WO2005016512A1 - Verfahren zur entfernung von flüchtigen verbindungen aus stoffgemischen mittels mikroverdampfer - Google Patents
Verfahren zur entfernung von flüchtigen verbindungen aus stoffgemischen mittels mikroverdampfer Download PDFInfo
- Publication number
- WO2005016512A1 WO2005016512A1 PCT/EP2004/008074 EP2004008074W WO2005016512A1 WO 2005016512 A1 WO2005016512 A1 WO 2005016512A1 EP 2004008074 W EP2004008074 W EP 2004008074W WO 2005016512 A1 WO2005016512 A1 WO 2005016512A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- evaporator
- micro
- mixture
- mixtures
- channels
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F6/00—Post-polymerisation treatments
- C08F6/001—Removal of residual monomers by physical means
- C08F6/003—Removal of residual monomers by physical means from polymer solutions, suspensions, dispersions or emulsions without recovery of the polymer therefrom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2260/00—Heat exchangers or heat exchange elements having special size, e.g. microstructures
- F28F2260/02—Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S165/00—Heat exchange
- Y10S165/911—Vaporization
Definitions
- the invention relates to a method for removing volatile compounds from reactive or non-reactive mixtures.
- thin film evaporators are used in the art for the evaporation of volatile substances from non-reactive, temperature-sensitive mixtures. These include e.g. Spiral tube evaporator, falling film evaporator, centrifugal evaporator. In Wendelrohrverdampfern the product is often overheated, especially when the evaporator is operated by a pressure maintenance at the outlet. With the falling-film or centrifugal evaporator, relatively large film thicknesses of up to 1 mm or up to 0.1 mm are achieved, which adversely affect the mass and heat transport and therefore require a longer residence time.
- Microstructured vaporizers for vaporizing volatile compounds from multi-component mixtures having an evaporation capacity in the range of several kg / h or more are not described herein.
- the invention is based on the object volatiles from mixtures which are low-viscosity under operating conditions to remove under mild conditions, i. at the lowest possible temperature, a short residence time and a narrow residence time distribution.
- the invention relates to a process for the removal of at least one volatile compound from a reactive or mchtregenten substance mixture using at least one micro-evaporator, wherein the micro-evaporator channels for the management of the mixture with a hydraulic diameter of 5 to 1000 microns and a specific evaporation area of at least 10 3 m 2 / m 3 .
- the channels of the micro-evaporator have a hydraulic diameter of 30 to 500 microns.
- the channels for the guidance of the heating medium have a hydraulic diameter of 5 to 1000 .mu.m, particularly preferably from 30 to 500 .mu.m. - -
- the channels of the micro-evaporator for the passage of the mixture and the heating medium may have any geometric shapes.
- the cross section of the channels may e.g. round, half-round, ecldg, in particular rectangular or triangular.
- a microevaporator in the context of the present invention has a specific evaporator area of at least 10 3 m 2 / m 3 .
- Non-microstructured evaporators for example falling film evaporators, usually have a specific evaporator area of less than 0.5-10 3 m 2 / m 3 .
- the specific evaporator surface is given by the ratio of heat exchange surface to usable volume of the evaporator.
- the usable volume is conventional, ie non-microstructured, and micro-structured
- the mixture of substances enters the microstructure evaporator liquid.
- the evaporation of volatile components is made possible and the mixture exits at the outlet of the micro-evaporator two-phase as a gas / liquid mixture.
- the evaporation takes place gently due to the low residence time, i. with the least possible overheating boil the lighter volatiles in the mixture.
- Volatile components within the meaning of the present invention are characterized in that they partially or completely evaporate under the operating conditions in the microevaporator or at the outlet of the microevaporator.
- a two-phase flow consisting of vapor bubbles whose maximum size is limited by the channel dimensions, is produced during the evaporation.
- a high phase interface is generated, which allows a rapid transfer of the volatile substances into the gas phase and thus ensures a high evaporation rate with short residence times.
- the bubble flow created in the channels causes an increased vortex formation within the surrounding liquid phase
- Typical viscosities of the mixtures which are treated by the process according to the invention are, at operating temperatures of -100 to 500 ° C., preferably from 0 to 400 ° C., more preferably from 50 to 250 ° C., not more than 5 Pa.s, preferably not more than 100 rnPa -s ,.
- the temperature is preferably from -100 to 500 ° C., preferably from 0 to 400 ° C., particularly preferably from 50 to 250 ° C.
- the pressure is preferably 0 to
- the residence time is preferably 0.001 to 60 s, more preferably 0.01 to 10 s.
- a microevaporator as can be used according to the method of the invention, is constructed, for example, in layers of thin metal plates, each plate having a multiplicity of parallel channels.
- the plates are arranged, for example, crosswise to each other, so that the channels of a plate are perpendicular to the channels of each located below and / or above plate. Accordingly, the heat transfer agent and the mixture are passed through the micro-evaporator in the cross-flow principle: Every second layer is flowed through by the heating medium or by the mixture of substances.
- the plates have e.g. a thickness of 100 to 1000 microns.
- the channels have e.g. a length of 0.5 to 20 cm, preferably 1 to 10 cm, and a preferred hydraulic diameter of 5 to 1000 microns, more preferably from 30 to 500 microns.
- the heating medium As the heating medium, the usual heating media such. Steam, pressurized water or heat transfer oils are used.
- the microstructure evaporator may be made of any metallic material, e.g. Steel, stainless steel, titanium, Hastelloy, Inconel or other metallic alloys.
- the process can be integrated as an additional process step in a continuous process. It can also be used as an additional process step in a batchwise process by repeatedly pumping around a circulation stream to concentrate the desired product or to shift a chemical equilibrium.
- the process may be integrated as an evaporation step in any process of chemical or pharmaceutical engineering or food technology.
- the process can be carried out in one or more stages by multiple series connection of Mil ⁇ Osixukfurverdampfern. In a multi-stage process, evaporation can also be carried out at different pressure and temperature levels.
- the process according to the invention finds application in reactive or non-reactive mixtures of substances.
- reactive mixtures are to be understood as meaning mixtures of substances which contain components which react with one another. Highly volatile components of such mixtures may be, for example, low molecular weight by-products of the reaction or solvents in which the reaction components are dissolved.
- non-reactive substance mixtures in the context of the present invention, on the other hand, mixtures of substances are to be understood whose components do not react with one another.
- the volatile components which are contained in such mixtures may also be, for example, solvents or low molecular weight by-products.
- Examples of methods for vaporizing volatile components from reactive mixtures include: separating water or other low molecular weight substances in polycondensation reactions, e.g. in the preparation of esters, oligoesters, polyesters or polyamides; Phenol separation in the condensation of diphenyl carbonate with aromatic bisphenols to form oligomers or polymers; Reactions involving formation of a high vapor pressure separable component (for example, HCl separation in the reaction of phosgene with alcohols to dialkyl carbonates); Pyrolysis reactions in which, under pyrolysis conditions, vaporizable products of value are formed, e.g.
- Examples of methods for evaporating volatile components from non-reactive mixtures are: separation of volatile monomers (diisocyanates) from polyisocyanate resins; gentle solvent removal from substance mixtures with temperature-sensitive substances (especially in fine chemicals); Solvent and monomer removal off
- An advantage of the inventive method is that due to the short residence times and therefore low temperature loads in the micro-evaporator decomposition of temperature-sensitive products in this processing step compared to conventional evaporators is reduced or even avoided. This ensures a higher yield and higher product quality.
- the surface-to-volume ratio is increased, which is why a very efficient evaporation is possible. This is of particular importance, for example, in the removal of residual solvents or residual monomers from polymers.
- microvaporizers for the evaporation of volatile components is also advantageous in the case of reactive mixtures, since the reaction equilibrium can be shifted toward the desired product and thus the yield can be increased.
- the inventive method can be used in particular for the separation of monomeric diisocyanates of polyisocyanates, which are used, for example, in polyurethane coating systems.
- Diisocyanates are usually classified as toxic agents and sometimes have a significant vapor pressure. For reasons of industrial hygiene, therefore, they must not be present in paint systems in monomeric form. They must first be converted by means of suitable modification reactions into higher molecular weight, physiologically acceptable polyisocyanates. This conversion usually takes place with a diisocyanate excess. Residues of unreacted monomeric diisocyanate are removed by distillation from
- the separation of the monomeric diisocyanates succeeds to the desired residual contents of less than 0.5%, in certain cases to less than 0.1%. It is advantageous here that the polyisocyanates experience only a relatively low thermal load due to the short residence time and narrow residence time distribution. This avoids side reactions of the isocyanate groups during the distillation and additionally gives particularly light-colored polyisocyanates.
- Figure 1 is a flow diagram of a first embodiment of the inventive method for vaporizing volatile compounds from a non-reactive mixture
- FIG. 2 shows a flow diagram of a second embodiment of the method according to the invention for vaporizing volatile compounds from a reactive substance
- FIG. 1 shows a flow diagram for evaporating volatile components from a non-reactive substance mixture.
- the liquid mixture is conveyed via a Eduktzulauf 1 with a pump 2 in the micro-evaporator 3.
- the microstructure evaporator 3 consists of a plurality of parallel channels, which are arranged in layers. In each second layer of the micro-evaporator 3, the mixture is passed. In the intermediate layers, a plurality of parallel channels are also arranged, in which the heating medium is guided.
- the channels for the educt and the heating medium may, for example, parallel to each other or perpendicular to each other.
- the heating medium is introduced from an unheated heating medium circuit via an inlet 4 and discharged via an outlet 5. From the micro-evaporator 3, the mixture flows as a gas / liquid mixture in a gas separator 6, from which the volatiles are removed in gaseous 7. From this gas separator 6, the product 9 is guided via a pump 8 from the plant.
- Figure 2 shows a flow diagram for the evaporation of volatile components from reactive mixtures.
- a Eduktzulauf 1 the liquid mixture (starting material) is conveyed by a pump 2 in the evaporator.
- the Mikrosfrukiurverdampfer 3 is similar, for example, as in FIG.
- the heating medium is introduced analogously to Figure 1 from a not shown here Schumediumniklauf 4 and discharged 5.
- the mixture flows as a gas / liquid mixture from the micro-evaporator 3 in a gas separator 6, from which the volatiles are removed in gaseous 7.
- the product 9 is guided via a pump 8 from the plant.
- a portion of this product stream in the circuit 10 is passed through a reactor 11 and returned to the micro-evaporator 3 via the pump 2.
- the crude product was fed at a temperature of 60 ° C and an entry of 60 kg / h to the 30 bar steam (230 ° C) heated microstructure evaporator 3 with downstream Umlenkabscheider 6.
- the microfluidizer 3 had the following channel dimensions: length x width x height: 40 mm x 200 ⁇ m x 100 ⁇ m.
- the hydraulic diameter was 133 ⁇ m.
- the heat transfer area was 0.135 m 2 , the specific evaporator area 2-10 4 m 2 / m 3 .
- the residence time in the microstructure evaporator 3 was about 0.3 s.
- About the deflection 6 6 21 kg / h of distillate were at this stage at a pressure of 0.8 mbar
- Desmodur W ® (Desmodur W ® ) separated.
- the in this way subsequently to a Desmodur W was ® content of 7.8 wt .-% concentrated crude product in a heated thin film evaporator at 230 ° C (Yerdampfer #2 1 m 2) was transferred, which was operated at a pressure of 0.5 mbar , At the discharge of the thin-film evaporator was obtained a polyisocyanate having an NCO content of 2.55 wt .-%, which contained only a residual content of 0.12 wt .-% of the Desmodur ® W used.
- the crude product was fed at a temperature of 60 ° C via a 6 bar steam (160 ° C) accompanied by heated line with an entry of 30 kg / h a falling film evaporator with downstream Umlenkabscheider.
- the heat transfer area was 0.314 m 2
- the specific evaporator area was l, 57-10 2 m 2 / m 3 .
- Evaporator and separator were by means 30 bar steam heated to 230 ° C.
- the distillation was carried out at 0.8 mbar. In this step, a quantity of distillate of 9 kg / h Desmodur ® W was obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MXPA06001284A MXPA06001284A (es) | 2003-08-02 | 2004-07-20 | Proceso para la eliminacion de compuestos volatiles de mezclas de sustancias utilizando un micro-evaporador. |
EP04741153A EP1654057B1 (de) | 2003-08-02 | 2004-07-20 | Verfahren zur entfernung von flüchtigen verbindungen aus stoffgemischen mittels mikroverdampfer |
DE502004009459T DE502004009459D1 (de) | 2003-08-02 | 2004-07-20 | Verfahren zur entfernung von flüchtigen verbindungen aus stoffgemischen mittels mikroverdampfer |
CA2534068A CA2534068C (en) | 2003-08-02 | 2004-07-20 | Process for the removal of volatile compounds from mixtures of substances using a micro-evaporator |
JP2006522266A JP4861173B2 (ja) | 2003-08-02 | 2004-07-20 | マイクロ蒸発器を用いて物質混合物から揮発性化合物を除去するための方法 |
HK06112463.7A HK1091773A1 (en) | 2003-08-02 | 2006-11-13 | Method for the elimination of volatile compounds from mixtures by means of a micro evaporator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10335451.4 | 2003-08-02 | ||
DE10335451A DE10335451A1 (de) | 2003-08-02 | 2003-08-02 | Verfahren zur Entfernung von flüchtigen Verbindungen aus Stoffgemischen mittels Mikroverdampfer |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005016512A1 true WO2005016512A1 (de) | 2005-02-24 |
Family
ID=34089038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2004/008074 WO2005016512A1 (de) | 2003-08-02 | 2004-07-20 | Verfahren zur entfernung von flüchtigen verbindungen aus stoffgemischen mittels mikroverdampfer |
Country Status (10)
Country | Link |
---|---|
US (1) | US7442277B2 (de) |
EP (1) | EP1654057B1 (de) |
JP (1) | JP4861173B2 (de) |
CN (1) | CN100435929C (de) |
CA (1) | CA2534068C (de) |
DE (2) | DE10335451A1 (de) |
ES (1) | ES2325022T3 (de) |
HK (1) | HK1091773A1 (de) |
MX (1) | MXPA06001284A (de) |
WO (1) | WO2005016512A1 (de) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1754698A2 (de) | 2005-08-02 | 2007-02-21 | Bayer MaterialScience AG | Verfahren zur Gasphasenphosgenierung |
WO2009062897A1 (de) | 2007-11-13 | 2009-05-22 | Basf Se | Verbessertes verfahren zur herstellung von blausäure durch katalytische dehydratisierung von gasförmigem formamid |
DE102008063991A1 (de) | 2008-12-19 | 2010-06-24 | Bayer Materialscience Ag | Verfahren zur Herstellung von Isocyanaten in der Gasphase |
DE102009033639A1 (de) | 2009-07-17 | 2011-01-20 | Bayer Materialscience Ag | Verfahen zur Herstellung von Isocyanaten in der Gasphase |
WO2011089209A2 (de) | 2010-01-22 | 2011-07-28 | Basf Se | Einraumverdampfer und deren verwendung bei der chemischen synthese |
WO2011134968A1 (de) | 2010-04-29 | 2011-11-03 | Bayer Technology Services Gmbh | Flüssigkeitsverdampfer |
WO2011138245A1 (de) | 2010-05-05 | 2011-11-10 | Bayer Materialscience Ag | Verfahren zur herstellung von isocyanaten in der gasphase |
WO2014166975A1 (de) | 2013-04-10 | 2014-10-16 | Basf Se | Verfahren zur blausäuresynthese aus formamid - katalysator |
US9034293B2 (en) | 2008-03-31 | 2015-05-19 | Basf Se | Process for preparing hydrocyanic acid by catalytic dehydration of gaseous formamide—direct heating |
US9249029B2 (en) | 2010-01-22 | 2016-02-02 | Basf Se | Single chamber vaporizer and use thereof in chemical synthesis |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040260034A1 (en) | 2003-06-19 | 2004-12-23 | Haile William Alston | Water-dispersible fibers and fibrous articles |
US7892993B2 (en) | 2003-06-19 | 2011-02-22 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8513147B2 (en) | 2003-06-19 | 2013-08-20 | Eastman Chemical Company | Nonwovens produced from multicomponent fibers |
PL2084212T3 (pl) * | 2006-10-24 | 2011-05-31 | Basf Se | Zastosowanie wyparek wężownicowych do wytwarzania poliamidów |
CA2705412A1 (en) * | 2007-11-13 | 2009-05-22 | Basf Se | Improved method for producing hydrocyanic acid by catalytic dehydration of gaseous formamide |
US8512519B2 (en) | 2009-04-24 | 2013-08-20 | Eastman Chemical Company | Sulfopolyesters for paper strength and process |
DE102009039397A1 (de) | 2009-08-31 | 2011-03-03 | Karlsruher Institut für Technologie | Mikrostrukturverdampfer |
US8487127B2 (en) * | 2010-02-26 | 2013-07-16 | Basf Se | Process for preparing isocyanates in the gas phase |
CN102933546B (zh) * | 2010-02-26 | 2014-12-10 | 巴斯夫欧洲公司 | 在气相中制备异氰酸酯的方法 |
US9273417B2 (en) | 2010-10-21 | 2016-03-01 | Eastman Chemical Company | Wet-Laid process to produce a bound nonwoven article |
US10107728B2 (en) * | 2011-02-11 | 2018-10-23 | Schlumberger Technology Corporation | Microfluidic system and method for performing a flash separation of a reservoir fluid sample |
US8840757B2 (en) | 2012-01-31 | 2014-09-23 | Eastman Chemical Company | Processes to produce short cut microfibers |
WO2014131883A1 (de) * | 2013-03-01 | 2014-09-04 | Basf Se | Verfahren zur blausäuresynthese aus formamid - packungsnachreaktor |
US9617685B2 (en) | 2013-04-19 | 2017-04-11 | Eastman Chemical Company | Process for making paper and nonwoven articles comprising synthetic microfiber binders |
US9598802B2 (en) | 2013-12-17 | 2017-03-21 | Eastman Chemical Company | Ultrafiltration process for producing a sulfopolyester concentrate |
US9605126B2 (en) | 2013-12-17 | 2017-03-28 | Eastman Chemical Company | Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion |
CN109568995B (zh) * | 2019-01-23 | 2020-12-08 | 杨爱钗 | 一种可对高温废蒸汽再利用的蒸发器 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6200536B1 (en) * | 1997-06-26 | 2001-03-13 | Battelle Memorial Institute | Active microchannel heat exchanger |
DE10010400A1 (de) * | 2000-02-28 | 2001-09-06 | Mannesmann Ag | Vorrichtung und Verfahren zum Erhitzen und/oder Verdampfen flüssiger oder gasförmiger Medien |
WO2001065194A1 (de) * | 2000-02-28 | 2001-09-07 | Siemens Aktiengesellschaft | Vorrichtung zum verdampfen flüssiger medien |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3234994A (en) * | 1963-04-26 | 1966-02-15 | Dow Chemical Co | Concentration of polymers from solutions by flash vaporization |
US5811062A (en) * | 1994-07-29 | 1998-09-22 | Battelle Memorial Institute | Microcomponent chemical process sheet architecture |
US6907921B2 (en) * | 1998-06-18 | 2005-06-21 | 3M Innovative Properties Company | Microchanneled active fluid heat exchanger |
JP4152026B2 (ja) * | 1999-01-20 | 2008-09-17 | 旭化成ケミカルズ株式会社 | ポリイソシアネート組成物の精製方法 |
US7101514B2 (en) * | 2001-01-31 | 2006-09-05 | Po-Hao Adam Huang | Control devices for evaporative chemical mixing/reaction |
JP2004261911A (ja) * | 2003-02-28 | 2004-09-24 | Mitsubishi Heavy Ind Ltd | チャンネル構造体及びその製造方法 |
EP1607707A1 (de) * | 2004-06-18 | 2005-12-21 | Ecole Polytechnique Federale De Lausanne (Epfl) | Blasengenerator und Wärmetauschervorrichtung |
DE102005017452B4 (de) * | 2005-04-15 | 2008-01-31 | INSTITUT FüR MIKROTECHNIK MAINZ GMBH | Mikroverdampfer |
-
2003
- 2003-08-02 DE DE10335451A patent/DE10335451A1/de not_active Withdrawn
-
2004
- 2004-07-20 DE DE502004009459T patent/DE502004009459D1/de not_active Expired - Lifetime
- 2004-07-20 CN CNB2004800224524A patent/CN100435929C/zh not_active Expired - Fee Related
- 2004-07-20 MX MXPA06001284A patent/MXPA06001284A/es active IP Right Grant
- 2004-07-20 JP JP2006522266A patent/JP4861173B2/ja not_active Expired - Fee Related
- 2004-07-20 EP EP04741153A patent/EP1654057B1/de not_active Expired - Lifetime
- 2004-07-20 ES ES04741153T patent/ES2325022T3/es not_active Expired - Lifetime
- 2004-07-20 WO PCT/EP2004/008074 patent/WO2005016512A1/de active Application Filing
- 2004-07-20 CA CA2534068A patent/CA2534068C/en not_active Expired - Fee Related
- 2004-07-23 US US10/897,854 patent/US7442277B2/en not_active Expired - Fee Related
-
2006
- 2006-11-13 HK HK06112463.7A patent/HK1091773A1/xx not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6200536B1 (en) * | 1997-06-26 | 2001-03-13 | Battelle Memorial Institute | Active microchannel heat exchanger |
DE10010400A1 (de) * | 2000-02-28 | 2001-09-06 | Mannesmann Ag | Vorrichtung und Verfahren zum Erhitzen und/oder Verdampfen flüssiger oder gasförmiger Medien |
WO2001065194A1 (de) * | 2000-02-28 | 2001-09-07 | Siemens Aktiengesellschaft | Vorrichtung zum verdampfen flüssiger medien |
Non-Patent Citations (1)
Title |
---|
EHRFELD W ET AL: "ANWENDUNGSPOTENTIALE CHEMISCHER UND BIOLOGISCHER MIKROREAKTOREN", JAHRBUCH. VERFAHRENSTECHNIK UND CHEMIEINGENIEURWESEN, XX, XX, vol. 69, no. 7, 1997, pages 102 - 116, XP000942778 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1754698A3 (de) * | 2005-08-02 | 2007-03-07 | Bayer MaterialScience AG | Verfahren zur Gasphasenphosgenierung |
EP1754698A2 (de) | 2005-08-02 | 2007-02-21 | Bayer MaterialScience AG | Verfahren zur Gasphasenphosgenierung |
RU2496717C2 (ru) * | 2007-11-13 | 2013-10-27 | Басф Се | Способ получения синильной кислоты |
WO2009062897A1 (de) | 2007-11-13 | 2009-05-22 | Basf Se | Verbessertes verfahren zur herstellung von blausäure durch katalytische dehydratisierung von gasförmigem formamid |
US9034293B2 (en) | 2008-03-31 | 2015-05-19 | Basf Se | Process for preparing hydrocyanic acid by catalytic dehydration of gaseous formamide—direct heating |
DE102008063991A1 (de) | 2008-12-19 | 2010-06-24 | Bayer Materialscience Ag | Verfahren zur Herstellung von Isocyanaten in der Gasphase |
DE102009033639A1 (de) | 2009-07-17 | 2011-01-20 | Bayer Materialscience Ag | Verfahen zur Herstellung von Isocyanaten in der Gasphase |
WO2011006609A1 (de) | 2009-07-17 | 2011-01-20 | Bayer Materialscience Ag | Verfahren zur herstellung von isocyanaten in der gasphase |
WO2011089209A2 (de) | 2010-01-22 | 2011-07-28 | Basf Se | Einraumverdampfer und deren verwendung bei der chemischen synthese |
US9249029B2 (en) | 2010-01-22 | 2016-02-02 | Basf Se | Single chamber vaporizer and use thereof in chemical synthesis |
DE102010018830A1 (de) | 2010-04-29 | 2011-11-03 | Bayer Technology Services Gmbh | Flüssigkeitsverdampfer |
WO2011134968A1 (de) | 2010-04-29 | 2011-11-03 | Bayer Technology Services Gmbh | Flüssigkeitsverdampfer |
DE102010019342A1 (de) | 2010-05-05 | 2011-11-10 | Bayer Materialscience Ag | Verfahren zur Herstellung von Isocyanaten in der Gasphase |
WO2011138245A1 (de) | 2010-05-05 | 2011-11-10 | Bayer Materialscience Ag | Verfahren zur herstellung von isocyanaten in der gasphase |
US9102594B2 (en) | 2010-05-05 | 2015-08-11 | Bayer Intellectual Property Gmbh | Method for producing isocyanates in the gas phase |
US9328064B2 (en) | 2010-05-05 | 2016-05-03 | Bayer Materialscience Ag | Method for producing isocyanates in the gas phase |
WO2014166975A1 (de) | 2013-04-10 | 2014-10-16 | Basf Se | Verfahren zur blausäuresynthese aus formamid - katalysator |
Also Published As
Publication number | Publication date |
---|---|
CA2534068C (en) | 2012-10-16 |
ES2325022T3 (es) | 2009-08-24 |
CA2534068A1 (en) | 2005-02-24 |
HK1091773A1 (en) | 2007-01-26 |
MXPA06001284A (es) | 2006-04-11 |
CN1832798A (zh) | 2006-09-13 |
US20050022940A1 (en) | 2005-02-03 |
US7442277B2 (en) | 2008-10-28 |
DE10335451A1 (de) | 2005-03-10 |
JP2007501106A (ja) | 2007-01-25 |
EP1654057B1 (de) | 2009-05-06 |
JP4861173B2 (ja) | 2012-01-25 |
CN100435929C (zh) | 2008-11-26 |
EP1654057A1 (de) | 2006-05-10 |
DE502004009459D1 (de) | 2009-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1654057B1 (de) | Verfahren zur entfernung von flüchtigen verbindungen aus stoffgemischen mittels mikroverdampfer | |
EP1656396B1 (de) | Verfahren und vorrichtung zur entfernung von flüchtigen substanzen aus hochviskosen medien | |
EP0752268B1 (de) | Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Polymeren | |
DE69528544T2 (de) | Methode und Apparatur zur Verminderung flüchtiger Bestandteile in Polystyrol | |
EP3164443B1 (de) | Verfahren zur reinigung von polycarbonatpolyolen und reinigungsvorrichtung hierfür | |
EP1938036B1 (de) | Rohrbündelwärmeübertrager und verfahren zur entfernung von gelösten stoffen aus einer polymerlösung durch entgasung in einem rohrbündelwärmeübertrager | |
DE1958777C3 (de) | Verfahren zur kontinuierlichen Herstellung von Polyestern | |
DE2400661A1 (de) | Verbessertes fallstrom-verdampfungsverfahren | |
EP1692193A1 (de) | Verfahren zum ausdampfen von monomeren und anderen flüchtigen bestandteilen aus polymerschmelzen | |
WO2014009346A1 (de) | Vorrichtung und verfahren zur herstellung von phosgen | |
EP1723094B1 (de) | Verfahren zur herstellung einer hochkonzentrierten formaldehydlösung | |
EP1415693A1 (de) | Verfahren zur Abtrennung von flüchtigen Bestandteilen aus Polymeren | |
DE3041108C2 (de) | ||
EP1907342B1 (de) | Verfahren zur gewinnung von cyclododecatrien durch verdampfung | |
DE69605475T2 (de) | Abtrennung von Dimethylterephthalat aus einem Methanolysegasstrom | |
WO2015011070A2 (de) | Verfahren zur herstellung von isocyanaten | |
EP1299434B1 (de) | Kautschukfreie copolymerisate mit niedrigen monomerrestgehalten und verfahren und vorrichtung zur ihrer herstellung | |
EP1477223B1 (de) | Grossvolumiger Reaktor mit mehreren Prozessräumen | |
WO1999067002A1 (de) | Verfahren zur isolierung von polymeren aus lösungen | |
EP3645462B1 (de) | Energieeffizientes verfahren zur bereitstellung von gereinigtem phosgen-dampf | |
EP2881154B1 (de) | Vorrichtung und Verfahren zur Entspannungsverdampfung | |
DE102007050929B4 (de) | Verfahren und Vorrichtung zur Erzeugung von Vakuum bei der Herstellung von Polyestern und Copolyestern | |
EP1476234B1 (de) | Reaktionskolonne in spezieller kombination mit umlaufverdampfer | |
EP1951392B1 (de) | Rohrbündelwärmeübertrager und verfahren zur entfernung von gelösten stoffen aus einer polymerlösung | |
WO2003084921A1 (de) | Reaktor zur thermischen spaltung von mono- und polyfunktionellen carbamidsäureestern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200480022452.4 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004741153 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2534068 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2006/001284 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006522266 Country of ref document: JP |
|
WWP | Wipo information: published in national office |
Ref document number: 2004741153 Country of ref document: EP |