WO2005024926A1 - Substrate treating device and method of manufacturing semiconductor device - Google Patents

Substrate treating device and method of manufacturing semiconductor device

Info

Publication number
WO2005024926A1
WO2005024926A1 PCT/JP2004/012855 JP2004012855W WO2005024926A1 WO 2005024926 A1 WO2005024926 A1 WO 2005024926A1 JP 2004012855 W JP2004012855 W JP 2004012855W WO 2005024926 A1 WO2005024926 A1 WO 2005024926A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
source gas
gas supply
inert gas
supply line
Prior art date
Application number
PCT/JP2004/012855
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Asai
Sadayoshi Horii
Hideharu Itatani
Atsushi Sano
Hidehiro Yanai
Original Assignee
Hitachi Kokusai Electric Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc. filed Critical Hitachi Kokusai Electric Inc.
Priority to JP2005513684A priority Critical patent/JP4356943B2/en
Publication of WO2005024926A1 publication Critical patent/WO2005024926A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles

Definitions

  • the present invention relates to a substrate processing apparatus for processing a substrate such as a semiconductor wafer and a method for manufacturing a semiconductor device (semiconductor device).
  • One of semiconductor manufacturing processes includes a CVD (Chemical Vapor D mark osition) process of performing a predetermined film forming process on the surface of a substrate.
  • the substrate refers to a substrate on which a fine electric circuit pattern based on a silicon wafer, glass, or the like is formed.
  • a substrate is loaded into an airtight reaction chamber, the substrate is heated by a heating means provided in the chamber, and a chemical reaction occurs while introducing a reaction gas onto the substrate, thereby forming a fine electric circuit pattern on the substrate. It forms a thin film uniformly.
  • the reaction gas is supplied through a film forming gas supply pipe 8 connected to the shower plate 2, and is introduced onto the substrate 3 via a shower hole 6 provided in the shower plate 2.
  • a part of the film-forming gas introduced onto the substrate 3 is used for depositing a predetermined CVD thin film by causing a decomposition reaction, an adsorption reaction, or a bonding reaction by thermal energy from the substrate.
  • residual gas and by-products of the film forming gas are exhausted through the exhaust pipe 7.
  • the substrate 3 is heated by the heater 5 provided below the susceptor 4.
  • HfO hafnium oxide film
  • HfSif hafnium silicate film
  • Traxie hafnium abbreviated as Hf_ ⁇ tBu
  • Hf [ ⁇ C (CH) CH ⁇ CH] tetrakis (1_methoxy
  • Hf-MMP 2-methyl-2-propoxy hafnium
  • Hf [ ⁇ -Si- (CH 2)] HfCl etc.
  • Si-MMP Methoxy-1-methyl-2-propoxy
  • Si ( ⁇ C H) abbreviation TEOS
  • Organic Si metal raw materials such as are used. This organic Si metal raw material is used by being mixed with the above organic Hf metal material.
  • organometallic materials are liquid or solid at normal temperature and normal pressure in order to ensure easy transportation and supply. For this reason, most raw materials are heated and raised in vapor pressure to be converted into gas for use.
  • FIG. 12 is a configuration diagram of a typical conventional MOCVD apparatus.
  • the liquid raw material 9 filled in the film forming raw material container 10 is pushed by an inert gas under pressure from an inert gas inlet 11 and guided to a vaporizer 13 via a liquid supply pipe 12.
  • the liquid raw material is heated by a heater disposed inside the vaporizer 13 and is converted from liquid to gas. In this way, the liquid source 9 becomes a film forming gas, and is guided to the gas supply control pipe 15 through the vaporized gas supply pipe 14.
  • the film formation gas is guided to the film formation gas supply pipe 8.
  • the film formation gas is led to the bypass pipe 16. Regardless of which route the film forming gas passes through, the film forming gas is guided to the exhaust treatment device 17 via the exhaust pipe 7 and is subjected to the exhaust treatment.
  • the gas supply control pipe 15 includes a valve 31, a valve 32, and a dilution gas supply pipe 19, as shown in FIG.
  • the valve 31 is provided in a bypass pipe 16 branched from the vaporized gas supply pipe 14.
  • the valve 32 is provided on the film forming gas supply pipe 8 communicating with the vaporized gas supply pipe 14.
  • the dilution gas supply pipe 19 is provided in the film formation gas supply pipe 8 downstream of the valve 32.
  • the gas control pipe 15 controls the opening / closing of the valves 31 and 32 to control whether or not to form a film.
  • the diluent gas is introduced from the diluent gas inlet 20 regardless of whether or not to form a film, and is always supplied to the reaction chamber via the diluent gas supply pipe 19. By constantly supplying a diluting gas to the reaction chamber, pressure fluctuations in the reaction chamber due to opening and closing of the valves 31 and 32 are suppressed, and the deposition gas is diluted to reduce the deposition rate of the thin film Or control the degree.
  • FIG. 9 shows a state in which the film forming gas is flown into the bypass pipe 16 by using the conventional gas supply control pipe 15, that is, a state in which the film formation is stopped.
  • the valve 31 is open and the valve 32 is closed.
  • the piping in which the film forming gas exists is indicated by a thick line.
  • the pipes indicated by thick lines also indicate that a film forming gas is present.
  • FIG. 10 shows a state in which the film formation is stopped, the state in which the film formation gas is supplied to the film formation gas supply pipe 8 by using the gas supply control pipe 15, that is, the state in which the film formation is started, is shifted. expressed.
  • the valve 31 is closed and the valve 32 is open, and a film forming gas is introduced into the reaction chamber, and a film is formed.
  • FIG. 11 shows a state in which the state is shifted from this state to the state at the moment when the film formation is stopped.
  • the valve 31 is open and the valve 32 is closed.
  • the dead space 18 refers to a portion between the valve 32 in the film forming gas supply pipe 8 and the dilution gas supply point. Therefore, in the gas supply control pipe 15 having the conventional structure, the state of stopping the film formation becomes ambiguous, and it is difficult to stop the film formation immediately and completely. For this reason, conventionally, the deposited film thickness of the thin film fluctuates, and it is difficult to obtain uniformity of the film thickness in the substrate surface.
  • the present invention solves the conventional problem that it is difficult to purge a deposition gas staying in a dead space, and improves the reproducibility, in-plane uniformity, and composition uniformity of a thin film formed on a substrate.
  • An object of the present invention is to provide a substrate processing apparatus and a semiconductor device manufacturing method which can be improved. It has been the target.
  • the first invention is directed to a reaction chamber for processing at least a substrate, a source gas supply unit for supplying a source gas into the reaction chamber, and a source connecting the reaction chamber and the source gas supply unit.
  • a substrate processing apparatus comprising: a first inert gas supply line that supplies an inert gas into a raw gas supply line between a first valve and the second valve.
  • a film forming gas supply line near the first valve ( A dead space) and a film forming gas that is retained in a film forming gas supply line (dead space) near the second vanoleb can be flushed with an inert gas. Therefore, it is possible to effectively purge the deposition gas staying in the dead space.
  • the first valve when processing the substrate in the reaction chamber, the first valve is opened, the second valve is opened, and the third valve is closed. After that, close the first valve, open the second valve, open the third valve, and then open the first valve, close the second valve, open the third valve.
  • a substrate processing apparatus characterized by having control means for controlling the substrate processing.
  • a source gas is supplied into the reaction chamber to form a film.
  • the first valve is closed, the second valve is opened, and the third valve is opened, the source gas is exhausted from the bypass line so as to bypass the reaction chamber, and the film formation is stopped.
  • the deposition gas staying in the dead space near the second valve is flushed into the reaction chamber.
  • the first valve is opened, the second valve is closed, and the third valve is opened, the deposition gas staying in the dead space near the first valve is exhausted from the bypass line. Therefore, stop film formation The later ambiguous state is eliminated, and the film formation can be stopped immediately.
  • a third aspect based on the second aspect, after the substrate processing, the first valve is closed, the second valve is opened, and the third valve is opened.
  • An operation of opening, closing the second valve, and opening the third valve is a substrate processing apparatus having control means for controlling the operation to be repeated a plurality of times.
  • the first valve is closed, the second valve is opened, and the third valve is opened.
  • the first valve is opened, the second valve is closed, and the third valve is opened. Is repeated several times, the purging effect is enhanced, and even when the source gas remains in the film forming gas supply line, the degree of dilution of the source gas is increased to increase the concentration of the source gas.
  • the force S can be reduced.
  • the source gas supply unit is configured to always supply a constant flow rate of the source gas to the source gas supply line at least during and after the substrate processing.
  • the substrate processing apparatus is characterized in that:
  • the source gas can be supplied stably.
  • the first inert gas supply line is configured to always supply a constant flow rate of the inert gas at least during the substrate processing and after the substrate processing.
  • the substrate processing apparatus is characterized in that:
  • a sixth invention is characterized in that, in the first invention, a second inert gas supply line for supplying an inert gas into a source gas supply line downstream of the second valve is provided. Is a substrate processing apparatus.
  • the pressure in the reaction chamber is adjusted by adjusting the flow rate of the second inert gas. Variations can be suppressed.
  • the supply flow rate of the source gas supplied from the source gas supply unit and the supply flow rate of the inert gas supplied from the first inert gas supply line are different from each other.
  • a substrate processing apparatus characterized in that the supply flow rate of the inert gas supplied to the second inert gas supply line is made variable while being constant.
  • the supply flow rate of the source gas supplied from the source gas supply unit and the supply flow rate of the inert gas supplied from the first inert gas supply line are fixed, and the inert flow supplied from the second inert gas supply line is maintained.
  • the gas supply flow variable it is possible to adjust the total gas flow introduced into the reaction chamber (total flow of the raw material gas and the inert gas) to be always constant, and to suppress pressure fluctuations in the reaction chamber be able to.
  • the total flow rate of the source gas and the inert gas supplied into the reaction chamber is constant before, during, and after the substrate processing.
  • a substrate processing apparatus comprising a control unit for adjusting a supply flow rate of an inert gas flowing from a second inert gas supply line.
  • the first valve before processing the substrate in the reaction chamber, the first valve is opened, the second valve is closed, the third valve is opened, and the substrate is removed.
  • the first valve is opened, the second valve is opened, and the third valve is closed.
  • the first valve is closed, the second valve is opened, and the third valve is opened.
  • a substrate processing apparatus characterized by having control means for controlling a valve to be opened, a first valve to be opened, a second valve to be closed, and a third valve to be opened thereafter.
  • each valve By controlling each valve as in the present invention, it is possible to remove the film-forming gas staying in the dead space near the first valve and near the second valve, and before, during, and after the substrate processing. After that, pressure fluctuation in the reaction chamber can be suppressed.
  • the present invention is particularly concerned with the fact that the lighter the source material, the more the source material adheres to the center of the substrate, the more likely it is for the phenomenon to occur. According to the method, any type of residual gas remaining in the dead space can be effectively purged, so that such a phenomenon can be effectively prevented, and the composition uniformity in the substrate surface can be improved.
  • a step of processing the substrate a step of exhausting the source gas from the bypass line provided to branch off from the source gas supply line before or after the substrate processing so as to bypass the reaction chamber, and a step of processing the substrate.
  • Discharging the source gas from the bypass line after the substrate processing wherein the step of discharging the source gas from the bypass line after the substrate processing is performed on a downstream side of a branch point of the source gas supply line with the bypass line.
  • the first valve is closed, the second valve provided downstream of the first valve of the source gas supply line is opened, and the third valve provided in the bypass line is opened. And in a state, a method of manufacturing a semiconductor device comprising a call including a first valve and a step of supplying a raw material gas supply line in the inert gas between the second valve.
  • the first valve is closed, the second valve is opened, and the third valve is opened. Since the inert gas is supplied into the source gas supply line between the second valve and the source valve, the source gas is exhausted from the bypass line and the source gas remaining in the source gas supply line downstream of the second valve is purged. be able to.
  • the step of exhausting the source gas from the bypass line after the substrate processing further comprises opening the first valve, closing the second valve, and closing the third valve.
  • the first valve In the step of exhausting the source gas from the bypass line after the substrate processing, the first valve is opened, the second valve is closed, and the third valve is opened. Since the inert gas is supplied into the source gas supply line between the first valve and the inert gas supply point, the source gas is exhausted from the bypass line and stays in the source gas supply line between the first valve and the inert gas supply point. Source gas can be purged.
  • the step of exhausting the source gas from the bypass line after the substrate processing is performed by closing the first valve, opening the second valve, and removing the third valve.
  • the step of supplying an inert gas into the source gas supply line between the first valve and the second valve while the third valve is open is repeated a plurality of times. This is a method of manufacturing a semiconductor device.
  • the first valve is closed, the second valve is opened, and the third valve is opened.
  • the first valve is opened, the second valve is closed, and the third valve is opened. Is repeated several times, the purging effect is enhanced, and even when the source gas remains in the film forming gas supply line, the degree of dilution of the source gas is increased to increase the concentration of the source gas.
  • the force S can be reduced.
  • the step of exhausting the source gas from the bypass line after the substrate processing includes closing the first valve, opening the second valve, and removing the third valve.
  • the source gas retained in the source gas supply line downstream of the second valve can be purged. Further, in the step of causing the inert gas to flow toward the first valve, the source gas remaining in the source gas supply line between the first valve and the inert gas supply point is purged. it can. Therefore, the source gas retained in the source gas supply line is effectively purged.
  • At least the step of processing the substrate and the step of exhausting the source gas from the bypass line before or after the substrate processing are always performed at a constant flow rate from the source gas supply unit.
  • a method for manufacturing a semiconductor device comprising continuously supplying a source gas to a source gas supply line.
  • the source gas can be supplied stably.
  • At least the step of processing the substrate and the step of exhausting the source gas from the bypass line before or after the substrate processing are performed by the first valve and the second valve.
  • a method for manufacturing a semiconductor device characterized in that a constant flow of an inert gas is continuously supplied into a source gas supply line between the semiconductor device and the valve.
  • a method of manufacturing a semiconductor device comprising: a step of supplying an inert gas into a source gas supply line between a first valve and a second valve while the valve is open. Even before the substrate processing, the first valve is opened, the second valve is closed, and the third valve is opened in the step of exhausting the source gas from the no-pass line.
  • the source gas between the first valve and the inert gas supply point is discharged while exhausting the source gas from the nozzle line.
  • the source gas retained in the gas supply line can be purged.
  • the supply flow rate of the source gas supplied from the source gas supply unit, the first valve and the The supply flow rate of the inert gas supplied into the source gas supply line between the second valve and the second valve is always kept constant, and the total flow rate of the source gas and the inert gas supplied into the reaction chamber is always kept constant.
  • the raw material gas supplied into the reaction chamber via the raw material gas supply line includes at least two types of raw material gas or a mixed gas of at least two types of raw material gas.
  • a method for manufacturing a semiconductor device comprising:
  • the present invention is particularly concerned with the fact that the lighter the source material, the more the source material adheres to the center of the substrate, the more likely it is for the phenomenon to occur. According to the method, any type of residual gas remaining in the dead space can be effectively purged, so that such a phenomenon can be effectively prevented, and the composition uniformity in the substrate surface can be improved. .
  • the present invention it is possible to effectively purge a film formation gas staying in a dead space by flushing it with an inert gas. For this reason, the variation in the deposited film thickness of the thin film can be suppressed, and the reproducibility of the thin film formed on the substrate and the uniformity of the film thickness and composition in the substrate surface can be improved. Since there is no dead space where the deposition gas stays, it is possible to suppress the generation of particles due to the self-decomposition of the deposition gas.
  • the HfO film which is particularly an amorphous HfO film, is formed by using the CVD method, more specifically, the MOCVD method.
  • FIG. 1 is a schematic diagram showing an example of a single-wafer MOCVD apparatus in which a remote plasma unit as a substrate processing apparatus according to an embodiment is incorporated.
  • Single wafer MOCVD equipment is configured to process at least one substrate.
  • a hollow heater unit 180 is provided in the reaction chamber 100.
  • the heater unit 180 has an upper opening covered by a susceptor 200 as a substrate holding means. .
  • a heater 300 power S is provided inside the heater unit 180 as a calorie heating means.
  • the substrate 400 mounted on the susceptor 200 can be heated by the heater 300.
  • the heater 300 is controlled by the temperature control means 51 so that the temperature of the substrate 400 becomes a predetermined temperature.
  • the substrate 400 mounted on the susceptor 200 is, for example, a semiconductor silicon wafer, a glass substrate, or the like.
  • a substrate rotation unit 120 as a rotation unit is provided outside the reaction chamber 100.
  • the heater unit 180 in the reaction chamber 100 is rotated by the substrate rotating unit 120 so that the substrate 400 on the susceptor 200 can be rotated.
  • the reason why the substrate 400 is rotated is that processing on the substrate in a film forming step and a reforming step, which will be described later, is quickly and uniformly performed on the substrate surface.
  • the substrate rotation unit 120 is controlled by the drive control means 54.
  • a shower head 600 having a large number of holes 800 is provided above the susceptor 200 in the reaction chamber 100.
  • a raw material supply pipe 500 for supplying a film forming gas and a radical supply pipe 130 for supplying radicals are commonly connected to the shower head 600, so that the film forming gas or radicals are supplied to the shower head 600 in a shower-like reaction chamber. It can squirt into 100.
  • the shower head 600 constitutes the same supply port for supplying a film formation gas supplied to the substrate 400 in the film formation step and a radical supplied to the substrate 400 in the modification step.
  • a raw material supply unit 900 for supplying an organic liquid raw material as a film forming raw material to the outside of the reaction chamber 100, a liquid flow control device 280 as flow control means for controlling a liquid supply flow rate of the film forming raw material, A vaporizer 290 for vaporizing the film raw material is provided.
  • an inert gas supply unit 10a for supplying an inert gas as a diluting gas, mass flow controllers 460a and 460b as flow control means for controlling a supply flow rate of the inert gas, and a force S are provided.
  • the mass flow controllers 460a and 460b are provided in the first inert gas supply pipe 23 and the second inert gas supply pipe 24 connected to the inert gas supply unit 10a, respectively.
  • Hf— (MMP) or the like is used as the organic liquid raw material.
  • Ar Ar
  • the raw material gas supply pipe 5b provided in the raw material supply unit 900, the first inert gas supply pipe 23 provided in the inert gas supply unit 10a, and the second inert gas supply pipe 24 are provided.
  • a single raw material supply pipe 500 connected to the shower head 600 is provided.
  • the raw material supply pipe 500 is formed in the shower head 600 in a film forming process for forming an Hf ⁇ film on the substrate 400.
  • a mixed gas of a film gas and an inert gas is supplied.
  • the source gas supply pipe 5b and the inert gas supply pipes 23 and 24 are both connected to a gas supply control pipe 36.
  • the gas supply control pipe 36 has a function of controlling whether or not to form a film, and will be described in detail later.
  • the supply of the mixed gas of the film forming gas and the inert gas can be controlled by the gas supply control pipe 36.
  • the source gas supply line is composed of the source gas supply pipe 5b and the source gas supply pipe 500 described above. Further, the first inert gas supply line 23 and the second inert gas supply line 24 constitute a first inert gas supply line and a second inert gas supply line, respectively.
  • a reactant activating unit (remote plasma unit) 110 serving as a plasma source for activating a gas by plasma to form radicals as a reactant is provided outside the reaction chamber 100.
  • Radicals used in the reforming step described below are used as raw materials such as Hf— (MMP).
  • an oxygen radical is preferable. This is because oxygen radicals can efficiently remove impurities such as C and H immediately after HfO film formation.
  • the radical used in the self-cleaning step described later is preferably a C1F radical.
  • oxygen-containing gas O, N ⁇ , NO, etc.
  • RPO remote plasma oxidation
  • a gas supply pipe 370 is provided upstream of the reactant activation unit 110.
  • the gas supply pipe 370 has an oxygen supply unit 470 for supplying oxygen (O 2), and a plasma is generated.
  • Ar supply unit 480 for supplying gaseous argon (Ar) and chlorine fluoride (C1F)
  • Supply C1F supply units 490 are connected via supply pipes 520, 530, and 540, respectively.
  • Supply pipes 520, 530, 540 connected to oxygen supply unit 470, Ar supply unit 480, and C1F supply unit 490
  • Supply pipes 520, 530, and 540 are provided with vanolebs 580, 590, and 600, respectively, and by opening and closing these vanolebs 580, 590, and 600, O
  • a radial supply pipe 130 connected to the shower head 600 is provided downstream of the reactant activation unit 110, and oxygen (O 2) is supplied to the shower head 600 in the reforming step or the self-cleaning step.
  • oxygen (O 2) is supplied to the shower head 600 in the reforming step or the self-cleaning step.
  • a valve 240 is provided in the radical supply pipe 130, and the supply of radicals can be controlled by opening and closing the valve 240.
  • An exhaust port 7a is provided in the reaction chamber 100, and an exhaust pipe 700 is connected to the exhaust port 7a.
  • the exhaust pipe 700 is provided with a pressure regulator 61 for controlling the pressure in the reaction chamber 100 and a material recovery trap 160 for recovering a film forming material. This raw material recovery trap 160 is used commonly for the film forming step, the reforming step, and the self-cleaning step.
  • the exhaust pipe 700 is further provided with a vacuum pump 62 and an abatement device 63 as an exhaust device.
  • the exhaust port 7a and the exhaust pipe 700 constitute an exhaust line.
  • a source gas bypass pipe 14 a and a radical bypass pipe 14 b connected to a source recovery trap 160 provided in the exhaust pipe 700 are respectively branched and connected to the source gas supply pipe 5 b and the radical supply pipe 130.
  • the valve 33 described above is provided on the raw material gas bypass pipe 14a, and the valve 230 is provided on the radical bypass pipe 14b.
  • the radicals used in the reforming step are supplied to the reaction chamber 100 without stopping the supply.
  • the gas is exhausted through the radial bypass pipe 14b and the raw material recovery trap 160 so as to bypass the air.
  • the source gas bypass pipe 14a and the source recovery trajectory are used to bypass the reaction chamber 100 without stopping the supply of the film forming gas used in the film forming step. Exhaust through top 160.
  • bypass line is connected to the above-described raw material gas bypass pipe 14a and the radical bypass pipe 14b. Is configured.
  • the single-wafer MOCVD apparatus is provided with a control device 250.
  • the control device 250 includes a film forming step for forming an Hf ⁇ film on the substrate 400 in the reaction chamber 100, and removing impurities such as C and H which are specific elements in the Hf ⁇ film formed in the film forming step.
  • the reforming step of removing by plasma treatment using the reactant activation unit 110 is controlled so as to be continuously repeated a plurality of times. This control controls the opening and closing of the valves 33, 34, 35 provided in the gas supply control pipe 36, the valve 230 provided in the radial bypass pipe 14b, and the valve 240 provided in the radical supply pipe 130. It is done by doing.
  • the temperature control means 51 for controlling the heater 300 the liquid flow control device 280, the flow control means 52 for controlling the mass flow controllers 460a, 460b, 550, 560 and 570, and the control of the pressure regulator 61
  • a drive control unit 54 for controlling the substrate rotation unit 120 In the control device 250, the temperature control means 51 for controlling the heater 300, the liquid flow control device 280, the flow control means 52 for controlling the mass flow controllers 460a, 460b, 550, 560 and 570, and the control of the pressure regulator 61 And a drive control unit 54 for controlling the substrate rotation unit 120.
  • This procedure includes a temperature raising step, a film forming step, a purging step, and a reforming step.
  • At least one substrate 400 is carried into the reaction chamber 100 shown in FIG. 1, and the substrate 400 is placed on the susceptor 200 in the reaction chamber 100. While rotating the substrate 400 by the substrate rotation unit 120, power is supplied to the heater 300 to raise the temperature of the substrate 400 to 350-500. Heat uniformly to C (heating step).
  • the substrate temperature varies depending on the reactivity of the organic material used. For Hf- (MMP), the temperature is preferably in the range of 390-450 ° C.
  • an inert gas such as Ar, He, or N is constantly flowed into the reaction chamber 100 from the inert gas supply pipes 23 and 24, particles and metal contamination may occur. An object can be prevented from adhering to the substrate 400.
  • a film forming step is started.
  • the flow rate of the organic liquid raw material, for example, Hf- (MMP) supplied from the raw material supply unit 900 is controlled by the liquid flow controller 280.
  • the inert gas supply unit 10a connects the inert gas An inert gas (such as N) is always flowed into the reaction chamber 100 to agitate the deposition gas.
  • the film forming gas is diluted with an inert gas, stirring becomes easier.
  • the film forming gas supplied from the source gas supply pipe 5b and the inert gas supplied from the inert gas supply pipes 23 and 24 are mixed by the gas supply control pipe 36, and the mixed gas is showered from the source supply pipe 500 through the gas supply control pipe 36. It is guided to the head 600 and supplied through a large number of holes 800 onto the substrate 400 on the susceptor 200 in the form of a shower. At this time, gas containing oxygen atoms such as O is not supplied, and only Hf— (MMP) gas is supplied as the reactive gas.
  • MMP Hf—
  • an interface layer with the substrate is formed on the substrate 400.
  • a 0.5 A 30 A, for example, 15 A, HfO film is formed as the (first insulating layer).
  • the substrate 400 is kept at a predetermined temperature (film formation temperature) by the heater 300 while rotating, so that a uniform film can be formed in the surface of the substrate.
  • the supply of the source gas to the substrate 400 is stopped by closing the valve 34 or the valve 35 provided on the source gas supply pipe 5b.
  • the valve 33 provided in the source gas bypass pipe 14a is opened, and the supply of the deposition gas is exhausted by bypassing the reaction chamber 100 by the source gas bypass pipe 14a, and the deposition gas supplied from the source supply unit 900 is discharged. Do not stop the supply of water.
  • the film forming gas can be supplied to the substrate 400 immediately by simply switching the flow.
  • a purging step is started.
  • the inside of the reaction chamber 100 is purged with an inert gas to remove residual gas.
  • the inert gas N or the like
  • the valve 34 or 35 is closed to supply the source gas to the substrate 400. Is stopped and purge is performed at the same time.
  • the reforming step is started.
  • the reforming process is performed by RPO (remote plasma oxidation) treatment.
  • the RPO treatment is a remote plasma oxidation treatment that oxidizes the film using oxygen radicals as reactants generated by activating the oxygen-containing gas ( ⁇ , N ⁇ , NO, etc.) with plasma. It is.
  • the reforming process open the vanoleb 590 provided in the supply pipe 530, and supply the Ar supply unit 480 with Ar, which also supplied 480 power, to the mass flow controller 560. Then, the flow rate is controlled to supply the reactant activation unit 110 to generate Ar plasma.
  • the valve 580 provided in the supply pipe 520 is opened, and the amount supplied from the oxygen supply unit 470 is controlled by the mass flow controller 550 to the reactant activation unit 110 which is generating the Ar plasma. Supply and activate o. This produces oxygen radicals.
  • the valve 240 provided on the radical supply pipe 130 is opened, and a gas containing oxygen radicals is supplied from the reactant activation unit 110 onto the substrate 400 via the shower head 600. During this time, the substrate 400 is kept at a predetermined temperature (the same temperature as the film formation temperature) by the heater 300 while rotating, so that the C, H And other impurities can be quickly and uniformly removed.
  • the valve 240 provided on the radical supply pipe 130 is closed to stop the supply of oxygen radicals to the substrate 400.
  • the valve 230 provided in the radical bypass pipe 14b the supply of gas containing oxygen radicals is exhausted by bypassing the reaction chamber 100 by the radical bypass pipe 14b, and the supply of oxygen radicals is not stopped.
  • Oxygen radicals require a certain amount of time S from generation to stable supply, so if the oxygen radicals are not stopped and flowed so as to bypass the reaction chamber 100, the flow will be reduced in the next reforming step. By simply switching, radicals can be supplied to the substrate 400 immediately.
  • the purge step is started again.
  • the inside of the reaction chamber 100 is purged with an inert gas to remove residual gas.
  • the inert gas N or the like
  • the film forming step is started again, the valve 33 provided in the source gas bypass pipe 14a is closed, and the valves 34 and 35 provided in the source gas supply pipe 5b are opened, thereby forming the film forming gas. Is supplied onto the substrate 400 via the shower head 600, and a 15A Hf 15 film is deposited on the thin film formed in the previous film forming step.
  • the cycle process of repeating the film formation process ⁇ the purge process ⁇ the reforming process ⁇ the purge process a plurality of times enables the formation of a thin film having a predetermined film thickness with extremely little CH and ⁇ H contamination. it can.
  • the processed substrate 400 is carried out of the reaction chamber 100.
  • preferable film forming conditions when Hf— (MMP) is used are as follows.
  • temperature The range is 400-450 ° C, and the pressure range is less than about 100Pa.
  • the temperature when the temperature is lower than 400 ° C., the amount of impurities (C, H) taken into the film increases rapidly. At 400 ° C. or higher, impurities are easily released, and the amount of impurities taken into the film decreases.
  • the temperature is higher than 450 ° C, the step coverage becomes worse. When the temperature is 450 ° C or less, good step coverage can be obtained and the amorphous state can be maintained.
  • the pressure When the pressure is set to a high pressure of, for example, 1 Torr (133 Pa) or more, the gas becomes a viscous flow, so that the gas does not enter the depth of the pattern groove.
  • a high pressure for example, 1 Torr (133 Pa) or more
  • the pressure by setting the pressure to less than about lOOPa, a molecular flow without flow can be obtained, and the gas reaches the depth of the pattern groove.
  • Preferred conditions for the remote plasma oxidation treatment are a temperature range of about 390-450 ° C (approximately the same as the film formation temperature), and a pressure range of about 100-100OOOPa.
  • the O flow rate for radicals is 100 sccm, and the inert gas Ar flow rate is lslm.
  • the film forming step and the reforming step are performed at substantially the same temperature. That is, it is preferable that the set temperature of the heater be kept constant without being changed. This is because, by not causing temperature fluctuations, particles are generated due to thermal expansion of peripheral members such as the shower head and the susceptor, and it is possible to suppress the projection of metal from metal parts (metal contamination). is there.
  • the reactant activation unit 110 converts the cleaning gas (C1 or C1F) into a radical to form the reaction chamber 100
  • the valve 590 provided on the supply pipe 530 is opened, and the Ar supply unit 480 supplies the supplied Ar to the reactant activation unit 110 by controlling the flow rate by the mass flow controller 560 to generate Ar plasma.
  • the Ar supply unit 480 supplies the supplied Ar to the reactant activation unit 110 by controlling the flow rate by the mass flow controller 560 to generate Ar plasma.
  • the vanoleb 600 provided in the supply pipe 540 After generating the Ar plasma, open the vanoleb 600 provided in the supply pipe 540, and use the 490 C1F supply unit to supply the supplied C1F to the mass flow controller.
  • the flow rate is controlled by the roller 570 and supplied to the reactant activation unit 110 which generates Ar plasma to activate C1F. This produces C1F radicals. Radical supply
  • the cleaning gas reacts with the accumulated film in the reaction chamber 100, and the accumulated film is converted into a metal chloride or the like and volatilized, and the gas is exhausted. Thereby, the accumulated film in the reaction chamber is removed.
  • a film formation gas is introduced into the reaction chamber 100 to form a film.
  • the film formation gas remaining in the dead space of the source gas supply pipe 5b is sufficiently purged. What has to be done is as described above.
  • the film formation gas staying in the dead space is effectively purged by controlling the gas supply control pipe 36.
  • the configuration and operation of the gas supply control pipe 36 in the present embodiment will be described in detail.
  • the features of the gas supply control pipe 36 of the present invention are as follows. That is, first, one dilution gas supply pipe and one valve are added to the conventional gas supply control pipe 15. That is, the number of connecting points of the dilution gas pipe and the valve connected to the vaporized gas supply pipe is arranged in two or more straight lines on one supply path to the shower plate.
  • the gas supply control pipe 36 has a vaporized gas supply pipe 14, a film formation gas supply pipe 8, and a bypass pipe 16.
  • the vaporized gas supply pipe 14 and the film forming gas supply pipe 8 which are connected in an inverted L-shape correspond to the source gas supply pipe 5b shown in FIG. 1, and supply the source gas into the reaction chamber 100.
  • the bypass pipe 16 corresponds to the source gas bypass pipe 14a shown in FIG. 1 and is provided so as to branch off from a connection point between the vaporized gas supply pipe 14 and the film formation gas supply pipe 8, so that the raw material bypasses the reaction chamber 100. Construct a bypass line to exhaust gas.
  • a first valve 34 is provided downstream of the branch point of the film forming gas supply pipe 8 from the bypass pipe 16, and is provided downstream of the film forming gas supply pipe 8 downstream of the first valve 34. Is provided with a second valve 35 force S.
  • a third valve 33 is provided in the bypass pipe 16. Each of these valves 33-35 uses a two-way valve.
  • the first dilution gas supply line for supplying the first dilution gas is connected to the film formation gas supply line 8.
  • a pipe 27 and a second dilution gas supply pipe 28 for supplying a second dilution gas are provided.
  • the first dilution gas supply pipe 27 corresponds to the first inert gas supply pipe 23 shown in FIG. 1, and the first dilution gas supply pipe 27 is provided in the source gas supply line between the first valve 34 and the second valve 35.
  • a first inert gas supply line for supplying the inert gas is constituted.
  • the second dilution gas supply pipe 28 corresponds to the second inert gas supply pipe 24 shown in FIG. 1, and supplies the second inert gas into the source gas supply line downstream of the second valve 35.
  • a second inert gas supply line is provided.
  • the first dilution gas supply pipe 27 and the second dilution gas supply pipe 28 have a first dilution gas inlet 25 for introducing a dilution gas as an inert gas and a second dilution gas introduction 26, respectively. Provided.
  • the role of the first and second inert gas supply lines is as follows.
  • the first inert gas supply line 27 has a role of purging a first dead space 21 of a film formation gas supply line 8 described later (film formation stopped state). Further, it has a role of purging a second dead space 21 of a film formation gas supply line 8 described later (film formation stop transition state).
  • the flow rate of the second inert gas is adjusted so that the total flow rate of the gas introduced into the reaction chamber (total flow rate of the source gas and the dilution gas) is always constant. It has a role in suppressing pressure fluctuations.
  • the gas supply control pipe 36 is in a state where film formation is stopped ⁇ a state during film formation ⁇ a state where film formation is stopped ⁇ a state where film formation is stopped ⁇ a state during film formation ⁇ a state where film formation is stopped. ⁇ ⁇ Change.
  • the operation of the gas supply control pipe 36 for each of the above-described states will be described after the substrate 400 has been installed and heated in the reaction chamber 100 in advance.
  • the vaporizer 290 is always supplied with the film forming gas, and the first diluent gas inlet 25 and the second diluent gas inlet 2
  • the diluent gas Ar, N, ⁇ , etc., gas that does not have a film forming function alone
  • the flow rates of the film forming gas and the dilution gas may be controlled by a flow control device or the like.
  • the reason why the film formation gas is always supplied from the vaporizer 290 is as follows. If the raw material is vaporized in the vaporizer, not vaporized, or if the vaporization is stopped, the heat of vaporization May or may not be taken away, and the temperature of the vaporizer may become unstable. Then, it takes time from the start of raw material vaporization to the stable supply of raw material gas. Therefore, in order to constantly stabilize the temperature of the vaporizer and stably supply the raw material gas, the vaporizer power and the raw material gas are continuously supplied without stopping the vaporization.
  • the reason why the diluent gas is always supplied to the diluent gas supply line is as follows. When the supply of the diluent gas from the diluent gas supply line is stopped, it is conceivable that the source gas and the like will flow back to the diluent gas supply line. To prevent this, the dilution gas is always supplied to the dilution line.
  • Fig. 3 shows the state in which film formation is stopped.
  • both the valve 33 and the valve 34 are opened and the valve 35 is closed.
  • 3 indicates that the film forming gas supplied from the vaporizer 290 flows in the bold line pipes, that is, in the vaporized gas supply pipe 14 and the bypass pipe 16.
  • the first diluent gas passes through the first dead space 21, the valve 34, the valve 33, and the bypass pipe 16 in the film forming gas supply pipe 8 and is combined with the film forming gas as indicated by an arrow.
  • the first dead space 21 refers to a portion between the first valve 34 in the film forming gas supply pipe 8 and the first dilution gas supply point.
  • a second dead space 22, which will be described later refers to a portion between the second valve 35 in the film forming gas supply pipe 8 and a second dilution gas supply point.
  • the film forming gas staying in the first dead space 21 and the valve 34 can be purged by flushing with the diluent gas.
  • the backflow of the dilution gas occurs between the first dilution gas supply point in the film formation gas supply pipe 8 and the connection point between the vaporization gas supply pipe 14 and the film formation gas supply pipe 8.
  • the bypass pipe 16 is directly connected to the vacuum pump 62, simply switching the valves 33, 34, and 35 allows the first dilution gas supply point in the deposition gas supply pipe 8, the vaporized gas supply pipe 14, and the A backflow due to the dilution gas can be quickly generated between the gas supply pipe 8 and the connection point.
  • the state in which the film formation is stopped is a state before the start of film formation on the substrate 400, and is a process necessary for stabilizing the flow rate of the film formation gas.
  • the state shifts from this state to the state at the time of film formation. (State at the time of film formation)
  • Figure 4 shows the state during film formation.
  • the valve 33 is closed, and both the valve 34 and the valve 35 are open.
  • the bold gas pipes that is, the vaporized gas supply pipe 14 and the film formation gas supply pipe 8 indicate that the film formation gas is flowing. Therefore, a film forming gas is introduced into the reaction chamber 100, and a film forming process is performed on the substrate 400.
  • the first and second dilution gases are also supplied into the film forming gas supply pipe 8. After maintaining this state for a predetermined time, the state shifts to the next film formation stop transition state.
  • Fig. 5 shows the state of the film formation stop transition. In this state, both the valve 33 and the valve 35 are opened and the valve 34 is closed. Similarly to the above, it is shown that the film forming gas flows in the thick line pipe, that is, the vaporized gas supply pipe 14 and the bypass pipe 16, but in the first dead space 21 in the film formation gas supply pipe 8, This indicates that the membrane gas has accumulated. In this state, the film formation gas staying in the first dead space 21 is supplied to the reaction chamber 100 by a diffusion phenomenon, so that the film formation on the substrate 400 is not completely stopped.
  • the film forming gas existing in the second dead space 22 is swept away by the first diluent gas and the force S capable of purging, and the film forming gas existing in the first dead space 21 is swept away.
  • the film formation gas in the first dead space 21 can be pushed into the bypass pipe 16 with the first dilution gas. it can.
  • the raw material gas flow rate A supplied from the vaporizer to the vaporized gas supply pipe 14 is always constant.
  • the first dilution gas flow rate B supplied from the first dilution gas supply pipe 27 is also constant.
  • the second dilution gas flow rate C supplied from the second dilution gas supply pipe 28 is adjusted so that the total gas flow rate D introduced into the reaction chamber 100 through the film formation gas supply pipe 8 is always constant. Pressure inside reaction chamber 100 This is to prevent force fluctuation.
  • A 0.5 slm
  • B 0.5 slm
  • D l. 5 slm
  • the film forming gas staying in the dead space which has been a conventional problem, is purged by flushing with the diluent gas.
  • the film forming gas can be easily removed. Therefore, fluctuations in the deposited film thickness of the thin film can be suppressed, and uniformity of the film thickness and composition on the substrate surface can be easily obtained.
  • the first valve 34 when processing the substrate 400 in the reaction chamber 100, the first valve 34 is opened, the second valve 35 is opened, and the third valve 33 is closed.
  • the first valve 34 is closed, the second valve 35 is opened, the third knob 33 is opened, and then the first valve 34 is opened and the second valve 35 is closed.
  • the control device 250 controls the valves 33-35 so as to open the third valve 33, thereby purging the deposition gas remaining in the dead space.
  • the control device 250 controls the first valve 34, the second vane valve 35, and the third valve 33 to close the first valve 34 and open the second valve 35 after the substrate processing.
  • opening the third valve 33 and the operation of opening the first valve 34, closing the second valve 35, and opening the third valve 33 may be controlled a plurality of times. . According to this, the “film formation stop state” in FIG. 3 and the “film formation stop transition state” in FIG. 5 are repeated a plurality of times.
  • the merits of repeating the “film formation stop transition state” ⁇ “film formation stop state” are as follows.
  • the flow of the diluent gas is formed from the first diluent gas supply point to the bypass pipe 16 side, and the raw material gas remaining in the first dead space 21 is pushed into the bypass pipe 16.
  • the raw material gas that has stayed in the first dead space 21 due to diffusion may be supplied from the first dilution gas supply point to the reaction chamber side, that is, the first dilution gas supply point and the second dilution gas supply point.
  • the source gas remains in the film forming gas supply pipe 8.
  • FIG. 6 shows a gas supply control pipe 36 using such a three-way valve.
  • the film forming gas supply pipe 8 constituting the gas supply control pipe 36 and the first dilution gas supply pipe 27 are connected by a first three-way valve 40. That is, the film forming gas supply pipe 8 is connected to the first and second ports of the first three-way valve 40, and the first dilution gas supply pipe 27 is connected to the third port. Further, the film forming gas supply pipe 8 and the second dilution gas supply pipe 28 are connected by a second three-way valve 41.
  • the deposition gas supply pipe 8 is connected to the first and second ports of the second three-way valve 41, and the second dilution gas supply pipe 28 is connected to the third port.
  • a three-way valve can be used as the first valve and the second valve of the gas supply control pipe 36.
  • one source element supply unit 900 for supplying one type of organic Hf metal source is connected to the source gas supply line to form an Hf 1 film by a one-element CVD thin film.
  • a source gas supply line must have at least two sources that supply at least two types of sources.
  • the present invention can also be applied to a multi-element CVD thin film forming apparatus to which a material supply unit is connected or at least one material supply unit for supplying a mixed material in which at least two kinds of materials are mixed in a liquid state is connected.
  • the HfSi ⁇ film forming apparatus includes, for example, the following two types of apparatuses.
  • One is a type in which two types of raw materials are mixed in a liquid state in a raw material tank, and the other is a type in which a raw material tank and a vaporizer are separately provided for each raw material.
  • the type in which two types of raw materials are mixed in the raw material tank is the same as the configuration shown in FIG. 1, and the Hf raw material and the Si raw material are mixed in the raw material supply unit 900.
  • the type in which a raw material tank and a vaporizer are separately provided for each raw material is configured as shown in FIG.
  • the configuration of the substrate processing apparatus shown in FIG. 15 is basically the same as the configuration shown in FIG.
  • One of the Hf source supply systems includes a source supply unit 900a for supplying the Hf source, a liquid flow controller 28 Oa for controlling the liquid supply flow rate of the deposition source, and a vaporizer 290a for vaporizing the deposition source.
  • the other Si source supply system is composed of a source supply unit 900b for supplying an S source material, a liquid flow controller 280b for controlling the liquid supply flow rate of the film forming material, and a vaporizer 290b for vaporizing the film forming material. You.
  • the output ports of these vaporizers 290a and 290b are unified and connected to the source gas supply pipe 5b.
  • the respective gases sent from the respective film forming source supply systems are mixed in a source gas supply pipe 5b and supplied to the reaction chamber via a gas supply control pipe 36.
  • the present invention is particularly effective when forming such a multi-element thin film.
  • a plurality of types of elements have different diffusing powers depending on their masses. The lighter the element, the greater the diffusing power. That is, of the plurality of elements staying in the dead space, the one with the smaller mass is diffused first and supplied to the reaction chamber.
  • HfSiO film which is a two-element system CVD thin film
  • an Hf raw material and an S source material are used. Due to the difference, the timing of supply into the reaction chamber is shifted. Then, first The supplied material adheres more to the center of the substrate, which affects the composition uniformity within the substrate surface.
  • the present invention is particularly effective when forming a multi-element CVD thin film. It is needless to say that the present invention is also effective when a multi-element thin film is formed by ALD.
  • FIG. 1 is a schematic sectional view showing a substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a gas supply control pipe according to the first embodiment.
  • FIG. 3 is an explanatory diagram of a gas supply control pipe according to the first embodiment.
  • FIG. 4 is an explanatory diagram of a gas supply control pipe according to the first embodiment.
  • FIG. 5 is an explanatory diagram of a gas supply control pipe according to the first embodiment.
  • FIG. 6 is a view showing a gas supply control pipe according to a second embodiment.
  • FIG. 7 is an explanatory view of a three-way valve according to a second embodiment.
  • FIG. 8 is a view showing a conventional gas supply control pipe.
  • FIG. 9 is an explanatory view showing a problem of a conventional gas supply control pipe.
  • FIG. 10 is an explanatory diagram showing a problem of a conventional gas supply control pipe.
  • FIG. 11 is an explanatory diagram showing a problem of a conventional gas supply control pipe.
  • FIG. 12 is a schematic configuration diagram of a conventional CVD apparatus.
  • FIG. 13 is a structural view of a conventional reaction chamber.
  • FIG. 14 is an explanatory diagram showing a method for controlling a flow rate of a dilution gas according to an embodiment.
  • FIG. 15 is a schematic sectional view showing another substrate processing apparatus according to the embodiment.
  • Raw material supply pipe raw gas supply line
  • Raw material supply unit Raw material supply unit

Abstract

A substrate treating device capable of improving the reproducibility, inplane uniformity, and composition uniformity of a thin-film formed on a substrate. Valves (34) and (35) are installed in a raw material gas supply tube (5b) supplying a raw material gas to a reaction chamber (100), and a valve (33) is installed in a bypass tube (14a) branched from the raw material gas supply tube (5b). An inert gas supply tube (23) is installed between the valves (34) and (35). A control device (250) controls the valves (33) to (35) as follows. In transition from film formation to the stop of the film formation, the valve (34) is closed and both the valves (33) and (35) are opened to bypass the raw material gas through the bypass tube (14a) and to flow the inert gas through the inert gas supply tube (23) to discharge, from the reaction chamber, residual gas in a dead space on the downstream side of the valve (35) in the raw material gas supply tube (5b). When the film formation is stopped, the valve (35) is closed and both the valves (34) and (33) are opened to flow the inert gas through the inert gas supply tube (23) so as to discharge, together with the raw material gas, residual gas in a dead space on the upstream side of an inert gas supply portion in the raw material gas supply tube (5b) through the bypass tube (14a).

Description

明 細 書  Specification
基板処理装置及び半導体装置の製造方法  Substrate processing apparatus and method of manufacturing semiconductor device
技術分野  Technical field
[0001] 本発明は、半導体ウェハ等の基板を処理するための基板処理装置及び半導体装 置 (半導体デバイス)の製造方法に関する。  The present invention relates to a substrate processing apparatus for processing a substrate such as a semiconductor wafer and a method for manufacturing a semiconductor device (semiconductor device).
背景技術  Background art
[0002] 半導体製造工程の 1つに基板の表面に所定の成膜処理を行う CVD(Chemical Vapor D印 osition)工程がある。ここで、基板とはシリコンウェハやガラスなどをベースと する微細な電気回路パターンが形成された被処理基板をいう。 CVD工程は、気密な 反応室に基板を装填し、室内に設けた加熱手段により基板を加熱し、反応ガスを基 板上へ導入しながら化学反応を起こし、基板上にある微細な電気回路パターン上へ 薄膜を均一に形成するものである。図 13に示す CVD装置は、反応室 1内にシャワー 板 2とサセプタ 4を設け、サセプタ 4上に基板 3を配置して構成されている。反応ガス は、シャワー板 2に接続された成膜ガス供給配管 8を通って供給され、シャワー板 2に 設けたシャワー孔 6を経由して基板 3上へ導入される。基板 3上へ導入された成膜ガ スの一部は、基板からの熱エネルギーにより分解反応、吸着反応、あるいは結合反 応を起こしたりして所定の CVD薄膜の堆積に費やされる。また、成膜ガスの残ガスや 副生成物は、排気配管 7を通って排気処理される。この CVD薄膜の堆積処理中は、 基板 3はサセプタ 4の下方に設けたヒータ 5によって加熱されている。  [0002] One of semiconductor manufacturing processes includes a CVD (Chemical Vapor D mark osition) process of performing a predetermined film forming process on the surface of a substrate. Here, the substrate refers to a substrate on which a fine electric circuit pattern based on a silicon wafer, glass, or the like is formed. In the CVD process, a substrate is loaded into an airtight reaction chamber, the substrate is heated by a heating means provided in the chamber, and a chemical reaction occurs while introducing a reaction gas onto the substrate, thereby forming a fine electric circuit pattern on the substrate. It forms a thin film uniformly. The CVD apparatus shown in FIG. 13 is configured such that a shower plate 2 and a susceptor 4 are provided in a reaction chamber 1, and a substrate 3 is arranged on the susceptor 4. The reaction gas is supplied through a film forming gas supply pipe 8 connected to the shower plate 2, and is introduced onto the substrate 3 via a shower hole 6 provided in the shower plate 2. A part of the film-forming gas introduced onto the substrate 3 is used for depositing a predetermined CVD thin film by causing a decomposition reaction, an adsorption reaction, or a bonding reaction by thermal energy from the substrate. In addition, residual gas and by-products of the film forming gas are exhausted through the exhaust pipe 7. During the deposition of the CVD thin film, the substrate 3 is heated by the heater 5 provided below the susceptor 4.
[0003] このような CVD装置として MOCVD (Metal Organic Chemical Vapor Deposition) 装置や ALD (Atomic Layer D印 osition)装置がある。これらの装置は、有機金属材料 を成膜原料として、酸化ハフニウム膜 (以下、 HfOと略す)やハフニウムシリケート膜( 以下、 HfSi〇と略す)を形成するものである。  [0003] As such a CVD apparatus, there are a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus and an ALD (Atomic Layer D mark osition) apparatus. These devices form a hafnium oxide film (hereinafter abbreviated as HfO) or a hafnium silicate film (hereinafter abbreviated as HfSif) using an organic metal material as a film forming material.
例えば HfOの成膜を行う場合は、成膜原料には、 Hf[OC(CH ) ] (テトラ-シャリーブ  For example, when HfO is deposited, Hf [OC (CH 2)] (tetra-sharov
3 3 4  3 3 4
トラキシーハフニウム、略称 Hf_〇tBu)、 Hf[〇C(CH ) CH〇CH ] (テトラキス (1_メトキシ  Traxie hafnium, abbreviated as Hf_〇tBu), Hf [〇C (CH) CH〇CH] (tetrakis (1_methoxy
3 2 2 3 4  3 2 2 3 4
-2-メチル -2-プロポキシ)ハフニウム、略称 Hf-MMP )、 Hf[〇-Si-(CH )]、 HfClなど様  2-methyl-2-propoxy) hafnium, abbreviated as Hf-MMP), Hf [〇-Si- (CH 2)], HfCl, etc.
4 3 4 4 々な有機 Hf金属原料が利用されている。 また、 HfSiOを成膜する場合は、上記 Hf金属原料に加え、 Si[OC(CH ) ] (テトラ-4 3 4 4 Various organic Hf metal raw materials are used. When HfSiO is deposited, Si [OC (CH 2) 2] (tetra-
3 3 4 シャリーブトラキシーシリコン、略称 S卜〇tBu)、 Si[〇C(CH ) CH〇CH ] (テトラキス (1_ 3 3 4 Sharybutroxy silicon, abbreviated as S〇tBu), Si [〇C (CH) CH〇CH] (tetrakis (1_
3 2 2 3 4  3 2 2 3 4
メトキシ一 2—メチルー 2_プロポキシ)シリコン、略称 Si-MMP )、 Si(〇C H ) (略称 TEOS) Methoxy-1-methyl-2-propoxy) silicon, abbreviation Si-MMP), Si (〇C H) (abbreviation TEOS)
4 2 5 4  4 2 5 4
などの有機 Si金属原料が利用されている。この有機 Si金属原料は、前記の有機 Hf 金属材料と混合して使用される。 Organic Si metal raw materials such as are used. This organic Si metal raw material is used by being mixed with the above organic Hf metal material.
このような有機金属材料の多くは、輸送や供給の容易性を確保するため、常温常 圧において液体、あるいは固体である。このため、ほとんどの原料は加熱して蒸気圧 を高めて気体に変換して利用される。  Many of such organometallic materials are liquid or solid at normal temperature and normal pressure in order to ensure easy transportation and supply. For this reason, most raw materials are heated and raised in vapor pressure to be converted into gas for use.
図 12は、従来の代表的な MOCVD装置の構成図である。成膜原料容器 10に充 填された液体原料 9は、不活性ガス導入口 11から圧力をかけた不活性ガスにより押 されて、液体供給配管 12を経由して気化器 13へ導かれる。その液体原料は、気化 器 13内部に配置されたヒータにより加熱されて液体から気体へ変換される。このよう にして液体原料 9は成膜ガスとなり、気化ガス供給配管 14を通ってガス供給制御配 管 15へ導かれる。  FIG. 12 is a configuration diagram of a typical conventional MOCVD apparatus. The liquid raw material 9 filled in the film forming raw material container 10 is pushed by an inert gas under pressure from an inert gas inlet 11 and guided to a vaporizer 13 via a liquid supply pipe 12. The liquid raw material is heated by a heater disposed inside the vaporizer 13 and is converted from liquid to gas. In this way, the liquid source 9 becomes a film forming gas, and is guided to the gas supply control pipe 15 through the vaporized gas supply pipe 14.
ガス供給制御配管 15において、基板に対して成膜を行う場合は、成膜ガスは成膜 ガス供給配管 8へ導かれるようになってレ、る。成膜を行わなレ、場合や成膜を停止する 場合は、成膜ガスはバイパス配管 16へ導かれるようになっている。成膜ガスは、いず れのルートを経由した場合でも排気配管 7を経由して排気処理装置 17へ導かれて 排気処理される。  When a film is formed on a substrate in the gas supply control pipe 15, the film formation gas is guided to the film formation gas supply pipe 8. When the film formation is not performed, or when the film formation is stopped, the film formation gas is led to the bypass pipe 16. Regardless of which route the film forming gas passes through, the film forming gas is guided to the exhaust treatment device 17 via the exhaust pipe 7 and is subjected to the exhaust treatment.
ガス供給制御配管 15は、図 8に示すように、バルブ 31、バルブ 32、及び希釈ガス 供給配管 19を有する。バルブ 31は気化ガス供給配管 14から分岐されたバイパス配 管 16に設けられる。バルブ 32は気化ガス供給配管 14と連通する成膜ガス供給配管 8に設けられる。希釈ガス供給配管 19は、バルブ 32の下流側の成膜ガス供給配管 8 に設けられる。このガス制御配管 15は、バルブ 31、バルブ 32の開閉を制御すること によって、成膜を行うか否力 ^制御する。尚、希釈ガスは、成膜を行うか否かに無関 係に希釈ガス導入口 20から導入され、希釈ガス供給配管 19を経由して、常に反応 室へ供給される。希釈ガスを、常に反応室へ供給することにより、バルブ 31、バルブ 32の開閉による反応室の圧力変動を抑制したり、成膜ガスを希釈して薄膜の堆積速 度を制御したりできる。 The gas supply control pipe 15 includes a valve 31, a valve 32, and a dilution gas supply pipe 19, as shown in FIG. The valve 31 is provided in a bypass pipe 16 branched from the vaporized gas supply pipe 14. The valve 32 is provided on the film forming gas supply pipe 8 communicating with the vaporized gas supply pipe 14. The dilution gas supply pipe 19 is provided in the film formation gas supply pipe 8 downstream of the valve 32. The gas control pipe 15 controls the opening / closing of the valves 31 and 32 to control whether or not to form a film. The diluent gas is introduced from the diluent gas inlet 20 regardless of whether or not to form a film, and is always supplied to the reaction chamber via the diluent gas supply pipe 19. By constantly supplying a diluting gas to the reaction chamber, pressure fluctuations in the reaction chamber due to opening and closing of the valves 31 and 32 are suppressed, and the deposition gas is diluted to reduce the deposition rate of the thin film Or control the degree.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ここで、図 9一図 11を用いて、従来のガス供給制御配管 15の問題点を説明する。  Here, the problems of the conventional gas supply control pipe 15 will be described with reference to FIGS.
従来のガス供給制御配管 15を用いて、成膜ガスをバイパス配管 16へ流してレ、る状 態、すなわち、成膜を停止している状態は図 9で表される。このときバルブ 31は開、 バルブ 32は閉である。成膜ガスが存在する配管は太線で示す。以下、図 10及び図 11におレ、ても太線で示した配管は成膜ガスが存在することを示す。成膜を停止して レ、る状態から、ガス供給制御配管 15を用いて成膜ガスを成膜ガス供給配管 8へ流し た状態、すなわち成膜を開始した状態へ移行した状態は図 10で表される。このとき バルブ 31は閉、バルブ 32は開であり、反応室へ成膜ガスが導入され、成膜が行わ れる。  FIG. 9 shows a state in which the film forming gas is flown into the bypass pipe 16 by using the conventional gas supply control pipe 15, that is, a state in which the film formation is stopped. At this time, the valve 31 is open and the valve 32 is closed. The piping in which the film forming gas exists is indicated by a thick line. Hereinafter, in FIGS. 10 and 11, the pipes indicated by thick lines also indicate that a film forming gas is present. FIG. 10 shows a state in which the film formation is stopped, the state in which the film formation gas is supplied to the film formation gas supply pipe 8 by using the gas supply control pipe 15, that is, the state in which the film formation is started, is shifted. expressed. At this time, the valve 31 is closed and the valve 32 is open, and a film forming gas is introduced into the reaction chamber, and a film is formed.
[0006] この状態から、成膜を停止した瞬間の状態へ移行した状態は図 11で示される。この ときバルブ 31は開、バルブ 32は閉である。し力 ながら成膜ガス供給配管 8内のデッ ドスペース 18には成膜ガスが滞留しているので、成膜を停止したことにはならない。 ここでデッドスペース 18とは、成膜ガス供給配管 8内のバルブ 32と希釈ガス供給箇 所との間の部分をいう。したがって、従来構造のガス供給制御配管 15では、成膜停 止状態が曖昧となり、成膜を即座に、かつ完全に停止することは困難である。このた め、従来では薄膜の堆積膜厚が変動したり、基板面内の膜厚均一性が得難くなつた りしている。以上のような憂慮すべき事象は、特に、 2種類の液体原料を用いて成膜 を行う 2元素系 CVD薄膜(HfSiO、 AlSi〇、 ZrSi〇、 HfAlOなど)の形成時において は、その面内の組成均一性を得難くさせるため、深刻な問題となっている。  [0006] FIG. 11 shows a state in which the state is shifted from this state to the state at the moment when the film formation is stopped. At this time, the valve 31 is open and the valve 32 is closed. However, since the film formation gas remains in the dead space 18 in the film formation gas supply pipe 8, the film formation is not stopped. Here, the dead space 18 refers to a portion between the valve 32 in the film forming gas supply pipe 8 and the dilution gas supply point. Therefore, in the gas supply control pipe 15 having the conventional structure, the state of stopping the film formation becomes ambiguous, and it is difficult to stop the film formation immediately and completely. For this reason, conventionally, the deposited film thickness of the thin film fluctuates, and it is difficult to obtain uniformity of the film thickness in the substrate surface. The above-mentioned worrisome events, especially when two-element CVD thin films (HfSiO, AlSi〇, ZrSi〇, HfAlO, etc.) are formed using two types of liquid materials, This is a serious problem because it makes it difficult to obtain uniform composition.
[0007] 尚、ノくルブを閉じた後、真空引きすることによりデッドスペースに滞留した成膜ガス を除去する方法も考えられる。しかし、成膜ガスは壁にへばりついているので、その 方法によっては成膜ガスを除去しきれない。  [0007] It is also conceivable to remove the film forming gas remaining in the dead space by evacuating the nozzle after closing the knob. However, since the deposition gas sticks to the wall, the deposition gas cannot be completely removed by the method.
[0008] 本発明は、デッドスペースに滞留する成膜ガスをパージすることが困難であるという 従来の問題を解決し、基板へ形成される薄膜の再現性と面内均一性、組成均一性を 改善すること可能な基板処理装置及び半導体装置の製造方法を提供することを目 的としている。 [0008] The present invention solves the conventional problem that it is difficult to purge a deposition gas staying in a dead space, and improves the reproducibility, in-plane uniformity, and composition uniformity of a thin film formed on a substrate. An object of the present invention is to provide a substrate processing apparatus and a semiconductor device manufacturing method which can be improved. It has been the target.
課題を解決するための手段  Means for solving the problem
[0009] 第 1の発明は、少な <とも 文の基板を処理する反応室と、前記反応室内に原料ガ スを供給する原料ガス供給ユニットと、前記反応室と原料ガス供給ユニットとを結ぶ原 料ガス供給ラインと、前記原料ガス供給ラインから分岐するよう設けられ、原料ガスを 、反応室をバイパスするよう排気するバイパスラインと、前記原料ガス供給ラインのバ ィパスラインとの分岐点よりも下流側に設けられた第の 1バルブと、前記原料ガス供給 ラインの前記第 1のバルブよりも下流側に設けられた第 2のバルブと、前記バイパスラ インに設けられた第 3のバルブと、前記第 1のバルブと前記第 2のバルブとの間の原 料ガス供給ライン内に不活性ガスを供給する第 1の不活性ガス供給ラインと、を有す ることを特徴とする基板処理装置である。  [0009] The first invention is directed to a reaction chamber for processing at least a substrate, a source gas supply unit for supplying a source gas into the reaction chamber, and a source connecting the reaction chamber and the source gas supply unit. A source gas supply line, a bypass line provided to branch off from the source gas supply line, and a source gas, which is exhausted so as to bypass the reaction chamber, and a downstream side of a branch point between the source gas supply line and a bypass line of the source gas supply line. A first valve provided on the bypass line, a second valve provided on the source gas supply line downstream of the first valve, a third valve provided on the bypass line, A substrate processing apparatus comprising: a first inert gas supply line that supplies an inert gas into a raw gas supply line between a first valve and the second valve. .
第 1のバルブと第 2のバルブとの間の原料ガス供給ライン内に不活性ガスを供給す る第 1の不活性ガス供給ラインを設けると、第 1のバルブ付近の成膜ガス供給ライン( デッドスペース)や、第 2バノレブ付近の成膜ガス供給ライン (デッドスペース)に滞留す る成膜ガスを、不活性ガスで押し流すことが可能になる。したがって、デッドスペース に滞留する成膜ガスを有効にパージすることが可能になる。  When a first inert gas supply line for supplying an inert gas is provided in a source gas supply line between the first valve and the second valve, a film forming gas supply line near the first valve ( A dead space) and a film forming gas that is retained in a film forming gas supply line (dead space) near the second vanoleb can be flushed with an inert gas. Therefore, it is possible to effectively purge the deposition gas staying in the dead space.
[0010] 第 2の発明は、第 1の発明において、前記反応室内で基板を処理する際は、第 1の バルブを開、第 2のバルブを開、第 3のバルブを閉とし、基板処理後は、第 1のバル ブを閉、第 2のバルブを開、第 3のバルブを開とし、その後に、第 1のバルブを開、第 2のバルブを閉、第 3のバルブを開とするよう制御する制御手段を有することを特徴と する基板処理装置である。  [0010] In a second aspect, in the first aspect, when processing the substrate in the reaction chamber, the first valve is opened, the second valve is opened, and the third valve is closed. After that, close the first valve, open the second valve, open the third valve, and then open the first valve, close the second valve, open the third valve. A substrate processing apparatus characterized by having control means for controlling the substrate processing.
基板処理の際、第 1のバルブを開、第 2のバルブを開、第 3のバルブを閉とすると、 原料ガスが反応室内に供給されて成膜が行われる。基板処理後、第 1のバルブを閉 、第 2のバルブを開、第 3のバルブを開とすると、反応室をバイパスするようバイパスラ インから原料ガスが排気されて成膜が停止される。それと同時に第 2のバルブ付近の デッドスペースに滞留する成膜ガスが反応室内に押し流される。その後、第 1のバル ブを開、第 2のバルブを閉、第 3のバルブを開とすると、第 1のバルブ付近のデッドス ペースに滞留する成膜ガスがバイパスラインから排気される。したがって、成膜停止 後の曖昧な状態がなくなり、成膜を即座に停止することができる。 At the time of substrate processing, when the first valve is opened, the second valve is opened, and the third valve is closed, a source gas is supplied into the reaction chamber to form a film. After the substrate processing, when the first valve is closed, the second valve is opened, and the third valve is opened, the source gas is exhausted from the bypass line so as to bypass the reaction chamber, and the film formation is stopped. At the same time, the deposition gas staying in the dead space near the second valve is flushed into the reaction chamber. Thereafter, when the first valve is opened, the second valve is closed, and the third valve is opened, the deposition gas staying in the dead space near the first valve is exhausted from the bypass line. Therefore, stop film formation The later ambiguous state is eliminated, and the film formation can be stopped immediately.
[0011] 第 3の発明は、第 2の発明において、基板処理後に、第 1のバルブを閉、第 2のバ ルブを開、第 3のバルブを開とする動作と、第 1のバルブを開、第 2のバルブを閉、第 3のバルブを開とする動作とを、複数回繰り返すよう制御する制御手段を有することを 特徴とする基板処理装置である。  [0011] In a third aspect based on the second aspect, after the substrate processing, the first valve is closed, the second valve is opened, and the third valve is opened. An operation of opening, closing the second valve, and opening the third valve is a substrate processing apparatus having control means for controlling the operation to be repeated a plurality of times.
基板処理後に、第 1のバルブを閉、第 2のバルブを開、第 3のバルブを開とする動 作と、第 1のバルブを開、第 2のバルブを閉、第 3のバルブを開とする動作とを複数回 繰り返すので、パージ効果が高まり、また、たとえ成膜ガス供給ラインに原料ガスが残 留した場合であっても、その原料ガスの希釈の度合いを高め、原料ガスの濃度を低く すること力 Sできる。  After processing the substrate, the first valve is closed, the second valve is opened, and the third valve is opened.The first valve is opened, the second valve is closed, and the third valve is opened. Is repeated several times, the purging effect is enhanced, and even when the source gas remains in the film forming gas supply line, the degree of dilution of the source gas is increased to increase the concentration of the source gas. The force S can be reduced.
[0012] 第 4の発明は、第 2の発明において、原料ガス供給ユニットは、少なくとも基板処理 中、基板処理後において、常に一定流量の原料ガスを原料ガス供給ラインに対して 供給し続けるよう構成されることを特徴とする基板処理装置である。  [0012] In a fourth aspect based on the second aspect, the source gas supply unit is configured to always supply a constant flow rate of the source gas to the source gas supply line at least during and after the substrate processing. The substrate processing apparatus is characterized in that:
常に一定流量の原料ガスを原料ガス供給ラインに対して供給し続けると、原料ガス の安定供給を行うことができる。  If a constant flow of the source gas is always supplied to the source gas supply line, the source gas can be supplied stably.
[0013] 第 5の発明は、第 4の発明において、第 1の不活性ガス供給ラインは、少なくとも基 板処理中、基板処理後において、常に一定流量の不活性ガスを供給し続けるよう構 成されることを特徴とする基板処理装置である。 [0013] In a fifth aspect based on the fourth aspect, the first inert gas supply line is configured to always supply a constant flow rate of the inert gas at least during the substrate processing and after the substrate processing. The substrate processing apparatus is characterized in that:
常に一定流量の不活性ガスを供給し続けると、原料ガスが第 1の不活性ガス供給ラ インに逆流するのを防止することができる。  By continuously supplying a constant flow of the inert gas, it is possible to prevent the source gas from flowing back to the first inert gas supply line.
[0014] 第 6の発明は、第 1の発明において、前記第 2のバルブよりも下流の原料ガス供給 ライン内に不活性ガスを供給する第 2の不活性ガス供給ラインを有することを特徴と する基板処理装置である。 [0014] A sixth invention is characterized in that, in the first invention, a second inert gas supply line for supplying an inert gas into a source gas supply line downstream of the second valve is provided. Is a substrate processing apparatus.
第 2のバルブよりも下流の原料ガス供給ライン内に不活性ガスを供給する第 2の不 活性ガス供給ラインを設けると、第 2の不活性ガス流量を調整することにより、反応室 内の圧力変動を抑えることが可能となる。  When a second inert gas supply line for supplying an inert gas is provided in a source gas supply line downstream of the second valve, the pressure in the reaction chamber is adjusted by adjusting the flow rate of the second inert gas. Variations can be suppressed.
[0015] 第 7の発明は、第 6の発明において、原料ガス供給ユニットから供給する原料ガス の供給流量と、第 1の不活性ガス供給ラインから供給する不活性ガスの供給流量とを 一定とし、第 2の不活性ガス供給ライン力 供給する不活性ガスの供給流量を可変と したことを特徴とする基板処理装置である。 [0015] In a seventh aspect based on the sixth aspect, the supply flow rate of the source gas supplied from the source gas supply unit and the supply flow rate of the inert gas supplied from the first inert gas supply line are different from each other. A substrate processing apparatus characterized in that the supply flow rate of the inert gas supplied to the second inert gas supply line is made variable while being constant.
原料ガス供給ユニットから供給する原料ガスの供給流量と、第 1の不活性ガス供給 ラインから供給する不活性ガスの供給流量とを一定とし、第 2の不活性ガス供給ライ ンから供給する不活性ガスの供給流量を可変とすることにより、反応室内に導入する トータルガス流量 (原料ガスと不活性ガスの合計流量)が常に一定となるよう調整する ことが可能となり、反応室内の圧力変動を抑えることができる。  The supply flow rate of the source gas supplied from the source gas supply unit and the supply flow rate of the inert gas supplied from the first inert gas supply line are fixed, and the inert flow supplied from the second inert gas supply line is maintained. By making the gas supply flow variable, it is possible to adjust the total gas flow introduced into the reaction chamber (total flow of the raw material gas and the inert gas) to be always constant, and to suppress pressure fluctuations in the reaction chamber be able to.
[0016] 第 8の発明は、第 7の発明において、前記反応室内に供給される原料ガスと不活性 ガスの合計流量が、基板処理前、基板処理中、基板処理後において一定となるよう、 第 2の不活性ガス供給ラインから流す不活性ガスの供給流量を調整する制御手段を 有することを特徴とする基板処理装置である。  [0016] In an eighth aspect based on the seventh aspect, the total flow rate of the source gas and the inert gas supplied into the reaction chamber is constant before, during, and after the substrate processing. A substrate processing apparatus comprising a control unit for adjusting a supply flow rate of an inert gas flowing from a second inert gas supply line.
反応室内に供給される原料ガスと不活性ガスの合計流量が、基板処理前、基板処 理中、基板処理後において一定となるよう、第 2の不活性ガス供給ラインから流す不 活性ガスの供給流量を調整するので、基板処理前、基板処理中、基板処理後にお いて、反応室内の圧力変動を抑えることができる。  Supply of the inert gas flowing from the second inert gas supply line so that the total flow rate of the source gas and the inert gas supplied into the reaction chamber becomes constant before, during, and after the substrate processing. Since the flow rate is adjusted, pressure fluctuations in the reaction chamber can be suppressed before, during, and after substrate processing.
[0017] 第 9の発明は、第 8の発明において、前記反応室内で基板を処理する前は、第 1の バルブを開、第 2のバルブを閉、第 3のバルブを開とし、基板を処理する際は、第 1の バルブを開、第 2のバルブを開、第 3のバルブを閉とし、基板処理後は、第 1のバル ブを閉、第 2のバルブを開、第 3のバルブを開とし、その後に、第 1のバルブを開、第 2のバルブを閉、第 3のバルブを開とするよう制御する制御手段を有することを特徴と する基板処理装置である。  [0017] In a ninth aspect based on the eighth aspect, before processing the substrate in the reaction chamber, the first valve is opened, the second valve is closed, the third valve is opened, and the substrate is removed. When processing, the first valve is opened, the second valve is opened, and the third valve is closed. After the substrate is processed, the first valve is closed, the second valve is opened, and the third valve is opened. A substrate processing apparatus characterized by having control means for controlling a valve to be opened, a first valve to be opened, a second valve to be closed, and a third valve to be opened thereafter.
本発明のように、各バルブを制御すると、第 1のバルブ付近および第 2のバルブ付 近のデッドスペースに滞留する成膜ガスを除去することができるとともに、基板処理前 、処理時、処理後、その後において反応室内の圧力変動を抑えることができる。  By controlling each valve as in the present invention, it is possible to remove the film-forming gas staying in the dead space near the first valve and near the second valve, and before, during, and after the substrate processing. After that, pressure fluctuation in the reaction chamber can be suppressed.
[0018] 第 10の発明は、第 1の発明において、原料ガス供給ラインには、少なくとも 2種類の 原料ガスを供給する少な <とも 2つの原料ガス供給ユニットが接続される力、、少なくと も 2種類の原料の混合ガスを供給する少なくとも 1つの原料供給ユニットが接続される ことを特徴とする基板処理装置である。 上述したような 2種類の原料ガスを供給する多元素系薄膜の形成を行う場合に、特 に軽レ、原料ほど基板中央部に多く付着するとレ、う現象が生じやすレ、が、本発明によ れば、デッドスペースに滞留したいずれの種類の残留ガスであっても有効にパージ できるので、このような現象が生じるのを有効に防止でき、基板面内における組成均 一性を改善できる。 [0018] In a tenth aspect based on the first aspect, a power for connecting at least two source gas supply units for supplying at least two types of source gas to the source gas supply line, at least A substrate processing apparatus characterized in that at least one raw material supply unit that supplies a mixed gas of two types of raw materials is connected. In the case of forming a multi-element thin film for supplying two types of source gases as described above, the present invention is particularly concerned with the fact that the lighter the source material, the more the source material adheres to the center of the substrate, the more likely it is for the phenomenon to occur. According to the method, any type of residual gas remaining in the dead space can be effectively purged, so that such a phenomenon can be effectively prevented, and the composition uniformity in the substrate surface can be improved. .
[0019] 第 11の発明は、少なくとも 夂の基板を反応室内に搬入する工程と、前記反応室 内に原料ガス供給ユニットより原料ガス供給ラインを介して原料ガスを供給して反応 室内に搬入した基板を処理する工程と、基板処理前または基板処理後に、前記原料 ガス供給ラインから分岐するよう設けられたバイパスラインより、原料ガスを、反応室を バイパスするよう排気する工程と、処理後の基板を前記反応室より搬出する工程とを 有し、前記基板処理後にバイパスラインより原料ガスを排気する工程は、前記原料ガ ス供給ラインのバイパスラインとの分岐点よりも下流側に設けられた第 1のバルブを閉 とし、前記原料ガス供給ラインの第 1のバルブよりも下流側に設けられた第 2のバルブ を開とし、バイパスラインに設けられた第 3のバルブを開とした状態で、第 1のバルブ と第 2のバルブとの間の原料ガス供給ライン内に不活性ガスを供給する工程を含むこ とを特徴とする半導体装置の製造方法である。  [0019] In an eleventh aspect, at least a step of loading a substrate having a size of at least one substrate into the reaction chamber, and supplying a source gas into the reaction chamber from a source gas supply unit through a source gas supply line and transporting the source gas into the reaction chamber. A step of processing the substrate, a step of exhausting the source gas from the bypass line provided to branch off from the source gas supply line before or after the substrate processing so as to bypass the reaction chamber, and a step of processing the substrate. Discharging the source gas from the bypass line after the substrate processing, wherein the step of discharging the source gas from the bypass line after the substrate processing is performed on a downstream side of a branch point of the source gas supply line with the bypass line. The first valve is closed, the second valve provided downstream of the first valve of the source gas supply line is opened, and the third valve provided in the bypass line is opened. And in a state, a method of manufacturing a semiconductor device comprising a call including a first valve and a step of supplying a raw material gas supply line in the inert gas between the second valve.
基板処理後にバイパスラインより原料ガスを排気する工程で、第 1のバルブを閉とし 、第 2のバルブを開とし、第 3のバルブを開とした状態で、第 1のバルブと第 2のバル ブとの間の原料ガス供給ライン内に不活性ガスを供給するので、バイパスラインより 原料ガスを排気しつつ、第 2のバルブの下流側の原料ガス供給ラインに滞留した原 料ガスをパージすることができる。  In the step of exhausting the source gas from the bypass line after the substrate processing, the first valve is closed, the second valve is opened, and the third valve is opened. Since the inert gas is supplied into the source gas supply line between the second valve and the source valve, the source gas is exhausted from the bypass line and the source gas remaining in the source gas supply line downstream of the second valve is purged. be able to.
[0020] 第 12の発明は、第 11の発明において、前記基板処理後にバイパスラインより原料 ガスを排気する工程は、更に、第 1のバルブを開とし、第 2のバルブを閉とし、第 3の バルブを開とした状態で、第 1のバルブと第 2のバルブとの間の原料ガス供給ライン 内に不活性ガスを供給する工程を含むことを特徴とする半導体装置の製造方法であ る。 [0020] In a twelfth aspect based on the eleventh aspect, the step of exhausting the source gas from the bypass line after the substrate processing further comprises opening the first valve, closing the second valve, and closing the third valve. A step of supplying an inert gas into a source gas supply line between the first valve and the second valve while the other valve is open. .
基板処理後にバイパスラインより原料ガスを排気する工程で、第 1のバルブを開とし 、第 2のバルブを閉とし、第 3のバルブを開とした状態で、第 1のバルブと第 2のバル ブとの間の原料ガス供給ライン内に不活性ガスを供給するので、バイパスラインより 原料ガスを排気しつつ、第 1のバルブと不活性ガス供給箇所との間の原料ガス供給 ラインに滞留した原料ガスをパージすることができる。 In the step of exhausting the source gas from the bypass line after the substrate processing, the first valve is opened, the second valve is closed, and the third valve is opened. Since the inert gas is supplied into the source gas supply line between the first valve and the inert gas supply point, the source gas is exhausted from the bypass line and stays in the source gas supply line between the first valve and the inert gas supply point. Source gas can be purged.
[0021] 第 13の発明は、第 1 1の発明において、前記基板処理後にバイパスラインより原料 ガスを排気する工程は、第 1のバルブを閉とし、第 2のバルブを開とし、第 3のバルブ を開とした状態で、第 1のバルブと第 2のバルブとの間の原料ガス供給ライン内に不 活性ガスを供給する工程と、第 1のバルブを開とし、第 2のバルブを閉とし、第 3のバ ルブを開とした状態で、第 1のバルブと第 2のバルブとの間の原料ガス供給ライン内 に不活性ガスを供給する工程とを、複数回繰り返すことを特徴とする半導体装置の製 造方法である。  [0021] In a thirteenth aspect based on the eleventh aspect, the step of exhausting the source gas from the bypass line after the substrate processing is performed by closing the first valve, opening the second valve, and removing the third valve. A step of supplying an inert gas into the source gas supply line between the first valve and the second valve while the valve is open; and opening the first valve and closing the second valve. The step of supplying an inert gas into the source gas supply line between the first valve and the second valve while the third valve is open is repeated a plurality of times. This is a method of manufacturing a semiconductor device.
基板処理後に、第 1のバルブを閉、第 2のバルブを開、第 3のバルブを開とする動 作と、第 1のバルブを開、第 2のバルブを閉、第 3のバルブを開とする動作とを複数回 繰り返すので、パージ効果が高まり、また、たとえ成膜ガス供給ラインに原料ガスが残 留した場合であっても、その原料ガスの希釈の度合いを高め、原料ガスの濃度を低く すること力 Sできる。  After processing the substrate, the first valve is closed, the second valve is opened, and the third valve is opened.The first valve is opened, the second valve is closed, and the third valve is opened. Is repeated several times, the purging effect is enhanced, and even when the source gas remains in the film forming gas supply line, the degree of dilution of the source gas is increased to increase the concentration of the source gas. The force S can be reduced.
[0022] 第 14の発明は、第 1 1の発明において、前記基板処理後にバイパスラインより原料 ガスを排気する工程は、第 1のバルブを閉とし、第 2のバルブを開とし、第 3のバルブ を開とした状態で、第 1のバルブと第 2のバルブとの間の原料ガス供給ライン内に不 活性ガスを供給し第 2のバルブ側に向かって不活性ガスが流れるようにする工程と、 第 1のバルブを開とし、第 2のバルブを閉とし、第 3のバルブを開とした状態で、第 1の バルブと第 2のバルブとの間の原料ガス供給ライン内に不活性ガスを供給し第 1のバ ルブ側に向かって不活性ガスが流れるようにする工程と、を含むことを特徴とする半 導体装置の製造方法である。  [0022] In a fourteenth aspect based on the eleventh aspect, the step of exhausting the source gas from the bypass line after the substrate processing includes closing the first valve, opening the second valve, and removing the third valve. A step of supplying an inert gas into the source gas supply line between the first valve and the second valve while the valve is open, so that the inert gas flows toward the second valve; With the first valve open, the second valve closed, and the third valve open, an inert gas is introduced into the source gas supply line between the first valve and the second valve. Supplying a gas to allow the inert gas to flow toward the first valve side.
第 2のバルブ側に向かって不活性ガスが流れるようにする工程では、第 2のバルブ の下流側の原料ガス供給ラインに滞留した原料ガスをパージすることができる。また、 第 1のバルブ側に向かって不活性ガスが流れるようにする工程では、第 1のバルブと 不活性ガス供給箇所との間の原料ガス供給ラインに滞留した原料ガスをパージする こと力 Sできる。したがって、原料ガス供給ラインに滞留した原料ガスを有効にパージす ること力 Sできる。 In the step of causing the inert gas to flow toward the second valve, the source gas retained in the source gas supply line downstream of the second valve can be purged. Further, in the step of causing the inert gas to flow toward the first valve, the source gas remaining in the source gas supply line between the first valve and the inert gas supply point is purged. it can. Therefore, the source gas retained in the source gas supply line is effectively purged. S power
[0023] 第 15の発明は、第 12の発明において、少なくとも基板を処理する工程と、基板処 理前または基板処理後にバイパスラインより原料ガスを排気する工程では、原料ガス 供給ユニットより常に一定流量の原料ガスを原料ガス供給ラインに対して供給し続け ることを特徴とする半導体装置の製造方法である。  According to a fifteenth invention, in the twelfth invention, at least the step of processing the substrate and the step of exhausting the source gas from the bypass line before or after the substrate processing are always performed at a constant flow rate from the source gas supply unit. A method for manufacturing a semiconductor device, comprising continuously supplying a source gas to a source gas supply line.
常に一定流量の原料ガスを原料ガス供給ラインに対して供給し続けると、原料ガス の安定供給を行うことができる。  If a constant flow of the source gas is always supplied to the source gas supply line, the source gas can be supplied stably.
[0024] 第 16の発明は、第 15の発明において、少なくとも基板を処理する工程と、基板処 理前または基板処理後にバイパスラインより原料ガスを排気する工程では、第 1のバ ルブと第 2のバルブとの間の原料ガス供給ライン内に常に一定流量の不活性ガスを 供給し続けることを特徴とする半導体装置の製造方法である。  [0024] In a sixteenth aspect based on the fifteenth aspect, at least the step of processing the substrate and the step of exhausting the source gas from the bypass line before or after the substrate processing are performed by the first valve and the second valve. A method for manufacturing a semiconductor device, characterized in that a constant flow of an inert gas is continuously supplied into a source gas supply line between the semiconductor device and the valve.
常に一定流量の不活性ガスを供給し続けると、原料ガスが第 1の不活性ガス供給ラ インに逆流するのを防止することができる。  By continuously supplying a constant flow of the inert gas, it is possible to prevent the source gas from flowing back to the first inert gas supply line.
[0025] 第 17の発明は、第 12の発明において、前記基板処理前にバイパスラインより原料 ガスを排気する工程は、第 1のバルブを開とし、第 2のバルブを閉とし、第 3のバルブ を開とした状態で、第 1のバルブと第 2のバルブとの間の原料ガス供給ライン内に不 活性ガスを供給する工程を含むことを特徴とする半導体装置の製造方法である。 基板処理前においても、ノくィパスラインより原料ガスを排気する工程で、第 1のバル ブを開とし、第 2のバルブを閉とし、第 3のバルブを開とした状態で、第 1のバルブと第 2のバルブとの間の原料ガス供給ライン内に不活性ガスを供給するので、ノくィパスラ インより原料ガスを排気しつつ、第 1のバルブと不活性ガス供給箇所との間の原料ガ ス供給ラインに滞留した原料ガスをパージすることができる。  [0025] In a seventeenth aspect based on the twelfth aspect, in the step of exhausting the source gas from the bypass line before the substrate processing, the first valve is opened, the second valve is closed, and the third valve is closed. A method of manufacturing a semiconductor device, comprising: a step of supplying an inert gas into a source gas supply line between a first valve and a second valve while the valve is open. Even before the substrate processing, the first valve is opened, the second valve is closed, and the third valve is opened in the step of exhausting the source gas from the no-pass line. Since the inert gas is supplied into the source gas supply line between the first valve and the second valve, the source gas between the first valve and the inert gas supply point is discharged while exhausting the source gas from the nozzle line. The source gas retained in the gas supply line can be purged.
[0026] 第 18の発明は、第 17の発明において、基板処理前、基板処理中、基板処理後に おいては、原料ガス供給ユニットから供給する原料ガスの供給流量と、第 1のバルブ と第 2のバルブとの間の原料ガス供給ライン内に供給する不活性ガスの供給流量とを 常に一定とし、反応室内に供給される原料ガスと不活性ガスの合計流量が常に一定 となるよう、第 2のバルブ下流の原料ガス供給ライン内に不活性ガスを供給して、その 供給流量の調整を行うことを特徴とする半導体装置の製造方法である。 反応室内に供給される原料ガスと不活性ガスの合計流量が、基板処理前、基板処 理中、基板処理後において一定となるよう、第 2の不活性ガス供給ラインから流す不 活性ガスの供給流量を調整するので、基板処理前、基板処理中、基板処理後にお いて、反応室内の圧力変動を抑えることができる。 According to an eighteenth aspect based on the seventeenth aspect, before the substrate processing, during the substrate processing, and after the substrate processing, the supply flow rate of the source gas supplied from the source gas supply unit, the first valve and the The supply flow rate of the inert gas supplied into the source gas supply line between the second valve and the second valve is always kept constant, and the total flow rate of the source gas and the inert gas supplied into the reaction chamber is always kept constant. 2. A method for manufacturing a semiconductor device, characterized in that an inert gas is supplied into a source gas supply line downstream of a second valve, and the supply flow rate is adjusted. Supply of the inert gas flowing from the second inert gas supply line so that the total flow rate of the source gas and the inert gas supplied into the reaction chamber becomes constant before, during, and after the substrate processing. Since the flow rate is adjusted, pressure fluctuations in the reaction chamber can be suppressed before, during, and after substrate processing.
[0027] 第 19の発明は、第 12の発明において、原料ガス供給ラインを介して反応室内に供 給する原料ガスは、少なくとも 2種類の原料ガス、または少なくとも 2種類の原料の混 合ガスを含むことを特徴とする半導体装置の製造方法である。 [0027] In a nineteenth aspect based on the twelfth aspect, the raw material gas supplied into the reaction chamber via the raw material gas supply line includes at least two types of raw material gas or a mixed gas of at least two types of raw material gas. A method for manufacturing a semiconductor device, comprising:
上述したような 2種類の原料ガスを供給する多元素系薄膜の形成を行う場合に、特 に軽レ、原料ほど基板中央部に多く付着するとレ、う現象が生じやすレ、が、本発明によ れば、デッドスペースに滞留したいずれの種類の残留ガスであっても有効にパージ できるので、このような現象が生じるのを有効に防止でき、基板面内における組成均 一性を改善できる。  In the case of forming a multi-element thin film for supplying two types of source gases as described above, the present invention is particularly concerned with the fact that the lighter the source material, the more the source material adheres to the center of the substrate, the more likely it is for the phenomenon to occur. According to the method, any type of residual gas remaining in the dead space can be effectively purged, so that such a phenomenon can be effectively prevented, and the composition uniformity in the substrate surface can be improved. .
発明の効果  The invention's effect
[0028] 本発明によれば、デッドスペースに滞留する成膜ガスを、不活性ガスで押し流すこ とにより有効にパージすることができる。このため薄膜の堆積膜厚の変動を抑制する ことができ、基板へ形成される薄膜の再現性と基板面内の膜厚均一性や組成均一性 を改善することができる。カロえて、成膜ガスの滞留するデッドスペースが無いため、成 膜ガスの自己分解などによるパーティクル発生を抑制することができる。  According to the present invention, it is possible to effectively purge a film formation gas staying in a dead space by flushing it with an inert gas. For this reason, the variation in the deposited film thickness of the thin film can be suppressed, and the reproducibility of the thin film formed on the substrate and the uniformity of the film thickness and composition in the substrate surface can be improved. Since there is no dead space where the deposition gas stays, it is possible to suppress the generation of particles due to the self-decomposition of the deposition gas.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、本発明の実施形態を図面に基づいて説明する。実施の形態では、 CVD法、 より具体的には MOCVD法を使って、 Hf〇膜のうち特にアモルファス状態の HfO膜 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In this embodiment, the HfO film, which is particularly an amorphous HfO film, is formed by using the CVD method, more specifically, the MOCVD method.
2 2
(以下、単に HfO膜と略す)を形成する 1元素系 CVD薄膜形成装置の場合につい (Hereinafter simply abbreviated as HfO film)
2  2
て説明する。  Will be explained.
[0030] 図 1は実施の形態に係る基板処理装置であるリモートプラズマユニットが組み込ま れた枚葉式 MOCVD装置の一例を示す概略図である。枚葉式 MOCVD装置は、少 なくとも 1枚の基板を処理するように構成される。  FIG. 1 is a schematic diagram showing an example of a single-wafer MOCVD apparatus in which a remote plasma unit as a substrate processing apparatus according to an embodiment is incorporated. Single wafer MOCVD equipment is configured to process at least one substrate.
図に示すように、反応室 100内に中空のヒータユニット 180が設けられる。ヒータュ ニット 180は、基板保持手段としてのサセプタ 200によって上部開口が覆われている 。ヒータユニット 180の内咅にはカロ熱手段としてのヒータ 300力 S設けられる。ヒータ 30 0によってサセプタ 200上に載置される基板 400を加熱できるようになつている。ヒー タ 300は基板 400の温度が所定の温度となるよう温度制御手段 51により制御される。 サセプタ 200上に載置される基板 400は、例えば半導体シリコンウェハ、ガラス基板 等である。 As shown in the figure, a hollow heater unit 180 is provided in the reaction chamber 100. The heater unit 180 has an upper opening covered by a susceptor 200 as a substrate holding means. . Inside the heater unit 180, a heater 300 power S is provided as a calorie heating means. The substrate 400 mounted on the susceptor 200 can be heated by the heater 300. The heater 300 is controlled by the temperature control means 51 so that the temperature of the substrate 400 becomes a predetermined temperature. The substrate 400 mounted on the susceptor 200 is, for example, a semiconductor silicon wafer, a glass substrate, or the like.
[0031] 反応室 100外に回転手段としての基板回転ユニット 120が設けられる。基板回転ュ ニット 120によって反応室 100内のヒータユニット 180を回転して、サセプタ 200上の 基板 400を回転できるようになつている。基板 400を回転させるのは、後述する成膜 工程、改質工程における基板への処理を基板面内において素早く均一に行うためで ある。尚、基板回転ユニット 120は駆動制御手段 54によって制御される。  A substrate rotation unit 120 as a rotation unit is provided outside the reaction chamber 100. The heater unit 180 in the reaction chamber 100 is rotated by the substrate rotating unit 120 so that the substrate 400 on the susceptor 200 can be rotated. The reason why the substrate 400 is rotated is that processing on the substrate in a film forming step and a reforming step, which will be described later, is quickly and uniformly performed on the substrate surface. The substrate rotation unit 120 is controlled by the drive control means 54.
[0032] また、反応室 100内のサセプタ 200の上方に多数の孔 800を有するシャワーヘッド 600が設けられる。このシャワーヘッド 600には、成膜ガスを供給する原料供給管 50 0とラジカルを供給するラジカル供給管 130とが共通に接続されて、成膜ガスまたは ラジカルをシャワーヘッド 600力 シャワー状に反応室 100内へ噴出できるようになつ ている。ここで、シャワーヘッド 600は、成膜工程で基板 400に供給する成膜ガスと、 改質工程で基板 400に供給するラジカルとをそれぞれ供給する同一の供給口を構 成する。  Further, a shower head 600 having a large number of holes 800 is provided above the susceptor 200 in the reaction chamber 100. A raw material supply pipe 500 for supplying a film forming gas and a radical supply pipe 130 for supplying radicals are commonly connected to the shower head 600, so that the film forming gas or radicals are supplied to the shower head 600 in a shower-like reaction chamber. It can squirt into 100. Here, the shower head 600 constitutes the same supply port for supplying a film formation gas supplied to the substrate 400 in the film formation step and a radical supplied to the substrate 400 in the modification step.
[0033] 反応室 100外に、成膜原料としての有機液体原料を供給する原料供給ユニット 90 0と、成膜原料の液体供給流量を制御する流量制御手段としての液体流量制御装置 280と、成膜原料を気化する気化器 290とが設けられる。また、希釈ガスとしての不 活性ガスを供給する不活性ガス供給ユニット 10aと、不活性ガスの供給流量を制御 する流量制御手段としてのマスフローコントローラ 460a、 460bと力 S設けられる。マス フローコントローラ 460a、 460bは、不活性ガス供給ユニット 10aに接続された第 1の 不活性ガス供給配管 23、第 2の不活性ガス供給配管 24にそれぞれ設けられる。 有機液体原料としては Hf— (MMP)などを用いる。また、不活性ガスとしては Ar、  A raw material supply unit 900 for supplying an organic liquid raw material as a film forming raw material to the outside of the reaction chamber 100, a liquid flow control device 280 as flow control means for controlling a liquid supply flow rate of the film forming raw material, A vaporizer 290 for vaporizing the film raw material is provided. Further, an inert gas supply unit 10a for supplying an inert gas as a diluting gas, mass flow controllers 460a and 460b as flow control means for controlling a supply flow rate of the inert gas, and a force S are provided. The mass flow controllers 460a and 460b are provided in the first inert gas supply pipe 23 and the second inert gas supply pipe 24 connected to the inert gas supply unit 10a, respectively. Hf— (MMP) or the like is used as the organic liquid raw material. In addition, Ar,
4  Four
He、Nなどを用いる。  He, N, etc. are used.
2  2
[0034] 原料供給ユニット 900に設けられた原料ガス供給管 5bと、不活性ガス供給ユニット 10aに設けられた第 1の不活性ガス供給配管 23、第 2の不活性ガス供給配管 24とを 一本化して、シャワーヘッド 600に接続される原料供給管 500が設けられる。原料供 給管 500は、基板 400上に Hf〇膜を形成する成膜工程で、シャワーヘッド 600に成 [0034] The raw material gas supply pipe 5b provided in the raw material supply unit 900, the first inert gas supply pipe 23 provided in the inert gas supply unit 10a, and the second inert gas supply pipe 24 are provided. A single raw material supply pipe 500 connected to the shower head 600 is provided. The raw material supply pipe 500 is formed in the shower head 600 in a film forming process for forming an Hf〇 film on the substrate 400.
2  2
膜ガスと不活性ガスとの混合ガスを供給するようになっている。原料ガス供給管 5b、 不活性ガス供給配管 23、 24はともにガス供給制御配管 36に接続されている。このガ ス供給制御配管 36は、成膜を行うか否力 ^制御する機能を有し、後に詳述するが、 第 1のバルブ 34と、第 2のノ ノレブ 35と、第 3のノ ノレブ 33と、第 1の不活性ガス供給配 管 23と、第 2の不活性ガス供給配管 24と、原料ガスバイパス管 14aとを有する。この ガス供給制御配管 36により成膜ガスと不活性ガスとの混合ガスの供給を制御するこ とが可能となっている。  A mixed gas of a film gas and an inert gas is supplied. The source gas supply pipe 5b and the inert gas supply pipes 23 and 24 are both connected to a gas supply control pipe 36. The gas supply control pipe 36 has a function of controlling whether or not to form a film, and will be described in detail later. The first valve 34, the second knob 35, and the third knob 35 33, a first inert gas supply pipe 23, a second inert gas supply pipe 24, and a source gas bypass pipe 14a. The supply of the mixed gas of the film forming gas and the inert gas can be controlled by the gas supply control pipe 36.
尚、上述した原料ガス供給管 5b及び原料供給管 500から原料ガス供給ラインが構 成される。また、第 1の不活性ガス供給配管 23及び第 2の不活性ガス供給配管 24か ら第 1の不活性ガス供給ライン及び第 2の不活性ガス供給ラインがそれぞれ構成され る。  The source gas supply line is composed of the source gas supply pipe 5b and the source gas supply pipe 500 described above. Further, the first inert gas supply line 23 and the second inert gas supply line 24 constitute a first inert gas supply line and a second inert gas supply line, respectively.
[0035] また、反応室 100外に、ガスをプラズマにより活性化させて反応物としてのラジカル を形成するプラズマ源となる反応物活性化ユニット(リモートプラズマユニット) 110が 設けられる。後述する改質工程で用いるラジカルは、原料として Hf— (MMP)などの  Further, a reactant activating unit (remote plasma unit) 110 serving as a plasma source for activating a gas by plasma to form radicals as a reactant is provided outside the reaction chamber 100. Radicals used in the reforming step described below are used as raw materials such as Hf— (MMP).
4 有機材料を用いる場合は、例えば酸素ラジカルが良い。これは酸素ラジカルにより、 HfO膜形成直後に Cや Hなどの不純物除去処理を効率的に実施することができる 4 When an organic material is used, for example, an oxygen radical is preferable. This is because oxygen radicals can efficiently remove impurities such as C and H immediately after HfO film formation.
2 2
力 である。また、後述するセルフクリーニング工程で用いるラジカルは C1Fラジカル が良い。改質工程において、酸素含有ガス(O、 N〇、 NO等)をプラズマによって分  Power. The radical used in the self-cleaning step described later is preferably a C1F radical. In the reforming process, oxygen-containing gas (O, N〇, NO, etc.) is separated by plasma.
2 2  twenty two
解した酸素ラジカル雰囲気中で、膜を酸化させる処理をリモートプラズマ酸化処理( RPO [remote plasma oxidation]処 )とレヽつ。  In the dissolved oxygen radical atmosphere, the process of oxidizing the film is referred to as remote plasma oxidation (RPO).
[0036] 反応物活性化ユニット 110の上流側には、ガス供給管 370が設けられる。このガス 供給管 370には、酸素(O )を供給する酸素供給ユニット 470、プラズマを発生させる  [0036] A gas supply pipe 370 is provided upstream of the reactant activation unit 110. The gas supply pipe 370 has an oxygen supply unit 470 for supplying oxygen (O 2), and a plasma is generated.
2  2
ガスであるアルゴン (Ar)を供給する Ar供給ユニット 480、及びフッ化塩素(C1F )を  Ar supply unit 480 for supplying gaseous argon (Ar) and chlorine fluoride (C1F)
3 供給する C1F供給ユニット 490が、それぞれ供給管 520、 530、 540を介して接続さ  3 Supply C1F supply units 490 are connected via supply pipes 520, 530, and 540, respectively.
3  Three
れている。酸素供給ユニット 470、 Ar供給ユニット 480、 C1F供給ユニット 490は、改  It is. Oxygen supply unit 470, Ar supply unit 480, C1F supply unit 490
3  Three
質工程で使用する〇と Ar、及びセルフクリーニング工程で使用する C1Fと Arを反応  Between Ar used in the quality process and Ar and C1F used in the self-cleaning process
2 3 物活性化ユニット 110に対し供給するようになっている。酸素供給ユニット 470、 Ar供 給ユニット 480、及び C1F供給ユニット 490に接続される供給管 520、 530、 540に twenty three It is supplied to the product activation unit 110. Supply pipes 520, 530, 540 connected to oxygen supply unit 470, Ar supply unit 480, and C1F supply unit 490
3  Three
は、それぞれのガスの供給流量を制御する流量制御手段としてのマスフローコント口 ーラ 550、 560、 570カ設けられてレヽる。供給管 520、 530、 540にはそれぞれバノレ ブ 580、 590、 600を設け、これらのバノレブ 580、 590、 600を開閉することにより、 O  Are provided with mass flow controllers 550, 560, and 570 as flow control means for controlling the supply flow rates of the respective gases. Supply pipes 520, 530, and 540 are provided with vanolebs 580, 590, and 600, respectively, and by opening and closing these vanolebs 580, 590, and 600, O
2 ガス、 Arガス、及び C1Fの供給を制御することが可能となっている。  It is possible to control the supply of 2 gas, Ar gas and C1F.
3  Three
[0037] 反応物活性化ユニット 110の下流側には、シャワーヘッド 600に接続されるラジカ ル供給管 130が設けられ、改質工程またはセルフクリーニング工程で、シャワーへッ ド 600に酸素(O )ラジカルまたはフッ化塩素(C1F )ラジカルを供給するようになって  A radial supply pipe 130 connected to the shower head 600 is provided downstream of the reactant activation unit 110, and oxygen (O 2) is supplied to the shower head 600 in the reforming step or the self-cleaning step. To supply radicals or chlorine fluoride (C1F) radicals
2 3  twenty three
いる。また、ラジカル供給管 130にはバルブ 240が設けられ、バルブ 240を開閉する ことにより、ラジカルの供給を制御することが可能となっている。  Yes. Further, a valve 240 is provided in the radical supply pipe 130, and the supply of radicals can be controlled by opening and closing the valve 240.
[0038] 反応室 100に排気口 7aが設けられ、その排気口 7aには排気管 700が接続されて いる。この排気管 700には、反応室 100内の圧力を制御する圧力調整器 61と、成膜 原料を回収するための原料回収トラップ 160とが設置される。この原料回収トラップ 1 60は、成膜工程、改質工程、及びセルフクリーニング工程とに共用で用いられる。排 気管 700には、更に、排気装置としての真空ポンプ 62、除害装置 63が設置される。 前記排気口 7a及び排気管 700で排気ラインを構成する。  [0038] An exhaust port 7a is provided in the reaction chamber 100, and an exhaust pipe 700 is connected to the exhaust port 7a. The exhaust pipe 700 is provided with a pressure regulator 61 for controlling the pressure in the reaction chamber 100 and a material recovery trap 160 for recovering a film forming material. This raw material recovery trap 160 is used commonly for the film forming step, the reforming step, and the self-cleaning step. The exhaust pipe 700 is further provided with a vacuum pump 62 and an abatement device 63 as an exhaust device. The exhaust port 7a and the exhaust pipe 700 constitute an exhaust line.
[0039] また、原料ガス供給管 5b及びラジカル供給管 130には、排気管 700に設けた原料 回収トラップ 160に接続される原料ガスバイパス管 14a及びラジカルバイパス管 14b がそれぞれ分岐接続される。原料ガスバイパス管 14aには前述したバルブ 33を設け 、ラジカルバイパス管 14bにはバルブ 230を設ける。これらのバルブ 33、 230の開閉 により、成膜工程で反応室 100内の基板 400に成膜ガスを供給する際は、改質工程 で使用するラジカルは、その供給は停止させずに反応室 100をバイパスするようラジ カルバイパス管 14b、原料回収トラップ 160を介して排気しておく。また、改質工程で 基板 400にラジカルを供給する際は、成膜工程で使用する成膜ガスは、その供給は 停止させずに反応室 100をバイパスするよう原料ガスバイパス管 14a、原料回収トラ ップ 160を介して排気しておく。  A source gas bypass pipe 14 a and a radical bypass pipe 14 b connected to a source recovery trap 160 provided in the exhaust pipe 700 are respectively branched and connected to the source gas supply pipe 5 b and the radical supply pipe 130. The valve 33 described above is provided on the raw material gas bypass pipe 14a, and the valve 230 is provided on the radical bypass pipe 14b. When the film forming gas is supplied to the substrate 400 in the reaction chamber 100 in the film forming step by opening and closing the valves 33 and 230, the radicals used in the reforming step are supplied to the reaction chamber 100 without stopping the supply. The gas is exhausted through the radial bypass pipe 14b and the raw material recovery trap 160 so as to bypass the air. Also, when supplying radicals to the substrate 400 in the reforming step, the source gas bypass pipe 14a and the source recovery trajectory are used to bypass the reaction chamber 100 without stopping the supply of the film forming gas used in the film forming step. Exhaust through top 160.
尚、上述した原料ガスバイパス管 14a及びラジカルバイパス管 14bからバイパスライ ンが構成される。 Note that the bypass line is connected to the above-described raw material gas bypass pipe 14a and the radical bypass pipe 14b. Is configured.
[0040] そして、枚葉式 MOCVD装置には、制御装置 250が設けられる。この制御装置 25 0は、反応室 100内で基板 400上に Hf〇膜を形成する成膜工程と、成膜工程で形 成した Hf〇膜中の特定元素である C、 H等の不純物を反応物活性化ユニット 110を 用いたプラズマ処理により除去する改質工程とを、連続して複数回繰り返すように制 御する。この制御は、ガス供給制御配管 36に設けられたバルブ 33、 34、 35、及びラ ジカルバイパス管 14bに設けられたバルブ 230、ラジカル供給管 130に設けられたバ ルブ 240の開閉等を制御することにより行う。  [0040] The single-wafer MOCVD apparatus is provided with a control device 250. The control device 250 includes a film forming step for forming an Hf〇 film on the substrate 400 in the reaction chamber 100, and removing impurities such as C and H which are specific elements in the Hf〇 film formed in the film forming step. The reforming step of removing by plasma treatment using the reactant activation unit 110 is controlled so as to be continuously repeated a plurality of times. This control controls the opening and closing of the valves 33, 34, 35 provided in the gas supply control pipe 36, the valve 230 provided in the radial bypass pipe 14b, and the valve 240 provided in the radical supply pipe 130. It is done by doing.
尚、制御装置 250では、ヒータ 300の制御を行う温度制御手段 51、液体流量制御 装置 280、マスフローコントローラ 460a, 460b, 550, 560, 570の制御を行う流量 調整手段 52、圧力調整器 61の制御を行う圧力制御手段 53、及び基板回転ユニット 120の制御を行う駆動制御手段 54の制御も行う。  In the control device 250, the temperature control means 51 for controlling the heater 300, the liquid flow control device 280, the flow control means 52 for controlling the mass flow controllers 460a, 460b, 550, 560 and 570, and the control of the pressure regulator 61 And a drive control unit 54 for controlling the substrate rotation unit 120.
[0041] 次に上述した図 1のような構成の枚葉式 CVD装置を用いて、高品質な HfO膜を 堆積するための手順を示す。この手順には、昇温工程、成膜工程、パージ工程、改 質工程が含まれる。 Next, a procedure for depositing a high-quality HfO film using the single-wafer CVD apparatus configured as shown in FIG. 1 will be described. This procedure includes a temperature raising step, a film forming step, a purging step, and a reforming step.
[0042] まず、少なくとも 1枚の基板 400を図 1に示す反応室 100内に搬入して、反応室 10 0内のサセプタ 200上に基板 400を載置する。基板 400を基板回転ユニット 120によ り回転させながら、ヒータ 300に電力を供給して基板 400の温度を 350— 500。Cに均 一に加熱する(昇温工程)。尚、基板温度は、用いる有機材料の反応性により異なる 、 Hf- (MMP) においては、 390— 450°Cの範囲内が良い。また、基板 400の搬 送時や基板加熱時は、不活性ガス供給配管 23、 24より反応室 100内に、 Ar、 He、 Nなどの不活性ガスを常に流しておくと、パーティクルや金属汚染物の基板 400へ の付着を防ぐことができる。  First, at least one substrate 400 is carried into the reaction chamber 100 shown in FIG. 1, and the substrate 400 is placed on the susceptor 200 in the reaction chamber 100. While rotating the substrate 400 by the substrate rotation unit 120, power is supplied to the heater 300 to raise the temperature of the substrate 400 to 350-500. Heat uniformly to C (heating step). The substrate temperature varies depending on the reactivity of the organic material used. For Hf- (MMP), the temperature is preferably in the range of 390-450 ° C. In addition, when transporting the substrate 400 or heating the substrate, if an inert gas such as Ar, He, or N is constantly flowed into the reaction chamber 100 from the inert gas supply pipes 23 and 24, particles and metal contamination may occur. An object can be prevented from adhering to the substrate 400.
[0043] 昇温工程終了後、成膜工程に入る。成膜工程では、原料供給ユニット 900から供 給した有機液体原料例えば Hf - (MMP) を、液体流量制御装置 280で流量制御しAfter the completion of the temperature raising step, a film forming step is started. In the film forming process, the flow rate of the organic liquid raw material, for example, Hf- (MMP), supplied from the raw material supply unit 900 is controlled by the liquid flow controller 280.
、気化器 290へ供給して気化させる。原料ガス供給管 5bに設けたバルブ 34、 35を 開くことにより、気化した原料ガスをシャワーヘッド 600を介して基板 400上へ供給す る。このときも、不活性ガス供給ユニット 10aから不活性ガス供給配管 23、 24を介して 反応室 100内に不活性ガス(Nなど)を常に流して、成膜ガスを撹拌させるようにする, And supplied to a vaporizer 290 to be vaporized. By opening the valves 34 and 35 provided on the source gas supply pipe 5b, the vaporized source gas is supplied onto the substrate 400 via the shower head 600. Also at this time, the inert gas supply unit 10a connects the inert gas An inert gas (such as N) is always flowed into the reaction chamber 100 to agitate the deposition gas.
。成膜ガスは不活性ガスで希釈すると撹拌しやすくなる。原料ガス供給管 5bから供 給される成膜ガスと、不活性ガス供給配管 23、 24から供給される不活性ガスとはガス 供給制御配管 36で混合され、混合ガスとして原料供給管 500からシャワーヘッド 60 0に導びかれ、多数の孔 800を経由して、サセプタ 200上の基板 400上へシャワー状 に供給される。尚、このとき O等の酸素原子を含むガスは供給せず、反応性ガスとし ては Hf— (MMP) ガスのみ供給する。 . When the film forming gas is diluted with an inert gas, stirring becomes easier. The film forming gas supplied from the source gas supply pipe 5b and the inert gas supplied from the inert gas supply pipes 23 and 24 are mixed by the gas supply control pipe 36, and the mixed gas is showered from the source supply pipe 500 through the gas supply control pipe 36. It is guided to the head 600 and supplied through a large number of holes 800 onto the substrate 400 on the susceptor 200 in the form of a shower. At this time, gas containing oxygen atoms such as O is not supplied, and only Hf— (MMP) gas is supplied as the reactive gas.
[0044] この混合ガスの供給を所定時間実施することにより、基板 400上に基板との界面層  By performing the supply of the mixed gas for a predetermined time, an interface layer with the substrate is formed on the substrate 400.
(第 1の絶縁層)としての HfO膜を 0. 5A 30A、例えば 15 A形成する。この間、基 板 400は回転しながらヒータ 300により所定温度(成膜温度)に保たれているので、基 板面内にわたり均一な膜を形成できる。次に、原料ガス供給管 5bに設けたバルブ 34 またはバルブ 35を閉じて、原料ガスの基板 400への供給を停止する。尚、この際、原 料ガスバイパス管 14aに設けたバルブ 33を開き、成膜ガスの供給を原料ガスバイパ ス管 14aで反応室 100をバイパスして排気し、原料供給ユニット 900からの成膜ガス の供給を停止しないようにする。液体原料を気化して、気化した原料ガスを安定供給 するまでには時間が力かるので、成膜ガスの供給を停止させずに、反応室 100をバ ィパスするように流しておくと、次の成膜工程では流れを切換えるだけで、直ちに成 膜ガスを基板 400へ供給できる。  A 0.5 A 30 A, for example, 15 A, HfO film is formed as the (first insulating layer). During this time, the substrate 400 is kept at a predetermined temperature (film formation temperature) by the heater 300 while rotating, so that a uniform film can be formed in the surface of the substrate. Next, the supply of the source gas to the substrate 400 is stopped by closing the valve 34 or the valve 35 provided on the source gas supply pipe 5b. At this time, the valve 33 provided in the source gas bypass pipe 14a is opened, and the supply of the deposition gas is exhausted by bypassing the reaction chamber 100 by the source gas bypass pipe 14a, and the deposition gas supplied from the source supply unit 900 is discharged. Do not stop the supply of water. Since it takes a long time to vaporize the liquid raw material and stably supply the vaporized raw material gas, if the flow of the reaction chamber 100 is bypassed without stopping the supply of the film forming gas, In the film forming process, the film forming gas can be supplied to the substrate 400 immediately by simply switching the flow.
[0045] 成膜工程終了後、パージ工程に入る。パージ工程では、反応室 100内を不活性ガ スによりパージして残留ガスを除去する。尚、成膜工程では、反応室 100内には不活 性ガス供給ユニット 10aから不活性ガス(Nなど)が常に流れているので、バルブ 34 または 35を閉じて原料ガスの基板 400への供給を停止すると同時にパージが行わ れることとなる。 After the completion of the film forming step, a purging step is started. In the purge step, the inside of the reaction chamber 100 is purged with an inert gas to remove residual gas. In the film forming process, since the inert gas (N or the like) is constantly flowing from the inert gas supply unit 10a into the reaction chamber 100, the valve 34 or 35 is closed to supply the source gas to the substrate 400. Is stopped and purge is performed at the same time.
[0046] パージ工程終了後、改質工程に入る。改質工程は RPO (remote plasma oxidation) 処理によって行う。ここで RPO処理とは、酸素含有ガス(〇、 N〇、 NO等)をプラズ マによって活性化させて発生させた反応物としての酸素ラジカルを用いて、膜を酸化 させるリモートプラズマ酸化処理のことである。改質工程では、供給管 530に設けた バノレブ 590を開き、 Ar供給ユニット 480力も供給した Arをマスフローコントローラ 560 で流量制御して反応物活性化ユニット 110へ供給し、 Arプラズマを発生させる。 Ar プラズマを発生させた後、供給管 520に設けたバルブ 580を開き、酸素供給ユニット 470から供給した〇をマスフローコントローラ 550で流量制御して Arプラズマを発生 させている反応物活性化ユニット 110へ供給し、 oを活性化する。これにより酸素ラ ジカルが生成される。ラジカル供給管 130に設けたバルブ 240を開き、反応物活性 化ユニット 110から酸素ラジカルを含むガスを、シャワーヘッド 600を介して基板 400 上へ供給する。この間、基板 400は回転しながらヒータ 300により所定温度(成膜温 度と同一温度)に保たれているので、成膜工程において基板 400上に形成された 15 Aの Hf〇膜より C、 H等の不純物を素早く均一に除去できる。 After the purging step, the reforming step is started. The reforming process is performed by RPO (remote plasma oxidation) treatment. Here, the RPO treatment is a remote plasma oxidation treatment that oxidizes the film using oxygen radicals as reactants generated by activating the oxygen-containing gas (〇, N〇, NO, etc.) with plasma. It is. In the reforming process, open the vanoleb 590 provided in the supply pipe 530, and supply the Ar supply unit 480 with Ar, which also supplied 480 power, to the mass flow controller 560. Then, the flow rate is controlled to supply the reactant activation unit 110 to generate Ar plasma. After the Ar plasma is generated, the valve 580 provided in the supply pipe 520 is opened, and the amount supplied from the oxygen supply unit 470 is controlled by the mass flow controller 550 to the reactant activation unit 110 which is generating the Ar plasma. Supply and activate o. This produces oxygen radicals. The valve 240 provided on the radical supply pipe 130 is opened, and a gas containing oxygen radicals is supplied from the reactant activation unit 110 onto the substrate 400 via the shower head 600. During this time, the substrate 400 is kept at a predetermined temperature (the same temperature as the film formation temperature) by the heater 300 while rotating, so that the C, H And other impurities can be quickly and uniformly removed.
[0047] その後、ラジカル供給管 130に設けたバルブ 240を閉じて、酸素ラジカルの基板 4 00への供給を停止する。尚、この際、ラジカルバイパス管 14bに設けたバルブ 230を 開くことにより、酸素ラジカルを含むガスの供給を、ラジカルバイパス管 14bで反応室 100をバイパスして排気し、酸素ラジカルの供給を停止しないようにする。酸素ラジカ ルは生成から安定供給するまでに時間力 Sかかるので、酸素ラジカルの供給を停止さ せずに、反応室 100をバイパスするように流しておくと、次の改質工程では、流れを 切換えるだけで、直ちにラジカルを基板 400へ供給できる。  Thereafter, the valve 240 provided on the radical supply pipe 130 is closed to stop the supply of oxygen radicals to the substrate 400. At this time, by opening the valve 230 provided in the radical bypass pipe 14b, the supply of gas containing oxygen radicals is exhausted by bypassing the reaction chamber 100 by the radical bypass pipe 14b, and the supply of oxygen radicals is not stopped. To do. Oxygen radicals require a certain amount of time S from generation to stable supply, so if the oxygen radicals are not stopped and flowed so as to bypass the reaction chamber 100, the flow will be reduced in the next reforming step. By simply switching, radicals can be supplied to the substrate 400 immediately.
[0048] 改質工程終了後、再びパージ工程に入る。パージ工程では、反応室 100内を不活 性ガスによりパージして残留ガスを除去する。尚、改質工程でも、反応室 100内には 不活性ガス供給ユニット 10aから不活性ガス (Nなど)が常に流れているので、酸素ラ ジカルの基板 400への供給を停止すると同時にパージが行われることとなる。  [0048] After the reforming step, the purge step is started again. In the purge step, the inside of the reaction chamber 100 is purged with an inert gas to remove residual gas. In the reforming process, since the inert gas (N or the like) always flows from the inert gas supply unit 10a into the reaction chamber 100, the supply of the oxygen radical to the substrate 400 is stopped and the purge is performed at the same time. Will be done.
[0049] パージ工程終了後、再び成膜工程に入り、原料ガスバイパス管 14aに設けたバル ブ 33を閉じて、原料ガス供給管 5bに設けたバルブ 34、 35を開くことにより、成膜ガス をシャワーヘッド 600を介して基板 400上へ供給し、また 15Aの Hf〇膜を、前回の 成膜工程で形成した薄膜上に堆積する。 After the purging step is completed, the film forming step is started again, the valve 33 provided in the source gas bypass pipe 14a is closed, and the valves 34 and 35 provided in the source gas supply pipe 5b are opened, thereby forming the film forming gas. Is supplied onto the substrate 400 via the shower head 600, and a 15A Hf 15 film is deposited on the thin film formed in the previous film forming step.
[0050] 以上のような、成膜工程→パージ工程→改質工程→パージ工程を複数回繰り返す というサイクル処理により、 CH、〇Hの混入が極めて少ない所定膜厚の薄膜を形成 すること力 Sできる。処理後の基板 400は、反応室 100より搬出される。  [0050] As described above, the cycle process of repeating the film formation process → the purge process → the reforming process → the purge process a plurality of times enables the formation of a thin film having a predetermined film thickness with extremely little CH and ΔH contamination. it can. The processed substrate 400 is carried out of the reaction chamber 100.
[0051] ここで、 Hf— (MMP) を用いた場合の好ましい成膜条件は、次の通りである。温度 範囲は 400— 450°C、圧力範囲は lOOPa程度以下である。温度については、 400 °Cより低くなると膜中に取り込まれる不純物(C、 H)の量が急激に多くなる。 400°C以 上になると、不純物が離脱しやすくなり、膜中に取り込まれる不純物量が減少する。 また、 450°Cより高くなるとステップカバレッジが悪くなる力 450°C以下の温度である と、良好なステップカバレッジが得られ、また、アモルファス状態を保つこともできる。 Here, preferable film forming conditions when Hf— (MMP) is used are as follows. temperature The range is 400-450 ° C, and the pressure range is less than about 100Pa. As for the temperature, when the temperature is lower than 400 ° C., the amount of impurities (C, H) taken into the film increases rapidly. At 400 ° C. or higher, impurities are easily released, and the amount of impurities taken into the film decreases. Further, when the temperature is higher than 450 ° C, the step coverage becomes worse. When the temperature is 450 ° C or less, good step coverage can be obtained and the amorphous state can be maintained.
[0052] また、圧力については、例えば lTorr (133Pa)以上の高い圧力とするとガスは粘 性流となり、パターン溝の奥までガスが入って行かなくなる。ところ力 lOOPa程度以 下の圧力とすることにより、流れを持たない分子流とすることができ、パターン溝の奥 までガスが行き届く。 When the pressure is set to a high pressure of, for example, 1 Torr (133 Pa) or more, the gas becomes a viscous flow, so that the gas does not enter the depth of the pattern groove. However, by setting the pressure to less than about lOOPa, a molecular flow without flow can be obtained, and the gas reaches the depth of the pattern groove.
[0053] また、 Hf— (MMP) を用いた成膜工程に連続して行なう改質工程である RPO (  [0053] In addition, the RPO (reforming process) which is a reforming process performed continuously to the film forming process using Hf— (MMP)
4  Four
remote plasma oxidation)処理の好ましい条件は、温度範囲は 390— 450°C程度(成 膜温度と略同一温度)、圧力範囲は 100— lOOOPa程度である。また、ラジカル用の O流量は 100sccm、不活性ガス Ar流量は lslmである。  Preferred conditions for the remote plasma oxidation treatment are a temperature range of about 390-450 ° C (approximately the same as the film formation temperature), and a pressure range of about 100-100OOOPa. The O flow rate for radicals is 100 sccm, and the inert gas Ar flow rate is lslm.
2  2
[0054] 成膜工程と、改質工程は、略同一温度で行なうのが好ましい。すなわち、ヒータの 設定温度は変更せずに一定とするのが好ましい。これは、温度変動を生じさせないこ とにより、シャワーヘッドゃサセプタ等の周辺部材の熱膨張によるパーティクルが発生 しに《なり、また、金属部品からの金属の飛び出し (金属汚染)を抑制できるからであ る。  It is preferable that the film forming step and the reforming step are performed at substantially the same temperature. That is, it is preferable that the set temperature of the heater be kept constant without being changed. This is because, by not causing temperature fluctuations, particles are generated due to thermal expansion of peripheral members such as the shower head and the susceptor, and it is possible to suppress the projection of metal from metal parts (metal contamination). is there.
[0055] 尚、反応室内に付着した累積膜のセルフクリーニング工程を実施するには、反応物 活性化ユニット 110でクリーニングガス(C1や C1Fなど)をラジカルにして反応室 100  In order to perform the self-cleaning step of the accumulated film adhering to the reaction chamber, the reactant activation unit 110 converts the cleaning gas (C1 or C1F) into a radical to form the reaction chamber 100
2 3  twenty three
に導入する。すなわち、供給管 530に設けたバルブ 590を開き、 Ar供給ユニット 480 力 供給した Arをマスフローコントローラ 560で流量制御して反応物活性化ユニット 1 10へ供給し、 Arプラズマを発生させる。 Arプラズマを発生させた後、供給管 540に 設けたバノレブ 600を開き、 C1F供給ユニット 490力、ら供給した C1Fをマスフローコント  To be introduced. That is, the valve 590 provided on the supply pipe 530 is opened, and the Ar supply unit 480 supplies the supplied Ar to the reactant activation unit 110 by controlling the flow rate by the mass flow controller 560 to generate Ar plasma. After generating the Ar plasma, open the vanoleb 600 provided in the supply pipe 540, and use the 490 C1F supply unit to supply the supplied C1F to the mass flow controller.
3 3  3 3
ローラ 570で流量制御して Arプラズマを発生させている反応物活性化ユニット 110 へ供給し、 C1Fを活性化する。これにより C1Fラジカルが生成される。ラジカル供給  The flow rate is controlled by the roller 570 and supplied to the reactant activation unit 110 which generates Ar plasma to activate C1F. This produces C1F radicals. Radical supply
3 3  3 3
管 130に設けたバルブ 240を開き、反応物活性化ユニット 110から C1Fラジカルを含  Open the valve 240 provided in the pipe 130, and supply the C1F radical from the reactant activation unit 110.
3  Three
むガスを、シャワーヘッド 600を介して基板 400上へ供給する。このセルフクリーニン グにより、反応室 100でクリーニングガスと累積膜とを反応させ、累積膜を塩化金属な どに変換して揮発させて、これを排気する。これにより反応室内の累積膜が除去され る。 Is supplied onto the substrate 400 through the shower head 600. This self-cleaning In the reaction chamber 100, the cleaning gas reacts with the accumulated film in the reaction chamber 100, and the accumulated film is converted into a metal chloride or the like and volatilized, and the gas is exhausted. Thereby, the accumulated film in the reaction chamber is removed.
[0056] 上述した実施の形態によれば、 HfO膜形成→改質処理 (RP〇処理)→HfO膜形 成→…を複数回繰り返すというサイクル処理をしているので、 CH、 OHの混入が極め て少なレ、所定膜厚の Hf〇膜を形成することができる。  According to the above-described embodiment, since the cycle process of repeating the HfO film formation → reforming process (RP〇 process) → HfO film formation →... Is repeated a plurality of times, mixing of CH and OH is prevented. It is possible to form an Hf〇 film having a very small thickness and a predetermined thickness.
[0057] ところで、反応室 100へ成膜ガスが導入されて成膜が行われるが、この成膜を停止 するには、原料ガス供給管 5bのデッドスペースに滞留する成膜ガスを十分にパージ する必要があることは前述した通りである。本実施の形態では、このデッドスペースに 滞留する成膜ガスを、ガス供給制御配管 36を制御することによって有効にパージし ている。  Incidentally, a film formation gas is introduced into the reaction chamber 100 to form a film. To stop the film formation, the film formation gas remaining in the dead space of the source gas supply pipe 5b is sufficiently purged. What has to be done is as described above. In the present embodiment, the film formation gas staying in the dead space is effectively purged by controlling the gas supply control pipe 36.
[0058] 以下、本実施形態におけるこのガス供給制御配管 36の構成、作用について詳説 する。本発明のガス供給制御配管 36の特徴は次の通りである。すなわち、まず、従 来のガス供給制御配管 15に対して、希釈ガス供給配管とバルブを各々 1つずつ追 加する。つまり気化ガス供給配管に接続される希釈ガス配管、バルブの接続点数が 、シャワー板までの 1つの供給経路上に 2つ以上直歹 IJして配置されることとなる。  Hereinafter, the configuration and operation of the gas supply control pipe 36 in the present embodiment will be described in detail. The features of the gas supply control pipe 36 of the present invention are as follows. That is, first, one dilution gas supply pipe and one valve are added to the conventional gas supply control pipe 15. That is, the number of connecting points of the dilution gas pipe and the valve connected to the vaporized gas supply pipe is arranged in two or more straight lines on one supply path to the shower plate.
[0059] 具体的には、図 2に示すように、ガス供給制御配管 36は、気化ガス供給配管 14及 び成膜ガス供給配管 8とバイパス配管 16とを有する。図面上では逆 L字形に接続さ れてレ、る気化ガス供給配管 14及び成膜ガス供給配管 8は、図 1に示す原料ガス供給 管 5bに対応し、反応室 100内に原料ガスを供給する原料ガス供給ラインを構成する 。バイパス配管 16は、図 1に示す原料ガスバイパス管 14aに対応し、気化ガス供給配 管 14及び成膜ガス供給配管 8の接続点から分岐するよう設けられ、反応室 100をバ ィパスするよう原料ガスを排気するバイパスラインを構成する。  Specifically, as shown in FIG. 2, the gas supply control pipe 36 has a vaporized gas supply pipe 14, a film formation gas supply pipe 8, and a bypass pipe 16. In the drawing, the vaporized gas supply pipe 14 and the film forming gas supply pipe 8 which are connected in an inverted L-shape correspond to the source gas supply pipe 5b shown in FIG. 1, and supply the source gas into the reaction chamber 100. A source gas supply line to be used. The bypass pipe 16 corresponds to the source gas bypass pipe 14a shown in FIG. 1 and is provided so as to branch off from a connection point between the vaporized gas supply pipe 14 and the film formation gas supply pipe 8, so that the raw material bypasses the reaction chamber 100. Construct a bypass line to exhaust gas.
[0060] 成膜ガス供給配管 8のバイパス配管 16との分岐点よりも下流側には第の 1バルブ 3 4が設けられ、成膜ガス供給配管 8の第 1のバルブ 34よりも下流側には第 2のバルブ 35力 S設けられる。バイパス配管 16には第 3のバルブ 33が設けられる。これらのバル ブ 33— 35にはいずれも 2方向バルブを用いている。  A first valve 34 is provided downstream of the branch point of the film forming gas supply pipe 8 from the bypass pipe 16, and is provided downstream of the film forming gas supply pipe 8 downstream of the first valve 34. Is provided with a second valve 35 force S. A third valve 33 is provided in the bypass pipe 16. Each of these valves 33-35 uses a two-way valve.
[0061] また、成膜ガス供給配管 8には、第 1の希釈ガスを供給する第 1の希釈ガス供給配 管 27と、第 2の希釈ガスを供給する第 2の希釈ガス供給配管 28とが設けられている。 第 1の希釈ガス供給配管 27は、図 1に示す第 1の不活性ガス供給配管 23に対応し、 第 1のバルブ 34と第 2のバルブ 35との間の原料ガス供給ライン内に第 1の不活性ガ スを供給する第 1の不活性ガス供給ラインを構成する。第 2の希釈ガス供給配管 28 は、図 1に示す第 2の不活性ガス供給配管 24に対応し、第 2のバルブ 35よりも下流 の原料ガス供給ライン内に第 2の不活性ガスを供給する第 2の不活性ガス供給ライン を構成する。 The first dilution gas supply line for supplying the first dilution gas is connected to the film formation gas supply line 8. A pipe 27 and a second dilution gas supply pipe 28 for supplying a second dilution gas are provided. The first dilution gas supply pipe 27 corresponds to the first inert gas supply pipe 23 shown in FIG. 1, and the first dilution gas supply pipe 27 is provided in the source gas supply line between the first valve 34 and the second valve 35. A first inert gas supply line for supplying the inert gas is constituted. The second dilution gas supply pipe 28 corresponds to the second inert gas supply pipe 24 shown in FIG. 1, and supplies the second inert gas into the source gas supply line downstream of the second valve 35. A second inert gas supply line.
第 1の希釈ガス供給配管 27、第 2の希釈ガス供給配管 28には、不活性ガスとして 希釈ガスを導入する第 1の希釈ガス導入口 25、第 2の希釈ガス導入口 26とがそれぞ れ設けられている。  The first dilution gas supply pipe 27 and the second dilution gas supply pipe 28 have a first dilution gas inlet 25 for introducing a dilution gas as an inert gas and a second dilution gas introduction 26, respectively. Provided.
[0062] 第 1及び第 2の不活性ガス供給ラインの役割は次の通りである。第 1の不活性ガス 供給ライン 27には、後述する成膜ガス供給ライン 8の第 1デッドスペース 21のパージ を行う役割がある (成膜停止状態)。また、後述する成膜ガス供給ライン 8の第 2デッド スペース 21のパージを行う役割がある (成膜停止遷移状態)。第 2の不活性ガス供給 ライン 28には、反応室内に導入するトータルガス流量 (原料ガスと希釈ガスの合計流 量)が常に一定となるよう第 2の不活性ガス流量を調整し、反応室内の圧力変動を抑 える役割がある。  [0062] The role of the first and second inert gas supply lines is as follows. The first inert gas supply line 27 has a role of purging a first dead space 21 of a film formation gas supply line 8 described later (film formation stopped state). Further, it has a role of purging a second dead space 21 of a film formation gas supply line 8 described later (film formation stop transition state). In the second inert gas supply line 28, the flow rate of the second inert gas is adjusted so that the total flow rate of the gas introduced into the reaction chamber (total flow rate of the source gas and the dilution gas) is always constant. It has a role in suppressing pressure fluctuations.
[0063] 以下に、図 3—図 5を用いて、成膜を停止する方法(プロセス)の一例を示す。本発 明では、ガス供給制御配管 36は、成膜停止の状態→成膜時の状態→成膜停止遷 移の状態→成膜停止の状態→成膜時の状態→成膜停止遷移の状態→· · · ·と移り 変わる。あらかじめ反応室 100に基板 400が設置され加熱されたところから、前記の 状態別にガス供給制御配管 36の動作を説明する。尚、説明図において気化器 290 力 は成膜ガスが常に供給され、第 1の希釈ガス導入口 25と第 2の希釈ガス導入口 2 An example of a method (process) for stopping film formation is described below with reference to FIGS. In the present invention, the gas supply control pipe 36 is in a state where film formation is stopped → a state during film formation → a state where film formation is stopped → a state where film formation is stopped → a state during film formation → a state where film formation is stopped. → ······ Change. The operation of the gas supply control pipe 36 for each of the above-described states will be described after the substrate 400 has been installed and heated in the reaction chamber 100 in advance. In the illustration, the vaporizer 290 is always supplied with the film forming gas, and the first diluent gas inlet 25 and the second diluent gas inlet 2
6へ、それぞれ希釈ガス (Ar、 N、〇など単独では成膜作用のないガス)が常に供給 されているものとする。また、成膜ガス、希釈ガスは流量制御装置などにより、流量が 制御されていても良い。 It is assumed that the diluent gas (Ar, N, 〇, etc., gas that does not have a film forming function alone) is always supplied to 6, respectively. The flow rates of the film forming gas and the dilution gas may be controlled by a flow control device or the like.
[0064] ここで気化器 290から成膜ガスを常に供給し続ける理由は、次の通りである。原料 を気化器で気化したり、気化しなかったり、あるいは気化を停止したりすると、気化熱 が奪われたり、奪われなかったりし、気化器の温度が安定しなくなる。そうすると、原 料の気化開始から原料ガスの安定供給までに時間がかかってしまうこととなる。よって 、常に気化器の温度を安定化させ、原料ガスの安定供給を行うため、気化を停止す ることなぐ気化器力 原料ガスを常に供給し続けている。 Here, the reason why the film formation gas is always supplied from the vaporizer 290 is as follows. If the raw material is vaporized in the vaporizer, not vaporized, or if the vaporization is stopped, the heat of vaporization May or may not be taken away, and the temperature of the vaporizer may become unstable. Then, it takes time from the start of raw material vaporization to the stable supply of raw material gas. Therefore, in order to constantly stabilize the temperature of the vaporizer and stably supply the raw material gas, the vaporizer power and the raw material gas are continuously supplied without stopping the vaporization.
[0065] また、希釈ガス供給ラインに常に希釈ガスを流し続ける理由は、次の通りである。希 釈ガス供給ラインからの希釈ガスの供給を停止すると、原料ガス等が希釈ガス供給ラ インに逆流することが考えられる。それを防止するために、希釈ラインには常に希釈 ガスを流し続けている。  [0065] The reason why the diluent gas is always supplied to the diluent gas supply line is as follows. When the supply of the diluent gas from the diluent gas supply line is stopped, it is conceivable that the source gas and the like will flow back to the diluent gas supply line. To prevent this, the dilution gas is always supplied to the dilution line.
[0066] (成膜停止の状態) [0066] (State of film formation stop)
図 3に成膜停止の状態を示す。この状態では、バルブ 33とバルブ 34はともに開、 バルブ 35は閉とする。図 3に示す太線の配管内、すなわち気化ガス供給配管 14及 びバイパス配管 16内は気化器 290から供給された成膜ガスが流れていることを示し ている。また、第 1の希釈ガスは、矢印で示すように、成膜ガス供給配管 8内の第 1の デッドスペース 21、バルブ 34、バルブ 33、バイパス配管 16を経由して、成膜ガスとと もに排気処理装置へ流れる。ここで第 1のデッドスペース 21とは、成膜ガス供給配管 8内の第 1のバルブ 34と第 1希釈ガス供給箇所との間の部分をいう。また、後述する 第 2のデッドスペース 22とは、成膜ガス供給配管 8内の第 2のバルブ 35と第 2希釈ガ ス供給箇所との間の部分をいう。  Fig. 3 shows the state in which film formation is stopped. In this state, both the valve 33 and the valve 34 are opened and the valve 35 is closed. 3 indicates that the film forming gas supplied from the vaporizer 290 flows in the bold line pipes, that is, in the vaporized gas supply pipe 14 and the bypass pipe 16. Further, the first diluent gas passes through the first dead space 21, the valve 34, the valve 33, and the bypass pipe 16 in the film forming gas supply pipe 8 and is combined with the film forming gas as indicated by an arrow. To the exhaust treatment device. Here, the first dead space 21 refers to a portion between the first valve 34 in the film forming gas supply pipe 8 and the first dilution gas supply point. Further, a second dead space 22, which will be described later, refers to a portion between the second valve 35 in the film forming gas supply pipe 8 and a second dilution gas supply point.
これにより、第 1のデッドスペース 21及びバルブ 34に滞留している成膜ガスを、希 釈ガスで押し流すことによりパージ処理することができる。  Thus, the film forming gas staying in the first dead space 21 and the valve 34 can be purged by flushing with the diluent gas.
成膜停止の状態においては、成膜ガス供給配管 8内の第 1希釈ガス供給箇所と、 気化ガス供給配管 14と成膜ガス供給配管 8の接続点との間に希釈ガスによる逆流( 成膜時とは逆方向の流れ)を生じさせる必要がある。バイパス配管 16は真空ポンプ 6 2に直結されているので、バルブ 33、 34、 35を切り換えるだけで、成膜ガス供給配管 8内の第 1希釈ガス供給箇所と、気化ガス供給配管 14と成膜ガス供給配管 8の接続 点との間に希釈ガスによる逆流を速やかに生じさせることができる。  In the state where the film formation is stopped, the backflow of the dilution gas (the film formation) occurs between the first dilution gas supply point in the film formation gas supply pipe 8 and the connection point between the vaporization gas supply pipe 14 and the film formation gas supply pipe 8. Flow in the opposite direction to time). Since the bypass pipe 16 is directly connected to the vacuum pump 62, simply switching the valves 33, 34, and 35 allows the first dilution gas supply point in the deposition gas supply pipe 8, the vaporized gas supply pipe 14, and the A backflow due to the dilution gas can be quickly generated between the gas supply pipe 8 and the connection point.
成膜停止の状態は、基板 400への成膜開始前の状態であって、成膜ガスの流量を 安定させるために必要な処理であり、この状態から、成膜時の状態へ移行する。 [0067] (成膜時の状態) The state in which the film formation is stopped is a state before the start of film formation on the substrate 400, and is a process necessary for stabilizing the flow rate of the film formation gas. The state shifts from this state to the state at the time of film formation. (State at the time of film formation)
図 4に成膜時の状態を示す。この状態では、バルブ 33は閉、バルブ 34とバルブ 35 はともに開とする。前記と同様に太線の配管、すなわち気化ガス供給配管 14、成膜 ガス供給配管 8内には成膜ガスが流れていることを示す。したがって、反応室 100内 に成膜ガスが導入されて、基板 400に対して成膜処理が行われる。尚、このとき第 1、 2の希釈ガスも成膜ガス供給配管 8内に供給されることとなる。所定の時間だけ、この 状態を維持した後、次の成膜停止遷移の状態へ移行する。  Figure 4 shows the state during film formation. In this state, the valve 33 is closed, and both the valve 34 and the valve 35 are open. In the same manner as described above, the bold gas pipes, that is, the vaporized gas supply pipe 14 and the film formation gas supply pipe 8 indicate that the film formation gas is flowing. Therefore, a film forming gas is introduced into the reaction chamber 100, and a film forming process is performed on the substrate 400. At this time, the first and second dilution gases are also supplied into the film forming gas supply pipe 8. After maintaining this state for a predetermined time, the state shifts to the next film formation stop transition state.
[0068] (成膜停止遷移の状態)  (Transition stop state)
図 5に成膜停止遷移の状態を示す。この状態では、バルブ 33とバルブ 35はともに 開、バルブ 34は閉とする。前記と同様に太線の配管、すなわち気化ガス供給配管 14 及びバイパス配管 16内には成膜ガスが流れていることを示すが、成膜ガス供給配管 8内の第 1のデッドスペース 21では、成膜ガスが滞留していることを示す。この状態で は、第 1のデッドスペース 21に滞留した成膜ガスが拡散現象により反応室 100へ供 給されるため、完全に基板 400への成膜が停止する状態ではない。また、この状態 では、第 2のデッドスペース 22にあった成膜ガスは、第 1の希釈ガスにより押し流され てパージ処理できる力 S、第 1のデッドスペース 21にある成膜ガスは押し流すことが困 難である。しかし、この成膜停止遷移の状態から図 3の成膜停止の状態へ移行するこ とにより、第 1のデッドスペース 21にある成膜ガスを第 1の希釈ガスでバイパス配管 16 へ押し流すことができる。  Fig. 5 shows the state of the film formation stop transition. In this state, both the valve 33 and the valve 35 are opened and the valve 34 is closed. Similarly to the above, it is shown that the film forming gas flows in the thick line pipe, that is, the vaporized gas supply pipe 14 and the bypass pipe 16, but in the first dead space 21 in the film formation gas supply pipe 8, This indicates that the membrane gas has accumulated. In this state, the film formation gas staying in the first dead space 21 is supplied to the reaction chamber 100 by a diffusion phenomenon, so that the film formation on the substrate 400 is not completely stopped. Further, in this state, the film forming gas existing in the second dead space 22 is swept away by the first diluent gas and the force S capable of purging, and the film forming gas existing in the first dead space 21 is swept away. Have difficulty. However, by shifting from the state of the film formation stop transition to the state of the film formation stop of FIG. 3, the film formation gas in the first dead space 21 can be pushed into the bypass pipe 16 with the first dilution gas. it can.
[0069] したがって、本実施の形態の構造とプロセスを使用することで、従来の問題である デッドスペースでの成膜ガスの滞留を無くすことが可能となる。尚、上記動作を行うた めの第 1バルブ 34、第 2バルブ 35、第 3バルブ 33の開閉の制御は制御装置 250に より行われる。  [0069] Therefore, by using the structure and the process of the present embodiment, it is possible to eliminate the conventional problem that the deposition gas remains in the dead space. The opening and closing of the first valve 34, the second valve 35, and the third valve 33 for performing the above operation is controlled by the control device 250.
[0070] ここで、図 14を用いて希釈ガスの流量制御方法の一例を具体的に説明する。気化 器から気化ガス供給配管 14へ供給する原料ガス流量 Aは常に一定とする。第 1希釈 ガス供給配管 27から供給する第 1希釈ガス流量 Bも一定とする。第 2希釈ガス供給配 管 28から供給する第 2希釈ガス流量 Cは、成膜ガス供給配管 8を通って反応室 100 内に導入するトータルガス流量 Dが常に一定となるよう調整する。反応室 100内の圧 力変動を防ぐためである。 Here, an example of a method for controlling the flow rate of the dilution gas will be specifically described with reference to FIG. The raw material gas flow rate A supplied from the vaporizer to the vaporized gas supply pipe 14 is always constant. The first dilution gas flow rate B supplied from the first dilution gas supply pipe 27 is also constant. The second dilution gas flow rate C supplied from the second dilution gas supply pipe 28 is adjusted so that the total gas flow rate D introduced into the reaction chamber 100 through the film formation gas supply pipe 8 is always constant. Pressure inside reaction chamber 100 This is to prevent force fluctuation.
すなわち、成膜停止状態(図 14 (a) )においては、 D = Cとなるように、成膜時(図 1 4 (b) )におレ、ては D = A + B + Cとなるように、成膜停止遷移状態(図 14 (c) )におレヽ ては D = B + Cとなるように Cの流量を調整する。例えば、 A = 0. 5slm, B = 0. 5sl m, D = l . 5slmとすると、 Cは次のように調整する。成膜停止状態では C = l . 5slm 、成膜時では C = 0. 5slm、成膜停止遷移状態では C = l . Oslmとする。  That is, D = A + B + C at the time of film formation (FIG. 14 (b)) so that D = C in the film formation stopped state (FIG. 14 (a)). As described above, in the film formation stop transition state (FIG. 14 (c)), the flow rate of C is adjusted so that D = B + C. For example, if A = 0.5 slm, B = 0.5 slm, and D = l. 5 slm, C is adjusted as follows. In the film formation stopped state, C = l.5slm, in film formation, C = 0.5slm, and in the film formation stop transition state, C = l.Oslm.
[0071] 以上、説明したように、本実施の形態では、従来の問題であったデッドスペースに 滞留する成膜ガスを希釈ガスで押し流してパージするようにしたので、壁にへばりつ レ、ている成膜ガスも容易に除去することができる。したがって、薄膜の堆積膜厚の変 動を抑制することができ、基板面内の膜厚均一性や組成均一性が得られやすい上、 成膜ガスの滞留するデッドスペースがなくなるため、成膜ガスの自己分解などによる パーテイクノレ発生を抑制することができる。 As described above, in the present embodiment, the film forming gas staying in the dead space, which has been a conventional problem, is purged by flushing with the diluent gas. The film forming gas can be easily removed. Therefore, fluctuations in the deposited film thickness of the thin film can be suppressed, and uniformity of the film thickness and composition on the substrate surface can be easily obtained. In addition, there is no dead space where the film forming gas stays. It is possible to suppress the occurrence of partake-out due to the self-decomposition of water.
[0072] 尚、上記実施形態では、図 2のガス供給制御配管 36を原料供給管 500に設けた場 合について説明したが、ラジカル供給管 130に設けるようにしても良い。  In the above embodiment, the case where the gas supply control pipe 36 of FIG. 2 is provided in the raw material supply pipe 500 has been described, but it may be provided in the radical supply pipe 130.
[0073] また、上述した実施の形態では、反応室 100内で基板 400を処理する際は、第 1の バルブ 34を開、第 2のバルブ 35を開、第 3のバルブ 33を閉とし、基板処理後は、第 1 のバルブ 34を閉、第 2のバルブ 35を開、第 3のノくルブ 33を開とし、その後に、第 1の バルブ 34を開、第 2のバルブ 35を閉、第 3のバルブ 33を開とするよう、制御装置 250 でバルブ 33— 35を制御することにより、デッドスペースに滞留する成膜ガスをパージ するようにしてレ、る。この場合において、制御装置 250にて第 1バルブ 34、第 2バノレ ブ 35、第 3バルブ 33を制御することにより、基板処理後に、第 1のバルブ 34を閉、第 2のバルブ 35を開、第 3のバルブ 33を開とする動作と、第 1のバルブ 34を開、第 2の バルブ 35を閉、第 3のバルブ 33を開とする動作とを、複数回繰り返すよう制御しても 良い。これによれば、図 3の「成膜停止の状態」と図 5の「成膜停止遷移の状態」とが 複数回繰り返されることになる。  In the above-described embodiment, when processing the substrate 400 in the reaction chamber 100, the first valve 34 is opened, the second valve 35 is opened, and the third valve 33 is closed. After the substrate processing, the first valve 34 is closed, the second valve 35 is opened, the third knob 33 is opened, and then the first valve 34 is opened and the second valve 35 is closed. The control device 250 controls the valves 33-35 so as to open the third valve 33, thereby purging the deposition gas remaining in the dead space. In this case, the control device 250 controls the first valve 34, the second vane valve 35, and the third valve 33 to close the first valve 34 and open the second valve 35 after the substrate processing. The operation of opening the third valve 33 and the operation of opening the first valve 34, closing the second valve 35, and opening the third valve 33 may be controlled a plurality of times. . According to this, the “film formation stop state” in FIG. 3 and the “film formation stop transition state” in FIG. 5 are repeated a plurality of times.
「成膜停止遷移状態」→「成膜停止状態」を繰り返すメリットは次の通りである。成膜 停止状態では、第 1希釈ガス供給箇所からバイパス配管 16側へ希釈ガスの流れが 形成され、第 1デッドスペース 21に滞留していた原料ガスはバイパス配管 16へ押し 流されるが、その場合であっても拡散により第 1デッドスペース 21に滞留していた原 料ガスが、第 1希釈ガス供給箇所から反応室側、すなわち、第 1希釈ガス供給箇所と 第 2のバルブ 35との間へ抜け出る可能性がある。そのような場合、成膜ガス供給配管 8内に原料ガスが残留することとなるが、「成膜停止遷移状態」→「成膜停止状態」を 繰り返すようにすると、パージ効果が高まり、また第 1デッドスペース 21から抜け出て 残留した原料ガスの希釈の度合いを高め、原料ガスの濃度を低くすることができる。 The merits of repeating the “film formation stop transition state” → “film formation stop state” are as follows. When the film formation is stopped, the flow of the diluent gas is formed from the first diluent gas supply point to the bypass pipe 16 side, and the raw material gas remaining in the first dead space 21 is pushed into the bypass pipe 16. However, even in this case, the raw material gas that has stayed in the first dead space 21 due to diffusion may be supplied from the first dilution gas supply point to the reaction chamber side, that is, the first dilution gas supply point and the second dilution gas supply point. There is a possibility of getting out between the valve 35. In such a case, the source gas remains in the film forming gas supply pipe 8. However, if the “film forming stop transition state” → “film forming stop state” is repeated, the purging effect increases, and (1) The degree of dilution of the residual source gas that escapes from the dead space 21 can be increased, and the concentration of the source gas can be reduced.
[0074] また、上述した実施の形態では、ガス供給制御配管 36を構成する第 1のバルブ 34 及び第 2のバルブ 35に 2方向バルブを用いた力 これらに 3方向バルブを用いること も可能である。図 6にそのような 3方向バルブを用いたガス供給制御配管 36を示す。 ガス供給制御配管 36を構成する成膜ガス供給配管 8と第 1の希釈ガス供給配管 27 を第 1の 3方向バルブ 40で接続する。すなわち、第 1の 3方向バルブ 40の第 1、第 2 のポートに成膜ガス供給配管 8を接続し、その第 3ポートに第 1の希釈ガス供給配管 2 7を接続する。また、成膜ガス供給配管 8と第 2の希釈ガス供給配管 28を第 2の 3方 向バルブ 41で接続する。すなわち、第 2の 3方向バルブ 41の第 1、第 2のポートに成 膜ガス供給配管 8を接続し、その第 3ポートに第 2の希釈ガス供給配管 28を接続する このように 3方向バルブの第 3ポートに希釈ガス供給管を接続することにより、ガス供 給制御配管 36の第 1のバルブ及び第 2のバルブに 3方向バルブを用いることができ る。  In the above-described embodiment, a two-way valve is used for the first valve 34 and the second valve 35 constituting the gas supply control pipe 36. A three-way valve may be used for these forces. is there. FIG. 6 shows a gas supply control pipe 36 using such a three-way valve. The film forming gas supply pipe 8 constituting the gas supply control pipe 36 and the first dilution gas supply pipe 27 are connected by a first three-way valve 40. That is, the film forming gas supply pipe 8 is connected to the first and second ports of the first three-way valve 40, and the first dilution gas supply pipe 27 is connected to the third port. Further, the film forming gas supply pipe 8 and the second dilution gas supply pipe 28 are connected by a second three-way valve 41. That is, the deposition gas supply pipe 8 is connected to the first and second ports of the second three-way valve 41, and the second dilution gas supply pipe 28 is connected to the third port. By connecting the dilution gas supply pipe to the third port, a three-way valve can be used as the first valve and the second valve of the gas supply control pipe 36.
3方向バルブを用いると、バルブの外部にデッドスペースは存在しなくなる力 ノくノレ ブの内部にデッドスペースが存在することとなる。すなわち、図 7に示すように、 3方向 バルブ 40または 41の内部に、デッドスペース 43が必ず存在する。したがって、 3方 向バルブを用いた場合でも、このデッドスペース 43に残留する成膜ガスを、前述した 実施の形態のように、希釈ガス(矢印で示す)で押し流す必要がある。  When a three-way valve is used, there is no dead space outside the valve. There is a dead space inside the knob. That is, as shown in FIG. 7, a dead space 43 always exists inside the three-way valve 40 or 41. Therefore, even when a three-way valve is used, the film forming gas remaining in the dead space 43 needs to be flushed with a diluent gas (indicated by an arrow) as in the above-described embodiment.
[0075] また、上記実施の形態では、原料ガス供給ラインに、 1種類の有機 Hf金属原料を 供給する 1つの原料供給ユニット 900を接続して Hf〇膜を形成する 1元素系 CVD薄  In the above embodiment, one source element supply unit 900 for supplying one type of organic Hf metal source is connected to the source gas supply line to form an Hf 1 film by a one-element CVD thin film.
2  2
膜形成装置の場合について説明した。しかし、本発明はこれに限定されなレ、。例え ば、原料ガス供給ラインには、少なくとも 2種類の原料を供給する少なくとも 2つの原 料供給ユニットが接続されたり、少なくとも 2種類の原料を液体状態で混合した混合 原料を供給する少なくとも 1つの原料供給ユニットが接続される多元素系 CVD薄膜 形成装置の場合についても適用できる。 The case of the film forming apparatus has been described. However, the present invention is not limited to this. For example, a source gas supply line must have at least two sources that supply at least two types of sources. The present invention can also be applied to a multi-element CVD thin film forming apparatus to which a material supply unit is connected or at least one material supply unit for supplying a mixed material in which at least two kinds of materials are mixed in a liquid state is connected.
[0076] この多元素系薄膜形成装置を 2元素系 CVD薄膜形成装置、例えば HfSi〇成膜装 置を例として説明する。 HfSi〇成膜装置には、例えば次の 2種類の装置がある。 1つ は、原料タンクで 2種類の原料を液体状態で混ぜるタイプであり、他の 1つは、原料タ ンク、気化器を原料ごとに別々に設けるタイプである。原料タンクで 2種類の原料を混 ぜるタイプは、図 1に示す構成と同じであり、原料供給ユニット 900内で Hf原料と Si 原料とを混合するようになっている。原料タンク、気化器を原料ごとに別々に設けるタ ィプは、図 15に示すように構成される。  This multi-element thin film forming apparatus will be described by taking a two-element CVD thin film forming apparatus, for example, an HfSi〇 film forming apparatus as an example. The HfSi〇 film forming apparatus includes, for example, the following two types of apparatuses. One is a type in which two types of raw materials are mixed in a liquid state in a raw material tank, and the other is a type in which a raw material tank and a vaporizer are separately provided for each raw material. The type in which two types of raw materials are mixed in the raw material tank is the same as the configuration shown in FIG. 1, and the Hf raw material and the Si raw material are mixed in the raw material supply unit 900. The type in which a raw material tank and a vaporizer are separately provided for each raw material is configured as shown in FIG.
[0077] 図 15に示す基板処理装置の構成は、基本的には図 1に示す構成と同じであり、図  The configuration of the substrate processing apparatus shown in FIG. 15 is basically the same as the configuration shown in FIG.
1と対応する部分には同一符号を付して説明を省略する。異なる点は、 2種類の成膜 原料供給系が並列に設けられ、それらが下流の原料ガス供給管 5bで合体して 1つの 供給系となっている点である。すなち一方の Hf原料供給系は、 Hf原料を供給する原 料供給ユニット 900aと、成膜原料の液体供給流量を制御する液体流量制御装置 28 Oaと、成膜原料を気化する気化器 290aとから構成される。他方の Si原料供給系は、 S源料を供給する原料供給ユニット 900bと、成膜原料の液体供給流量を制御する 液体流量制御装置 280bと、成膜原料を気化する気化器 290bとから構成される。こ れらの気化器 290a、 290bの各出力ポートは一本化されて原料ガス供給管 5bに接 続される。各成膜原料供給系から送出された各ガスは、原料ガス供給管 5bで混合さ れて、ガス供給制御配管 36を経て反応室内に供給される。  Portions corresponding to 1 are denoted by the same reference numerals and description thereof is omitted. The difference is that two kinds of film forming material supply systems are provided in parallel, and they are combined into one supply system by a downstream material gas supply pipe 5b. One of the Hf source supply systems includes a source supply unit 900a for supplying the Hf source, a liquid flow controller 28 Oa for controlling the liquid supply flow rate of the deposition source, and a vaporizer 290a for vaporizing the deposition source. It is composed of The other Si source supply system is composed of a source supply unit 900b for supplying an S source material, a liquid flow controller 280b for controlling the liquid supply flow rate of the film forming material, and a vaporizer 290b for vaporizing the film forming material. You. The output ports of these vaporizers 290a and 290b are unified and connected to the source gas supply pipe 5b. The respective gases sent from the respective film forming source supply systems are mixed in a source gas supply pipe 5b and supplied to the reaction chamber via a gas supply control pipe 36.
[0078] 本発明は、このような多元素系薄膜の形成を行う場合に特に有効となる。多元素系 CVD薄膜の形成を行う場合、複数種類の元素はその質量により拡散力が異なる。軽 い元素ほど、拡散力が大きい。すなわちデッドスペースに滞留した複数の元素のうち 、質量の軽い方が先に拡散し反応室内へ供給されることとなる。例えば、上述した 2 元素系 CVD薄膜である HfSiO膜を形成する場合、 Hf原料と S源料を用いるが、こ の場合、デッドスペースに滞留した Hf元素、 Si元素はそれぞれ質量が異なり拡散力 が異なるため、反応室内に供給されるタイミングがずれることとなる。そうすると、先に 供給された方の物質が基板中央部に多く付着することとなり、基板面内における組成 均一性に影響を及ぼすこととなる。尚、この問題は、成膜時等、原料供給量が多い場 合は特に問題とはならないが、原料供給量が少ない場合に特に顕著となる。以上の ことから、本発明は多元素系 CVD薄膜の形成を行う場合に特に有効となる。尚 ALD による多元素系薄膜の形成を行う場合にも有効となるのは勿論のことである。 The present invention is particularly effective when forming such a multi-element thin film. When forming a multi-element CVD thin film, a plurality of types of elements have different diffusing powers depending on their masses. The lighter the element, the greater the diffusing power. That is, of the plurality of elements staying in the dead space, the one with the smaller mass is diffused first and supplied to the reaction chamber. For example, when forming the above-mentioned HfSiO film, which is a two-element system CVD thin film, an Hf raw material and an S source material are used. Due to the difference, the timing of supply into the reaction chamber is shifted. Then, first The supplied material adheres more to the center of the substrate, which affects the composition uniformity within the substrate surface. Note that this problem does not become a problem particularly when the supply amount of the raw material is large, such as at the time of film formation. From the above, the present invention is particularly effective when forming a multi-element CVD thin film. It is needless to say that the present invention is also effective when a multi-element thin film is formed by ALD.
図面の簡単な説明  Brief Description of Drawings
[0079] [図 1]本発明の実施形態に係る基板処理装置を示す概略断面図である。  FIG. 1 is a schematic sectional view showing a substrate processing apparatus according to an embodiment of the present invention.
[図 2]第 1の実施の形態によるガス供給制御配管を示す図である。  FIG. 2 is a diagram showing a gas supply control pipe according to the first embodiment.
[図 3]第 1の実施の形態によるガス供給制御配管の説明図である。  FIG. 3 is an explanatory diagram of a gas supply control pipe according to the first embodiment.
[図 4]第 1の実施の形態によるガス供給制御配管の説明図である。  FIG. 4 is an explanatory diagram of a gas supply control pipe according to the first embodiment.
[図 5]第 1の実施の形態によるガス供給制御配管の説明図である。  FIG. 5 is an explanatory diagram of a gas supply control pipe according to the first embodiment.
[図 6]第 2の実施の形態によるガス供給制御配管を示す図である。  FIG. 6 is a view showing a gas supply control pipe according to a second embodiment.
[図 7]第 2の実施の形態による 3方向バルブの説明図である。  FIG. 7 is an explanatory view of a three-way valve according to a second embodiment.
[図 8]従来のガス供給制御配管を示す図である。  FIG. 8 is a view showing a conventional gas supply control pipe.
[図 9]従来のガス供給制御配管の問題を示す説明図である。  FIG. 9 is an explanatory view showing a problem of a conventional gas supply control pipe.
[図 10]従来のガス供給制御配管の問題を示す説明図である。  FIG. 10 is an explanatory diagram showing a problem of a conventional gas supply control pipe.
[図 11]従来のガス供給制御配管の問題を示す説明図である。  FIG. 11 is an explanatory diagram showing a problem of a conventional gas supply control pipe.
[図 12]従来の CVD装置の概略構成図である。  FIG. 12 is a schematic configuration diagram of a conventional CVD apparatus.
[図 13]従来の反応室の構造図である。  FIG. 13 is a structural view of a conventional reaction chamber.
[図 14]実施の形態による希釈ガスの流量制御方法を示す説明図である。  FIG. 14 is an explanatory diagram showing a method for controlling a flow rate of a dilution gas according to an embodiment.
[図 15]実施の形態に係る他の基板処理装置を示す概略断面図である。  FIG. 15 is a schematic sectional view showing another substrate processing apparatus according to the embodiment.
符号の説明  Explanation of symbols
[0080] 5b 原料ガス供給管 (原料ガス供給ライン) [0080] 5b Source gas supply pipe (source gas supply line)
14a 原料ガスバイパス管(バイパスライン)  14a Source gas bypass pipe (bypass line)
14b ラジカルバイパス管(バイパスライン)  14b Radical bypass pipe (bypass line)
23 第 1の不活性ガス供給配管(不活性ガス供給ライン)  23 First inert gas supply pipe (inert gas supply line)
24 第 2の不活性ガス供給配管(不活性ガス供給ライン)  24 Second inert gas supply pipe (inert gas supply line)
33 第 3のバルブ 第 1のバルブ 33 Third valve 1st valve
第 2のバルブ Second valve
反応室 Reaction chamber
基板 Substrate
原料供給管 (原料ガス供給ライン) 原料供給ユニット Raw material supply pipe (raw gas supply line) Raw material supply unit

Claims

請求の範囲 The scope of the claims
[1] 少な <とも 夂の基板を処理する反応室と、  [1] a reaction chamber for processing a small number of substrates,
前記反応室内に原料ガスを供給する原料ガス供給ユニットと、  A source gas supply unit for supplying a source gas into the reaction chamber,
前記反応室と原料ガス供給ユニットとを結ぶ原料ガス供給ラインと、  A source gas supply line connecting the reaction chamber and the source gas supply unit,
前記原料ガス供給ライン力 分岐するよう設けられ、原料ガスを、反応室をバイパス するよう排気するバイパスラインと、  A bypass line that is provided to branch off the source gas supply line power and exhausts the source gas to bypass the reaction chamber;
前記原料ガス供給ラインのバイパスラインとの分岐点よりも下流側に設けられた第 前記原料ガス供給ラインの前記第 1のバルブよりも下流側に設けられた第 2のバル ブと、  A second valve provided downstream of the first valve of the source gas supply line provided downstream of a branch point of the source gas supply line with the bypass line;
前記バイパスラインに設けられた第 3のバルブと、  A third valve provided in the bypass line,
前記第 1のバルブと前記第 2のバルブとの間の原料ガス供給ライン内に不活性ガス を供給する第 1の不活性ガス供給ラインと、  A first inert gas supply line for supplying an inert gas into a source gas supply line between the first valve and the second valve;
を有することを特徴とする基板処理装置。  A substrate processing apparatus comprising:
[2] 前記反応室内で基板を処理する際は、第 1のバルブを開、第 2のバルブを開、第 3 のバルブを閉とし、基板処理後は、第 1のバルブを閉、第 2のバルブを開、第 3のバ ルブを開とし、その後に、第 1のバルブを開、第 2のバルブを閉、第 3のバルブを開と するよう制御する制御手段を有することを特徴とする請求項 1に記載の基板処理装置  [2] When processing a substrate in the reaction chamber, the first valve is opened, the second valve is opened, and the third valve is closed. After the substrate is processed, the first valve is closed, and the second valve is closed. Control means for opening the first valve, opening the third valve, and thereafter controlling the first valve to open, the second valve to close, and the third valve to open. 2. The substrate processing apparatus according to claim 1,
[3] 基板処理後に、第 1のバルブを閉、第 2のバルブを開、第 3のバルブを開とする動 作と、第 1のバルブを開、第 2のバルブを閉、第 3のバルブを開とする動作とを、複数 回繰り返すよう制御する制御手段を有することを特徴とする請求項 2に記載の基板処 [3] After processing the substrate, the first valve is closed, the second valve is opened, and the third valve is opened. The first valve is opened, the second valve is closed, and the third valve is opened. 3. The substrate processing apparatus according to claim 2, further comprising control means for controlling the operation of opening the valve to be repeated a plurality of times.
[4] 原料ガス供給ユニットは、少なくとも基板処理中、基板処理後において、常に一定 流量の原料ガスを原料ガス供給ラインに対して供給し続けるよう構成されることを特 徴とする請求項 2に記載の基板処理装置。 [4] The source gas supply unit according to claim 2, wherein the source gas supply unit is configured to continuously supply a constant flow rate of the source gas to the source gas supply line at least during and after the substrate processing. The substrate processing apparatus according to any one of the preceding claims.
[5] 第 1の不活性ガス供給ラインは、少なくとも基板処理中、基板処理後において、常 に一定流量の不活性ガスを供給し続けるよう構成されることを特徴とする請求項 4に 記載の基板処理装置。 [5] The method according to claim 4, wherein the first inert gas supply line is configured to always supply a constant flow of the inert gas at least during and after the substrate processing. The substrate processing apparatus according to any one of the preceding claims.
[6] 前記第 2のバルブよりも下流の原料ガス供給ライン内に不活性ガスを供給する第 2 の不活性ガス供給ラインを有することを特徴とする請求項 1に記載の基板処理装置。  6. The substrate processing apparatus according to claim 1, further comprising a second inert gas supply line for supplying an inert gas into a source gas supply line downstream of the second valve.
[7] 原料ガス供給ユニットから供給する原料ガスの供給流量と、第 1の不活性ガス供給 ラインから供給する不活性ガスの供給流量とを一定とし、第 2の不活性ガス供給ライ ン力 供給する不活性ガスの供給流量を可変としたことを特徴とする請求項 6に記載 の基板処理装置。  [7] With the supply flow rate of the source gas supplied from the source gas supply unit and the supply flow rate of the inert gas supplied from the first inert gas supply line kept constant, the second inert gas supply line power supply 7. The substrate processing apparatus according to claim 6, wherein a supply flow rate of the inert gas is variable.
[8] 前記反応室内に供給される原料ガスと不活性ガスの合計流量が、基板処理前、基 板処理中、基板処理後において一定となるよう、第 2の不活性ガス供給ラインから流 す不活性ガスの供給流量を調整する制御手段を有することを特徴とする請求項 7に 記載の基板処理装置。  [8] Flow from the second inert gas supply line so that the total flow rate of the source gas and the inert gas supplied into the reaction chamber is constant before, during, and after the substrate processing. 8. The substrate processing apparatus according to claim 7, further comprising control means for adjusting a supply flow rate of the inert gas.
[9] 前記反応室内で基板を処理する前は、第 1のバルブを開、第 2のバルブを閉、第 3 のバルブを開とし、基板を処理する際は、第 1のバルブを開、第 2のバルブを開、第 3 のバルブを閉とし、基板処理後は、第 1のバルブを閉、第 2のバルブを開、第 3のバ ルブを開とし、その後に、第 1のバルブを開、第 2のバルブを閉、第 3のバルブを開と するよう制御する制御手段を有することを特徴とする請求項 8に記載の基板処理装置  [9] Before processing the substrate in the reaction chamber, the first valve is opened, the second valve is closed, the third valve is opened, and when processing the substrate, the first valve is opened. Open the second valve, close the third valve, and after processing the substrate, close the first valve, open the second valve, open the third valve, and then open the first valve. 9. The substrate processing apparatus according to claim 8, further comprising control means for controlling to open the second valve, close the second valve, and open the third valve.
[10] 原料ガス供給ラインには、少なくとも 2種類の原料ガスを供給する少なくとも 2つの 原料ガス供給ユニットが接続されるか、少なくとも 2種類の原料の混合ガスを供給する 少なくとも 1つの原料供給ユニットが接続されることを特徴とする請求項 1に記載の基 [10] At least two source gas supply units that supply at least two types of source gas or at least one source supply unit that supplies a mixed gas of at least two types of source gas are connected to the source gas supply line. The base according to claim 1, wherein the base is connected.
[11] 少なくとも 1枚の基板を反応室内に搬入する工程と、前記反応室内に原料ガス供給 ユニットより原料ガス供給ラインを介して原料ガスを供給して反応室内に搬入した基 板を処理する工程と、 [11] A step of loading at least one substrate into the reaction chamber, and a step of supplying a source gas from the source gas supply unit to the reaction chamber via a source gas supply line and processing the substrate loaded into the reaction chamber. When,
基板処理前または基板処理後に、前記原料ガス供給ラインから分岐するよう設けら れたバイパスラインより、原料ガスを、反応室をバイパスするよう排気する工程と、 処理後の基板を前記反応室より搬出する工程とを有し、  Before or after the substrate processing, a step of exhausting the source gas to bypass the reaction chamber from a bypass line provided to branch off from the source gas supply line, and carrying out the processed substrate from the reaction chamber And a step of
前記基板処理後にバイパスラインより原料ガスを排気する工程は、前記原料ガス供 給ラインのバイパスラインとの分岐点よりも下流側に設けられた第 1のバルブを閉とし 、前記原料ガス供給ラインの第 1のバルブよりも下流側に設けられた第 2のバルブを 開とし、バイパスラインに設けられた第 3のバルブを開とした状態で、第 1のバルブと 第 2のバルブとの間の原料ガス供給ライン内に不活性ガスを供給する工程を含むこと を特徴とする半導体装置の製造方法。 The step of exhausting the source gas from the bypass line after the substrate processing includes the step of supplying the source gas. The first valve provided downstream of the branch point of the supply line with the bypass line is closed, and the second valve provided downstream of the first valve of the source gas supply line is opened. A step of supplying an inert gas into a source gas supply line between the first valve and the second valve with the third valve provided in the bypass line opened. Semiconductor device manufacturing method.
[12] 前記基板処理後にバイパスラインより原料ガスを排気する工程は、更に、第 1のバ ルブを開とし、第 2のバルブを閉とし、第 3のバルブを開とした状態で、第 1のバルブと 第 2のバルブとの間の原料ガス供給ライン内に不活性ガスを供給する工程を含むこと を特徴とする請求項 11に記載の半導体装置の製造方法。  [12] In the step of exhausting the source gas from the bypass line after the substrate processing, the first valve is opened, the second valve is closed, and the third valve is opened. 12. The method for manufacturing a semiconductor device according to claim 11, further comprising a step of supplying an inert gas into a source gas supply line between the first valve and the second valve.
[13] 前記基板処理後にバイパスラインより原料ガスを排気する工程は、第 1のバルブを 閉とし、第 2のバルブを開とし、第 3のバルブを開とした状態で、第 1のバルブと第 2の バルブとの間の原料ガス供給ライン内に不活性ガスを供給する工程と、第 1のバルブ を開とし、第 2のバルブを閉とし、第 3のバルブを開とした状態で、第 1のバルブと第 2 のバルブとの間の原料ガス供給ライン内に不活性ガスを供給する工程とを、複数回 繰り返すことを特徴とする請求項 11に記載の半導体装置の製造方法。  [13] In the step of exhausting the source gas from the bypass line after the substrate processing, the first valve is closed, the second valve is opened, and the third valve is opened. Supplying an inert gas into the source gas supply line between the second valve and the first valve, opening the first valve, closing the second valve, and opening the third valve; 12. The method of manufacturing a semiconductor device according to claim 11, wherein the step of supplying an inert gas into a source gas supply line between the first valve and the second valve is repeated a plurality of times.
[14] 前記基板処理後にバイパスラインより原料ガスを排気する工程は、第 1のバルブを 閉とし、第 2のバルブを開とし、第 3のバルブを開とした状態で、第 1のバルブと第 2の バルブとの間の原料ガス供給ライン内に不活性ガスを供給し第 2のバルブ側に向か つて不活性ガスが流れるようにする工程と、第 1のバルブを開とし、第 2のバルブを閉 とし、第 3のバルブを開とした状態で、第 1のバルブと第 2のバルブとの間の原料ガス 供給ライン内に不活性ガスを供給し第 1のバルブ側に向かつて不活性ガスが流れる ようにする工程と、を含むことを特徴とする請求項 11に記載の半導体装置の製造方 法。  [14] In the step of exhausting the source gas from the bypass line after the substrate processing, the first valve is closed, the second valve is opened, and the third valve is opened. Supplying an inert gas into the source gas supply line between the second valve and the inert gas so as to flow toward the second valve; and opening the first valve, and With the third valve closed and the third valve open, an inert gas is supplied into the source gas supply line between the first valve and the second valve, and the inert gas is supplied to the first valve side. 12. The method for manufacturing a semiconductor device according to claim 11, further comprising a step of causing an inert gas to flow.
[15] 少なくとも基板を処理する工程と、基板処理前または基板処理後にバイパスライン より原料ガスを排気する工程では、原料ガス供給ユニットより常に一定流量の原料ガ スを原料ガス供給ラインに対して供給し続けることを特徴とする請求項 12に記載の半 導体装置の製造方法。  [15] At least in the step of processing the substrate and in the step of exhausting the source gas from the bypass line before or after the substrate processing, a constant flow of the source gas is always supplied to the source gas supply line from the source gas supply unit. 13. The method for manufacturing a semiconductor device according to claim 12, wherein the method is continued.
[16] 少なくとも基板を処理する工程と、基板処理前または基板処理後に より原料ガスを排気する工程では、第 1のバルブと第 2のバルブとの間の原料ガス供 給ライン内に常に一定流量の不活性ガスを供給し続けることを特徴とする請求項 15 に記載の半導体装置の製造方法。 [16] at least a step of processing the substrate, and before or after the substrate processing The method according to claim 15, wherein in the step of further exhausting the source gas, a constant flow of the inert gas is continuously supplied into the source gas supply line between the first valve and the second valve. Manufacturing method of a semiconductor device.
[17] 前記基板処理前にバイパスラインより原料ガスを排気する工程は、第 1のバルブを 開とし、第 2のバルブを閉とし、第 3のバルブを開とした状態で、第 1のバルブと第 2の バルブとの間の原料ガス供給ライン内に不活性ガスを供給する工程を含むことを特 徴とする請求項 12に記載の半導体装置の製造方法。  [17] In the step of exhausting the source gas from the bypass line before the substrate processing, the first valve is opened, the second valve is closed, and the third valve is opened. 13. The method of manufacturing a semiconductor device according to claim 12, further comprising a step of supplying an inert gas into a source gas supply line between the first valve and the second valve.
[18] 基板処理前、基板処理中、基板処理後においては、原料ガス供給ユニットから供 給する原料ガスの供給流量と、第 1のバルブと第 2のバルブとの間の原料ガス供給ラ イン内に供給する不活性ガスの供給流量とを常に一定とし、反応室内に供給される 原料ガスと不活性ガスの合計流量が常に一定となるよう、第 2のバルブ下流の原料ガ ス供給ライン内に不活性ガスを供給して、その供給流量の調整を行うことを特徴とす る請求項 17に記載の半導体装置の製造方法。  [18] Before, during, and after substrate processing, the supply flow rate of the source gas supplied from the source gas supply unit and the source gas supply line between the first valve and the second valve. In the source gas supply line downstream of the second valve, the supply flow rate of the inert gas supplied into the reaction chamber is always constant, and the total flow rate of the source gas and the inert gas supplied into the reaction chamber is always constant. 18. The method for manufacturing a semiconductor device according to claim 17, wherein an inert gas is supplied to the semiconductor device and the supply flow rate is adjusted.
[19] 原料ガス供給ラインを介して反応室内に供給する原料ガスは、少なくとも 2種類の 原料ガス、または少なくとも 2種類の原料の混合ガスを含むことを特徴とする請求項 1 2に記載の半導体装置の製造方法。  [19] The semiconductor according to claim 12, wherein the source gas supplied into the reaction chamber via the source gas supply line includes at least two types of source gases or a mixed gas of at least two types of source gases. Device manufacturing method.
PCT/JP2004/012855 2003-09-05 2004-09-03 Substrate treating device and method of manufacturing semiconductor device WO2005024926A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005513684A JP4356943B2 (en) 2003-09-05 2004-09-03 Substrate processing apparatus and semiconductor device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-313879 2003-09-05
JP2003313879 2003-09-05

Publications (1)

Publication Number Publication Date
WO2005024926A1 true WO2005024926A1 (en) 2005-03-17

Family

ID=34269782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012855 WO2005024926A1 (en) 2003-09-05 2004-09-03 Substrate treating device and method of manufacturing semiconductor device

Country Status (2)

Country Link
JP (1) JP4356943B2 (en)
WO (1) WO2005024926A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113041A (en) * 2005-10-19 2007-05-10 Hitachi Kokusai Electric Inc Substrate treating apparatus
JP2008277762A (en) * 2007-04-02 2008-11-13 Hitachi Kokusai Electric Inc Substrate processing apparatus and method for manufacturing semiconductor device
US8235001B2 (en) 2007-04-02 2012-08-07 Hitachi Kokusai Electric Inc. Substrate processing apparatus and method for manufacturing semiconductor device
JP2012207888A (en) * 2011-03-30 2012-10-25 Edwards Kk Detoxifying apparatus
CN104934313A (en) * 2014-03-18 2015-09-23 株式会社日立国际电气 Substrate processing apparatus and method for manufacturing semiconductor device
JP2015178678A (en) * 2015-04-06 2015-10-08 株式会社日立国際電気 Substrate processing device, semiconductor device manufacturing method, program, and recording medium
CN111850512A (en) * 2019-04-26 2020-10-30 东京毅力科创株式会社 Film forming method and film forming apparatus
JPWO2021199420A1 (en) * 2020-04-03 2021-10-07
US11355319B2 (en) 2017-12-19 2022-06-07 Hitachi High-Tech Corporation Plasma processing apparatus
TWI806606B (en) * 2021-05-17 2023-06-21 日商日立全球先端科技股份有限公司 Plasma treatment device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928284B (en) * 2013-01-15 2016-04-06 中微半导体设备(上海)有限公司 The method of testing of charge delivery mechanism and gas diverter thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990012641A1 (en) * 1989-04-26 1990-11-01 Tadahiro Ohmi Process gas supply apparatus
JPH09148257A (en) * 1995-11-29 1997-06-06 Sumitomo Electric Ind Ltd Material supplier
JP2002339071A (en) * 2001-05-18 2002-11-27 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude Treating-gas feed mechanism in alcvd system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990012641A1 (en) * 1989-04-26 1990-11-01 Tadahiro Ohmi Process gas supply apparatus
JPH09148257A (en) * 1995-11-29 1997-06-06 Sumitomo Electric Ind Ltd Material supplier
JP2002339071A (en) * 2001-05-18 2002-11-27 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude Treating-gas feed mechanism in alcvd system

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113041A (en) * 2005-10-19 2007-05-10 Hitachi Kokusai Electric Inc Substrate treating apparatus
JP2008277762A (en) * 2007-04-02 2008-11-13 Hitachi Kokusai Electric Inc Substrate processing apparatus and method for manufacturing semiconductor device
US8235001B2 (en) 2007-04-02 2012-08-07 Hitachi Kokusai Electric Inc. Substrate processing apparatus and method for manufacturing semiconductor device
US8367566B2 (en) 2007-04-02 2013-02-05 Hitachi Kokusai Electric Inc. Method for manufacturing semiconductor device and method for processing substrate
JP2012207888A (en) * 2011-03-30 2012-10-25 Edwards Kk Detoxifying apparatus
CN104934313A (en) * 2014-03-18 2015-09-23 株式会社日立国际电气 Substrate processing apparatus and method for manufacturing semiconductor device
JP2015178644A (en) * 2014-03-18 2015-10-08 株式会社日立国際電気 Substrate processing device, semiconductor device manufacturing method, program, and recording medium
US9340879B2 (en) 2014-03-18 2016-05-17 Hitachi Kokusai Electric Inc. Substrate processing apparatus, method for manufacturing semiconductor device and computer-readable recording medium
JP2015178678A (en) * 2015-04-06 2015-10-08 株式会社日立国際電気 Substrate processing device, semiconductor device manufacturing method, program, and recording medium
US11355319B2 (en) 2017-12-19 2022-06-07 Hitachi High-Tech Corporation Plasma processing apparatus
US11674224B2 (en) 2019-04-26 2023-06-13 Tokyo Electron Limited Film forming method and film forming apparatus
JP2020184552A (en) * 2019-04-26 2020-11-12 東京エレクトロン株式会社 Film formation method and film deposition device
JP7407521B2 (en) 2019-04-26 2024-01-04 東京エレクトロン株式会社 Film-forming method and film-forming equipment
CN111850512A (en) * 2019-04-26 2020-10-30 东京毅力科创株式会社 Film forming method and film forming apparatus
TWI804816B (en) * 2020-04-03 2023-06-11 日商日立全球先端科技股份有限公司 Plasma processing apparatus and plasma processing method
CN113767453A (en) * 2020-04-03 2021-12-07 株式会社日立高新技术 Plasma processing apparatus and plasma processing method
JP7116248B2 (en) 2020-04-03 2022-08-09 株式会社日立ハイテク Plasma processing apparatus and plasma processing method
JPWO2021199420A1 (en) * 2020-04-03 2021-10-07
KR20210124173A (en) * 2020-04-03 2021-10-14 주식회사 히타치하이테크 Plasma treatment apparatus and plasma treatment method
KR102560323B1 (en) * 2020-04-03 2023-07-28 주식회사 히타치하이테크 Plasma processing device and plasma processing method
US11776792B2 (en) 2020-04-03 2023-10-03 Hitachi High-Tech Corporation Plasma processing apparatus and plasma processing method
CN113767453B (en) * 2020-04-03 2023-12-12 株式会社日立高新技术 Plasma processing apparatus and plasma processing method
WO2021199420A1 (en) * 2020-04-03 2021-10-07 株式会社日立ハイテク Plasma processing device and plasma processing method
TWI806606B (en) * 2021-05-17 2023-06-21 日商日立全球先端科技股份有限公司 Plasma treatment device

Also Published As

Publication number Publication date
JPWO2005024926A1 (en) 2007-11-08
JP4356943B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
US10903071B2 (en) Selective deposition of silicon oxide
US10825679B2 (en) Selective growth of SIO2 on dielectric surfaces in the presence of copper
CN110402477B (en) Selective growth of silicon oxide or silicon nitride on silicon surface in the presence of silicon oxide
US20070087579A1 (en) Semiconductor device manufacturing method
TWI409897B (en) A substrate processing apparatus, and a method of manufacturing the semiconductor device
US6905549B2 (en) Vertical type semiconductor device producing apparatus
US8357619B2 (en) Film formation method for forming silicon-containing insulating film
JP4961381B2 (en) Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
US20050223982A1 (en) Apparatus and method for depositing thin film on wafer using remote plasma
JP4140768B2 (en) Semiconductor raw materials
TWI232518B (en) Substrate processing device
JP2018152560A (en) Selective deposition of silicon nitride on silicon oxide using catalyst control
JP2004006801A (en) Vertical semiconductor manufacturing apparatus
TWI798371B (en) Selective deposition using hydrolysis
JP4356943B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2011071414A (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP2008211211A (en) Manufacturing method of semiconductor device, and substrate processing apparatus
KR101066138B1 (en) Substrate processing apparatus and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513684

Country of ref document: JP

122 Ep: pct application non-entry in european phase