WO2005030950A1 - イネの鉄などの金属錯体の吸収や輸送に関与するトランスポーター、その遺伝子 - Google Patents

イネの鉄などの金属錯体の吸収や輸送に関与するトランスポーター、その遺伝子 Download PDF

Info

Publication number
WO2005030950A1
WO2005030950A1 PCT/JP2004/014064 JP2004014064W WO2005030950A1 WO 2005030950 A1 WO2005030950 A1 WO 2005030950A1 JP 2004014064 W JP2004014064 W JP 2004014064W WO 2005030950 A1 WO2005030950 A1 WO 2005030950A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
amino acid
transporter
acid sequence
rice
Prior art date
Application number
PCT/JP2004/014064
Other languages
English (en)
French (fr)
Inventor
Naoko Nishizawa
Satoshi Mori
Daichi Mizuno
Shintaro Koike
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to JP2005514219A priority Critical patent/JP4699211B2/ja
Publication of WO2005030950A1 publication Critical patent/WO2005030950A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants

Definitions

  • the present invention relates to a transporter involved in the absorption and transport of a rice metal complex, a gene encoding the same, a vector containing the same, and a transformant using the gene.
  • Rice absorbs metal elements such as iron and manganese from soil and transports them into the body to replenish metal elements such as iron.
  • the present invention relates to a transporter involved in the absorption and transport of metal elements such as iron, which are essential components for rice growth. More specifically, the present invention provides a transporter OsYSLl-18 involved in the absorption and transport of metal complexes such as rice iron and manganese, a gene encoding the same, a vector containing the same, and The present invention relates to a transformant using the gene.
  • the present invention relates to a method for regulating the internal transport of an iron complex and / or a manganese complex in a plant by OsYSL2.
  • Iron is the fourth most abundant element on the earth's crust, and is one of the essential nutrients for all organisms, not just plants. However, in aerobic soils, most iron is insoluble Fe (OH) 3. In particular, the solubility of Fe (OH) 3, which has a high pH in the soil, is significantly reduced in salt accumulation soil and in the limestone soil where the base material that makes the soil alkaline is high. Plants growing in such soils exhibit severe iron deficiency symptoms because plants cannot absorb insoluble iron Fe (OH) 3. About one-third of the world's arable land is said to be a potential iron deficient soil.
  • Strategy I is for plants other than Gramineae It is seen and has the following features. It first secretes chelate compounds into the rhizosphere and solubilizes insoluble ferric iron. This ferrous iron is reduced to ferrous iron by ferrous reductase (FR02) on the cell membrane of the root, and the ferrous iron is absorbed via the ferrous transporter (IRT1).
  • FR02 ferrous reductase
  • mugineic acids are used for iron acquisition only by grasses belonging to Strategy 11-II
  • the genome of Arabidopsis thaliana belonging to plants of Strategy 11-I does not synthesize mugineic acids in the body. It has been reported that as many as eight YS1-like genes (AtYSL) exist.
  • Strategy 11 I plants do not synthesize mugineic acids in the body, so the "mugineic acids-ferrous iron" transporter should not be necessary.
  • the presence of such a transporter in the Strategy 11 I plants indicates that the YS1-like transporter does not transport only the ⁇ mugineic acids, trivalent iron '' complex but also the ⁇ iron-nicotianamine '' complex. It is supposed to be a transporter to transport.
  • the YS1-like gene (AtYSL) of Arabidopsis thaliana is a transporter that transports an “iron-12-cotianamine” complex that is thought to be involved in iron transport in plants. Is supposed to code
  • the present inventors have proposed a method of creating a plant with an enhanced iron absorption mechanism capable of growing even in a soil where latent iron deficiency has occurred, particularly a cereal plant. He has been conducting research to elucidate the mechanism of partitioning and metabolism, and in particular has elucidated the group of enzymes involved in the synthesis of mugineic acid required for iron absorption (see Patent Documents 14). Creating plants that are resistant to such iron deficiency, especially rice, is very important for solving the world's food problems. This is an important issue.
  • Patent Document 1 W099Z57249
  • Patent document 2 W099Z48356
  • Patent Document 3 WOOl ZO 1762
  • Patent Document 4 WO02 / 0777240 ⁇ -Non-patent Document 1: Curie C, et al., Nature, 409, 346-349 (2001)
  • Non-Patent Document 2 Takahashi, M., et al, Nature biotechnology, 19, 466-469 (2001). Disclosure of the Invention
  • the present invention provides a transporter involved in the absorption and transport of metal complexes such as iron in rice, and a gene thereof. More specifically, for example, a “muginic acid-ferric iron” transporter and a gene encoding the same, and a “metal nicotianamine” complex transporter such as an “iron nicotianamine” complex and a gene encoding the same Transporters involved in the absorption and transport of metal complexes such as The present invention also provides a vector and a transformant containing these genes.
  • the inventors of the present invention have proposed a method for producing iron iii, which can grow even in a potentially iron-deficient soil in which absorption and transport of metal elements such as iron have been enhanced, so that iron absorption and transport can be improved.
  • Previous studies have elucidated the mechanism by which rice absorbs and transports iron.
  • the transporter that rice cells take up iron has not yet been elucidated.
  • Transporters are essential proteins for cells and intracellular organelles to take up various nutrients and components into the inside.Rice is a rice plant that can grow in potentially iron-deficient soils with enhanced iron absorption and transport.
  • ⁇ iij is an essential protein together with various enzymes.
  • the present inventors attempted to clone rice transporters and found that rice contains 18 types of transporters involved in the absorption and transport of complexes of metal elements such as iron. Was.
  • OsYSL2 therein is a transporter involved in the transport of iron and manganese -cotianamine complexes in plants.
  • the present invention relates to a transporter involved in absorption and transport of a metal complex such as rice iron. More specifically, the present invention relates to the method of the present invention, wherein the amino acid sequence of any one of SEQ ID NOs: 118, or a part of the amino acid sequence is deleted or substituted, and Z or another amino acid is added.
  • the present invention also relates to a gene having a base sequence capable of encoding the above-described rice-derived transporter of the present invention, more specifically, a base sequence represented by any one of SEQ ID NOS: 19 to 36 in the sequence listing, or a string.
  • the present invention relates to a gene having a nucleotide sequence capable of hybridizing with the gene under a gentle condition.
  • the present invention provides a vector comprising the gene of the present invention.
  • the present invention relates to a transformed cell transformed with a gene containing an offspring.
  • the present invention provides the amino acid sequence of SEQ ID NO: 2 shown in SEQ ID NO: 2 or a part of the amino acid is deleted or substituted and Z or another amino acid is added.
  • the present invention relates to a method for regulating the intracellular transport of an iron complex and a Z or manganese complex in a plant, which comprises introducing a gene encoding an amino acid sequence having 80% or more homology with the amino acid sequence to be obtained.
  • the present inventors searched for a rice gene (OsYSL) based on homology with the corn YS1 gene (see Non-Patent Document 1).
  • rice gene (OsYSL) Oryza sativa and ssp. Japonica (cv. Ipponoare) (uolf et al., 2002) were used as rice for cultivation of Oryza sativa L.
  • blast (Blast) search was performed on these.
  • the Japonica species database is referred to as the Syngenta database (http: ⁇ portal.tmri.org/rice/), and the Indy species database is referred to as the Chinese database (http://btn.genomics.org.cn/rice/). ).
  • FIG. 1 (A) shows the genome sequence of AtYSL3.
  • the gray part indicates the exon region, and the white part indicates the intron.
  • FIG. 1 (B) schematically shows the putative mRNA structure of AtYSL3.
  • the white triangle indicates an intron, and the number above it indicates its size.
  • the OsYSL intron and exon were predicted based on the genome structure of At YSL3 in Arabidopsis thaliana.
  • the amino acid sequence of the protein encoded by the ORF of OsYSL predicted from the genome sequence was predicted from the maize YS1 shown in Fig. 1, and the SOSUI program (Hirokawa T., et al, Bioinformatics, 14, 378-379 (1998)) Predicted the transmembrane region of each OsYSL protein. As a result, it was predicted that there would be 7 to 16 predicted transmembrane regions, and it was highly likely that any of these would be proteins present on the membrane.
  • OsYSLs Since the last exon of all the obtained OsYSLs was 800 bases or more, a part thereof was used as a probe for Northern analysis, and a primer pair was designed to amplify the fragment.
  • the sequences of these primers are shown in Table 1 below.
  • Table 1 Sequence of primer pairs that specifically amplify each OsYSL
  • OsYSLl forward 5 ACCACGTCGCCGTCTGCTACGCGGT-3 '
  • the fragment amplified with KOD-plus- was cloned into pCR4Blunt-TOPO (Invitrogen), and the other fragments were cloned into pCR4-TOPO (Invitrogen).
  • the method of crawling followed the protocol attached to the kit. The nucleotide sequence was confirmed, and it was confirmed that the cloned fragment was the desired one.
  • fragment was amplified with the resulting vector as ⁇ was performed Northern analysis had use with probes by labeling with 32 P.
  • iron deficiency treatment was started when the fifth leaf of rice developed, and cultivation was performed in a hydroponic solution without iron for 10 days. Rice under control conditions was cultivated in a hydroponic solution containing the same concentration of iron as before. On the 10th day after the treatment, sampling was performed in both the control section and the iron deficiency section to examine changes in the expression of OsYSL due to iron deficiency.
  • OsYSL2 OsYSL6, OsYSL13, OsYSL14, OsYSL15, and OsYSL16 are shown from the top of FIG.
  • the left side of each OsYSL is from a root sample and the right side is a leaf sample.
  • the left side of each sample was grown under control conditions (iron-sufficient conditions), and the right side was grown under iron deficiency conditions.
  • the rice was cultivated in a hydroponic condition under control conditions in which iron was sufficiently fed with iron (hereinafter, also referred to as iron-sufficient condition) and iron-deficient conditions in which iron was not fed. . Only those for which transcripts could be detected by Northern analysis are shown in Figure 2.
  • OsYSL15 and OsYSL16 were expressed root-specifically.
  • OsYSL15 expression was strongly induced by ferrous iron deficiency treatment, which was hardly expressed in roots under control conditions.
  • OsYSL16 was weakly expressed in roots even under control conditions, and its expression was slightly induced under iron deficiency conditions.
  • OsYSL2 expression was observed only in leaves deficient in iron.
  • OsYSL6 was expressed in both leaves and roots under control conditions, and its expression was suppressed by iron deficiency treatment.
  • OsYSLl 3 was expressed in leaves and roots under control conditions. Expression in leaves was suppressed by iron deficiency treatment, but not in roots. There was no change in expression.
  • OsYSL14 was expressed in both leaves and roots under control conditions, and no change in expression due to iron deficiency treatment was observed. Expression of other genes was not observed under the current cultivation conditions.
  • the absorption activity of “iron mugineic acids” complexes in barley is iron deficiency-inducible, and there are proteins induced by iron deficiency in the cell membrane of barley root (Mihashi and Mori, 1989). Assuming that a similar response occurs in rice, it is thought that the expression of the absorption transporter of the “iron magineic acids” complex is induced by iron deficiency, especially in roots.
  • OsYSL15 and OsYSL16 of the present invention were expressed in a root-specific manner as described above, and it was evident by Northern analysis that the expression was induced under iron deficiency conditions (see FIG. 2).
  • Table 2 summarizes the chromosome number (Chr.), Amino acid length (Length), and Contig in DDBJ in which the OsYSLl-18 gene is present in which the OsYSLl-18 gene is present.
  • YS1 of corn YSL of Arabidopsis (AtYSL), and OsYSL of rice of the present invention
  • a molecular strain II was prepared. The results are shown in FIG. In FIG. 15, YS1 of corn is shown in red, AtYSLl-8 of Arabidopsis thaliana is shown in green, and OsYSLl-18 of rice of the present invention is shown in blue. As is clear from this phylogenetic tree, these transporters are roughly classified into five types.
  • OsYSL15 and OsYSL16 were located closest to YS1 (see Fig. 15). These results suggest that OsYSL15 and OsYSL16 are absorption transporters of the “iron-mugineic acids” complex. This confirms that OsYSL15 and OsYSL16 are transporters of the “iron mugineic acids” complex in an in vitro system using yeast. Specifically, the yeast iron-absorbing mutant frtlfet3frel (Bughio et al. 2002) developed by the present inventors is used.
  • iron-muginic acids Furthermore, by expressing the OsYSL gene in Xenopus oocytes and confirming whether or not it transports iron-muginic acids and iron-12-cothianamine complexes, these proteins are identified as iron-muginic acids. In addition, it can be confirmed that it is a transporter of the “iron-cotianamine” complex.
  • the GUS reporter gene was linked to 1.5 kb of each of the OsYSL15 and OsYSL16 promoter regions.Rice was transformed with each construct, and the expression of these genes was expressed using T1 seeds of the transformed plant. Localization can be observed.
  • OsYSL2 which belongs to the same first group as OsYSL15 and OsYSL16, was expressed only in the iron-deficient leaves (see FIG. 2). As a result, it is impossible to speculate whether or not OsYSL2 functions as a transporter of the “iron mugineic acids” complex or “iron-cotianamine” complex alone, but it is a transporter of metals such as iron. That was certain.
  • the present inventors have further verified the function of OsYSL2, and We further examined whether the “mugineic acids” complex or the “iron-12-cothianamine” complex functions as a transporter for slippage.
  • FIG. 16a shows the results for the fusion protein of OsYSL2 and GFP
  • FIG. 16b shows the results for the GFP protein alone.
  • the force S localized in both the cytoplasm and the nucleus of the cell in GFP alone (see Fig. 16b), and in the case of the fusion protein of OsYSL2 and GFP, localized in the plasma membrane.
  • FIG. 16a This confirmed that OsYSL2 is a transporter that retains the transmembrane region and is localized in the plasma membrane.
  • OsYSL2 expression bound the GUS reporter gene, a force that could not be detected in the control conditions that provided sufficient iron to the rice and in the iron-deficient condition that did not provide iron in the roots in the previous Northern blot analysis. In the analysis, it was detected in the central part of the rice root under control conditions, and increased expression could be observed under iron deficiency conditions.
  • the results are shown in FIG. 17 as a color photograph instead of a drawing.
  • FIG. 17a shows the results under iron-sufficient conditions
  • FIG. 17b shows the results under iron-deficient conditions.
  • the photographs at the lower right of FIGS. 17a and 17b show the results obtained by increasing the magnification of the cells in the phloem in the central column, respectively.
  • the blue part shows the shift.
  • the absence of OsYSL2 in the root epidermis and cortex under iron deficiency conditions indicates that OsYSL2 is not one of the transporters of the “iron mugineic acid” complex from soil! /!
  • FIGS. 18 and 19 show GUS expression in the vascular bundle of the leaf sheath
  • FIG. 18 b shows an enlarged portion of the vascular bundle of the leaf sheath.
  • OsYSL2 expression was clearly observed in the phloem and in the companion cells (arrows in FIG. 18b).
  • Figure 19a shows GUS expression in leaves (blue) under iron-sufficient conditions
  • Figure 19b shows GUS expression (blue) under iron-deficient conditions.
  • FIG. Figure 20 shows the results of examining GUS expression in the vascular bundle in flowers and seeds
  • Figure 20a shows the results before flowering
  • Figure 20b shows the results after fertilization
  • Figure 20c shows the results after fertilization
  • FIG. 20d shows the results on day 8 after fertilization
  • FIG. 20e shows the results on day 20 after fertilization
  • FIG. 20f shows the results on day 30 after fertilization.
  • OsYSL2 expression in the vascular bundle became strong, and it was observed that it was particularly remarkable in the upper part of the fir (see Fig. 20b).
  • Five days after flowering strong expression of OsYS L2 can be observed in the growing ovary (see Fig. 20c), and eight days later, strong expression is observed in the outer coat of the embryo and endosperm where protein and minerals are accumulated. (See Figure 20d).
  • the ovary grew well and OsYSL2 expression could be observed in the marginal layer of the mature embryo and endosperm (see Figure 20e), and similar expression could be observed after 30 days ( See Figure 20f). This means that the OsYSL2 transcript increased in the early stage of seed growth by RT-PCR analysis, and the above-mentioned event could be verified (see FIG. 21).
  • OsYSL2 When the substrate-induced inward current of related compounds was measured, OsYSL2 was active as a transporter of ⁇ iron-one-cotianamine '' complex and ⁇ manganese-one-corethianamine '' complex, but it was found that ⁇ iron-deoxymugineic acid '' complex and It was confirmed that there was no activity as a transporter of the “manganese-deoxymugineic acid” complex (see FIGS. 19a and 19b). OsYSL2 has no activity in rice roots and leaves under manganese-deficient conditions, despite its activity as a transporter of “manganese-cotianamine” complex. It was not possible to confirm an increase in OsYSL2 expression by zhan analysis. In addition, the “zinc nicotianamine” complex, the “copper-nicotianamine” complex, and other metal chelate complexes failed to confirm the transport activity of O SYSL2.
  • OsYSL2 is present on the lower arm of chromosome 2 (chromosome2). There are 7 exons in the amino acid sequence comparison with ZmYSl, and there is also a 674 amino acid strength including 14 transmembrane domains (see FIGS. 22a and 22b).
  • OsNASl and OsNAS2 one of rice-cotianamine synthases (OsNAS)
  • OsNAS rice-cotianamine synthases
  • nicotianamine synthesized by OsNASl and OsNAS2 may have some interaction with OsYSL2 expressed in iron-deficient leaves.
  • Scholz (1989) suggests that nicotianamine is involved in iron redistribution to new roots and leaves, and that redistribution is via a sieve tube. Under iron deficiency conditions, old !, leaf power new, iron may be recommutated to the leaves via OsYSL2, and the power may be low.
  • OsYSL6 belonging to the second group and OsYSL13 belonging to the fourth group were expressed in leaves under control conditions, and the expression was suppressed by iron deficiency treatment (see Fig. 2). It has been reported that one of Arabidopsis AtYS L was similarly expressed in leaves under control conditions, and its expression was suppressed by iron deficiency treatment (Jean ML., Et al., Udineltaly, pl28 (2002) Furthermore, it has been reported that expression of this gene in leaves is induced by iron overtreatment, and mutants disrupting this gene are sensitive to excess iron (Jean et al, 2002).
  • OsYSL6 or OsYSL13 of the present invention or both may be involved in resistance to 1S excess iron. It is anticipated that the force may be acting as a transporter to sequester excess iron into organelles in some cells. This can be confirmed by cultivation of rice treated with excess iron and Northern analysis. It is also conceivable that OsYSL6 and OsYSL13 constantly absorb "iron mugineic acids" complexes from soil. As a result of rice microarray analysis, it was revealed that the expression of Os YSL13 was induced in leaves by zinc deficiency. This suggests that OsYSL13 may function as a "zinc-one-half-cotianamine" transporter. It is. In any case, analysis of tissue specificity of expression using reporter genes and confirmation of transporter activity in vitro will provide further insights into functions and distribution in tissues. Obtainable.
  • OsYSL14 in the fourth group was expressed in both leaves and roots, and no change was observed in expression due to iron deficiency treatment (see Fig. 2). This may be related to the transport of metallic elements other than iron.
  • -Cotianamine which is synthesized in plants, is known to form relatively stable chelates with transition metal elements such as manganese, zinc, cobalt, nickel, and copper, which can be replaced only by iron.
  • OsYSL14 of the present invention may be involved in the transport of a complex of nicotianamine with a metal element other than iron, if is transported by forming a complex with -cotianamine in the same manner as iron.
  • OsYSL12-disrupted mutant (NE7024) was found in a rice gene-disrupted strain caused by Tosl 7 that was created by the Gene Function Research Team of the National Institute for Agrobiological Resources. Half of this mutant showed the sterility trait. Therefore, it is highly likely that some of the 18 Os YSLs, especially OsYSL12, are involved in the transport of the “metal 1-2 cotianamine” complex at the reproductive stage.
  • a GUS reporter gene is linked to 1.5 Kb of each promoter region of OsYSL2, OsYSL6, OsYSL9, OsYSL13, OsYSL14, OsYSL15, and OsYSL16, and a rice transformant is prepared by a conventional method using each construct.
  • a rice transformant is prepared by a conventional method using each construct.
  • Nicotianamine also chelates transition metal elements other than iron, and particularly copper is transported through conduits in complexes with -cotianamine (Pich and Scholz, 1996). It has also been suggested that -cotianamine is involved in the transport of metal elements such as zinc and manganese through sieve tubes (Stphan and Scholz, Physiol. Plantarum, 88, 522-529 (1993)). Mutants of yeast that cannot absorb metal elements such as copper and manganese (ctrl (Dancis et al, 1994), zrtlzrt2 (Zao and Eide, 1996), smfl (Supek F., et al., Proc. Natl. Acad, respectively) Sci.
  • the present inventors examined the transport activity and substrate specificity of OsYSL2 using Xenopus oocytes.
  • OsYSL2 was expressed in oocytes, and the 60 mV current induced by various substrates was measured.
  • the results are shown graphically in FIG.
  • Figure 23a shows the results of the measurement of the current ( ⁇ ) for various substrates
  • Figure 23b shows the results for nicotianamine (NA) and 2'-deoxymugineic acid (DMA) complex of iron and manganese.
  • NA nicotianamine
  • DMA 2'-deoxymugineic acid
  • OsYSL2 did not transport any of the force DMA complexes that transported Fe (II) -NA and ⁇ ( ⁇ ) NA.
  • OsYSL2 has a function for transporting a metal NA complex that is different from a rice metal DMA complex.
  • OsYSL2 has a function of transporting Mn (II) -NA in addition to iron, it was examined by Northern blot analysis whether manganese deficiency caused OsYSL2 expression. Both roots and leaves did not increase (data not shown here).
  • OsYSL2 of the present invention is a metal NA transporter under the control of Fe, which is involved in the transport and migration of mineral nutrients in cereal plants.
  • OsYSLs of the present invention were predicted to be present in cell membranes. However, if OsYSL6 and OsYSL13, whose expression was suppressed by iron deficiency treatment, are involved in the tolerance of rice to iron overload, OsYSL6 and OsYSL13 may be present in the plasma membrane rather than in the cell membrane. Is high. Pitch et al. (Pich A., et al. Planta, 213, 967-976 (2001)) report an increase in -cotianamine concentration in the vacuoles of tomatoes over-treated with iron. The vacuole is thought to be involved in iron storage along with ferritin in the chloroplast, and Pitch et al. (Pich et al.
  • the transporter (OsYSL) of the present invention involved in the absorption and transport of metal complexes such as iron and manganese is derived from rice having the amino acid sequence shown in SEQ ID NO: 118 in the sequence listing. Some amino acids may be deleted or some amino acids may be deleted as long as they function as transporters involved in the absorption and transport of metal complexes such as iron and manganese in rice. May be replaced with another amino acid, and Z or some of the other amino acids may be added, but at least 80% or more, preferably 85% or more of the amino acid sequence shown in SEQ ID NO: 118. Alternatively, a protein having an amino acid sequence having 90% or more or 95% or more homology is included.
  • Examples of the metal element in the rice transporter of the present invention include iron, manganese, zinc, copper, cobalt, nickel, and other metal elements that form a stable complex with -cothianamine.
  • Preferred metal elements are iron, manganese, and zinc. , Copper, etc., which are involved in the absorption and transport of one or more of these metal elements.
  • Preferred metal elements in the rice transporter of the present invention include, for example, iron, iron and manganese, iron and zinc, and the like.
  • the gene of the present invention encodes a transporter (OsYSL) involved in the absorption and transport of the above-described metal complex of iron or manganese of rice of the present invention.
  • the gene of the present invention may be DNA or RNA.
  • Preferred genes of the present invention include those having the nucleotide sequences shown in SEQ ID NOS: 19 to 36 in the sequence listing. The present invention is not limited thereto. A sequence capable of hybridizing with this under stringent conditions. Are also included.
  • the present invention also provides an oligonucleotide comprising a partial sequence of the gene of the present invention.
  • the oligonucleotide of the present invention comprises a partial sequence of the gene of the present invention described above, and is preferably 10-150 bases, 10-100 bases, 10-50 bases, 15-150 bases, 15-100 bases.
  • the base has a length of about 15 to 50 bases, more preferably about 15 to 30 bases.
  • the oligonucleotide of the present invention may be a primer for amplifying the gene of the present invention or a probe for detecting or identifying the gene of the present invention. It is useful as such.
  • the present invention also provides a vector comprising the gene of the present invention described above.
  • the vector of the present invention contains the nucleotide sequence encoding the gene of the present invention described above.
  • the vector of the present invention may be added with an optional promoter, if necessary, or may have the gene of the present invention downstream of a promoter region already prepared.
  • the vector of the present invention may be used for any purpose as long as it contains the gene of the present invention. For example, it may be an expression vector, It may be a vector for! /.
  • the present invention also provides a transformant into which the gene of the present invention or a gene containing the gene of the present invention has been introduced.
  • the gene to be introduced the gene of the present invention may be introduced alone, or the gene of the present invention may be introduced as a gene obtained by further adding a necessary promoter region, signal region and the like.
  • a method for introducing a gene a known introduction method using a plasmid phage or the like can be employed.
  • the host cell of the transformant of the present invention is not particularly limited, and animal cells, plant cells, and the like can be arbitrarily selected.
  • the transporter (OsYSL) involved in the absorption and transport of metal complexes such as iron and manganese of rice of the present invention is produced, Escherichia coli or the like can be used as a host cell, and the gene of the present invention can be used.
  • plant cells such as rice, corn, tomato, and Arabidopsis can be used as host cells.
  • OsYSL2 is a transporter involved in transport of an iron complex and a Z or manganese complex, preferably a nicotianamine complex, in a plant body.
  • Metallic components such as iron are not only necessary for the development and growth of plants, but are also important in terms of nutritional support for humans who feed on plants.
  • OsYS L2 of the present invention is significantly involved in transport of iron and manganese components during reproductive growth of plants, and is useful for producing plants with an enhanced iron and manganese components.
  • the OsYSL2 of the present invention is involved in the internal transport of iron and / or manganese complexes in plants and can be used to regulate the transport and accumulation of iron and / or Z or manganese complexes in plants.
  • the present invention relates to a plant using the OsYSL2. It is intended to provide a method for regulating the intracorporeal transport of an iron complex and a Z or manganese complex.
  • the OsYSL2 of the present invention for example, the amino acid sequence of SEQ ID NO: 2 or a part of the amino acid is deleted or substituted, and Z or another amino acid is added.
  • a gene encoding an amino acid sequence having 80% or more homology with the amino acid sequence shown in SEQ ID NO: 2 and preferably a gene having the nucleotide sequence shown in SEQ ID NO: 20 in the sequence listing is introduced into a plant.
  • the plant is not particularly limited as long as it is a plant capable of transporting an iron component or a manganese component, but since the OsYSL2 of the present invention is derived from rice, a Gramineae plant is preferable, but not limited thereto. Absent.
  • the method of the present invention it is also possible to produce plants with an enhanced iron content, such as vegetables and fruits, and the OsYSL2 of the present invention is extremely useful for producing plants with an enhanced metal component such as iron. .
  • the present invention relates to the iron and manganese of rice, which is essential for creating a rice with enhanced absorption and transport of metal complexes such as iron and manganese, which can potentially grow even in a soil where a metal element deficiency such as iron has occurred.
  • metal complexes such as iron and manganese
  • “Iron mugineic acids” complex transporter and the gene encoding it which are involved in the absorption and transport of metal complexes such as iron, iron-12-cotianamine complex transporter and the gene encoding it, and nicotine amino acids such as manganese "Complex transporter and a gene encoding the same.
  • the transporter of the present invention may be an iron in which the rice cell or an organelle in the cell is a “ferric muginic acid” or “divalent iron-nicotianamine” complex, or a metal in which a “metal-nicotianamine” complex is present. It provides a transporter that is an essential membrane transporter for incorporating the complex into the interior.It also grows in soils where the absorption and transport of metal elements such as iron and manganese are enhanced and where iron and metal element deficiencies occur. It is a protein and gene that is essential for creating possible rice. In addition, it is essential to produce nutritious rice by accumulating iron and metal elements in rice seeds.
  • the transporter has a transporter corresponding to the soil in which rice is grown.
  • New rice can be created and the range of rice cultivation can be expanded, providing a clue to solving the world's food problems.
  • iron and metal elements can be accumulated in the edible parts of the seeds to produce nutritious rice, which can contribute to the elimination of iron deficiency anemia and metal element deficiency in humans.
  • FIG. 1 schematically shows a predicted genomic structure of an Arabidopsis transporter.
  • FIG. 2 is a color photograph instead of a drawing showing the result of confirming the expression of the rice transporter of the present invention by Northern analysis.
  • FIG. 3 is the first of three drawings comparing the amino acid sequences of 18 transporters of rice of the present invention and YS1 of maize.
  • FIG. 4 is the second of three drawings comparing the amino acid sequences of 18 transporters of rice of the present invention and YS1 of maize.
  • FIG. 5 is the third of three drawings comparing the amino acid sequences of 18 transporters of rice of the present invention and YS1 of corn.
  • FIG. 6 is the first of nine drawings comparing the nucleotide sequences of the 18 transporters of rice of the present invention.
  • FIG. 7 is the second of nine drawings comparing the nucleotide sequences of the 18 transporters of rice of the present invention.
  • FIG. 8 is the third of nine drawings comparing the nucleotide sequences of 18 transporters of the rice plant of the present invention.
  • FIG. 9 is the fourth of nine drawings comparing the nucleotide sequences of the 18 transporters of the rice plant of the present invention.
  • FIG. 10 is the fifth of nine drawings comparing the nucleotide sequences of 18 transporters of rice of the present invention.
  • FIG. 11 is the sixth of nine drawings comparing the nucleotide sequences of 18 transporters of rice according to the present invention.
  • FIG. 12 shows a comparison of the nucleotide sequences of 18 transporters of rice of the present invention. This is the seventh piece of the drawing.
  • FIG. 13 is the eighth of nine drawings comparing the base sequences of the 18 transporters of the rice plant of the present invention.
  • FIG. 14 is the ninth drawing of nine drawings comparing the nucleotide sequences of the 18 transporters of the rice plant of the present invention.
  • FIG. 15 shows a molecular family of the YSL family of the rice transporter (OsYSL), the corn transporter (YS1), and the Arabidopsis transporter (AtYSL) of the present invention.
  • FIG. 16 is a color photograph instead of a drawing showing the result of expressing the OsYSL2 / GFP fusion protein of the present invention in onion epidermal cells.
  • FIG. 16a shows the case of the OsYSL2-GFP fusion protein
  • FIG. 16b shows the case of the GFP protein alone.
  • FIG. 17 is a color photograph instead of a drawing, showing the result of analyzing the expression of the OsYSL2 promoter of the present invention in rice roots by the reporter gene GUS. GUS expression is shown in blue.
  • FIG. 17a shows the case of iron sufficient condition
  • FIG. 17b shows the case of iron deficiency condition.
  • the inset of each figure is an enlarged photograph of the phloem cells in the central column.
  • FIG. 18 is a color photograph instead of a drawing, showing the result of analyzing the expression of the OsYSL2 promoter of the present invention in the vascular bundle of rice leaf sheath using the reporter gene GUS. GUS expression is shown in blue.
  • FIG. 18b is an enlarged photograph, and the arrow indicates expression in the associated cells.
  • FIG. 19 is a color photograph instead of a drawing, showing the result of analyzing the expression of the OsYSL2 promoter of the present invention in rice leaves by the reporter gene GUS. GUS expression is shown in blue.
  • Figure 19a shows the case of iron sufficient condition
  • Figure 19b shows the case of iron deficiency condition. Arrows in each figure indicate strong expression in companion cells.
  • FIG. 20 is a color photograph instead of a drawing, showing the result of analyzing the expression of the promoter of OsYSL2 of the present invention in the vascular bundle in rice flowers and seeds by the reporter gene GUS. GUS expression is shown in blue.
  • Figure 20a shows the results before flowering
  • Figure 20b shows the results after fertilization
  • Figure 20c shows the results on day 5 after fertilization
  • Figure 20d shows the results on day 8 after fertilization
  • Figure 20e Shows the results on day 20 after fertilization
  • FIG. 20f shows the results on day 30 after fertilization.
  • FIG. 21a shows a comparison of the amino acid sequence of the rice transporter OsYSL2 of the present invention with ZmYS1.
  • FIG. 21b schematically shows the amino acid sequence of the rice transporter OsYSL2 of the present invention. Circles indicate individual amino acids.
  • FIG. 22 is a photograph instead of a drawing, showing the result of the RT-PCR analysis of the rice transporter OsYSL2 of the present invention.
  • FIG. 23 is a graph showing the results of measuring the current induced by a substrate of a metal chelate complex by the rice transporter OsYSL2 of the present invention.
  • this database is not a completed one, but disclosures of each container are in a disjointed state.Therefore, in many cases, a container with high homology to YS1 obtained by search does not include the full length of OsYS L. Helped. In addition, the accuracy of base decoding was not so high, and there were many unknown bases.
  • OsYSL118 The nucleotide sequence of Os YSL, which is an indy species obtained by searching, was also referred to. Based on these sequences, fragments of OsYSL, which had been separated from each other, were identified, and the estimated full length was identified. As a result, a total of 18 OsYSLs were found. Each of these transporters was named OsYSL118. Based on this sequence, these sequences in rice were determined from the genomic sequence of AtYSL3, a transporter of Arabidopsis thaliana. The determined amino acid sequences are shown in SEQ ID NOs: 118 in the sequence listing, respectively. The nucleotide sequence is shown in SEQ ID NOs: 19-136 in the sequence listing.
  • Figure 3-5 shows the comparison of the determined amino acid sequence with that of corn YS1.
  • the comparison of the base sequences of OsYSLl-18 is shown in FIG. 6-14.
  • the OsYSLl-18 obtained in this manner showed that the predicted amino acid sequence showed high homology with maize YS1 (see Fig. 3-5), and some of them were obtained from rice genome project Since a cDNA matching the rally was found, the estimation of the present invention was considered to be extremely accurate. All of these proteins were presumed to have 7 to 16 transmembrane domains, and it was also clarified that, like YS1, there is a high possibility of being a membrane protein.
  • the rice for the sample was grown in a hydroponic solution having the following composition.
  • Iron deficiency treatment was started when the fifth leaf of rice developed, and iron deficiency treatment was performed by cultivation in a hydroponic solution without iron for 10 days.
  • the rice under the control condition is the same darkness as before. It was cultivated in a hydroponic solution to which iron was added. On the 10th day after the treatment, sampling was performed in both the control section and the iron-deficient section.
  • the primer pairs shown in the above Table 1 were designed, and genomic DNA was subjected to PCR in the form of ⁇ .
  • KOD-plus- (TOYOBO) was used for PCR of OsYSLl, OsYSL8, and OsYSL16, and ExTaq (TaKaRa) was used as DNA polymerase for PCR of other genes.
  • DMSO was added to the reaction solution to a final concentration of 5% (vZv).
  • the fragment amplified by KOD-plus— was cloned into pCR4Blunt—TOPO (Invitrogen), and the other fragments were cloned into pCR4—TOPO (Invitrogen).
  • the method of crawling followed the protocol attached to the kit. The nucleotide sequence was confirmed, and it was confirmed that the cloned fragment was the target fragment.
  • the obtained fragment was labeled with 32 P by an ordinary method.
  • Example 2 The rice cultivated in Example 2 was sampled, and the root and leaf portions were subjected to Northern analysis using the probe prepared in Example 3.
  • the plasmid PUC18 which has the structure of the cauliflower mosaic virus 35S promoter—sGFP (S65T) NOS3, was also provided by Dr. Niwa (Shizuoka Prefectural University).
  • This plasmid has Sail and Ncol sites on the 3 side of the 35S promoter.
  • This Ncol site "CC ATGG” contains the start codon of sGFP.
  • an anneal oligomer (5′TCGAGATATCGGTACCAGATCTGAGCTCGAGGTCGA and 5′CTAGTCGACCTCGAGCTCAGATCTGGTACCGATATC) was inserted to introduce a new! / EcoR V site (GATATC).
  • AttR 1 site chloramuecole resistance gene, ccdB gene, and attR2 site cassette at the 5 'end of the introduced EcoR V site And a 1579 bp multisite gateway three fragment (Invitrogen) was inserted.
  • This modified vector was named pDEST35S-sGFP, and was used as a destination vector.
  • the ORF of OsYSL2 was amplified using two primers, CACCATGGAAGCCGCCGCTCCCGAGATAG and 3′-GCTTCCGGGAGTGAACTTCAGCAG.
  • the amplified fragment containing the coding sequence for Os YSL2 was subcloned into pENTR / D—TOPO (Invitrogen).
  • This pENTR / D-TOPO entry vector containing the coding sequence of OsYSL2 is named pENTR-OsYSL2, and is a subsequent LR recombination between the above-mentioned destination vector and this entry vector. From the reaction (Invitrogen), an expression clone containing a gene encoding 35S-OsYSL2-sGFP was obtained.
  • Onion epidermal cells were treated with the method of Mizuno et al. (Mizuno, D., et al., Plant Physiol. 132,
  • the vector prepared above was introduced by a particle gun method (Biolistic PDS-1000 / He (BioRad)).
  • FIG. 16 shows the results of the gene introduction and visualization.
  • a genomic sequence containing the putative promoter region of OsYSL2 (-1500--1bp from the translation initiation codon) was amplified by PCR from genomic DNA.
  • the GUS reporter gene was ligated to 1.5 kb of the promoter region of the obtained rice transporter OsYSL2, and this was introduced into rice. Transformation into rice and GUS staining were performed according to the method of Inoue et al. (Inoue, H., et al., Plant J. 36, 366-381 (2003)).
  • FIG. 22 Samples before, 5 days and 8 days after flowering of rice were processed and subjected to RT-PCR analysis. The result is shown in FIG. 22 as a photograph replacing the drawing.
  • the left lane in Fig. 22 is flowering
  • the case before is shown
  • the middle lane shows the case 5 days after flowering
  • the right lane shows the case 8 days after flowering.
  • OsYSL2 was digested with EcoRI and Xbal to obtain a 2022 bp fragment of OsYSL2. This was inserted into the EcoRI and Xbal sites of the pGEM-3zf (t) vector. The resulting plasmid pG EMYSL2T was digested with Xbal to form a chain. Capped complementary RNA (cRNA) was synthesized in vitro using the MEGAscript SP6 kit (TX, Ambion, Austin, USA).
  • Oocytes were prepared by the method of Igarashi et al. (Igarashi, Y., ET al., Plant Cell Physiol. 41, 750-756 (2000)). To this, 10 ng of the OsYSL2 cRNA obtained above was injected. The injected oocytes were cultured in the ND solution for 2 days and subjected to electrical measurement at pH 7.5. Oocyte membrane currents were measured by a 2-micro voltage clamp method using an automated Hitachi system with the TEV-200 system (MN, Dagan, Minneapolis, USA). The oocytes were fixed at -60 mV and a constant current corresponding to the metal chelate complex (10 / zL, 5 mM) was obtained.
  • the transporter of the present invention and its gene are essential for creating a rice plant capable of growing even in a soil where a metal element deficient such as iron is deficient, which has enhanced absorption and transport of a metal complex such as iron. It is involved in the absorption and transport of metal complexes of rice.
  • a metal element deficient such as iron is deficient, which has enhanced absorption and transport of a metal complex such as iron. It is involved in the absorption and transport of metal complexes of rice.
  • producing rice with a high mineral content of metal elements such as iron is effective in resolving iron deficiency anemia and metal element deficiency in humans. It is.
  • the present invention relates to a rice “iron mugineic acids” complex transporter and a gene encoding the same, a “iron-12-cotianamine” complex transporter and a gene encoding the same, and a “metal-12-cothianamine” complex transporter. And a gene that encodes it, so that the iron and metal elements are further accumulated in the edible part of the seeds in order to produce rice that can grow even in soils where potential metal and other metal elements are deficient. It provides proteins and genes involved in the absorption and transport of metal complexes such as iron, which are indispensable for producing highly nutritious rice. Free text

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Botany (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

 本発明は、イネの細胞や細胞内のオルガネラが鉄などの金属元素を錯体の形で内部に取り込むために必要なタンパク質及びそれをコードする遺伝子などを提供する。  本発明は、イネの金属錯体の吸収や輸送に関与するトランスポーター、それをコードする遺伝子に関する。より詳細には、本発明は、配列表の配列番号1~18のいずれかに記載のアミノ酸配列などを有し、かつイネの鉄などの金属元素の錯体の吸収や輸送に関与する機能を有するイネのトランスポーター、及びそれをコードする遺伝子に関する。  また、本発明は、前記した本発明の遺伝子を含有してなるベクター、及び当該遺伝子を含有する遺伝子により形質転換された形質転換細胞に関する。

Description

明 細 書
イネの鉄などの金属錯体の吸収や輸送に関与するトランスポーター、その 遺伝子
技術分野
[0001] 本発明は、イネの金属錯体の吸収や輸送に関与しているトランスポーター、及びそ れをコードする遺伝子、並びにそれを含有するベクター、及びその遺伝子による形質 転換体に関する。イネは土壌中から鉄やマンガンなどの金属元素を吸収し、これを体 内に輸送して鉄などの金属元素を補給している。本発明は、イネの生育に必須の成 分である鉄などの金属元素の吸収や輸送に関与しているトランスポーターに関するも のである。より詳細には、本発明は、イネの鉄やマンガンなどの金属錯体の吸収ゃ輸 送に関与しているトランスポーター OsYSLl— 18、及びそれをコードする遺伝子、並 びにそれを含有するベクター、及びその遺伝子による形質転換体に関する。
また、本発明は、 OsYSL2による植物における鉄錯体及び/又はマンガン錯体の 体内輸送を調整する方法に関する。
背景技術
[0002] 鉄は地殻上で 4番目に存在量が多い元素であり、植物のみならず全ての生物にと つて必須な栄養素の一つである。しかし、好気的条件下の土壌では多くの鉄は不溶 態の 3価鉄 Fe(OH)3となる。特に塩類集積土壌、土壌がアルカリ性となる母材が石 灰岩質の土壌では、土壌中の pHが高ぐ Fe(OH)3の溶解度は著しく下がる。植物 は不溶態の鉄 Fe(OH)3を吸収することができないため、このような土壌で生育する 植物には深刻な鉄欠乏の症状が顕われる。世界の耕地面積のうち約 3分の 1は潜在 的な鉄欠乏発生土壌といわれている。このため植物の鉄吸収や体内での輸送、分配 、代謝のメカニズムを解明し、鉄欠乏に耐性を持つ植物^ |IJり出すことは、昨今問題 になっている食料問題の解決にとって非常に重要な課題である。
[0003] 高等植物は不溶態の 3価鉄を利用するための機構を進化的に獲得してきた。植物 におけるこのような鉄獲得機構は 2つに大別でき、ストラテジ一一 I (Strategy-I)、及び ストラテジ一— II (Strategy-Il)と呼ばれている。ストラテジ一一 Iはイネ科以外の植物に 見られ、次のような特徴を持っている。まず根圏にキレート化合物を分泌し、不溶態 の 3価鉄を可溶化する。この 3価鉄を根の細胞膜上の 3価鉄還元酵素 (FR02)で 2 価鉄に還元し、 2価鉄トランスポーター (IRT1)を介して 2価鉄を吸収する。また、 3価 鉄の溶解度を上げ、 3価鉄還元酵素の活性を高めるためにプロトンを放出し根圏の p Hを下げている。一方、ストラテジ一- IIはイネ科植物に見られ、ムギネ酸類という化合 物に特徴を持っている。イネ科植物は根カゝらムギネ酸類を分泌し、ムギネ酸類は根 圏の不溶態 3価鉄をキレートし、可溶化する。植物はこの可溶ィ匕した「ムギネ酸類 3 価鉄」錯体を根の「ムギネ酸類 3価鉄」トランスポーターを介して吸収することにより 鉄を獲得している。
[0004] このような「ムギネ酸類 3価鉄」トランスポーターのひとつ力 キューリ一ら(非特許 文献 1参照)によってトウモロコシ力 初めて単離され、「鉄 ムギネ酸類」錯体のトラン スポーターをコードする遺伝子 YS1と命名された。
また、ムギネ酸類を鉄獲得に利用するのはストラテジ一一 IIに属するイネ科植物のみ であるが、ムギネ酸類を体内で合成しな 、ストラテジ一一 Iの植物に属するシロイヌナ ズナのゲノム上にも、 8つもの YS1様の遺伝子 (AtYSL)が存在することが報告され てきた。ストラテジ一一 Iの植物は、ムギネ酸類を体内で合成しないのであるから「ムギ ネ酸類- 3価鉄」トランスポーターは必要ないはずである。ストラテジ一一 Iの植物にこの ようなトランスポーターが存在することは、 YS1様のトランスポーターが「ムギネ酸類 3価鉄」複合体のみを輸送するものではなく、「鉄 -二コチアナミン」錯体をも輸送する トランスポーターであると推測されている。即ち、ストラテジ一一 Iの植物であるシロイヌ ナズナの YS1様の遺伝子 (AtYSL)は、植物体内での鉄輸送に関与していると考え られている「鉄一二コチアナミン」錯体を輸送するトランスポーターをコードしているもの と推測されている。
[0005] 本発明者らは、潜在的な鉄欠乏発生土壌においても生育可能な鉄吸収機構が強 化された植物、とりわけ穀物植物を創製するために、植物の鉄吸収や体内での輸送 、分配、代謝のメカニズムを解明する研究、特に鉄吸収に必要なムギネ酸の合成に 関与する酵素群の解明を行ってきた (特許文献 1一 4参照)。このような鉄欠乏に耐性 を持つ植物、特にイネを創り出すことは、世界の食料問題の解決にとって非常に重 要な課題である。
これまでの研究にぉ ヽて、ムギネ酸類の合成酵素をコードする各種の遺伝子を本 発明者らはクローユングしてきた。このような遺伝子を用いることにより、潜在的な鉄 欠乏発生土壌における不溶態の鉄 Fe(OH)3を植物が吸収可能な「ムギネ酸類 3価 鉄」複合体に転換することが可能となった。例えば、最近の研究では、大麦の-コチ アナミンアミノ転位酵素 (NAAT)の遺伝子を導入した形質転 ネは、低 Feのアル力 リ土壌での生育において野生型よりも許容性があることが示されている(非特許文献 2参照)。し力しながら、ムギネ酸類の分泌が増強されて土中に可溶ィ匕した「ムギネ酸 類- 3価鉄」複合体が生成しても、当該複合体を植物が吸収するためには、「ムギネ酸 類 3価鉄」トランスポーターが必須のものとなる。
このように、鉄欠乏土壌におけるイネの生育を改善するためには、土中におけるム ギネ酸類の分泌を改善させるだけでなぐそれを吸収し、植物体の必要な箇所に輸 送するための吸収輸送機構の改善が同時に必要となる。イネにおける鉄などの金属 成分の吸収や輸送のための「ムギネ酸類 3価鉄」トランスポーターは未だ見出され ておらず、イネにおける「ムギネ酸類 3価鉄」トランスポーターをコードする遺伝子の 解明が求められていた。
[0006] 特許文献 1 :W099Z57249号
特許文献 2:W099Z48356号
特許文献 3 : WOOl ZO 1762号
特許文献 4: WO02/0777240^- 非特許文献 1 : Curie C, et al., Nature, 409,346-349 (2001)
非特許文献 2 : Takahashi, M., et al, Nature biotechnology, 19, 466-469 (2001). 発明の開示
発明が解決しょうとする課題
[0007] 本発明は、イネにおける鉄などの金属錯体の吸収や輸送に関与するトランスポータ 一及びその遺伝子を提供するものである。より具体的には、例えば、「ムギネ酸類- 3 価鉄」トランスポーター及びそれをコードする遺伝子、並びに「鉄 ニコチアナミン」錯 体などの「金属 ニコチアナミン」錯体トランスポーター及びそれをコードする遺伝子 などの金属錯体の吸収や輸送に関与するトランスポーター及びその遺伝子を提供す るものである。また、本発明は、これらの遺伝子を含有するベクター、形質転換体を提 供するものである。
課題を解決するための手段
[0008] 本発明者らは、鉄などの金属元素の吸収や輸送が強化された潜在的な鉄欠乏発 生土壌にぉ 、ても生育可能なイネ^ iij出するために、鉄の吸収や輸送に関与して ヽ る各種の酵素類のクローユングを行ってきた。これまでの研究により、イネが鉄を吸収 し輸送するためのメカニズムを解明することができてきた力 イネの細胞が鉄を取り込 むためのトランスポーターについては未だ解明されていなかった。トランスポーターは 細胞や細胞内オルガネラが各種の栄養分や成分を内部に取り込むために必須のタ ンパク質であり、鉄吸収や輸送が強化された潜在的な鉄欠乏発生土壌においても生 育可能なイネ^ iij出するためには、各種の酵素類と共に必須のタンパク質となる。こ のために、本発明者らは、イネのトランスポーターのクローユングを試み、イネには鉄 などの金属元素の錯体の吸収や輸送に関与する 18種のトランスポーターが存在して いることを見出した。
さらに、本発明者らは、この中の OsYSL2が植物における鉄及びマンガンの-コチ アナミン錯体の輸送に関与しているトランスポーターであることを見出した。
[0009] 即ち、本発明は、イネの鉄などの金属錯体の吸収や輸送に関与するトランスポータ 一に関する。より詳細には、本発明は、配列表の配列番号 1一 18のいずれかに記載 のアミノ酸配列、又はその一部のアミノ酸が欠失若しくは置換され、及び Z又は他の アミノ酸が付加されることにより配列番号 1一 18のいずれかに示されるアミノ酸配列と 80%以上の相同性を有しているアミノ酸配列を有し、かつイネの鉄やマンガンなどの 金属錯体の吸収や輸送に関与する機能を有するイネのトランスポーターに関する。 また、本発明は、前記した本発明のイネ由来のトランスポーターをコードし得る塩基 配列を有する遺伝子、より詳細には、配列表の配列番号 19一 36のいずれかに示さ れる塩基配列、又はストリンジェントな条件でこれとハイブリダィズ可能な塩基配列を 有する遺伝子に関する。
また、本発明は、前記した本発明の遺伝子を含有してなるベクター、及び当該遺伝 子を含有する遺伝子により形質転換された形質転換細胞に関する。
さらに、本発明は、配列表の配列番号 2に記載のアミノ酸配列、又はその一部のァ ミノ酸が欠失若しくは置換され、及び Z又は他のアミノ酸が付加されることにより配列 番号 2に示されるアミノ酸配列と 80%以上の相同性を有しているアミノ酸配列をコー ドする遺伝子を導入することからなる、植物における鉄錯体及び Z又はマンガン錯体 の体内輸送を調整する方法に関する。
[0010] 本発明者らは、トウモロコシの YS1遺伝子 (非特許文献 1参照)との相同性に基づ V、てイネの遺伝子(OsYSL)を検索した。このためのイネの遺伝子(OsYSL)として、 ンャホ二カ植のイネとして Oryza sativaし ssp. japonica (cv. ipponoare) (uolf et al., 2002)を、またインディ力種のイネとして Oryza sativa L. ssp. indica (cv. 91-11) (Yu et al., 2002)の 2つのイネゲノムデータベースを用いて、これらに対してブラスト(Blast)検 索 (Atlschul et al., 1990)を行った。以下、ジャポニカ種のデータベースをシンジェンタ のデータベース (http:〃 portal.tmri.org/rice/)と呼び、インディ力種のデータベースを 中国のデータベース (http://btn.genomics.org.cn/rice/)と呼ぶことにする。
検索では、シンジェンタのデータベースを主に参考にした。し力し、このデータべ一 スはシロイヌナズナのものほど完成されておらず、各コンテイダがばらばらの状態での 開示されており、そのため検索で得られた YS 1に相同性が高 、コンテイダも OsYSL の全長を含んでいない場合が多力つた。また、塩基解読の精度もそれほど高くなぐ 不明の塩基も数多くあった。そこで、中国のデータベースを検索することで得られた インディ力種の OsYSLの塩基配列も参考にした。これらの配列を基に、ばらばらにな つていたジャポニカ種の OsYSLについても断片をつなぎ合わせ、推測される全長を 同定した。
その結果、イネのゲノム中に 18個の YS 1に相同性の高 、遺伝子が存在することを 見出した。これらの 18種の遺伝子を、それぞれ OsYSLl— OsYSL18と命名した。 そして、これらの遺伝子力イネの鉄輸送にかかわるトランスポーターの遺伝子である 力どうかを検討した。
[0011] ブラスト(Blast)検索により見いだされた遺伝子はゲノムの配列であり、イントロンを含 むために、ェキソンを予測し、それらをつなぎ合わせて推測されるタンパク質のァミノ 酸配列を決定しなければならない。しかし、キューリ一ら (非特許文献 1参照)は YS1 のゲノム配列を明らかにしておらず、 YS1の cDNAは 7つのェキソンから成り立って いることだけが報告されている。したがって、キューリ一らのこの報告のみ力もェキソン 領域を予測することはできな 、ので、シロイヌナズナの YSL遺伝子のひとつである At YSL3のゲノム配列と YS1の cDNA配列を比べることにより、 AtYSL3のイントロン及 びェキソンの位置を決定することにした。シロイヌナズナのゲノム配列は明らかになつ て!、るので、このゲノム配列及び AtYSL3の配列に基づ!/、て AtYSL3のイントロンと ェキソンの位置を決定した。この結果を図 1に示す。図 1 (A)は AtYSL3のゲノム配 列を示している。灰色の部分がェキソン領域を示しており、白色の部分がイントロンを 示している。図 1の(B)は AtYSL3の推測される mRNAの構造を模式的に示したも のである。白三角印はイントロンを示し、その上の数字はその大きさを示している。こ のシロイヌナズナの At YSL3のゲノム構造に基づいて OsYSLのイントロン及びェキ ソンを予測した。
ゲノム配列から予測される OsYSLの ORFがコードするタンパク質のアミノ酸配列を 、図 1に示すトウモロコシの YS1から予測し、 SOSUIプログラム(Hirokawa T., et al, Bioinformatics, 14, 378-379 (1998))で各 OsYSLタンパク質の膜貫通領域を予測し た。この結果、予測される膜貫通領域が 7個から 16個存在することが予想され、いず れも膜に存在するタンパク質である可能性が高力、いことがわ力つた。
[0012] 得られた全ての OsYSLは、最後のェキソンが 800塩基以上であったので、その一 部をノーザン解析のプローブとして用いることとし、その断片を増幅するようなプライ マー対を設計した。これらのプライマーの配列を次の表 1に示す。
[0013] 表 1:各 OsYSLを特異的に増幅するプライマーの対の配列
OsYSLl forward : 5し ACCACGTCGCCGTCTGCTACGCGGT- 3'
reverse : 5'— TACAAGCTGATGATGAGTACTCCAG— 3'
OsYSL2 forward : 5し TCTGCTGGCTTCTTTGCATTTTCTG- 3'
reverse : 5し ACCATGTCGAACTCAGCATCCAGGA- 3'
OsYSL3 forward : 5し TTCCAGTCCACAACGAAGCCCAACG- 3'
reverse : 5'— CGATCATAGTCCATTTTCTACTGGT— 3' OsYSL4 forward: 5し GCCATCTGCATCATCGGCATGGGAG- 3 ' reverse : 5 -CTTGATCTCAACATCGATCGGTCAT-3' OsYSL5 forward: 5し ATCGGCATCGAAGGCTTTGCGGCGC- 3'
reverse : 5' -GATCATCGTCTCATACAGAAGCTGA-3' OsYSL6 forward: 5し ATCTC AAC AGC AACTGTGCC AATGA- 3 '
reverse : 5' -TCCAAATAAACAACGGATTTTGCGC-3' OsYSL7 forward: 5し AGGAGTGGCGCATCCGGCGCTACAT- 3'
reverse : 5' -AAGGCGTCCAACTTGACATTGTCAC-3' OsYSL8 forward: 5し CATCGCCATCTGCGCCCTCAAGGAG- 3 '
reverse : 5' -GCTTGAGCTTGAAGTGGATGGATGG-3 ' OsYSL9 forward: 5し ATTATTGCTC AGGCC ATTGGAACTG— 3 '
reverse : 5' -TCCTGTAGTAGATGGAACTGCCATG-3' OsYSLlO forward:: 5し TGATGATCGGGATCGTGTCGACGGC- 3'
reverse : 5' -GGTCCCAAAAGATGTTGGTGGTCCG-3' OsYSLl 1 forward:: 5 -TCCTTTAATATCGGTGCAAGTGATG-3'
reverse : 5' - AC ACTTTTAGACC AGCTATGACTAC- 3 ' OsYSL12 forward:: 5し GCCGACATCGGCGTGAGCGGCACCG- 3'
reverse : 5' -GGCGATGATTTCAGGCTGATCACAT-3 ' OsYSL13 forward:: 5し GCCGTCTTCCGGAGCATAGCGATAC- 3'
reverse : 5' -TCTTCATCAGAATCGTTGTTGCAAC-3 ' OsYSL14 forward:: 5し AGCAATATTGGCACAAGCGGCACCG— 3'
reverse : 5' - AGATCAATTGATCACGATGGCACGA- 3' OsYSLl 5 forward:: 5し GCGTTCGCCGTGCTCACGAACGTGG- 3'
reverse : 5' -ATCCTCCACCCATGAAATTAAACAC-3' OsYSLl 6 forward:: 5し ACCGACATGAACATGGGGTACAACT— 3'
reverse : 5' - TCTATACGTCTGCATTGACGCTGTA- 3' 一つのェキソン内でプライマー対を設計したことにより、ゲノム DNAを铸型にした P CRをしても、 cDNAを铸型にした場合と同じ断片を増幅できるようにした。 OsYSLl 、 OsYSL8、 OsYSL16の PCRには KOD— plus— (TOYOBO)、その他の遺伝子 の PCRには Ex Taq (TaKaRa)を DNAポリメラーゼとして用いた。 OsYSLlの増幅 の際、反応液に DMSOを終り濃度 5% (vZv)になるようにカ卩えた。 KOD-plus-で 増幅された断片は pCR4Blunt— TOPO (Invitrogen)に、その他の断片は pCR4— T OPO (Invitrogen)にクローユングした。クローユングの方法はキットに付属のプロトコ ールに従った。塩基配列を確認し、クローニングされた断片が目的のものであること を確かめた。
[0015] 得られたベクターを铸型として断片を増幅し、 32Pによる標識をしてプローブして用 いたノーザン解析を行った。試料として、イネの第五葉目が展開した時に鉄欠乏処理 を開始し、 10日間鉄を除いた水耕液で栽培することで行った。コントロール条件のィ ネはそれまでと同じ濃度の鉄を加えた水耕液で栽培した。処理後 10日目にコント口 ール区、及び鉄欠乏区ともにサンプリングを行い、鉄欠乏による OsYSLの発現の変 化を調べた。
結果を図 2に図面に変わる写真で示す。図 2の上から OsYSL2、 OsYSL6、 OsYS L13、 OsYSL14、 OsYSL15、及び OsYSL16をそれぞれ示す。各 OsYSLの左側 は根からのサンプルによるものであり、右側は葉からのサンプルによるものである。各 サンプルの左側はコントロール条件 (鉄十分条件)で栽培したものであり、右側は鉄 欠乏条件で栽培したものである。
[0016] イネに鉄を充分与えたコントロール条件 (以下、鉄十分条件とも言う。 )と、鉄を与え な ヽ鉄欠乏条件で水耕栽培し、 OsYSL遺伝子の発現様式をノーザン解析によって 明らかにした。ノーザン解析で転写産物が検出できたものについてのみ、図 2に示し ている。 OsYSL15と OsYSL16は根特異的に発現していた。 OsYSL15はコント口 ール条件では根においてもほとんど発現していな力つた力 鉄欠乏処理によって発 現が強く誘導された。一方、 OsYSL16は根においてコントロール条件でも微弱に発 現し、鉄欠乏条件で僅かに発現が誘導された。 OsYSL2は鉄欠乏条件の葉でのみ 、発現が観察された。 OsYSL6は葉、根のどちらでもコントロール条件で発現してい て、鉄欠乏処理により発現が抑制された。 OsYSLl 3は葉でも根でもコントロール条 件で発現していた。葉における発現は鉄欠乏処理によって抑制されたが、根におけ る発現に変化は無力つた。一方、 OsYSL14は葉、根のどちらでもコントロール条件 で発現しており、鉄欠乏処理による発現の変化は観察されな力つた。その他の遺伝 子に関しては今回の栽培条件では発現は観察されな力つた。
一方、ォォムギでは根における「鉄 ムギネ酸類」錯体の吸収活性は鉄欠乏誘導的 で、ォォムギの根の細胞膜には鉄欠乏処理により誘導されるタンパク質がある (Mihashi and Mori, 1989)。イネでも同様の応答が起きていると仮定すれば、「鉄ーム ギネ酸類」錯体の吸収トランスポーターは特に根で鉄欠乏によって発現が誘導される と考えられる。
本発明の OsYSL15と OsYSL16は、前記したように根特異的に発現し、鉄欠乏条 件で発現が誘導されることがノーザン解析によって明ら力となった(図 2参照)。
[0017] ブラスト検索で得られた OsYSLl— 18の翻訳領域のアミノ酸配列と、トウモロコシの YS1のアミノ酸配列とを比較した。結果を図 3—図 5に示す。各行の最上段は YS1の アミノ酸配列を示す。各行の最下段はこれらの相同性を示し、 *印は全てで保存され ているアミノ酸であることを示し、 '印は高度に保存されているアミノ酸であることを示 す。
また、本発明の 18個の OsYSLである OsYSLl— 18の塩基配列の比較を、図 6— 図 14に示す。各行の最下段はこれらの相同性を示し、 *印は全てで保存されている 塩基であることを示し、 ·印は高度に保存されている塩基であることを示す。
これらの OsYSLl— 18のアミノ酸配列を配列番号 1一 18に示し、その塩基配列を 配列表の配列番号 19一 36にそれぞれ示す。
また、これらの OsYSLl— 18の遺伝子が存在する染色体の番号 (Chr. )、アミノ酸 長(Length)、及び DDBJにおいて OsYSLl— 18の遺伝子が存在する Contigをま とめて次の表 2に示す。
[0018] [表 2] 番号 アミノ酸長 Contig
OsYSLl 1 682aa AP002855
OsYSL2 2 674aa AP004868
OsYSL3 5 658aa AC104274
OsYSL4 5 686aa AC121362
OsYSL5 4 723aa OSJN00243
OsYSL6 4 678aa OSJN00243
OsYSL7 2 683aa AP004121
OsYSL8 2 694aa AP004121
OsYSL9 4 684aa ' OSJN00112
OsYSLlO 4 687aa OSJN00002
OsYSLll 4 712aa OSJN00221
OsYSL12 4 701aa OSJN00221
OsYSL13 4 ,724aa OSJN00211
OsYSL14 2 727aa AP004192
OsYSL15 2 672aa AP004868
OsYSL16 4 675aa OSJN00112
OsYSL17 8 636aa AP004556
OsYSL18 1 679aa AP003734
トウモロコシの YS1、ロイヌナズナの YSL (AtYSL)、及び本発明のイネの OsYSL のアミノ酸配列に基づいて分子系統榭を作製した。結果を図 15に示す。図 15では、 トウモロコシの YS1を赤色、シロイヌナズナの AtYSLl— 8を緑色、そして本発明のィ ネの OsYSLl— 18を青色で示している。この系統樹から明らかなようにこれらのトラ ンスポーターは大きく 5種類に分類される。 YS1や AtYSL3と同様な位置に分類され る OsYSL2 ( * )、 15 ( * )、 16 ( * )、及び 9からなる第 1群、 AtYSL4と同様な位置 に分類される OsYSL6 ( * )、及び 5からなる第 2群、 AtYSL7と同様な位置に分類さ れる OsYSLlOからなる第 3群、 OsYSL13 ( * )、 14 ( * )、 11、及び 12のイネのトラ ンスポーターのみ力らなる第 4群、同様に OsYSLl、 3、 4、 7、 8、 17、及び 18のィ才ヽ のトランスポーターのみ力もなる第 5群となる。各 OsYSLの後に付した(* )印は前記 したノーザン解析により発現が確認されたものを示している。
[0020] これらのトランスポーターの中では、 OsYSL15と OsYSL16が YS1に最も近く位置 した(図 15参照)。これらの結果から、 OsYSL15と OsYSL16は「鉄—ムギネ酸類」錯 体の吸収トランスポーターであると考えられる。これは、酵母を用いたインビトロ(in vitro)系で、 OsYSL15および OsYSL16が「鉄 ムギネ酸類」錯体のトランスポータ 一であることを確認することができる。具体的には、本発明者らが開発した酵母の鉄 吸収変異株 frtlfet3frel (Bughio et al. 2002)を用いる。この酵母に OsYSL15または OsYSL 16を過剰発現させ、鉄源として「鉄 ムギネ酸類」錯体のみを与えた培地で 生育できるかどうかを判定することにより、これらのタンパク質力 ^鉄 ムギネ酸類」錯 体のトランスポーターであることを確認することができる。
さらに、アフリカッメガエル卵母細胞で OsYSL遺伝子を発現させ、「鉄 ムギネ酸類 」、「鉄一二コチアナミン」錯体を輸送するかどうかを確かめることにより、これらのタンパ ク質が「鉄 ムギネ酸類」、「鉄 -コチアナミン」錯体のトランスポーターであることを ½認することができる。
また、 OsYSL15と OsYSL16の各プロモーター領域 1. 5kbに GUSレポーター遺 伝子をつないだ、それぞれのコンストラクトでイネを形質転換して、形質転換植物の T 1種子を用いてこれらの遺伝子の発現の組織局在を観察することができる。
[0021] OsYSL15と OsYSL16と同じ第 1群に属する OsYSL2は、鉄欠乏条件の葉での み発現していた(図 2参照)。この結果力もだけでは OsYSL2が「鉄 ムギネ酸類」錯 体または「鉄 -コチアナミン」錯体の 、ずれのトランスポーターとして機能して 、るの かどうかを推測できないが、鉄などの金属のトランスポーターであることは確かであつ た。
本発明者らは、 OsYSL2の機能についてさらに検証し、そして、 OsYSL2が「鉄 ムギネ酸類」錯体または「鉄一二コチアナミン」錯体の、、ずれのトランスポーターとして 機能して 、るのかをさらに検証した。
[0022] OsYSL2の発現を GFP法にてタマネギの表皮細胞で調べた。結果を図 16に図面 に代わるカラー写真で示す。図 16aは OsYSL2と GFPの融合タンパク質の場合の結 果を示し、図 16bは GFPタンパク質単独の場合の結果を示す。この結果、 GFP単独 では、細胞の原形質と核の両方に局在している力 S (図 16b参照)、 OsYSL2と GFPの 融合タンパク質の場合には原形質膜に局在して存在することを観察することができた (図 16a参照)。このことから OsYSL2は、膜貫通領域を保持するとともに原形質膜に 局在するトランスポーターであることが確認された。
OsYSL2の発現は、先のノーザンブロット解析ではイネに鉄を十分与えたコント口 ール条件と鉄を与えない鉄欠乏条件の根では共に検出できな力つた力 GUSレポ 一ター遺伝子を結合させた分析では、コントロール条件下のイネの根中心部で検出 され、鉄欠乏条件下では発現が増加していることを観察することができた。結果を図 17に図面に代わるカラー写真で示す。図 17aは鉄十分条件での結果を示し、図 17b は鉄欠乏条件での結果を示す。図 17a及び bの右下の写真はそれぞれ中心柱の中 の篩部の細胞の倍率を上げて撮影した結果を示して 、る。 、ずれも青色部分が発現 を示している。しかし、鉄欠乏条件下の根の表皮および皮層においても OsYSL2が 検出されていないことは、 OsYSL2が土からの「鉄 ムギネ酸」錯体のトランスポータ 一ではな!/、ことを示して!/、る。
[0023] 次にイネの葉における OsYSL2の発現につ!、て GUSレポーター遺伝子を結合さ せた分析を行った。結果を図 18及び図 19に図面に代わるカラー写真で示す。図 18 aは、葉鞘の維管束での GUS発現を示し、図 18bは葉鞘の維管束の部分を拡大して 示している。この結果、 OsYSL2の発現は篩部と、伴細胞(図 18bの矢印)の中で明 瞭に観察された。図 19aは鉄十分条件での葉における GUSに発現 (青色)を示し、 図 19bは鉄欠乏条件での GUSの発現 (青色)を示す。この結果、鉄十分条件の葉で は、 GUS染色は伴細胞を含む篩部での局在が観察されるが、鉄欠乏条件の葉では 、すべての組織が伴細胞(図 19の各矢印)と共に明確な強いプロモーター活性を示 していることが観察された。このように、鉄を十分与えたコントロール条件下 (鉄十分 条件)では、イネの葉鞘と葉の維管束の篩部細胞に OsYSL2の発現を観察すること ができ(図 19a参照)、また鉄欠乏条件下では、イネの葉鞘と葉の維管束のすべての 細胞で OsYSL2の強 、発現を観察することができた(図 19b参照)。
[0024] さらに、同様にしてイネの生殖成長における OsYSL2の発現を調べた。結果を図 2 0に図面に代わる写真で示す。図 20は、花と種子における維管束での GUSの発現 を調べた結果を示し、図 20aは開花の前の結果を示し、図 20bは受精後の結果を示 し、図 20cは受精後 5日目の結果を示し、図 20dは受精後 8日目の結果を示し、図 20 eは受精後 20日目の結果を示し、図 20fは受精後の 30日目の結果をそれぞれ示す 。この結果、 GUSの発現は、開花前の花粉粒ではまったくなぐ雄しベのャクの中央 領域では少し、小穂維管束では活発であることが観察することができた(図 20a参照) 。花の受精後は、維管束での OsYSL2発現が強くなり、特にモミの上部では顕著で あることが観察できた(図 20b参照)。開花の 5日後には、成長している子房に OsYS L2の強い発現が観察でき(図 20c参照)、 8日後にはたんぱく質とミネラルの蓄積さ れる胚と胚乳の外皮に強い発現を観察することができた(図 20d参照)。 20日後には 、子房は十分成長し、成熟した胚と胚乳の辺縁層に OsYSL2発現を観察でき(図 20 e参照)、 30日後にも同じような発現を観察することができた(図 20f参照)。このことは 、 RT - PCR解析でも種子の成長初期に OsYSL2の転写物が増加し、前述の事象を 検証することができた (図 21参照)。
[0025] アフリカッメガエル卵母細胞に OsYS2遺伝子を発現させ、「鉄 ムギネ酸類」、「鉄 -ニコチアナミン」などの「金属-ニコチアナミン」錯体を輸送するかどうかを調べた結 果、 OsYS2タンパク質が「鉄 ムギネ酸類」のトランスポーターではなぐ「鉄一二コチ アナミン」、「マンガン ニコチアナミン」錯体のトランスポーターであることが明らかに なった。また、関連する化合物の基質誘導性内向電流を測定すると、 OsYSL2は「 鉄一二コチアナミン」錯体および「マンガン一二コチアナミン」錯体のトランスポーターと して活性であるが、「鉄ーデォキシムギネ酸」錯体および「マンガンーデォキシムギネ酸 」錯体のトランスポーターとしてまったく活性がないことが確認できた(図 19aおよび 19 b参照)。し力し、 OsYSL2は「マンガン -コチアナミン」錯体のトランスポーターとし て活性を持つにもかかわらず、マンガン欠乏条件下でのイネの根および葉ではノー ザン解析で OsYSL2発現の増加を確認することができな力 た。また、「亜鉛 ニコ チアナミン」錯体、「銅-ニコチアナミン」錯体およびの他の金属キレート錯体では、 O SYSL2の輸送活性を確認することができな力つた。
[0026] OsYSL2の更なる特徴は、染色体 2 (chromosome2)の下腕部分に存在して 、るこ とである。 ZmYSlとのアミノ酸配列比較にて 7つのェキソンがあることと、 14の膜貫通 領域(図 22aおよび図 22b参照)を含む 674のアミノ酸力もなることである。
イネでは、鉄欠乏によりクロ口シスを呈した葉でイネの-コチアナミン合成酵素(Os NAS)の 1種である OsNASl、及び OsNAS2の発現が強く誘導されており (Inoue H.,et al, Plant J., 36,366-381)、 OsNASl、 OsNAS2によって合成されたニコチア ナミンが鉄欠乏条件の葉で発現した OsYSL2と何らかの相互作用を持っている可能 性も考えられる。また、ショルツ (Scholz (1989))は、ニコチアナミンが新根や新葉への 鉄の再分配に関与し、再分配が篩管を経て行われていることを示唆している。鉄欠 乏条件では古!、葉力 新 、葉へ鉄が OsYSL2を介して再転流して 、るの力もしれ ない。
[0027] 第 2群に属する OsYSL6と、第 4群に属する OsYSL13はコントロール条件の葉で 発現し、鉄欠乏処理によって発現が抑制された(図 2参照)。シロイヌナズナの AtYS Lのうちの一つは同様にコントロール条件の葉で発現し、鉄欠乏処理によって発現が 抑制されたことが報告されている (Jean ML., et al., Udineltaly, pl28 (2002》。さらに、 この遺伝子は鉄過剰処理により葉での発現が誘導され、この遺伝子を破壊した変異 株は過剰の鉄に感受性を示すことも報告されている (Jean et al, 2002)。
これらの知見からすれば、本発明の OsYSL6、 OsYSL13のどちら力 または双方 1S 過剰の鉄に対する耐性に関与しているの力もしれない。過剰の鉄を何らかの細 胞内のオルガネラに隔離するためのトランスポーターとして機能しているの力もしれな いことが予想される。このことは鉄過剰処理したイネを栽培し、ノーザン解析により確 認することができる。また、 OsYSL6や OsYSL13が恒常的に土壌からの「鉄 ムギネ 酸類」錯体の吸収を行っていることも考えられる。イネマイクロアレイ解析の結果、 Os YSL13は、亜鉛欠乏により葉で発現が誘導されることが明かになった。このことから OsYSL13は「亜鉛一二コチアナミン」トランスポーターとして機能していることも考えら れる。いずれにしても、レポーター遺伝子を用いた発現の組織特異性の解析や、イン ビトロ (in vitro)でのトランスポーター活性の確認を行うことにより、機能や組織内の分 布などについてのさらなる知見を得ることができる。
[0028] 第 4群の OsYSL14は葉、根のどちらでも発現しており、鉄欠乏処理による発現の 変化は見られなかった(図 2参照)。このことは、鉄以外の金属元素の輸送に関連して いる可能性がある。植物体内で合成される-コチアナミンは、鉄だけでなぐマンガン 、亜鉛、コバルト、ニッケル、銅などの遷移金属元素と比較的安定なキレートを形成す ることがしられており、これらの遷移金属元素が鉄と同様に-コチアナミンと錯体を形 成して輸送されるのであれば、本発明の OsYSL14は鉄以外の金属元素とニコチア ナミンとの錯体の輸送に関与して 、る可能性がある。
[0029] 前記したノーザン解析の結果においては、上記以外の 12個の OsYSLの発現は観 察されなかった。し力し、これらの 12個の OsYSLも、発現が確認された 6個の OsYS Lと同様にゲノムデータベースの検索によって見出された遺伝子なので、これらは発 現していない擬似遺伝子の可能性もある。また、これらの遺伝子は他の金属元素欠 乏ストレスや、過剰ストレス、または生育段階によって発現が制御されていて、今回の 栽培条件では発現していな力つたの力もしれない。実際、今回発現が確認できなか つた OsYSL4、 OsYSL8、 OsYSL10、及び OsYSL12は、イネゲノムプロジェクトに よる完全長 cDNAライブラリ一中に見出された。これらの 4種類の cDNAクローンは 花カゝら抽出した mRNAをもとに作った cDNAライブラリーから見出されるものである。 これらの遺伝子は生殖段階にぉ 、て特異的に発現して 、るの力もしれな!、。
さらに、農業生物資源研究所遺伝子機能研究チームによって作成されている Tosl 7によるイネの遺伝子破壊系統の中に、 OsYSL12が破壊された変異株 (NE7024) が見出された。この変異株は半分が不稔形質を示していた。したがって、 18個の Os YSLのうちのいくつか、特に OsYSL12が生殖段階で「金属一二コチアナミン」錯体の 輸送に関与して 、る可能性は高 、。
[0030] OsNASlと同様にプロモーター領域を j8—グルクロ-ダーゼ(GUS)遺伝子につな いだコンストラクトを作成し、形質転 ネを作出することにより、さらに詳細な発現の 変化を観察したり、発現している組織を特定したりすることが出来る。その形質転換 体を用いて様々な金属元素の欠乏、過剰処理を行うことで鉄やその他の金属元素の 植物体内での輸送や移行に関する知見が得られる。
例えば、 OsYSL2、 OsYSL6、 OsYSL9、 OsYSL13、 OsYSL14、 OsYSL15、 及び OsYSL16の各プロモーター領域 1. 5 Kbに GUSレポーター遺伝子をつない で、それぞれのコンストラクトを用いて、常法によりイネを形質転換対を作製して、様 々な金属元素の欠乏、過剰処理を行うことで鉄やその他の金属元素の植物体内で の輸送や移行に関する知見をえることができる。
今回ノーザン解析で発現が認められた OsYSLに関しては cDNAライブラリーのス クリーニングを行 、、得られたクローンがコードする OsYSLが「鉄 ムギネ酸類」また は「鉄一二コチアナミン」のトランスポート活性を有するかどうか確認しなければならな い。
また、井上ら (2001)が行った鉄欠乏イネへの鉄分の葉面散布の実験では、鉄を- コチアナミンとの錯体として与えた場合にはクロ口シスを回復した力 ムギネ酸類の一 種であるデォキシムギネ酸との錯体で与えた場合や、塩ィ匕第二鉄として与えた場合 にはクロ口シスの回復は見られなかった。このことは、イネの葉で発現している OsYS Lが、葉面力も与えられた「鉄-ニコチアナミン」錯体の吸収に関与していることを予測 させる。「鉄ーデォキシムギネ酸」錯体を与えた場合にクロ口シスを回復しなかったこと は興味深ぐ OsYSLは輸送する基質を厳しく選択している可能性がある。酵母の鉄 吸収変異株 frtlfet3frel(Bughio et al, 2002)を用いて相補実験を行えば、これらの O sYSLが「鉄 -コチアナミン」錯体と「鉄ーデォキシムギネ酸」錯体を選択して 、るの 力どうかが明らかになるだろう。
ニコチアナミンは鉄以外の遷移金属元素もキレートし、特に銅は-コチアナミンとの 錯体で導管内を輸送されている (Pich and Scholz, 1996)。また、亜鉛、マンガンなどの 金属元素の篩管を通じた輸送に-コチアナミンが関与して 、ると示唆されて 、る (Stphan and Scholz, Physiol. Plantarum, 88, 522-529 (1993))。銅や亜 マンガンな どの金属元素を吸収できない酵母の変異株(それぞれ ctrl (Dancis et al, 1994)、 zrtlzrt2 (Zao and Eide, 1996)、 smfl (Supek F., et al., Proc. Natl. Acad. Sci. U.S.A., 93, 5105-5110 (1996))を用いて、相補実験を行うことにより OsYSLが鉄以外の金属 元素の輸送に関与しているかどうかの知見を得ることができる。また、アフリカッメガエ ル卵母細胞に 18個の OsYSL遺伝子を発現させ、「鉄 ムギネ酸類」、「鉄 ニコチア ナミン」、「金属一二コチアナミン」錯体を輸送するかどうかを確かめることにより、これら のタンパク質が「鉄-ムギネ酸類」、「鉄-ニコチアナミン」、「金属-ニコチアナミン」錯 体のどの種類のトランスポーターであるかを確認することができる。
[0032] このために、本発明者らは、アフリカッメガエル卵母細胞を使用して OsYSL2の輸 送活性と基質特異性を調べた。 OsYSL2を卵母細胞で発現させ、各種の基質で誘 発される 60mVの電流を測定した。この結果を図 23にグラフで示す。図 23aは、各種 の基質にっ 、ての電流( μ Α)を測定した結果を示し、図 23bは鉄とマンガンのニコ チアナミン (NA)と 2'—デォキシムギネ酸 (DMA)錯体につ 、ての基質添加後の電 流 A)の変化を示す。この結果、驚いたことに、 OsYSL2は Fe (II)— NAと Μη(Π) NAを輸送した力 DMA錯体はいずれも輸送しないことがわかった。これによつて 、 OsYSL2は、イネの金属 DMA錯体ではなぐ金属 NA錯体の輸送のための機 能を有することが判明した。また、 OsYSL2が鉄の他に Mn(II)— NAを輸送する機能 を有することから、マンガンの欠乏が OsYSL2の発現を引き起こすかどうかをノーザ ンブロット解析で検討した力 OsYSL2の転写は Mnマンガン欠乏イネの根でも葉で も増加しな力つた (ここでは、データは示さない。 ) o
以上のことから、本発明の OsYSL2が、穀物植物におけるミネラル栄養素の篩部の 輸送と移動にかかわる Feの制御下における金属 NAのトランスポーターであること が確証された。
[0033] 本発明の 18個の OsYSLは、全て細胞膜に存在すると予測された。しかし、鉄欠乏 処理によって発現が抑制された OsYSL6や OsYSL13がイネの鉄過剰に対する耐 性に関与しているとすれば、 OsYSL6や OsYSL13は細胞膜に存在するよりも、液 胞膜に存在する可能性が高い。ピッチら(Pich A., et al. Planta, 213, 967-976 (2001) )は、鉄過剰処理したトマトの液胞中の-コチアナミン濃度が増加したと報告している 。液胞は葉緑体におけるフェリチンと共に鉄の貯蔵に関与していると考えられており、 ピッチら(Pich et al.(2001))は細胞質に存在する過剰な鉄は-コチアナミンとともに液 胞に輸送されて 、ることを示唆して 、る。この機構に本発明の OsYSL6や OsYSLl 3が関与しているものと考えられる。このような細胞内での局在は、 sGFPなどとの融 合タンパク質を用いて確認することができる。
[0034] 本発明のイネの鉄やマンガンなどの金属錯体の吸収や輸送に関与するトランスポ 一ター(OsYSL)は、配列表の配列番号 1一 18に示されるアミノ酸配列を有するイネ 由来のものに限定されるものではなぐイネにおける鉄やマンガンなどの金属錯体の 吸収や輸送に関与するトランスポーターとしての機能を有するものであれば、その一 部のアミノ酸が欠失し、若しくはその一部のアミノ酸が他のアミノ酸で置換され、及び Z又は他のアミノ酸のいくつかが付加されたものであってもよいが、配列番号 1一 18 に示されるアミノ酸配列と少なくとも 80%以上、好ましくは 85%以上又は 90%以上や 95%以上の相同性を有しているアミノ酸配列を有するタンパク質が包含される。 本発明のイネのトランスポーターにおける金属元素としては、鉄、マンガン、亜鉛、 銅、コバルト、ニッケルなどの-コチアナミンと安定な錯体を形成する金属元素であり 、好ましい金属元素としては鉄、マンガン、亜鉛、銅などが挙げられ、これらの金属元 素の 1種又は 2種以上の吸収や輸送に関与するものである。本発明のイネのトランス ポーターにおける好ましい金属元素としては、例えば、鉄、鉄とマンガン、鉄と亜鉛な どが挙げられる。
また、本発明の遺伝子は、前記した本発明のイネの鉄やマンガンなどの金属錯体 の吸収や輸送に関与するトランスポーター(OsYSL)をコードするものである。本発 明の遺伝子としては、 DNAでも RNAでもよい。好ましい本発明の遺伝子としては、 配列表の配列番号 19一 36に示される塩基配列を有するものが挙げられる力 これ に限定されるものではなく、これとストリンジェントな条件下でハイブリダィズ可能な配 列も包含される。
[0035] また、本発明は前記した本発明の遺伝子の一部の配列からなるオリゴヌクレオチド を提供するものである。本発明のオリゴヌクレオチドは、前記した本発明の遺伝子の 一部の配列からなるものであり、好ましくは 10— 150塩基、 10— 100塩基、 10— 50 塩基、また 15— 150塩基、 15— 100塩基、 15— 50塩基程度、より好ましくは 15— 3 0塩基程度の長さを有するものである。本発明のオリゴヌクレオチドは、本発明の遺伝 子を増幅させる際のプライマーや、本発明の遺伝子を検出や同定する際のプローブ などとして有用なものである。
[0036] 本発明は、前記した本発明の遺伝子を含有してなるベクターを提供するものでもあ る。本発明のベクターは、前記した本発明の遺伝子をコードする塩基配列を含有す るものである。本発明のベクターは、必要により任意のプロモーターを付カ卩してもよい し、既に用意されて 、るプロモーター領域の下流側に本発明の遺伝子を有するもの であってもよい。また、本発明のベクターは、本発明の遺伝子を含有しているもので あれば、如何なる用途に使用されるものであってもよぐ例えば、発現用のベクターで あってもょ 、し、クローユング用のベクターであってもよ!/、。
また、本発明は、本発明の遺伝子、又は本発明の遺伝子を含有する遺伝子が導入 された形質転換体を提供する。導入される遺伝子は本発明の遺伝子が単独で導入 されてもよいし、本発明の遺伝子に、さらに必要なプロモーター領域やシグナル領域 などを付加した遺伝子として、導入することもできる。遺伝子の導入方法としては、プ ラスミドゃファージなどを用いる公知の導入手段を採用できる。
本発明の形質転換体の宿主細胞としては、特に制限は無く動物細胞や植物細胞 などを任意に選定することができる。本発明のイネの鉄やマンガンなどの金属錯体の 吸収や輸送に関与するトランスポーター (OsYSL)を製造する場合には、大腸菌など を宿主細胞とすることができるし、また本発明の遺伝子を用いて他の植物を形質転換 する場合にはイネやトウモロコシ、トマト、シロイヌナズナなどの植物細胞を宿主細胞 とすることができる。
[0037] また、本発明は、 OsYSL2が、植物体内における鉄錯体及び Z又はマンガン錯体 、好ましくはニコチアナミン錯体の輸送に関与しているトランスポーターであることを明 らかにしたものである。鉄などの金属成分は植物の発育や成長に必要なだけでなぐ 植物を食糧としている人間の栄養補給の点からも重要である。特に、本発明の OsYS L2は植物の生殖成長における鉄分やマンガン成分の輸送に大きく関与しており、鉄 分やマンガン成分の強化された植物体の製造に有用となる。
本発明の OsYSL2は、植物における鉄錯体及び/又はマンガン錯体の体内輸送 に関与しており、これを用いて植物の体内における鉄錯体及び Z又はマンガン錯体 の輸送や蓄積を調節することが可能であり、本発明は当該 OsYSL2を用いた植物に おける鉄錯体及び Z又はマンガン錯体の体内輸送の調整方法を提供するものであ る。
本発明の調整方法としては、本発明の OsYSL2、例えば、配列表の配列番号 2に 記載のアミノ酸配列、又はその一部のアミノ酸が欠失若しくは置換され、及び Z又は 他のアミノ酸が付加されることにより配列番号 2に示されるアミノ酸配列と 80%以上の 相同性を有して 、るアミノ酸配列をコードする遺伝子、好ましくは配列表の配列番号 20に示される塩基配列を有する遺伝子を植物に導入する方法が挙げられる。植物と しては、鉄成分やマンガン成分の輸送が行える植物であれば特に制限はないが、本 発明の OsYSL2がイネ由来であることから、イネ科植物が好ましいがこれに限定され るものではない。
本発明のこの方法により、鉄分が強化された植物、例えば、野菜や果実などを製造 することも可能となり、本発明の OsYSL2は鉄分などの金属成分の強化された植物 の製造に極めて有用である。
発明の効果
本発明は、鉄やマンガンなどの金属錯体の吸収や輸送が強化された潜在的に鉄 などの金属元素欠乏発生土壌においても生育可能なイネを創出するために必須とな るイネの鉄やマンガンなどの金属錯体の吸収や輸送に関与する、「鉄 ムギネ酸類」 錯体トランスポーター及びそれをコードする遺伝子、「鉄一二コチアナミン」錯体トラン スポーター及びそれをコードする遺伝子、並びに「マンガンなどの金属 ニコチアナミ ン」錯体トランスポーター及びそれをコードする遺伝子を提供するものである。本発明 のトランスポーターは、イネの細胞又は細胞内のオルガネラが「三価鉄 ムギネ酸類」 、「二価鉄-ニコチアナミン」錯体となっている鉄や、「金属-ニコチアナミン」錯体とな つている金属錯体を内部に取り込むために必須の膜輸送体であるトランスポーターを 提供するものであり、鉄やマンガンなどの金属元素の吸収や輸送が強化された潜在 的鉄及び金属元素欠乏発生土壌においても生育可能なイネを創出するために必須 となるタンパク質であり遺伝子である。さらにイネ種子に鉄及び金属元素を集積させ 栄養価の高い米を作出するためにも必須である。本発明のトランスポーターが有する それぞれの機能に着目して、イネを生育させる土壌に応じたトランスポーターを有す る新規なイネを創出することが可能となり、イネの耕作範囲を拡大することが可能とな るため、世界の食糧問題の解決の糸口となる。さらに鉄および金属元素を種子可食 部に集積させ、栄養価の高い米を作出することが可能になり、ヒトの鉄欠乏性貧血、 金属元素欠乏症の解消に寄与することが可能となる。
図面の簡単な説明
[図 1]図 1は、シロイヌナズナのトランスポーターの予想されるゲノム構造を模式的に 示したものである。
[図 2]図 2は、本発明のイネのトランスポーターの発現をノーザン解析によって確認し た結果を示す図面に変わるカラー写真である。
[図 3]図 3は、本発明のイネの 18個のトランスポーターとトウモロコシの YS1とのアミノ 酸配列を比較した 3枚の図面の 1枚目である。
[図 4]図 4は、本発明のイネの 18個のトランスポーターとトウモロコシの YS1とのアミノ 酸配列を比較した 3枚の図面の 2枚目である。
[図 5]図 5は、本発明のイネの 18個のトランスポーターとトウモロコシの YS1とのアミノ 酸配列を比較した 3枚の図面の 3枚目である。
[図 6]図 6は、本発明のイネの 18個のトランスポーターの塩基配列を比較した 9枚の 図面の 1枚目である。
[図 7]図 7は、本発明のイネの 18個のトランスポーターの塩基配列を比較した 9枚の 図面の 2枚目である。
[図 8]図 8は、本発明のイネの 18個のトランスポーターの塩基配列を比較した 9枚の 図面の 3枚目である。
[図 9]図 9は、本発明のイネの 18個のトランスポーターの塩基配列を比較した 9枚の 図面の 4枚目である。
[図 10]図 10は、本発明のイネの 18個のトランスポーターの塩基配列を比較した 9枚 の図面の 5枚目である。
[図 11]図 11は、本発明のイネの 18個のトランスポーターの塩基配列を比較した 9枚 の図面の 6枚目である。
[図 12]図 12は、本発明のイネの 18個のトランスポーターの塩基配列を比較した 9枚 の図面の 7枚目である。
[図 13]図 13は、本発明のイネの 18個のトランスポーターの塩基配列を比較した 9枚 の図面の 8枚目である。
[図 14]図 14は、本発明のイネの 18個のトランスポーターの塩基配列を比較した 9枚 の図面の 9枚目である。
[図 15]図 15は、本発明のイネのトランスポーター(OsYSL)、トウモロコシのトランスポ 一ター(YS1)、及びシロイヌナズナのトランスポーター(AtYSL)の YSLファミリーの 分子系統榭を示したものである。
[図 16]図 16は、本発明の OsYSL2と GFPの融合タンパク質をタマネギの表皮細胞 で発現させた結果を示す図面に代わるカラー写真である。図 16aは OsYSL2— GFP 融合タンパク質の場合を示し、図 16bは GFPタンパク質単独の場合を示す。
[図 17]図 17は、イネの根における本発明の OsYSL2のプロモーターの発現をレポ一 ター遺伝子 GUSにより解析した結果を示す図面に代わるカラー写真である。 GUSの 発現を青色で示している。図 17aは鉄十分条件の場合を示し、図 17bは鉄欠乏条件 の場合を示す。各図の挿入は中心柱の中の篩部細胞の拡大写真である。
[図 18]図 18は、イネの葉鞘の維管束における本発明の OsYSL2のプロモーターの 発現をレポーター遺伝子 GUSにより解析した結果を示す図面に代わるカラー写真で ある。 GUSの発現を青色で示している。図 18bはその拡大写真であり、矢印は伴細 胞での発現を示している。
[図 19]図 19は、イネの葉における本発明の OsYSL2のプロモーターの発現をレポ一 ター遺伝子 GUSにより解析した結果を示す図面に代わるカラー写真である。 GUSの 発現を青色で示している。図 19aは鉄十分条件の場合を示し、図 19bは鉄欠乏条件 の場合を示す。各図における矢印は、伴細胞での強い発現を示している。
[図 20]図 20は、イネの花と種子における維管束での本発明の OsYSL2のプロモータ 一の発現をレポーター遺伝子 GUSにより解析した結果を示す図面に代わるカラー写 真である。 GUSの発現を青色で示している。図 20aは開花の前の場合を示し、図 20 bは受精後の結果を示し、図 20cは受精後 5日目の結果を示し、図 20dは受精後 8日 目の結果を示し、図 20eは受精後 20日目の結果を示し、図 20fは受精後の 30日目 の結果をそれぞれ示す。
[図 21]図 21aは、本発明のイネのトランスポーター OsYSL2のアミノ酸配列を ZmYS 1と比較したものである。図 21bは、本発明のイネのトランスポーター OsYSL2のアミ ノ酸配列を模式的に記載したものである。丸印が個々のアミノ酸を示している。
[図 22]図 22は、本発明のイネのトランスポーター OsYSL2の RT— PCR解析の結果 を示す図面に代わる写真である。
[図 23]図 23は、本発明のイネのトランスポーター OsYSL2による金属キレート錯体の 基質による誘発電流を測定した結果を示すグラフである。
[0040] 以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例によ り何ら限定されるものではない。
実施例 1
[0041] イネゲノムデータベースを利用したイネのトランスポーター(OsYSL)の探索
イネの鉄及び他の金属錯体の吸収や輸送に関与するトランスポーターを見出すた めに、ジャポニカ種のイネのゲノムデーターベースである、 Oryza sativa L. ssp.
japonica (cv. Nipponbare (uolf et al., 2002)(http:/ノ portal. tmri.org/rice/)を用いて、 トウモロコシのトランスポーターである YS1と高い相同性をもつタンパク質をコードす るイネの遺伝子(OsYSL)をブラスト(Blast)検索 (Atlschul et al., 1990)した。
しかし、このデータベースは完成されたものではなぐ各コンテイダがばらばらの状 態での開示であり、そのため検索で得られた YS 1に相同性が高いコンテイダも OsYS Lの全長を含んでいない場合が多力つた。また、塩基解読の精度もそれほど高くなく 、不明の塩基も数多くあった。
そこで、本発明者らは、インディ力種のイネについてのゲノムデーターベースである Oryza sativa L. ssp. indica (cv. 91-11) (Yu et al.,
2002)(http:〃 btn.genomics.org.cn/rice/)を検索することで得られたインディ力種の Os YSLの塩基配列も参考にした。これらの配列を基に、ばらばらになっていたジャポ二 力種の OsYSLについても断片をつなぎ合わせ、推測される全長を同定した。この結 果、合計 18個の OsYSLが見出された。これらのトランスポーターをそれぞれ OsYSL 1一 18と命名した。 この配列に基づ 、て、シロイヌナズナのトランスポーターである AtYSL3のゲノム配 列から、イネにおけるこれらの配列を決定した。決定されたそれぞれのアミノ酸配列を 配列表の配列番号 1一 18にそれぞれ示す。また、その塩基配列を配列表の配列番 号 19一 36にそれぞれ示す。
決定されたアミノ酸配列とトウモロコシの YS 1とのアミノ酸の比較を図 3— 5に順次示 す。また、これらの OsYSLl— 18の塩基配列の比較を図 6— 14に順次示す。
このようにして得られた OsYSLl— 18は、予測されたアミノ酸配列がトウモロコシの YS1と高い相同性を示したこと(図 3— 5参照)、そのうちのいくつかはイネゲノムプロ ジェタトによる完全長 cDNAライブラリーに一致する cDNAが発見されたことから、本 発明の推測は極めて精度の高いものであると考えられた。これらのタンパク質は全て 7個から 16個の膜貫通領域を持つと推測され、 YS1と同様に膜タンパク質である可 能性が高いことも明らかとなった。
実施例 2
試料用のイネの調製
試料用のイネは、次に示す組成を有する水耕液で栽培した。
Ca(N03)2-4H20 2000 μ Μ
MgS04-7H20 500
Fe(lll) -EDTA lOO^M
K2S04 700 μ M
KC1 100 μ M
KH2P04 100 μ M
H3B03 lO^M
MnS04-5H20 0. 5 Μ
ZnS04-7H20 0. 5 Μ
CuS04-5H20 0. 2μΜ
(ΝΗ4)6Μο7024·4Η20 0. Ol^M
イネの第五葉目が展開した時に鉄欠乏処理を開始し、 10日間鉄を除いた水耕液 で栽培することで鉄欠乏処理を行った。コントロール条件のイネはそれまでと同じ濃 度の鉄を加えた水耕液で栽培した。処理後 10日目にコントロール区、鉄欠乏区とも にサンプリングを行った。
実施例 3
[0043] ノーザン解析用のプローブの調製
前記表 1に示すプライマー対を設計し、ゲノム DNAを铸型にして PCRを行った。 O sYSLl、 OsYSL8、 OsYSL16の PCRには KOD— plus— (TOYOBO)を、その他 の遺伝子の PCRには ExTaq (TaKaRa)を DNAポリメラーゼとして用いた。 OsYSL 1の増幅の際、反応液に DMSOを終濃度 5% (vZv)になるように加えた。 KOD-pl us—で増幅された断片は pCR4Blunt— TOPO (Invitrogen)に、その他の断片は pC R4— TOPO (Invitrogen)にクローユングした。クローユングの方法はキットに付属のプ ロトコールに従った。塩基配列を確認し、クローニングされた断片が目的のものである ことを確認した。
得られた断片を通常の方法により32 Pで標識ィ匕した。
実施例 4
[0044] ノーザン解析
実施例 2で栽培したイネをサンプリングして、根と葉の部分について、実施例 3で調 製したプローブを用いてノーザン解析を行った。
結果を図 2に示す。
実施例 5
[0045] OsYSL2— sGFPを含むプラスミドの構築とその発現
カリフラワーモザイクウィルス 35Sプロモータ一— sGFP (S65T) NOS3,の構造を 有するプラスミド PUC18は、丹羽博士 (静岡県立大学)力も提供された。このプラスミド は、 35Sプロモーターの 3,側に Sailと Ncolサイトを持っている。この Ncolサイト「CC ATGG」は、 sGFPの開始コドンを含んでいる。そして、この Ncolと Sailサイトの間に ァニールドオリゴマー (5'TCGAGATATCGGTACCAGATCTGAGCTCGAGGTCGA と 5'CTAGTCGACCTCGAGCTCAGATCTGGTACCGATATC)を挿入し、新し!/、Ec oR Vサイト(GATATC)を導入した。導入された EcoR Vサイトに、 5'末端に attR 1サイト、クロラムフエ-コール耐性遺伝子、 ccdBの遺伝子、及び attR2サイトカセット を含む 1579bpのマルチサイトゲートウェイスリー断片 (Invitrogen)を挿入した。そし て、この修飾ベクターは、 pDEST35S— sGFPと命名され、デエステイネーシヨンべク ター(destination vector)として使用された。
一方、 OsYSL2の ORFを、 '5し CACCATGGAAGCCGCCGCTCCCGAGATAGと 3'- GCTTCCGGGAGTGAACTTCAGCAGの 2つのプライマーを用いて増幅した。 Os YSL2のコード配列を含む増幅された断片は、 pENTR/D— TOPO (Invitrogen)に サブクロー-ングされた。 OsYSL2のコード配列を含むこの pENTR/D— TOPOェ ントリーベクターは、 pENTR— OsYSL2と命名され、前記のデエステイネーシヨンべク ター(destination vector)とこのエントリーベクターの間のサブセキユエント LRリコンビ ネーシヨン反応(Invitrogen)〖こより、 35S— OsYSL2—sGFPをコードする遺伝子を含 む発現クローンを得た。
[0046] たまねぎ表皮細胞に、水野らの方法(Mizuno,D.,et al., Plant Physiol. 132,
1989-1997 (2003))パーティクルガン法(Biolistic PDS- 1000/He(BioRad))により前記 で製造したベクターを導入した。
また、同様に GFPのみを有するベクターを導入した。
遺伝子が導入され、可視化された結果を図 16に示す。
実施例 6
[0047] OsYSL2のプロモーターの 13ーグルクロ-ダーゼ(GUS)分析
OsYSL2の推定されるプロモーター領域(翻訳開始コドンからの— 1500—— lbp) を含むゲノム配列を、ゲノム DNAからの PCR法により増幅した。得られたイネのトラン スポーター OsYSL2のプロモーター領域 1. 5Kbに GUSレポーター遺伝子を結合さ せて、これをイネに導入した。イネへの形質転換及び GUS染色は井上らの方法( Inoue,H.,et al., Plant J. 36, 366-381 (2003))に準じて行った。
結果を、図 17—図 20にそれぞれ示す。
実施例 7
[0048] RT— PCR解析
イネの開花前、開花 5日後および開花 8日後の試料を処理して、 RT— PCR解析を 行った。その結果を図 22に図面に代わる写真で示す。図 22の左側のレーンは開花 前の場合を示し、中央のレーンは開花 5日後の場合を示し、右側のレーンは開花 8日 後の場合を示す。
実施例 8
[0049] アフリカッメガエル卵母細胞における OsYSL2の基質輸送能
OsYSL2を EcoRIと Xbalとで消化して、 OsYSL2の 2022bpの断片を得た。これ を、 pGEM—3zf (t)ベクターの EcoRI、 Xbalサイトに挿入した。得られたプラスミド pG EMYSL2Tを Xbalで消化して鎖状とした。キャップ付きの相補 RNA(cRNA)を、 MEGAscript SP6キット (TX、 Ambion、オースチン、米国)を用いてインビトロで合成し た。
卵母細胞は、ィガラシらの方法(Igarashi,Y.,ET al., Plant Cell Physiol. 41, 750-756 (2000) )により調製した。これに、前記で得た OsYSL2 cRNAの 10ngを注入した。 注入された卵母細胞は、 2日間の ND溶液で培養され、 pH7. 5で電気的測定に供 せられた。卵母細胞の膜の電流は、 TEV— 200システム (MN、 Dagan、ミネアポリス、 米国)を有する自動化された日立システムを使用する、 2—マイクロボルテージクランプ 法により測定した。卵母細胞は、— 60mVに固定され、そして、金属キレートの複合体 (10 /z L、 5mM)の添カ卩に対応した定常電流が得られた。電流は、 Mac Labシステム (NSW, Adinstruments、シドニーオーストラリア)で絶え間なくモニターして、分析した。 OsYSL2遺伝子が注入された独立している 6つの卵母細胞を、電流を測定するのに 使用した。また、コントロールとして 6つの独立している水注入の卵母細胞を用いた。 この結果を図 23に示す。
産業上の利用可能性
[0050] 本発明のトランスポーター及びその遺伝子は、鉄などの金属錯体の吸収や輸送が 強化された潜在的な鉄などの金属元素欠乏発生土壌においても生育可能なイネを 創出するために必須となるイネの金属錯体の吸収や輸送に関与するものである。ま た、地球上には鉄などの金属元素欠乏発生土壌が広大に存在し、このような土壌に おいても生育できるイネなどの穀物植物を創出することは、世界の食糧問題を解決 する上で極めて有効な方法である。また、鉄などの金属元素のミネラル含量の高い 米を作出することは、ヒトの鉄欠乏性貧血、金属元素欠乏症を解消するために有効 である.
本発明は、イネの「鉄 ムギネ酸類」錯体トランスポーター及びそれをコードする遺 伝子、「鉄一二コチアナミン」錯体トランスポーター及びそれをコードする遺伝子、並び に「金属一二コチアナミン」錯体トランスポーター及びそれをコードする遺伝子を提供 するものであり、潜在的な鉄などの金属元素欠乏発生土壌においても生育可能なィ ネ^ iij出するため、さらに鉄および金属元素を種子可食部に集積させた栄養価の高 い米を作出するために不可欠の、鉄などの金属錯体の吸収や輸送に関与するタン パク質及びその遺伝子を提供するものであり、産業上極めて有用なものである 配列表フリーテキスト
配列番号 1 OsYSLlのアミノ酸配列
配列番号 2 OsYSL2のアミノ酸配列
配列番号 3 OsYSL3のアミノ酸配列
配列番号 4 OsYSL4のアミノ酸配列
配列番号 5 OsYSL5のアミノ酸配列
配列番号 6 OsYSL6のアミノ酸配列
配列番号 7 OsYSL7のアミノ酸配列
配列番号 8 OsYSL8のアミノ酸配列
配列番号 9 OsYSL9のアミノ酸配列
配列番号 10 OsYSLlOのアミノ酸配列
配列番号 11 OsYSLl 1のアミノ酸配列
配列番号 12 OsYSLl 2のアミノ酸配列
配列番号 13 OsYSLl 3のアミノ酸配列
配列番号 14 OsYSL14のアミノ酸配列
配列番号 15 OsYSLl 5のアミノ酸配列
配列番号 16 OsYSLl 6のアミノ酸配列
配列番号 17 OsYSLl 7のアミノ酸配列
配列番号 18 OsYSLl 8のアミノ酸配列
配列番号 19 OsYSLlの塩基配列 配列番号 20 OsYSL2の塩基配列 配列番号 21 OsYSL3の塩基配列 配列番号 22 OsYSL4の塩基配列 配列番号 23 OsYSL5の塩基配列 配列番号 24 OsYSL6の塩基配列 配列番号 25 OsYSL7の塩基配列 配列番号 26 OsYSL8の塩基配列 配列番号 27 OsYSL9の塩基配列 配列番号 28 OsYSLlOの塩基配列 配列番号 29 OsYSLl lの塩基配列 配列番号 30 OsYSL12の塩基配列 配列番号 31 OsYSL13の塩基配列 配列番号 32 OsYSL14の塩基配列 配列番号 33 OsYSL15の塩基配列 配列番号 34 OsYSL16の塩基配列 配列番号 35 OsYSL17の塩基配列 配列番号 36 OsYSL18の塩基配列

Claims

請求の範囲
[1] イネの金属錯体の吸収や輸送に関与するトランスポーター。
[2] トタンスポーター力 配列表の配列番号 1一 18のいずれかに記載のアミノ酸配列、 又はその一部のアミノ酸が欠失若しくは置換され、及び Z又は他のアミノ酸が付加さ れることにより配列番号 1一 18のいずれかに示されるアミノ酸配列と 80%以上の相同 性を有して 、るアミノ酸配列を有し、植物の鉄吸収又は金属の輸送に関与するトラン スポーターである請求項 1に記載のトランスポーター。
[3] トランスポーター力 配列表の配列番号 2、 6、 13、 14、 15又は 16に記載のアミノ酸 配列、又はその一部のアミノ酸が欠失若しくは置換され、及び Z又は他のアミノ酸が 付加されることにより配列番号 2、 6, 13、 14、 15又は 16のいずれかに示されるァミノ 酸配列と 80%以上の相同性を有しているアミノ酸配列を有し、植物の鉄吸収又は金 属の輸送に関与するトランスポーターである請求項 1に記載のトランスポーター。
[4] トランスポーター力 配列表の配列番号 2に記載のアミノ酸配列、又はその一部の アミノ酸が欠失若しくは置換され、及び Z又は他のアミノ酸が付加されることにより配 列番号 2に示されるアミノ酸配列と 80%以上の相同性を有しているアミノ酸配列を有 し、植物の金属錯体の輸送に関与するトランスポーターである請求項 1に記載のトラ ンスポーター。
[5] イネの金属錯体の輸送に関与するトタンスポーターである請求項 1に記載のトランス ポーター。
[6] 金属錯体における金属が、鉄、マンガン、亜鉛、銅、コバルト、又はニッケルの 1種 又は 2種以上の金属である請求項 1に記載のトランスポーター。
[7] 金属錯体における金属が、鉄及び Z又はマンガンである請求項 6に記載のトランス ポーター。
[8] 金属錯体が、ニコチアナミン錯体である請求項 5に記載のトランスポーター。
[9] 請求項 1一 8のいずれかに記載のイネ由来のトランスポーターをコードし得る塩基配 列を有する遺伝子。
[10] 遺伝子が、配列表の配列番号 19一 36のいずれかに示される塩基配列を有するも のである請求項 9に記載の遺伝子。
[11] 遺伝子が、配列表の配列番号 20に示される塩基配列を有するものである請求項 9 に記載の遺伝子。
[12] 請求項 9から 11のいずれかに記載の遺伝子を含有してなるベクター。
[13] ベクターが、発現ベクターである請求項 12に記載のベクター。
[14] 請求項 9から 11のいずれかに記載の遺伝子を含有する遺伝子により形質転換され た形質転換細胞。
[15] 細胞が、植物細胞である請求項 14に記載の形質転換細胞。
[16] 配列表の配列番号 2に記載のアミノ酸配列、又はその一部のアミノ酸が欠失若しく は置換され、及び Z又は他のアミノ酸が付加されることにより配列番号 2に示されるァ ミノ酸配列と 80%以上の相同性を有しているアミノ酸配列をコードする遺伝子を導入 することからなる、植物における鉄錯体及び Z又はマンガン錯体の体内輸送を調整 する方法。
[17] 配列表の配列番号 2に記載のアミノ酸配列、又はその一部のアミノ酸が欠失若しく は置換され、及び Z又は他のアミノ酸が付加されることにより配列番号 2に示されるァ ミノ酸配列と 80%以上の相同性を有しているアミノ酸配列をコードする遺伝子力 配 列表の配列番号 20に示される塩基配列を有するものである請求項 16に記載の方法
[18] 金属錯体が、ニコチアナミン錯体である請求項 16に記載の方法。
[19] 植物が、イネ科植物である請求項 16に記載の方法。
PCT/JP2004/014064 2003-09-26 2004-09-27 イネの鉄などの金属錯体の吸収や輸送に関与するトランスポーター、その遺伝子 WO2005030950A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005514219A JP4699211B2 (ja) 2003-09-26 2004-09-27 イネの鉄などの金属錯体の吸収や輸送に関与するトランスポーター、その遺伝子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003335355 2003-09-26
JP2003-335355 2003-09-26

Publications (1)

Publication Number Publication Date
WO2005030950A1 true WO2005030950A1 (ja) 2005-04-07

Family

ID=34386065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014064 WO2005030950A1 (ja) 2003-09-26 2004-09-27 イネの鉄などの金属錯体の吸収や輸送に関与するトランスポーター、その遺伝子

Country Status (2)

Country Link
JP (2) JP4699211B2 (ja)
WO (1) WO2005030950A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126294A1 (ja) * 2005-05-24 2006-11-30 Suntory Limited ムギネ酸鉄錯体選択的トランスポーター遺伝子
WO2007015511A1 (ja) 2005-08-02 2007-02-08 Kaneka Corporation D-アミノ酸オキシダーゼ、およびl-アミノ酸、2-オキソ酸、又は環状イミンの製造方法。
KR101779030B1 (ko) 2015-10-22 2017-09-15 충남대학교산학협력단 아연 함량이 증가된 식물체를 선별하기 위한 분자마커 및 이의 용도

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040172670A1 (en) * 2000-11-16 2004-09-02 Walker Elsbeth L. Maize yellow stripe1 and related genes

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BUGHIO N. ET AL.: "Cloning an iron-regulated metal transporter from rice", J. EXP. BOT., vol. 53, no. 374, 2002, pages 1677 - 1682, XP002986237 *
EIDE D. ET AL.: "A novel iron-regulated metal transporter from plants identified by funtional expression in yeast", PROC. NATL. ACAD. SCI. USA, vol. 93, no. 11, 1996, pages 5624 - 5628, XP002986238 *
HIGUCHI K. ET AL.: "Shokubutsu ni okeru tetsutaisha kiko no kaimei ni mukete", JAPANESE JOURNAL OF THE SCIENCE AND PLANT NUTRITION, vol. 74, no. 2, 5 April 2003 (2003-04-05), pages 237 - 242, XP002986236 *
KOIKE S. ET AL.: "OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem", PLANT J., vol. 39, no. 3, August 2004 (2004-08-01), pages 415 - 424, XP002986239 *
SAKAMOTO T. ET AL.: "Shokubutsu no muki eiyo ine karano ys1 idenshi no cloning", NIPPON DOJO HIRYO GAKKAI KOEN YOSHISHU, vol. 48, 2002, pages 60, XP002986235 *
YAMAGUCHI H. ET AL.: "Gendai dojohi kagaku no danmen 16 tetsuketsubo yudosei idenshi no kaiseki to tetsu transporter kenkyu no genjo", AGRICULTURE AND HORTICULTURE, vol. 77, no. 4, 2002, pages 517 - 522, XP002986234 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126294A1 (ja) * 2005-05-24 2006-11-30 Suntory Limited ムギネ酸鉄錯体選択的トランスポーター遺伝子
WO2007015511A1 (ja) 2005-08-02 2007-02-08 Kaneka Corporation D-アミノ酸オキシダーゼ、およびl-アミノ酸、2-オキソ酸、又は環状イミンの製造方法。
KR101779030B1 (ko) 2015-10-22 2017-09-15 충남대학교산학협력단 아연 함량이 증가된 식물체를 선별하기 위한 분자마커 및 이의 용도

Also Published As

Publication number Publication date
JPWO2005030950A1 (ja) 2007-11-15
JP2010131023A (ja) 2010-06-17
JP4699211B2 (ja) 2011-06-08

Similar Documents

Publication Publication Date Title
AU2019202707B2 (en) Isolated Polynucleotides And Polypetides, And Methods Of Using Same For Increasing Nitrogen Use Efficiency, Yield, Growth Rate, Vigor, Biomass, Oil Content, And/Or Abiotic Stress Tolerance
AU2019204578B2 (en) Isolated polynucleotides and polypeptides, and methods of using same for improving plant properties
AU2016219624B2 (en) Isolated Polynucleotides and Polypeptides, and Methods of Using Same for Increasing Nitrogen Use Efficiency, Yield, Growth Rate, Vigor, Biomass, Oil Content, and/or Abiotic Stress Tolerance
Lee et al. Activation of rice Yellow Stripe1-Like 16 (OsYSL16) enhances iron efficiency
AU2018214089A1 (en) Isolated Polynucleotides and Polypeptides and Methods of Using Same for Increasing Plant Yield, Biomass, Growth Rate, Vigor, Oil Content, Abiotic Stress Tolerance of Plants and Nitrogen Use Efficiency
Astudillo et al. The Phaseolus vulgaris ZIP gene family: identification, characterization, mapping, and gene expression
UA115768C2 (uk) Спосіб підвищення стійкості рослини до абіотичного стресу
EP1838857A1 (en) Regulator for flowering time, transgenic plant transformed with the same, and method for regulating flowering time
WO2014121436A1 (en) Transgenic plants
JP2009521922A (ja) 変調された植物生長速度及び植物中のバイオマスを与えるヌクレオチド配列及び対応するポリペプチド
EP3169785B1 (en) Methods of increasing crop yield under abiotic stress
CN112779234B (zh) 毛竹PeAPX5基因及应用
Koehorst-van Putten et al. Cloning and characterization of a tuberous root-specific promoter from cassava (Manihot esculenta Crantz)
CN114805510B (zh) 调控抗铝毒转录因子stop1蛋白的基因及其应用
JP2010131023A (ja) イネの鉄などの金属錯体の吸収や輸送に関与するトランスポーター、その遺伝子
US20160010105A1 (en) Stress tolerant plants
CN113549602B (zh) 毛竹抗坏血酸过氧化物酶基因PeAPX1及其应用
CN113621591B (zh) 毛竹抗坏血酸过氧化物酶基因PeAPX4及其应用
WO2011111060A1 (en) A METHOD TO ENHANCE MULTIPLE ABIOTIC STRESS TOLERANCE OF CROP PLANTS BY OVER-EXPRESSION OF CYSTATHIONINE-β-SYNTHASE DOMAIN CONTAINING GENE AND CYSTATHIONINE-β-SYNTHASE DOMAIN CONTAINING GENE THEREFOR
US20240271152A1 (en) Enhancing nitrogen fixation with fun
CN114196679B (zh) 铜离子转运蛋白基因OsCOPT7在水稻选育中的应用
CN102202497A (zh) 涉及改变的硝酸盐吸收效率的新的Atlg67330基因
CN118166031A (zh) ZmCCD8基因在玉米育种中的应用
US20050233346A1 (en) Plant promoters and methods of use thereof
WO2021225862A1 (en) Approaches to dramatically increase rice productivity

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514219

Country of ref document: JP

122 Ep: pct application non-entry in european phase