WO2005025798A1 - Pulvermonitor - Google Patents

Pulvermonitor Download PDF

Info

Publication number
WO2005025798A1
WO2005025798A1 PCT/CH2004/000586 CH2004000586W WO2005025798A1 WO 2005025798 A1 WO2005025798 A1 WO 2005025798A1 CH 2004000586 W CH2004000586 W CH 2004000586W WO 2005025798 A1 WO2005025798 A1 WO 2005025798A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
powder
sensor
transmitters
fibers
Prior art date
Application number
PCT/CH2004/000586
Other languages
English (en)
French (fr)
Inventor
Urs Feuz
Thomas Bisig
Original Assignee
Elpatronic Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpatronic Ag filed Critical Elpatronic Ag
Priority to AT04761926T priority Critical patent/ATE512745T1/de
Priority to EP04761926A priority patent/EP1663562B1/de
Priority to US10/571,881 priority patent/US20070193378A1/en
Publication of WO2005025798A1 publication Critical patent/WO2005025798A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/06Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00 specially designed for treating the inside of hollow bodies
    • B05B13/0618Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00 specially designed for treating the inside of hollow bodies only a part of the inside of the hollow bodies being treated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/06Resistance welding; Severing by resistance heating using roller electrodes
    • B23K11/061Resistance welding; Severing by resistance heating using roller electrodes for welding rectilinear seams
    • B23K11/062Resistance welding; Severing by resistance heating using roller electrodes for welding rectilinear seams for welding longitudinal seams of tubes
    • B23K11/063Lap welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating

Definitions

  • the invention relates to a method and a device for measuring the layer thickness of the powder application on a workpiece according to claims 1 and 11.
  • Metal surfaces are often protected by a coating if the metal or the alloy itself is not sufficiently corrosion-resistant.
  • Countless applications are known to the person skilled in the art, in which e.g. Covering powder is sprayed on workpiece surfaces and solidified by a subsequent heat treatment. The uniformity of the layer thickness or imperfections in the cover determines the quality of the protective layer applied.
  • Sheets with a protective layer of tin are known as tin sheets and are used, among other things. used for the production of three-part cans.
  • the sheaths of sheet metal packaging are mainly produced with the help of resistance welding.
  • the tin layer is removed at the location of the weld seam, so that there is now unprotected sheet metal material.
  • the raw seam In a subsequent step, the raw seam must be covered with a protective layer. This is done either by wet paint or by spraying on a layer of powder, which is caused to flow away in a downstream oven by the action of heat and solidifies after cooling to form a protective layer having the desired properties.
  • the covering of the weld seam of can coats by such powder coatings is becoming more and more popular, especially on the inside of the cans.
  • the powder / air mixture to be sprayed onto the weld seam has to be transported over several meters to the spraying point through thin and curved lines, which, due to the long transport route and relative to the individual can, can result in an uneven powder discharge. Then the behavior of the powder is influenced by the powder grain with inevitably different grain diameters. Finally, the powder must be charged electrostatically in order to adhere to the tin plate.
  • the powder application is further influenced by the local production conditions such as temperature, air humidity and the changing properties of restricted powder.
  • an embodiment according to claim 2 enables detection of only small deviations from the target state of the cover layer. Because the transmitters and receivers are combined in groups and each group generates its own measurement signal, there is a deviation in the reflected radiation that is sufficiently strong for reliable evaluation, even with small deviations. Problems in processing weak signals, e.g. due to the signal-to-noise ratio.
  • the device according to the invention is integrated into the powder arm of a can welding machine, the thickness of the powder layer above the weld seam can in particular be reliably and continuously scanned over its entire length (the immediate end regions of the weld seam, at the beginning and at the end of the can frame) folded over when crimping the bottom and lid of the can and are of minor importance). Contamination of the sensor is preferably prevented or eliminated by means of a targeted cleaning air flow.
  • FIG. 1 schematically shows a conventional powder arm, installed in a can welding machine, with a device according to the invention
  • FIG. 2 shows an enlarged detail from FIG. 1 with a longitudinal section through the device according to the invention
  • FIG. 3 shows an enlarged cross section through the device according to the invention at point AA of FIG. 1;
  • FIG. 4 schematically shows the conditions in the area of the weld seam of a can frame with a powder cover to be checked.
  • FIG. 1 shows a conventional can welding machine 1 with a welding arm 2 and welding rollers 3, 3 '.
  • a powder arm 4 is connected to the welding arm 2 and has a powder spraying point 5 with an electrode 6 provided therein.
  • a powder line 7 runs through the welding arm 2 and the powder arm 4 and ends in a spray chamber 5.
  • a powder suction line 8 leads out of the spray chamber 5 and runs back through the powder arm 4 and the welding arm 2.
  • a purge air line 9 also runs through the welding arm 2 and the powder arm 4 and opens in the region of the electrode 6. This line is continued as a cleaning air line 11 via a branch 10; it ends in a sensor 20.
  • Quartz fiber lines 23 connect the sensor 20 and the control unit 21;
  • a data line 24 connects the control unit to the control of the welding machine 1, which is not shown to relieve the figure, and runs through the powder arm 4 and the welding arm 2.
  • power cables for operating the control unit 21 with the computer 22 run along the welding arm 2 and the powder arm 4;
  • Can bodies emitted by the welding machine 1 are detected via an outlet belt 13, guided along the powder arm 4 and delivered to the transport of a downstream furnace.
  • the structure of the control unit 21 with the computer 22 is not shown; the person skilled in the art can design this unit in the usual way.
  • the fiber bundles of the lines 23, 23 ', 23 ", 23'" are preferably separated, so that transmitter fibers and receiver fibers are separately illuminated by the measurement radiation source and (receiver fibers) are operatively connected to a detector for reflected measurement radiation.
  • the detectors are in turn operatively connected to the computer 22, which is designed such that it generates a measurement signal from the signals of the detectors, which can serve as an input signal for the control of the welding machine 1 or the ejection for defective doses in their transport path ,
  • tin plates are rounded in the known manner in the welding machine 1 and guided along the welding arm 2, where they are welded longitudinally to the can frame by the welding rollers 3, 3 '.
  • the protective tin layer is removed at the location of the weld by the welding process.
  • a powder air stream 14 is blown onto the inside of the frame 12 at the location of the powder spray point 5, so that the raw weld seam is covered by a layer of powder.
  • the powder 6 is charged with flying powder particles in the powder air stream 14 via the electrode 6 and therefore adheres to the frame. Excess powder-air mixture is removed from the spray chamber 5 through the powder suction line 8 and recycled.
  • Flushing air is continuously blown in via the purge air line 9 Electrode such that no or as little powder as possible settles on the electrode 6. However, the sensitivity of the electrode 6 to contamination is high despite the constant air purge.
  • the applied powder layer is scanned by the sensor 20 according to the invention; in the event of defects or insufficient layer thickness, the control unit 21 together with the computer 22 generates a signal which is transmitted via the data line 24 to the control of the welding machine 1 (which is not shown to relieve the figure). From there, a switch is arranged which is arranged downstream from the discharge belt 13 and which releases insufficiently coated can from the transport path to the furnace.
  • FIG. 2 shows an enlarged section of the front area of the powder arm 4 with the sensor 20 according to the invention, the cleaning air line 11 and the control unit for the sensor 21.
  • Quartz fiber lines 23 connect the control unit 21 and the sensor 20.
  • the quartz fiber lines 23 open into embedded on the sensor surface Scan segments 30 and 30,31,32 ( Figure 3).
  • the quartz fiber line 23 ' opens into the calibration segment 33.
  • a cover 35 is arranged above the surface of the sensor 20; one can see an opening 36 in the cover, which lies above the effective sensor surface, formed by the segments 30-33 (see also FIG. 3).
  • a cleaning air duct 37 lying in the cover 35 can also be seen.
  • cover layer 40 of sprayed powder is also shown, which covers the can plate or the weld seam.
  • FIG. 3 shows a section of the powder arm 4 in cross section corresponding to the view AA from FIG. 1.
  • the weld seam 41 is indicated by the thickened point in the frame 12; it is covered by the powder layer 40.
  • the sensor 20 faces the powder layer with the scanning segments 30, 31, 32.
  • the cover 35 is preferably screwed to the lines 42 indicated by dash-dotted lines.
  • the opening 36 defines the effective range of the scanning segments 30, 31, 32; this is kept somewhat narrower than the width of the powder layer 40. Sealing elements 42 are aligned with the walls 43 of the opening 36 and border thereby sharply off the effective range of the sensor 20 defined by the opening 36 on the scanning segments.
  • Quartz fiber cables 23, 23 ', 23 "carry bundles of quartz fibers which are guided into the scanning segments 30, 31, 32 on the sensor side and are operatively connected to the control unit 21 on the control unit 21.
  • Each quartz fiber bundle of a line 23, 23', 23" is on the sensor side in the respective scanning segment 30, 31, 32 fanned out in such a way that the entire rectangular area of each scanning segment is evenly occupied with fiber ends.
  • the calibration segment 33 lies behind the segments 30, 31, 32, is covered by them, and is connected on the sensor side to the quartz fiber cable 23 '".
  • the fiber bundle of the line 23"' is also fanned out uniformly in the calibration segment 33 and covered with its ends the entire surface facing the frame 12.
  • the other end of the quartz fiber line 23 ′ ′′ is connected to the control unit 21.
  • FIG. 4 shows a section of the wall of the frame 12 at the location of the weld seam 41.
  • This interior painting 44 extends against the weld seam up to its edge 45, so that areas of the can body to be welded are free of paint.
  • a powder-covered area 46 which represents a powder strip as it is applied to cover the raw weld seam.
  • the figure further shows the outline of the segments 30, 31, 32 projected onto the frame surface as a dashed line 50; the segments are approximately 6-8 mm vertically above the surface of the frame 12. From the figure it can be seen that the measuring width of the scanning segments 30, 31, 32 exceeds the width of the powder strip 46; with the lying configuration, depending on the dimensions of the opening 36, even wider powder strips could be detected.
  • the opening 36 itself is also shown as a projection by double dashes 47, 47 '. The fact that the width of the opening 36 (double lines 47, 47 ') is selected to be smaller than the width of the powder strip 46 ensures that a measurement beyond the edge of the powder cover 46 is not carried out and thus error messages at a location where there is no powder should be avoided.
  • the sensor 20 works with the control unit 21 as follows:
  • the control unit has a source for measuring radiation (or a source which acts on all lines) for each of the lines 23, 23 ', 23 ".
  • the measuring radiation is fed through the fiber bundle to the respective segment 30, 31, 32 and occurs there
  • the uniform distribution of the fiber ends in the respective scanning segment (30, 31, 32) results in a uniform illumination of the powder layer 40.
  • the measuring radiation is scattered on the granular surface of the powder layer 40 and is only reflected back to a small degree into the area of the scanning segments.
  • Expanded quartz fibers are now embedded in the scanning segments 30, 31, 32, which are also bundled in the lines 23, 23 ', 23 "and lead to the control unit 21. Reflected measurement radiation in the segments 30, 31, 32 can be received and a detector, each for line 23, 23 ', 23 ".
  • the reflection of the measuring radiation changes depending on the thickness of the powder layer 40; If the cover has gaps, the reflection is at a maximum. These reflected beams generate a signal in the respective detector in the control unit 21, which is processed by the computer 22. If a threshold entered in the computer 22 is exceeded, the latter generates an ejection signal which is fed through the data line 24 to the control of the welding machine 1 and causes the defective coated can to be ejected.
  • Each fiber that emits measurement radiation corresponds to a transmitter for measurement radiation; every fiber that can receive reflected measurement radiation is a receiver for reflected measurement radiation.
  • the even distribution of the transmitters creates a uniform illumination of the surface to be scanned; it is now important that the receivers are also arranged evenly over the surface of the scanning segments. As a result, transmitter and receiver fibers are uniformly mixed in the scan segments. The scanning segments will therefore perceive defects in the powder layer 40 with the same scanning quality over the entire scanning width defined by the opening 36 via the changed reflection of the measurement radiation.
  • the reflected measurement radiation is correspondingly ascertained over the entire respective scanning segment 30, 31, 32 and transmitted in a total intensity per segment to the respective detector in the control unit 21. It follows that, in the case of a wide scanning segment, a small defect leads to a comparatively small change in intensity of the reflected measurement radiation, while conversely, in the case of a small scan segment, the same defect leads to a greater fluctuation in the reflected measurement radiation. It is now desirable not to let the intensity fluctuation of the reflected measurement radiation fall below a lower threshold so that the detectors of the control unit 21 and the associated computer 22 receive easily processable signals, which e.g. have a sufficiently large signal-to-noise ratio. According to the invention, the person skilled in the art can determine the maximum dimensions of the scanning segments on the basis of the size of the imperfections still to be recognized and the ability of the control unit 21 to distinguish intensity signals, or, for given segments, the minimally recognizable imperfections.
  • FIG. 3 shows scanning segments of 6 mm in length, which are sufficient for a measuring range of approximately 12 mm in width. With this, imperfections from approx. 8.0 mm diameter can be reliably detected. Fibers with a small diameter of 20 ⁇ m to 200 ⁇ m are preferably used, and a diameter of 50 ⁇ m is particularly suitable.
  • Infrared light is preferably used as the measuring radiation, which works independently of daylight and therefore independently of the respective production conditions.
  • other measuring radiation can also be used, depending on the nature of the cover or the workpiece surface underneath.
  • the type of measurement radiation the different possible reflection behavior for the cover and for the workpiece surface is relevant.
  • the person skilled in the art can determine an optimal radiation-guiding fiber; the quartz fiber is particularly suitable for the infrared range.
  • the reflection behavior of the weld seam can be improved (and thus the contrast to the scattering powder layer increased) by carrying out the welding process with the supply of protective gas.
  • the 2 shows a calibration segment 33, which is operated by the control unit 21 with preferably white light via the line 23 ′′. If the seam covering system is to be set up for production, the operator can activate the calibration segment and recognizes the scanning area on the can by the illumination. Then the reflection behavior of the measuring radiation can be determined with a test can, which has a perfect coating, and the necessary threshold values can thus be entered into the computer 22.
  • FIG. 3 shows three scanning segments arranged next to one another in a line; Any number of such elements can be connected in series, which leads to an arbitrary width of the scanning area.
  • the segments can also scan the entire circumference of the can, which makes it possible, for example, to check the coating during a full spray. It can also be provided in a further embodiment to arrange the segments offset from one another in the feed direction, which facilitates the mechanical construction of the test device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

Der erfindungsgemässe Sensor beleuchtet über Abtast­segmente 30, 31, 32 die Pulverschicht 40, welche die Messstrahlung streut. Fehlstellen in der Pulverschicht führen zu erhöhter Reflexion, sodass reflek­tierte Messstrahlung zu den Segmenten 30, 31, 32 reflektiert wird. Reflek­tierte Strahlung wird durch Faserleitungen einer Steuereinheit 21 zugeführt, welche anhand der Intensitätsschwankung von reflektierter Strahlung Fehl­stellen erkennt und ein entsprechendes Steuerungssignal generiert.

Description

Patentanmeldung Pulvermonitor
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Messen der Schichtdicke des Pulverauftrags auf einem Werkstück nach den Ansprüchen 1 und 11.
Metalloberflächen werden häufig durch eine Beschichtung geschützt, wenn das Metall bzw. die Legierung selbst nicht genügend korro- sionsresistent ist. Dem Fachmann sind zahllose Anwendungen bekannt, bei welchen z.B. Abdeckpulver auf Werkstückoberflächen gesprüht und durch eine anschliessende Wärmebehandlung verfestigt wird. Ueber die Qualität der aufgebrachten Schutzschicht entscheidet die Gleichmässigkeit der Schichtdicke, bzw. Fehlstellen in der Abdeckung,.
Anstelle von Pulver ist aber auch ein Nasslackauftrag denkbar; weiter können auch Metallbeschichtungen vorgesehen werden.
Z.B. Bleche mit einer schützenden Zinnschicht sind als Weissbleche bekannt und werden u.a. für die Produktion von Dreiteildosen verwendet.
Die Mäntel von Blechverpackungen, insbesondere von Dreiteildosen, werden überwiegend mit Hilfe des Widerstandschweissens hergestellt. Beim Schweissvorgang wird die Zinnschicht am Ort der Schweissnaht entfernt, so dass dort nunmehr ungeschütztes Blechmaterial vorliegt. In einem nachfolgenden Arbeitsgang ist daher die rohe Naht wieder mit einer Schutzschicht zu bedecken. Dies geschieht entweder durch Nasslack oder durch Aufsprühen einer Pulverschicht, welche in einem nachgeschalteten Ofen durch Wärmeeinwirkung zum verfliessen gebracht wird und sich nach der Abkühlung zu einer die gewünschten Eigenschaften aufweisenden Schutzschicht verfestigt. Die Abdeckung der Schweissnaht von Dosenmänteln durch solche Pulverlacke setzt sich vor allem auf der Innenseite der Dosen mehr und mehr durch. Heute erreichbare Schweissgeschwindigkeiten liegen bei lOOm/min und mehr, was zu einem entsprechenden Bedarf für geeignete Anlagen der Pulvernahtabdeckung führt. Die bei der Nahtabdeckung verwendete Pulvermenge stellt in der Dosenproduktion einen relevanten Kostenfaktor dar. Entsprechend wird versucht, die Schichtdicke möglichst dünn zu halten; sie darf jedoch nicht zu dünn werden, um eine Korrosion der Schweissnaht insbesondere bei aggressiven Doseninhalten zuverlässig zu vermeiden, zumal eine monate- oder jahrelange Lagerung der gefüllten Dose vorgesehen sein kann.
Eine mangelhafte Abdeckung der Schweissnaht kann nicht nur zu einer Kontaminierung des Doseninhalts, sondern auch zu einer Leckage führen, bei welcher austretender Doseninhalt die Umgebung verschmutzt.
Es ist bis heute nicht gelungen, die Schichtdicke unter Produktionsbedingungen in einem sehr engen Toleranzbereich konstant zu halten:
Einmal muss das auf die Schweissnaht aufzusprühende Pulver/Luftgemisch über mehrere Meter durch dünne und gebogene Leitungen zur Sprühstelle transportiert werden, was, bedingt durch den langen Transportweg und bezogen auf die einzelne Dose, einen ungleichmässigen Pul- veraustrag zur Folge haben kann. Dann wird das Verhalten des Pulvers beeinflusst durch die Pulverkörnung mit unvermeidlich verschiedenen Korndurchmessern. Schliesslich muss das Pulver im Hinblick auf die Haftung am Dosenblech elektrostatisch aufgeladen werden. Der Pulverauftrag wird weiter beeinflusst durch die Produktionsbedingungen vor Ort wie Temperatur, Luftfeuchtigkeit und durch die sich verändernden Eigenschaften von re- zikliertem Pulver.
Diese Problematik ist seit langem bekannt und führt dazu, dass die Einstellungen an der Pulvernahtabdeckungsanlage für die aufzunehmende Produktion über Grundwerte vorgenommen wird und die Feineinstellung anhand von Testläufen erfolgt.
Auch bei solchermassen einwandfrei eingestellten Produktionsanlagen kommt es nach einer gewissen Produktionszeit zu einer Ver- Schiebung von Betriebsparametern (Luftfeuchtigkeit, Veränderung des re- ziklierten Pulvers, wie oben erwähnt). Die Anlage muss nachjustiert werden, was einen Produktionsstopp und weitere Testläufe mit sich bringt.
Bekannte Verfahren zur Überwachung der aufgebrachten Pulvermenge detektieren laufend die zur Sprühstelle geförderte Pulvermenge, was aber nicht mehr als einen Plausibilitätswert ergeben kann.
Wenn versucht wird, mit hinter der Sprühstelle vorgesehenen Sensoren die effektiv vorhandene Schichtdicke laufend zu überprüfen, stellen sich erhebliche Schwierigkeiten im Hinblick auf den zur Verfügung stehenden Raum und die ständige Verschmutzung durch von der Absaugung nicht erfassten Pulverresten. Ein weiteres Problem besteht in der Vibration des Schweissarms, an welchem der Pulverarm mit der Pulversprühstelle und einem Schichtdickensensor notwendigerweise angebracht werden muss.
Der Stand der Technik zur Messung der Pulverschichtdicke ist auch in EP 1 112 801 beschrieben, auf welche hier ausdrücklich Bezug genommen wird. Zur Lösung der oben beschriebenen Probleme wird im genannten Dokument vorgeschlagen, die Schichtdicke der einzelnen Dose über einen Laserstrahl zu messen, wobei die Laserquelle ausserhalb der Nahtabdeckungsanlage angeordnet ist. Damit kann jede einzelne Dose erfasst werden, was gegenüber dem bisherigen System von Stichproben vorteilhaft ist; zudem ist die Verschmutzungsgefahr der Laserquelle und des zugeordneten Sensors erheblich vermindert.
Durch das vorgeschlagene Verfahren können jedoch nur die Eingangsbereiche der einzelnen Dose, nicht aber deren Innenbereich erfasst werden. Letztlich werden nur kleine Teilbereiche der gesamten zu untersuchenden Abdeckung der Schweissnaht überprüft. Fehlstellen in der Abdeckung bleiben unerkannt. Zudem ist die Grosse des Prüfbereichs an den jeweiligen Enden der Dose davon abhängig, wieweit die einzelnen Dosen im Produktionsfluss voneinander entfernt werden können, was einen Kompro- miss zwischen dem entsprechenden apparativen Aufwand und der Prüfqualität zur Folge hat. Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung zu schaffen, mit deren Hilfe die Qualität der aufgebrachten Beschichtung auf einem Werkstück kontinuierlich überwacht werden kann.
Diese Aufgabe wird gelöst durch eine Vorrichtung gemäss Anspruch 1.
Dadurch, dass die Werkstückoberfläche mit der Deckschicht über eine Vielzahl von Sendern und Empfängern abgetastet wird, ergibt sich ein Abtastbereich von vorwählbarer Grosse, was eine industrielle Anwendung erlaubt. Dadurch, dass Sender und Empfänger miteinander durchmischt am Sensor angeordnet werden, ergibt sich eine gleichbleibende Empfindlichkeit über den gesamten Abtastbereich für Fehlstellen in der Abdeckung in der Art eines Facettenauges, was eine hohe Abtastqualität sicherstellt. Auch zu dünne, das Werkstück nicht mehr vollständig bedeckende Bereiche in der Abdeckung (so z.B., wenn die Werkstückoberfläche durch die Abdeckung durchscheint) werden erkannt: Fehlstellen oder zu dünne Abdeckung erzeugen lokal ein verändertes Reflexionsverhalten der abgetasteten Oberfläche; die unterschiedlich reflektierte Messstrahlung wird durch die Empfänger dem Detektor zugeleitet, und durch den Rechner ein entsprechendes Messsignal erzeugt.
Ueber die gestellte Aufgabe hinaus ermöglicht eine Ausführungsform gemäss Anspruch 2 eine Erkennung von nur kleinen Abweichungen vom Sollzustand der Deckschicht. Dadurch, dass die Sender und Empfänger gruppenweise zusammengefasst werden und jede Gruppe ein eigenes Messsignal erzeugt, ergibt sich auch bei kleinen Abweichungen ein für zuverlässige Auswertung genügend starke Abweichung in der reflektierten Strahlung. Probleme in der Verarbeitung von schwachen Signalen, z.B. aufgrund des Signal- Rauschverhältnisses, entfallen.
Diese gruppenweise Aufteilung der Sender und Empfänger erlaubt damit dem Fachmann, die erfindungsgemasse Vorrichtung den gegebenen Bedürfnissen gemäss im Hinblick auf die Grosse des Abtastbereichs und zugleich der Empfindlichkeit für Abweichungen vom Sollzustand der Deckschicht auszulegen. Wird gemäss Anspruch 5 die erfindungsgemasse Vorrichtung in den Pulverarm einer Dosenschweissmaschine integriert, kann insbesondere die Dicke der Pulverschicht über der Schweissnaht zuverlässig und kontinuierlich, über deren ganze Länge, abgetastet werden (die unmittelbaren Endbereiche der Schweissnaht, am Anfang und am Ende der Dosenzarge, werden beim Einbördeln von Boden und Deckel der Dose umgefalzt und sind von untergeordneter Bedeutung). Eine Verschmutzung des Sensors wird gemäss Anspruch 11 bevorzugt über einen gezielten Reinigungsluftstrom verhindert oder beseitigt.
Es zeigt:
Fig 1 schematisch einen konventionellen Pulverarm, eingebaut in eine Dosenschweissmaschine, mit einer erfindungsgemässen Vorrichtung, Fig 2 einen vergrösserten Ausschnitt aus Fig 1 mit einem Längsschnitt durch die erfindungsgemasse Vorrichtung
Fig 3 einen vergrösserten Querschnitt durch die erfindungsgemasse Vorrichtung an der Stelle AA von Fig 1; und
Fig 4 schematisch die Verhältnisse im Bereich der Schweissnaht einer Dosenzarge mit einer zu überprüfenden Pulverabdeckung.
Figur 1 zeigt eine konventionelle Dosenschweissmaschine 1 mit einem Schweissarm 2 und Schweissrollen 3, 3'. Mit dem Schweissarm 2 ist ein Pulverarm 4 verbunden, welcher eine Pulversprühstelle 5 mit einer darin vorgesehenen Elektrode 6 besitzt. Eine Pulverleitung 7 verläuft durch den Schweissarm 2 und den Pulverarm 4 hindurch und mündet in einem Sprühraum 5. Eine Pulverabsaugleitung 8 führt aus dem Sprühraum 5 hinaus und läuft durch den Pulverarm 4 und den Schweissarm 2 zurück. Eine Spülluftleitung 9 läuft ebenfalls durch den Schweissarm 2 und den Pulverarm 4 hindurch und mündet im Bereich der Elektrode 6. Über eine Verzweigung 10 wird diese Leitung als Reinigungsluftleitung 11 fortgesetzt; sie mündet in einem Sensor 20. Weiter ist im Pulverarm 4 eine Steuereinheit 21 mit einem Rechner 22 dargestellt. Quarzfaserleitungen 23 verbinden den Sensor 20 und die Steuereinheit 21; eine Datenleitung 24 verbindet die Steuereinheit mit der zur Entlastung der Figur nicht dargestellten Steuerung der Schweissmaschine 1 und verläuft durch den Pulverarm 4 und den Schweissarm 2. Ebenfalls zur Entlastung der Figur nicht dargestellt sind Stromkabel zum Betrieb der Steuereinheit 21 mit dem Rechner 22. Dosenzargen 12 laufen dem Schweissarm 2 und dem Pulverarm 4 entlang; über ein Auslaufband 13 werden von der Schweissmaschine 1 abgegebene Dosenzargen erfasst, dem Pulverarm 4 entlanggeführt und an den Transport eines nachgeschalteten Ofens abgegeben.
Zur Entlastung der Figur nicht dargestellt ist der Aufbau der Steuereinheit 21 mit dem Rechner 22; der Fachmann kann diese Einheit auf übliche Art konzipieren. In der Einheit 21 werden vorzugsweise die Faserbündel der Leitungen 23, 23', 23", 23'" aufgetrennt, so dass Senderfasern und Empfängerfasern getrennt durch die Messstrahlungsquelle beleuchtet und (Empfängerfasern) mit einem Detektor für reflektierte Messstrahlung betriebsfähig zusammengeschaltet sind. Die Detektoren wiederum werden betriebsfähig mit dem Rechner 22 verbunden, welcher derart ausgebildet ist, dass er aus den Signalen der Detektoren ein Messsignal generiert, welches als Eingangssignal für die Steuerung der Schweissmaschine 1 bzw. des Auswurfs für mangelhafte Dosen^acgen in deren Transportweg dienen kann.
Im Betrieb werden auf bekannte Art Weissbleche in der Schweissmaschine 1 gerundet und dem Schweissarm 2 entlanggeführt, wo sie durch die Schweissrollen 3, 3' längs zur Dosenzarge ver- schweisst werden. Durch den Schweissprozess wird am Ort der Schweissnaht die schützende Zinnschicht entfernt. Während dem Transport der Zargen dem Pulverarm 4 entlang wird am Ort der Pulversprühstelle 5 ein Pulverluftstrom 14 auf die Innenseite der Zarge 12 geblasen, so dass die rohe Schweissnaht durch eine Pulverschicht abgedeckt wird. Über die Elektrode 6 werden die im Pulverluftstrom 14 mit fliegenden Pulverpartikeln aufgeladen, und haften deshalb auf der Zarge. Überschüssiges Pulver-Luftgemisch wird durch die Pulverabsaugleitung 8 aus dem Sprühraum 5 entfernt und re- zykliert. Über die Spülluftleitung 9 stetig zugeblasene Spülluft umspült die Elektrode derart, dass sich kein oder möglichst wenig Pulver auf der Elektrode 6 absetzt. Die Verschmutzungsempfindlichkeit der Elektrode 6 ist jedoch trotz stetiger Luftspülung hoch. Die aufgebrachte Pulverschicht wird über den erfindungsgemässen Sensor 20 abgetastet; bei Fehlstellen oder ungenügender Schichtdicke erzeugt die Steuereinheit 21 zusammen mit dem Rechner 22 ein Signal, welches über die Datenleitung 24 der Steuerung der Schweissmaschine 1 (welche zur Entlastung der Figur nicht dargestellt ist) übermittelt wird. Von dort aus wird eine vom Auslaufband 13 aus stromabwärts angeordnete Weiche angesteuert, welche ungenügend beschichtete Dose aus dem Transportweg zum Ofen ausstösst.
Figur 2 zeigt in einem vergrösserten Ausschnitt den vorderen Bereich des Pulverarms 4 mit dem erfindungsgemässen Sensor 20, der Reinigungsluftleitung 11 und der Steuereinheit für den Sensor 21. Quarzfaserleitungen 23 verbinden die Steuereinheit 21 und den Sensor 20. Die Quarzfaserleitungen 23 münden in an der Sensoroberfläche eingebetteten Abtastsegmenten 30 bzw. 30,31,32 (Figur 3). Die Quarzfaserleitung 23' mündet im Kalibriersegment 33. Eine Abdeckung 35 ist über der Oberfläche des Sensors 20 angeordnet; ersichtlich ist eine Öffnung 36 in der Abdeckung, welche über der wirksamen Sensoroberfläche, gebildet durch die Segmente 30 - 33 (s. auch Figur 3), liegt. Weiter ersichtlich ist ein in der Abdeckung 35 liegender Reinigungsluftkanal 37.
In der Figur ist weiter eine Deckschicht 40 aus ausgesprühtem Pulver dargestellt, welche das Dosenblech bzw. die Schweissnaht abdeckt.
Figur 3 zeigt einen Abschnitt aus dem Pulverarm 4 im Querschnitt entsprechend der Sicht AA von Figur 1. Die Schweissnaht 41 ist durch die verdickte Stelle in der Zarge 12 angedeutet; sie ist durch die Pulverschicht 40 bedeckt. Der Sensor 20 ist mit den Abtastsegmenten 30, 31, 32 der Pulverschicht zugewendet. Die Abdeckung 35 ist and den strichpunktiert angedeuteten Linien 42 vorzugsweise verschraubt. Die Öffnung 36 definiert den Wirkbereich der Abtastsegmente 30, 31, 32 ; dieser ist etwas enger gehalten, als es der Breite der Pulverschicht 40 entspricht. Dichtungselemente 42 fluchten mit den Wänden 43 der Öffnung 36 und grenzen dadurch den durch die Öffnung 36 definierten Wirkbereich des Sensors 20 auf den Abtastsegmenten scharf ab.
Quarzfaserkabel 23, 23' ,23" führen Bündel von Quarzfasern, welche sensorseitig in die Abtastsegmente 30, 31, 32 geführt und auf der Seite der Steuereinheit 21 mit dieser betriebsfähig verbunden sind. Jedes Quarzfaserbündel einer Leitung 23, 23', 23" ist sensorseitig im jeweiligen Abtastsegment 30, 31, 32 aufgefächert derart festgelegt, dass die gesamte Rechteckfläche jedes Abtastsegments gleichmässig mit Faserenden besetzt ist.
Das in der Figur nicht dargestellte Kalibriersegment 33 liegt hinter den Segmenten 30, 31, 32, ist durch diese verdeckt, und sensorseitig mit dem Quarzfaserkabel 23'" verbunden. Das Faserbündel der Leitung 23"' ist ebenfalls im Kalibriersegment 33 gleichmässig aufgefächert, und bedeckt mit seinen Enden dessen gesamte der Zarge 12 zugewendete Oberfläche. Die Quarzfaserleitung 23'" ist mit dem anderen Ende mit der Steuereinheit 21 verbunden.
Figur 4 zeigt einen Ausschnitt aus der Wand der Zarge 12 am Ort der Schweissnaht 41.
Weiter dargestellt ist eine Innenlackierung 44 der Zarge 12, wie sie häufig in den Dosenproduktion Verwendung findet. Diese Innenlackierung 44 erstreckt sich gegen die Schweissnaht bis zu ihrem Rand 45, so dass zu verschweissende Bereiche der Dosenzarge frei von Lack sind.
Ebenfalls ersichtlich ist ein pulverbedeckter Bereich 46, in der Figur punktiert angedeutet, der einen Pulverstreifen darstellt, wie er zur Abdeckung der rohen Schweissnaht aufgebracht wird.
Die Figur zeigt weiter den auf die Zargenoberfläche pro- jizierten Umriss der Segmente 30, 31, 32, als gestrichelte Linie 50; die Segmente befinden sich ca. 6 - 8 mm senkrecht über der Oberfläche der Zarge 12. Aus der Figur ist ersichtlich, dass die Messbreite der Abtastsegmente 30, 31, 32 die Breite des Pulverstreifens 46 übersteigt; mit der vor- liegenden Konfiguration wären, je nach Abmessungen der Öffnung 36, noch breitere Pulverstreifen erfassbar. Die Öffnung 36 selbst ist ebenfalls als Projektion durch Doppelstriche 47, 47' dargestellt. Dadurch, dass die Breite der Öffnung 36 (Doppelstriche 47, 47') kleiner gewählt ist als die Breite des Pulverstreifens 46, ist sichergestellt, dass eine Messung über den Rand der Pulverabdeckung 46 hinaus nicht erfolgt und so Fehlermeldungen an einem Ort, wo kein Pulver sein soll, unterbleiben.
Der erfindungsgemasse Sensor 20 arbeitet mit der Steuereinheit 21 wie folgt zusammen:
Die Steuereinheit besitzt für jede der Leitungen 23, 23', 23" eine Quelle für Messstrahlung (oder eine Quelle, welche auf alle Leitungen wirkt). Die Messstrahlung wird durch die Faserbündel dem jeweiligen Segment 30, 31, 32 zugeleitet und tritt dort an den Faserenden aus. Durch die gleichmässige Verteilung der Faserenden im jeweiligen Abtastsegment (30, 31, 32) ergibt sich eine gleichmässige Ausleuchtung der Pulverschicht 40.
Die Messstrahlung wird an der körnigen Oberfläche der Pulverschicht 40 gestreut und nur zu einem geringen Grad in den Bereich der Abtastsegmente zurück reflektiert. In den Abtastsegmenten 30, 31, 32 sind nun weitete Quarzfasem eingelassen, welche ebenfalls in den Leitungen 23, 23', 23" gebündelt zur Steuereinheit 21 geführt werden. Durch diese weiteren Fasern kann reflektierte Messstrahlung in den Segmenten 30, 31, 32 empfangen und einem Detektor, je für die Leitung 23, 23', 23" zugeleitet werden.
Je nach der Dicke der Pulverschicht 40 ändert sich die Reflexion der Messstrahlung; besitzt die Abdeckung Lücken, ist die Reflexion maximal. Diese reflektierten Strahlen erzeugen im jeweiligen Detektor in der Steuereinheit 21 ein Signal, welches durch den Rechner 22 verarbeitet wird. Wird eine im Rechner 22 eingegebene Schwelle überschritten, generiert dieser eine Auswurfsignal, welches durch die Datenleitung 24 der Steuerung der Schweissmaschine 1 zugeleitet wird und den Auswurf der mangelhaft beschichteten Dose bewirkt. Jede Faser, die Messstrahlung abgibt, entspricht einem Sender für Messstrahlung; jede Faser, die reflektierte Messstrahlung aufnehmen kann, ist ein Empfänger für reflektierte Messstrahlung. Die gleich- massige Verteilung der Sender erzeugt eine gleichmässige Ausleuchtung der abzutastenden Oberfläche; es ist nun wichtig, dass die Empfänger ebenfalls gleichmässig über die Oberfläche der Abtastsegmente angeordnet sind. Im Ergebnis sind Sender- und Empfängerfasern gleichmässig durchmischt in den Abtastsegmenten angeordnet. Die Abtastsegmente werden deshalb mit gleichbleibender Abtastqualität über die gesamte durch die Öffnung 36 definierte Abtastbreite Fehlstellen in der Pulverschicht 40 über die veränderte Reflexion der Messstrahlung wahrnehmen.
Die reflektierte Messstrahlung wird entsprechend über das gesamte jeweilige Abtastsegment 30, 31, 32 ermittelt und in einer Gesamtintensität pro Segment an den jeweiligen Detektor in der Steuereinheit 21 weitergeleitet. Es folgt, dass bei einem breiten Abtastsegment eine kleine Fehlstelle zu einer vergleichsweise geringen Intensitätsänderung der reflektierten Messstrahlung führt, während umgekehrt bei einem kleinen Abtastsegment dieselbe Fehlstelle zu einer grösseren Schwankung der reflektierten Messstrahlung führt. Es ist nun wünschenswert, die Intensitätsschwankung der reflektierten Messstrahlung nicht unter eine untere Schwelle fallen zu lassen, damit die Detektoren der Steuereinheit 21 und der zugeordnete Rechner 22 leicht verarbeitbare Signale empfangen, welche z.B. einen genügend grossen Signalrauschabstand aufweisen. Erflndungsgemäss kann der Fachmann, ausgehend von der Grosse der noch zu erkennenden Fehlstellen und der Fähigkeit der Steuereinheit 21 zur Unterscheidung von Intensitätssignalen, die maximalen Abmessungen der Abtastsegmente bestimmen oder auch, für gegebene Segmente, die minimal noch erkennbaren Fehlstellen benennen.
Entsprechend zeigt Figur 3 Abtastsegmente von 6 mm Länge, welche für einen Messbereich von ca. 12 mm Breite genügen. Damit können Fehlstellen ab ca. 8.0 mm Durchmesser zuverlässig erkannt werden. Vorzugsweise werden Fasern mit einem kleinen Durchmesser von 20μm - 200μm verwendet, besonders eignet sich ein Durchmesser von 50μm .
Als Messstrahlung wird vorzugsweise Infrarotlicht verwendet, welches tageslicht unabhängig und damit unabhängig von den jeweiligen Produktionsbedingungen arbeitet. Es kann aber auch andere Messstrahlung verwendet werden, je nach Beschaffenheit der Abdeckung bzw. der darunter liegenden Werkstückoberfläche. Relevant bei der Auswahl der Art der Messstrahlung ist möglichst unterschiedliches Reflexionsverhalten bei der Abdeckung und bei der Werkstückoberfläche. Bei anderer Messstrahlung als Infrarotstrahlung kann der Fachmann eine optimale strahlungsleitende Faser bestimmen; die Quarzfaser ist für den ilnfrarotbereich besonders geeignet.
Soll die Pulverabdeckung einer Dosennaht überprüft werden, kann das Reflexionsverhalten der Schweissnaht verbessert (und damit der Kontrast zur streuenden Pulverschicht erhöht) werden, indem der Schweissprozess unter Zuführung von Schutzgas ausgeführt wird.
Figur 2 zeigt ein Kalibriersegment 33, welches über die Leitung 23"' von der Steuereinheit 21 mit vorzugsweise Weisslicht betrieben wird. Soll die Nahtabdeckungsanlage für die Produktion eingerichtet werden, kann der Operateur das Kalibriersegment aktivieren und erkennt durch die Beleuchtung den Abtastbereich auf der Dose. Danach kann mit einer Testdose, welche einwandfreie Beschichtung aufweist, das Reflexionsverhalten der Messstrahlung ermittelt und so die nötigen Schwellwerte in den Rechner 22 eingegeben werden.
Die Anordnung von Figur 3 zeigt drei in Linie nebeneinander angeordnete Abtastsegmente; es kann eine beliebige Anzahl solcher Semente nebeneinadergeschaltet werden, was zu einer beliebigen Breite des Abtastbereichs führt. So können die Segmente auch den gesamten Umfang der Dose abtasten, was z.B. ermöglicht, die Beschichtung bei einer Vollausspritzung zu prüfen. Ebenfalls kann bei einer weiteren Ausführungsform vorgesehen werden, die Segmente in Vorschubrichtung zu einander versetzt anzuordnen, was den mechanischen Aufbau der Prüfeinrichtung erleichtert.

Claims

Patentansprüche
1. Vorrichtung zum kontinuierlichen Messen der Dicke einer Deckschicht eines gegenüber der Vorrichtung relativbewegten Werkstücks, dadurch gekennzeichnet, dass sie einen Sensor mit einer Vielzahl von Sendern für Messstrahlung und mit einer Vielzahl von Empfängern für von der Deckschicht und/oder dem Werkstück reflektierte Messstrahlung aufweist, wobei Sender und Empfänger miteinander durchmischt am Sensor angeordnet und ein Rechner für die Generierung eines kontinuierlichen Messsignals in Abhängigkeit von den beiden Parametern ausgesendete Strahlung und empfangene Strahlung vorgesehen ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass nebeneinanderliegende Sender und Empfänger gruppenweise zusammengefasst sind, derart, dass jeder Gruppe eine eigene Quelle für Messtrahlung und ein eigener Detektor für in die Empfänger gelangte Strahlung zugeordnet ist, und dass weiter jeder Gruppe ein eigener Rechner zur Bildung eines Messsignals zugeordnet ist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Sender mit der Strahlungsquelle und/oder die Empfänger mit dem Detektor über strahlungsleitende Fasern, vorzugsweise Quarzfasern, verbunden sind.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Sensor Mittel aufweist, Verunreinigungen der wirksamen Sensoroberfläche zu entfernen und fernzuhalten.
5. In einen Pulverarm integrierbare Vorrichtung zur Messung der Dicke einer Pulverschicht zur Abdeckung von Dosenblech nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Sender und Empfänger in einem Sensorkopf angeordnet und durch strahlungsleitende Fasern, vorzugsweise Quarzfasern, mit der zugehörigen Strahlungsquelle bzw. dem zugehörigen Detektor verbunden sind, dass am Sensorkopf eine auswechselbare Abdeckung für die Begrenzung der Messbreite des Sensors vorgesehen ist, welche Reinigungsmittel zum Schutz der wirksamen Sensoroberfläche aufweist, und dass die zugehörige Strahlungsquelle bzw. der zugehörige Detektor betriebsfähig mit einem Rechner zur Generierung eines Messignals verbunden sind.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Strahlungsquelle Infrarotstrahlung erzeugt.
7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Reinigungsmittel einen über die wirksame Sensoroberfläche verlaufenden Spühliuftkanal aufweisen, dessen Decke im Bereich der Sender und Empfänger durchbrochen ist.
8. Vorrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die strahlungsleitenden Fasern einen Durchmesser von 20 bis 200 μm, vorzugsweise 50 μm aufweisen.
9. Vorrichtung nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass der Sensorkopf drei Gruppen von Sendern und Empfängern aufweist, welche in Linie angeordnet sind.
10. Vorrichtung nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass der Sensorkopf eine vierte Gruppe mit nur Sendern aufweist, welche über strahlungsleitende Fasern mit einer Quelle von vorzugsweise Weisslicht verbunden ist.
11. Nahtabdeckungsanlage mit einer Vorrichtung nach einem der Ansprüche 1 bis 10.
12. Dosenschweissmaschine mit einer Nahtabdeckungsanlage mit einer Vorrichtung nach einem der Ansprüche 1 bis 10.
PCT/CH2004/000586 2003-09-16 2004-09-16 Pulvermonitor WO2005025798A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT04761926T ATE512745T1 (de) 2003-09-16 2004-09-16 Dosenschweissmaschine mit pulvermonitor
EP04761926A EP1663562B1 (de) 2003-09-16 2004-09-16 Dosenschweissmaschine mit pulvermonitor
US10/571,881 US20070193378A1 (en) 2003-09-16 2004-09-16 Powder monitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1582/03 2003-09-16
CH15822003 2003-09-16

Publications (1)

Publication Number Publication Date
WO2005025798A1 true WO2005025798A1 (de) 2005-03-24

Family

ID=34280708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2004/000586 WO2005025798A1 (de) 2003-09-16 2004-09-16 Pulvermonitor

Country Status (6)

Country Link
US (1) US20070193378A1 (de)
EP (1) EP1663562B1 (de)
AT (1) ATE512745T1 (de)
ES (1) ES2364141T3 (de)
PT (1) PT1663562E (de)
WO (1) WO2005025798A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154601A (en) * 1980-05-01 1981-11-30 Tsugio Nakatani Device having self cleaning function for measuring or detecting device
US4787749A (en) 1985-11-28 1988-11-29 Canon Kabushiki Kaisha Method and apparatus for measuring the thickness of a thin film using the spectral reflection factor of the film
US6019504A (en) * 1996-06-10 2000-02-01 Wagner International Ag Method of and an apparatus for photothermally examining workpiece surfaces
EP1112801A2 (de) * 1999-12-30 2001-07-04 Frei AG Verfahren zur Kontinuierlichen Uberwachung des Pulvermengenauftrags auf der Schweissnaht von Dosenrümpfen sowie eine Vorrichtung zur Durchführung des Verfahrens

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678904A (en) * 1984-07-06 1987-07-07 Technology Dynamics, Inc. Optical measuring device using a spectral modulation sensor having an optically resonant structure
US4937460A (en) * 1989-07-11 1990-06-26 Eaton Corporation Thickness sensor
DE4137008A1 (de) * 1991-11-11 1993-05-13 Heribert F Dr Ing Broicher Vorrichtung zur feststellung von qualitaetsaenderungen von massenguetern auf laufenden foerderbaendern
JPH07203133A (ja) * 1994-01-10 1995-08-04 Fujitsu Ltd 読取・印字装置
DE59604358D1 (de) * 1995-08-09 2000-03-09 Elpatronic Ag Schweissverfahren für beschichtetes Blech, insbesondere Weissblech
TW487950B (en) * 1999-10-25 2002-05-21 Tokyo Electron Ltd Substrate processing system and substrate processing method
JP3543947B2 (ja) * 2000-05-16 2004-07-21 株式会社日立製作所 リアクタ内堆積膜厚モニタ装置およびドライプロセス処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154601A (en) * 1980-05-01 1981-11-30 Tsugio Nakatani Device having self cleaning function for measuring or detecting device
US4787749A (en) 1985-11-28 1988-11-29 Canon Kabushiki Kaisha Method and apparatus for measuring the thickness of a thin film using the spectral reflection factor of the film
US6019504A (en) * 1996-06-10 2000-02-01 Wagner International Ag Method of and an apparatus for photothermally examining workpiece surfaces
EP1112801A2 (de) * 1999-12-30 2001-07-04 Frei AG Verfahren zur Kontinuierlichen Uberwachung des Pulvermengenauftrags auf der Schweissnaht von Dosenrümpfen sowie eine Vorrichtung zur Durchführung des Verfahrens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 0060, no. 34 (P - 104) 2 March 1982 (1982-03-02) *

Also Published As

Publication number Publication date
US20070193378A1 (en) 2007-08-23
PT1663562E (pt) 2011-09-01
ATE512745T1 (de) 2011-07-15
EP1663562B1 (de) 2011-06-15
ES2364141T3 (es) 2011-08-25
EP1663562A1 (de) 2006-06-07

Similar Documents

Publication Publication Date Title
EP3401022B1 (de) Förderer, beschichtungseinrichtung mit einem förderer und betriebsverfahren dafür
DE69123246T2 (de) Elektrooptische verfahren und gerät zur hochgeschwindigkeitsmehrdimensionalen messung individueller gegenstände in aus fasern bestehenden oder anderen proben
EP3817864B1 (de) Verfahren zur automatisierten steuerung und regelung einer maschine zur schmiermittelaufbringung sowie einrichtung zur automatisierten steuerung und regelung einer maschine zur schmiermittelaufbringung
DE19912500A1 (de) Verfahren und Vorrichtung zum Bestimmen von Eigenschaften einer laufenden Materialbahn
CH693273A5 (de) Verfahren und Vorrichtung in einerSpinnereivorbereitungsanlage zum Erkennen und Ausscheiden vonFremdstoffen.
DE102017108786A1 (de) Verfahren und Vorrichtung zum Ermitteln der Planheit von Bandmaterial und Bearbeitungsanlage mit einer solchen Vorrichtung
DE69330064T2 (de) Vorrichtung und verfahren zur prüfung von textilem gut
EP1826557B1 (de) Optische Kontrolle von Produkten der Tabak verarbeitenden Industrie
DE19801140A1 (de) Vorrichtung zum direkten oder indirekten Auftrag eines flüssigen bis pastösen Auftragsmediums auf eine laufende Materialbahn sowie Betriebsverfahren für eine solche Vorrichtung
EP2132526A1 (de) Vorrichtung zur dickenmessung und verfahren hierfür
EP3566791B1 (de) Verfahren und system zum erfassen der oberflächenbelegung einer beschichtung auf einer oberfläche eines bandförmigen prüflings
EP1421999A2 (de) Verfahren zum Identifizieren, Klassifizieren und Sortieren von Gegenständen, Objekten und Materialien, sowie ein Erkennungssystem zur Durchführung dieses Verfahrens
EP0891818A2 (de) Pulverbeschichtungsanlage mit vertikal übereinander angeordneten Sprühpistolen
EP1663562B1 (de) Dosenschweissmaschine mit pulvermonitor
DE4132950C1 (de)
DE202015101107U1 (de) Vorrichtung zur Messung der Sprühcharakteristik einer oder mehrerer Sprühdüsen
EP0841560A2 (de) Vorrichtung zur optischen Untersuchung der Oberfläche von Rohren
WO2002099391A2 (de) Partikelsonde
EP3835752A1 (de) Verfahren zur überwachung des medienstroms eines tröpfchenstrahls
DE102004051926A1 (de) Filterherstellungsverfahren sowie -vorrichtung
EP2145693A1 (de) Überwachung eines Auftragsmedienstromes beim Auftrag auf eine Papier-, Karton- oder andere Faserstoffbahn
EP4135924B1 (de) Verfahren und vorrichtung zur qualitätsbeurteilung eines bearbeitungsprozesses
EP0211989A1 (de) Verfahren und Gerät zur Abschätzung der Menge des wulstförmigen Vorratsmaterials zwischen Kalanderwalzen
DE19722582A1 (de) Verfahren und Vorrichtung in einer Spinnereivorbereitungsanlage (Putzerei) zum Erkennen und Auswerten von Fremdstoffen
WO2007131571A1 (de) Vorrichtung zur ermittlung bestimmter eigenschaften eines schüttfähigen guts

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004761926

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004761926

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007193378

Country of ref document: US

Ref document number: 10571881

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10571881

Country of ref document: US