検出体及びグルコース検出方法
WO2019031114A1 (fr) * 2017-08-10 2019-02-14 Jsr株式会社 Polymère, composition de résine, film de résine, procédé de production de film de résine à motifs, et composant électronique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026499A1 (fr) * 1994-03-28 1995-10-05 British Technology Group Limited Hologramme utilise en tant que capteur
WO1999034244A1 (fr) * 1997-12-29 1999-07-08 Novartis Ag Lentille correctrice programmable
US20030027240A1 (en) * 1996-11-06 2003-02-06 University Of Pittsburgh Intelligent polymerized crystalline colloidal array carbohydrate sensors
US20030103868A1 (en) * 2000-01-07 2003-06-05 Millington Roger Bradley Sensor with holographic multiplexed image display
US6579673B2 (en) * 1998-12-17 2003-06-17 Kimberly-Clark Worldwide, Inc. Patterned deposition of antibody binding protein for optical diffraction-based biosensors

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU750402B2 (en) * 1997-12-29 2002-07-18 Novartis Ag Composite holographic multifocal lens
HU226183B1 (en) * 1999-08-26 2008-06-30 Novartis Ag Ophthalmic lens and sensor system for measuring the concentration of an analyte in an ocular fluid
US6366793B1 (en) * 1999-09-10 2002-04-02 Beckman Coulter, Inc. Minimally invasive methods for measuring analtes in vivo

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026499A1 (fr) * 1994-03-28 1995-10-05 British Technology Group Limited Hologramme utilise en tant que capteur
US20030027240A1 (en) * 1996-11-06 2003-02-06 University Of Pittsburgh Intelligent polymerized crystalline colloidal array carbohydrate sensors
WO1999034244A1 (fr) * 1997-12-29 1999-07-08 Novartis Ag Lentille correctrice programmable
US6579673B2 (en) * 1998-12-17 2003-06-17 Kimberly-Clark Worldwide, Inc. Patterned deposition of antibody binding protein for optical diffraction-based biosensors
US20030103868A1 (en) * 2000-01-07 2003-06-05 Millington Roger Bradley Sensor with holographic multiplexed image display

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121753A1 (fr) * 2004-06-07 2005-12-22 Cambridge Enterprise Limited Procede permettant de detecter un analyte a l'aide d'un capteur holographique
EA011267B1 (ru) * 2004-06-07 2009-02-27 Кембридж Энтерпрайз Лимитед Способ исследования аналита с использованием голографического датчика
US9248614B2 (en) 2004-06-30 2016-02-02 Novartis Ag Method for lathing silicone hydrogel lenses
WO2006027575A1 (fr) * 2004-09-07 2006-03-16 Cambridge Enterprise Limited . Detecteur holographique
US7998639B2 (en) 2004-09-07 2011-08-16 Cambridge Enterprise Limited Holographic sensor
WO2007010241A3 (fr) * 2005-07-18 2007-03-08 Smart Holograms Ltd Detecteurs holographiques et leurs utilisations
WO2007010241A2 (fr) * 2005-07-18 2007-01-25 Smart Holograms Limited Detecteurs holographiques et leurs utilisations
US7671156B2 (en) 2005-08-10 2010-03-02 Novartis Ag Silicone hydrogels
WO2007039717A1 (fr) * 2005-10-03 2007-04-12 Smart Holograms Limited Utilisation de capteurs holographiques
WO2007054689A1 (fr) * 2005-11-08 2007-05-18 Smart Holograms Limited Nouveau complexe de boronate et son utilisation dans une sonde à glucose
US8334140B2 (en) 2005-11-08 2012-12-18 Smart Holograms Limited Boronate complex and its use in a glucose sensor
JP2009526965A (ja) * 2005-11-08 2009-07-23 スマート ホログラムズ リミテッド 新規なボロン酸複合体、及び、グルコースセンサー中でのその使用
JP4911641B2 (ja) * 2005-11-08 2012-04-04 スマート ホログラムズ リミテッド ポリマーマトリックスを含むホログラフィックセンサー
US7744785B2 (en) 2005-12-14 2010-06-29 Novartis Ag Method for preparing silicone hydrogels
US8501833B2 (en) 2005-12-14 2013-08-06 Novartis Ag Method for preparing silicone hydrogels
JP2010502978A (ja) * 2006-09-08 2010-01-28 スマート ホログラムズ リミテッド 検体の検出方法
WO2008079495A3 (fr) * 2006-12-20 2008-12-11 Bausch & Lomb Revêtements et solutions pour lentilles de contact
WO2008079495A2 (fr) * 2006-12-20 2008-07-03 Bausch & Lomb Incorporated Revêtements et solutions pour lentilles de contact
US20100168356A1 (en) * 2008-12-30 2010-07-01 Yu-Chin Lai Biomedical Devices
US20100168855A1 (en) * 2008-12-30 2010-07-01 Mcgee Joseph A Method of Applying Renewable Polymeric Lens Coating
US8377126B2 (en) * 2008-12-30 2013-02-19 Bausch & Lomb Incorporated Renewable polymeric lens coating
EP2467054A1 (fr) * 2009-09-18 2012-06-27 University Of Akron Dispositif optique et méthode d'analyse non invasive en temps réel des taux de glycémie
EP2467054A4 (fr) * 2009-09-18 2014-04-09 Univ Akron Dispositif optique et méthode d'analyse non invasive en temps réel des taux de glycémie
EP2522679A4 (fr) * 2010-01-05 2014-03-05 Nat Inst For Materials Science Monomère acide phénylboronique et polymère d'acide phénylboronique

Also Published As

Publication number Publication date
JP4566996B2 (ja) 2010-10-20
AU2004276949A1 (en) 2005-04-07
AU2004276949B2 (en) 2008-07-31
JP2007506999A (ja) 2007-03-22
EP1664909A1 (fr) 2006-06-07
CA2540076A1 (fr) 2005-04-07

Similar Documents

Publication Publication Date Title
US8241574B2 (en) Ophthalmic device comprising a holographic sensor
AU2004276949B2 (en) Ophthalmic device comprising a holographic sensor
AU2008252936B2 (en) Hydrogel implant for sensing metabolites in body tissue
CN1997884B (zh) 采用全息传感器检测分析物的方法
US7927519B2 (en) Reflection hologram sensor in contact lens
EP1654543B1 (fr) Capteur ophtalmique
WO2003087899A1 (fr) Procede pour detecter une substance a analyser dans un liquide
Domschke et al. Initial clinical testing of a holographic non-invasive contact lens glucose sensor
Elsherif et al. Wearable bifocal contact lens for continual glucose monitoring integrated with smartphone readers
Harvey et al. Fibre optics sensors in tear electrolyte analysis: Towards a novel point of care potassium sensor
JP4911641B2 (ja) ポリマーマトリックスを含むホログラフィックセンサー
WO2003096876A2 (fr) Dispositif de diagnostic a fonctionnement continu
Domschke Continuous non-invasive ophthalmic glucose sensor for diabetics
Domschke et al. Holographic sensors in contact lenses for minimally-invasive glucose measurements
US20230314839A1 (en) Biomarker-responsive contact lens
Domschke Ophthalmic Glucose Nanosensors for Diabetes Management

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004768637

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2540076

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006527481

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004276949

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004276949

Country of ref document: AU

Date of ref document: 20040927

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004276949

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004768637

Country of ref document: EP