WO2005030745A1 - Method for producing propyleneoxide - Google Patents

Method for producing propyleneoxide Download PDF

Info

Publication number
WO2005030745A1
WO2005030745A1 PCT/JP2004/013993 JP2004013993W WO2005030745A1 WO 2005030745 A1 WO2005030745 A1 WO 2005030745A1 JP 2004013993 W JP2004013993 W JP 2004013993W WO 2005030745 A1 WO2005030745 A1 WO 2005030745A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
cumene
dehydration
epoxidation
catalyst
Prior art date
Application number
PCT/JP2004/013993
Other languages
French (fr)
Japanese (ja)
Inventor
Junpei Tsuji
Masaru Ishino
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Publication of WO2005030745A1 publication Critical patent/WO2005030745A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a method for producing propylene oxide. More specifically, the present invention allows the use of cumene hydroperoxide obtained from cumene as an oxygen carrier to convert propylene to propylene oxide, and that the cumene can be used repeatedly, and furthermore, it is possible to use propylene from propylene.
  • the present invention relates to a method for producing propylene oxide, which can carry out an epoxidation reaction for obtaining pyrene oxide at a high yield and can further reduce the load on a purification step of propylene oxide as a product. . Background art
  • An object of the present invention is to convert propylene to propylene oxide by using cumene hydroperoxide obtained from cumene as an oxygen carrier, and to be able to use the cumene repeatedly.
  • the epoxidation reaction for obtaining propylene oxide can be carried out at a high yield, the load on the purification process of the product propylene oxide can be reduced, and the activity of the dehydration catalyst can be prevented from lowering.
  • An object of the present invention is to provide a method for producing propylene oxide that can be used.
  • the present invention is a method for producing propylene oxide including the following steps, wherein the concentration of water in a solution containing cumene hydroperoxide to be subjected to an epoxidation step is 1% by weight or less.
  • the present invention relates to a method for producing propylene oxide, which is characterized in that:
  • Oxidation step Step of obtaining cumene hydroperoxide by oxidizing cumene
  • Epoxidation step Step of reacting cumene hydroperoxide obtained in the oxidation step with propylene to obtain propylene oxide and cumyl alcohol.
  • Dehydration step Step of obtaining ⁇ -methylstyrene by dehydrating cumyl alcohol obtained in the epoxidation step in the presence of a dehydration catalyst
  • Hydrogenation process In the presence of a hydrogenation catalyst, a process for hydrogenating methylstyrene to make cumene and recycling it to the oxidation process Best mode for carrying out the invention
  • the oxidation step is a step of obtaining cumene hydroperoxide by oxidizing cumene.
  • the oxidation of cumene is usually performed by autoxidation with oxygenated gas such as air or oxygen-enriched air. This oxidation reaction may be carried out without using an additive, or an additive such as an alkali may be used.
  • Typical reaction temperatures are 50-200 ° C. and reaction pressures are between atmospheric pressure and 5 MPa.
  • alkaline reagents such as Na ⁇ H and KOH, alkaline earth metal compounds or Na 2 C ⁇ 3 , Na HC ⁇ alkali metal carbonates or ammonia and like 3 (NH 4) 2 C 0 3, an alkali metal carbonate Anmoniumu salt or the like is used.
  • the epoxidation step is a step of reacting cumene hydroperoxide obtained in the oxidation step with propylene to obtain propylene oxide and cumyl alcohol.
  • the epoxidation step is preferably carried out in the presence of a solid catalyst composed of a titanium-containing silicon oxide from the viewpoint of obtaining the target product with high yield and high selectivity.
  • These catalysts are preferably so-called Ti-silica catalysts containing Ti chemically bonded to silicon oxide.
  • a T i compound supported on a silica carrier, a compound compounded with a silicon oxide by a coprecipitation method or a sol-gel method, or a zeolite compound containing T i can be mentioned.
  • cumene hydropoxide used as a raw material in the epoxidation step may be a diluted or concentrated purified or unpurified product.
  • the epoxidation reaction is carried out by bringing propylene and cumene hydroperoxide into contact with a catalyst.
  • the reaction can be carried out in a liquid phase using a solvent.
  • the solvent should be liquid at the temperature and pressure of the reaction and be substantially inert to the reactants and products.
  • the solvent may consist of the substances present in the hydroperoxide solution used.
  • cumene hydroperoxide is a mixture of cumene as a raw material, the mixture can be used as a solvent without adding a solvent.
  • the epoxidation reaction temperature is generally from 0 to 200 ° C, but a temperature of from 25 to 200 ° C is preferred.
  • the pressure may be sufficient to keep the reaction mixture in a liquid state. In general, the pressure is advantageously between 100 and 1000 kPa.
  • the epoxidation reaction can advantageously be carried out using a catalyst in the form of a slurry or fixed bed. For large-scale industrial operations, it is preferred to use a fixed bed. It can be carried out by a batch method, a semi-continuous method, a continuous method, or the like. When the liquid containing the reactants is passed through a fixed bed, the liquid mixture leaving the reaction zone contains no or substantially no catalyst.
  • the dehydration step is a step in which cumyl alcohol obtained by the epoxidation reaction is used as a dehydration catalyst to obtain ⁇ -methylstyrene and water.
  • the propylene oxide obtained in the epoxidation step is preferably separated from cumyl alcohol before the dehydration step, from the viewpoint of obtaining a high propylene oxide yield.
  • distillation can be used as a method for separation.
  • Examples of the catalyst used in the dehydration step include acids such as sulfuric acid, phosphoric acid, and ⁇ -toluenesulfonic acid, and metal oxides such as activated alumina, titania, zirconia, silica alumina, and zeolite.
  • acids such as sulfuric acid, phosphoric acid, and ⁇ -toluenesulfonic acid
  • metal oxides such as activated alumina, titania, zirconia, silica alumina, and zeolite.
  • a solid catalyst is preferred, and activated alumina is more preferred from the viewpoints of catalyst life, selectivity, and the like.
  • the dehydration reaction is usually performed by bringing cumyl alcohol into contact with the catalyst, in the present invention, hydrogen may be fed to the catalyst because a hydrogenation reaction is performed following the dehydration reaction.
  • the reaction can be carried out in a liquid phase using a solvent.
  • the solvent should be substantially inert to the reactants and products.
  • the solvent may consist of the substances present in the cumyl alcohol solution used.
  • the dehydration reaction temperature is generally from 50 to 450 ° C, but a temperature of from 150 to 300 ° C is preferred.
  • the pressure is advantageously between 10 and: L O O O O k Pa.
  • the dehydration reaction can be advantageously carried out using a catalyst in the form of a slurry or a fixed bed.
  • the hydrogenation step is a step in which methyl styrene and water obtained by the dehydration reaction are supplied to a hydrogenation catalyst, ⁇ -methyl styrene is hydrogenated to be converted into cumene, and cumene is recycled to the oxidation step as a raw material for the oxidation step.
  • the hydrogenation catalyst examples include a solid catalyst containing a metal of Group 10 or Group 11 of the periodic table, and specific examples thereof include nickel, palladium, platinum, and copper. Palladium or copper is preferred from the viewpoint of suppressing the hydrogenation reaction and increasing the yield. Copper catalysts include copper, Raney copper, copper 'chromium, copper -Zinc, copper 'Chromium' zinc, copper 'silica, copper' alumina. Examples of the palladium catalyst include palladium 'alumina, palladium' silica, and palladium-carbon. These catalysts can be used alone or in combination.
  • the hydrogenation reaction is usually carried out by bringing permethylstyrene and hydrogen into contact with a catalyst.
  • a catalyst since the hydrogenation reaction is carried out subsequent to the dehydration reaction, part of the water generated in the dehydration reaction is separated into oil and water. May be separated, or may be subjected to a hydrogenation catalyst together with ⁇ -methylstyrene without separation.
  • the amount of hydrogen required for the reaction may be equimolar to that of methyl styrene, but usually the raw material also contains other components that consume hydrogen, and an excess of hydrogen is required. Since the reaction proceeds more rapidly as the partial pressure of hydrogen is increased, a hydrogen-methylstyrene molar ratio of 1 to 10 is usually used. More preferably, it is 1 to 5.
  • the reaction can be carried out in a liquid or gas phase using a solvent.
  • the solvent must be substantially inert to the reactants and products.
  • the solvent may consist of the substances present in the methylstyrene solution used.
  • the hydrogenation reaction temperature is generally 0 to 500 ° C., but a temperature of 30 to 40 is preferred. In general, it is advantageous for the pressure to be between 100 and 1000 kPa.
  • Both the dehydration reaction and the hydrogenation reaction can be advantageously carried out by a continuous method using a catalyst in the form of a fixed bed.
  • the dehydration reaction and the hydrogenation reaction may be performed in separate reactors or in a single reactor.
  • the continuous method reactor includes a thermal cutoff reactor and an isothermal reactor.
  • an adiabatic reactor is preferable.
  • the dehydration reaction of cumyl alcohol is an endothermic reaction, and the temperature decreases with the progress of the reaction.
  • the hydrogenation reaction of permethylstyrene is an exothermic reaction. The temperature rises as it progresses. As a whole, the calorific value is higher, so the outlet temperature is higher than the reactor inlet temperature.
  • the reaction temperature and pressure are selected so that water contained in the ⁇ -methylstyrene solution after the dehydration reaction does not condense.
  • the reaction temperature is preferably from 150 to 300 ° C.
  • the reaction pressure is preferably from 100 to 2000 kPa. If the temperature is less than 150 or the pressure exceeds 2000 kPa, water may condense at the outlet of the dehydration reaction, and may degrade the performance of the hydrogenation catalyst. If the pressure is too high, it is disadvantageous in the reaction equilibrium of the dehydration reaction. On the other hand, if the temperature exceeds 300 ° C or the pressure is lower than 100 kPa, a large amount of gas phase may be generated and fouling may occur, resulting in a reduction in catalyst life. May be disadvantaged.
  • Hydrogen can be fed from either the inlet of the fixed bed reactor or the inlet of the hydrogenation catalyst, but is preferably fed from the inlet of the fixed bed reactor in view of the activity of the dehydration catalyst.
  • the constant presence of hydrogen in the dehydration reaction zone promotes the vaporization of water generated by dehydration, increases the equilibrium dehydration conversion rate, and obtains a higher conversion rate more efficiently than without hydrogen.
  • the water generated in the dehydration reaction passes through the hydrogenation catalyst.However, by operating at a level that does not condense as described above, it can be operated at low cost without providing any equipment for removing water. be able to. Unreacted hydrogen at the reactor outlet can be recycled and reused after the gas-liquid separation operation.
  • the amount of the dehydration catalyst may be any amount that can sufficiently convert cumyl alcohol, and the conversion of cumyl alcohol is preferably 90% or more.
  • the amount of the hydrogenation catalyst may be an amount that can sufficiently convert -methylstyrene, and the ⁇ -methylstyrene conversion rate is preferably 98% or more. From a cost perspective, the dehydration catalyst and hydrogenation catalyst can be combined into a single fixed-bed reactor instead of a multi-stage reactor. Preferably, it is filled. The reactor may be divided into several beds or not. If not separated, the dehydration catalyst and hydrogenation catalyst may be in direct contact, but may be separated by inert packing.
  • the concentration of water in the solution containing cumene hydrooxide to be subjected to the epoxidation step is 1% by weight or less, preferably 500 ppm by weight or less. is there.
  • Water reacts with propylene oxide in the epoxidation process to form darikols, which lowers the yield of propylene oxide.
  • the glycols generated at this time remain until the dehydration step, which lowers the activity of the dehydration catalyst.
  • propylene oxide is separated from the reaction solution after the epoxidation reaction. However, since water in the reaction solution is separated to the propylene oxide side, extra water is required to separate propylene oxide and water. Energy is required.
  • Methods for suppressing the concentration of water include a method of removing all or part of the water to the outside of the system comprising the process of the present invention by distillation, extraction, etc., a method of converting it to another compound by a reaction, an adsorbent, etc. Any method such as a method of reducing the concentration may be used.
  • the step of removing water (hereinafter sometimes referred to as “water removal step”) may be performed within at least each of the oxidation, epoxidation, dehydration, and hydrogenation steps.
  • Example A solution containing cumene hydroperoxide having a water concentration of 0.2% by weight was placed in a fixed-bed flow reactor in the presence of a Ti-containing silicon oxide catalyst in a fixed bed flow reactor, per mole of peroxide at the methane oxide port in the oxidizing solution. was continuously passed through the reactor together with 10-fold molar propylene. By adjusting the inlet temperature, the conversion of cumene hydroperoxide was kept at 99%, and was stabilized stably. At this time, the reaction temperature was 60 ° C., the selectivity for propylene oxide was 95.0%, and the selectivity for propylene glycol was 1%.
  • propylene can be converted to propylene oxide by using cumene hydroperoxide obtained from cumene as an oxygen carrier, and the cumene can be used repeatedly.
  • the epoxidation reaction can be carried out at a high yield, the load on the purification process of propylene oxide as a product can be reduced, and the decrease in the activity of the dehydration catalyst can be suppressed.
  • a method for producing propylene oxide can be provided.

Abstract

A method for producing a propyleneoxide comprising the following steps is disclosed wherein the concentration of water in a solution containing a cumenehydroperoxide which is used in the epoxidation step is not more than 1 weight%. Oxidation step: A cumenehydroperoxide is obtained through oxidation of a cumene. Epoxidation step: A propyleneoxide and a cumyl alcohol are obtained through reaction between the cumenehydroperoxide obtained in the oxidation step and a propylene. Dehydration step: A α-methylstyrene is obtained through dehydration of the cumyl alcohol obtained in the epoxidation step in the presence of a dehydration catalyst. Hydrogenation step: A cumene is obtained by hydrogenating the α-methylstyrene in the presence of a hydrogenation catalyst and the thus-obtained cumene is recycled to the oxidation step.

Description

明 細 書 プロピレンォキサイドの製造方法 技術分野  Description Production method of propylene oxide Technical field
本発明はプロピレンォキサイドの製造方法に関するものである。更に詳 しくは、本発明はクメンから得られるクメンハイドロパーォキサイドを酸 素キヤリヤーとして用いてプロピレンをプロピレンォキサイドに変換し、 かつ該クメンを繰り返し使用することができ、 しかもプロピレンからプロ ピレンォキサイドを得るエポキシ化反応を高収率下に実施することがで き、更に製品であるプロピレンォキサイドの精製工程の負荷を軽減するこ とができるプロピレンォキサイドの製造方法に関するものである。 背景技術  The present invention relates to a method for producing propylene oxide. More specifically, the present invention allows the use of cumene hydroperoxide obtained from cumene as an oxygen carrier to convert propylene to propylene oxide, and that the cumene can be used repeatedly, and furthermore, it is possible to use propylene from propylene. The present invention relates to a method for producing propylene oxide, which can carry out an epoxidation reaction for obtaining pyrene oxide at a high yield and can further reduce the load on a purification step of propylene oxide as a product. . Background art
クメンから得られるクメンハイドロパーォキサイドを酸素キヤリヤー として用いてプロピレンをプロピレンォキサイドに変換し、かつ該クメン を繰り返し使用するプロセスはチェコスロバキア特許 C S 1 4 0 7 4 3 号公報、 米国特許第 6 , 6 3 9 , 0 8 5号明細書等に開示されているが、 該プロセスは酸化工程、エポキシ化工程および水素化分解工程からなるプ ロセスであり、該プロセスのようにエポキシ化工程において得られたクミ ルアルコールを水素化分解のみによってクメンとする場合、触媒の寿命が 短くなり、 収率も低くなつてしまい、 工業的に実現するには十分とは言い 難いものである。 発明の開示  The process of converting propylene to propylene oxide using cumene hydroperoxide obtained from cumene as an oxygen carrier and repeatedly using the cumene is described in Czechoslovak Patent CS 14 074 43, U.S. Pat. No. 6,639,085, etc., this process is a process comprising an oxidation step, an epoxidation step, and a hydrocracking step. If cumyl alcohol obtained in the above is converted into cumene only by hydrogenolysis, the life of the catalyst is shortened and the yield is reduced, which is hardly sufficient for industrial realization. Disclosure of the invention
本発明の目的はクメンから得られるクメンハイドロパーォキサイドを 酸素キヤリヤーとして用いてプロピレンをプロピレンォキサイドに変換 し、 かつ該クメンを繰り返し使用することができ、 しかもプロピレンから プロピレンォキサイドを得るエポキシ化反応を高収率下に実施すること ができ、更に製品であるプロピレンォキサイドの精製工程の負荷を軽減す ることができ、且つ脱水触媒の活性低下を抑制することができるプロピレ ンォキサイドの製造方法を提供することにある。 An object of the present invention is to convert propylene to propylene oxide by using cumene hydroperoxide obtained from cumene as an oxygen carrier, and to be able to use the cumene repeatedly. The epoxidation reaction for obtaining propylene oxide can be carried out at a high yield, the load on the purification process of the product propylene oxide can be reduced, and the activity of the dehydration catalyst can be prevented from lowering. An object of the present invention is to provide a method for producing propylene oxide that can be used.
すなわち、本発明は下記の工程を含むプロピレンォキサイドの製造方法 であって、エポキシ化工程に供されるクメンハイドロパーォキサイドを含 む溶液中の水の濃度が 1重量%以下であることを特徴とするプロピレン ォキサイドの製造方法に係るものである。  That is, the present invention is a method for producing propylene oxide including the following steps, wherein the concentration of water in a solution containing cumene hydroperoxide to be subjected to an epoxidation step is 1% by weight or less. The present invention relates to a method for producing propylene oxide, which is characterized in that:
酸化工程:クメンを酸化することによりクメンハイドロパーォキサイド を得る工程  Oxidation step: Step of obtaining cumene hydroperoxide by oxidizing cumene
エポキシ化工程:酸化工程で得たクメンハイドロパーォキサイドとプロ ピレンとを反応させることによりプロピレンォキサイド及びクミルアル コールを得る工程  Epoxidation step: Step of reacting cumene hydroperoxide obtained in the oxidation step with propylene to obtain propylene oxide and cumyl alcohol.
脱水工程:脱水触媒の存在下、 エポキシ化工程で得たクミルアルコール を脱水することにより α —メチルスチレンを得る工程  Dehydration step: Step of obtaining α-methylstyrene by dehydrating cumyl alcohol obtained in the epoxidation step in the presence of a dehydration catalyst
水添工程:水添触媒の存在下、 —メチルスチレンを水添してクメンと し、 酸化工程へリサイクルする工程 発明を実施するための最良の形態  Hydrogenation process: In the presence of a hydrogenation catalyst, a process for hydrogenating methylstyrene to make cumene and recycling it to the oxidation process Best mode for carrying out the invention
酸化工程はクメンを酸化することによりクメンハイドロパーォキサイ ドを得る工程である。 クメンの酸化は、 通常、 空気や酸素濃縮空気などの 含酸素ガスによる自動酸化で行われる。 この酸化反応は添加剤を用いずに 実施してもよいし、 アルカリのような添加剤を用いてもよい。 通常の反応 温度は 5 0〜 2 0 0 °Cであり、反応圧力は大気圧から 5 M P aの間である 。 添加剤を用いた酸化法の場合、 アルカリ性試薬としては、 N a〇H、 K O Hのようなアル力リ金属化合物や、 アル力リ土類金属化合物又は N a 2 C〇3、 N a H C〇3のようなアルカリ金属炭酸塩又はアンモニア及び(N H 4 ) 2 C 03、 アルカリ金属炭酸アンモニゥム塩等が用いられる。 エポキシ化工程は酸化工程で得たクメンハイドロパーォキサイドとプ ロピレンとを反応させることによりプロピレンォキサイド及びクミルァ ルコールを得る工程である。エポキシ化工程は目的物を高収率及び高選択 率下に得る観点からチタン含有珪素酸化物からなる固体触媒の存在下に 実施することが好ましい。 これらの触媒は珪素酸化物と化学的に結合した T iを含有する、 いわゆる T i 一シリカ触媒が好ましい。 たとえば、 T i 化合物をシリカ担体に担持したもの、共沈法やゾルゲル法で珪素酸化物と 複合したもの、または T iを含むゼォライト化合物などをあげることがで きる。本発明においてエポキシ化工程の原料物質として使用されるクメン ハイドロパ一ォキサイドは希薄又は濃厚な精製物又は非精製物であって よい。 The oxidation step is a step of obtaining cumene hydroperoxide by oxidizing cumene. The oxidation of cumene is usually performed by autoxidation with oxygenated gas such as air or oxygen-enriched air. This oxidation reaction may be carried out without using an additive, or an additive such as an alkali may be used. Typical reaction temperatures are 50-200 ° C. and reaction pressures are between atmospheric pressure and 5 MPa. In the case of an oxidation method using an additive, alkaline reagents such as Na〇H and KOH, alkaline earth metal compounds or Na 2 C〇 3 , Na HC〇 alkali metal carbonates or ammonia and like 3 (NH 4) 2 C 0 3, an alkali metal carbonate Anmoniumu salt or the like is used. The epoxidation step is a step of reacting cumene hydroperoxide obtained in the oxidation step with propylene to obtain propylene oxide and cumyl alcohol. The epoxidation step is preferably carried out in the presence of a solid catalyst composed of a titanium-containing silicon oxide from the viewpoint of obtaining the target product with high yield and high selectivity. These catalysts are preferably so-called Ti-silica catalysts containing Ti chemically bonded to silicon oxide. For example, a T i compound supported on a silica carrier, a compound compounded with a silicon oxide by a coprecipitation method or a sol-gel method, or a zeolite compound containing T i can be mentioned. In the present invention, cumene hydropoxide used as a raw material in the epoxidation step may be a diluted or concentrated purified or unpurified product.
エポキシ化反応はプロピレンとクメンハイドロパーォキサイドを触媒 に接触させることで行われる。 反応は溶媒を用いて液相中で実施できる。 溶媒は反応時の温度及び圧力のもとで液体であり、かつ反応体及び生成物 に対して実質的に不活性なものであるべきである。溶媒は使用されるハイ ドロパーォキサイド溶液中に存在する物質からなるものであってよい。た とえばクメンハイドロパーォキサイドがその原料であるクメンとからな る混合物である場合には、 特に溶媒を添加することなく、 これを溶媒の代 用とすることができる。  The epoxidation reaction is carried out by bringing propylene and cumene hydroperoxide into contact with a catalyst. The reaction can be carried out in a liquid phase using a solvent. The solvent should be liquid at the temperature and pressure of the reaction and be substantially inert to the reactants and products. The solvent may consist of the substances present in the hydroperoxide solution used. For example, when cumene hydroperoxide is a mixture of cumene as a raw material, the mixture can be used as a solvent without adding a solvent.
エポキシ化反応温度は一般に 0〜 2 0 0 °Cであるが、 2 5〜2 0 0 °Cの 温度が好ましい。 圧力は、 反応混合物を液体の状態に保つのに充分な圧力 でよい。一般に圧力は 1 0 0〜 1 0 0 0 0 k P aであることが有利である エポキシ化反応はスラリ一又は固定床の形の触媒を使用して有利に実 施できる。 大規模な工業的操作の場合には、 固定床を用いるのが好ましい 。 また、 回分法、 半連続法、 連続法等によって実施できる。 反応原料を含 有する液を固定床【こ通した場合には、反応帯域から出た液状混合物には触 媒が全く含まれていないか又は実質的に含まれていない。 脱水工程はエポキシ化反応で得たクミルアルコールを脱水触媒に供し、 α —メチルスチレンと水を得る工程である。エポキシ化工程において得ら れたプロピレンォキサイドは、脱水工程の前にクミルアルコールと分離し ておくことが高いプロピレンォキサイドの収率を得る観点から好ましい。 分離する方法としては蒸留を用いることができる。 The epoxidation reaction temperature is generally from 0 to 200 ° C, but a temperature of from 25 to 200 ° C is preferred. The pressure may be sufficient to keep the reaction mixture in a liquid state. In general, the pressure is advantageously between 100 and 1000 kPa. The epoxidation reaction can advantageously be carried out using a catalyst in the form of a slurry or fixed bed. For large-scale industrial operations, it is preferred to use a fixed bed. It can be carried out by a batch method, a semi-continuous method, a continuous method, or the like. When the liquid containing the reactants is passed through a fixed bed, the liquid mixture leaving the reaction zone contains no or substantially no catalyst. The dehydration step is a step in which cumyl alcohol obtained by the epoxidation reaction is used as a dehydration catalyst to obtain α-methylstyrene and water. The propylene oxide obtained in the epoxidation step is preferably separated from cumyl alcohol before the dehydration step, from the viewpoint of obtaining a high propylene oxide yield. As a method for separation, distillation can be used.
脱水工程において使用される触媒としては硫酸、 リン酸、 ρ —トルエン スルホン酸等の酸や、 活性アルミナ、 チタニア、 ジルコニァ、 シリカアル ミナ、 ゼォライト等の金属酸化物があげられるが、 反応液との分離の点で 固体触媒が好ましく、 さらに触媒寿命、 選択性等の観点から活性アルミナ が好ましい。  Examples of the catalyst used in the dehydration step include acids such as sulfuric acid, phosphoric acid, and ρ-toluenesulfonic acid, and metal oxides such as activated alumina, titania, zirconia, silica alumina, and zeolite. In this respect, a solid catalyst is preferred, and activated alumina is more preferred from the viewpoints of catalyst life, selectivity, and the like.
脱水反応は通常、クミルアルコールを触媒に接触させることで行われる が、 本発明においては脱水反応に引き続いて水添反応を行うため、 水素も 触媒へフィードしてもよい。 反応は溶媒を用いて液相中で実施できる。 溶 媒は反応体及び生成物に対して実質的に不活性なものであるべきである。 溶媒は使用されるクミルアルコール溶液中に存在する物質からなるもの であってよい。 たとえばクミルアルコールが、 生成物であるクメンとから なる混合物である場合には、 特に溶媒を添加することなく、 これを溶媒の 代用とすることができる。脱水反応温度は一般に 5 0〜4 5 0 °Cであるが 、 1 5 0〜3 0 0 °Cの温度が好ましい。 一般に圧力は 1 0〜: L O O O O k P aであることが有利である。脱水反応はスラリー又は固定床の形の触媒 を使用して有利に実施できる。  Although the dehydration reaction is usually performed by bringing cumyl alcohol into contact with the catalyst, in the present invention, hydrogen may be fed to the catalyst because a hydrogenation reaction is performed following the dehydration reaction. The reaction can be carried out in a liquid phase using a solvent. The solvent should be substantially inert to the reactants and products. The solvent may consist of the substances present in the cumyl alcohol solution used. For example, when cumyl alcohol is a mixture of the product, cumene, it can be used as a substitute for the solvent without particularly adding a solvent. The dehydration reaction temperature is generally from 50 to 450 ° C, but a temperature of from 150 to 300 ° C is preferred. In general, the pressure is advantageously between 10 and: L O O O O k Pa. The dehydration reaction can be advantageously carried out using a catalyst in the form of a slurry or a fixed bed.
水添工程は脱水反応で得た ーメチルスチレンと水を水添触媒に供し、 α—メチルスチレンを水添してクメンに変換し、クメンを酸化工程の原料 として酸化工程へリサイクルする工程である。  The hydrogenation step is a step in which methyl styrene and water obtained by the dehydration reaction are supplied to a hydrogenation catalyst, α-methyl styrene is hydrogenated to be converted into cumene, and cumene is recycled to the oxidation step as a raw material for the oxidation step.
水添触媒としては、周期律表 1 0族又は 1 1族の金属を含む固体触媒を あげることができ、 具体的にはニッケル、 パラジウム、 白金、 銅をあげる ことができるが、 芳香環の核水添反応の抑制、 高収率の観点からパラジゥ ムまたは銅が好ましい。 銅系触媒としては銅、 ラネー銅、 銅 'クロム、 銅 -亜鉛、 銅 'クロム '亜鉛、 銅 ' シリカ、 銅 ' アルミナ等があげられる。 パラジウム触媒としては、 パラジウム 'アルミナ、 パラジウム ' シリカ、 パラジウム ·カーボン等があげられる。 これらの触媒は単一でも用いるこ とができるし、 複数のものを用いることもできる。 Examples of the hydrogenation catalyst include a solid catalyst containing a metal of Group 10 or Group 11 of the periodic table, and specific examples thereof include nickel, palladium, platinum, and copper. Palladium or copper is preferred from the viewpoint of suppressing the hydrogenation reaction and increasing the yield. Copper catalysts include copper, Raney copper, copper 'chromium, copper -Zinc, copper 'Chromium' zinc, copper 'silica, copper' alumina. Examples of the palladium catalyst include palladium 'alumina, palladium' silica, and palladium-carbon. These catalysts can be used alone or in combination.
水添反応は通常、 ひーメチルスチレンと水素を触媒に接触させることで 行われるが、本発明においては脱水反応に引き続いて水添反応を行うため 、脱水反応において発生した水の一部を油水分離等によって分離してもよ いし、 分離せずに α —メチルスチレンとともに水添触媒に供しても良い。 反応に必要な水素量はひーメチルスチレンと等モルであればよいが、通常 、 原料中には水素を消費する他の成分も含まれており、 過剰の水素が必要 とされる。 また水素の分圧を上げるほど反応は速やかに進むことから、 通 常、 水素 —メチルスチレンモル比として 1から 1 0が使用される。 さ らに好ましくは 1から 5である。反応後に残存した過剰分の水素は反応液 と分離した後にリサイクルして使用することもできる。 反応は、 溶媒を用 いて液相又は気相中で実施できる。溶媒は反応体及び生成物に対して実質 的に不活性なものでなければならない。溶媒は使用される ーメチルスチ レン溶液中に存在する物質からなるものであってよい。たとえば —メチ ルスチレンが生成物であるクメンとからなる混合物である場合には、特に 溶媒を添加することなく、 これを溶媒の代用とすることができる。 水添反 応温度は一般に 0〜 5 0 0 °Cであるが、 3 0〜4 0 の温度が好ましい 。 一般に圧力は 1 0 0〜 1 0 0 0 0 k P aであることが有利である。 脱水反応および水添反応の反応は、いずれも固定床の形の触媒を使用し て連続法によって有利に実施できる。脱水反応と水添反応は別々の反応器 を用いてもよいし、 単一の反応器を用いてもよい。 連続法の反応器は、 断 熱反応器、 等温反応器があるが、 等温反応器は除熱をするための設備が必 要となるため、 断熱反応器が好ましい。 単一断熱反応器の場合、 クミルァ ルコールの脱水反応は吸熱反応であるため、反応の進行とともに温度が低 下し、 一方ひーメチルスチレンの水添反応は発熱反応であるため、 反応の 進行とともに温度が上昇する。 全体的には発熱量の方が大きいために、 反 応器入口温度よりも出口温度の方が高くなる。 The hydrogenation reaction is usually carried out by bringing permethylstyrene and hydrogen into contact with a catalyst.In the present invention, since the hydrogenation reaction is carried out subsequent to the dehydration reaction, part of the water generated in the dehydration reaction is separated into oil and water. May be separated, or may be subjected to a hydrogenation catalyst together with α-methylstyrene without separation. The amount of hydrogen required for the reaction may be equimolar to that of methyl styrene, but usually the raw material also contains other components that consume hydrogen, and an excess of hydrogen is required. Since the reaction proceeds more rapidly as the partial pressure of hydrogen is increased, a hydrogen-methylstyrene molar ratio of 1 to 10 is usually used. More preferably, it is 1 to 5. Excess hydrogen remaining after the reaction can be recycled after separation from the reaction solution. The reaction can be carried out in a liquid or gas phase using a solvent. The solvent must be substantially inert to the reactants and products. The solvent may consist of the substances present in the methylstyrene solution used. For example, when —methylstyrene is a mixture of the product cumene, it can be used as a substitute for the solvent without adding a solvent. The hydrogenation reaction temperature is generally 0 to 500 ° C., but a temperature of 30 to 40 is preferred. In general, it is advantageous for the pressure to be between 100 and 1000 kPa. Both the dehydration reaction and the hydrogenation reaction can be advantageously carried out by a continuous method using a catalyst in the form of a fixed bed. The dehydration reaction and the hydrogenation reaction may be performed in separate reactors or in a single reactor. The continuous method reactor includes a thermal cutoff reactor and an isothermal reactor. However, since an isothermal reactor requires equipment for removing heat, an adiabatic reactor is preferable. In the case of a single adiabatic reactor, the dehydration reaction of cumyl alcohol is an endothermic reaction, and the temperature decreases with the progress of the reaction.On the other hand, the hydrogenation reaction of permethylstyrene is an exothermic reaction. The temperature rises as it progresses. As a whole, the calorific value is higher, so the outlet temperature is higher than the reactor inlet temperature.
反応温度および圧力は脱水反応後の α—メチルスチレン溶液中に含ま れる水が凝縮しないように選択される。反応温度は 1 5 0から 3 0 0 °Cが 好ましく、 反応圧力は 1 0 0から 2 0 0 0 k P aが好ましい。 温度が 1 5 0 未満であったり、 または圧力が 2 0 0 0 k P aを越えた場合、 脱水反 応出口において水が凝縮し、水添触媒の性能を低下させてしまう場合があ る。また圧力が高すぎる場合は脱水反応の反応平衡においても不利である 。 一方、 温度が 3 0 0 °Cを越えたり、 または圧力が 1 0 0 k P a未満の場 合、 気相部が多く発生し、 ファゥリング等が起こる場合があり、 それによ る触媒寿命の低下が進み不利となる場合がある。  The reaction temperature and pressure are selected so that water contained in the α-methylstyrene solution after the dehydration reaction does not condense. The reaction temperature is preferably from 150 to 300 ° C., and the reaction pressure is preferably from 100 to 2000 kPa. If the temperature is less than 150 or the pressure exceeds 2000 kPa, water may condense at the outlet of the dehydration reaction, and may degrade the performance of the hydrogenation catalyst. If the pressure is too high, it is disadvantageous in the reaction equilibrium of the dehydration reaction. On the other hand, if the temperature exceeds 300 ° C or the pressure is lower than 100 kPa, a large amount of gas phase may be generated and fouling may occur, resulting in a reduction in catalyst life. May be disadvantaged.
水素は固定床反応器の入口や水添触媒の入口のいずれからもフィード することができるが、脱水触媒の活性からみて固定床反応器入口からフィ —ドすることが好ましい。 すなわち、 脱水反応ゾーンで常に水素を存在さ せることにより、 脱水により発生した水分の気化が促進され、 平衡脱水転 化率が上がり、水素が存在しない場合よりも効率よく高い転化率を得るこ とが出来る。脱水反応において発生した水は水添触媒を通過することにな るが、 先に述べたように凝縮しないレベルで運転することにより、 特に水 を除去する設備を設けることなく低コス卜で運転することができる。また 反応器出口において未反応の水素は気液分離操作の後にリサイクルして 再使用できる。 また気液分離操作の際に、 脱水反応において発生した水分 を反応液より分離することも可能である。 得られた反応液 (主にクメン) はその一部を反応器入口にリサイクルして使用することも可能である。 脱水触媒の量はクミルアルコールが充分に転化する量であればよく、ク ミルアルコール転化率は 9 0 %以上であることが好ましい。水添触媒の量 は ーメチルスチレンが充分に転化する量であればよく、 α —メチルスチ レン転化率は 9 8 %以上が好ましい。 コストの観点から考えると、 脱水触 媒と水添触媒は多段のリアクターとすることなく、単一の固定床反応器に 充填されていることが好ましい。反応器の中は幾つかのべッドに別れてい てもよく、 または別れていなくてもよい。 別れていない場合、 脱水触媒と 水添触媒は直接接触させてもよいが、イナートな充填物で仕切りをつけて もかまわない。 Hydrogen can be fed from either the inlet of the fixed bed reactor or the inlet of the hydrogenation catalyst, but is preferably fed from the inlet of the fixed bed reactor in view of the activity of the dehydration catalyst. In other words, the constant presence of hydrogen in the dehydration reaction zone promotes the vaporization of water generated by dehydration, increases the equilibrium dehydration conversion rate, and obtains a higher conversion rate more efficiently than without hydrogen. Can be done. The water generated in the dehydration reaction passes through the hydrogenation catalyst.However, by operating at a level that does not condense as described above, it can be operated at low cost without providing any equipment for removing water. be able to. Unreacted hydrogen at the reactor outlet can be recycled and reused after the gas-liquid separation operation. It is also possible to separate the water generated in the dehydration reaction from the reaction liquid during the gas-liquid separation operation. A part of the obtained reaction liquid (mainly cumene) can be recycled to the reactor inlet for use. The amount of the dehydration catalyst may be any amount that can sufficiently convert cumyl alcohol, and the conversion of cumyl alcohol is preferably 90% or more. The amount of the hydrogenation catalyst may be an amount that can sufficiently convert -methylstyrene, and the α-methylstyrene conversion rate is preferably 98% or more. From a cost perspective, the dehydration catalyst and hydrogenation catalyst can be combined into a single fixed-bed reactor instead of a multi-stage reactor. Preferably, it is filled. The reactor may be divided into several beds or not. If not separated, the dehydration catalyst and hydrogenation catalyst may be in direct contact, but may be separated by inert packing.
本発明においては、エポキシ化工程に供されるクメンハイドロパ一ォキ サイドを含む溶液中の水の濃度が 1重量%以下であることが必要であり、 好ましくは 5 0 0 0重量 p p m以下である。水はエポキシ化工程において プロピレンォキサイドと反応してダリコ一ル類を生成し、プロピレンォキ サイドの収率を低下させる。 また、 この時生成したグリコール類は脱水ェ 程まで残存し、 脱水触媒の活性を低下させてしまう。 また、 通常エポキシ 化反応終了後に反応液からプロピレンォキサイドを分離するが、反応液中 の水はプロピレンォキサイド側に分離されるため、プロピレンォキサイド と水を分離させるために更に余分なエネルギーを要することになる。 この ような観点から、エポキシ化工程に供されるクメンハイドロパーォキサイ ドを含む溶液中の水の濃度を本発明の範囲内に抑える必要がある。水の濃 度を抑える方法としては、 蒸留、 抽出等により水の全て又は一部を本発明 の工程からなる系外へ除去する方法、反応により別の化合物へ変換する方 法、 吸着剤等により濃度を減少させる方法等のいずれを用いてもよい。 系 外へ除去する場合、 水を除去する工程 (以下、 「水除去工程」 と記すこと がある。 ) は、 酸化工程、 エポキシ化工程、 脱水工程及び水添工程の少な くとも各工程内又は各工程を結ぶ少なくとも一ヶ所において実施できる が、 酸化工程において水の生成があること、 酸化工程において水を添加す る場合があること、酸化工程後において水洗浄を実施する場合があること 等を考慮すると、 エポキシ化工程の前において水の除去を行うことが、 効 率的な一括除去という観点から好ましい。 実施例  In the present invention, it is necessary that the concentration of water in the solution containing cumene hydrooxide to be subjected to the epoxidation step is 1% by weight or less, preferably 500 ppm by weight or less. is there. Water reacts with propylene oxide in the epoxidation process to form darikols, which lowers the yield of propylene oxide. In addition, the glycols generated at this time remain until the dehydration step, which lowers the activity of the dehydration catalyst. Usually, propylene oxide is separated from the reaction solution after the epoxidation reaction. However, since water in the reaction solution is separated to the propylene oxide side, extra water is required to separate propylene oxide and water. Energy is required. From such a viewpoint, it is necessary to keep the concentration of water in the solution containing cumene hydroperoxide to be subjected to the epoxidation step within the range of the present invention. Methods for suppressing the concentration of water include a method of removing all or part of the water to the outside of the system comprising the process of the present invention by distillation, extraction, etc., a method of converting it to another compound by a reaction, an adsorbent, etc. Any method such as a method of reducing the concentration may be used. When removing water outside the system, the step of removing water (hereinafter sometimes referred to as “water removal step”) may be performed within at least each of the oxidation, epoxidation, dehydration, and hydrogenation steps. It can be carried out at at least one place connecting each process.However, there are cases where water is generated in the oxidation process, water may be added in the oxidation process, water washing may be performed after the oxidation process, etc. Considering this, it is preferable to remove water before the epoxidation step from the viewpoint of efficient batch removal. Example
実施例 水の濃度が 0 . 2重量%であるクメンハイドロパーォキサイドを含む溶 液を T i含有珪素酸化物触媒存在下、 固定床流通反応器に、 酸化液中クメ ンハイド口パーオキサイド 1モル当たりに対して、 1 0倍モルのプロピレ ンと共に連続的に反応器内に通過させた。入口温度を調節することにより 、 クメンハイドロパーォキサイド変換率を 9 9 %に保ち、 定常安定化させ た。 このときの反応温度は 6 0 °Cで、 プロピレンオキサイドの選択率は 9 5 . 0 %、 プロピレングリコールの選択率 1 %であった。 Example A solution containing cumene hydroperoxide having a water concentration of 0.2% by weight was placed in a fixed-bed flow reactor in the presence of a Ti-containing silicon oxide catalyst in a fixed bed flow reactor, per mole of peroxide at the methane oxide port in the oxidizing solution. Was continuously passed through the reactor together with 10-fold molar propylene. By adjusting the inlet temperature, the conversion of cumene hydroperoxide was kept at 99%, and was stabilized stably. At this time, the reaction temperature was 60 ° C., the selectivity for propylene oxide was 95.0%, and the selectivity for propylene glycol was 1%.
比較例 1 Comparative Example 1
水の濃度が 2重量%である以外は実施例 1と同様の条件でエポキシ化 反応を行うと、 プロピレンオキサイドの選択率は 9 1 . 4 %まで低下、 プ ロピレンダリコールの選択率は 3 . 4 %まで増加した。 また、 エポキシ化 反応後に、 反応液からプロピレンオキサイドを分離すると、 反応液中の水 はプロピレンォキサイド側に分離されるため、実施例 1に比較してプロピ レンォキサイドと水の分離工程に余分なエネルギーを要する。 産業上の利用可能性  When the epoxidation reaction was carried out under the same conditions as in Example 1 except that the water concentration was 2% by weight, the selectivity of propylene oxide was reduced to 91.4%, and the selectivity of propylene glycol was 3%. Increased to 4%. Further, when propylene oxide is separated from the reaction solution after the epoxidation reaction, water in the reaction solution is separated to the propylene oxide side, so that extra water is required in the step of separating propylene oxide and water as compared with Example 1. Requires energy. Industrial applicability
本発明によれば、クメンから得られるクメンハイドロパーォキサイドを 酸素キヤリヤーとして用いてプロピレンをプロピレンォキサイドに変換 し、 かつ該クメンを繰り返し使用することができ、 しかもプロピレンから プロピレンォキサイドを得るエポキシ化反応を高収率下に実施すること ができ、更に製品であるプロピレンォキサイドの精製工程の負荷を軽減す ることができ、且つ脱水触媒の活性低下を抑制することができるプロピレ ンォキサイドの製造方法を提供することができる。  According to the present invention, propylene can be converted to propylene oxide by using cumene hydroperoxide obtained from cumene as an oxygen carrier, and the cumene can be used repeatedly. The epoxidation reaction can be carried out at a high yield, the load on the purification process of propylene oxide as a product can be reduced, and the decrease in the activity of the dehydration catalyst can be suppressed. A method for producing propylene oxide can be provided.

Claims

請 求 の 範 囲 The scope of the claims
1 . 下記の工程を含むプロピレンオキサイドの製造方法であって、 ェポ キシ化工程に供されるクメンハイドロパーォキサイドを含む溶液中の水 の濃度が 1重量%以下であることを特徴とするプロピレンォキサイドの 製造方法。 1. A method for producing propylene oxide comprising the following steps, wherein the concentration of water in a solution containing cumene hydroperoxide to be subjected to an epoxidation step is 1% by weight or less. Propylene oxide production method.
酸化工程:クメンを酸化することによりクメンハイドロパーォキサイド を得る工程  Oxidation step: Step of obtaining cumene hydroperoxide by oxidizing cumene
エポキシ化工程:酸化工程で得たクメンハイドロパーォキサイドとプロ ピレンとを反応させることによりプロピレンォキサイド及びクミルアル コールを得る工程  Epoxidation step: Step of reacting cumene hydroperoxide obtained in the oxidation step with propylene to obtain propylene oxide and cumyl alcohol.
脱水工程:脱水触媒の存在下、 エポキシ化工程で得たクミルアルコ一ル を脱水することにより ーメチルスチレンを得る工程  Dehydration step: A step of obtaining methyl styrene by dehydrating the cumyl alcohol obtained in the epoxidation step in the presence of a dehydration catalyst.
水添工程:水添触媒の存在下、 α—メチルスチレンを水添してクメンと し、 酸化工程へリサイクルする工程  Hydrogenation process: A process in which α-methylstyrene is hydrogenated into cumene in the presence of a hydrogenation catalyst and recycled to the oxidation process
2 .水の濃度が 5 0 0 0重量 p p m以下である請求の範囲第 1項記載の 方法。  2. The method according to claim 1, wherein the concentration of water is not more than 500 weight ppm.
3 .エポキシ化工程に供されるクメンハイドロパーォキサイドを含む溶 液中の水を除去する工程を有する請求の範囲第 1または第 2項記載の方 法。.  3. The method according to claim 1 or 2, further comprising a step of removing water in the solution containing cumene hydroperoxide to be subjected to the epoxidation step. .
PCT/JP2004/013993 2003-09-25 2004-09-16 Method for producing propyleneoxide WO2005030745A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-333153 2003-09-25
JP2003333153A JP2005097184A (en) 2003-09-25 2003-09-25 Method for producing propylene oxide

Publications (1)

Publication Number Publication Date
WO2005030745A1 true WO2005030745A1 (en) 2005-04-07

Family

ID=34385981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013993 WO2005030745A1 (en) 2003-09-25 2004-09-16 Method for producing propyleneoxide

Country Status (2)

Country Link
JP (1) JP2005097184A (en)
WO (1) WO2005030745A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110590712A (en) * 2019-09-20 2019-12-20 大连理工大学 Method for preparing epoxide by aerobic epoxidation of olefin by one-pot method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101233122B (en) 2005-08-02 2012-01-11 住友化学株式会社 Method for producing propylene oxide
JP2007063256A (en) * 2005-08-02 2007-03-15 Sumitomo Chemical Co Ltd Method for producing propylene oxide
WO2011118823A1 (en) * 2010-03-26 2011-09-29 Sumitomo Chemical Company, Limited Method of producing propylene oxide

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382703A (en) * 1976-12-28 1978-07-21 Engelhard Min & Chem Selective hydrogenation method of unsaturated hydrocarbon compound
JPS5655318A (en) * 1968-08-05 1981-05-15 Halcon International Inc Manufacture of aralkene
JP2001270876A (en) * 2000-03-24 2001-10-02 Sumitomo Chem Co Ltd Method for producing propylene oxide
JP2002322164A (en) * 2001-04-27 2002-11-08 Sumitomo Chem Co Ltd Method for preparing propylene oxide
JP2003238546A (en) * 2002-02-15 2003-08-27 Sumitomo Chem Co Ltd Method for recovering propylene oxide
JP2004058667A (en) * 2003-06-09 2004-02-26 Seiko Epson Corp Tape printer
WO2004060838A1 (en) * 2003-01-07 2004-07-22 Sumitomo Chemical Company, Limited Method of hydrogenating aromatic compound

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655318A (en) * 1968-08-05 1981-05-15 Halcon International Inc Manufacture of aralkene
JPS5382703A (en) * 1976-12-28 1978-07-21 Engelhard Min & Chem Selective hydrogenation method of unsaturated hydrocarbon compound
JP2001270876A (en) * 2000-03-24 2001-10-02 Sumitomo Chem Co Ltd Method for producing propylene oxide
JP2002322164A (en) * 2001-04-27 2002-11-08 Sumitomo Chem Co Ltd Method for preparing propylene oxide
JP2003238546A (en) * 2002-02-15 2003-08-27 Sumitomo Chem Co Ltd Method for recovering propylene oxide
WO2004060838A1 (en) * 2003-01-07 2004-07-22 Sumitomo Chemical Company, Limited Method of hydrogenating aromatic compound
JP2004058667A (en) * 2003-06-09 2004-02-26 Seiko Epson Corp Tape printer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110590712A (en) * 2019-09-20 2019-12-20 大连理工大学 Method for preparing epoxide by aerobic epoxidation of olefin by one-pot method
CN110590712B (en) * 2019-09-20 2022-08-09 大连理工大学 Method for preparing epoxide by aerobic epoxidation of olefin by one-pot method

Also Published As

Publication number Publication date
JP2005097184A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP4400120B2 (en) Cumene production method
KR101153655B1 (en) Process for Producing Propylene Oxide
JP4586467B2 (en) Method for producing cumene and method for producing propylene oxide including the method for producing the same
JP5085003B2 (en) Method for producing α-methylstyrene
WO2005030745A1 (en) Method for producing propyleneoxide
JP4385700B2 (en) Propylene oxide production method
WO2005030742A1 (en) Method for producing propyleneoxide
JP2005097188A (en) Method for producing cumene
JP2005097183A (en) Method for producing propylene oxide
JP2005097175A (en) Method for producing propylene oxide
JP2005097182A (en) Method for producing propylene oxide
JP2005097208A (en) Method for producing propylene oxide
JP2005097212A (en) Method for producing propylene oxide
JP2005097186A (en) Method for producing propylene oxide
JP2005097178A (en) Method for producing propylene oxide
JP2005097210A (en) Method for producing cumene
JP2005097180A (en) Method for producing propylene oxide
JP2005097174A (en) Method for producing propylene oxide
JP2005097214A (en) Method for producing propylene oxide
JP2005097213A (en) Method for producing propylene oxide
JP2005097187A (en) Method for producing propylene oxide
JP2005097211A (en) Method for producing propylene oxide
JP2005097181A (en) Method for producing propylene oxide
JP2004292336A (en) Method for producing cumene
JP2005097209A (en) Method for producing propylene oxide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase