WO2005028601A1 - 油脂の乾式分別方法 - Google Patents

油脂の乾式分別方法 Download PDF

Info

Publication number
WO2005028601A1
WO2005028601A1 PCT/JP2004/010322 JP2004010322W WO2005028601A1 WO 2005028601 A1 WO2005028601 A1 WO 2005028601A1 JP 2004010322 W JP2004010322 W JP 2004010322W WO 2005028601 A1 WO2005028601 A1 WO 2005028601A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
liquid
temperature
fraction
fractionation
Prior art date
Application number
PCT/JP2004/010322
Other languages
English (en)
French (fr)
Inventor
Yuji Kuwabara
Nobuaki Kanai
Toshiaki Takahashi
Yoshihiro Yamanaka
Original Assignee
Fuji Oil Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34372755&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005028601(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fuji Oil Company, Limited filed Critical Fuji Oil Company, Limited
Priority to JP2005514002A priority Critical patent/JP4534986B2/ja
Publication of WO2005028601A1 publication Critical patent/WO2005028601A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B7/00Separation of mixtures of fats or fatty oils into their constituents, e.g. saturated oils from unsaturated oils
    • C11B7/0075Separation of mixtures of fats or fatty oils into their constituents, e.g. saturated oils from unsaturated oils by differences of melting or solidifying points

Definitions

  • the present invention relates to a method for dry fractionation of fats and oils, particularly fats and oils that are solid at room temperature, such as hard butter, and that melt or are liquid near body temperature.
  • Solvent fractionation and dry fractionation are generally known as fat / oil fractionation techniques. Separation technology is a technology for fractionating fats and oils into a crystal fraction and a liquid fraction by utilizing the difference in melting properties.However, the difference in the fractionation performance between the crystal fraction and the liquid fraction depends on the fractionation method. Come out.
  • Solvent fractionation is a method in which a solvent (acetone, hexane, alcohol, etc.) is added to oils and fats 0.5 to 5 times, dissolved, cooled, and crystals are precipitated and fractionated.
  • a solvent acetone, hexane, alcohol, etc.
  • fractionation performance is extremely good, handling requires careful attention to safety and hygiene due to the use of solvents, requires large-scale equipment, and increases costs due to solvent removal. There's a problem.
  • the dry fractionation method is a method of cooling the heated and melted fats and oils to precipitate crystals, and separating them from the liquid part by filtration or the like.Since no solvent is used, safety and low cost are considered. Although good, the problem is that the fractionation performance of the crystal fraction and the liquid fraction is low.
  • the present invention provides a method wherein a crystal fraction containing G2U and glyceride having a higher melting point than that obtained by crystallization and solid-liquid separation is heated to partially melt, and then subjected to solid-liquid separation. It is a method for dry separation of fats and oils.
  • the above-mentioned crystal fraction crystallizes oils and fats (A) containing G2U and GU2, and solid-liquid separation is performed, whereby the crystal fraction enriched in G2U (AF) and the liquid fraction enriched in GU2 (AL) G2U is 1, 3-di-saturated-2-unsaturated tridaliceride, and the saturated fatty acid residue has 16 to 22 carbon atoms.
  • the invention is based on the method of dry fractionation of fats and oils (A) which are vegetable butters, transesterification oils or crystal fractions obtained by dry fractionation thereof, or fats and oils which are isomerized hardened fats and oils.
  • A fats and oils
  • G is a saturated or trans acid fatty acid residue
  • U is a cis unsaturated fatty acid residue
  • G2U is a triglyceride having two G residues and one U residue.
  • the crystal fraction containing G2U and glyceride having a higher melting point than that obtained by crystallization and solid-liquid separation is heated and partially melted to obtain a crystal with time.
  • a dry fractionation method that can obtain a fat and oil for chocolate (hard butter) with good workability in terms of quality was obtained.
  • the present invention relates to a dry fractionation method for fractionating fats and oils without using a solvent (acetone, hexane, etc.).
  • G is a saturated or trans acid fatty acid residue
  • U is a cis unsaturated fatty acid residue
  • two saturated or trans acid fatty acid residues and one cis unsaturated fatty acid residue.
  • a triglyceride to which the group is attached and a higher melting glyceride is GGG, that is, three saturated Triglycerides to which sum or trans acid fatty acid residues are bound, such as 1,3-_2-palmitoyl glyceride (St-P-St) and GG-DG, ie, diglycerides to which two saturated or trans acid fatty acid residues are bound
  • 1,2-distearoyl glyceride St_St_DG
  • G2U and fats containing higher-melting glycerides which, for example, G2U is main component, not less than 60 wt% as a content, high melting glycerides (GGG + GG-DG) Power 1 wt 0/0
  • G2U types include GUG type and GGU type.
  • the difference between the solubility of the main component and the high-melting dariseride in the liquid fraction can be easily increased by utilizing the difference in solubility.
  • a small amount of the glyceride having a high melting point can be separated from the main component.
  • the fat and oil (A) containing G2U and GU2 is preferably a vegetable butter, a transesterification oil or a crystal fraction obtained by fractionating them, or an isomerized hardened fat or oil.
  • Vegetable butters include, for example, vegetable oils such as palm oil, soybean oil, rapeseed oil, corn oil, cottonseed oil, castor oil, cashew oil, and shea butter.
  • the crystal fraction (AF) may be obtained by solvent fractionation, but the crystal fraction (AF) obtained by dry fractionation can be easily obtained because the production equipment does not require solvent removal.
  • the crystal fraction (AF) contains a force G2U that can be used as hard butter and glycerides (GGG and GG-DG) having a higher melting point, and this GGG and GG-DG C Tends to degrade the performance of dough butter. Therefore, the crystal fraction is then heated and partially melted, so that the high-melting-point glyceride remains on the crystal side and is concentrated for solid-liquid separation.
  • GGG and GG-DG glycerides having a higher melting point
  • G2U In order to partially melt the solid unmelted crystal fraction by heating, G2U is melted as uniformly as possible, but the glyceride with a higher melting point is heated to a temperature at which it does not melt. Warm up.
  • a method of uniformly raising the temperature for example, there is a method in which the crystal fraction is allowed to stand in a space in which the outside air temperature is set to a target temperature for a certain time or more. In this case, the surface area of the crystal fraction (AF) is increased by coarsely crushing or crushing the crystal fraction (AF), and the time required for uniformly raising the temperature can be shortened. Further, when the stirring is accompanied, the uniform temperature rise becomes better.
  • the high-melting-point glyceride By raising the temperature and partially melting the crystal fraction, the high-melting-point glyceride is concentrated on the crystal side, and the high-melting-point glyceride can be fractionated by solid-liquid separation.
  • the saturated fatty acid residues (S) of SUS include those having 16 to 22 carbon atoms (C16: palmitic acid, C18: stearic acid, C20: arachidic acid, C22: behenic acid).
  • the type of unsaturated fatty acid residue (U) is not limited to the number of double bonds, but in particular, oleic acid having a number of double bonds is preferred.
  • SUS 1,3-distear port-2-oleoyl triglyceride (StOSt), 1,3-dipalmitit-2-oleoyl triglyceride (POP), 1-palmit, 3-steer port_2-o Reoyl triglyceride (POSt) power S.
  • the heating temperature melts G2U, but does not melt glyceride with a higher melting point, but raises the temperature so that both can be separated into solid and liquid. It is sufficient to raise the temperature according to the molecular species of glyceride. For example, in the case of StOSt, the temperature at which the temperature is raised to partially melt is 40 to 45 ° C. If the temperature is lower than 40 ° C, it is difficult to solidify the StOSt component and perform solid-liquid separation. If the temperature is higher than 45 ° C, all the components are easily melted.
  • the separation performance of the StOSt component and the glyceride having a higher melting point can be improved.
  • a place for fats and oils that contain a lot of POP In this case, 27-30.5.
  • the method of fractionating the solid-liquid after the temperature raising operation is not particularly limited as long as it is a method of separating the solid and the liquid, such as squeezing, suction filtration, natural filtration, and centrifugation.
  • the squeezing method is preferable in consideration of the amount, the yield of the liquid fraction and the quality.
  • the pressure (pressing) at the time of pressing is not particularly limited as long as the crystal fraction and the liquid fraction are separated and the crystal fraction is adjusted so as not to be melted by the pressure.
  • the mesh degree of the filter at the time of fractionation is not particularly limited as long as it is selected according to the particle size of the crystal fraction.
  • a transesterification reaction was carried out between ethyl stearate ester and oleaginous castor oil using a lipase having 1,3-position specificity as a catalyst, and then the ethyl ester was removed by distillation to prepare an ester exchange reaction oil.
  • This transesterification oil (including StOSt 'StOO' StStSt, etc.) is completely melted at 50 ° C or higher, then solidified at 23 ° C (product temperature 23 ° C), solid-liquid separated by squeezing filtration, and crystal fraction. (50% yield).
  • the contents of StOSt, St ⁇ , StStSt, and StSt-DG in the crystal fraction are shown below. Component analysis was performed by high performance liquid chromatography.
  • the entire crystal fraction was put into a melter and melted by heating.
  • the melter was equipped with a heating coil inside a stainless steel tank of W380mm X L380mm X H400mm, and used a structure that could circulate hot water at a constant temperature inside the coil. After heating the crystal fraction to a temperature of 43.0 ° C, hold it for a certain time (about 120 minutes) while stirring (30 (m), and press-filter it with a filter press. Then, solid-liquid separation was performed to obtain a liquid side from which the crystal side on which the high melting point glyceride was concentrated was removed. Table 2 shows the composition of the high melting point glycerides on the liquid side, and the typical G2U and GU2 compositions (% by weight).
  • Comparative Example 1 the temperature was low and solid-liquid separation could not be performed. Further, in Comparative Example 2, the temperature was raised to a high temperature, so that complete melting occurred and solid-liquid separation was not possible.
  • Example 123 high-melting-point glyceride fractionation was successfully performed.
  • a high melting point glyceride contained in a palm medium melting point fraction (PMF: POP content 46.5%, ??? content 1.31%) obtained from palm oil by a dry fractionation method (Glycerol).
  • PMF palm medium melting point fraction
  • the fractionation method is as follows. The cooled and solidified PMF was coarsely crushed and then put into a melter and melted by heating. As the melter used for the heat melting, a transesterification reaction was carried out using a lipase having 1,3-position specificity in ethyl stearylate and oleaginous castor oil as catalysts.
  • Solid-liquid separation was carried out in the same manner as in Example 4 except that the temperature of the PMF was raised to 30.7 ° C to obtain a liquid side from which the crystal side on which high-melting point glyceride was concentrated was removed.
  • Table 4 shows the composition (wt%) of POP and PPP contained in the liquid side.
  • Example 4 the PPP content was 1.0% or less, and it was found that high-melting-point glycerides were fractionated.
  • Comparative Example 3 the POP fraction remained unmelted on the crystal side and the POP content on the liquid side decreased due to the low heating temperature at which the PPP content was 1.0% or less. At 26.5 ° C, the viscosity of PMF was too high to perform sufficient pressure filtration.
  • Example 2 The same transesterification oil (including stost'stoo'ststst etc.) as used in Example 1 was completely melted at 50 ° C or higher, then solidified at 23 ° C (product temperature 23 ° C), and subjected to pressure filtration.
  • the crystal fraction (yield 50%) obtained by solid-liquid separation was completely melted at 70 ° C according to the conventional dry fractionation method, and the product temperature was raised to 38 ° C in 1 hour while stirring at 15 rpm. Cooling was carried out until it was. Thereafter, the temperature was maintained for 1 hour, and the product was cooled to 3 C in 30 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Fats And Perfumes (AREA)
  • Edible Oils And Fats (AREA)

Abstract

ハードバターなど、常温で固状、体温付近で融解する、または液状である油脂にごく微量(数%)しか含まれない高融点画分を効果的に低減できる乾式分別法を提供することを目的とする。G2U及びこれより高融点のグリセリドを含有する、晶析・固液分離して得た結晶画分を、昇温して一部融解し、次いで固液分離することを特徴とする、油脂の乾式分別方法。但し、Gは飽和またはトランス酸型脂肪酸残基、Uはシス型不飽和脂肪酸残基であって、G2UはG2残基U1残基結合したトリグリセリド。

Description

明 細 書
油脂の乾式分別方法
技術分野
[0001] この発明は、油脂、特にハードバターなどのように常温で固状であり、体温付近で融 解する、または液状である油脂に有用な油脂の乾式分別方法に関するものである。 背景技術
[0002] 油脂分別技術には、溶剤分別法、乾式分別法が一般に知られている。分別技術とは 、融解性状の差を利用して油脂を結晶画分と液体画分に分画する技術であるが、分 別方法によって、結晶画分と液体画分の分画性能に違いが出てくる。
[0003] 溶剤分別法は、油脂に溶剤(アセトン、へキサン、アルコール等)を 0.5— 5倍加えて 溶解後冷却し、結晶を析出させて分画する方法で結晶画分と液体画分の分画性能 は極めて良好であるが、溶剤を使用しているため、その取扱には安全衛生上、十分 な注意が必要であり、設備も大掛かりとなり、また、溶剤を除去するためコスト高となる 問題がある。一方、乾式分別法は、加熱溶融した油脂を冷却して結晶を析出させ、こ れを濾過等して液体部と分離する方法で、溶剤を使用しないことから安全性、低コス トの面で良好であるが、結晶画分と液体画分の分画性能が低いことが問題となる。
[0004] 特に G2Uを主成分とするハードバターの製造において、それより高融点の成分を、典 型的には GGG (Gは飽和またはトランス酸型脂肪酸残基)、 GG-DG (飽和またはトラン ス酸型脂肪酸残基を 2個有するジグリセリド)を効率良く除去することが困難であった 。ハードバター中の GGG含量の多レ、ものをチョコレートに使用した場合、チョコレート の口溶けが悪くなり、また、ハードバター中の GG-DG含量の多いものをチョコレートに 使用した場合、チョコレートの結晶性 (冷却曲線)、テンパリング性に問題が生じる。 発明の開示
発明が解決しょうとする課題
[0005] 従来の技術では、乾式分別法の分画性能に満足できない場合、溶剤分別法で良く 用いられる、多段階分別の方法を取り入れることで、結晶画分と液体画分の分画性 能は改善されているが、 1 , 3ジ飽和— 2不飽和トリグリセリドを多く含む油脂からトリ飽 和グリセリドを分画する方法はまだ解明されておらず、乾式分別法の結晶画分と液体 画分の分画性能は良好とは言えないものであった。
課題を解決するための手段
[0006] 本発明者は、鋭意検討した結果、 1 , 3ジ飽和 _2不飽和トリグリセリドを多く含む結晶 画分を昇温して 1, 3ジ飽和 _2不飽和トリグリセリド成分を融解し、トリ飽和グリセリドを 結晶画分として固液分離することで、 1, 3ジ飽和 _2不飽和トリグリセリドとトリ飽和ダリ セリドの分画性能の良好な乾式分別法を完成するに至った。
[0007] すなわち、本発明は、 G2U及びこれより高融点のグリセリドを含有する、晶析 '固液分 離して得た結晶画分を、昇温して一部融解し、次いで固液分離することを特徴とする 油脂の乾式分別方法ものである。上記結晶画分が G2U及び GU2を含有する油脂 (A )を晶析'固液分離することにより、 G2Uの濃縮された結晶画分 (AF)と GU2の濃縮さ れた液体画分 (AL)とに分画して得た結晶画分 (AF)であることで、また、 G2Uが 1、 3- ジ飽和- 2-不飽和トリダリセライド、飽和脂肪酸残基の炭素数が 16個から 22個であり 、油脂 (A)が植物バター、エステル交換反応油もしくはそれらを乾式分別して得られ た結晶画分、または異性化硬化油脂である油脂の乾式分別方法を骨子とするもので ある。但し、 Gは飽和またはトランス酸型脂肪酸残基、 Uはシス型不飽和脂肪酸残基 であって、 G2Uは G残基が 2個、 U残基が 1個結合したトリグリセリド。
発明の効果
[0008] 以上のように、 G2U及びこれより高融点のグリセリドを含有する、晶析'固液分離して 得た結晶画分を、昇温して一部融解することで、経時的な結晶析出がなぐ高融点 のグリセリドを結晶側に濃縮して固液分離することで、品質上、作業性において良好 なチョコレート用油脂 (ハードバター)を得ることが出来る乾式分別法が得られた。 発明を実施するための最良の形態
[0009] 本発明は、溶剤(アセトン、へキサン等)を使用せず油脂を分画する乾式分別法に関 する。
[0010] G2Uは、 Gは飽和またはトランス酸型脂肪酸残基、 Uはシス型不飽和脂肪酸残基を言 レ、、 2つの飽和またはトランス酸型脂肪酸残基と 1つのシス型不飽和脂肪酸残基が結 合したトリグリセリドで、これより高融点のグリセリドとしては、 GGG、すなわち 3つの飽 和またはトランス酸型脂肪酸残基が結合したトリグリセリド、例えば、 1 , 3- _2—パルミトイルグリセリド(St-P-St)及び GG-DG、すなわち 2つの飽和またはトランス 酸型脂肪酸残基が結合したジグリセリド、例えば、 1, 2—ジステアロイルグリセリド( St_St_DG)である。 G2U及びこれより高融点のグリセリドを含有する油脂で、例えば G2Uが主成分で、含有量としては 60重量%以上のもので、高融点のグリセリド( GGG+GG-DG)力 1重量0 /0以上のものを言い、 G2Uの Typeとしては、 GUG型、 GGU 型が挙げられる。
[0011] G2Uを主成分とし、高融点のグリセリドを少量含有する油脂から高融点のグリセリドを 分画する方法としては、溶剤分別法で溶媒に油脂を加温溶解後、冷却して結晶を析 出させて分画する方法が、または、乾式分別法で油脂を加熱完全融解後、冷却して 結晶析出させて分画する方法が考えられる。し力 ながら、高融点のグリセリドの含有 量が主成分の含有量に対して少量の場合、いずれの分別法においても、高融点の グリセリドを特異的に結晶析出させることは非常に困難であるが、本発明の主成分を 含め油脂を固化したものを昇温して一部融解する方法では、主成分と高融点のダリ セリドの持つ液体画分に対する溶解度の差を利用することで容易に高融点のグリセリ ド以外を融解させ、主成分中から少量の高融点のグリセリドを分離することが出来る。
[0012] G2U及び GU2を含有する油脂 (A)は、植物バター、エステル交換反応油もしくはそれ らを分別して得られた結晶画分、または異性化硬化油脂のものが好ましい。植物バタ 一としては、例えば、パーム油、大豆油、ナタネ油、コーン油、綿実油、ヒマヮリ油、ャ シ油、シァ脂など植物性油脂が挙げられる。上記油脂類の単独、または混合油脂、 あるいはそれらの部分、及び全水添、エステル交換などを施した G2U及び GU2を含 有する油脂 (A)を G2Uの結晶化温度よりも低ぐ GU2の結晶化温度よりも高い範囲で 晶析 '固液分離することにより、 G2Uの濃縮された結晶画分 (AF)と GU2の濃縮された 液体画分 (AL)に分画し、得られた結晶画分 (AF)を使用する。結晶画分 (AF)は溶 剤分別で得たものでも良いが、乾式分別で得た結晶画分 (AF)の方が製造設備上、 溶剤除去不要であり簡単に得ることが出来る。
[0013] 結晶画分 (AF)は、ハードバターとして使用することが出来る力 G2U及びこれより高 融点のグリセリド(GGG、及び GG-DG)を含有しており、この GGG、及び GG-DGはハ ードバターの機能を低下させる傾向がある。そこで、次に結晶画分を昇温して一部融 解することにより、高融点のグリセリドを結晶側に残存濃縮して固液分離する。
[0014] 固体の融解されていない結晶画分を昇温して一部融解するには、結晶画分を出来る だけ均一に G2Uを融解するが、それより高融点のグリセリドは融解しない温度に昇温 する。均一に昇温させる方法には、例えば外気温度を目的の温度に設定した空間に 結晶画分を一定時間以上静置する方法がある。この場合、結晶画分 (AF)を粗砕、ま たは解砕することで結晶画分 (AF)の表面積が大きくなり、均一に昇温する時間を短 縮することが出来る。また、攪拌を伴うと更に均一昇温は良好となる。
[0015] 結晶画分を昇温して一部融解させることにより、高融点のグリセリドが結晶側に濃縮し 、それを固液分離することで、この高融点のグリセリドを分画することが出来る。結晶 画分中の G2Uが 1, 3-ジ飽和- 2-不飽和トリグリセライド(SUS : S=飽和脂肪酸残基、 U=シス型不飽和脂肪酸残基)である場合、 SUSと SSS及び SS-DGを従来の乾式分別 法、すなわち全部を融解後、冷却、固化により分画することは非常に困難であった。 従来の乾式分別法で、結晶画分を全部融解後、冷却して高融点のグリセリド (SSS)を 析出させて固液分離した場合、 SUSが経時的に結晶析出し、液体側に品質の低下、 収率の低下、及びフィルタープレスによる固液分離が困難となる。
[0016] SUSの飽和脂肪酸残基(S)としては、炭素数が 16個から 22個のもの(C16 :パルミチ ン酸、 C18 :ステアリン酸、 C20 :ァラキジン酸、 C22 :ベヘン酸)で、シス型不飽和脂 肪酸残基 (U)としては、二重結合の数には限定されないが、特には、二重結合の数 力 個のォレイン酸が好ましレ、。 SUSとしては、 1, 3-ジステア口- 2-ォレオイルトリグリセ ライド(StOSt)、 1, 3-ジパルミティト- 2-ォレオイルトリグリセライド(POP)、 1-パルミト, 3-ステア口 _2 -ォレオイルトリグリセライド(POSt)力 S挙げられる。昇温温度は G2Uを融 解するが、それより高融点のグリセリドは融解せず、両者が固液分離できるような昇温 を行う。また、グリセリドの分子種に応じた昇温を行えば良ぐ例えば、 StOStの場合、 昇温して一部融解させる温度は、 40— 45°Cが適する。 40°C未満の場合、 StOSt成 分も固化して固液分離することが困難であり、 45°Cを越えると、全てが融解しやすく なる。昇温する場合、更に 42°C— 44°Cの範囲で作業すると、 StOSt成分とこれより高 融点のグリセリドの分離性能を高くすることができる。また、 POPを多く含む油脂の場 合 ίま、 27— 30. 5°C力 S適してレヽる。
[0017] 昇温温度が低くなると結晶画分 (AF)の融解する度合が小さくなり、高融点のトリダリ セリドが多く除去され、 G2Uが濃縮された結晶画分の収率が低下する傾向がある。ま た、昇温温度が低いと、圧搾時間が長くなり、及び品質においても高融点(GGG,及 び GG-DG)の分離性能が低下する傾向がある。昇温温度が低すぎると、 G2Uを融解 せず固液分離が困難となる。昇温温度が高くなると、融解する結晶画分 (AF)が多く なるため収率は高くなるが、高融点のトリグリセリドが融解してしまうため、品質におい て高融点(GGG、及び GG-DG)の分離性能が低下する傾向がある。
[0018] 昇温操作後の固液を分画する方法は、圧搾、吸引濾過、 自然濾過、遠心分離等、固 体と液体を分離する方法であれば、特に限定はされないが、求める結晶画分、液体 画分の収率、及び品質を考慮すると圧搾方法が好ましい。圧搾の際の圧力 (圧搾) 度合は、結晶画分と液体画分が分画され、結晶画分が圧力によって融解しないよう 調整すれば良ぐ特に限定はない。また、分画する際のフィルターのメッシュ度合に ついても、結晶画分の粒径に合わせて選択すれば良ぐ特に限定されない。
[0019] 以下本発明を実施例により具体的に説明するが、本発明の実施例 (数値等)はこれ に限られるものではなレ、。また、実施例に記載の%、部表示は重量%、部を意味する
[0020] < G2U及び GU2を含有する油脂の製造 >
ステアリン酸ェチルエステルとハイォレイツクヒマヮリ油に 1 , 3位特異性を有するリパ ーゼを触媒としてエステル交換反応を行レ、、その後ェチルエステルを蒸留除去しェ ステル交換反応油を調製した。このエステル交換反応油(StOSt' StOO ' StStSt等 を含む)を 50°C以上で完全融解後、 23°Cで固化させ(品温 23°C)、圧搾濾過により 固液分離し、結晶画分 (収率 50%)を得た。結晶画分の StOSt、 St〇〇、 StStSt、 S tSt-DGの含有量を下記に示す。成分分析は高速液体クロマトグラフィーにて行った
[0021] [表 1] stost stoo ststst StSt-DG
結晶画分 68. 2% 8. 9% 1 . 6% 1 . 4% 実施例 1
[0022] 上記 23°Cで固化させた結晶画分を粗砕した後、結晶画分全量をメルタ一に入れて 加熱融解させた。メルタ一は、 W380mm X L380mm X H400mmのステンレス槽の 内部に加熱コイルを備えたもので、コイル内部に一定温度の温水を循環出来る構造 のものを使用した。結晶画分が 43. 0°Cの温度になるまで昇温させた後、攪拌(30卬 m)をしながら、一定時間(約 120分)保持を行レ、、フィルタープレスにて圧搾濾過し、 固液分離を行い、高融点のグリセリドが濃縮された結晶側を除去した液体側を得た。 液体側の高融点のグリセリド、並びに代表的 G2U,及び GU2の組成(重量%)組成を 表 2に示す。
実施例 2
[0023] 結晶画分が 40. 5°Cの温度になるまで昇温させたこと以外は、実施例 1と同様に固液 分離を行い、高融点のグリセリドが濃縮された結晶側を除去した液体側を得た。液体 側の高融点のグリセリド、並びに代表的 G2U,及び GU2の組成(重量%)組成を表 2に 示す。
実施例 3
[0024] 結晶画分が 44. 5°Cの温度になるまで昇温させたこと以外は、実施例 1と同様に固液 分離を行い、高融点のグリセリドが濃縮された結晶側を除去した液体側を得た。液体 側の高融点のグリセリド、並びに代表的 G2U,及び GU2の組成(重量%)組成を表 2に 示す。
[0025] 〔比較例 1〕
結晶画分が 39. 0°Cの温度になるまで昇温させたこと以外は、実施例 1と同様に固液 分離を行い、高融点のグリセリドが濃縮された結晶側を除去した液体側を得た。液体 側の高融点のグリセリド、並びに代表的 G2U,及び GU2の組成(重量%)組成を表 2に 示す。
[0026] 〔比較例 2〕
結晶画分が 46. 0°Cの温度になるまで昇温させたこと以外は、実施例 1と同様に固液 分離を行い、高融点のグリセリドが濃縮された結晶側を除去した液体側を得た。液体 側の高融点のグリセリド、並びに代表的 G2U,及び GU2の組成(重量%)を表 2に示す [0027] [表 2] 液体側組成
Figure imgf000008_0001
比較例 1では、昇温温度が低く固液分離できなかった。また、比較例 2では昇温温度 が高ぐ完全融解し、固液分離できなかった。
実施例 1 2 3は、高融点のグリセリドの分画が良好に出来た。
[0028]
上記の実施例 1 3、及び比較例 2を用いてチョコレートを作成し、 口溶け等の品質を 確認した。チョコレートは定法に従つて作成した。
[0029]
Figure imgf000008_0002
*検討油脂 結晶画分 (実施例 1 3、及び比較例 2) /パーム分別油 =45/55 チョコレートをモールド成型品を 20°C 1週間保存後、 5人のパネラーにて官能評価 を行った。結果を表 3に示す。
[0030] 〔表 3〕 "T- > h* nn 官能評価
嚙み出し 口溶け
実施例 1 ◎ ©
実施例 2 〇 〇
実施例 3 〇 〇
比較例 2 △ X 評価 : ◎〜〇 良好 △ やや不良 X 不良 実施例 4
[0031] パーム油から乾式分別法において得られたパーム中融点画分(PMF : POP含量 46 . 5%、???含量1. 31%)に含有する高融点のグリセリド(PPP :トリパルミティトグリセ ロール)の分画を行った。分画方法は次の通りである。冷却固化させた PMFを粗砕 した後、メルタ一に入れて加熱融解させた。加熱融解に使用したメルタ一は、ステアリ ン酸ェチルエステルとハイォレイツクヒマヮリ油に 1 , 3位特異性を有するリパーゼを触 媒としてエステル交換反応に使用したものを用いた。 PMFが 29. 0°Cの温度になる まで昇温させた後、一定時間(約 1時間)保持を行い、フィルタープレスにて圧搾濾過 し、固液分離を行った。液体側に含まれる POP、及び PPPの組成 (重量%)を表 4に示 す。
実施例 5
[0032] PMFが 29. 1°Cの温度になるまで昇温させたこと以外は、実施例 4と同様固液分離 を行い、高融点のグリセリドが濃縮された結晶側を除去した液体側を得た。液体側に 含まれる POP、及び PPPの組成(重量%)を表 4に示す。
実施例 6
[0033] PMFが 30. 0°Cの温度になるまで昇温させたこと以外は、実施例 4と同様固液分離 を行い、高融点のグリセリドが濃縮された結晶側を除去した液体側を得た。液体側に 含まれる POP、及び PPPの組成(重量%)を表 4に示す。
[0034] 〔比較例 3〕 PMFが 26. 5°Cの温度になるまで昇温させたこと以外は、実施例 4と同様固液分離 を行い、高融点のグリセリドが濃縮された結晶側を除去した液体側を得た。液体側に 含まれる POP、及び PPPの組成(重量%)を表 4に示す。
[0035] 〔比較例 4〕
PMFが 30. 7°Cの温度になるまで昇温させたこと以外は、実施例 4と同様固液分離 を行い、高融点のグリセリドが濃縮された結晶側を除去した液体側を得た。液体側に 含まれる POP、及び PPPの組成(重量%)を表 4に示す。
[0036] 〔表 4〕
Figure imgf000010_0001
実施例 4一 6は、 PPP含量が 1.0%以下となり、高融点のグリセリドを分画することが出 来た。比較例 3は、 PPP含量は 1.0%以下となった力 昇温温度が低いために POP 画分も結晶側に融解されずに残り、液体側の POP含量が減少した。また、 26.5°Cで は PMFの粘度が高ぐ圧搾濾過が充分に出来なかった。
[0037] 〔比較例 5〕
実施例 1で用いたのと同じエステル交換反応油(stost'stoo'ststst等を含む) を 50°C以上で完全融解後、 23°Cで固化させ(品温 23°C)、圧搾濾過により固液分離 して得た結晶画分 (収率 50%)を従来の乾式分別法に準じて 70°Cで完全融解した 後、 15rpmの攪拌をしながら 1時間で品温が 38°Cになるまで冷却を行った。その後、 1時間保持し、更に 30分で品温を 3 Cまで冷却した。品温を 31°Cで 2時間保持した 後、品温を 39°Cまで加熱し、 39°Cで 1時間保持後、遠心分離(1800G、 5分間)によ り固液分離で高融点のグリセリドを分離した。フィルタープレスで固液分離したところ、 目詰まりして運転困難であった。分離後の液体側の高融点のグリセリド、並びに代表 的 G2U,及び GU2の組成(重量%)の結果を表 5に示す。
[0038] [表 5] 比較例 5
StSt-DG 0. 8
ststst 0. 9
stost 6 8. 5
stoo 8. 7 比較例 5は、高融点のグリセリド(StSt_DG、及び StStSt)の分離は含有量の点から 実施例 1一 3と同等の除去が出来ているが、比較例 5の分離作業上、遠心分離による 固液分離している間、経時的に結晶の析出が起こり、液体側の収率が実施例 1一 3 に比べ、 3割程度低くなつた。

Claims

請求の範囲
[1] G2U及びこれより高融点のグリセリドを含有する、晶析 '固液分離して得た結晶画分 を、昇温して一部融解し、これによつて高融点のグリセリドを結晶側に濃縮して固液 分離することを特徴とする、油脂の乾式分別方法。
但し、 Gは飽和またはトランス酸型脂肪酸残基、 Uはシス型不飽和脂肪酸残基であつ て、 G2Uは G残基が 2個、 U残基力 S1個結合したトリグリセリド。
[2] 結晶画分が G2U及び GU2を含有する油脂 (A)を晶析 ·固液分離することにより、 G2U の濃縮された結晶画分 (AF)と GU2の濃縮された液体画分 (AL)とに分画して得た結 晶画分 (AF)である、請求項 1記載の分別方法。
但し GU2は G残基力 個、 U残基が 2個結合したトリグリセリド。
[3] G2Uが 1、 3-ジ飽和- 2-不飽和トリダリセライドである請求項 1、 2記載の分別方法。
[4] 飽和脂肪酸残基の炭素数が 16個から 22個である請求項 1、 2、 3記載の分別方法。
[5] 油脂 (A)が植物バター、エステル交換反応油もしくはそれらを分別して得られた結晶 画分、または異性化硬化油脂である請求項 2記載の分別方法。
PCT/JP2004/010322 2003-09-17 2004-07-21 油脂の乾式分別方法 WO2005028601A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005514002A JP4534986B2 (ja) 2003-09-17 2004-07-21 油脂の乾式分別方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003324787 2003-09-17
JP2003-324787 2003-09-17

Publications (1)

Publication Number Publication Date
WO2005028601A1 true WO2005028601A1 (ja) 2005-03-31

Family

ID=34372755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010322 WO2005028601A1 (ja) 2003-09-17 2004-07-21 油脂の乾式分別方法

Country Status (3)

Country Link
JP (1) JP4534986B2 (ja)
MY (1) MY136500A (ja)
WO (1) WO2005028601A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2357529A2 (en) 2005-06-02 2011-08-17 Carl Zeiss SMT GmbH Optical imaging arrangement
KR101198226B1 (ko) 2010-05-03 2012-11-07 씨제이제일제당 (주) 에스테르 교환 유지 조성물의 건식 분별 방법
WO2012169457A1 (ja) * 2011-06-06 2012-12-13 日清オイリオグループ株式会社 油脂の分別方法
WO2024190465A1 (ja) * 2023-03-10 2024-09-19 不二製油グループ本社株式会社 チョコレート用油脂組成物

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214290A (ja) * 1988-07-01 1990-01-18 Fuji Oil Co Ltd 油脂の乾式分別法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214290A (ja) * 1988-07-01 1990-01-18 Fuji Oil Co Ltd 油脂の乾式分別法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHONG C.N. ET AL.: "Fractionation procedures for obtaining cocoa butter-like fat from enzymatically interesterified palm olein", J. AM. OIL CHEM. SOC., vol. 69, no. 2, 1992, pages 137 - 140, XP000261553 *
DIMICK P.S. ET AL.: "Thermal and compositional properties of cocoa butter during static chrystallization", J. AM. OIL CHEM.SOC., vol. 64, no. 12, 1987, pages 1663 - 1669, XP002904107 *
MINATO A. ET AL.: "Thermal and structural properties of sn-1, 3-Dipalmitoyl-2-oleoylglycerol and sn-1,3-dioleoyl-2-palmitoylglycerol binary mixtures examined with synchrotron radiation x-ray diffraction", J. AM. OIL CHEM. SOC., vol. 74, no. 10, 1997, pages 1213 - 1220, XP002904106 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2357529A2 (en) 2005-06-02 2011-08-17 Carl Zeiss SMT GmbH Optical imaging arrangement
KR101198226B1 (ko) 2010-05-03 2012-11-07 씨제이제일제당 (주) 에스테르 교환 유지 조성물의 건식 분별 방법
WO2012169457A1 (ja) * 2011-06-06 2012-12-13 日清オイリオグループ株式会社 油脂の分別方法
WO2024190465A1 (ja) * 2023-03-10 2024-09-19 不二製油グループ本社株式会社 チョコレート用油脂組成物

Also Published As

Publication number Publication date
JPWO2005028601A1 (ja) 2007-10-04
MY136500A (en) 2008-10-31
JP4534986B2 (ja) 2010-09-01

Similar Documents

Publication Publication Date Title
JP4352103B2 (ja) 1,3−ジ飽和−2−不飽和トリグリセリドの分別方法
JP6163530B2 (ja) ココアバターと類似のハードバターの製造方法
EP2490550A1 (en) High melting point sunflower fat for confectionary
JP5557458B2 (ja) 油脂の製造方法
JP2010209147A (ja) 油脂の製造方法
JP4682848B2 (ja) 油脂の乾式分別法
JP2009249614A (ja) 油脂の分別方法
EP0132506A2 (en) Azeotropic fat fractionation
US7767241B2 (en) Dry fractionation method for fat
JP5576513B2 (ja) 油脂の製造方法
WO2005028601A1 (ja) 油脂の乾式分別方法
JP2000336389A (ja) パーム分別油及びその製造方法
DK2395069T3 (en) DRY OIL AND Grease SEPARATION PROCEDURE
WO2001010988A1 (fr) Huile de palme fractionnee et procede de production de celle-ci
JP3502158B2 (ja) カカオ脂の分別方法及び該方法によって得られる分別脂を含有するチョコレート
CN113115830B (zh) 用于巧克力的油脂组合物
JP2004298041A (ja) チョコレート及びハードバターの製造方法
JPH054057B2 (ja)
JP2000204389A (ja) ラ―ドの分別方法
WO2018097118A1 (ja) 油脂の乾式分別法
WO2024178286A1 (en) Process for producing a palm oil fraction using seeds

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514002

Country of ref document: JP

122 Ep: pct application non-entry in european phase