WO2005016512A1 - Verfahren zur entfernung von flüchtigen verbindungen aus stoffgemischen mittels mikroverdampfer - Google Patents

Verfahren zur entfernung von flüchtigen verbindungen aus stoffgemischen mittels mikroverdampfer Download PDF

Info

Publication number
WO2005016512A1
WO2005016512A1 PCT/EP2004/008074 EP2004008074W WO2005016512A1 WO 2005016512 A1 WO2005016512 A1 WO 2005016512A1 EP 2004008074 W EP2004008074 W EP 2004008074W WO 2005016512 A1 WO2005016512 A1 WO 2005016512A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
micro
mixture
mixtures
channels
Prior art date
Application number
PCT/EP2004/008074
Other languages
English (en)
French (fr)
Inventor
Kurt-Manfred Küpper
Oswald Wilmes
Hartmut Steenbeck
Almut Sanchen
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to MXPA06001284A priority Critical patent/MXPA06001284A/es
Priority to EP04741153A priority patent/EP1654057B1/de
Priority to DE502004009459T priority patent/DE502004009459D1/de
Priority to CA2534068A priority patent/CA2534068C/en
Priority to JP2006522266A priority patent/JP4861173B2/ja
Publication of WO2005016512A1 publication Critical patent/WO2005016512A1/de
Priority to HK06112463.7A priority patent/HK1091773A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • C08F6/003Removal of residual monomers by physical means from polymer solutions, suspensions, dispersions or emulsions without recovery of the polymer therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/911Vaporization

Definitions

  • the invention relates to a method for removing volatile compounds from reactive or non-reactive mixtures.
  • thin film evaporators are used in the art for the evaporation of volatile substances from non-reactive, temperature-sensitive mixtures. These include e.g. Spiral tube evaporator, falling film evaporator, centrifugal evaporator. In Wendelrohrverdampfern the product is often overheated, especially when the evaporator is operated by a pressure maintenance at the outlet. With the falling-film or centrifugal evaporator, relatively large film thicknesses of up to 1 mm or up to 0.1 mm are achieved, which adversely affect the mass and heat transport and therefore require a longer residence time.
  • Microstructured vaporizers for vaporizing volatile compounds from multi-component mixtures having an evaporation capacity in the range of several kg / h or more are not described herein.
  • the invention is based on the object volatiles from mixtures which are low-viscosity under operating conditions to remove under mild conditions, i. at the lowest possible temperature, a short residence time and a narrow residence time distribution.
  • the invention relates to a process for the removal of at least one volatile compound from a reactive or mchtregenten substance mixture using at least one micro-evaporator, wherein the micro-evaporator channels for the management of the mixture with a hydraulic diameter of 5 to 1000 microns and a specific evaporation area of at least 10 3 m 2 / m 3 .
  • the channels of the micro-evaporator have a hydraulic diameter of 30 to 500 microns.
  • the channels for the guidance of the heating medium have a hydraulic diameter of 5 to 1000 .mu.m, particularly preferably from 30 to 500 .mu.m. - -
  • the channels of the micro-evaporator for the passage of the mixture and the heating medium may have any geometric shapes.
  • the cross section of the channels may e.g. round, half-round, ecldg, in particular rectangular or triangular.
  • a microevaporator in the context of the present invention has a specific evaporator area of at least 10 3 m 2 / m 3 .
  • Non-microstructured evaporators for example falling film evaporators, usually have a specific evaporator area of less than 0.5-10 3 m 2 / m 3 .
  • the specific evaporator surface is given by the ratio of heat exchange surface to usable volume of the evaporator.
  • the usable volume is conventional, ie non-microstructured, and micro-structured
  • the mixture of substances enters the microstructure evaporator liquid.
  • the evaporation of volatile components is made possible and the mixture exits at the outlet of the micro-evaporator two-phase as a gas / liquid mixture.
  • the evaporation takes place gently due to the low residence time, i. with the least possible overheating boil the lighter volatiles in the mixture.
  • Volatile components within the meaning of the present invention are characterized in that they partially or completely evaporate under the operating conditions in the microevaporator or at the outlet of the microevaporator.
  • a two-phase flow consisting of vapor bubbles whose maximum size is limited by the channel dimensions, is produced during the evaporation.
  • a high phase interface is generated, which allows a rapid transfer of the volatile substances into the gas phase and thus ensures a high evaporation rate with short residence times.
  • the bubble flow created in the channels causes an increased vortex formation within the surrounding liquid phase
  • Typical viscosities of the mixtures which are treated by the process according to the invention are, at operating temperatures of -100 to 500 ° C., preferably from 0 to 400 ° C., more preferably from 50 to 250 ° C., not more than 5 Pa.s, preferably not more than 100 rnPa -s ,.
  • the temperature is preferably from -100 to 500 ° C., preferably from 0 to 400 ° C., particularly preferably from 50 to 250 ° C.
  • the pressure is preferably 0 to
  • the residence time is preferably 0.001 to 60 s, more preferably 0.01 to 10 s.
  • a microevaporator as can be used according to the method of the invention, is constructed, for example, in layers of thin metal plates, each plate having a multiplicity of parallel channels.
  • the plates are arranged, for example, crosswise to each other, so that the channels of a plate are perpendicular to the channels of each located below and / or above plate. Accordingly, the heat transfer agent and the mixture are passed through the micro-evaporator in the cross-flow principle: Every second layer is flowed through by the heating medium or by the mixture of substances.
  • the plates have e.g. a thickness of 100 to 1000 microns.
  • the channels have e.g. a length of 0.5 to 20 cm, preferably 1 to 10 cm, and a preferred hydraulic diameter of 5 to 1000 microns, more preferably from 30 to 500 microns.
  • the heating medium As the heating medium, the usual heating media such. Steam, pressurized water or heat transfer oils are used.
  • the microstructure evaporator may be made of any metallic material, e.g. Steel, stainless steel, titanium, Hastelloy, Inconel or other metallic alloys.
  • the process can be integrated as an additional process step in a continuous process. It can also be used as an additional process step in a batchwise process by repeatedly pumping around a circulation stream to concentrate the desired product or to shift a chemical equilibrium.
  • the process may be integrated as an evaporation step in any process of chemical or pharmaceutical engineering or food technology.
  • the process can be carried out in one or more stages by multiple series connection of Mil ⁇ Osixukfurverdampfern. In a multi-stage process, evaporation can also be carried out at different pressure and temperature levels.
  • the process according to the invention finds application in reactive or non-reactive mixtures of substances.
  • reactive mixtures are to be understood as meaning mixtures of substances which contain components which react with one another. Highly volatile components of such mixtures may be, for example, low molecular weight by-products of the reaction or solvents in which the reaction components are dissolved.
  • non-reactive substance mixtures in the context of the present invention, on the other hand, mixtures of substances are to be understood whose components do not react with one another.
  • the volatile components which are contained in such mixtures may also be, for example, solvents or low molecular weight by-products.
  • Examples of methods for vaporizing volatile components from reactive mixtures include: separating water or other low molecular weight substances in polycondensation reactions, e.g. in the preparation of esters, oligoesters, polyesters or polyamides; Phenol separation in the condensation of diphenyl carbonate with aromatic bisphenols to form oligomers or polymers; Reactions involving formation of a high vapor pressure separable component (for example, HCl separation in the reaction of phosgene with alcohols to dialkyl carbonates); Pyrolysis reactions in which, under pyrolysis conditions, vaporizable products of value are formed, e.g.
  • Examples of methods for evaporating volatile components from non-reactive mixtures are: separation of volatile monomers (diisocyanates) from polyisocyanate resins; gentle solvent removal from substance mixtures with temperature-sensitive substances (especially in fine chemicals); Solvent and monomer removal off
  • An advantage of the inventive method is that due to the short residence times and therefore low temperature loads in the micro-evaporator decomposition of temperature-sensitive products in this processing step compared to conventional evaporators is reduced or even avoided. This ensures a higher yield and higher product quality.
  • the surface-to-volume ratio is increased, which is why a very efficient evaporation is possible. This is of particular importance, for example, in the removal of residual solvents or residual monomers from polymers.
  • microvaporizers for the evaporation of volatile components is also advantageous in the case of reactive mixtures, since the reaction equilibrium can be shifted toward the desired product and thus the yield can be increased.
  • the inventive method can be used in particular for the separation of monomeric diisocyanates of polyisocyanates, which are used, for example, in polyurethane coating systems.
  • Diisocyanates are usually classified as toxic agents and sometimes have a significant vapor pressure. For reasons of industrial hygiene, therefore, they must not be present in paint systems in monomeric form. They must first be converted by means of suitable modification reactions into higher molecular weight, physiologically acceptable polyisocyanates. This conversion usually takes place with a diisocyanate excess. Residues of unreacted monomeric diisocyanate are removed by distillation from
  • the separation of the monomeric diisocyanates succeeds to the desired residual contents of less than 0.5%, in certain cases to less than 0.1%. It is advantageous here that the polyisocyanates experience only a relatively low thermal load due to the short residence time and narrow residence time distribution. This avoids side reactions of the isocyanate groups during the distillation and additionally gives particularly light-colored polyisocyanates.
  • Figure 1 is a flow diagram of a first embodiment of the inventive method for vaporizing volatile compounds from a non-reactive mixture
  • FIG. 2 shows a flow diagram of a second embodiment of the method according to the invention for vaporizing volatile compounds from a reactive substance
  • FIG. 1 shows a flow diagram for evaporating volatile components from a non-reactive substance mixture.
  • the liquid mixture is conveyed via a Eduktzulauf 1 with a pump 2 in the micro-evaporator 3.
  • the microstructure evaporator 3 consists of a plurality of parallel channels, which are arranged in layers. In each second layer of the micro-evaporator 3, the mixture is passed. In the intermediate layers, a plurality of parallel channels are also arranged, in which the heating medium is guided.
  • the channels for the educt and the heating medium may, for example, parallel to each other or perpendicular to each other.
  • the heating medium is introduced from an unheated heating medium circuit via an inlet 4 and discharged via an outlet 5. From the micro-evaporator 3, the mixture flows as a gas / liquid mixture in a gas separator 6, from which the volatiles are removed in gaseous 7. From this gas separator 6, the product 9 is guided via a pump 8 from the plant.
  • Figure 2 shows a flow diagram for the evaporation of volatile components from reactive mixtures.
  • a Eduktzulauf 1 the liquid mixture (starting material) is conveyed by a pump 2 in the evaporator.
  • the Mikrosfrukiurverdampfer 3 is similar, for example, as in FIG.
  • the heating medium is introduced analogously to Figure 1 from a not shown here Schumediumniklauf 4 and discharged 5.
  • the mixture flows as a gas / liquid mixture from the micro-evaporator 3 in a gas separator 6, from which the volatiles are removed in gaseous 7.
  • the product 9 is guided via a pump 8 from the plant.
  • a portion of this product stream in the circuit 10 is passed through a reactor 11 and returned to the micro-evaporator 3 via the pump 2.
  • the crude product was fed at a temperature of 60 ° C and an entry of 60 kg / h to the 30 bar steam (230 ° C) heated microstructure evaporator 3 with downstream Umlenkabscheider 6.
  • the microfluidizer 3 had the following channel dimensions: length x width x height: 40 mm x 200 ⁇ m x 100 ⁇ m.
  • the hydraulic diameter was 133 ⁇ m.
  • the heat transfer area was 0.135 m 2 , the specific evaporator area 2-10 4 m 2 / m 3 .
  • the residence time in the microstructure evaporator 3 was about 0.3 s.
  • About the deflection 6 6 21 kg / h of distillate were at this stage at a pressure of 0.8 mbar
  • Desmodur W ® (Desmodur W ® ) separated.
  • the in this way subsequently to a Desmodur W was ® content of 7.8 wt .-% concentrated crude product in a heated thin film evaporator at 230 ° C (Yerdampfer #2 1 m 2) was transferred, which was operated at a pressure of 0.5 mbar , At the discharge of the thin-film evaporator was obtained a polyisocyanate having an NCO content of 2.55 wt .-%, which contained only a residual content of 0.12 wt .-% of the Desmodur ® W used.
  • the crude product was fed at a temperature of 60 ° C via a 6 bar steam (160 ° C) accompanied by heated line with an entry of 30 kg / h a falling film evaporator with downstream Umlenkabscheider.
  • the heat transfer area was 0.314 m 2
  • the specific evaporator area was l, 57-10 2 m 2 / m 3 .
  • Evaporator and separator were by means 30 bar steam heated to 230 ° C.
  • the distillation was carried out at 0.8 mbar. In this step, a quantity of distillate of 9 kg / h Desmodur ® W was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Die Erfindung beschreibt ein Verfahren zur Entfernung von wenigstens einer flüchtigen Verbindung aus einem reaktiven oder nichtreaktiven Stoffgemisch mit Hilfe mindestens eines Mikroverdampfers, wobei der Mikroverdampfer Kanäle für die Führung des Stoffgemisches mit einem hydraulischen Durchmesser von 5 bis 1000 µm und eine spezifische Verdampferfläche von mindestens 10³ m²/m³ aufweist.

Description

Verfahren zur Entfernung von flüchtigen Verbindungen aus Stoffgemischen mittels Mikroverdampfer
Die Erfindung betrifft ein Verfahren zur Entfernung von flüchtigen Verbindungen aus reaktiven oder nichtreaktiven Stoffgemischen.
Üblicherweise werden in der Technik für die Verdampfung von flüchtigen Stoffen aus nichtreaktiven, temperatursensitiven Stoffgemischen Dünnschichtverdampfer eingesetzt. Dazu gehören z.B. Wendelrohrverdampfer, Fallfilmverdampfer, Zentrifugalverdampfer. Bei Wendelrohrverdampfern wird das Produkt oft überhitzt, insbesondere wenn der Verdampfer über eine Druckhaltung am Austritt betrieben wird. Beim Fallfilm- oder Zentrifugalverdampfer werden relativ große Film- dicken von bis zu 1 mm bzw. bis zu 0,1 mm erreicht, die den Stoff- und Wärmetransport ungünstig beeinflussen und daher eine größere Verweilzeit erfordern.
Aus M. K. Drost, Ch. Call, J. Cuta, R. Wegeng, Microchannel combustor/evaporator thermal pro- cesses, Microscale Thermophysical Engineering, 1:321-332, 1997 ist ein mit einer keramischen Verbrennungskammer gekoppelter mikrostrukturierter Verdampfer, welcher den Wärmeübergang von den Verbrennungsprodukten auf die Oberflächen der Verbremiungskammer verstärkt, bekannt.
Mikrostrukturierte Verdampfer zum Verdampfen flüchtiger Verbindungen aus Mehrstoffgemischen mit einer Verdampfungsleistung im Bereich von mehreren kg/h oder mehr sind hierin nicht beschrieben.
Der Erfindung liegt die Aufgabe zu Grunde, flüchtige Stoffe aus Stoffgemischen, welche unter Betriebsbedingungen niederviskos sind, unter schonenden Bedingungen zu entfernen, d.h. bei möglichst niedriger Temperatur, kurzer Verweilzeit und enger Verweilzeitverteilung.
Gegenstand der Erfindung ist ein Verfahren zur Entfernung von wenigstens einer flüchtigen Verbindung aus einem reaktiven oder mchtreaktiven Stoffgemisch mit Hilfe mindestens eines Mikro- verdampfers, wobei der Mikroverdampfer Kanäle für die Führung des Stoffgemisches mit einem hydraulischen Durchmesser von 5 bis 1000 μm und eine spezifische Verdampferfläche von mindestens 103 m2/m3 aufweist.
In einer bevorzugten Ausführungsform weisen die Kanäle des Mikroverdampfers einen hydraulischen Durchmesser von 30 bis 500 μm auf.
In einer weiteren bevorzugten Ausführungsform weisen auch die Kanäle für die Führung des Heizmediums einen hydraulischen Durchmesser von 5 bis 1000 μm, besonders bevorzugt von 30 bis 500 μm, auf. - -
Die Kanäle des Mikroverdampfers für die Durchleitung des Stoffgemisches und des Heizmediums können beliebige geometrische Formen aufweisen. Der Querschnitt der Kanäle kann z.B. rund, halbrund, ecldg, insbesondere rechteckig oder dreieckig, sein. Unabhängig von der Geometrie der Kanäle wird im Sinne der vorliegenden Erfindung der hydraulische Durchmesser als kennzeich- nende Größe verwendet. Der hydraulische Durchmesser ist gegeben durch die vierfache Querschnittsfläche (F) dividiert durch den Umfang (U) des Querschnitts: Hydraulischer Durchmesser = 4 F/U
Aufgrund der sehr kleinen Abmessungen der Strömungskanäle erfolgen in Mikrostrtikturver- dampfern die Wärme- und Stoffübergänge schneller und effizienter als in konventionellen Ver- dampfern wie Fallfilmverdampfer o.dgl. Ein Mikroverdampfer im Sinne der vorliegenden Erfindung besitzt eine spezifische Verdampferfläche von mindestens 103 m2/m3. Nicht-mikrostruk- turierte Verdampfer, z.B. Fallfilmverdampfer, besitzen üblicherweise eine spezifische Verdampferfläche von weniger als 0,5-103 m2/m3. Dabei ist die spezifische Verdampferfläche gegeben durch das Verhältnis von Wärmeaustauschfläche zu nutzbarem Volumen des Verdampfers. Das nutzbare Volumen wiederum ist bei konventionellen, d.h. nicht-mikrostrukturierten, und mikxostrukturierten
Verdampfern gegeben durch das Gesamtvolumen vermindert um das Volumen der Einbauten.
Nach dem erfindungsgemäßen Verfahren tritt das Stoffgemisch flüssig in den Mikrostiukturver- dampfer ein. Über die Zufuhr von Wärme wird die Verdampfung von flüchtigen Komponenten ermöglicht und das Stoffgemisch tritt am Ausgang des Mikroverdampfers zweiphasig als Gas/Flüssig-Gemisch aus. Die Verdampfung erfolgt dabei aufgrund der geringen Verweilzeit schonend, d.h. mit einer möglichst geringen Überhitzung sieden die leichter flüchtigen Stoffe im Stoffgemisch. Leicht flüchtige Komponenten im Sinne der vorliegenden Erfindung zeichnen sich dadurch aus, dass sie unter den Betriebsbedingungen im Mikroverdampfer oder am Austritt des Mikroverdampfers teilweise oder vollständig verdampfen.
In den Kanälen des Mikrostrukturverdampfers entsteht bei der Verdampfung eine Zweiphasenströmung bestehend aus Dampfblasen, deren maximale Größe durch die Kanaldimensionen begrenzt ist. Hierdurch wird eine hohe Phasengrenzfläche erzeugt, die eine schnelle Überführung der flüchtigen Stoffe in die Gasphase ermöglicht und damit eine hohe Verdampfungsrate bei kurzen Verweilzeiten gewährleistet. Weiterhin sorgt die in den Kanälen entstehende Blasen- Strömung durch eine Wirbelbildung innerhalb der sie umgebenden Flüssigphase für einen erhöhten
Stofftransport an die Phasengrenzfläche und für einen erhöhten Wärmetransport von der Kanalwand in die Flüssigphase. Typische Viskositäten der Stoffgemische, die nach dem erfindungsgemäßen Verfahren behandelt werden, betragen bei Betriebstemperaturen von -100 bis 500°C, vorzugsweise von 0 bis 400°C, besonders bevorzugt von 50 bis 250°C maximal 5 Pa-s, bevorzugt maximal 100 rnPa-s,.
Bevorzugt beträgt die Temperatur bei dem erfindungsgemäßen Verfahren -100 bis 500°C, bevor- zugt 0 bis 400°C, besonders bevorzugt 50 bis 250°C. Der Druck beträgt vorzugsweise 0 bis
100 bar, besonders bevorzugt 0 bis 10 bar, ganz besonders bevorzugt 0 bis 1 bar. Die Verweilzeit beträgt bevorzugt 0,001 bis 60 s, besonders bevorzugt 0,01 bis 10 s.
Ein Mikroverdampfer, wie er nach dem erfindungsgemäßen Verfahren eingesetzt werden kann, ist beispielsweise schichtweise aus dünnen Metall-Platten aufgebaut, wobei jede Platte eine Vielzahl von parallelen Kanälen aufweist. Die Platten sind beispielsweise kreuzweise zueinander angeordnet, so dass die Kanäle einer Platte zu den Kanälen der jeweils darunter und/oder darüber befindlichen Platte senkrecht stehen. Entsprechend werden das Wärmübertragungsmittel und das Stoffgemisch im Kreuzstromprinzip durch den Mikroverdampfer geleitet: Jede zweite Schicht ist von dem Heizmedium bzw. von dem Stoffgemisch durchströmt. Die Platten besitzen z.B. eine Dicke von 100 bis 1000 μm. Die Kanäle haben z.B. eine Länge von 0,5 bis 20 cm, vorzugsweise von 1 bis 10 cm, und einen bevorzugten hydraulischen Durchmesser von 5 bis 1000 μm, besonders bevorzugt von 30 bis 500 μm.
Als Heizmedium können die üblichen Heizmedien wie z.B. Wasserdampf, Druckwasser oder Wärmeträgeröle eingesetzt werden.
Der Mikrostrukturverdampfer kann aus einem beliebigen metallischen Werkstoff gefertigt sein, z.B. Stahl, Edelstahl, Titan, Hastelloy, Inconel oder anderen metallischen Legierungen.
Das Verfahren kann als zusätzlicher Verfahrensschritt in einem kontinuierlichen Verfahren integriert werden. Es kann auch als zusätzlicher Verfahrensschritt in einem batchweise ausgeführtem Verfahren durch wiederholtes Umpumpen eines Kreislaufstromes zur Aufkonzentrierung des gewünschten Produktes oder auch zur Verschiebung eines chemischen Gleichgewichtes eingesetzt werden. Das Verfahren kann beispielsweise als Verdampfungsschritt in einen beliebigen Prozess der chemischen oder pharmazeutischen Technik oder der Lebensmitteltechnik integriert werden.
Das Verfahren kann einstufig oder mehrstufig durch mehrfache Hintereinanderschaltung von MilαOsixukfurverdampfern ausgeführt werden. Bei einem mehrstufigen Verfahren kann die Ver- dampfung auch auf verschiedenen Druck- und Temperaturniveaus durchgeführt werden. Anwendung findet das erfindungsgemäße Verfahren bei reaktiven oder nichtreaktiven Stoffgemischen. Unter reaktiven Stoffgemischen im Sinne der vorliegenden Erfindung sind Stoffgemische zu verstehen, die Komponenten enthalten, welche miteinander reagieren. Leicht flüchtige Komponenten solcher Stoffgemische können z.B. niedermolekulare Nebenprodukte der Reaktion sein oder Lösungsmittel, in denen die Reaktionskomponenten gelöst sind. Unter nichtreaktiven Stoffgemischen im Sinne der vorliegenden Erfindung sind dagegen Stoffgemische zu verstehen, deren Komponenten nicht miteinander reagieren. Bei den leicht flüchtigen Komponenten, welche in solchen Stoffgemischen enthalten sind, kann es sich ebenfalls z.B. um Lösungsmittel oder niedermolekulare Nebenprodukte handeln.
Als Beispiele für Verfahren zum Verdampfen von flüchtigen Komponenten aus reaktiven Stoffgemischen seien genannt: Abtrennung von Wasser oder anderer niedermolekularer Stoffe bei Polykondensationsreaktionen, z.B. bei der Herstellung von Estern, Oligoestern, Polyestern oder Polyamiden; Phenolabtrennung bei der Kondensation von Diphenylcarbonat mit aromatischen Bisphenolen zu Oligomeren oder Polymeren; Reaktionen mit Bildung einer abtrennbaren Kompo- nente mit hohem Dampfdruck (beispielsweise HCl-Abtrennung bei der Umsetzung von Phosgen mit Alkoholen zu Dialkylcarbonaten); Pyrolysereaktionen, bei denen unter Pyrolysebedingungen verdampfbare Wertprodukte entstehen, z.B. Rückspaltung von Polyestern in makrocyclische Mono- oder Dilactone; Pyrolysereaktionen, bei denen unter Pyrolysebedingungen eine reaktive gasförmige Komponente vom Wertstoff entsteht und abgetrennt wird, z.B. Abtrennung von gas- förmigem Alkohol von einem Isocyanat, welches bei der Pyrolyse von Urethanen als Kondensat anfällt.
Als Beispiele für Verfahren zum Verdampfen von flüchtigen Komponenten aus nichtreaktiven Stoffgemischen seien genannt: Abtrennung von flüchtigen Monomeren (Diisocyanate) aus Poly- isocyanatharzen; schonende Lösemittelentfernung aus Stoffgemischen mit temperaturempfind- liehen Substanzen (insbesondere in der Feinchemie); Lösemittel- und Monomerabtrennung aus
Polymerlösungen; Abtrennung von flüchtigen Wertstoffen aus z.B. Destillationsrückständen; Abtrennen von Ethanol aus alkoholischen Getränken. Daneben sind Anwendungen in der Kältetechnik möglich.
Vorteilhaft an dem erfindungsgemäßen Verfahren ist, dass aufgrund der kurzen Verweilzeiten und daher niedrigen Temperaturbelastungen in dem Mikroverdampfer eine Zersetzung von temperaturempfindlichen Produkten in diesem Aufbereitungsschritt im Vergleich zu herkömmlichen Verdampfern vermindert oder gar vermieden wird. Damit werden eine höhere Ausbeute und höhere Produktqualität gewährleistet. Außerdem wird durch die geometrisch bedingte Bildung kleiner Blasen das Oberfläche-zu- Volumen-Verhältnis erhöht, weshalb eine sehr effiziente Verdampfung möglich ist. Dies ist beispielsweise bei der Entfernung von Restlösungsmitteln oder Restmonomeren aus Polymeren von besonderer Bedeutung.
Der Einsatz von Mikroverdampfem für die Verdampfung von flüchtigen Komponenten ist auch bei reaktiven Stoffgemischen von Vorteil, da das Reaktionsgleichgewicht hin zu dem gewünschten Produkt verschoben und damit die Ausbeute erhöht werden kann.
Platzbedarf und Anschaffungskosten für die Durchführung des Verfahrens sind wegen der kompakten Bauweise von Mikrostirikturverdampfers gering.
Das erfϊndungsgemäße Verfahren kann insbesondere eingesetzt werden zur Abtrennung mono- merer Diisocyanate von Polyisocyanaten, die beispielsweise in Polyurethan-Beschichtungs- Systemen zur Anwendung gelangen. Diisocyanate sind üblicherweise als giftige Arbeitsstoffe eingestuft und weisen zum Teil einen erheblichen Dampfdruck auf. Aus arbeitshygienischen Gründen dürfen sie daher in Lacksystemen nicht in monomerer Form vorliegen. Sie müssen zuvor mit Hilfe geeigneter Modifizierungsreaktionen in höhermolekulare, physiologisch unbedenkliche Polyiso- cyanate umgewandelt werden. Diese Umwandlung erfolgt zumeist mit einem Diisocyanat-Über- schuss. Reste von nicht umgesetztem monomerem Diisocyanat werden durch Destillation aus der
Reaktionsmischung entfernt.
Wesentlich ist hierbei, dass nach der Destillation im Polyisocyanat ein möglichst geringer Restgehalt an monomerem, d.h. giftigem, Diisocyanat enthalten ist. Mit dem erfindungsgemäßen Verfahren gelingt die Abtrennung der monomeren Diisocyanate bis auf die gewünschten Restgehalte von unter 0,5 %, in bestimmten Fällen auch bis unter 0,1 %. Vorteilhaft ist hierbei, dass die Poly- isocyanante durch die geringe Verweilzeit und enge Verweilzeitverteilung nur eine relativ geringe thermische Belastung erfahren. Damit werden Nebenreaktionen der Isocyanatgruppen während der Destillation vermieden und zusätzlich besonders farbhelle Polyisocyanate erhalten.
Die Erfindung wird nachfolgend anhand der Figuren näher erläutert. Es zeigen:
Figur 1 ein Fließdiagramm einer ersten Ausführungsform des erfindungsgemäßen Verfahrens zum Verdampfen von flüchtigen Verbindungen aus einem nichtreaktiven Stoffgemisch
Figur 2 ein Fließdiagramm einer zweiten Ausfülrrungsform des erfindungsgemäßen Verfahrens zum Verdampfen von flüchtigen Verbindungen aus einem reaktiven Stoff gemisch In Figur 1 ist ein Fließdiagramm zum Verdampfen von flüchtigen Komponenten aus einem nichtreaktiven Stoffgemisch dargestellt. Das flüssige Stoffgemisch wird über einen Eduktzulauf 1 mit einer Pumpe 2 in den Mikroverdampfer 3 gefördert. Der Mikrostiukturverdampfer 3 besteht aus einer Vielzahl von parallelen Kanälen, welche in Schichten angeordnet sind. In jeder 2. Schicht des Mikroverdampfers 3 wird das Stoffgemisch geführt. In den dazwischenliegenden Schichten sind ebenfalls eine Vielzahl von parallelen Kanälen angeordnet, in denen das Heizmedium geführt wird. Die Kanäle für das Edukt und das Heizmedium können z.B. parallel zueinander oder senkrecht zueinander verlaufen. Das Heizmedium wird aus einem hier nicht gezeigten Heizmediumkreislauf über einen Einlass 4 eingeführt und über einen Auslass 5 abgeführt. Aus dem Mikro- Verdampfer 3 strömt das Stoffgemisch als Gas/Flüssig-Gemisch in einen Gasabtrenner 6, aus dem die flüchtigen Stoffe gasförmig abgezogen werden 7. Aus diesem Gasabscheider 6 wird das Produkt 9 über eine Pumpe 8 aus der Anlage geführt.
Figur 2 zeigt ein Fließdiagramm zur Verdampfung flüchtiger Bestandteile aus reaktiven Stoffgemischen. Über einen Eduktzulauf 1 wird das flüssige Stoffgemisch (Edukt) mit einer Pumpe 2 in den Verdampfer gefördert. Der Mikrosfrukiurverdampfer 3 ist beispielsweise ähnlich wie in Figur
1 beschrieben aufgebaut. Das Heizmedium wird analog zu Figur 1 aus einem hier nicht gezeigten Heizmediumkreislauf eingeführt 4 und abgeführt 5. Das Stoffgemisch strömt als Gas/Flüssig- Gemisch aus dem Mikroverdampfer 3 in einen Gasabscheider 6, aus dem die flüchtigen Stoffe gasförmig abgezogen werden 7. Aus diesem Gasabtrenner 6 wird das Produkt 9 über eine Pumpe 8 aus der Anlage geführt. Gegebenenfalls wird ein Teil dieses Produktstroms im Kreislauf 10 über einen Reaktor 11 geführt und über die Pumpe 2 wieder in den Mikroverdampfer 3 gegeben.
Beispiele
Es wurde ein Rohprodukt wie nachfolgend beschreiben hergestellt, aus dem durch Verdampfen das Diisocyanat Desmodur W® (H12-MDI, Handelsprodukt der Fa. Bayer, NCO-Gehalt 32,1 Gew.-%) abgetrennt worden ist:
In einem Rührbehälter wurden 1586,0 kg Desmodur W® unter Stickstoffatmosphäre vorgelegt.
Unter Rühren wurde auf 60° C erhitzt und nacheinander 21,5 kg eines auf 1,1,1-Tri-methylol-pro- pan gestarteten Propylenoxid-Polyethers der OH-Zahl 385, 92,6 kg eines auf Bisphenol A gestarteten Propylenoxid-Polyethers der OH-Zahl 200 und 1470,0 kg eines auf 1,1,1-Tri-methylol-pro- pan gestarteten Propylenoxid Ethylenoxid-Polyethers der OH-Zahl 28 (Verhältnis Propylenoxid : Ethylenoxid = 82,5 : 17,5) temperaturkontrolliert im Bereich 60 - 80°C zugefügt. Danach wurde auf 100°C erhitzt und bis zu einem NCO-Gehalt von 14,1 Gew.-% umgesetzt. Das Rohprodukt, das noch ca. 40 Gew.-% Desmodur W® enthielt, wurde auf 50°C abgekühlt.
Beispiel 1
Das Rohprodukt wurde mit einer Temperatur von 60°C und einem Eintrag von 60 kg/h dem mit 30 bar Dampf (230°C) beheizten Mikrostrukturverdampfer 3 mit nachgeschaltetem Umlenkabscheider 6 zugeführt. Der MikrostnjMurverdampfer 3 hatte die folgenden Kanalabmessungen: Länge x Breite x Höhe: 40 mm x 200 μm x 100 μm. Der hydraulische Durchmesser betrug 133 μm. Die Wärmeübertragungsfläche betrug 0,135 m2, die spezifische Verdampferfläche 2-104 m2/m3. Die Verweilzeit in dem Mikrostrukturverdampfer 3 betrug ca. 0,3 s. Über den Umlenkabscheider 6 wurden in dieser Stufe bei einem Druck von 0,8 mbar 21 kg/h Destillat
(Desmodur W®) abgetrennt. Das auf diese Weise auf einen Desmodur W®-Gehalt von 7,8 Gew.-% aufkonzentrierte Rohprodukt wurde anschließend in einen auf 230°C beheizten Dünnschichtverdampfer (Yerdampferfläche 1 m2) überführt, der bei einem Druck von 0,5 mbar betrieben wurde. Am Austrag des Dünnschichtverdampfers wurde ein Polyisocyanatharz mit einem NCO- Gehalt von 2,55 Gew.-% erhalten, das nur noch einen Restgehalt von 0,12 Gew.-% des eingesetzten Desmodur W® enthielt.
Beispiel 2 (Vergleichsbeispiel)
Das Rohprodukt wurde mit einer Temperatur von 60°C über eine mit 6 bar Dampf (160°C) begleitbeheizte Leitung mit einem Eintrag von 30 kg/h einem Fallfilmverdampfer mit nach- geschaltetem Umlenkabscheider zugeführt. Die Wärmeübertragungsfläche betrug 0,314 m2, die spezifische Verdampferfläche betrug l,57-102 m2/m3. Verdampfer und Abscheider waren mittels 30 bar Dampf auf 230°C beheizt. Die Destillation erfolgte bei 0,8 mbar. In dieser Stufe wurde eine Destillatmenge von 9 kg/h Desmodur W® erhalten.
Das auf diese Weise auf einen Desmodur W®-Gehalt von 14,4 Gew.-% aufkonzentrierte Rohprodukt wurde anschließend analog Beispiel 1 in einen auf 230°C beheizten Dünnschichtverdampfer (Verdampferfläche 1 m2) überfuhrt, der bei einem Druck von 0,5 mbar betrieben wurde. Am
Ablauf des Dünnschichtverdampfers wurde ein Polyisocyanatharz mit einem NCO-Gehalt von 2,90 Gew.-% erhalten, das einen Restgehalt von 1,25 Gew.-% des eingesetzten Desmodur W® enthielt.
Der Vergleich zwischen den Beispielen 1 und 2 zeigt, dass unter Einsatz des Mikrostrukturver- dampfers das Desmodur W® deutlich effizienter abtrennbar ist als mit dem Fallfilmverdampfer.

Claims

Patentansprüche
1. Verfahren zur Entfernung von wenigstens einer flüchtigen Verbindung aus einem reaktiven oder nichtreaktiven Stoffgemisch mit Hilfe mindestens eines Mikroverdampfers, wobei der Mikroverdampfer Kanäle für die Führung des Stoffgemisches mit einem hydraulischen Durchmesser von 5 bis 1000 μm und eine spezifische Verdampferfläche von mindestens 103 m2/m3 aufweist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Kanäle des Mikroverdampfers einen hydraulischen Durchmesser von 30 bis 500 μm aufweisen.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Mikroverdampfer Kanäle für die Führung des Heizmediums mit einem hydraulischen Durchmesser von 5 bis 1000 μm, bevorzugt von 30 bis 500 μm, aufweist.
4. Verfahren nach einem der Ansprüche 1-3, dadurch gekennzeichnet, dass die Temperatur - 100 bis 500 °C, bevorzugt 0 bis 400 °C, besonders bevorzugt 50 bis 250 °C, beträgt.
5. Verfahren nach einem der Ansprüche 1-4, dadurch gekennzeichnet, dass der Druck 0 bis 100 bar, bevorzugt 0 bis 10 bar, besonders bevorzugt 0 bis 1 bar, beträgt.
6. Verfahren nach einem der Ansprüche 1-5, dadurch gekennzeichnet, dass die Verweilzeit 0,001 bis 60 s, bevorzugt 0,01 bis 10 s, beträgt.
7. Verfahren nach einem der Ansprüche 1-6, dadurch gekennzeichnet, dass wenigstens ein monomeres Diisocyanat als flüchtige Verbindung aus einem Stoffgemisch, wenigstens enthaltend ein Polyisocyanat, entfernt wird.
PCT/EP2004/008074 2003-08-02 2004-07-20 Verfahren zur entfernung von flüchtigen verbindungen aus stoffgemischen mittels mikroverdampfer WO2005016512A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MXPA06001284A MXPA06001284A (es) 2003-08-02 2004-07-20 Proceso para la eliminacion de compuestos volatiles de mezclas de sustancias utilizando un micro-evaporador.
EP04741153A EP1654057B1 (de) 2003-08-02 2004-07-20 Verfahren zur entfernung von flüchtigen verbindungen aus stoffgemischen mittels mikroverdampfer
DE502004009459T DE502004009459D1 (de) 2003-08-02 2004-07-20 Verfahren zur entfernung von flüchtigen verbindungen aus stoffgemischen mittels mikroverdampfer
CA2534068A CA2534068C (en) 2003-08-02 2004-07-20 Process for the removal of volatile compounds from mixtures of substances using a micro-evaporator
JP2006522266A JP4861173B2 (ja) 2003-08-02 2004-07-20 マイクロ蒸発器を用いて物質混合物から揮発性化合物を除去するための方法
HK06112463.7A HK1091773A1 (en) 2003-08-02 2006-11-13 Method for the elimination of volatile compounds from mixtures by means of a micro evaporator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10335451.4 2003-08-02
DE10335451A DE10335451A1 (de) 2003-08-02 2003-08-02 Verfahren zur Entfernung von flüchtigen Verbindungen aus Stoffgemischen mittels Mikroverdampfer

Publications (1)

Publication Number Publication Date
WO2005016512A1 true WO2005016512A1 (de) 2005-02-24

Family

ID=34089038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/008074 WO2005016512A1 (de) 2003-08-02 2004-07-20 Verfahren zur entfernung von flüchtigen verbindungen aus stoffgemischen mittels mikroverdampfer

Country Status (10)

Country Link
US (1) US7442277B2 (de)
EP (1) EP1654057B1 (de)
JP (1) JP4861173B2 (de)
CN (1) CN100435929C (de)
CA (1) CA2534068C (de)
DE (2) DE10335451A1 (de)
ES (1) ES2325022T3 (de)
HK (1) HK1091773A1 (de)
MX (1) MXPA06001284A (de)
WO (1) WO2005016512A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1754698A2 (de) 2005-08-02 2007-02-21 Bayer MaterialScience AG Verfahren zur Gasphasenphosgenierung
WO2009062897A1 (de) 2007-11-13 2009-05-22 Basf Se Verbessertes verfahren zur herstellung von blausäure durch katalytische dehydratisierung von gasförmigem formamid
DE102008063991A1 (de) 2008-12-19 2010-06-24 Bayer Materialscience Ag Verfahren zur Herstellung von Isocyanaten in der Gasphase
DE102009033639A1 (de) 2009-07-17 2011-01-20 Bayer Materialscience Ag Verfahen zur Herstellung von Isocyanaten in der Gasphase
WO2011089209A2 (de) 2010-01-22 2011-07-28 Basf Se Einraumverdampfer und deren verwendung bei der chemischen synthese
WO2011134968A1 (de) 2010-04-29 2011-11-03 Bayer Technology Services Gmbh Flüssigkeitsverdampfer
WO2011138245A1 (de) 2010-05-05 2011-11-10 Bayer Materialscience Ag Verfahren zur herstellung von isocyanaten in der gasphase
WO2014166975A1 (de) 2013-04-10 2014-10-16 Basf Se Verfahren zur blausäuresynthese aus formamid - katalysator
US9034293B2 (en) 2008-03-31 2015-05-19 Basf Se Process for preparing hydrocyanic acid by catalytic dehydration of gaseous formamide—direct heating
US9249029B2 (en) 2010-01-22 2016-02-02 Basf Se Single chamber vaporizer and use thereof in chemical synthesis

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040260034A1 (en) 2003-06-19 2004-12-23 Haile William Alston Water-dispersible fibers and fibrous articles
US7892993B2 (en) 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8513147B2 (en) 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
PL2084212T3 (pl) * 2006-10-24 2011-05-31 Basf Se Zastosowanie wyparek wężownicowych do wytwarzania poliamidów
CA2705412A1 (en) * 2007-11-13 2009-05-22 Basf Se Improved method for producing hydrocyanic acid by catalytic dehydration of gaseous formamide
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
DE102009039397A1 (de) 2009-08-31 2011-03-03 Karlsruher Institut für Technologie Mikrostrukturverdampfer
US8487127B2 (en) * 2010-02-26 2013-07-16 Basf Se Process for preparing isocyanates in the gas phase
CN102933546B (zh) * 2010-02-26 2014-12-10 巴斯夫欧洲公司 在气相中制备异氰酸酯的方法
US9273417B2 (en) 2010-10-21 2016-03-01 Eastman Chemical Company Wet-Laid process to produce a bound nonwoven article
US10107728B2 (en) * 2011-02-11 2018-10-23 Schlumberger Technology Corporation Microfluidic system and method for performing a flash separation of a reservoir fluid sample
US8840757B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
WO2014131883A1 (de) * 2013-03-01 2014-09-04 Basf Se Verfahren zur blausäuresynthese aus formamid - packungsnachreaktor
US9617685B2 (en) 2013-04-19 2017-04-11 Eastman Chemical Company Process for making paper and nonwoven articles comprising synthetic microfiber binders
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
CN109568995B (zh) * 2019-01-23 2020-12-08 杨爱钗 一种可对高温废蒸汽再利用的蒸发器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200536B1 (en) * 1997-06-26 2001-03-13 Battelle Memorial Institute Active microchannel heat exchanger
DE10010400A1 (de) * 2000-02-28 2001-09-06 Mannesmann Ag Vorrichtung und Verfahren zum Erhitzen und/oder Verdampfen flüssiger oder gasförmiger Medien
WO2001065194A1 (de) * 2000-02-28 2001-09-07 Siemens Aktiengesellschaft Vorrichtung zum verdampfen flüssiger medien

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3234994A (en) * 1963-04-26 1966-02-15 Dow Chemical Co Concentration of polymers from solutions by flash vaporization
US5811062A (en) * 1994-07-29 1998-09-22 Battelle Memorial Institute Microcomponent chemical process sheet architecture
US6907921B2 (en) * 1998-06-18 2005-06-21 3M Innovative Properties Company Microchanneled active fluid heat exchanger
JP4152026B2 (ja) * 1999-01-20 2008-09-17 旭化成ケミカルズ株式会社 ポリイソシアネート組成物の精製方法
US7101514B2 (en) * 2001-01-31 2006-09-05 Po-Hao Adam Huang Control devices for evaporative chemical mixing/reaction
JP2004261911A (ja) * 2003-02-28 2004-09-24 Mitsubishi Heavy Ind Ltd チャンネル構造体及びその製造方法
EP1607707A1 (de) * 2004-06-18 2005-12-21 Ecole Polytechnique Federale De Lausanne (Epfl) Blasengenerator und Wärmetauschervorrichtung
DE102005017452B4 (de) * 2005-04-15 2008-01-31 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Mikroverdampfer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200536B1 (en) * 1997-06-26 2001-03-13 Battelle Memorial Institute Active microchannel heat exchanger
DE10010400A1 (de) * 2000-02-28 2001-09-06 Mannesmann Ag Vorrichtung und Verfahren zum Erhitzen und/oder Verdampfen flüssiger oder gasförmiger Medien
WO2001065194A1 (de) * 2000-02-28 2001-09-07 Siemens Aktiengesellschaft Vorrichtung zum verdampfen flüssiger medien

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EHRFELD W ET AL: "ANWENDUNGSPOTENTIALE CHEMISCHER UND BIOLOGISCHER MIKROREAKTOREN", JAHRBUCH. VERFAHRENSTECHNIK UND CHEMIEINGENIEURWESEN, XX, XX, vol. 69, no. 7, 1997, pages 102 - 116, XP000942778 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1754698A3 (de) * 2005-08-02 2007-03-07 Bayer MaterialScience AG Verfahren zur Gasphasenphosgenierung
EP1754698A2 (de) 2005-08-02 2007-02-21 Bayer MaterialScience AG Verfahren zur Gasphasenphosgenierung
RU2496717C2 (ru) * 2007-11-13 2013-10-27 Басф Се Способ получения синильной кислоты
WO2009062897A1 (de) 2007-11-13 2009-05-22 Basf Se Verbessertes verfahren zur herstellung von blausäure durch katalytische dehydratisierung von gasförmigem formamid
US9034293B2 (en) 2008-03-31 2015-05-19 Basf Se Process for preparing hydrocyanic acid by catalytic dehydration of gaseous formamide—direct heating
DE102008063991A1 (de) 2008-12-19 2010-06-24 Bayer Materialscience Ag Verfahren zur Herstellung von Isocyanaten in der Gasphase
DE102009033639A1 (de) 2009-07-17 2011-01-20 Bayer Materialscience Ag Verfahen zur Herstellung von Isocyanaten in der Gasphase
WO2011006609A1 (de) 2009-07-17 2011-01-20 Bayer Materialscience Ag Verfahren zur herstellung von isocyanaten in der gasphase
WO2011089209A2 (de) 2010-01-22 2011-07-28 Basf Se Einraumverdampfer und deren verwendung bei der chemischen synthese
US9249029B2 (en) 2010-01-22 2016-02-02 Basf Se Single chamber vaporizer and use thereof in chemical synthesis
DE102010018830A1 (de) 2010-04-29 2011-11-03 Bayer Technology Services Gmbh Flüssigkeitsverdampfer
WO2011134968A1 (de) 2010-04-29 2011-11-03 Bayer Technology Services Gmbh Flüssigkeitsverdampfer
DE102010019342A1 (de) 2010-05-05 2011-11-10 Bayer Materialscience Ag Verfahren zur Herstellung von Isocyanaten in der Gasphase
WO2011138245A1 (de) 2010-05-05 2011-11-10 Bayer Materialscience Ag Verfahren zur herstellung von isocyanaten in der gasphase
US9102594B2 (en) 2010-05-05 2015-08-11 Bayer Intellectual Property Gmbh Method for producing isocyanates in the gas phase
US9328064B2 (en) 2010-05-05 2016-05-03 Bayer Materialscience Ag Method for producing isocyanates in the gas phase
WO2014166975A1 (de) 2013-04-10 2014-10-16 Basf Se Verfahren zur blausäuresynthese aus formamid - katalysator

Also Published As

Publication number Publication date
CA2534068C (en) 2012-10-16
ES2325022T3 (es) 2009-08-24
CA2534068A1 (en) 2005-02-24
HK1091773A1 (en) 2007-01-26
MXPA06001284A (es) 2006-04-11
CN1832798A (zh) 2006-09-13
US20050022940A1 (en) 2005-02-03
US7442277B2 (en) 2008-10-28
DE10335451A1 (de) 2005-03-10
JP2007501106A (ja) 2007-01-25
EP1654057B1 (de) 2009-05-06
JP4861173B2 (ja) 2012-01-25
CN100435929C (zh) 2008-11-26
EP1654057A1 (de) 2006-05-10
DE502004009459D1 (de) 2009-06-18

Similar Documents

Publication Publication Date Title
EP1654057B1 (de) Verfahren zur entfernung von flüchtigen verbindungen aus stoffgemischen mittels mikroverdampfer
EP1656396B1 (de) Verfahren und vorrichtung zur entfernung von flüchtigen substanzen aus hochviskosen medien
EP0752268B1 (de) Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Polymeren
DE69528544T2 (de) Methode und Apparatur zur Verminderung flüchtiger Bestandteile in Polystyrol
EP3164443B1 (de) Verfahren zur reinigung von polycarbonatpolyolen und reinigungsvorrichtung hierfür
EP1938036B1 (de) Rohrbündelwärmeübertrager und verfahren zur entfernung von gelösten stoffen aus einer polymerlösung durch entgasung in einem rohrbündelwärmeübertrager
DE1958777C3 (de) Verfahren zur kontinuierlichen Herstellung von Polyestern
DE2400661A1 (de) Verbessertes fallstrom-verdampfungsverfahren
EP1692193A1 (de) Verfahren zum ausdampfen von monomeren und anderen flüchtigen bestandteilen aus polymerschmelzen
WO2014009346A1 (de) Vorrichtung und verfahren zur herstellung von phosgen
EP1723094B1 (de) Verfahren zur herstellung einer hochkonzentrierten formaldehydlösung
EP1415693A1 (de) Verfahren zur Abtrennung von flüchtigen Bestandteilen aus Polymeren
DE3041108C2 (de)
EP1907342B1 (de) Verfahren zur gewinnung von cyclododecatrien durch verdampfung
DE69605475T2 (de) Abtrennung von Dimethylterephthalat aus einem Methanolysegasstrom
WO2015011070A2 (de) Verfahren zur herstellung von isocyanaten
EP1299434B1 (de) Kautschukfreie copolymerisate mit niedrigen monomerrestgehalten und verfahren und vorrichtung zur ihrer herstellung
EP1477223B1 (de) Grossvolumiger Reaktor mit mehreren Prozessräumen
WO1999067002A1 (de) Verfahren zur isolierung von polymeren aus lösungen
EP3645462B1 (de) Energieeffizientes verfahren zur bereitstellung von gereinigtem phosgen-dampf
EP2881154B1 (de) Vorrichtung und Verfahren zur Entspannungsverdampfung
DE102007050929B4 (de) Verfahren und Vorrichtung zur Erzeugung von Vakuum bei der Herstellung von Polyestern und Copolyestern
EP1476234B1 (de) Reaktionskolonne in spezieller kombination mit umlaufverdampfer
EP1951392B1 (de) Rohrbündelwärmeübertrager und verfahren zur entfernung von gelösten stoffen aus einer polymerlösung
WO2003084921A1 (de) Reaktor zur thermischen spaltung von mono- und polyfunktionellen carbamidsäureestern

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480022452.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004741153

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2534068

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/001284

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2006522266

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004741153

Country of ref document: EP