WO2005030742A1 - Method for producing propyleneoxide - Google Patents

Method for producing propyleneoxide Download PDF

Info

Publication number
WO2005030742A1
WO2005030742A1 PCT/JP2004/013992 JP2004013992W WO2005030742A1 WO 2005030742 A1 WO2005030742 A1 WO 2005030742A1 JP 2004013992 W JP2004013992 W JP 2004013992W WO 2005030742 A1 WO2005030742 A1 WO 2005030742A1
Authority
WO
WIPO (PCT)
Prior art keywords
cumene
reaction
dehydration
catalyst
cumyl alcohol
Prior art date
Application number
PCT/JP2004/013992
Other languages
French (fr)
Japanese (ja)
Inventor
Junpei Tsuji
Masaru Ishino
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Publication of WO2005030742A1 publication Critical patent/WO2005030742A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/19Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic hydroperoxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a method for producing propylene oxide.
  • An object of the present invention is to convert propylene to propylene oxide using cumene hydroperoxide obtained from cumene as an oxygen carrier, and to be able to use the cumene repeatedly, and to obtain by-products after the epoxidation step. It is an object of the present invention to provide a method for producing propylene oxide, which can reduce the production thereof, and thereby reduce the loss of cumene.
  • the present invention is a method for producing propylene oxide including the following steps, wherein the concentration of cumene hydroperoxide in a solution containing cumyl alcohol at the end of the epoxidation step is 2% by weight or less.
  • the present invention relates to a method for producing propylene oxide.
  • Oxidation step Step of oxidizing cumene to obtain cumene hydroperoxide
  • Epoxidation step Step of reacting cumene hydroperoxide obtained in the oxidation step with propylene to obtain propylene oxide and cumyl alcohol.
  • Dehydration step Step of obtaining 0; -methylstyrene by dewatering cumyl alcohol obtained in the epoxidation step in the presence of a dehydration catalyst
  • Hydrogenation step a step of hydrogenating permethylstyrene to form cumene in the presence of a hydrogenation catalyst, and recycling the cumene to an oxidation step.
  • the oxidation step is a step of obtaining cumene hydroperoxide by oxidizing cumene.
  • the oxidation of cumene is usually performed by autoxidation with oxygenated gas such as air or oxygen-enriched air. This oxidation reaction may be carried out without using an additive, or an additive such as an alkali may be used.
  • Typical reaction temperatures are 50-200 ° C and reaction pressures are between atmospheric pressure and 5 MPa.
  • N a OH alkali metal hydrosulfide oxides or as K_ ⁇ _H
  • alkaline earth metal compounds or N a 2 C_ ⁇ 3
  • N a HC 0 3 alkali metal carbonates or ammonia and (NH 4) 2 C 0 3 such as, ammonium alkali metal carbonates two ⁇ beam salts and the like are used.
  • the epoxidation step is a step in which propylene oxide and cumyl alcohol are obtained by reacting cumene hydroperoxide obtained in the oxidation step with propylene.
  • the epoxidation step is preferably carried out in the presence of a catalyst comprising a titanium-containing silicon oxide from the viewpoint of obtaining the desired product with high yield and high selectivity.
  • These catalysts are preferably so-called Ti-silica catalysts containing Ti chemically bonded to silicon oxide.
  • a Ti compound supported on a silica carrier, a compound compounded with silicon oxide by a coprecipitation method or a sol-gel method, or a zeolite compound containing Ti can be used.
  • cumene hydroxide used as a raw material in the epoxidation step may be a diluted or concentrated purified or non-purified product.
  • the epoxidation reaction is performed by bringing propylene and cumene hydroperoxide into contact with a catalyst.
  • the reaction can be carried out in a liquid phase using a solvent.
  • the solvent should be liquid at the temperature and pressure of the reaction and be substantially inert to the reactants and products.
  • the solvent may consist of the substances present in the hydroperoxide solution used.
  • cumene hydroperoxide is a mixture of the raw material and cumene, it can be used as a substitute for the solvent without particularly adding a solvent.
  • the epoxidation reaction temperature is generally 0 to 200 ° C, but a temperature of 25 to 200 ° C is preferred.
  • the pressure may be sufficient to keep the reaction mixture in a liquid state. In general, it is advantageous for the pressure to be between 100 and 1000 kPa.
  • the epoxidation reaction can be advantageously carried out using a catalyst in the form of a slurry or fixed bed.
  • a catalyst in the form of a slurry or fixed bed.
  • the reaction can be performed by a batch method, a semi-continuous method, a continuous method, or the like.
  • the liquid containing the reactants is passed through the fixed bed, the liquid mixture exiting the reaction zone contains no or substantially no catalyst.
  • the dehydration step is a step in which cumyl alcohol obtained by the epoxidation reaction is used as a dehydration catalyst to obtain monomethylstyrene.
  • the propylene oxide obtained in the epoxidation step is preferably separated from cumyl alcohol before the dehydration step from the viewpoint of obtaining a high propylene oxide yield. Distillation can be used as a separation method.
  • Examples of the catalyst used in the dehydration step include acids such as sulfuric acid, phosphoric acid, and p-toluenesulfonic acid, and metal oxides such as activated alumina, titania, zirconia, silica alumina, and zeolite. Solid catalysts are preferred from the standpoint of separation, and activated alumina is more preferred from the viewpoints of catalyst life and selectivity.
  • the dehydration reaction is usually performed by bringing cumyl alcohol into contact with the catalyst.
  • hydrogenation may be fed to the catalyst because a hydrogenation reaction is performed following the dehydration reaction.
  • the reaction can be carried out in a liquid phase using a solvent.
  • the solvent should be substantially inert to the reactants and products.
  • the solvent may consist of the substances present in the cumyl alcohol solution used.
  • cumyl alcohol is a mixture of cumene as a product, it can be used as a substitute for the solvent without particularly adding a solvent.
  • the dehydration reaction temperature is generally from 50 to 450 ° C, but a temperature of from 150 to 300 ° C is preferred. In general, it is advantageous for the pressure to be between 10 and 1000 kPa.
  • the dehydration reaction can be advantageously carried out using a catalyst in slurry or fixed bed form.
  • the hydrogenation process is a process in which ⁇ -methylstyrene obtained by the dehydration reaction is supplied to a hydrogenation catalyst, ⁇ -methylstyrene is hydrogenated and converted into cumene, and cumene is recycled to the oxidation process as a raw material in the oxidation process. .
  • Examples of the hydrogenation catalyst include a solid catalyst containing a metal of Group 10 or Group 11 of the periodic table, and specific examples thereof include nickel, palladium, platinum, and copper. Palladium or copper is preferred from the viewpoints of suppressing the nuclear hydrogenation reaction and increasing the yield.
  • Examples of the copper catalyst include copper, Raney copper, copper chromium, copper zinc, copper chromium zinc, copper silica, copper alumina, and the like.
  • the palladium catalyst include palladium-alumina, palladium-silica, palladium-carbon, and the like. These catalysts can be used alone or in combination.
  • the hydrogenation reaction is usually carried out by bringing a-methylstyrene and hydrogen into contact with a catalyst, but in the present invention, since the hydrogenation reaction is carried out subsequent to the dehydration reaction, a part of the water generated in the dehydration reaction is obtained. May be separated by oil-water separation or the like, or may be subjected to hydrogenation catalyst together with —methylstyrene without separation.
  • the amount of hydrogen required for the reaction may be equimolar to that of methyl styrene, but usually the raw material also contains other components that consume hydrogen, and an excess of hydrogen is required.
  • the reaction proceeds more rapidly as the partial pressure of hydrogen is increased, usually a hydrogen / 0!
  • -Methylstyrene molar ratio of 1 to 10 is preferably used. More preferably, it is 1 to 5. Excess hydrogen remaining after the reaction can be recycled and used after being separated from the reaction solution.
  • the reaction can be carried out in a liquid or gas phase using a solvent.
  • the solvent should be substantially inert to the reactants and products.
  • the solvent may consist of the substances present in the used methyl styrene solution. For example, a mixture of a-methylstyrene and the product cumene In the case of a compound, this can be used as a substitute for a solvent without adding a solvent.
  • the hydrogenation temperature is generally between 0 and 500 ° C, preferably between 30 and 400 ° C. In general, it is advantageous for the pressure to be between 100 and 1000 kPa.
  • Both the dehydration reaction and the hydrogenation reaction can be advantageously carried out by a continuous method using a catalyst in the form of a fixed bed.
  • the dehydration reaction and the hydrogenation reaction may use separate reactors, or may use a single reactor.
  • the reactor of the continuous method includes an adiabatic reactor and an isothermal reactor. However, since an isothermal reactor requires equipment for removing heat, an adiabatic reactor is preferable.
  • the dehydration reaction of cumyl alcohol is an endothermic reaction, the temperature decreases as the reaction proceeds.
  • the hydrogenation reaction of -methylstyrene is an exothermic reaction. The temperature rises. As a whole, the calorific value is larger, so the outlet temperature is higher than the reactor inlet temperature.
  • the reaction temperature and pressure are selected so that the water contained in the Q! -Methylstyrene solution after the dehydration reaction does not condense.
  • the reaction temperature is preferably from 150 to 300 ° C., and the reaction pressure is preferably from 100 to 2000 kPa. If the temperature is lower than 150 ° C. or the pressure exceeds 2000 kPa, water may condense at the dehydration reaction outlet, deteriorating the performance of the hydrogenation catalyst. If the pressure is too high, it is disadvantageous in the reaction equilibrium of the dehydration reaction. On the other hand, if the temperature exceeds 300 ° C. or the pressure is less than 100 kPa, a large amount of gaseous phase may be generated and fouling may occur, thereby shortening the catalyst life. May be disadvantageous.
  • Hydrogen can be fed from either the inlet of the fixed bed reactor or the inlet of the hydrogenation catalyst, but it is preferable to feed hydrogen from the inlet of the fixed bed reactor in view of the activity of the dehydration catalyst. That is, the presence of hydrogen at all times in the dehydration reaction zone promotes the dehydration of water generated by dehydration, increases the equilibrium dehydration conversion rate, and achieves a higher conversion rate more efficiently than in the absence of hydrogen. Can be obtained. Water generated in the dehydration reaction passes through the hydrogenation catalyst, but as described above, By operating at a level that does not shrink, it is possible to operate at low cost without having to install equipment for removing water in particular. Unreacted hydrogen at the reactor outlet can be recycled and reused after the gas-liquid separation operation. It is also possible to separate the water generated in the dehydration reaction from the reaction liquid during the gas-liquid separation operation. A part of the obtained reaction liquid (mainly cumene) can be recycled to the reactor inlet for use.
  • a part of the obtained reaction liquid mainly cumene
  • the amount of the dehydration catalyst may be an amount that can sufficiently convert cumyl alcohol, and the conversion of cumyl alcohol is preferably 90% or more.
  • the amount of the hydrogenation catalyst may be an amount capable of sufficiently converting methyl styrene, and the conversion rate of methyl styrene is preferably 98% or more. From the viewpoint of cost, it is preferable that the dehydration catalyst and the hydrogenation catalyst be packed in a single fixed-bed reactor without using a multi-stage reactor. The interior of the reactor may be separated into several beds or not separated. If not separated, the dehydration catalyst and the hydrogenation catalyst may be in direct contact, or may be partitioned with an inert packing.
  • the concentration of cumene hydroperoxide in the solution containing cumyl alcohol at the end of the epoxidation step needs to be 2% by weight or less, preferably 1% by weight or less.
  • the solution containing cumyl alcohol at the end of the epoxidation step refers to a solution composed of components that are liquid at normal temperature and pressure, and the target product propylene oxide and unreacted propylene are separated from the reaction mixture.
  • Cumene hydroperoxide remaining after the epoxidation reaction is decomposed in the subsequent dehydration step, and acetophenone, which causes loss of cumene, is generated. It also produces cumene dimer, which also results in the loss of cumene, and this component causes occlusion trouble in the system. If a step of recovering unreacted propylene or propylene oxide is provided after the epoxidation step, a cumene loss component also occurs in this step. From such a viewpoint, it is necessary to keep the concentration of cumene hydroperoxide in the solution containing cumyl alcohol at the end of the epoxidation step within the scope of the present invention.
  • the raw material for the dehydration and hydrogenation reaction shown below is passed through a fixed bed reactor filled with activated alumina catalyst, and continuously passed through a fixed bed reactor filled with 0.05% by weight palladium / alumina catalyst. I let it.
  • In the reaction solution 1.5 moles of hydrogen per mole of cumyl alcohol was continuously passed through the reactor.
  • cumyl alcohol was converted to approximately 100% monomethyl styrene and further to cumene.
  • the reaction temperature at this time was 200 to 220 ° C.
  • the composition of the obtained reaction solution was as follows. Raw materials for dehydration and hydrogenation reactions
  • Example 1 Using a dehydration / hydrogenation reaction raw material having substantially the same composition as in Example 1 except that the concentration of cumene hydroperoxide was 5% by weight and the concentration of cumene was 72.2% by weight. The reaction was carried out under the same conditions as described above. The composition of the obtained reaction solution was as follows.
  • Example 1 Compared with Example 1, the amount of acetophenone and cumene dimer clearly increased, and the loss of cumene increased.
  • propylene can be converted to propylene oxide by using cumene hydroperoxide obtained from cumene as an oxygen carrier, and the cumene can be used repeatedly. It is possible to provide a method for producing propylene oxide, which can reduce the amount of product generated and thus can suppress the loss of cumene.

Abstract

A method for producing a propyleneoxide is characterized in that the concentration of cumenehydroperoxide in a solution containing a cumyl alcohol is not more than 2 weight% at the end of epoxidation step. Oxidation step: A cumenehydroperoxide is obtained through oxidation of a cumene. Epoxidation step: A propyleneoxide and a cumyl alcohol are obtained through reaction between the cumenehydroperoxide obtained in the oxidation step and a propylene. Dehydration step: A α-methylstyrene is obtained through dehydration of the cumyl alcohol obtained in the epoxidation step in the presence of a dehydration catalyst. Hydrogenation step: A cumene is obtained by hydrogenating the α-methylstyrene in the presence of a hydrogenation catalyst and the thus-obtained cumene is recycled to the oxidation step.

Description

明 細 書 プロピレンォキサイドの製造方法 技術分野  Description Production method of propylene oxide Technical field
本発明は、 プロピレンォキサイドの製造方法に関するものである。 背景技術  The present invention relates to a method for producing propylene oxide. Background art
クメンから得られるクメンハイドロパーォキサイドを酸素キヤリヤーとして 用いてプロピレンをプロピレンオキサイドに変換し、 かつ該クメンを繰り返し 使用するプロセスの概念はチェコスロバキア特許 C S 1 4 0 7 4 3号公報、 特 開 2 0 0 1— 2 7 0 8 7 7号公報等に開示されているが、 該プロセスは酸化工 程、 エポキシ化工程および水素化分解工程からなるプロセスであり、 エポキシ 化工程において得られたクミルアルコールを水素化分解のみによってクメンと する場合、 触媒の寿命が短くなり、 収率も低くなつてしまい、 工業的に実現す るには十分とは言い難いものである。 発明の開示  The concept of the process of converting propylene to propylene oxide using cumene hydroperoxide obtained from cumene as an oxygen carrier and repeatedly using the cumene is disclosed in Czechoslovakia Patent CS1440743, Although disclosed in Japanese Patent Application Publication No. 2000-277007, etc., this process is a process comprising an oxidation step, an epoxidation step, and a hydrocracking step, and the process obtained in the epoxidation step is performed. If mill alcohol is converted to cumene only by hydrocracking, the catalyst life will be shortened and the yield will be low, which is hardly sufficient for industrial realization. Disclosure of the invention
本発明の目的は、 クメンから得られるクメンハイドロパーォキサイドを酸素 キヤリヤーとして用いてプロピレンをプロピレンオキサイドに変換し、 かつ該 クメンを繰り返し使用することができ、 しかもエポキシ化工程以降における副 生成物生成を少なくすることができ、 よってクメンの損失を少なく抑えること ができるプロピレンォキサイドの製造方法を提供することにある。  An object of the present invention is to convert propylene to propylene oxide using cumene hydroperoxide obtained from cumene as an oxygen carrier, and to be able to use the cumene repeatedly, and to obtain by-products after the epoxidation step. It is an object of the present invention to provide a method for producing propylene oxide, which can reduce the production thereof, and thereby reduce the loss of cumene.
すなわち、 本発明は、 下記の工程を含むプロピレンオキサイドの製造方法で あって、 エポキシ化工程終了時におけるクミルアルコールを含む溶液中のクメ ンハイドロパーォキサイドの濃度を 2重量%以下とすることを特徴とするプロ ピレンォキサイドの製造方法に係るものである。  That is, the present invention is a method for producing propylene oxide including the following steps, wherein the concentration of cumene hydroperoxide in a solution containing cumyl alcohol at the end of the epoxidation step is 2% by weight or less. The present invention relates to a method for producing propylene oxide.
酸化工程:クメンを酸化することによりクメンハイドロパーォキサイドを得 る工程 エポキシ化工程:酸化工程で得たクメンハイドロパーォキサイドとプロピレ ンとを反応させることによりプロピレンォキサイド及びクミルアルコールを得 る工程 Oxidation step: Step of oxidizing cumene to obtain cumene hydroperoxide Epoxidation step: Step of reacting cumene hydroperoxide obtained in the oxidation step with propylene to obtain propylene oxide and cumyl alcohol.
脱水工程:脱水触媒の存在下、 エポキシ化工程で得たクミルアルコールを脱 水することにより 0;—メチルスチレンを得る工程  Dehydration step: Step of obtaining 0; -methylstyrene by dewatering cumyl alcohol obtained in the epoxidation step in the presence of a dehydration catalyst
水添工程:水添触媒の存在下、 ひーメチルスチレンを水添してクメンとし、 該クメンを酸化工程へリサイクルする工程 発明を実施するための最良の形態  Hydrogenation step: a step of hydrogenating permethylstyrene to form cumene in the presence of a hydrogenation catalyst, and recycling the cumene to an oxidation step. BEST MODE FOR CARRYING OUT THE INVENTION
酸化工程はクメンを酸化することによりクメンハイドロパーォキサイドを得 る工程である。 クメンの酸化は、 通常、 空気や酸素濃縮空気などの含酸素ガス による自動酸化で行われる。 この酸化反応は添加剤を用いずに実施してもよい し、アルカリのような添加剤を用いてもよい。通常の反応温度は 5 0〜2 0 0 °C であり、 反応圧力は大気圧から 5 M P aの間である。 添加剤を用いた酸化法の 場合、 アルカリ性試薬としては、 N a OH、 K〇Hのようなアルカリ金属水酸 化物や、 アルカリ土類金属化合物又は N a 2 C〇 3、 N a H C 0 3のようなアル カリ金属炭酸塩又はアンモニア及び(NH 4) 2 C 0 3、 アルカリ金属炭酸アンモ 二ゥム塩等が用いられる。 The oxidation step is a step of obtaining cumene hydroperoxide by oxidizing cumene. The oxidation of cumene is usually performed by autoxidation with oxygenated gas such as air or oxygen-enriched air. This oxidation reaction may be carried out without using an additive, or an additive such as an alkali may be used. Typical reaction temperatures are 50-200 ° C and reaction pressures are between atmospheric pressure and 5 MPa. For additives with oxidation, as the alkaline reagent, N a OH, alkali metal hydrosulfide oxides or as K_〇_H, alkaline earth metal compounds or N a 2 C_〇 3, N a HC 0 3 alkali metal carbonates or ammonia and (NH 4) 2 C 0 3 such as, ammonium alkali metal carbonates two © beam salts and the like are used.
エポキシ化工程は酸化工程で得たクメンハイドロパーォキサイドとプロピレ ンとを反応させることによりプロピレンォキサイド及びクミルアルコールを得 る工程である。 エポキシ化工程は目的物を高収率及び高選択率下に得る観点か らチタン含有珪素酸化物からなる触媒の存在下に実施することが好ましい。 こ れらの触媒は珪素酸化物と化学的に結合した T iを含有する、 いわゆる T i― シリカ触媒が好ましい。 たとえば、 T i化合物をシリカ担体に担持したもの、 共沈法やゾルゲル法で珪素酸化物と複合したもの、 あるいは T iを含むゼオラ ィト化合物などをあげることができる。  The epoxidation step is a step in which propylene oxide and cumyl alcohol are obtained by reacting cumene hydroperoxide obtained in the oxidation step with propylene. The epoxidation step is preferably carried out in the presence of a catalyst comprising a titanium-containing silicon oxide from the viewpoint of obtaining the desired product with high yield and high selectivity. These catalysts are preferably so-called Ti-silica catalysts containing Ti chemically bonded to silicon oxide. For example, a Ti compound supported on a silica carrier, a compound compounded with silicon oxide by a coprecipitation method or a sol-gel method, or a zeolite compound containing Ti can be used.
本発明において、 エポキシ化工程の原料物質として使用されるクメンハイド ロパ一ォキサイドは希薄又は濃厚な精製物又は非精製物であってよい。 エポキシ化反応はプロピレンとクメンハイドロパーォキサイドを触媒に接触 させることで行われる。 反応は溶媒を用いて液相中で実施できる。 溶媒は反応 時の温度及び圧力のもとで液体であり、 かつ反応体及び生成物に対して実質的 に不活性なものであるべきである。 溶媒は使用されるハイドロパーォキサイド 溶液中に存在する物質からなるものであってよい。 たとえばクメンハイドロパ ーォキサイドがその原料であるクメンとからなる混合物である場合には、 特に 溶媒を添加することなく、 これを溶媒の代用とすることができる。 In the present invention, cumene hydroxide used as a raw material in the epoxidation step may be a diluted or concentrated purified or non-purified product. The epoxidation reaction is performed by bringing propylene and cumene hydroperoxide into contact with a catalyst. The reaction can be carried out in a liquid phase using a solvent. The solvent should be liquid at the temperature and pressure of the reaction and be substantially inert to the reactants and products. The solvent may consist of the substances present in the hydroperoxide solution used. For example, when cumene hydroperoxide is a mixture of the raw material and cumene, it can be used as a substitute for the solvent without particularly adding a solvent.
エポキシ化反応温度は一般に 0〜 2 0 0 °Cであるが、 2 5〜 2 0 0 °Cの温度 が好ましい。 圧力は、 反応混合物を液体の状態に保つのに充分な圧力でよい。 一般に圧力は 1 0 0〜1 0 0 0 0 k P aであることが有利である。  The epoxidation reaction temperature is generally 0 to 200 ° C, but a temperature of 25 to 200 ° C is preferred. The pressure may be sufficient to keep the reaction mixture in a liquid state. In general, it is advantageous for the pressure to be between 100 and 1000 kPa.
エポキシ化反応はスラリ一又は固定床の形の触媒を使用して有利に実施でき る。 大規模な工業的操作の場合には、 固定床を用いるのが好ましい。 また、 反 応は回分法、 半連続法、 連続法等によって実施できる。 反応原料を含有する液 を固定床に通した場合には、 反応帯域から出た液状混合物には触媒が全く含ま れていないか又は実質的に含まれていない。  The epoxidation reaction can be advantageously carried out using a catalyst in the form of a slurry or fixed bed. For large-scale industrial operations, it is preferred to use a fixed bed. The reaction can be performed by a batch method, a semi-continuous method, a continuous method, or the like. When the liquid containing the reactants is passed through the fixed bed, the liquid mixture exiting the reaction zone contains no or substantially no catalyst.
脱水工程はエポキシ化反応で得たクミルアルコールを脱水触媒に供し、 一 メチルスチレンを得る工程である。 エポキシ化工程において得られたプロピレ ンォキサイドは脱水工程の前にクミルアルコールと分離しておくことが高いプ ロピレンォキサイドの収率を得る観点から好ましい。 分離する方法としては蒸 留を用いることができる。  The dehydration step is a step in which cumyl alcohol obtained by the epoxidation reaction is used as a dehydration catalyst to obtain monomethylstyrene. The propylene oxide obtained in the epoxidation step is preferably separated from cumyl alcohol before the dehydration step from the viewpoint of obtaining a high propylene oxide yield. Distillation can be used as a separation method.
脱水工程において使用される触媒としては硫酸、 リン酸、 p—トルエンスル ホン酸等の酸や、 活性アルミナ、 チタニア、 ジルコニァ、 シリカアルミナ、 ゼ ォライト等の金属酸化物があげられるが、 反応液との分離から固体触媒が好ま しく、 触媒寿命、 選択性等の観点から活性アルミナがより好ましい。  Examples of the catalyst used in the dehydration step include acids such as sulfuric acid, phosphoric acid, and p-toluenesulfonic acid, and metal oxides such as activated alumina, titania, zirconia, silica alumina, and zeolite. Solid catalysts are preferred from the standpoint of separation, and activated alumina is more preferred from the viewpoints of catalyst life and selectivity.
脱水反応は、通常、クミルアルコールを触媒に接触させることで行われるが、 本発明においては脱水反応に引き続いて水添反応を行うため、 水素も触媒へフ イードしてもよい。 反応は溶媒を用いて液相中で実施できる。 溶媒は反応体及 び生成物に対して実質的に不活性なものであるべきである。 溶媒は使用される クミルアルコール溶液中に存在する物質からなるものであってよい。 たとえば クミルアルコールが、 生成物であるクメンとからなる混合物である場合には、 特に溶媒を添加することなく、 これを溶媒の代用とすることができる。 脱水反 応温度は一般に 5 0〜4 5 0 °Cであるが、 1 5 0〜 3 0 0 °Cの温度が好ましい。 一般に圧力は 1 0〜 1 0 0 0 0 k P aであることが有利である。 脱水反応はス ラリー又は固定床の形の触媒を使用して有利に実施できる。 The dehydration reaction is usually performed by bringing cumyl alcohol into contact with the catalyst. However, in the present invention, hydrogenation may be fed to the catalyst because a hydrogenation reaction is performed following the dehydration reaction. The reaction can be carried out in a liquid phase using a solvent. The solvent should be substantially inert to the reactants and products. The solvent may consist of the substances present in the cumyl alcohol solution used. For example When cumyl alcohol is a mixture of cumene as a product, it can be used as a substitute for the solvent without particularly adding a solvent. The dehydration reaction temperature is generally from 50 to 450 ° C, but a temperature of from 150 to 300 ° C is preferred. In general, it is advantageous for the pressure to be between 10 and 1000 kPa. The dehydration reaction can be advantageously carried out using a catalyst in slurry or fixed bed form.
水添工程は脱水反応で得た α—メチルスチレンを水添触媒に供し、 α—メチ ルスチレンを水添してクメンに変換し、 クメンを酸化工程の原料として酸化工 程へリサイクルする工程である。  The hydrogenation process is a process in which α-methylstyrene obtained by the dehydration reaction is supplied to a hydrogenation catalyst, α-methylstyrene is hydrogenated and converted into cumene, and cumene is recycled to the oxidation process as a raw material in the oxidation process. .
水添触媒としては、 周期律表 1 0族又は 1 1族の金属を含む固体触媒をあげ ることができ、 具体的にはニッケル、 パラジウム、 白金、 銅をあげることがで きるが、 芳香環の核水添反応の抑制、 高収率の観点からパラジウムまたは銅が 好ましい。 銅系触媒としては銅、 ラネー銅、 銅 'クロム、 銅 '亜鉛、 銅 'クロ ム ·亜鉛、 銅 ·シリカ、 銅 ·アルミナ等があげられる。 パラジウム触媒として は、 パラジウム ·アルミナ、 パラジウム ·シリカ、 パラジウム ·カーボン等が あげられる。 これらの触媒は単一でも用いることができるし、 複数のものを用 いることもできる。  Examples of the hydrogenation catalyst include a solid catalyst containing a metal of Group 10 or Group 11 of the periodic table, and specific examples thereof include nickel, palladium, platinum, and copper. Palladium or copper is preferred from the viewpoints of suppressing the nuclear hydrogenation reaction and increasing the yield. Examples of the copper catalyst include copper, Raney copper, copper chromium, copper zinc, copper chromium zinc, copper silica, copper alumina, and the like. Examples of the palladium catalyst include palladium-alumina, palladium-silica, palladium-carbon, and the like. These catalysts can be used alone or in combination.
水添反応は、 通常、 a—メチルスチレンと水素を触媒に接触させることで行 われるが、 本発明においては脱水反応に引き続いて水添反応を行なうため、 脱 水反応において発生した水の一部を油水分離等によって分離してもよいし、 分 離せずに —メチルスチレンとともに水添触媒に供しても良い。 反応に必要な 水素量はひーメチルスチレンと等モルであればよいが、 通常、 原料中には水素 を消費する他の成分も含まれており、 過剰の水素が必要とされる。 また水素の 分圧を上げるほど反応は速やかに進むことから、 通常、 水素 / 0!—メチルスチ レンモル比として 1から 1 0が好ましく使用される。 さらに好ましくは 1から 5である。 反応後に残存した過剰分の水素は反応液と分離した後にリサイクル して使用することもできる。 反応は溶媒を用いて液相又は気相中で実施できる。 溶媒は、 反応体及び生成物に対して実質的に不活性なものであるべきである。 溶媒は使用される ひーメチルスチレン溶液中に存在する物質からなるものであ つてよい。 たとえば a—メチルスチレンが、 生成物であるクメンとからなる混 合物である場合には、 特に溶媒を添加することなく、 これを溶媒の代用とする ことができる。 水添反応温度は一般に 0〜 5 0 0 °Cであるが、 3 0〜 4 0 0 °C の温度が好ましい。 一般に圧力は 1 0 0〜1 0 0 0 0 k P aであることが有利 である。 The hydrogenation reaction is usually carried out by bringing a-methylstyrene and hydrogen into contact with a catalyst, but in the present invention, since the hydrogenation reaction is carried out subsequent to the dehydration reaction, a part of the water generated in the dehydration reaction is obtained. May be separated by oil-water separation or the like, or may be subjected to hydrogenation catalyst together with —methylstyrene without separation. The amount of hydrogen required for the reaction may be equimolar to that of methyl styrene, but usually the raw material also contains other components that consume hydrogen, and an excess of hydrogen is required. In addition, since the reaction proceeds more rapidly as the partial pressure of hydrogen is increased, usually a hydrogen / 0! -Methylstyrene molar ratio of 1 to 10 is preferably used. More preferably, it is 1 to 5. Excess hydrogen remaining after the reaction can be recycled and used after being separated from the reaction solution. The reaction can be carried out in a liquid or gas phase using a solvent. The solvent should be substantially inert to the reactants and products. The solvent may consist of the substances present in the used methyl styrene solution. For example, a mixture of a-methylstyrene and the product cumene In the case of a compound, this can be used as a substitute for a solvent without adding a solvent. The hydrogenation temperature is generally between 0 and 500 ° C, preferably between 30 and 400 ° C. In general, it is advantageous for the pressure to be between 100 and 1000 kPa.
脱水反応および水添反応は、 いずれも固定床の形の触媒を使用して連続法に よつて有利に実施できる。 脱水反応と水添反応は別々の反応器を用いてもよい し、 単一の反応器を用いてもよい。 連続法の反応器は、 断熱反応器、 等温反応 器があるが、 等温反応器は除熱をするための設備が必要となるため、 断熱リア クタ一が好ましい。 単一断熱反応器の場合、 クミルアルコールの脱水反応は吸 熱反応であるため、 反応の進行とともに温度が低下し、 一方、 ーメチルスチ レンの水添反応は発熱反応であるため、 反応の進行とともに温度が上昇する。 全体的には発熱量の方が大きいために、 反応器入口温度よりも出口温度の方が 高くなる。  Both the dehydration reaction and the hydrogenation reaction can be advantageously carried out by a continuous method using a catalyst in the form of a fixed bed. The dehydration reaction and the hydrogenation reaction may use separate reactors, or may use a single reactor. The reactor of the continuous method includes an adiabatic reactor and an isothermal reactor. However, since an isothermal reactor requires equipment for removing heat, an adiabatic reactor is preferable. In the case of a single adiabatic reactor, since the dehydration reaction of cumyl alcohol is an endothermic reaction, the temperature decreases as the reaction proceeds.On the other hand, the hydrogenation reaction of -methylstyrene is an exothermic reaction. The temperature rises. As a whole, the calorific value is larger, so the outlet temperature is higher than the reactor inlet temperature.
反応温度および圧力は脱水反応後の Q!—メチルスチレン溶液中に含まれる水 が凝縮しないように選択される。 反応温度は 1 5 0から 3 0 0 °Cが好ましく、 反応圧力は 1 0 0から 2 0 0 0 k P aが好ましい。 温度が 1 5 0 °C未満であつ たり、 または圧力が 2 0 0 0 k P aを越えた場合、 脱水反応出口において水が 凝縮し、 水添触媒の性能を低下させてしまう場合がある。 また圧力が高すぎる 場合は脱水反応の反応平衡においても不利である。 一方、 温度が 3 0 0 °Cを越 えたり、 または圧力が 1 0 0 k P a未満の場合、 気相部が多く発生し、 ファゥ リング等が起こる場合があり、 それによる触媒寿命の低下が進み不利となる場 合がある。  The reaction temperature and pressure are selected so that the water contained in the Q! -Methylstyrene solution after the dehydration reaction does not condense. The reaction temperature is preferably from 150 to 300 ° C., and the reaction pressure is preferably from 100 to 2000 kPa. If the temperature is lower than 150 ° C. or the pressure exceeds 2000 kPa, water may condense at the dehydration reaction outlet, deteriorating the performance of the hydrogenation catalyst. If the pressure is too high, it is disadvantageous in the reaction equilibrium of the dehydration reaction. On the other hand, if the temperature exceeds 300 ° C. or the pressure is less than 100 kPa, a large amount of gaseous phase may be generated and fouling may occur, thereby shortening the catalyst life. May be disadvantageous.
水素は固定床反応器の入口や、 水添触媒の入口のいずれからもフィードする ことができるが、 脱水触媒の活性からみて固定床反応器入口からフィードする ことが好ましい。 すなわち、 脱水反応ゾーンで常に水素を存在させることによ り、 脱水により発生した水分の気ィ匕が促進され、 平衡脱水転化率が上がり、 水 素が存在しない場合よりも効率よく高い転化率を得ることが出来る。 脱水反応 において発生した水は水添触媒を通過することになるが、 先に述べたように凝 縮しないレベルで運転することにより、 特に水を除去する設備を設けることな く低コストで運転することができる。 また反応器出口において未反応の水素は 気液分離操作の後にリサイクルして再使用できる。 また気液分離操作の際に、 脱水反応において発生した水分を反応液より分離することも可能である。 得ら れた反応液 (主にクメン) はその一部を反応器入口にリサイクルして使用する ことも可能である。 Hydrogen can be fed from either the inlet of the fixed bed reactor or the inlet of the hydrogenation catalyst, but it is preferable to feed hydrogen from the inlet of the fixed bed reactor in view of the activity of the dehydration catalyst. That is, the presence of hydrogen at all times in the dehydration reaction zone promotes the dehydration of water generated by dehydration, increases the equilibrium dehydration conversion rate, and achieves a higher conversion rate more efficiently than in the absence of hydrogen. Can be obtained. Water generated in the dehydration reaction passes through the hydrogenation catalyst, but as described above, By operating at a level that does not shrink, it is possible to operate at low cost without having to install equipment for removing water in particular. Unreacted hydrogen at the reactor outlet can be recycled and reused after the gas-liquid separation operation. It is also possible to separate the water generated in the dehydration reaction from the reaction liquid during the gas-liquid separation operation. A part of the obtained reaction liquid (mainly cumene) can be recycled to the reactor inlet for use.
脱水触媒の量はクミルアルコールが充分に転化する量であればよく、 クミル アルコール転化率は 9 0 %以上であることが好ましい。 水添触媒の量は ーメ チルスチレンが充分に転化する量であればよく、 ひーメチルスチレン転化率は 9 8 %以上が好ましい。 コストの観点から考えると、 脱水触媒と水添触媒は多 段のリアクターとすることなく、 単一の固定床反応器に充填されていることが 好ましい。 反応器の中は幾つかのベッドに別れていてもよく、 または別れてい なくてもよい。 別れていない場合、 脱水触媒と水添触媒は直接接触させてもよ いが、 イナ一トな充填物で仕切りをつけてもかまわない。  The amount of the dehydration catalyst may be an amount that can sufficiently convert cumyl alcohol, and the conversion of cumyl alcohol is preferably 90% or more. The amount of the hydrogenation catalyst may be an amount capable of sufficiently converting methyl styrene, and the conversion rate of methyl styrene is preferably 98% or more. From the viewpoint of cost, it is preferable that the dehydration catalyst and the hydrogenation catalyst be packed in a single fixed-bed reactor without using a multi-stage reactor. The interior of the reactor may be separated into several beds or not separated. If not separated, the dehydration catalyst and the hydrogenation catalyst may be in direct contact, or may be partitioned with an inert packing.
本発明においては、 エポキシ化工程終了時におけるクミルアルコールを含む 溶液中のクメンハイドロパーォキサイドの濃度が 2重量%以下であることが必 要であり、 好ましくは 1重量%以下である。 ここで、 エポキシ化工程終了時に おけるクミルアルコールを含む溶液とは、 常温 ·常圧において液体である成分 からなる溶液を示しており、 反応混合物より目的物のプロピレンォキサイド、 未反応プロピレンを分離して得られる、 主にクメン、 クミルアルコールからな る溶液である。  In the present invention, the concentration of cumene hydroperoxide in the solution containing cumyl alcohol at the end of the epoxidation step needs to be 2% by weight or less, preferably 1% by weight or less. Here, the solution containing cumyl alcohol at the end of the epoxidation step refers to a solution composed of components that are liquid at normal temperature and pressure, and the target product propylene oxide and unreacted propylene are separated from the reaction mixture. A solution mainly consisting of cumene and cumyl alcohol obtained by separation.
エポキシ化反応後に残存するクメンハイドロパ一ォキサイドは後の脱水工程 において分解し、 クメンの損失となるァセトフエノンが生じる。 また同じくク メンの損失となるクメンダイマーを生成し、 この成分は系内における閉塞トラ ブルの原因ともなる。 エポキシ化工程の後に未反応プロピレンやプロピレンォ キサイドを回収する工程を設ける場合にはこの工程においてもクメンの損失成 分を生じる。 このような観点から、 エポキシ化工程終了時におけるクミルアル コールを含む溶液中のクメンハイドロパーォキサイドの濃度を本発明の範囲内 に抑える必用がある。 クメンハイドロパ一ォキサイドの濃度を抑える方法と しては、 エポキシ化工程において反応によりクミルアルコールへ転化する方法、 エポキシ化工程以降で反応により別の化合物へ転化する方法、 蒸留、 抽出等に よりクメンハイドロパーォキサイドの全て又は一部を反応系外へ除去する方法、 吸着剤等により濃度を減少させる方法等のいずれを用いてもよい。 プロセスの 簡便さから考えると、 エポキシ化工程において大部分のクメンハイド口パーォ キサイドを転化させることが好ましい。 実施例 Cumene hydroperoxide remaining after the epoxidation reaction is decomposed in the subsequent dehydration step, and acetophenone, which causes loss of cumene, is generated. It also produces cumene dimer, which also results in the loss of cumene, and this component causes occlusion trouble in the system. If a step of recovering unreacted propylene or propylene oxide is provided after the epoxidation step, a cumene loss component also occurs in this step. From such a viewpoint, it is necessary to keep the concentration of cumene hydroperoxide in the solution containing cumyl alcohol at the end of the epoxidation step within the scope of the present invention. How to reduce the concentration of cumene hydropoxide and In the epoxidation step, a method of converting to cumyl alcohol by reaction, a method of converting to another compound by reaction after the epoxidation step, all or part of cumene hydroperoxide by distillation, extraction, etc. May be removed from the reaction system, or the concentration may be reduced by an adsorbent or the like. Considering the simplicity of the process, it is preferable to convert most of the cumenehydroxide peroxide in the epoxidation step. Example
実施例 1 Example 1
下記に示す組成の脱水 ·水添反応用原料を活性アルミナ触媒を充填した固定 床反応器に通過させ、 連続して 0 . 0 5重量%パラジウム/アルミナ触媒を充 填した固定床反応器に通過させた。 反応液中、 クミルアルコール 1モル当りに 対して、 1 . 5倍モルの水素を連続的に反応器内に通過させた。 各反応器の入 口温度を調節することにより、 クミルアルコールをほぼ 1 0 0 % 一メチルス チレンへ、 更にクメンへ変換させた。 このときの反応温度は 2 0 0〜2 2 0 °C であった。 得られた反応液の組成は以下のとおりであった。 脱水 ·水添反応用原料  The raw material for the dehydration and hydrogenation reaction shown below is passed through a fixed bed reactor filled with activated alumina catalyst, and continuously passed through a fixed bed reactor filled with 0.05% by weight palladium / alumina catalyst. I let it. In the reaction solution, 1.5 moles of hydrogen per mole of cumyl alcohol was continuously passed through the reactor. By controlling the inlet temperature of each reactor, cumyl alcohol was converted to approximately 100% monomethyl styrene and further to cumene. The reaction temperature at this time was 200 to 220 ° C. The composition of the obtained reaction solution was as follows. Raw materials for dehydration and hydrogenation reactions
クメン八ィドロパ一ォキサイド 0 . 6重 1%  Cumene eight drops 0.6% 1%
クミルアルコール 2 2 . 3重 i 1%  Cumyl alcohol 2 2.3 triple i 1%
クメン 7 6 . 6重 i 1%  Cumene 7 6 .6 i 1%
ァセトフエノン 0 . 1重 1%  Acetofenone 0.1% 1%
クメンダイマ一 0 . 1重 1%  Cumene Daima 0.1 0.1% 1%
脱水 ·水添反応液組成  Dehydration / hydrogenation reaction liquid composition
クメン八ィドロパーォキサイド 0重 |·ο  Cumene eight drop oxidide 0 layer | · ο
クミルアルコール 0 . 3重  Cumyl alcohol 0.3
クメン 9 9 . 1重量%  Cumene 99.1% by weight
ァセトフエノン 0 . 2重  Acetofenone 0.2 double
クメンダイマー 0 . 1重 比較例 1 Cumene dimer 0.1 single Comparative Example 1
クメンハイドロパ一オキサイドの濃度が 5重量%、 クメンの濃度が 7 2 . 2 重量%である以外は実施例 1とほぼ同じ組成である脱水 ·水添反応用原料を使 用し、 実施例 1と同様の条件で反応を行った。 得られた反応液の組成は以下の とおりであった。  Example 1 Using a dehydration / hydrogenation reaction raw material having substantially the same composition as in Example 1 except that the concentration of cumene hydroperoxide was 5% by weight and the concentration of cumene was 72.2% by weight. The reaction was carried out under the same conditions as described above. The composition of the obtained reaction solution was as follows.
脱水 ·水添反応液組成  Dehydration / hydrogenation reaction liquid composition
クメン八ィドロパーォキサイド 0重量%  0% by weight of cumene
クミルアルコール 1 . 0重量%  Cumyl alcohol 1.0% by weight
クメン 9 4. 3重量%  Cumene 9 4.3% by weight
ァセトフエノン 3 . 5重量%  Acetofenone 3.5% by weight
クメンダイマー 0 . 6重量%  0.6% by weight of cumene dimer
実施例 1に比較して、 明らかにァセトフエノン、 クメンダイマーが増加し、 クメンの損失が大きくなった。 産業上の利用可能性  Compared with Example 1, the amount of acetophenone and cumene dimer clearly increased, and the loss of cumene increased. Industrial applicability
本発明によれば、 クメンから得られるクメンハイドロパーォキサイドを酸素 キヤリヤーとして用いてプロピレンをプロピレンォキサイドに変換し、 かつ該 クメンを繰り返し使用することができ、 しかもエポキシ化工程以降における副 生成物生成を少なくすることができ、 よってクメンの損失を少なく抑えること ができるプロピレンォキサイドの製造方法を提供することができる。  According to the present invention, propylene can be converted to propylene oxide by using cumene hydroperoxide obtained from cumene as an oxygen carrier, and the cumene can be used repeatedly. It is possible to provide a method for producing propylene oxide, which can reduce the amount of product generated and thus can suppress the loss of cumene.

Claims

請 求 の 範 囲 The scope of the claims
1 . 下記の工程を含むプロピレンオキサイドの製造方法であって、 エポキシ 化工程終了時におけるクミルアルコールを含む溶液中のクメンハイドロパ一ォ キサイドの濃度を 2重量%以下とすることを特徴とするプロピレンォキサイド の製造方法。 1. A method for producing propylene oxide comprising the following steps, wherein the concentration of cumene hydropoxide in a solution containing cumyl alcohol at the end of the epoxidation step is 2% by weight or less. A method for producing propylene oxide.
酸化工程:クメンを酸化することによりクメンハイドロパーォキサイドを得 る工程  Oxidation step: Step of oxidizing cumene to obtain cumene hydroperoxide
エポキシ化工程:酸化工程で得たクメンハイドロパーォキサイドとプロピレ ンとを反応させることによりプロピレンォキサイド及びクミルアルコールを得 る工程  Epoxidation step: Step of reacting cumene hydroperoxide obtained in the oxidation step with propylene to obtain propylene oxide and cumyl alcohol.
脱水工程:脱水触媒の存在下、 エポキシ化工程で得たクミルアルコールを脱 水することにより ひーメチルスチレンを得る工程  Dehydration step: A step of obtaining permethylstyrene by dewatering cumyl alcohol obtained in the epoxidation step in the presence of a dehydration catalyst.
水添工程:水添触媒の存在下、 a—メチルスチレンを水添してクメンとし、 酸化工程の原料として酸化工程へリサイクルする工程  Hydrogenation process: Hydrogenation of a-methylstyrene in the presence of a hydrogenation catalyst to produce cumene, which is recycled to the oxidation process as a raw material for the oxidation process
2 . エポキシ化工程終了時におけるクミルアルコールを含む溶液中のクメン ハイドロパーォキサイドの濃度が 1重量%以下である請求の範囲第 1項記載の 製造方法。  2. The method according to claim 1, wherein the concentration of cumene hydroperoxide in the solution containing cumyl alcohol at the end of the epoxidation step is 1% by weight or less.
PCT/JP2004/013992 2003-09-25 2004-09-16 Method for producing propyleneoxide WO2005030742A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-333154 2003-09-25
JP2003333154A JP2005097185A (en) 2003-09-25 2003-09-25 Method for producing propylene oxide

Publications (1)

Publication Number Publication Date
WO2005030742A1 true WO2005030742A1 (en) 2005-04-07

Family

ID=34385982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013992 WO2005030742A1 (en) 2003-09-25 2004-09-16 Method for producing propyleneoxide

Country Status (2)

Country Link
JP (1) JP2005097185A (en)
WO (1) WO2005030742A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9102641B2 (en) 2007-03-22 2015-08-11 Sumitomo Chemical Company Limited Method for producing propylene oxide

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118823A1 (en) * 2010-03-26 2011-09-29 Sumitomo Chemical Company, Limited Method of producing propylene oxide
WO2021192592A1 (en) 2020-03-27 2021-09-30 住友化学株式会社 Propylene oxide production apparatus and propylene oxide production method
WO2024009987A1 (en) * 2022-07-07 2024-01-11 住友化学株式会社 Method for producing cumene, device for producing cumene, and method for producing propylene oxide

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382703A (en) * 1976-12-28 1978-07-21 Engelhard Min & Chem Selective hydrogenation method of unsaturated hydrocarbon compound
JPS5655318A (en) * 1968-08-05 1981-05-15 Halcon International Inc Manufacture of aralkene
JP2001270877A (en) * 2000-03-24 2001-10-02 Sumitomo Chem Co Ltd Method for producing propylene oxide
JP2002322164A (en) * 2001-04-27 2002-11-08 Sumitomo Chem Co Ltd Method for preparing propylene oxide
JP2003238546A (en) * 2002-02-15 2003-08-27 Sumitomo Chem Co Ltd Method for recovering propylene oxide
WO2004058667A1 (en) * 2002-12-24 2004-07-15 Sumitomo Chemical Company, Limited Process for producing cumene
WO2004060383A1 (en) * 2003-01-07 2004-07-22 University Of Delhi A process of preparing an extract of annona squamosa for the treatment of diabetes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655318A (en) * 1968-08-05 1981-05-15 Halcon International Inc Manufacture of aralkene
JPS5382703A (en) * 1976-12-28 1978-07-21 Engelhard Min & Chem Selective hydrogenation method of unsaturated hydrocarbon compound
JP2001270877A (en) * 2000-03-24 2001-10-02 Sumitomo Chem Co Ltd Method for producing propylene oxide
JP2002322164A (en) * 2001-04-27 2002-11-08 Sumitomo Chem Co Ltd Method for preparing propylene oxide
JP2003238546A (en) * 2002-02-15 2003-08-27 Sumitomo Chem Co Ltd Method for recovering propylene oxide
WO2004058667A1 (en) * 2002-12-24 2004-07-15 Sumitomo Chemical Company, Limited Process for producing cumene
WO2004060383A1 (en) * 2003-01-07 2004-07-22 University Of Delhi A process of preparing an extract of annona squamosa for the treatment of diabetes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9102641B2 (en) 2007-03-22 2015-08-11 Sumitomo Chemical Company Limited Method for producing propylene oxide

Also Published As

Publication number Publication date
JP2005097185A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
WO2001070711A1 (en) Process for producing propylene oxide
WO2001070714A1 (en) Process for producing propylene oxide
JP4400120B2 (en) Cumene production method
US7705166B2 (en) Process for producing propylene oxide
JP4586467B2 (en) Method for producing cumene and method for producing propylene oxide including the method for producing the same
JP5085003B2 (en) Method for producing α-methylstyrene
WO2005030742A1 (en) Method for producing propyleneoxide
JP4385700B2 (en) Propylene oxide production method
WO2005030745A1 (en) Method for producing propyleneoxide
JP2005097188A (en) Method for producing cumene
JP2005097183A (en) Method for producing propylene oxide
JP2005097175A (en) Method for producing propylene oxide
JP2005097182A (en) Method for producing propylene oxide
JP2005097178A (en) Method for producing propylene oxide
JP2005097212A (en) Method for producing propylene oxide
JP2005097186A (en) Method for producing propylene oxide
JP2005097208A (en) Method for producing propylene oxide
JP2005097180A (en) Method for producing propylene oxide
JP2005097174A (en) Method for producing propylene oxide
JP2005097187A (en) Method for producing propylene oxide
JP2005097211A (en) Method for producing propylene oxide
JP2005097181A (en) Method for producing propylene oxide
JP2005097214A (en) Method for producing propylene oxide
JP2005097213A (en) Method for producing propylene oxide
JP2004292336A (en) Method for producing cumene

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase