WO2005026266A1 - Novel reactive yellow dyes useful for ocular devices - Google Patents

Novel reactive yellow dyes useful for ocular devices Download PDF

Info

Publication number
WO2005026266A1
WO2005026266A1 PCT/US2004/027008 US2004027008W WO2005026266A1 WO 2005026266 A1 WO2005026266 A1 WO 2005026266A1 US 2004027008 W US2004027008 W US 2004027008W WO 2005026266 A1 WO2005026266 A1 WO 2005026266A1
Authority
WO
WIPO (PCT)
Prior art keywords
ocular device
compositions
intraocular lens
blue light
polymeric compositions
Prior art date
Application number
PCT/US2004/027008
Other languages
English (en)
French (fr)
Inventor
Yu-Chin Lai
Original Assignee
Bausch & Lomb Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bausch & Lomb Incorporated filed Critical Bausch & Lomb Incorporated
Priority to CA002536437A priority Critical patent/CA2536437A1/en
Priority to JP2006525353A priority patent/JP2007505170A/ja
Priority to EP04781650A priority patent/EP1664205A1/en
Priority to AU2004272525A priority patent/AU2004272525A1/en
Publication of WO2005026266A1 publication Critical patent/WO2005026266A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/106Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing an azo dye
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to a process for making ocular devices with blue light absorption properties. More particularly, the present invention relates to novel yellow dyes having vinyl polymerizable groups capable of copolymerization with monomers and/or oligomers to produce copolymers useful in the manufacture of intraocular lenses or other optical devices capable of blocking blue light.
  • intraocular lens intraocular lens
  • an intraocular lens is implanted within an eye at the time of surgically removing the diseased or damaged natural lens, such as for example, in the case of cataracts.
  • the preferred material for fabricating such intraocular lens implants was poly(methyl methacrylate), which is a rigid, glassy polymer.
  • Softer, more flexible IOL implants have gained in popularity in more recent years due to their ability to be compressed, folded, rolled or otherwise deformed. Such softer IOL implants may be deformed prior to insertion thereof through an incision in the cornea of an eye.
  • more flexible IOL implants as just described may be implanted into an eye through an incision that is much smaller, i.e., less than 4.0 mm, than that necessary for more rigid lOLs, i.e., 5.5 to 7.0 mm.
  • a larger incision is necessary for more rigid IOL implants because the lens must be inserted through an incision in the cornea slightly larger than the diameter of the inflexible IOL optic portion. Accordingly, more rigid IOL implants have become less popular in the market since larger incisions have been found to be associated with an increased incidence of postoperative complications, such as induced astigmatism.
  • Mazzocco U.S. Patent Number 4,573,998 discloses a deformable intraocular lens that can be rolled, folded or stretched to fit through a relatively small incision. The deformable lens is inserted while it is held in its distorted configuration, then released inside the chamber of the eye, whereupon the elastic property of the lens causes it to resume its molded shape.
  • suitable materials for the deformable lens Mazzocco discloses polyurethane elastomers, silicone elastomers, hydrogel polymer compounds, organic or synthetic gel compounds and combinations thereof.
  • Soft, foldable, high refractive index, ocular devices such as for example intraocular lenses (lOLs), capable of absorbing blue light are prepared in accordance with the present invention through the use of one or more novel reactive yellow dyes having blue light absorbing properties.
  • Blue light absorbing ocular devices such as lOLs, are produced in accordance with the present invention through the copolymerization of one or more novel yellow dyes having vinyl polymerizable groups, with one or more acrylic-type monomers and/or one or more siloxane oligomers. Ocular devices so produced protect an eye's retina from potentially damaging blue light and thereby possibly provide protection from macular degeneration.
  • Blue light blocking ocular devices of the present invention are produced by copolymerizing one or more novel yellow dyes having vinyl polymerizable groups with one or more acrylic-type monomers and allowing the same to undergo free radical copolymerization.
  • ocular devices of the present invention may be produced by copolymerizing one or more novel yellow dyes having vinyl polymerizable groups with one or more siloxane oligomers having hydrosilane groups through a hydrosilation reaction.
  • Such production processes yield ocular devices with blue light absorbing properties. By absorbing blue light, the ocular devices serve to block blue light from reaching and potentially damaging the retina of an eye implanted with the device.
  • Ocular devices, such as lOLs so produced are transparent, relatively high in elongation and relatively high in refractive index.
  • the present invention relates to a series of novel azo-based reactive yellow dyes useful in the production of high refractive index ocular devices such as for example but not limited to lOLs.
  • Ocular devices produced using the azo-based reactive yellow dyes of the present invention have blue light absorption properties that reduce or prevent blue light from reaching the retina of an eye implanted with the ocular device.
  • Azo-based reactive yellow dyes of the present invention have vinyl polymerizable groups such as for example but not limited to itaconic, fumatate, maleic, vinylacetyl, crotonic, or derivatives thereof, styrene, norbornenyi, vinyl, allyl, or like alkenyl groups.
  • the azo-based reactive yellow dyes' vinyl polymerizable groups allow the same to copolymerize with acrylic-type monomers through free radical copolymerization, or with siloxane oligomers having hydrosilane groups through a hydrosilation reaction.
  • Azo-based yellow dyes of the present invention have the generalized structure illustrated in Formula 1 below.
  • the An groups represent the same or different, substituted or unsubstituted C 6 - 36 aromatic groups such as for example but not limited to phenyl or naphthyl, which are responsible for providing blue light absorption properties to the yellow dye;
  • Ri is nothing or a straight or branched CMO alkylene spacer consisting of one or more of the atoms C, H, N, O, S, P, Si, CI or Br in any combination;
  • R 2 is hydrogen or a C-M O alkyl such as for example but not limited to methyl, butyl or hexyl when m is 1 , or is nothing when m is 2;
  • R 3 is nothing, a straight or branched C-M O alkylene spacer consisting of one or more of the atoms C, H, N, O, S, P, Si, CI or Br in any combination, or when R is CH 2 COOR 2 or R5 is COOR 2 , a carbonyl group;
  • R 4 is hydrogen, a
  • the yellow dye can be prepared by two different synthetic schemes. Both synthetic schemes involve diazotization of an aromatic amine, followed by coupling with different groups of interest depending on the desired structure of the yellow dye being synthesized. As for example, one synthetic scheme can be initiated by the reaction of N-phenyl diethanolamine with a diazonium salt of aniline, followed by a reaction with a vinyl-containing acid chloride or isocyanate to produce a reactive yellow dye. The same is further illustrated in Reaction Scheme 1 below.
  • An - N N - An - N(CH 2 CH 2 OCONH-R 5 ) 2
  • Another reaction scheme involves reaction of an aromatic alkylamine with a vinyl-containing acid chloride, anhydride or isocyanate to give an ethylenically unsaturated polymerizable amide or carbamate. The same is then allowed to couple with the diazonium salt of an aromatic amine to produce a yellow dye as illustrated in Reaction Scheme 2 below.
  • Preferred reactive yellow dyes of the present invention useful in the manufacture of ocular devices with blue light absorbing properties include for example but are not limited to N-2-[3'-(2"-methylphenylazo)-4'- hydroxyphenyl]ethyl vinylacetamide illustrated below in Formula 2, N-2-[3'-(2"- methylphenylazo)-4'-hydroxyphenyl]ethyl maleimide illustrated below in Formula 3, N,N-bis-(2-vinylacetoxyethyl)-(4' ⁇ phenylazo)aniline illustrated below in Formula
  • Reactive yellow dyes of the present invention synthesized as described above can be used in the manufacture of blue light blocking ocular devices by copolymerizing one or more of the subject reactive yellow dyes having polymerizable groups with one or more acrylic-type monomers and allowing the same to undergo free radical copolymerization.
  • ocular devices of the present invention may be produced by copolymerizing one or more of the subject reactive yellow dyes having polymerizable groups with one or more siloxane oligomers having hydrosilane groups through a hydrosilation reaction using a platinum-silicone complex as a catalyst. Such production processes yield ocular devices with blue light absorbing properties.
  • Reactive yellow dyes of the present invention may also be used to impart blue light absorption properties to a semi-fininshed silicone ocular device such as for example but not limited to an IOL.
  • Suitable acrylic-type monomers for copolymerization with one or more reactive yellow dyes of the present invention include for example but are not limited to 2-ethylphenoxy methacrylate, 2-ethylphenoxy acrylate, 2- ethylthiophenyl methacrylate, 2-ethylthiophenyl acrylate, 2-ethylaminophenyl methacrylate, 2-ethylaminophenyl acrylate, phenyl methacrylate, benzyl methacrylate, 2-phenylethyl methacrylate, 3-phenylpropyl methacrylate, 2-(4- propylphenyl)ethyl methacrylate, 2-(4-(1-methylethyl)phenyl)ethyl methacrylate, 2-(4-methoxyphenyl)ethyl methacrylate, 2-(4-cyclohexylphenyl)
  • Suitable siloxane oligomers for copolymerization with one or more reactive yellow dyes of the present invention include for example but are not limited to vinyl-capped prepolymers of high refractive index polysiloxanes such
  • Step 1 Synthesis of 4-vinylacetamidoethyl phenol.
  • the contents are chilled with an ice bath.
  • 4.18 grams (0.04 mole) of vinylacetyl chloride is added into the flask over a period of 30 minutes.
  • the ice bath is then removed and the contents are continuously stirred overnight.
  • the mixture is then filtered and then condensed using a rotavapor.
  • HPLC analysis indicates only one major product.
  • Step 2 Coupling of product from Step 1 with toluidine diazonium salt.
  • the procedure is the same as that described in U.S. Patent Number 5,470,932, Example 1 , second half except the acrylamidoethyl phenol is replaced with 4-vinylacetamidoethyl phenol.
  • the product is identified by NMR and Mass Spectroscopy.
  • EXAMPLE 5 Preparation of yellow dye solution for coating of an IOL: Solutions containing 1 , 2, 5 and 10 weight percent of the yellow dye of Example 4 in methylene chloride is prepared. To these solutions, platinum- cyclovinylmethylsiloxne complex (Gelest, Inc., Tullytown, Pennsylvania) at 1 % of the weight of the yellow dye is also added.
  • EXAMPLE 6 Coating of Silicone Intraocular Lenses: Ten (10) freshly thermally cured SoFlexTM Model L161 U (Bausch & Lomb, Incorporated, Rochester, New York) lenses are submerged into each coating solution as described in Example 3 for 30, 60 and 120 minutes.. Takes out lenses and air dry them. Then place these lenses in an oven at 80 to 90 °C for an hour. These lenses are then subjected to standard processing to get the final finished product.
  • Model LI61 U lenses are silicone lOLs derived from components consisting of a vinyl terminated polydimethyl-co-diphenyl siloxane, silicon-based reinforcing resins with vinyl groups, and an oligomer with multi hydrosilane units. Model LI61 U silicone lenses have excess free hydrosilane groups after curing
  • EXAMPLE 7 Selection of Yellow Dye Concentration and Coating Conditions: Run ultraviolet (UV) and visible absorption spectroscopy of coated lenses before and after processing. Select the yellow dye concentration and residence time of lens in dye solution based on the visible light absorption of the process lenses between 400-500 nm. Conditions, which give less than 50 % transmittance and maintenance of lens power/cosmetics are chosen for further coating studies, followed by optimization of conditions.
  • UV ultraviolet
  • visible absorption spectroscopy of coated lenses before and after processing.
  • Select the yellow dye concentration and residence time of lens in dye solution based on the visible light absorption of the process lenses between 400-500 nm.
  • Conditions, which give less than 50 % transmittance and maintenance of lens power/cosmetics are chosen for further coating studies, followed by optimization of conditions.
  • lOLs with blue light absorption properties are synthesized through the process of the present invention.
  • Suitable catalysts for use in the process of the present invention, for a hydrosilation reaction include but are not limited to platinum (3- 3.5 %)-divinyltetramethyldisiloxane complex and platinum (3-3.5 %)- cyclovinylmethylsiloxane complex.
  • the lOLs produced as described herein have the flexibility required to allow the same to be folded or deformed for insertion into an eye through the smallest possible surgical incision, i.e., 3.5 mm or smaller. It is unexpected that the subject lOLs described herein could possess the ideal physical properties disclosed herein.
  • lOLs manufactured in accordance with the present invention can be of any design capable of being rolled or folded for implantation through a relatively small surgical incision, i.e., 3.5 mm or less. Such lOLs may be manufactured to have an optic portion and haptic portions made of the same or differing materials. Once the material(s) are selected, the same may be cast in molds of the desired shape, cured and removed from the molds.
  • the lOLs are treated in accordance with the process of the present invention and then cleaned, polished, packaged and sterilized by customary methods known to those skilled in the art.
  • the process of the present invention is also suitable for use in the production of other medical or ophthalmic devices such as contact lenses, keratoprostheses, capsular bag extension rings, corneal inlays, corneal rings and like devices.
  • lOLs manufactured in accordance with the present invention are used as customary in the field of ophthalmology. For example, in a surgical cataract procedure, an incision is placed in the cornea of an eye.
  • the cataractous natural lens of the eye is removed (aphakic application) and an IOL is inserted into the anterior chamber, posterior chamber or lens capsule of the eye prior to closing the incision.
  • the subject ophthalmic devices may likewise be used in accordance with other surgical procedures known to those skilled in the field of ophthalmology. While there is shown and described herein a process for producing ocular devices with blue light absorption properties, it will be manifest to those skilled in the art that various modifications may be made without departing from the spirit and scope of the underlying inventive concept and that the same is not limited to particular processes and structures herein shown and described except insofar as indicated by the scope of the appended claims.
PCT/US2004/027008 2003-09-08 2004-08-19 Novel reactive yellow dyes useful for ocular devices WO2005026266A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002536437A CA2536437A1 (en) 2003-09-08 2004-08-19 Novel reactive yellow dyes useful for ocular devices
JP2006525353A JP2007505170A (ja) 2003-09-08 2004-08-19 眼球デバイスに有用な新規の反応性イエロー色素
EP04781650A EP1664205A1 (en) 2003-09-08 2004-08-19 Novel reactive yellow dyes useful for ocular devices
AU2004272525A AU2004272525A1 (en) 2003-09-08 2004-08-19 Novel reactive yellow dyes useful for ocular devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/657,495 US7098283B2 (en) 2003-09-08 2003-09-08 Reactive yellow dyes useful for ocular devices
US10/657,495 2003-09-08

Publications (1)

Publication Number Publication Date
WO2005026266A1 true WO2005026266A1 (en) 2005-03-24

Family

ID=34226569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/027008 WO2005026266A1 (en) 2003-09-08 2004-08-19 Novel reactive yellow dyes useful for ocular devices

Country Status (9)

Country Link
US (3) US7098283B2 (US20060241264A1-20061026-C00003.png)
EP (1) EP1664205A1 (US20060241264A1-20061026-C00003.png)
JP (1) JP2007505170A (US20060241264A1-20061026-C00003.png)
KR (1) KR20060076767A (US20060241264A1-20061026-C00003.png)
CN (1) CN1849375A (US20060241264A1-20061026-C00003.png)
AU (1) AU2004272525A1 (US20060241264A1-20061026-C00003.png)
CA (1) CA2536437A1 (US20060241264A1-20061026-C00003.png)
TW (1) TW200526744A (US20060241264A1-20061026-C00003.png)
WO (1) WO2005026266A1 (US20060241264A1-20061026-C00003.png)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1867683A1 (en) * 2005-04-08 2007-12-19 Menicon Co., Ltd. Novel polymerizable dye and ophthalmic lens containing the same

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8500274B2 (en) 2000-11-03 2013-08-06 High Performance Optics, Inc. Dual-filter ophthalmic lens to reduce risk of macular degeneration
US8403478B2 (en) 2001-11-02 2013-03-26 High Performance Optics, Inc. Ophthalmic lens to preserve macular integrity
CA2552122A1 (en) * 2003-12-29 2005-07-21 Advanced Medical Optics, Inc. Intraocular lenses having a visible light-selective-transmissive-region
JP2007535708A (ja) 2004-04-30 2007-12-06 アドバンスト メディカル オプティクス, インコーポレーテッド 高選択性紫色光透過性フィルターを有する眼用器具
ATE525664T1 (de) * 2004-11-22 2011-10-15 Abbott Medical Optics Inc Copolymerisierbare methin- und anthrachinon- verbindungen und artikel damit
ATE499620T1 (de) * 2004-11-22 2011-03-15 Abbott Medical Optics Inc Copolymerisierbare azoverbindungen und artikel damit
US20070092831A1 (en) * 2005-10-24 2007-04-26 Bausch & Lomb Incorporated Radiation-absorbing polymeric materials and ophthalmic devices comprising same
US7520608B2 (en) * 2006-03-20 2009-04-21 High Performance Optics, Inc. Color balanced ophthalmic system with selective light inhibition
US8113651B2 (en) 2006-03-20 2012-02-14 High Performance Optics, Inc. High performance corneal inlay
US8882267B2 (en) 2006-03-20 2014-11-11 High Performance Optics, Inc. High energy visible light filter systems with yellowness index values
US8360574B2 (en) * 2006-03-20 2013-01-29 High Performance Optics, Inc. High performance selective light wavelength filtering providing improved contrast sensitivity
US20120075577A1 (en) 2006-03-20 2012-03-29 Ishak Andrew W High performance selective light wavelength filtering providing improved contrast sensitivity
US9377569B2 (en) 2006-03-20 2016-06-28 High Performance Optics, Inc. Photochromic ophthalmic systems that selectively filter specific blue light wavelengths
US20070216861A1 (en) * 2006-03-20 2007-09-20 Andrew Ishak Ophthalmic system combining ophthalmic components with blue light wavelength blocking and color-balancing functionalities
CN101529311B (zh) 2006-08-23 2011-12-21 高效光学技术有限公司 用于选择性光抑制的系统和方法
MX2009003813A (es) * 2006-10-13 2009-05-12 Alcon Inc Lentes intraoculares con caracteristicas unicas para bloquear el paso de luz azul-violeta y para transmitir luz azul.
EP2155805A2 (en) * 2007-05-11 2010-02-24 Basf Se Polymeric dyes
TWI435915B (zh) * 2007-08-09 2014-05-01 Alcon Inc 含有吸收紫外光(uv)及短波長可見光二者的發色團之眼科鏡體材料(一)
TW200916531A (en) * 2007-08-09 2009-04-16 Alcon Inc Ophthalmic lens materials containing chromophores that absorb both UV and short wavelength visible light
EP2247976B1 (en) * 2008-02-12 2012-08-08 Aaren Scientific Inc. Ophthalmic lens having a yellow dye light blocking component
TWI453199B (zh) * 2008-11-04 2014-09-21 Alcon Inc 用於眼用鏡片材料之紫外光/可見光吸收劑
TWI487690B (zh) 2009-07-06 2015-06-11 Alcon Inc 用於眼用鏡片材料之可見光吸收劑
KR101069110B1 (ko) * 2009-12-04 2011-09-30 손준홍 조절성 인공 수정체
TWI473629B (zh) * 2010-01-18 2015-02-21 Alcon Inc 用於眼用晶體材料之可見光吸收劑
US9622853B2 (en) 2010-07-05 2017-04-18 Jagrat Natavar DAVE Polymeric composition for ocular devices
CN102283720A (zh) * 2011-08-01 2011-12-21 姚晓明 一种人工角膜
DE102011119729A1 (de) * 2011-11-30 2013-06-06 S & V Technologies Ag Polymerisierbare Farbstoffe und deren Zusammensetzungen für opthalmologische Anwendungen
TWI594743B (zh) * 2012-12-27 2017-08-11 Bionic artificial crystal body
US9798163B2 (en) 2013-05-05 2017-10-24 High Performance Optics, Inc. Selective wavelength filtering with reduced overall light transmission
US9085697B2 (en) 2013-06-21 2015-07-21 Benq Materials Corporation Polymerizable yellow dye for manufacturing ophthalmic lens
CN104387799B (zh) * 2013-06-27 2016-09-07 上海安诺其集团股份有限公司 一种可聚合偶氮染料化合物
US9683102B2 (en) 2014-05-05 2017-06-20 Frontier Scientific, Inc. Photo-stable and thermally-stable dye compounds for selective blue light filtered optic
CN104441880B (zh) * 2014-11-24 2016-08-17 苏州斯迪克新材料科技股份有限公司 一种防蓝光抗静电保护膜
CN106433063A (zh) * 2015-08-12 2017-02-22 普立万聚合体(上海)有限公司 含有蓝光阻隔添加剂的混合物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5662707A (en) * 1993-10-18 1997-09-02 Alcon Laboratories, Inc. Polymerizable yellow dyes and their use in ophthalmic lenses
US6353069B1 (en) * 1998-04-15 2002-03-05 Alcon Manufacturing, Ltd. High refractive index ophthalmic device materials
EP1293541A2 (en) * 2001-09-14 2003-03-19 Canon-Staar Co., Inc. Intraocular lens and dye therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015842A (en) 1997-08-07 2000-01-18 Alcon Laboratories, Inc. Method of preparing foldable hydrophilic ophthalmic device materials
US5891931A (en) 1997-08-07 1999-04-06 Alcon Laboratories, Inc. Method of preparing foldable high refractive index acrylic ophthalmic device materials
JP4225612B2 (ja) 1998-09-09 2009-02-18 スター・ジャパン株式会社 眼用レンズ材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5662707A (en) * 1993-10-18 1997-09-02 Alcon Laboratories, Inc. Polymerizable yellow dyes and their use in ophthalmic lenses
US6353069B1 (en) * 1998-04-15 2002-03-05 Alcon Manufacturing, Ltd. High refractive index ophthalmic device materials
EP1293541A2 (en) * 2001-09-14 2003-03-19 Canon-Staar Co., Inc. Intraocular lens and dye therefor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 133, no. 19, 6 November 2000, Columbus, Ohio, US; abstract no. 268216g, U.MULLER ET AL.: "The use of a silicone-bonded azo dye as chemical proton detector" XP001081820 *
CHEMICAL ABSTRACTS, vol. 83, no. 8, 25 August 1975, Columbus, Ohio, US; abstract no. 61595h, KOSTYUKOV, A. I. ET AL.: "Synthesis of allyl derivatives of azo dyes and their capacity for copolymerization with vinyl monomers" page 173; XP002314394 *
KOSTYUKOV, A. I. ET AL., IZV. VYSSH. UCHEB. ZAVED., KHIM. KHIM. TEKHNOL., vol. 17, no. 3, 1974, pages 419 - 422 *
N.AUNER AND J. WEIS: "Organosilicon Chem. IV, [Lect. Poster Contrib. Muechner Silicontage], 4th 1998", 2000, WILEY-VCH VERLAG GMBH, WEINHEIM, GERMANY *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1867683A1 (en) * 2005-04-08 2007-12-19 Menicon Co., Ltd. Novel polymerizable dye and ophthalmic lens containing the same
EP1867683A4 (en) * 2005-04-08 2010-03-17 Menicon Co Ltd NEW POLYMERIZABLE DYE AND BASED OPHTHALMIC LENS

Also Published As

Publication number Publication date
CA2536437A1 (en) 2005-03-24
KR20060076767A (ko) 2006-07-04
EP1664205A1 (en) 2006-06-07
TW200526744A (en) 2005-08-16
AU2004272525A1 (en) 2005-03-24
JP2007505170A (ja) 2007-03-08
CN1849375A (zh) 2006-10-18
US7304117B2 (en) 2007-12-04
US20050054797A1 (en) 2005-03-10
US20060241264A1 (en) 2006-10-26
US7098283B2 (en) 2006-08-29
US20060241263A1 (en) 2006-10-26

Similar Documents

Publication Publication Date Title
US7304117B2 (en) Reactive yellow dyes useful for ocular devices
US7276544B2 (en) Process for manufacturing intraocular lenses with blue light absorption characteristics
US7241312B2 (en) Silicone intraocular lens with blue light absorption properties
US7033391B2 (en) High refractive index silicone-containing prepolymers with blue light absorption capability
US6918931B2 (en) Prepolymers with yellow dye moiety
AU2003274891A1 (en) Improved process for the production of polysiloxane-based polymeric compositions for use in medical devices

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480025716.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2536437

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004272525

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004781650

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006525353

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067004657

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2004272525

Country of ref document: AU

Date of ref document: 20040819

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004272525

Country of ref document: AU

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 2004781650

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067004657

Country of ref document: KR