WO2005030743A1 - Process for producing propylene oxide - Google Patents

Process for producing propylene oxide Download PDF

Info

Publication number
WO2005030743A1
WO2005030743A1 PCT/JP2004/013997 JP2004013997W WO2005030743A1 WO 2005030743 A1 WO2005030743 A1 WO 2005030743A1 JP 2004013997 W JP2004013997 W JP 2004013997W WO 2005030743 A1 WO2005030743 A1 WO 2005030743A1
Authority
WO
WIPO (PCT)
Prior art keywords
cumene
reaction
propylene oxide
catalyst
epoxidation
Prior art date
Application number
PCT/JP2004/013997
Other languages
French (fr)
Japanese (ja)
Inventor
Junpei Tsuji
Masaru Ishino
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Publication of WO2005030743A1 publication Critical patent/WO2005030743A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/19Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic hydroperoxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/085Isopropylbenzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C407/00Preparation of peroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C409/00Peroxy compounds
    • C07C409/02Peroxy compounds the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides
    • C07C409/04Peroxy compounds the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides the carbon atom being acyclic
    • C07C409/08Compounds containing six-membered aromatic rings
    • C07C409/10Cumene hydroperoxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a method for producing propylene oxide. More specifically, the present invention relates to a method for producing propylene oxide which can maintain the activity of a catalyst used in an epoxidation reaction for obtaining propylene oxide from propylene at a high level for a long period of time.
  • a process for converting propylene to propylene oxide using cumene hydroperoxide obtained from cumene as an oxygen carrier and repeatedly using the cumene is disclosed in Czechoslovak Patent CS1440743, U.S. Patent Although disclosed in specification No. 66000054, etc., the disclosed process is a process comprising an oxidation step, an epoxidation step, and a hydrocracking step. If cumyl alcohol obtained in the epoxidation process is converted to cumene only by hydrocracking, the life of the catalyst used for hydrocracking will be shortened, and the yield of cumene will be reduced, resulting in industrial realization It is hard to say enough. Disclosure of the invention
  • an object of the present invention is to convert propylene to propylene oxide using cumene hydroperoxide obtained from cumene as an oxygen carrier, and to be able to use the cumene repeatedly, and to use propylene to propylene. It is an object of the present invention to provide a method for producing propylene oxide, which has an excellent feature that the activity of a catalyst used in an epoxidation reaction for obtaining an oxoxide can be maintained at a high level for a long period of time.
  • the present invention relates to a method for producing propylene oxide comprising the following steps, wherein the cumenehydride peroxide used in the epoxidation step has received a heat history of at least the temperature represented by the following formula (1):
  • the present invention relates to a method for producing propylene oxide.
  • Oxidation step Step of obtaining cumene hydrooxide by oxidizing cumene
  • Epoxidation step Step of reacting cumene hydroperoxide obtained in the oxidation step with propylene to obtain propylene oxide and cumyl alcohol.
  • Dehydration step A step of obtaining permethylstyrene by dewatering cumyl alcohol obtained in the epoxidation step in the presence of a dehydration catalyst.
  • Hydrogenation process In the presence of a hydrogenation catalyst, a process of hydrogenating methylstyrene to make cumene and recycling it to the oxidation process Best mode for carrying out the invention
  • the oxidation step is a step of obtaining cumene hydroperoxide by oxidizing cumene.
  • Oxidation of cumene is usually performed by autoxidation with oxygenated gas such as air or oxygen-enriched air.
  • This oxidation reaction may be carried out without using an additive, or an additive such as an alkali may be used.
  • Normal reaction temperature is 50 ⁇ 200 ° C, reaction pressure is between atmospheric pressure and 5 MPa.
  • the alkaline reagent may be an alkali metal hydroxide such as Na ⁇ H or KOH, or an alkaline earth metal compound or Na 2 CO 3 or Na HCO 3 .
  • alkali metal carbonate or ammonia and (NH 4 ) 2 C ⁇ 3 alkali metal ammonium carbonate and the like are used.
  • the epoxidation step propylene oxide and cumyl alcohol are obtained by reacting cumene hydroperoxide obtained in the oxidation step with propylene.
  • a catalyst comprising a titanium-containing silicon oxide, from the viewpoint of obtaining the target product with high yield and high selectivity.
  • These catalysts are preferably so-called Ti-silica catalysts containing Ti chemically bonded to silicon oxide.
  • a Ti compound supported on a silica carrier, a compound compounded with silicon oxide by a coprecipitation method or a sol-gel method, or a zeolite compound containing Ti can be used.
  • cumenehydrido peroxide used as a raw material in the epoxidation step may be a dilute or concentrated purified product or a non-purified product.
  • the epoxidation reaction is performed by bringing propylene and cumene hydroperoxide into contact with the catalyst.
  • the reaction can be carried out in a liquid phase using a solvent.
  • the solvent should be liquid at the temperature and pressure of the reaction and be substantially inert to the reactants and products.
  • the solvent may consist of the substances present in the hydroperoxide solution used. For example, when cumene hydridoxide is a mixture of its raw material and cumene, it can be used as a substitute for the solvent without adding a solvent.
  • the epoxidation reaction temperature is generally 0 to 200 ° C, but a temperature of 25 to 200 ° C is preferred.
  • the pressure may be sufficient to keep the reaction mixture in a liquid state. In general, the pressure should be between 100 and 100 kPa.
  • the epoxidation reaction can be advantageously carried out using a catalyst in the form of a slurry or fixed bed.
  • a catalyst in the form of a slurry or fixed bed.
  • it is preferred to use a fixed bed. It can be carried out by a batch method, a semi-continuous method, a continuous method, or the like.
  • the liquid containing the reactants is passed through the fixed bed, the liquid mixture leaving the reaction zone contains no or substantially no catalyst.
  • the dehydration step is a step in which cumyl alcohol obtained by the epoxidation reaction is used as a dehydration catalyst to obtain monomethylstyrene.
  • the propylene oxide obtained in the epoxidation step is preferably separated from cumyl alcohol before the dehydration step from the viewpoint of obtaining a high propylene oxide yield.Distillation is used as the separation method. be able to.
  • the catalyst used in the dehydration step include acids such as sulfuric acid, phosphoric acid, and p-toluenesulfonic acid, and metal oxides such as activated alumina, titania, zirconia, silica alumina, and zeolite. Activated alumina is preferred from the viewpoints of separation of water, catalyst life, selectivity and the like.
  • the dehydration reaction is usually carried out by bringing cumyl alcohol into contact with the catalyst, but in the present invention, hydrogen may be fed to the catalyst in order to carry out the hydrogenation reaction following the dehydration reaction.
  • the reaction can be carried out in a liquid phase using a solvent.
  • the solvent should be substantially inert to the reactants and products.
  • the solvent may consist of the substances present in the cumyl alcohol solution used. For example, when cumyl alcohol is a mixture of the product cumene, it can be used as a substitute for the solvent without adding a solvent.
  • the temperature of the dehydration reaction is generally 50-450 ° C, but a temperature of 150-300 ° C is preferred. In general, it is advantageous for the pressure to be between 10 and 1000 kPa.
  • the dehydration reaction can be advantageously carried out using a catalyst in slurry or fixed bed form.
  • ⁇ -methylstyrene and water obtained by the dehydration reaction are supplied to a hydrogenation catalyst, a-methylstyrene is hydrogenated to convert it into cumene, and cumene is recycled as a raw material in the oxidation step to the oxidation step. This is the process of doing.
  • Examples of the hydrogenation catalyst include catalysts containing a metal of Group 10 or Group 11 of the periodic table, and specific examples thereof include nickel, palladium, platinum, and copper. Palladium or copper is preferred from the viewpoint of suppression of the addition reaction and high yield. Copper-based catalysts include copper, Raney copper, copper 'chromium, copper' zinc, copper-chromium-zinc, copper-silica, copper-alumina, and the like. Examples of palladium hornworm media include palladium-alumina, palladium-silica, palladium-carbon, and the like. One of these catalysts can be used, or a plurality of catalysts can be used.
  • the hydrogenation reaction is usually carried out by bringing ⁇ -methylstyrene and hydrogen into contact with a catalyst.
  • a part of the water generated in the dehydration reaction is used. It may be separated by oil-water separation or the like, or may be subjected to a hydrogenation catalyst together with ⁇ -methylstyrene without separation. Water required for reaction The elementary amount is a force that is equivalent to equimolar to methyl styrene. Normally, the raw material also contains other components that consume hydrogen, and an excess of hydrogen is required.
  • Methodstyrene of 1 to 10 is usually used. More preferably, it is 1 to 5.
  • the excess hydrogen remaining after the reaction can be recycled after being separated from the reaction solution.
  • the reaction can be carried out in a liquid or gas phase using a solvent.
  • the solvent should be substantially inert to the reactants and products.
  • the solvent may be any material present in the used methyl styrene solution. For example, when -methylstyrene is a mixture of the product, cumene, this can be substituted for the solvent without particularly adding a solvent.
  • the hydrogenation reaction temperature is generally from 0 to 500 ° C, but a temperature of from 30 to 400 ° C is preferred. In general, it is advantageous for the pressure to be between 100 and 1000 kPa.
  • the dehydration reaction and the hydrogenation reaction can be advantageously carried out by a continuous process using a catalyst in the form of a fixed bed.
  • the dehydration reaction and the hydrogenation reaction may use separate reactors, or may use a single reactor.
  • the reactor of the continuous method includes an adiabatic reactor and an isothermal reactor. However, since an isothermal reactor requires equipment for removing heat, an adiabatic reactor is preferable.
  • a single adiabatic reactor since the dehydration reaction of cumyl alcohol is an endothermic reaction, the temperature decreases as the reaction proceeds, while the hydrogenation reaction of ⁇ -methylstyrene is an exothermic reaction. The temperature rises as it progresses.
  • the calorific value is higher, so the outlet temperature is higher than the reactor inlet temperature.
  • the reaction temperature and pressure are selected so that the water contained in the ⁇ -methylstyrene solution after the dehydration reaction does not condense.
  • the reaction temperature is preferably from 150 to 30 Ot :, and the reaction pressure is preferably from 100 to 2000 kPa. If the temperature is lower than the above range or the pressure is too high, water may condense at the dehydration reaction outlet, which may lower the performance of the hydrogenation catalyst. If the pressure is too high, it is disadvantageous in the reaction equilibrium of the dehydration reaction.
  • Hydrogen can be fed from either the inlet of the fixed bed reactor or the inlet of the hydrogenation catalyst, but it is preferable to feed hydrogen from the inlet of the fixed bed reactor in view of the activity of the dehydration catalyst.
  • the constant presence of hydrogen in the dehydration reaction zone promotes the vaporization of water generated by dehydration, increases the equilibrium de-conversion rate, and can obtain a higher conversion rate more efficiently than in the absence of hydrogen.
  • the water generated in the dehydration reaction passes through the hydrogenation catalyst.However, by operating at a level that does not condense as described above, it can be operated at low cost without installing any equipment for removing water. can do. Unreacted hydrogen at the reactor outlet can be recycled and reused after the gas-liquid separation operation. Further, it is possible to separate water generated in the dehydration reaction from the reaction liquid during the gas-liquid separation operation. A part of the obtained reaction liquid (mainly cumene) can be recycled to the reactor inlet for use.
  • the amount of the dehydration catalyst may be an amount that can sufficiently convert cumyl alcohol, and the conversion of cumyl alcohol is preferably 90% or more.
  • the amount of the hydrogenation catalyst may be an amount capable of sufficiently converting the methylstyrene, and the ⁇ -methylstyrene conversion is preferably 98% or more. From the viewpoint of cost, it is preferable that the dehydration catalyst and the hydrogenation catalyst be packed in a single fixed-bed reactor without using a multi-stage reactor. The reactor may be separated into several beds or not separated. If not separated, the dehydration catalyst and the hydrogenation catalyst may be brought into direct contact with each other, but may be partitioned with an intact filler.
  • cumene hydroperoxide to be subjected to the epoxidation step does not receive a heat history of a temperature (t ° C.) or more represented by the following formula (1).
  • An oxidation reaction step can be cited as a place where cumene hydroperoxide to be subjected to the epoxidation step may receive a thermal history. In the case where a concentration step or a purification step is provided after the oxidation step, these steps can also be given as steps receiving the heat history.
  • w is the content (% by weight) of cumene hydroperoxide in the solution containing the peroxide at the mouth of cumene hydride, and is preferably 5 to 80% by weight. If the content is too low, industrial productivity is low and disadvantageous.On the other hand, if the content is too high, the decomposition reaction proceeds, the yield decreases, and the risk of runaway reaction decreases. Get higher.
  • Example 1 The procedure was performed in the same manner as in Example 1 except that the heating temperature was 160 ° C. The results are shown in Table 1.
  • propylene can be converted to propylene oxide using cumene / idloperoxide obtained from cumene as an oxygen carrier, and the cumene can be used repeatedly. It is possible to provide a method for producing propylene oxide which can maintain the activity of a catalyst used in an epoxidation reaction for obtaining propylene oxide at a high level for a long period of time.

Abstract

A process for producing propylene oxide which comprises an oxidation step in which cumene is oxidized, an epoxidation step in which the cumene hydroperoxide obtained in the oxidation step is reacted with propylene to obtain propylene oxide and cumyl alcohol, and a step in which the α-methylstyrene obtained in the step of dehydrating the cumyl alcohol is hydrogenated into cumene and this cumene is recycled to the oxidation step, characterized in that the cumene hydroperoxide to be supplied to the oxidation step has not undergone a heat history including a temperature not lower than the temperature (t°C) represented by the following equation (1): t (°C) = 150 - 0.8 × w (1) wherein w is the content of cumene hydroperoxide (wt.%) in the solution containing cumene hydroperoxide.

Description

明 細 ォキサイドの製造方法 技術分野  Manufacturing method of medicinal oxide
本発明はプロピレンォキサイドの製造方法に関するものである。 更に詳しく は、 本発明はプロピレンからプロピレンォキサイドを得るエポキシ化反応に用 いる触媒の活性を高水準に長期に維持することができるプロピレンォキサイド の製造方法に関するものである。 背景技術  The present invention relates to a method for producing propylene oxide. More specifically, the present invention relates to a method for producing propylene oxide which can maintain the activity of a catalyst used in an epoxidation reaction for obtaining propylene oxide from propylene at a high level for a long period of time. Background art
クメンから得られるクメンハイドロパーォキサイドを酸素キヤリヤーとして 用いてプロピレンをプロピレンォキサイドに変換し、 かつ該クメンを繰り返し 使用するプロセスはチェコスロバキア特許 C S 1 4 0 7 4 3号公報、 米国特許 明細書第 6 6 0 0 0 5 4号明細書等に開示されているが、 開示されているプロ セスは、酸化工程、エポキシ化工程、水素化分解工程からなるプロセスであり、 該プロセスのようにエポキシ化工程において得られたクミルアルコールを水素 化分解のみによってクメンに転換する場合、 水素化分解に使用の触媒の寿命が 短くなり、 クメンの収率も低くなつてしまい、 工業的に実現するには十分とは 言い難いものである。 発明の開示  A process for converting propylene to propylene oxide using cumene hydroperoxide obtained from cumene as an oxygen carrier and repeatedly using the cumene is disclosed in Czechoslovak Patent CS1440743, U.S. Patent Although disclosed in specification No. 66000054, etc., the disclosed process is a process comprising an oxidation step, an epoxidation step, and a hydrocracking step. If cumyl alcohol obtained in the epoxidation process is converted to cumene only by hydrocracking, the life of the catalyst used for hydrocracking will be shortened, and the yield of cumene will be reduced, resulting in industrial realization It is hard to say enough. Disclosure of the invention
かかる現状において、 本発明の目的はクメンから得られるクメンハイドロパ —ォキサイドを酸素キヤリャ一として用いてプロピレンをプロピレンォキサイ ドに変換し、 かつ該クメンを繰り返し使用することができ、 しかもプロピレン からプロピレンォキサイドを得るエポキシ化反応に用いる触媒の活性を高水準 に長期に維持することができるという優れた特徴を有するプロピレンォキサイ. ドの製造方法を提供する点に存するものである。 , すなわち、 本発明は、 下記の工程を含むプロピレン才キサイドの製造方法で あって、 エポキシ化工程に供するクメンハイド口パー才キサイドが下記式 (1 ) で表される温度 ) 以上の熱履歴を受けていないプロピレンオキサイドの 製造方法に係るものである。 Under such circumstances, an object of the present invention is to convert propylene to propylene oxide using cumene hydroperoxide obtained from cumene as an oxygen carrier, and to be able to use the cumene repeatedly, and to use propylene to propylene. It is an object of the present invention to provide a method for producing propylene oxide, which has an excellent feature that the activity of a catalyst used in an epoxidation reaction for obtaining an oxoxide can be maintained at a high level for a long period of time. , That is, the present invention relates to a method for producing propylene oxide comprising the following steps, wherein the cumenehydride peroxide used in the epoxidation step has received a heat history of at least the temperature represented by the following formula (1): The present invention relates to a method for producing propylene oxide.
t (。C) = 1 5 0— 0 . 8 xw ( 1 )  t (.C) = 1 5 0—0.8 xw (1)
w:クメンハイドロパーォキサイドを含有する溶液中のクメンハイド 口パーォキサイドの含有量 (重量%)  w: Cumene Hydride Peroxide content in solution containing cumene hydroperoxide (wt%)
酸化工程:クメンを酸化することによりクメンハイドロパ一ォキサイドを得 る工程  Oxidation step: Step of obtaining cumene hydrooxide by oxidizing cumene
エポキシ化工程:酸化工程で得たクメンハイドロパーォキサイドとプロピレ ンとを反応させることによりプロピレンォキサイド及びクミルアルコールを得 る工程  Epoxidation step: Step of reacting cumene hydroperoxide obtained in the oxidation step with propylene to obtain propylene oxide and cumyl alcohol.
脱水工程:脱水触媒の存在下、 エポキシ化工程で得たクミルアルコールを脱 水することにより ひーメチルスチレンを得る工程  Dehydration step: A step of obtaining permethylstyrene by dewatering cumyl alcohol obtained in the epoxidation step in the presence of a dehydration catalyst.
水添工程:水添触媒の存在下、 —メチルスチレンを水添してクメンとし、 酸化工程へリサイクルする工程 発明を実施するための最良の形態  Hydrogenation process: In the presence of a hydrogenation catalyst, a process of hydrogenating methylstyrene to make cumene and recycling it to the oxidation process Best mode for carrying out the invention
酸化工程はクメンを酸化することによりクメンハイ ドロパーォキサイドを得 る工程である。 クメンの酸化は通常、 空気や酸素濃縮空気などの含酸素ガスに よる自動酸化で行われる。 この酸化反応は添加剤を用いずに実施してもよいし、 アルカリのような添加剤を用いてもよい。 通常の反応、温度は 5 0〜 2 0 0 °Cで あり、 反応圧力は大気圧から 5 M P aの間である。 添加剤を用いた酸化法の場 合、 アルカリ性試薬としては、 N a〇H、 KOHのようなアルカリ金属水酸化 物や、 アルカリ土類金属化合物又は N a 2 C O 3、 N a H C O 3のようなアル力 リ金属炭酸塩又はアンモニア及び(NH 4) 2 C〇3、 アルカリ金属炭酸アンモニ ゥム塩等が用いられる。 The oxidation step is a step of obtaining cumene hydroperoxide by oxidizing cumene. Oxidation of cumene is usually performed by autoxidation with oxygenated gas such as air or oxygen-enriched air. This oxidation reaction may be carried out without using an additive, or an additive such as an alkali may be used. Normal reaction, temperature is 50 ~ 200 ° C, reaction pressure is between atmospheric pressure and 5 MPa. In the case of an oxidation method using an additive, the alkaline reagent may be an alkali metal hydroxide such as Na〇H or KOH, or an alkaline earth metal compound or Na 2 CO 3 or Na HCO 3 . For example, alkali metal carbonate or ammonia and (NH 4 ) 2 C〇 3 , alkali metal ammonium carbonate and the like are used.
エポキシ化工程は酸化工程で得たクメンハイドロパーォキサイドとプロピレ ンとを反応させることによりプロピレンォキサイド及びクミルアルコールを得 る工程である。 エポキシ化工程は目的物を高収率及び高選択率下に得る観点か ら、 チタン含有珪素酸化物からなる触媒の存在下に実施することが好ましい。 これらの触媒は、 珪素酸化物と化学的に結合した T iを含有する、 いわゆる T i—シリカ触媒が好ましい。 たとえば、 T i化合物をシリカ担体に担持したも の、 共沈法やゾルゲル法で珪素酸化物と複合したもの、 あるいは T iを含むゼ ォライト化合物などをあげることができる。 In the epoxidation step, propylene oxide and cumyl alcohol are obtained by reacting cumene hydroperoxide obtained in the oxidation step with propylene. This is the process of The epoxidation step is preferably performed in the presence of a catalyst comprising a titanium-containing silicon oxide, from the viewpoint of obtaining the target product with high yield and high selectivity. These catalysts are preferably so-called Ti-silica catalysts containing Ti chemically bonded to silicon oxide. For example, a Ti compound supported on a silica carrier, a compound compounded with silicon oxide by a coprecipitation method or a sol-gel method, or a zeolite compound containing Ti can be used.
本発明において、 エポキシ化工程の原料物質として使用されるクメンハイド 口パーォキサイドは希薄又は濃厚な精製物又は非精製物であってよい。  In the present invention, cumenehydrido peroxide used as a raw material in the epoxidation step may be a dilute or concentrated purified product or a non-purified product.
エポキシ化反応は、 プロピレンとクメンハイドロパーォキサイドを触媒に接 触させることで行われる。 反応は溶媒を用いて液相中で実施できる。 溶媒は反 応時の温度及び圧力のもとで液体であり、 かつ反応体及び生成物に対して実質 的に不活性なものであるべきである。 溶媒は使用されるハイドロパーォキサイ ド溶液中に存在する物質からなるものであってよい。 たとえばクメン八ィドロ パ一ォキサイドがその原料であるクメンとからなる混合物である場合には、 特 に溶媒を添加することなく、 これを溶媒の代用とすることができる。  The epoxidation reaction is performed by bringing propylene and cumene hydroperoxide into contact with the catalyst. The reaction can be carried out in a liquid phase using a solvent. The solvent should be liquid at the temperature and pressure of the reaction and be substantially inert to the reactants and products. The solvent may consist of the substances present in the hydroperoxide solution used. For example, when cumene hydridoxide is a mixture of its raw material and cumene, it can be used as a substitute for the solvent without adding a solvent.
エポキシ化反応温度は一般に 0〜 2 0 0 °Cであるが、 2 5〜 2 0 0 °Cの温度 が好ましい。 圧力は反応混合物を液体の状態に保つのに充分な圧力でよい。 一 般に圧力は 1 0 0〜1 0 0 0 0 k P aであること)^有利である。  The epoxidation reaction temperature is generally 0 to 200 ° C, but a temperature of 25 to 200 ° C is preferred. The pressure may be sufficient to keep the reaction mixture in a liquid state. In general, the pressure should be between 100 and 100 kPa.
エポキシ化反応はスラリー又は固定床の形の触媒を使用して有利に実施でき る。 大規模な工業的操作の場合には、 固定床を用いるのが好ましい。 また、 回 分法、 半連続法、 連続法等によって実施できる。 反応原料を含有する液を固定 床に通した場合には、 反応帯域から出た液状混合物には触媒が全く含まれてい ないか又は実質的に含まれていない。  The epoxidation reaction can be advantageously carried out using a catalyst in the form of a slurry or fixed bed. For large-scale industrial operations, it is preferred to use a fixed bed. It can be carried out by a batch method, a semi-continuous method, a continuous method, or the like. When the liquid containing the reactants is passed through the fixed bed, the liquid mixture leaving the reaction zone contains no or substantially no catalyst.
脱水工程はエポキシ化反応で得たクミルアルコールを脱水触媒に供し、 一 メチルスチレンを得る工程である。 エポキシ化工程において得られたプロピレ ンォキサイドは脱水工程の前にクミルアルコールと分離しておくことが高いプ ロピレンォキサイドの収率を得る観点から好ましレ 分離する方法としては蒸 留を用いることができる。 脱水工程において使用される触媒としては硫酸、 リン酸、 p—トルエンスル ホン酸等の酸や、 活性アルミナ、 チタニア、 ジルコニァ、 シリカアルミナ、 ゼ ォライト等の金属酸化物があげられるが、 反応液との分離、 触媒寿命、 選択性 等の観点から活性アルミナが好ましい。 The dehydration step is a step in which cumyl alcohol obtained by the epoxidation reaction is used as a dehydration catalyst to obtain monomethylstyrene. The propylene oxide obtained in the epoxidation step is preferably separated from cumyl alcohol before the dehydration step from the viewpoint of obtaining a high propylene oxide yield.Distillation is used as the separation method. be able to. Examples of the catalyst used in the dehydration step include acids such as sulfuric acid, phosphoric acid, and p-toluenesulfonic acid, and metal oxides such as activated alumina, titania, zirconia, silica alumina, and zeolite. Activated alumina is preferred from the viewpoints of separation of water, catalyst life, selectivity and the like.
脱水反応は通常、 クミルアルコールを触媒に接触させることで行われるが、 本発明においては脱水反応に引き続いて水添反応を行なうため水素も触媒へフ イードしてもよい。 反応は溶媒を用いて液相中で実施できる。 溶媒は反応体及 び生成物に対して実質的に不活性なものであるべきである。 溶媒は使用される クミルアルコール溶液中に存在する物質からなるものであつてよい。 たとえば クミルアルコールが生成物であるクメンとからなる混合物である場合には、 特 に溶媒を添加することなく、 これを溶媒の代用とすることができる。 脱水反応 温度は一般に 5 0〜4 5 0 °Cであるが、 1 5 0〜3 0 0 °Cの温度が好ましい。 一般に圧力は 1 0〜1 0 0 0 0 k P aであることが有利である。 脱水反応はス ラリ一又は固定床の形の触媒を使用して有利に実施できる。  The dehydration reaction is usually carried out by bringing cumyl alcohol into contact with the catalyst, but in the present invention, hydrogen may be fed to the catalyst in order to carry out the hydrogenation reaction following the dehydration reaction. The reaction can be carried out in a liquid phase using a solvent. The solvent should be substantially inert to the reactants and products. The solvent may consist of the substances present in the cumyl alcohol solution used. For example, when cumyl alcohol is a mixture of the product cumene, it can be used as a substitute for the solvent without adding a solvent. The temperature of the dehydration reaction is generally 50-450 ° C, but a temperature of 150-300 ° C is preferred. In general, it is advantageous for the pressure to be between 10 and 1000 kPa. The dehydration reaction can be advantageously carried out using a catalyst in slurry or fixed bed form.
水添工程は脱水反応で得た α—メチルスチレンと水を水添触媒に供し、 a— メチルスチレンを水添してクメンに変換し、 クメンを酸ィ匕工程の原料として酸 化工程へリサイクルする工程である。  In the hydrogenation step, α-methylstyrene and water obtained by the dehydration reaction are supplied to a hydrogenation catalyst, a-methylstyrene is hydrogenated to convert it into cumene, and cumene is recycled as a raw material in the oxidation step to the oxidation step. This is the process of doing.
水添触媒としては周期律表 1 0族又は 1 1族の金属を含む触媒をあげること ができ、具体的にはニッケル、 パラジウム、 白金、 銅を げることができるが、 芳香環の核水添反応の抑制、 高収率の観点からパラジウムまたは銅が好ましい。 銅系触媒としては銅、 ラネ一銅、 銅 'クロム、 銅 '亜鉛、 銅 ·クロム ·亜鉛、 銅 -シリカ、 銅 ·アルミナ等があげられる。 パラジウム角虫媒としては、 パラジ ゥム ·アルミナ、 パラジウム ·シリカ、 パラジウム ·カーボン等があげられる。 これらの触媒は単一でも用いることができるし、 複数のものを用いることもで きる。  Examples of the hydrogenation catalyst include catalysts containing a metal of Group 10 or Group 11 of the periodic table, and specific examples thereof include nickel, palladium, platinum, and copper. Palladium or copper is preferred from the viewpoint of suppression of the addition reaction and high yield. Copper-based catalysts include copper, Raney copper, copper 'chromium, copper' zinc, copper-chromium-zinc, copper-silica, copper-alumina, and the like. Examples of palladium hornworm media include palladium-alumina, palladium-silica, palladium-carbon, and the like. One of these catalysts can be used, or a plurality of catalysts can be used.
水添反応は通常、 α—メチルスチレンと水素を触媒に接触させることで行わ. れるが、 本発明においては脱水反応に引き続いて水添反応を行なうため、 脱水 反応において発生した水の一部を油水分離等によって分離してもよいし、 分離 せずに α—メチルスチレンとともに水添触媒に供してち良い。 反応に必要な水 素量はひーメチルスチレンと等モルであればよい力、 通常、 原料中には水素を 消費する他の成分も含まれており、 過剰の水素が必要とされる。 また水素の分 圧を上げるほど反応は速やかに進むことから、 通常、 水素 Ζ θ!—メチルスチレ ンモル比として 1から 1 0が使用される。 さらに好ましくは 1から 5である。 反応後に残存した過剰分の水素は反応液と分離した後にリサイクルして使用す ることもできる。 反応は溶媒を用いて液相又は気相中で実施できる。 溶媒は反 応体及び生成物に対して実質的に不活性なものであるべきである。 溶媒は使用 される ひーメチルスチレン溶液中に存在する物質力、らなるものであってよい。 たとえば ーメチルスチレンが、 生成物であるクメンとからなる混合物である 場合には、 特に溶媒を添加することなく、 これを溶媒の代用とすることができ る。 水添反応温度は一般に 0〜 5 0 0 °Cであるが、 3 0〜 4 0 0 °Cの温度が好 ましい。 一般に圧力は 1 0 0〜 1 0 0 0 0 k P aであることが有利である。 脱水反応および水添反応は固定床の形の触媒を使用して連続法によって有利 に実施できる。 脱水反応と水添反応は別々の反応器を用いてもよいし、 単一の 反応器を用いてもよい。連続法の反応器は、断熱反応器、等温反応器があるが、 等温反応器は除熱をするための設備が必要となるため、 断熱反応器が好ましい。 単一断熱反応器の場合、 クミルアルコールの脱水反応は吸熱反応であるため、 反応の進行とともに温度が低下し、 一方、 α—メチルスチレンの水添反応は発 熱反応であるため、 反応の進行とともに温度が上昇する。 全体的には発熱量の ほうが大きいために、 反応器入口温度よりも出口温度のほうが高くなる。 反応 温度および圧力は、 脱水反応後の α—メチルスチレン溶液中に含まれる水が凝 縮しないように選択される。 反応温度は 1 5 0から 3 0 O t:が好ましく、 反応 圧力は 1 0 0から 2 0 0 0 k P aが好ましい。 上記範囲より温度が低すぎたり、 圧力が高すぎたりすると脱水反応出口において水が凝縮し、 水添触媒の性能を 低下させる場合がある。 また、 圧力が高すぎる場合は脱水反応の反応平衡にお いても不利である。 一方、 上記範囲より温度が高すぎたり、 圧力が低すぎたり すると、 気相部が多く発生し、 ファゥリング等による触媒寿命の低下が進む場 合があり不利である。 水素は固定床反応器の入口や水添触媒の入口のいずれからもフィードするこ とができるが、 脱水触媒の活性からみて固定床反応器入口からフィ一ドするこ とが好ましい。 すなわち、 脱水反応ゾーンで常に水素を存在させることにより 脱水により発生した水分の気化が促進され、 平衡脱フ 転化率が上がり、 水素が 存在しない場合よりも効率よく高い転化率を得ることが出来る。 脱水反応にお いて発生した水は水添触媒を通過することになるが、 先に述べたように凝縮し ないレベルで運転することにより、 特に水を除去する設備を設けることなく低 コストで運転することができる。 また反応器出口において未反応の水素は気液 分離操作の後にリサイクルして再使用できる。 また気液分離操作の際に脱水反 応において発生した水分を反応液より分離すること ¾可能である。 得られた反 応液 (主にクメン) はその一部を反応器入口にリサイクルして使用することも 可能である。 The hydrogenation reaction is usually carried out by bringing α-methylstyrene and hydrogen into contact with a catalyst. In the present invention, since the hydrogenation reaction is carried out following the dehydration reaction, a part of the water generated in the dehydration reaction is used. It may be separated by oil-water separation or the like, or may be subjected to a hydrogenation catalyst together with α-methylstyrene without separation. Water required for reaction The elementary amount is a force that is equivalent to equimolar to methyl styrene. Normally, the raw material also contains other components that consume hydrogen, and an excess of hydrogen is required. In addition, since the reaction proceeds more rapidly as the partial pressure of hydrogen is increased, a molar ratio of hydrogen to θ! —Methylstyrene of 1 to 10 is usually used. More preferably, it is 1 to 5. The excess hydrogen remaining after the reaction can be recycled after being separated from the reaction solution. The reaction can be carried out in a liquid or gas phase using a solvent. The solvent should be substantially inert to the reactants and products. The solvent may be any material present in the used methyl styrene solution. For example, when -methylstyrene is a mixture of the product, cumene, this can be substituted for the solvent without particularly adding a solvent. The hydrogenation reaction temperature is generally from 0 to 500 ° C, but a temperature of from 30 to 400 ° C is preferred. In general, it is advantageous for the pressure to be between 100 and 1000 kPa. The dehydration reaction and the hydrogenation reaction can be advantageously carried out by a continuous process using a catalyst in the form of a fixed bed. The dehydration reaction and the hydrogenation reaction may use separate reactors, or may use a single reactor. The reactor of the continuous method includes an adiabatic reactor and an isothermal reactor. However, since an isothermal reactor requires equipment for removing heat, an adiabatic reactor is preferable. In the case of a single adiabatic reactor, since the dehydration reaction of cumyl alcohol is an endothermic reaction, the temperature decreases as the reaction proceeds, while the hydrogenation reaction of α-methylstyrene is an exothermic reaction. The temperature rises as it progresses. As a whole, the calorific value is higher, so the outlet temperature is higher than the reactor inlet temperature. The reaction temperature and pressure are selected so that the water contained in the α-methylstyrene solution after the dehydration reaction does not condense. The reaction temperature is preferably from 150 to 30 Ot :, and the reaction pressure is preferably from 100 to 2000 kPa. If the temperature is lower than the above range or the pressure is too high, water may condense at the dehydration reaction outlet, which may lower the performance of the hydrogenation catalyst. If the pressure is too high, it is disadvantageous in the reaction equilibrium of the dehydration reaction. On the other hand, if the temperature is higher than the above range or the pressure is too low, a large amount of gas phase is generated, and the life of the catalyst may be shortened due to fouling or the like, which is disadvantageous. Hydrogen can be fed from either the inlet of the fixed bed reactor or the inlet of the hydrogenation catalyst, but it is preferable to feed hydrogen from the inlet of the fixed bed reactor in view of the activity of the dehydration catalyst. In other words, the constant presence of hydrogen in the dehydration reaction zone promotes the vaporization of water generated by dehydration, increases the equilibrium de-conversion rate, and can obtain a higher conversion rate more efficiently than in the absence of hydrogen. The water generated in the dehydration reaction passes through the hydrogenation catalyst.However, by operating at a level that does not condense as described above, it can be operated at low cost without installing any equipment for removing water. can do. Unreacted hydrogen at the reactor outlet can be recycled and reused after the gas-liquid separation operation. Further, it is possible to separate water generated in the dehydration reaction from the reaction liquid during the gas-liquid separation operation. A part of the obtained reaction liquid (mainly cumene) can be recycled to the reactor inlet for use.
脱水触媒の量はクミルアルコールが充分に転化する量であればよく、 クミル アルコール転化率は 9 0 %以上であることが好ましい。 水添触媒の量はひーメ チルスチレンが充分に転化する量であればよく、 α—メチルスチレン転化率は 9 8 %以上が好ましい。 コストの観点から考えると、 脱水触媒と水添触媒は多 段の反応器とすることなく、 単一の固定床反応器に充填されていることが好ま しい。 反応器の中は幾つかのベッドに別れていてもよく、 または別れていなく てもよい。別れていない場合、脱水触媒と水添触媒は直接接触させてもよいが、 イナ一卜な充填物で仕切りをつけてもかまわない。  The amount of the dehydration catalyst may be an amount that can sufficiently convert cumyl alcohol, and the conversion of cumyl alcohol is preferably 90% or more. The amount of the hydrogenation catalyst may be an amount capable of sufficiently converting the methylstyrene, and the α-methylstyrene conversion is preferably 98% or more. From the viewpoint of cost, it is preferable that the dehydration catalyst and the hydrogenation catalyst be packed in a single fixed-bed reactor without using a multi-stage reactor. The reactor may be separated into several beds or not separated. If not separated, the dehydration catalyst and the hydrogenation catalyst may be brought into direct contact with each other, but may be partitioned with an intact filler.
本発明においてはエポキシ化工程に供するクメンノ\ィドロパーォキサイドが 下記式 (1 ) で表される温度 (t °C) 以上の熱履歴を受けていないことが必須 である。  In the present invention, it is essential that cumene hydroperoxide to be subjected to the epoxidation step does not receive a heat history of a temperature (t ° C.) or more represented by the following formula (1).
t (DC) = 1 5 0 - 0 . 8 xw ( 1 ) t (D C) = 1 5 0 -. 0 8 xw (1)
W:クメンハイドロパ一ォキサイドを含有する溶液中のクメンハイド 口パーォキサイドの含有量 (重量%)  W: Cumene Hydride Peroxide content in solution containing cumene hydroperoxide (% by weight)
上記の条件を満足しない場合、 クメンハイドロパーォキサイドが熱分解を受 けて収率が低下するとともに、 プロピレンからプロピレンォキサイドを得るェ ポキシ化反応に用いる触媒に対する被毒物質を生じ、 エポキシ化反応の収率が 低下するという問題を発生する。 エポキシ化工程に供するクメンハイドロパー ォキサイドが熱履歴を受ける可能性がある場所として酸化反応工程をあげるこ とができる。 また、 酸化工程後に濃縮工程や精製工程を設ける場合にはこれら の工程も熱履歴を受ける工程としてあげることができる。 If the above conditions are not satisfied, cumene hydroperoxide undergoes thermal decomposition to reduce the yield, and produces poisoning substances for the catalyst used in the epoxidation reaction to obtain propylene oxide from propylene. Epoxidation reaction yield The problem of lowering occurs. An oxidation reaction step can be cited as a place where cumene hydroperoxide to be subjected to the epoxidation step may receive a thermal history. In the case where a concentration step or a purification step is provided after the oxidation step, these steps can also be given as steps receiving the heat history.
式 (1 ) における wはクメンハイド口パーオキサイドを含有する溶液中のク メンハイドロパ一オキサイドの含有量 (重量%) であり、 5〜8 0重量%であ ることが好ましい。 該含有量が過少であると工業的に生産性が低く不利であり、 一方、 該含有量が過多であると分解反応が進行しゃすく収率が低下してしまい、 かつ暴走反応の危険性が高くなる。 実施例  In the formula (1), w is the content (% by weight) of cumene hydroperoxide in the solution containing the peroxide at the mouth of cumene hydride, and is preferably 5 to 80% by weight. If the content is too low, industrial productivity is low and disadvantageous.On the other hand, if the content is too high, the decomposition reaction proceeds, the yield decreases, and the risk of runaway reaction decreases. Get higher. Example
以下に本発明を実施例により詳しく説明する。  Hereinafter, the present invention will be described in more detail with reference to Examples.
実施例 1 Example 1
5 . 4重量%クメンハイド口パーォキサイドを含むクメン溶液 5 0 g (クメ ンハイド口パーオキサイド 1 7 . 7 mm o 1 ) をォ一トクレーブに仕込み、 1 2 0 °C、 0 . 4 M P a Gで 6 0分加熱攪拌した。 加熱後の液中に含まれる熱分 解性生物、 ァセトフエノン (A C P ) 、 クメン二量体 (D C UM) およびェポ キシ触媒の被毒物質であるギ酸 (F OA) の生成量を表 1に示す。  50 g of a cumene solution (peroxide 17.7 mmo1) containing 5.4% by weight cumenehydride peroxide was charged into a autoclave, and charged at 120 ° C and 0.4 MPag at 6 MPa. The mixture was heated and stirred for 0 minutes. Table 1 shows the amounts of thermolytic products, acetofenone (ACP), cumene dimer (DCUM), and formic acid (FOA), which is a poison of the epoxy catalyst, contained in the heated liquid. Show.
実施例 2 Example 2
加熱温度が 1 4 0 であること以外は、 実施例 1と同様に行った。 結果を表 1 に示す。 The procedure was performed in the same manner as in Example 1 except that the heating temperature was 140. The results are shown in Table 1.
比較例 1 Comparative Example 1
加熱温度が 1 6 0 °Cであること以外は、 実施例 1と同様に行った。 結果を表 1 に示す。 The procedure was performed in the same manner as in Example 1 except that the heating temperature was 160 ° C. The results are shown in Table 1.
比較例 2 Comparative Example 2
加熱温度が 2 0 0 °Cであること以外は、 実施例 1と同様に行った。 結果を表 1 に示す。 表 1 The procedure was performed in the same manner as in Example 1 except that the heating temperature was 200 ° C. Table 1 shows the results. table 1
Figure imgf000010_0001
産業上の利用可能性
Figure imgf000010_0001
Industrial applicability
本発明によれば、 クメンから得られるクメン /、ィドロパーォキサイドを酸素 キヤリャ一として用いてプロピレンをプロピレンォキサイドに変換し、 かつ該 クメンを繰り返し使用することができ、 しかもプロピレンからプロピレンォキ サイドを得るエポキシ化反応に用いる触媒の活性を高水準に長期に維持するこ とができるプロピレンォキサイドの製造方法を提供することができる。  According to the present invention, propylene can be converted to propylene oxide using cumene / idloperoxide obtained from cumene as an oxygen carrier, and the cumene can be used repeatedly. It is possible to provide a method for producing propylene oxide which can maintain the activity of a catalyst used in an epoxidation reaction for obtaining propylene oxide at a high level for a long period of time.

Claims

請 求 の 範 囲 The scope of the claims
1 . 下記の工程を含むプロピレンオキサイドの製 3 方法であって、 エポキシ 化工程に供するクメンハイド口パーオキサイドが下言己式 (1 ) で表される温度 ( t °C) 以上の熱履歴を受けていないことを特徴とするプロピレンオキサイド の製造方法。 1. A method for producing propylene oxide comprising the following steps, wherein the peroxide at the mouth of the cumenehydride to be subjected to the epoxidation step receives a heat history at a temperature (t ° C) or higher represented by the following formula (1). A method for producing propylene oxide.
t CO = 1 5 0 - 0 . 8 xw ( 1 )  t CO = 1 5 0-0 .8 xw (1)
w:クメンハイドロパ一ォキサイドを含有する溶液中のクメンハイド 口パーオキサイドの含有量 (重量%)  w: Cumenehydroxide content in solution containing cumene hydroperoxide (wt%)
酸化工程:クメンを酸化することによりクメンハイドロパーォキサイドを得 る工程  Oxidation step: Step of oxidizing cumene to obtain cumene hydroperoxide
エポキシ化工程:酸化工程で得たクメンハイドロノ\°—ォキサイドとプロピレ ンとを反応させることによりプロピレンォキサイド及びクミルアルコールを得 る工程  Epoxidation step: A step of obtaining propylene oxide and cumyl alcohol by reacting cumene hydrogen oxide obtained in the oxidation step with propylene.
脱水工程:脱水触媒の存在下、 エポキシ化工程で得たクミルアルコールを脱 水することにより ひーメチルスチレンを得る工程  Dehydration step: A step of obtaining permethylstyrene by dewatering cumyl alcohol obtained in the epoxidation step in the presence of a dehydration catalyst.
水添工程:水添触媒の存在下、 《—メチルスチレンを水添してクメンとし、 酸化工程へリサイクルする工程  Hydrogenation process: In the presence of a hydrogenation catalyst, a process of hydrogenating methylstyrene to cumene and recycling it to the oxidation process
2 . 式 (1 ) における wが 5〜 8 0重量%である請求の範囲第 1項記載の方 法。  2. The method according to claim 1, wherein w in the formula (1) is 5 to 80% by weight.
PCT/JP2004/013997 2003-09-25 2004-09-16 Process for producing propylene oxide WO2005030743A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003333151A JP2005097182A (en) 2003-09-25 2003-09-25 Method for producing propylene oxide
JP2003-333151 2003-09-25

Publications (1)

Publication Number Publication Date
WO2005030743A1 true WO2005030743A1 (en) 2005-04-07

Family

ID=34385980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013997 WO2005030743A1 (en) 2003-09-25 2004-09-16 Process for producing propylene oxide

Country Status (2)

Country Link
JP (1) JP2005097182A (en)
WO (1) WO2005030743A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109476621A (en) * 2016-07-29 2019-03-15 住友化学株式会社 The manufacturing method of propylene oxide
CN114436739A (en) * 2020-10-16 2022-05-06 中国石油化工股份有限公司 Method for preparing isopropyl benzene and obtained isopropyl benzene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192151A (en) * 1992-09-11 1994-07-12 Aristech Chem Corp Two-stage decomposition of cumene hydroperoxide
JP2001270874A (en) * 2000-03-24 2001-10-02 Sumitomo Chem Co Ltd Method for producing propylene oxide
JP2004250430A (en) * 2002-12-24 2004-09-09 Sumitomo Chem Co Ltd Method for producing cumene

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3351635A (en) * 1966-03-14 1967-11-07 Halcon International Inc Epoxidation process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192151A (en) * 1992-09-11 1994-07-12 Aristech Chem Corp Two-stage decomposition of cumene hydroperoxide
JP2001270874A (en) * 2000-03-24 2001-10-02 Sumitomo Chem Co Ltd Method for producing propylene oxide
JP2004250430A (en) * 2002-12-24 2004-09-09 Sumitomo Chem Co Ltd Method for producing cumene

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109476621A (en) * 2016-07-29 2019-03-15 住友化学株式会社 The manufacturing method of propylene oxide
EP3495356A4 (en) * 2016-07-29 2020-01-15 Sumitomo Chemical Company Limited Method for producing propylene oxide
US10807961B2 (en) 2016-07-29 2020-10-20 Sumitomo Chemical Company, Limited Method for producing propylene oxide
CN109476621B (en) * 2016-07-29 2022-09-27 住友化学株式会社 Method for producing propylene oxide
CN114436739A (en) * 2020-10-16 2022-05-06 中国石油化工股份有限公司 Method for preparing isopropyl benzene and obtained isopropyl benzene

Also Published As

Publication number Publication date
JP2005097182A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
WO2001070711A1 (en) Process for producing propylene oxide
JP4400120B2 (en) Cumene production method
US7705166B2 (en) Process for producing propylene oxide
JP4586467B2 (en) Method for producing cumene and method for producing propylene oxide including the method for producing the same
JP5085003B2 (en) Method for producing α-methylstyrene
WO2005030743A1 (en) Process for producing propylene oxide
JP4385700B2 (en) Propylene oxide production method
WO2005030742A1 (en) Method for producing propyleneoxide
JP2005097184A (en) Method for producing propylene oxide
JP2005097188A (en) Method for producing cumene
JP2005097175A (en) Method for producing propylene oxide
JP2005097183A (en) Method for producing propylene oxide
JP2005097178A (en) Method for producing propylene oxide
JP2005097186A (en) Method for producing propylene oxide
JP2005097180A (en) Method for producing propylene oxide
JP2005097174A (en) Method for producing propylene oxide
JP2005097210A (en) Method for producing cumene
JP2005097212A (en) Method for producing propylene oxide
JP2005097209A (en) Method for producing propylene oxide
JP2005097187A (en) Method for producing propylene oxide
JP2005097181A (en) Method for producing propylene oxide
JP2004292336A (en) Method for producing cumene
JP2005097214A (en) Method for producing propylene oxide
JP2005097211A (en) Method for producing propylene oxide
JP2005097213A (en) Method for producing propylene oxide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase