WO2005015297A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2005015297A1
WO2005015297A1 PCT/JP2004/011489 JP2004011489W WO2005015297A1 WO 2005015297 A1 WO2005015297 A1 WO 2005015297A1 JP 2004011489 W JP2004011489 W JP 2004011489W WO 2005015297 A1 WO2005015297 A1 WO 2005015297A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
refractive index
plate
retardation plate
crystal layer
Prior art date
Application number
PCT/JP2004/011489
Other languages
English (en)
French (fr)
Inventor
Tomoya Yano
Norimasa Furukawa
Hiroshi Murayama
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US10/530,828 priority Critical patent/US7532283B2/en
Priority to EP04771476A priority patent/EP1586939A4/en
Priority to KR1020057006244A priority patent/KR101096310B1/ko
Priority to JP2005512995A priority patent/JP4419959B2/ja
Publication of WO2005015297A1 publication Critical patent/WO2005015297A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133749Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for low pretilt angles, i.e. lower than 15 degrees
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Definitions

  • the present invention relates to a liquid crystal display device having a polarizing plate composed of a pair of orthogonal polarizers and a protective layer for protecting the polarizer, and a liquid crystal layer between the polarizers and a liquid crystal layer oriented in parallel with one of the polarizing plate absorption axis directions. .
  • a liquid crystal display device can be directly connected to an IC with low voltage and low power consumption, has various display functions, and has many features such as easy weight reduction and miniaturization. It is widely used as a variety of display means, such as A equipment, television, car navigation monitors, and aircraft cockpit monitors.
  • a polarizing plate is used in a liquid crystal display device in order to visualize a change in the orientation of liquid crystal.
  • the polarizing plate is usually formed by laminating a transparent protective film (TAC) on a polarizer.
  • TAC transparent protective film
  • the polarizer divides the incident light into two polarization components that are orthogonal to each other, passes only one of them (the component whose vibration direction is parallel to the transmission axis of the polarizer), and passes the other component (the vibration direction is the absorption axis of the polarizer and the absorption direction of the polarizer). (Parallel component).
  • a transmission type liquid crystal display device is configured by sandwiching a liquid crystal cell between polarizing plates on both sides in the thickness direction.
  • the polarizers on both sides are arranged so that the transmission axes of the polarizers are orthogonal to each other.
  • a pair of polarizers whose transmission axes are orthogonal to each other is called an orthogonal polarizer.
  • the characteristics of a polarizer depend on the viewing angle, and when light enters the polarizer from an oblique direction, the direction of the transmission axis changes.
  • the polarized light passing through the polarizer has a component in a direction parallel to the transmission axis of the second polarizer, and this component passes through the second polarizer 2 to cause light leakage.
  • Such a viewing angle dependence of the polarizer causes a narrowing of a viewing angle range (viewing angle) in which the brightness, contrast, hue, and the like of the screen of the liquid crystal display device can be viewed well.
  • Japanese Patent Application Laid-Open No. 2001-350022 discloses that a biaxial optical compensation is used for optical compensation of a polarizer in order to realize a liquid crystal display device in which the viewing angle range (viewing angle) is widened by reducing the viewing angle dependence of the polarizer.
  • the use of a retardation plate is described.
  • a so-called in-plane switching mode liquid crystal display device in which liquid crystal molecules are operated by an electric field parallel to a substrate is promising as an image display device which can be replaced by a CRT without image tone inversion and color change at a wide viewing angle.
  • the polarizing plate is formed by laminating a protective layer on a polarizer that transmits light in a predetermined direction.
  • the protective layer is formed by using TAC or the like as a protective material and sandwiching the polarizer from both sides. Is common. Therefore, the incident light that has passed through the polarizer passes through the protective layer interposed between the polarizer and the liquid crystal cell, and reaches the liquid crystal layer.
  • FIG. 1 shows the viewing angle characteristics at the black display level.
  • the absorption axis of the lower polarizing plate (backlight side) is 90 °
  • the absorption axis of the upper polarizing plate is 0 °
  • the liquid crystal orientation azimuth angle is 90 ° (the direction to open in the orientation direction of 90 ° on the lower substrate)
  • the substrate pretilt angle is 2 ° is set.
  • the optical path length difference And of the liquid crystal layer is set to 275 nm (wavelength 550 nm).
  • the sample is a TAC and functions as a uniaxial retardation plate with an optical axis perpendicular to the substrate.
  • the optical path length An of each protective layer substrate interposed between the polarizer and the liquid crystal layer is 50 nm.
  • a e is the leakage light
  • the contour shows a contour line in which the ratio is the value shown in the column in the same figure, and it can be seen that light leakage in the 45 ° direction is large.
  • Figure 2 shows a view angle Pola (elevation angle) of 70 ° and an azimuth Azim of 15 °, 30 °, 45 °, 60 ° and 75 °.
  • Fig. 3 shows the black level spectral transmittance
  • Fig. 3 shows the viewing angle Pola (elevation angle) of 70 ° and the azimuth angles Azim of 345 °, 330 °, 315 °, and 300. 285 ° indicates the black level spectral transmittance.
  • the azimuth angle Azim is indicated by a counterclockwise angle with the viewing angle from the right direction being 0 °.
  • Polarizing plate High transmittance at a viewing angle (45 °, 135 °, 225 °, 315 °) from an azimuth of 45 ° from the polarization axis, resulting in a yellowish spectral transmittance, deteriorating display quality Let me do it.
  • Patent Document 1 discloses that a biaxial retardation plate is used for optical compensation of a polarizer.
  • a protective layer having a negative retardation between the polarizer of the polarizing plate and the liquid crystal layer is disclosed. No mention is made of the case where a liquid crystal layer intervenes, and furthermore, the case where a protective layer is interposed and a liquid crystal layer of an in-plane switching mode is used. Therefore, even if the technology disclosed in Patent Document 1 is used, it is difficult to solve the problem of deteriorating the display quality and to compensate for the viewing angle dependency.
  • the present invention provides a liquid crystal aligned in parallel with one polarizing plate absorption axis direction between a pair of orthogonal polarizers and a pair of polarizing plates including a protective layer for protecting the polarizers.
  • a structure in which a protective layer with a negative phase difference is interposed between the polarizer and the liquid crystal plate is to provide optical compensation for improving the viewing angle in black display when using a polarizing plate of the type described above, and to propose a configuration of a phase difference plate optimized according to the negative phase difference value. I do.
  • the liquid crystal display device of the present invention has a structure in which a protective layer is laminated on a polarizer and a pair of polarizing plates whose transmission axes are orthogonal to each other.
  • a liquid crystal display device having a structure in which a liquid crystal plate having an oriented liquid crystal layer is sandwiched, wherein the protective layers of the pair of polarizing plates are laminated at least on the liquid crystal layer side and have an optical axis in a thickness direction. In the plane perpendicular to the thickness direction, there is a substantially isotropic uniaxial retardation plate with a negative retardation plate whose refractive index in the thickness direction is smaller than that in the in-plane direction.
  • a biaxial retardation plate is provided at least on one side between the liquid crystal plate and each polarizing plate, which compensates for the viewing angle dependence of the protective layer with respect to incident light that forms an angle in the viewing angle direction. It is characterized by being done.
  • the retardation plate has a different refractive index in a plane orthogonal to the thickness method, and has a biaxial orientation having the maximum refractive index nx in the plane.
  • the in-plane optical path difference of the retardation plate is set based on the optical path difference of the protective layer and the value of the wavelength so as to compensate for the viewing angle dependence on incident light that forms an angle in the viewing angle direction. It is characterized by
  • the liquid crystal display device of the present invention has a liquid crystal layer in which the absorption axis direction of one of the polarizers and the liquid crystal molecules are aligned in parallel between a pair of polarizers whose transmission axes of the polarizers are orthogonal to each other.
  • a liquid crystal display device having a structure in which a liquid crystal plate is sandwiched, wherein a pair of polarizing plates have the same characteristics as a uniaxial retardation plate having a negative retardation on each of the liquid crystal layers.
  • a pair of protective layers having a thickness is laminated, and a first retardation plate and a second retardation plate are respectively disposed between the liquid crystal plate and each polarizing plate.
  • the optical path length difference is set to be a polarization state before light passes through the liquid crystal layer, and the second retardation plate has a different refractive index in a plane orthogonal to its thickness direction, and has a maximum in the plane.
  • This is a biaxial retardation plate having an orientation indicating the refractive index nx, and has a refractive index in the direction orthogonal to the orientation indicating the refractive index nx.
  • the in-plane optical path length difference of the retardation plate which is defined as the product of the difference between the refractive indexes (nx-ny) and the thickness of the retardation plate, is set to be approximately I Z2.
  • the first and second phase difference plates optically compensate for changes in the polarization state of light passing through the pair of protective layers.
  • the first retardation plate changes the polarization state of the light before passing through the liquid crystal layer, and the polarization state of light is changed by 180 ° by the second retardation plate having an in-plane optical path difference of approximately IZ2.
  • the first retardation plate is constituted by a biaxial retardation plate having a predetermined optical path length difference or a positive uniaxial retardation plate.
  • FIG. 1 is a view showing a viewing angle characteristic at a black display level of a conventional liquid crystal display device.
  • Figure 2 shows the black level spectral transmittance of a conventional liquid crystal display device when the viewing angle Pola (elevation angle) is 70 ° and the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 °.
  • FIG. 1 shows the black level spectral transmittance of a conventional liquid crystal display device when the viewing angle Pola (elevation angle) is 70 ° and the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 °.
  • Figure 3 shows the black level spectral transmittance of a conventional liquid crystal display device when the azimuth Azim is 345 °, 330 °, 315 °, 300 °, and 285 ° at a viewing angle Pola (elevation angle) of 70 °.
  • FIG. 1 shows the black level spectral transmittance of a conventional liquid crystal display device when the azimuth Azim is 345 °, 330 °, 315 °, 300 °, and 285 ° at a viewing angle Pola (elevation angle) of 70 °.
  • FIG. 4 is a schematic end view showing a main part configuration of a liquid crystal display device to which the present invention is applied.
  • FIG. 5 is a diagram showing a polarizing plate axis angle in the above liquid crystal display device
  • FIG. 5A shows a polarizing plate axis angle when viewed from the front
  • FIG. 5B shows a polarized light axis when viewed obliquely. The plate axis angle is shown.
  • FIG. 6 is a diagram showing, in the above liquid crystal display device, a polarization state of light incident at 45 ° azimuth after passing through each member, in a Poincare sphere display, and FIG. 6A is a polarizer of an incident side polarizing plate.
  • 6B shows the polarization state after passing through the protective layer of the incident-side polarizing plate
  • FIG. 6C shows the polarization state after passing through the IPS liquid crystal layer of the liquid crystal plate
  • FIG. The polarization state after passing through the protective layer of the side polarizing plate is shown.
  • FIG. 7 is a diagram showing the incident angle dependence of the amount of deviation of the incident polarization axis at a 45 ° azimuth and the phase difference of the polarizing plate protective layer in the above liquid crystal display device.
  • FIG. 8 is a schematic end view showing a configuration example of a main part of a liquid crystal display device according to the present invention.
  • FIG. 9 is a diagram showing, in a Poincare sphere display, a polarization state of light incident at 45 ° azimuth after passing through each member in the liquid crystal display device having the configuration shown in FIG. 8, and FIG. Lateral deviation
  • FIG. 9B shows the polarization state after passing through the protective layer of the incident-side polarizing plate
  • FIG. 9C shows the polarization state after passing through the IPS liquid crystal layer of the liquid crystal plate
  • FIG. 9D shows the polarization state after passing through the biaxial retardation plate
  • FIG. 9E shows the polarization state after passing through the protective layer of the output-side polarizing plate.
  • FIG. 10 is a diagram for explaining a relationship between an optimum And of a biaxial retardation plate and an incident angle in the liquid crystal display device.
  • FIG. 11 is a view showing the relationship between the An of a protective layer and the An of a biaxial retardation plate in the liquid crystal display device.
  • FIG. 12 is a diagram showing, on a Poincare sphere, a first optimization technique of a retardation plate for improving a black level at a 45 ° azimuth viewing angle in the liquid crystal display device
  • FIG. Fig. 12B shows the polarization state after passing through the protective layer of the incident-side polarization plate
  • Fig. 12C shows the polarization state after passing through the IPS liquid crystal layer of the liquid crystal plate
  • FIG. 12D shows the polarization state after passing through the biaxial retardation plate
  • FIG. 12E shows the polarization state after passing through the protective layer of the emission-side polarization plate.
  • FIG. 13 is a diagram showing, on a Poincare sphere, a second optimization method of a phase difference plate for improving a black level at a 45 ° azimuth viewing angle in the above liquid crystal display device
  • FIG. Fig. 13B shows the polarization state after passing through the protective layer of the incident-side polarizing plate
  • Fig. 13C shows the polarization state after passing through the IPS liquid crystal layer of the liquid crystal plate
  • FIG. 13D shows the polarization state after passing through the biaxial retardation plate
  • FIG. 13E shows the polarization state after passing through the protective layer of the emission-side polarization plate.
  • FIG. 14 is a view showing a viewing angle characteristic of a black display level in Example 1 of the liquid crystal display device having the configuration shown in FIG.
  • FIG. 15 is a diagram showing the black level spectral transmittance when the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 ° with the visual angle Pola (elevation angle) of 70 ° in Example 1 above. It is.
  • FIG. 16 shows a view angle Pola (elevation angle) of 70 ° and an azimuth Azim of 345 in Example 1 above. It is a figure which shows the black level spectral transmittance in case of 330 degree, 315 degree, 300 degree, and 285 degree.
  • FIG. 17 is a view showing viewing angle characteristics of a black table in Example 2 of the liquid crystal display device having the configuration shown in FIG. [FIG. 18]
  • FIG. 18 is a diagram showing the black level spectral transmittance when the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 ° with the visual angle Pola (elevation angle) of 70 ° in Example 2 above. It is.
  • FIG. 19 shows a view angle Pola (elevation angle) of 70 ° and an azimuth Azim of 345 in Example 2 above. It is a figure which shows the black level spectral transmittance in case of 330 degree, 315 degree, 300 degree, and 285 degree.
  • FIG. 20 is a view showing a viewing angle characteristic of a black display level in Example 3 of the liquid crystal display device having the configuration shown in FIG.
  • FIG. 21 is a diagram showing the black level spectral transmittance when the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 ° with the visual angle Pola (elevation angle) of 70 ° in Example 3 above. It is.
  • FIG. 22 shows a view angle Pola (elevation angle) of 70 ° and an azimuth Azim of 345 in Example 3 above. It is a figure which shows the black level spectral transmittance in case of 330 degree, 315 degree, 300 degree, and 285 degree.
  • FIG. 23 is a view showing a viewing angle characteristic of a black display level in Example 4 of the liquid crystal display device having the configuration shown in FIG.
  • FIG. 24 is a diagram showing the black level spectral transmittance when the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 ° with the visual angle Pola (elevation angle) of 70 ° in Example 4 above. It is.
  • FIG. 25 shows a view angle Pola (elevation angle) of 70 ° and an azimuth Azim of 345 in Example 4 above. It is a figure which shows the black level spectral transmittance in case of 330 degree, 315 degree, 300 degree, and 285 degree.
  • FIG. 26 is a view showing a viewing angle characteristic of a black display level in Example 5 of the liquid crystal display device having the configuration shown in FIG.
  • FIG. 27 is a diagram showing the black level spectral transmittance when the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 ° at the visual angle Pola (elevation angle) of 70 ° in Example 5 described above. It is.
  • FIG. 28 shows a view angle Pola (elevation angle) of 70 ° and an azimuth Azim of 345 in Example 5 above. It is a figure which shows the black level spectral transmittance in case of 330 degree, 315 degree, 300 degree, and 285 degree.
  • FIG. 29 is a view showing a viewing angle characteristic of a black display level in Example 6 of the liquid crystal display device having the configuration shown in FIG.
  • FIG. 30 is a diagram showing the black level spectral transmittance when the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 ° with the visual angle Pola (elevation angle) of 70 ° in Example 6 described above. It is.
  • FIG. 31 shows a view angle Pola (elevation angle) of 70 ° and an azimuth Azim of 345 in Example 6 above. It is a figure which shows the black level spectral transmittance in case of 330 degree, 315 degree, 300 degree, and 285 degree.
  • FIG. 32 is a view showing a viewing angle characteristic of a black display level in the seventh embodiment of the liquid crystal display device having the configuration shown in FIG.
  • FIG. 33 is a diagram showing the black level spectral transmittance when the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 ° with the visual angle Pola (elevation angle) of 70 ° in Example 7 described above. It is.
  • FIG. 34 shows a view angle Pola (elevation angle) of 70 ° and an azimuth Azim of 345 in Example 7 above. It is a figure which shows the black level spectral transmittance in case of 330 degree, 315 degree, 300 degree, and 285 degree.
  • FIG. 35 is a view showing a viewing angle characteristic of a black display level in Example 8 of the liquid crystal display device having the configuration shown in FIG.
  • FIG. 36 is a diagram showing the black level spectral transmittances when the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 ° with the visual angle Pola (elevation angle) of 70 ° in Example 8 above. It is.
  • FIG. 37 shows a view angle Pola (elevation angle) of 70 ° and an azimuth Azim of 345 in Example 8 above. It is a figure which shows the black level spectral transmittance in case of 330 degree, 315 degree, 300 degree, and 285 degree.
  • FIG. 38 is a view showing a viewing angle characteristic of a black display level in Example 9 of the liquid crystal display device having the configuration shown in FIG.
  • FIG. 39 is a diagram showing the black level spectral transmittances when the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 ° with the visual angle Pola (elevation angle) of 70 ° in the ninth embodiment. It is.
  • FIG. 40 shows a view angle Pola (elevation angle) of 70 ° and an azimuth Azim of 345 in Example 9 above. It is a figure which shows the black level spectral transmittance in case of 330 degree, 315 degree, 300 degree, and 285 degree.
  • FIG. 41 is a schematic end view showing another configuration example of the main part of the liquid crystal display device according to the present invention.
  • FIG. 42 is a schematic end view showing still another example of the configuration of the main part of the liquid crystal display device according to the present invention.
  • FIG. 43 is a diagram showing, on a Poincare sphere, a third optimization method of a retardation plate for improving a black level at a 45 ° azimuth viewing angle in the liquid crystal display device shown in FIG. 42.
  • Figure 43A shows the polarization state after passing through the polarizer of the incident-side polarizer
  • Figure 43B shows the polarization state after passing through the protective layer of the incident-side polarizer
  • Figure 43C shows the polarization state after passing through the retardation plate.
  • Fig. 43D shows the polarization state after passing through the IPS liquid crystal layer of the liquid crystal plate
  • Fig. 43E shows the polarization state after passing through the biaxial phase difference plate
  • Fig. 43F shows the protection layer of the output side polarization plate. Deviation after passing The light state is shown.
  • FIG. 44 is a diagram showing, on a Poincare sphere, a fourth optimization method of the retardation plate for improving the black level at a 45 ° azimuth viewing angle in the liquid crystal display device shown in FIG. 42.
  • Figure 44A shows the polarization state after passing through the polarizer of the incident-side polarizer
  • Figure 44B shows the polarization state after passing through the protective layer of the incident-side polarizer
  • Figure 44C shows the polarization state after passing through the retardation plate.
  • FIG. 44D shows the polarization state after passing through the IPS liquid crystal layer 21 of the liquid crystal plate
  • FIG. 44E shows the polarization state after passing through the biaxial retardation plate
  • FIG. 44F shows the protective layer of the output side polarizing plate. It shows the polarization state after passing through.
  • FIG. 45 is a diagram showing a viewing angle characteristic of a black display level in the twelfth embodiment of the liquid crystal display device shown in FIG. 42.
  • FIG. 46 is a diagram showing the black level spectral transmittances when the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 ° with the visual angle Pola (elevation angle) of 70 ° in the twelfth embodiment. It is.
  • FIG. 47 shows a view angle Pola (elevation angle) of 70 ° and an azimuth angle Azim of 345 in Example 12 above. It is a figure which shows the black level spectral transmittance in case of 330 degree, 315 degree, 300 degree, and 285 degree.
  • FIG. 48 is a view showing a viewing angle characteristic of a black display level in Example 13 of the liquid crystal display device shown in FIG. 42.
  • FIG. 49 shows a view angle Pola (elevation angle) of 70 ° and an azimuth Azim of 15 ° and 30 in Example 13 above. It is a figure which shows the black level spectral transmittance in case of 45 degree, 60 degree, and 75 degree.
  • FIG. 50 shows a view angle Pola (elevation angle) of 70 ° and an azimuth Azim of 345 in Example 13 above. It is a figure which shows the black level spectral transmittance in case of 330 degree, 315 degree, 300 degree, and 285 degree.
  • FIG. 51 is a diagram showing a viewing angle characteristic of a black display level in Example 14 of the liquid crystal display device shown in FIG. 42.
  • FIG. 52 is a view showing a black level spectral transmittance when the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 ° with the visual angle Pola (elevation angle) of 70 ° in Example 14 above. It is.
  • FIG. 53 shows a view angle Pola (elevation angle) of 70 ° and an azimuth Azim of 345 in Example 14 above. It is a figure which shows the black level spectral transmittance in case of 330 degree, 315 degree, 300 degree, and 285 degree.
  • FIG. 4 the members that control the black level transmittance are shown in a simplified manner.
  • the liquid crystal display device 100 shown in FIG. 4 has a pair of polarizing plates 10A and 10B arranged so that their transmission axes are orthogonal to each other, and is arranged between the pair of polarizing plates 10A and 10B, and is arranged parallel to the absorption axis direction of one of the polarizing plates.
  • a liquid crystal plate 20 having a liquid crystal layer 21 is provided.
  • the pair of polarizing plates 10A and 10B are composed of a pair of polarizers 11A and 1IB whose transmission axes are orthogonal to each other and protective layers 12A, 13A, 12B and 13B for protecting the polarizers.
  • the liquid crystal plate 20 is formed by enclosing a liquid crystal layer 21 oriented parallel to the absorption axis direction of one of the polarizing plates with glass substrates 22 and 23.
  • the liquid crystal plate 20 constitutes a so-called in-plane switching (IPS) mode liquid crystal display device 100 in which liquid crystal molecules are operated by an electric field parallel to the glass substrates 22 and 23.
  • IPS in-plane switching
  • the black level at a viewing angle of 45 ° azimuth from the polarizing axis of the polarizing plate has the largest light leakage, so special attention is paid to the viewing angle of 45 ° azimuth.
  • the 45 ° azimuth is 45 when there is no specific description for the polarizing axis of the polarizing plate. , 135 °, 225 °, and 315 °.
  • a polarizing plate 10 has a structure in which a polarizer 11 made by adsorbing and aligning iodine or the like on stretched PVA (polyvinyl alcohol) finolem is sandwiched between protective layers 12 and 13 made of TAC (triacetyl cellulose).
  • a polarizer 11 made by adsorbing and aligning iodine or the like on stretched PVA (polyvinyl alcohol) finolem is sandwiched between protective layers 12 and 13 made of TAC (triacetyl cellulose).
  • TAC triacetyl cellulose
  • the liquid crystal layer 21 in the black display state in the IPS mode can be regarded as a uniaxial retardation plate, and generally functions as a ⁇ / 2 plate at a predetermined wavelength of green G.
  • a liquid crystal display device having an IPS mode liquid crystal layer between a pair of polarizing plates whose transmission axes are orthogonal to each other is a polarizer and a protective layer
  • the model in the black display state when the liquid crystal display device is regarded as a retardation plate is an O-type polarized light.
  • FIG. 5A shows the polarizer axis angle when viewed from the front
  • FIG. 5B shows the polarizer axis angle when viewed obliquely.
  • the polarizer protective layers 13A and 12B in the light path from the polarizer 11A to the polarizer 11A and exiting from the polarizer 11B function as a negative retardation plate as described above, Is perpendicular to the plane of incidence.
  • the optical path length difference An at the incident angle ⁇ in the medium is approximately expressed by the following equation (2).
  • the polarizer protective layers 13A and 12B each have a thickness d, and the light is emitted in the thickness direction.
  • the optical path length difference An of the above-mentioned protective layer is the absolute value of the negative optical path length difference.
  • the liquid crystal layer 21 functions as a uniaxial retardation plate as described above, and has a slow axis in substantially the same direction as the polarizer absorption axis. In addition, there is no phase difference change in the 45 ° azimuth.
  • Figure 6 shows the polarization state of the light incident at 45 ° after passing through each member in Poincare sphere representation. 6A shows the polarization state of the incident-side polarizing plate 10A after passing through the polarizer 11A, FIG. 6B shows the polarization state of the incident-side polarizing plate 10A after passing through the protective layer 13A, and FIG. 6C shows the IPS of the liquid crystal plate 20.
  • FIG. 6D shows the polarization state after passing through the liquid crystal layer 21, and FIG. 6D shows the polarization state after passing through the protective layer 13B of the output-side polarizing plate 10B.
  • the liquid crystal layer 21 substantially functions as a ⁇ / 2 plate at a predetermined wavelength of green G.
  • the liquid crystal layer 21 has a function of reducing the influence of the negative retardation of the polarizing plate protective layer 13A.
  • the polarization state after passing through the output-side polarizer protective layer 13B is shifted from the absorption axis of the output-side polarizer 11B, and light leakage occurs.
  • coloring occurs because the polarization state differs depending on the wavelength. This is mainly due to the wavelength dependence of the optical path length difference And of the liquid crystal layer 21.
  • the liquid crystal display device when the polarizing plates 10A and 10B each having a protective layer having a negative retardation are used as in the liquid crystal display device 100 shown in FIG. 4, the liquid crystal display device is optimized according to the negative retardation value. Inserting the phase difference plate at the position P1 between the liquid crystal plate 20 and the output-side polarizing plate 1OA or at the position P2 between the input-side polarizing plate 10A and the liquid crystal plate 20, or both, creates a 45 ° azimuth black. Reduces level light leakage.
  • a first method of optimizing the phase difference plate for improving the black level at the 45 ° azimuth viewing angle in the liquid crystal display device 100 configured as described above will be described.
  • FIG. 7 shows the incident angle dependence of the incident polarization axis shift amount at the 45 ° azimuth and the phase difference of the polarizing plate protective layer.
  • the ratio between the amount of shift of the incident polarization axis and the change in phase of the protective layer of the polarizing plate protective layer is substantially constant with respect to the change of the incident angle.
  • the liquid crystal layer 21 can be regarded as a uniaxial retardation plate, and its phase difference can be regarded as constant in the 45 ° azimuth.
  • the angle of incidence is determined by a retardation plate whose slow axis is constant regardless of the angle of incidence. And a phase difference plate having a phase difference is required.
  • the refractive index in the thickness direction is nz
  • the maximum refractive index in a plane perpendicular to the thickness direction is nx
  • the direction with the maximum refractive index nx and the thickness with the refractive index nz The refractive index in the direction perpendicular to the vertical direction is ny
  • the refractive index is in the order of nx>nz> ny.
  • the azimuth becomes ⁇ 45 ° from the x-axis (here, the optical axis means the direction of light in which the retardation plate does not show birefringence).
  • Such a retardation plate is arranged such that the xy plane is the substrate surface.
  • the slow axis of this retarder is at 45 ° irrespective of the incident angle.
  • the phase difference is constant regardless of the angle of incidence.
  • the refractive index in the thickness direction is nz
  • the maximum refractive index in a plane perpendicular to the thickness direction is nx
  • the maximum refractive index nx is
  • ny is the refractive index in the direction perpendicular to the thickness direction and the refractive index is nz
  • ny is the refractive index in the order of nx> nz> ny
  • nz (nx + ny) / 2
  • the retardation plate 30 is disposed between the liquid crystal plate 20 and the polarizing plate protective layer 12B, and nx is set parallel to the orientation of the liquid crystal layer 21.
  • the thickness of the biaxial retardation plate 30 is d, and the optical path length difference A nd in the surface direction of the biaxial retardation plate 30 is (
  • the adjustment is performed based on the optical path length difference ⁇ ⁇ ⁇ between the protective layers 13A and 12B.
  • FIG. 9 shows, in the liquid crystal display device 100A having the configuration shown in FIG. 8, the polarization state of the light incident in the 45 ° azimuth after passing through each member in Poincare sphere display.
  • Fig. 9 ⁇ shows the polarization state of the incident-side polarizing plate 10A after passing through the polarizer 11A
  • Fig. 9 ⁇ shows the polarization state of the incidence-side polarizing plate 10A after passing through the protective layer 13A
  • Fig. 9C shows the IPS of the liquid crystal plate 20.
  • FIG. 9D shows the polarization state after passing through the liquid crystal layer 21, and
  • FIG. 9D shows the polarization state after passing through the biaxial retardation plate 30.
  • FIG. 9E shows the polarization state after passing through the protective layer 13B of the emission-side polarizing plate 10B.
  • the refractive index in the thickness direction is nz
  • the maximum refractive index in a plane perpendicular to the thickness direction is nx
  • the direction of the maximum refractive index nx and the refractive index nz are nz.
  • the refractive index in the direction perpendicular to the thickness direction is ny
  • the refractive index in the order of nx>nz> ny is shown
  • the Poincare sphere shown in Fig. 9 it is the S2 coordinate axis.
  • the polarization state can be converted to a point symmetric with respect to a plane passing through the S2-S3 coordinate axes. That The polarization state is returned to the equator by the negative phase difference of the rear-emission-side polarizing plate protective layer 13B, and the direction becomes the absorption axis direction of the emission-side polarizer 11B.
  • the optimal ⁇ ⁇ of the biaxial retardation plate 30 is the value of the optical path difference ⁇ ⁇ of the polarizing plate protective layers 13A and 12B.
  • Figure 11 shows the relationship between the difference And the optimal value. In this way, the angle is
  • the viewing angle dependency of the polarizing plate protective layers 13A and 12B on the incident light can be optically compensated by applying the biaxial retardation plate 30.
  • the black level at a specific wavelength in the 45 ° azimuth The purpose of the present invention is to optimize the phase difference plate 30 for improving the performance. Further, a method of optimizing the phase difference plate 30 for improving the black level in a wide wavelength range will be described below.
  • the extraordinary refractive index of the liquid crystal molecules of the liquid crystal layer 21 is ne
  • the ordinary light refractive index is no
  • the refractive index difference ⁇ of the liquid crystal layer 21 is (ne ⁇ no)
  • the optical path length difference of the liquid crystal layer 21 is A nd to (n
  • the liquid crystal layer 21 functions as a ⁇ / 2 plate at a specific wavelength, but the liquid crystal material (liquid crystal molecules) has a wavelength dispersion of a refractive index difference ⁇ .
  • the phase difference is expressed as 2 ⁇ ⁇ And, so the shorter the wavelength, the smaller the phase difference
  • phase difference when the phase difference is set to ⁇ at a predetermined wavelength of green G, it becomes larger than ⁇ at the wavelength of blue ⁇ ⁇ ⁇ and smaller than ⁇ at the wavelength of red R.
  • the wavelength dispersion of the retardation plate 20 has the same tendency as that of the liquid crystal.
  • the polarization state after passing through the incident polarizer protective layer 13A is the force liquid crystal layer 21 located in the northern hemisphere.
  • the wave is rotated 180 ° at the wavelength where the phase difference is ⁇ clockwise around the slow axis on the equator and changes to a symmetrical position in the southern hemisphere. At shorter wavelengths, it is greater than 180 ° and at longer wavelengths, it is less than 180 °.
  • FIG. 12A shows the polarization state of the incident-side polarizing plate 10A after passing through the polarizer 11A
  • FIG. 12 ⁇ shows the polarization state of the incidence-side polarizing plate 10A after passing through the protective layer 13 ⁇
  • FIG. 12C shows the liquid crystal
  • FIG. 12D shows the polarization state after passing through the IPS liquid crystal layer 21 of the plate 20
  • FIG. 12D shows the polarization state after passing through the biaxial retardation plate 30.
  • FIG. 12E shows a polarization state after passing through the protective layer 13B of the emission-side polarizing plate 10B.
  • the polarization state after passing through the biaxial retardation plate 30 will be considered. Since the orientation direction of the liquid crystal layer 21 is the same as the direction of nx (maximum refractive index), the liquid crystal layer 21 also rotates clockwise about the S2 coordinate axis. At the design wavelength, it rotates to a symmetric position with the S2-S3 plane as the axis of symmetry, but at wavelengths shorter than the design wavelength, the rotation angle is large and at long wavelengths, the rotation angle is small. When the wavelength is deviated from the designed wavelength, the deviation of the polarization state after passing through the liquid crystal layer 21 is added to the deviation after passing through the biaxial retardation plate 30. As a result, light leakage increases.
  • the biaxial retardation plate 30 is set so that the refractive index becomes nx.
  • the optimum value of the biaxial retarder in this case is given by the following equation (6).
  • FIG. 13A shows the polarization state of the incident-side polarizing plate 10A after passing through the polarizer 11A
  • FIG. 13B shows the polarization state of the incident-side polarizing plate 10A after passing through the protective layer 13A
  • FIG. 13D shows the polarization state after passing through the IPS liquid crystal layer 21 of the liquid crystal plate 20
  • FIG. 13D shows the polarization state after passing through the biaxial retardation plate 30
  • FIG. 13E shows the polarization state after passing through the protective layer 13B of the emission-side polarizing plate 10B.
  • the polarization state after passing through the liquid crystal layer 21 is a position rotated by ⁇ at the design wavelength, but a position rotated more than ⁇ when shorter than the design wavelength, and more than ⁇ when the wavelength is longer than the design wavelength. This is a small rotated position.
  • the fast axis of the biaxial retardation plate 30 becomes the S2 coordinate axis, the liquid crystal layer 21 rotates counterclockwise, opposite to the liquid crystal layer 21.
  • the position is the same as in the first optimization method, but in the case of a wavelength shorter than the design wavelength, the amount of rotation is large, and in the case of a longer wavelength than the design wavelength, the amount of rotation is small. Correct the amount of deviation after passing. Therefore, compensation can be performed in a wide wavelength range.
  • a protective layer with a thickness of 40 / im (And 30 nm) is also used for applications that emphasize the thinness and weight of the display. The characteristics are improved by using a polarizing plate having a thin protective layer. The relationship with the liquid crystal layer pretilt will be described.
  • the characteristics change depending on the magnitude and direction of the pretilt angle of the liquid crystal molecules of the liquid crystal layer 21. 90
  • the orientation azimuth is set at an angle of 270 °
  • the first and second quadrants have almost the same characteristics
  • the third and fourth quadrants have almost the same characteristics.
  • the pretilt angle should be small, and more desirable.
  • the relationship between the optical path length difference And of the liquid crystal layer 21 and the black level depends on the wavelength other than the design wavelength
  • the spectral transmittance at the black level is set to the shorter wavelength side to increase the spectral transmittance at the longer wavelength side relatively, and the spectral transmittance at the shorter wavelength side is decreased relatively to the chromaticity at the black level. Is adjustable.
  • the design wavelength is the optical path length difference A nd of the liquid crystal layer 21.
  • using the second optimization method enables compensation over a wider wavelength range than using the first optimization method.
  • the actual design should be performed in consideration of the easiness of manufacturing the retardation plate 30 and the easiness of the bonding process of the retardation plate 30 and the polarizing plate 10B.
  • the optical path difference A nd is smaller than that of the first optimization method.
  • phase difference plate 30 may make it difficult to manufacture the phase difference plate 30 or may cause unevenness in the optical path length difference A nd.
  • the stretching directions of the polarizing plate 10B and the retardation plate 30 match, but the first optimization In the case of the optimization method, they are orthogonal. Therefore, it can be said that using the second optimization method for the bonding process is more desirable in manufacturing.
  • the optical path length difference A nd of the biaxial retarder 30 is smaller than the target value.
  • Incident azimuth of incident side polarizing plate 90 °
  • Liquid crystal layer orientation 90 °
  • Liquid crystal layer pretilt angle 2 ° (direction to open 90 ° on lower substrate)
  • nz (nx + ny) / 2
  • Polarizer protective layer material TAC
  • Protective layer And 50 nm (optical axis perpendicular to plane, plane direction And> thickness direction And)
  • Example 1 the viewing angle characteristics at the black display level are shown in FIG. 14, and the viewing angle Pola (elevation angle) is 70.
  • Figure 15 shows the black level spectral transmittance when the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 °, and the azimuth Azim is 345 ° and 330 ° at the viewing angle Pola (elevation angle) of 70 °. , 315. , 300 °, and 285 °, the black level spectral transmittance exhibits characteristics as shown in FIG.
  • the azimuth angle Azim is shown as a counterclockwise angle with the viewing angle Pola from the right toward 0 °.
  • the liquid crystal display device 100A was configured under the following conditions.
  • Incident azimuth of incident side polarizing plate 90 °
  • Liquid crystal layer orientation 90 °
  • Liquid crystal layer pretilt angle 2 ° (direction to open 90 ° on lower substrate)
  • nz (nx + ny) / 2
  • Polarizer protective layer material TAC
  • Protective layer ⁇ ⁇ 50 nm (optical axis perpendicular to plane, plane direction And> thickness direction And)
  • the viewing angle characteristics at the black display level are shown in FIG. 17, and the viewing angle Pola (elevation angle) is 70.
  • Figure 18 shows the black level spectral transmittance when the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 °, and the azimuth Azim is 345 ° and 330 ° when the viewing angle Pola is 70 °. , 315 °, 300 °, and 285 °, the black level spectral transmittance exhibits characteristics as shown in FIG.
  • the azimuth angle Azim is shown as a counterclockwise angle with the viewing angle Pola from the right toward 0 °.
  • the liquid crystal display device 100A was configured under the following conditions.
  • Incident azimuth of incident side polarizing plate 90 °
  • Liquid crystal layer orientation 90 °
  • Liquid crystal layer pretilt angle 2 ° (direction to open 90 ° on lower substrate)
  • nz (nx + ny) / 2
  • Polarizer protective layer material TAC
  • Example 3 the viewing angle characteristics at the black display level are shown in FIG. 20, and the viewing angle Pola (elevation angle) is 70.
  • Figure 21 shows the black level spectral transmittance when the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 °, and the azimuth Azim force is 345 ° and 330 ° at a viewing angle Pola (elevation angle) of 70 °. , 315 °, 300 °, and 285 °, the black level spectral transmittance exhibits characteristics as shown in FIG.
  • the azimuth angle Azim is shown as a counterclockwise angle with the viewing angle Pola from the right toward 0 °.
  • the liquid crystal display device 100A was configured under the following conditions.
  • Incident azimuth of incident side polarizing plate 90 °
  • Liquid crystal layer orientation 90 °
  • Liquid crystal layer pretilt angle 2 ° (direction to open 90 ° on lower substrate)
  • nz (nx + ny) / 2
  • Polarizer protective layer material TAC
  • Protective layer ⁇ ⁇ 30 nm (optical axis perpendicular to plane, plane direction And> thickness direction And)
  • Example 4 the viewing angle characteristics at the black display level are shown in FIG. 20, and the viewing angle Pola (elevation angle) is 70.
  • Figure 24 shows the black level spectral transmittance when the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 °, and the azimuth Azim is 345 ° and 330 ° when the viewing angle Pola is 70 °. , 315. , 300 °, and 285 °, the black level spectral transmittance exhibits characteristics as shown in FIG.
  • the azimuth angle Azim is shown as a counterclockwise angle with the viewing angle Pola from the right toward 0 °.
  • the liquid crystal display device 100A was configured under the following conditions.
  • Incident azimuth of incident side polarizing plate 90 °
  • Liquid crystal layer orientation 90 °
  • Liquid crystal layer pretilt angle 0.5 ° (direction to open 90 ° on lower substrate)
  • nz (nx + ny) / 2
  • Polarizer protective layer material TAC
  • Example 5 the viewing angle characteristics at the black display level are shown in FIG. 26, and the viewing angle Pola (elevation angle) is 70.
  • Figure 27 shows the black level spectral transmittance when the azimuth Azim is 15 ° 30 ° 45 ° 60 ° 75 °, and the azimuth Azim is 345 ° 330 ° 315 ° 300 ° at a viewing angle Pola (elevation angle) of 70 °.
  • the black level spectral transmittance at 285 ° exhibits the respective characteristics as shown in FIG.
  • the azimuth angle Azim is shown as a counterclockwise angle with the viewing angle Pola from the right toward 0 °.
  • the liquid crystal display device 100A was configured under the following conditions.
  • Incident azimuth of incident side polarizing plate 90 °
  • Liquid crystal layer orientation 90 °
  • Liquid crystal layer pretilt angle 0.5 ° (direction to open 90 ° on lower substrate)
  • nz (nx + ny) / 2
  • Polarizer protective layer material TAC
  • Example 6 the viewing angle characteristics at the black display level are shown in FIG. 29, and the viewing angle Pola (elevation angle) is 70.
  • Figure 30 shows the black level spectral transmittance when the azimuth Azim is 15 ° 30 ° 45 ° 60 ° 75 °, and the azimuth Azim is 345 ° 330 ° 315 ° 300 ° at a viewing angle Pola (elevation angle) of 70 °
  • the black level spectral transmittance in the case of 285 ° exhibits each characteristic as shown in FIG.
  • the azimuth angle Azim is the counterclockwise angle with the viewing angle Pola from the right as 0 °. Indicated by.
  • the liquid crystal display device 100A was configured under the following conditions.
  • Incident azimuth of incident side polarizing plate 90 °
  • Liquid crystal layer orientation 90 °
  • Liquid crystal layer pretilt angle 2 ° (direction to open 90 ° on lower substrate)
  • Biaxial retarder ⁇ nd 424nm (polycarbonate or modified polycarbonate)
  • nz (nx + ny) / 2
  • Polarizer protective layer material TAC
  • Protective layer ⁇ ⁇ 50 nm (optical axis perpendicular to plane, plane direction And> thickness direction And)
  • Example 7 the viewing angle characteristics at the black display level are shown in FIG. 32, and the viewing angle Pola (elevation angle) is 70.
  • Figure 33 shows the black level spectral transmittance when the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 °, and the azimuth Azim is 345 ° and 330 ° at the viewing angle Pola (elevation angle) of 70 °. , 315. , 300 °, and 285 °, the black level spectral transmittance exhibits characteristics as shown in FIG.
  • the azimuth angle Azim is shown as a counterclockwise angle with the viewing angle Pola from the right toward 0 °.
  • the liquid crystal display device 100A was configured under the following conditions.
  • Incident azimuth of incident side polarizing plate 90 °
  • Liquid crystal layer orientation 90 °
  • nz (nx + ny) / 2
  • Polarizer protective layer material TAC
  • Protective layer And 50 nm (optical axis perpendicular to plane, plane direction And> thickness direction And)
  • Example 8 the viewing angle characteristics at the black display level are shown in FIG. 35, and the viewing angle Pola (elevation angle) is 70.
  • Figure 36 shows the black level spectral transmittance when the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 °, and the azimuth Azim is 345 ° and 330 ° when the viewing angle Pola is 70 °. , 315 °, 300 °, and 285 °, the black level spectral transmittance exhibits characteristics as shown in FIG.
  • the azimuth angle Azim is shown as a counterclockwise angle with the viewing angle Pola from the right toward 0 °.
  • the liquid crystal display device 100A was configured under the following conditions.
  • Incident azimuth of incident side polarizing plate 90 °
  • Liquid crystal layer orientation 90 °
  • Liquid crystal layer pretilt angle 2 ° (direction to open 90 ° on lower substrate)
  • Biaxial retarder ⁇ nd 380nm (polycarbonate or modified polycarbonate)
  • nz (nx + ny) / 2
  • Polarizer protective layer material TAC
  • Example 9 the viewing angle characteristics at the black display level are shown in FIG. 38, and the viewing angle Pola (elevation angle) is 70.
  • Fig. 39 shows the black level spectral transmittance when the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 °, and the azimuth Azim is 345 ° and 330 ° when the viewing angle Pola is 70 °. , 315 °, 300 °, and 285 °, the black level spectral transmittance exhibits characteristics as shown in FIG.
  • the azimuth angle Azim is shown as a counterclockwise angle with the viewing angle Pola from the right direction as 0 °.
  • the same result can be obtained if the relationship between the phase difference plate position and the orientation is relatively the same.
  • the same result is obtained when the surface is reversed, and in this case, the retardation plate is located between the incident side polarizing plate and the liquid crystal layer. Also, the overall direction is 90. The same result is obtained with rotation.
  • liquid crystal molecules are operated by an electric field parallel to the substrate, and so-called in-plane switching mode liquid crystal display devices are not effective. Similar optical compensation is possible when using a liquid crystal operation mode for in-plane switching such as a display device. Further, a similar effect can be obtained by using a retardation plate instead of the liquid crystal layer as an optical compensation of the polarizing plate.
  • a retardation plate instead of the liquid crystal layer as an optical compensation of the polarizing plate.
  • a configuration in which an incident side polarizing plate 10A, a retardation plate 30, a liquid crystal plate 20, and an outgoing side polarizing plate 10B are arranged in this order can be employed.
  • a specific embodiment 10 of the liquid crystal display device 100B is shown below.
  • the liquid crystal display device 100B was configured under the following conditions.
  • Liquid crystal layer orientation 90 °
  • Liquid crystal layer A nd 275 nm
  • Liquid crystal layer pretilt angle 2 ° (direction to open 90 ° on lower substrate)
  • Biaxial retarder ⁇ nd 380nm (polycarbonate or modified polycarbonate)
  • nz (nx + ny) / 2
  • Polarizer protective layer material TAC
  • Protective layer A nd 30 nm (optical axis perpendicular to plane, plane direction A nd> thickness direction A nd)
  • Example 11 a case in which the entire azimuth in Example 9 described above is rotated by 90 ° is referred to as Example 11 below. Shown below.
  • the liquid crystal display device 100A was configured under the following conditions.
  • Liquid crystal layer orientation 0 °
  • Liquid crystal layer A nd 275 nm
  • Liquid crystal layer pretilt angle 2 ° (direction of opening in 0 ° direction on lower substrate)
  • Biaxial retarder ⁇ nd 380nm (polycarbonate or modified polycarbonate)
  • nz (nx + ny) / 2
  • Polarizer protective layer material TAC
  • nz (nx + ny) / 2 regarding the refractive index of the biaxial retardation plate 30.
  • These conditions merely show the most optimal conditions, and even if deviated from this relationship, they should be regarded as the same as the present invention if there is no difference from the gist of the present invention. The same applies to the above-mentioned relational expression indicating the optimal And of the biaxial retardation plate 30.
  • the liquid crystal display device 100C has a configuration in which the incident side polarizing plate 10 °, the biaxial phase difference plate 30 °, the liquid crystal plate 20, the biaxial phase difference plate 30 °, and the output polarizing plate 10B are arranged in this order.
  • the combination of the azimuth, the optical path length difference, and the ratio of the refractive index (nx, ny, nz) of the azimuth of the biaxial retarder 30 ° and the biaxial retarder 30 ° is not necessarily limited to one. The method shown below shows just one of them.
  • the optical path length difference An of the biaxial retardation plate 30B becomes / 2 at the design wavelength.
  • a biaxial retardation plate 30A is used as a first retardation plate to cancel a change in polarization state caused by light passing through the liquid crystal layer 21 to change to a polarization state after passing through the incident polarization protection layer 13A.
  • the polarization state is changed by 180 ° using a biaxial phase difference plate 30 ° that acts as a ⁇ ⁇ 2 plate, and the change in the polarization state caused by passing through the output polarizing plate protective layer 12B is protected by the incident polarizing plate.
  • FIG. 43 shows the polarization state after passing through the polarizer 11A of the incident-side polarizer 10A.
  • Fig. 43 ⁇ shows the polarization state after passing through the protective layer 13A of the incident side polarizing plate 1OA
  • Fig. 43C shows the polarization state after passing through the phase difference plate 30A
  • Fig. 43D shows the IPS liquid crystal layer 21 of the liquid crystal plate 20.
  • FIG.43E shows the polarization state after passing through the biaxial retardation plate 30B
  • FIG.43F shows the polarization state after passing through the protective layer 13B of the emission-side polarization plate 10B.
  • the incident side polarizing plate 10A, the phase difference plate 30A1, the liquid crystal plate 20, the phase difference plate 30B, and the emission side polarizing plate 10B have the absorption axis of the incident side polarizing plate 10A at 90 ° and the nx orientation of the phase difference plate 30A.
  • 90 ° the orientation direction of the liquid crystal layer 21 is set to 90 °
  • the nx direction of the phase difference plate 30B is set to 0 °
  • the absorption axis of the output side polarizing plate 10B is set to 0 °.
  • the amount of phase shift when deviating from the design wavelength is as described in the second optimization method. As a result, it becomes difficult to suppress black level light leakage in a wide range.
  • the fourth optimization of the retarder to improve the black level at the 45 ° azimuth viewing angle The method will be described.
  • RF1 is expressed by the following equation (8).
  • ⁇ RFi ⁇ 2 ⁇ ⁇ ? Aan ' 1 ⁇ ⁇ TAC (8)
  • FIG. 44 ⁇ shows the polarization state of the incident-side polarizing plate 10A after passing through the polarizer 11A
  • Figure 44 ⁇ shows the polarization state of the incident-side polarizing plate 1A after passing through the protective layer 13A
  • Figure 44C shows the phase difference plate 30A
  • 44D shows the polarization state after passing through the IPS liquid crystal layer 21 of the liquid crystal plate 20
  • FIG. 44E shows the polarization state after passing through the biaxial retardation plate 30B
  • FIG. The state of polarization after passing through the protective layer 13B of the emission-side polarizing plate 10B is shown.
  • the incident side polarizing plate 10A, the phase difference plate 30A, the liquid crystal plate 20, the phase difference plate 30B, and the emission side polarizing plate 10B have the absorption axis of the incident side polarizing plate 10A at 90 ° and the nx orientation of the phase difference plate 30A. 0 °, the orientation direction of the liquid crystal layer 21 is 90 °, the nx direction of the phase difference plate 30B is 0 °, and the absorption axis of the output side polarizing plate 10B is 0 °.
  • the azimuth of the phase difference plate 30B can be as large as 90 °, but the wavelength dependence becomes large.
  • nz (nx + ny) / 2.
  • the optical path length difference And of the uniaxial retardation plate (retardation plate 30 °) is set so that the sum with the optical path length difference And of the liquid crystal layer 21 becomes ⁇ .
  • a uniaxial phase difference plate (phase difference C
  • the direction in which the refractive index of the biaxial retardation plate is nx is perpendicular to the liquid crystal layer alignment direction.
  • the liquid crystal display device 100C was configured under the following conditions.
  • Incident azimuth of incident side polarizing plate 90 °
  • Liquid crystal layer orientation 90 °
  • Liquid crystal layer pretilt angle 2 ° (direction to open 90 ° on lower substrate)
  • nz (nx + ny) / 2
  • Biaxial retardation plate 2nd 260nm (polycarbonate or modified polycarbonate)
  • nz (nx + ny) / 2
  • Polarizer protective layer material TAC
  • Protective layer A nd 30 nm (optical axis perpendicular to plane, plane direction A nd> thickness direction A nd)
  • Example 12 the viewing angle characteristics at the black display level are shown in FIG. 45, and the viewing angle Pola (elevation angle) is 70.
  • FIG. 46 shows the black level spectral transmittance when the visual angle Pola (elevation angle) is 70 ° and the azimuth Azim is 345 ° 330 ° 315 300 ° 285 °, as shown in FIG. 47.
  • the azimuth angle Azim is shown as a counterclockwise angle with the viewing angle Pola from the right toward 0 °.
  • the liquid crystal display device 100C was configured under the following conditions.
  • Incident azimuth of incident side polarizing plate 90 °
  • Liquid crystal layer orientation 90 °
  • Liquid crystal layer pretilt angle 0.5 ° (direction to open 90 ° on lower substrate)
  • Biaxial retarder 1 ⁇ 416: 416nm Polycarbonate or modified polycarbonate
  • nz (nx + ny) / 2
  • Biaxial retarder 2 And 260nm Polycarbonate or modified polycarbonate
  • nz (nx + ny) / 2
  • Polarizer protective layer material TAC
  • Protective layer ⁇ ⁇ 30 nm (optical axis perpendicular to plane, plane direction And> thickness direction And)
  • Example 13 the viewing angle characteristics at the black display level are shown in FIG. 48, and the viewing angle Pola (elevation angle) is 70.
  • Fig. 49 shows the black level spectral transmittance when the azimuth Azim is 15 ° 30 ° 45 ° 60 ° 75 °, and the azimuth Azim force is 345 ° 330 ° 315 ° 300 ° at a viewing angle Pola (elevation angle) of 70 °.
  • the black level spectral transmittance at 285 ° exhibits each characteristic as shown in FIG.
  • the azimuth angle Azim is shown as a counterclockwise angle with the viewing angle Pola from the right toward 0 °.
  • the liquid crystal display device 100C was configured under the following conditions. Incident azimuth of incident side polarizing plate: 90 °
  • Liquid crystal layer orientation 90 °
  • Liquid crystal layer pretilt angle 0.5 ° (direction to open 90 ° on lower substrate)
  • nz (nx + ny) / 2
  • Polarizer protective layer material TAC
  • Protective layer ⁇ ⁇ 30 nm (optical axis perpendicular to plane, plane direction And> thickness direction And)
  • Example 14 the viewing angle characteristics at the black display level are shown in FIG. 51, and the viewing angle Pola (elevation angle) is 70.
  • Figure 52 shows the black level spectral transmittance when the azimuth Azim is 15 °, 30 °, 45 °, 60 °, and 75 °, and the azimuth Azim is 345 ° and 330 ° when the viewing angle Pola is 70 °. , 315. , 300 °, and 285 °, the black level spectral transmittance exhibits characteristics as shown in FIG.
  • the azimuth angle Azim is shown as a counterclockwise angle with the viewing angle Pola from the right toward 0 °.

Abstract

 負の位相差を持つ保護層で構成される偏光板(10A),(10B)を用いる場合にその負の位相差値に合わせて最適化した位相差板を液晶板(20)と出射側偏光板(10A)との間の位置P1又は入射側偏光板(10A)と液晶板(20)との間の位置P2あるいは両方に挿入することにより、45°方位の黒レベル光抜けを低減する。このようにして、インプレーンスイッチングモードの液晶表示装置において、黒表示における視野角を改善するための光学補償を行う。

Description

技術分野
[0001] 本発明は、直交する一対の偏光子とそれを保護する保護層からなる偏光板とその 間に一方の偏光板吸収軸方位と平行に配向された液晶層を持つ液晶表示装置に 関する。
本出願は、 日本国において 2003年 8月 11日に出願された日本特許出願番号 200
3—291859を基礎として優先権を主張するものであり、この出願は参照することによ り、本出願に援用される。 田 背景技術
[0002] 液晶表示装置は、低電圧、低消費電力で ICと直結でき、表示機能が多様で且つ 軽量化、小型化が容易であるなど多くの特長を有することから、ワードプロセッサゃパ 一ソナルコンピュータなどの〇A機器やテレビジョン、カーナビゲーシヨンモニタゃ航 空機コックピット用モニタなど、種々の表示手段として広く普及している。
液晶表示装置には液晶の配向の変化を可視化させるために、偏光板が用いられて いる。偏光板は、通常、偏光子に透明保護膜 (TAC)を積層して構成されている。偏 光子は入射光を互いに直交する 2つの偏光成分に分け、その一方 (振動方向が偏光 子の透過軸と平行な成分)のみを通過させ、他の成分 (振動方向が偏光子の吸収軸 と平行な成分)を吸収又は分散する光学素子である。
透過型の液晶表示装置は、液晶セルをその厚さ方向の両側から偏光板で挟んで 構成される。両側の偏光子は互レ、の透過軸を直交させて配置されるのが一般的であ る。透過軸を直交させた一対の偏光子を直交偏光子と言う。一般に、偏光子の特性 には視角依存性があり、偏光子に対して斜め方向から光が入射すると透過軸の方向 が変化する。したがって、垂直入射光に対して 2枚の偏光子を各々の透過軸が互い に直交するように重ね合わせても、斜め入射光に対しては交差角度が直角からずれ てしまい、第 1の偏光子を通過した偏光は第 2の偏光子の透過軸と平行な方向の成 分を有し、この成分が第 2の偏光子 2を通過して漏光を生じる。 このような偏光子の視角依存性は、液晶表示装置の画面の明るさ、コントラスト、色 合いなどを良好に視認できる視角範囲 (視野角)を狭くする原因となる。視野角の広 い液晶表示装置を実現するには、偏光子の視角依存性を軽減して漏光のほとんど 生じない視角範囲 (視野角)を広くした偏光板、すなわち広視野角偏光板の開発が 必須であり、これまでに、いっかのものが提案されている。
例えば、特開 2001-350022号公報には、偏光子の視角依存性を軽減して視角 範囲 (視野角)を広くした液晶表示装置を実現するために、偏光子の光学補償に 2軸 性位相差板を用いることが記述されている。
ところで、基板に平行な電界により液晶分子を動作させるいわゆるインプレーンスィ ツチングモードの液晶表示装置は、広い視角において画像階調反転、色変化がなく CRTに置き換わる画像表示装置として有望である。
し力、しながら、インプレーンスイッチングモードの液晶表示装置においても、黒表示 レベルの視野角、特に表示装置を構成する一対の偏光板偏光軸から 45° の方位の 視角におレ、て光抜けが起こり、コントラスト低下を招いてレ、た。
また、偏光板は所定方向の光を透過させる偏光子に保護層を積層して形成される 、その保護層は、保護材料として TAC等を用い、偏光子を両側から挟み込むよう に積層されるのが一般的である。したがって、偏光子を通過した入射光は、偏光子と 液晶セル間に介在する保護層を通過して、液晶層に至ることになる。
図 1は黒表示レベルの視野角特性を示している。ここで、下側偏光板 (バックライト 側)吸収軸 90° 、上側偏光板吸収軸 0° 、液晶配向方位角 90° (下側基板上配向 方位 90° 方向に開く方向)、基板プレチルト角 2° に設定してある。液晶層の光路長 差 A nd は 275nm (波長 550nm)に設定してある。偏光板を形成している保護層材
LC
料は TACで基板に垂直な方向に光軸を持つ 1軸性の位相差板として機能している。 下側偏光板、上側偏光板について、その偏光子と液晶層の間に介在する各々の保 護層基板の光路長 A nd は 50nmである。図中 a eは入射光に対する漏れ光の
TAC0
比率が、同じ図中の欄に掲載した値となる等高線を示し、 45° 方向の光抜けが大き レ、ことがわかる。
図 2は視角 Pola (仰角) 70° で方位角 Azimを 15° 、 30° 、45° 、 60° 、 75° の 場合の黒レベル分光透過率を示し、図 3は視角 Pola (仰角) 70° で方位角 Azimが 3 45° 、 330° 、 315° 、 300。 、 285° の場合の黒レベル分光透過率を示している 。ここで、方位角 Azimは向かって右方向からの視角を 0° として反時計周りの角度 で示している。
偏光板偏光軸から 45° の方位からの視角(45° 、 135° 、 225° 、 315° )で透 過率が高ぐ黄色味を帯びた分光透過率となっているため、表示品位を低下させて いる。
そして、上記特許文献 1には、偏光子の光学補償に 2軸性位相差板を用いることが 開示されているが、偏光板の偏光子と液晶層の間に負の位相差を有する保護層が 介在する場合については述べられておらず、さらに、保護層が介在し、且つ、インプ レーンスイッチングモードの液晶層を用いた場合にっレ、ても述べられてレ、なレ、。した がって、上記特許文献 1野開示技術を用いても、この表示品位を低下させる問題を 解消し、視角依存性を補償することが困難であった。
発明の開示
発明が解決しょうとする課題
そこで、本発明は、上述の如き従来の実情に鑑み、直交する一対の偏光子とそれ を保護する保護層からなる一対の偏光板の間に、一方の偏光板吸収軸方位と平行 に配向された液晶層を持つ液晶表示装置、例えば基板に平行な電界により液晶分 子を動作させるいわゆるインプレーンスイッチングモードの液晶表示装置において、 特に負の位相差を持つ保護層が偏光子と液晶板の間に介在する構成の偏光板を用 いる場合に、黒表示における視野角を改善するための光学補償を行レ、、その負の位 相差値に合わせて最適化した位相差板の構成を提案することを目的とする。
第 1の観点による本発明の液晶表示装置は、それぞれ偏光子に保護層を積層して なり透過軸が互いに直交する一対の偏光板の間に、一方の偏光板吸収軸方位と液 晶分子が平行に配向された液晶層を持つ液晶板を挟持した構造の液晶表示装置で あって、上記一対の偏光板の保護層は、少なくとも上記液晶層の側に積層され、厚さ 方向に光軸を持ちその厚さ方向と直交する面内には概ね等方的な 1軸性の位相差 板であって、厚さ方向の屈折率が面内の方向の屈折率より小さい負の位相差板とし ての特性を示し、上記液晶板と各偏光板との間の少なく一方に、視角方向に角度を なす入射光に対する上記保護層による視野角依存性を補償する 2軸性の位相差板 が配置されてレ、ることを特徴とする。
さらに、本発明の液晶表示装置は、上記構成に加え、位相差板がその厚さ方法と 直交する面内の屈折率が異なり、その面内に最大の屈折率 nxを示す方位を有する 2軸性位相差板であり、屈折率 nxを示す方位と面内にて直交する方位の屈折率を n yとして、その屈折率の (nx— ny)と位相差板の厚さの積を位相差板の面内光路差長 とし、保護層における厚さ方向の屈折率と面内の方向の屈折率との差及び上記保護 層の厚さの積を保護層の光路長差としたとき、可視光領域の所定の波長において、 位相差板の面内光路長差が保護層の光路長差及び波長の値に基づき、視角方向 に角度をなす入射光に対する視野角依存性を補償するように設定されていることを 特徴とする。
また、第 2の観点による本発明の液晶表示装置は、偏光子の透過軸が互いに直交 する一対の偏光板の間に、一方の偏光板吸収軸方位と液晶分子が平行に配向され た液晶層を持つ液晶板を挟持した構造の液晶表示装置であって、一対の偏光板に は、その各々の上記液晶層の側に、負の位相差を有する 1軸性の位相差板としての 特性を示す同じ厚さの一対の保護層が積層され、液晶板と各偏光板との間双方に第 1の位相差板及び第 2の位相板を各々配置してなり、第 1の位相差板は、その光路長 差が液晶層を光が通過する前の偏光状態になるように設定され、第 2の位相差板は 、その厚さ方向と直交する面内の屈折率が異なり、その面内に最大の屈折率 nxを示 す方位を有する 2軸性位相差板であり、屈折率 nxを示す方位と直交する方位におけ る屈折率を nyとして、その屈折率の差 (nx— ny)と位相差板の厚さの積として規定さ れる位相差板の面内光路長差が概ね I Z2となるように設定され、第 1及び第 2の位 相差板により、一対の保護層を通過した光の偏光状態の変化を光学補償することを 特徴とする。
第 1の位相差板により液晶層を光が通過する前の偏光状態とされ、面内光路長差 が概ね; I Z2となる第 2の位相差板により光の偏光状態を 180° 変化させ、同じ厚さ の一対の保護層の互いの偏光状態を相殺することにより視野角によらず黒レベルを 良好に保つことができる。
さらに、第 1の位相差板は、所定の光路長差を有する 2軸位相差板又は正の 1軸位 相差板により構成することが好適である。
本発明の更に他の目的、本発明によって得られる具体的な利点は、以下に説明さ れる実施の形態の説明から一層明らかにされる。
図面の簡単な説明
[図 1]図 1は、従来の液晶表示装置の黒表示レベルの視野角特性を示す図である。
[図 2]図 2は、従来の液晶表示装置において、視角 Pola (仰角) 70° で方位角 Azim を 15° 、 30° 、45° 、 60° 、 75° の場合の黒レベル分光透過率を示す図である。
[図 3]図 3は、従来の液晶表示装置において、視角 Pola (仰角) 70° で方位角 Azim を 345° 、 330° 、 315° 、 300° 、 285° の場合の黒レベル分光透過率を示す図 である。
[図 4]図 4は、本発明が適用される液晶表示装置の要部構成を示す模式的な端面図 である。
[図 5]図 5は、上記液晶表示装置における偏光板軸角度を示す図であり、図 5Aは正 面から見た場合の偏光板軸角度を示し、図 5Bは斜めから見た場合の偏光板軸角度 を示している。
[図 6]図 6は、上記液晶表示装置において、 45° 方位に入射した光の各部材通過後 の偏光状態をポアンカレ球表示で示した図であり、図 6Aは入射側偏光板の偏光子 を通過後の偏光状態を示し、図 6Bは入射側偏光板の保護層を通過後の偏光状態 を示し、図 6Cは液晶板の IPS液晶層を通過後の偏光状態を示し、図 6Dは出射側偏 光板の保護層を通過後の偏光状態を示している。
[図 7]図 7は、上記液晶表示装置において、 45° 方位での入射偏光軸ズレ量と偏光 板保護層の位相差の入射角依存性を示した図である。
[図 8]図 8は、本発明に係る液晶表示装置の要部構成例を示す模式的な端面図であ る。
[図 9]図 9は、図 8に示した構成の液晶表示装置において、 45° 方位に入射した光の 各部材通過後の偏光状態をポアンカレ球表示で示した図であり、図 9Aは入射側偏 光板の偏光子を通過後の偏光状態を示し、図 9Bは入射側偏光板の保護層を通過 後の偏光状態を示し、図 9Cは液晶板の IPS液晶層を通過後の偏光状態を示し、図 9Dは 2軸位相差板を通過後の偏光状態を示し、図 9Eは出射側偏光板の保護層を 通過後の偏光状態を示している。
[図 10]図 10は、上記液晶表示装置における 2軸位相差板の最適 A ndと入射角の関 係を説明するための図である。
[図 11]図 11は、上記液晶表示装置における保護層の A ndと 2軸位相差板の A ndの 関係を示す図である。
[図 12]図 12は、上記液晶表示装置における 45° 方位視角における黒レベルを改善 するための位相差板の第 1の最適化手法をポアンカレ球上で示す図であり、図 12A は入射側偏光板の偏光子を通過後の偏光状態を示し、図 12Bは入射側偏光板の保 護層を通過後の偏光状態を示し、図 12Cは液晶板の IPS液晶層を通過後の偏光状 態を示し、図 12Dは 2軸位相差板を通過後の偏光状態を示し、図 12Eは出射側偏 光板の保護層を通過後の偏光状態を示している。
[図 13]図 13は、上記液晶表示装置における 45° 方位視角における黒レベルを改善 するための位相差板の第 2の最適化手法をポアンカレ球上で示す図であり、図 13A は入射側偏光板の偏光子を通過後の偏光状態を示し、図 13Bは入射側偏光板の保 護層を通過後の偏光状態を示し、図 13Cは液晶板の IPS液晶層を通過後の偏光状 態を示し、図 13Dは 2軸位相差板を通過後の偏光状態を示し、図 13Eは出射側偏 光板の保護層を通過後の偏光状態を示している。
[図 14]図 14は、図 8に示した構成の液晶表示装置の実施例 1における黒表示レベル の視野角特性を示す図である。
[図 15]図 15は、上記実施例 1における視角 Pola (仰角) 70° で方位角 Azimを 15° 、 30° 、 45° 、 60° 、 75° の場合の黒レベル分光透過率を示す図である。
[図 16]図 16は、上記実施例 1における視角 Pola (仰角) 70° で方位角 Azimを 345 。 、 330° 、 315° 、 300° 、 285° の場合の黒レベル分光透過率を示す図である。
[図 17]図 17は、図 8に示した構成の液晶表示装置の実施例 2における黒表; の視野角特性を示す図である。 [図 18]図 18は、上記実施例 2における視角 Pola (仰角) 70° で方位角 Azimを 15° 、 30° 、 45° 、 60° 、 75° の場合の黒レベル分光透過率を示す図である。
[図 19]図 19は、上記実施例 2における視角 Pola (仰角) 70° で方位角 Azimを 345 。 、 330° 、 315° 、 300° 、 285° の場合の黒レベル分光透過率を示す図である。
[図 20]図 20は、図 8に示した構成の液晶表示装置の実施例 3における黒表示レベル の視野角特性を示す図である。
[図 21]図 21は、上記実施例 3における視角 Pola (仰角) 70° で方位角 Azimを 15° 、 30° 、 45° 、 60° 、 75° の場合の黒レベル分光透過率を示す図である。
[図 22]図 22は、上記実施例 3における視角 Pola (仰角) 70° で方位角 Azimを 345 。 、 330° 、 315° 、 300° 、 285° の場合の黒レベル分光透過率を示す図である。
[図 23]図 23は、図 8に示した構成の液晶表示装置の実施例 4における黒表示レベル の視野角特性を示す図である。
[図 24]図 24は、上記実施例 4における視角 Pola (仰角) 70° で方位角 Azimを 15° 、 30° 、 45° 、 60° 、 75° の場合の黒レベル分光透過率を示す図である。
[図 25]図 25は、上記実施例 4における視角 Pola (仰角) 70° で方位角 Azimを 345 。 、 330° 、 315° 、 300° 、 285° の場合の黒レベル分光透過率を示す図である。
[図 26]図 26は、図 8に示した構成の液晶表示装置の実施例 5における黒表示レベル の視野角特性を示す図である。
[図 27]図 27は、上記実施例 5における視角 Pola (仰角) 70° で方位角 Azimを 15° 、 30° 、 45° 、 60° 、 75° の場合の黒レベル分光透過率を示す図である。
[図 28]図 28は、上記実施例 5における視角 Pola (仰角) 70° で方位角 Azimを 345 。 、 330° 、 315° 、 300° 、 285° の場合の黒レベル分光透過率を示す図である。
[図 29]図 29は、図 8に示した構成の液晶表示装置の実施例 6における黒表示レベル の視野角特性を示す図である。
[図 30]図 30は、上記実施例 6における視角 Pola (仰角) 70° で方位角 Azimを 15° 、 30° 、 45° 、 60° 、 75° の場合の黒レベル分光透過率を示す図である。
[図 31]図 31は、上記実施例 6における視角 Pola (仰角) 70° で方位角 Azimを 345 。 、 330° 、 315° 、 300° 、 285° の場合の黒レベル分光透過率を示す図である。 [図 32]図 32は、図 8に示した構成の液晶表示装置の実施例 7における黒表示レベル の視野角特性を示す図である。
[図 33]図 33は、上記実施例 7における視角 Pola (仰角) 70° で方位角 Azimを 15° 、 30° 、 45° 、 60° 、 75° の場合の黒レベル分光透過率を示す図である。
[図 34]図 34は、上記実施例 7における視角 Pola (仰角) 70° で方位角 Azimを 345 。 、 330° 、 315° 、 300° 、 285° の場合の黒レベル分光透過率を示す図である。
[図 35]図 35は、図 8に示した構成の液晶表示装置の実施例 8における黒表示レベル の視野角特性を示す図である。
[図 36]図 36は、上記実施例 8における視角 Pola (仰角) 70° で方位角 Azimを 15° 、 30° 、 45° 、 60° 、 75° の場合の黒レベル分光透過率を示す図である。
[図 37]図 37は、上記実施例 8における視角 Pola (仰角) 70° で方位角 Azimを 345 。 、 330° 、 315° 、 300° 、 285° の場合の黒レベル分光透過率を示す図である。
[図 38]図 38は、図 8に示した構成の液晶表示装置の実施例 9における黒表示レベル の視野角特性を示す図である。
[図 39]図 39は、上記実施例 9における視角 Pola (仰角) 70° で方位角 Azimを 15° 、 30° 、 45° 、 60° 、 75° の場合の黒レベル分光透過率を示す図である。
[図 40]図 40は、上記実施例 9における視角 Pola (仰角) 70° で方位角 Azimを 345 。 、 330° 、 315° 、 300° 、 285° の場合の黒レベル分光透過率を示す図である。
[図 41]図 41は、本発明に係る液晶表示装置の他の要部構成例を示す模式的な端面 図である。
[図 42]図 42は、本発明に係る液晶表示装置のさらに他の要部構成例を示す模式的 な端面図である。
[図 43]図 43は、図 42に示した液晶表示装置における 45° 方位視角における黒レべ ルを改善するための位相差板の第 3の最適化手法をポアンカレ球上で示す図であり 、図 43Aは入射側偏光板の偏光子を通過後の偏光状態を示し、図 43Bは入射側偏 光板の保護層を通過後の偏光状態を示し、図 43Cは位相差板を通過後の偏光状態 を示し、図 43Dは液晶板の IPS液晶層を通過後の偏光状態を示し、図 43Eは 2軸位 相差板を通過後の偏光状態を示し、図 43Fは出射側偏光板の保護層を通過後の偏 光状態を示している。
[図 44]図 44は、図 42に示した液晶表示装置における 45° 方位視角における黒レべ ルを改善するための位相差板の第 4の最適化手法をポアンカレ球上で示す図であり 、図 44Aは入射側偏光板の偏光子を通過後の偏光状態を示し、図 44Bは入射側偏 光板の保護層を通過後の偏光状態を示し、図 44Cは位相差板を通過後の偏光状態 を示し、図 44Dは液晶板の IPS液晶層 21を通過後の偏光状態を示し、図 44Eは 2軸 位相差板を通過後の偏光状態を示し、図 44Fは出射側偏光板の保護層を通過後の 偏光状態を示している。
[図 45]図 45は、図 42に示した液晶表示装置の実施例 12における黒表示レベルの 視野角特性を示す図である。
[図 46]図 46は、上記実施例 12における視角 Pola (仰角) 70° で方位角 Azimを 15 ° 、 30° 、 45° 、 60° 、 75° の場合の黒レベル分光透過率を示す図である。
[図 47]図 47は、上記実施例 12における視角 Pola (仰角) 70° で方位角 Azimを 345 。 、 330° 、 315° 、 300° 、 285° の場合の黒レベル分光透過率を示す図である。
[図 48]図 48は、図 42に示した液晶表示装置の実施例 13における黒表示レベルの 視野角特性を示す図である。
[図 49]図 49は、上記実施例 13における視角 Pola (仰角) 70° で方位角 Azimを 15 ° 、 30。 、 45° 、 60° 、 75° の場合の黒レベル分光透過率を示す図である。
[図 50]図 50は、上記実施例 13における視角 Pola (仰角) 70° で方位角 Azimを 345 。 、 330° 、 315° 、 300° 、 285° の場合の黒レベル分光透過率を示す図である。
[図 51]図 51は、図 42に示した液晶表示装置の実施例 14における黒表示レベルの 視野角特性を示す図である。
[図 52]図 52は、上記実施例 14における視角 Pola (仰角) 70° で方位角 Azimを 15 ° 、 30° 、 45° 、 60° 、 75° の場合の黒レベル分光透過率を示す図である。
[図 53]図 53は、上記実施例 14における視角 Pola (仰角) 70° で方位角 Azimを 345 。 、 330° 、 315° 、 300° 、 285° の場合の黒レベル分光透過率を示す図である。 発明を実施するための最良の形態
以下、本発明の実施の形態について、図面を参照して詳細に説明する。 本発明は、例えば図 4に示すような構成の液晶表示装置 100に適用される。この図 4には、黒レベル透過率を支配する部材を簡略化して示してある。
この図 4に示す液晶表示装置 100は、互いの透過軸を直交させて配置された一対 の偏光板 10A, 10Bと、その間に配置され、一方の偏光板の吸収軸方位と平行に配 向された液晶層 21を持つ液晶板 20からなる。
上記一対の偏光板 10A, 10Bは、互いの透過軸が直交する一対の偏光子 11A、 1 IBとそれを保護する保護層 12A, 13A, 12B, 13Bからなる。
また、上記液晶板 20は、一方の偏光板の吸収軸方位と平行に配向された液晶層 2 1をガラス基板 22, 23で封入してなる。この液晶板 20は、上記ガラス基板 22, 23に 平行な電界により液晶分子を動作させるレ、わゆるインプレーンスイッチング (IPS)モ ードの液晶表示装置 100を構成している。
まず、このような構成の液晶表示装置 100おいて、光学補償していない場合の 45 ° 方位の黒レベル光抜けの現象について説明する。
偏光板偏光軸から 45° 方位の視角における黒レベルは最も光抜けが大きくなるた め、 45° 方位の視角に関して特に着目する。
以下、 45° 方位とは偏光板偏光軸に対して具体的記述がない場合に関しては 45 。 , 135° , 225° , 315° の方位を示すものとする。
一般的に偏光板 10は延伸した PVA (ポリビニールアルコール)フイノレムにヨウ素等 吸着配向させた偏光子 11を TAC (トリァセチルセルロース)からなる保護層 12 , 13 で挟持した構造であるが、光学補償を考える上では異常光屈折率方向に吸収を持 つ O型偏光子と基板に垂直な方向に光軸を持つ負の位相差板とみなせる。
IPSモードの場合の黒表示状態の液晶層 21は 1軸性の位相差板とみなせ、一般的 には緑色 Gの所定の波長において λ /2板として機能する。つまり、偏光子と保護層 力 なる互いの透過軸が直交する一対の偏光板の間に IPSモードの液晶層を有する 液晶表示装置を位相差板とみなした場合の黒表示状態におけるモデルは、 O型偏 光子(吸収軸 90° )_負位相差板 - 1軸性位相差板(遅相軸 90° )_負位相差板 _〇 型偏光子(吸収軸 0° )となる。
理解を容易にするためにまず、〇型偏光子がクロスニコルに配置された場合を考え ると図 5に示すように、基板に垂直に光が入射した場合は互いの偏光子吸収軸が直 交していても入射角度が大きくなるに従レ、、互いの吸収軸がなす角度は直交からの ズレが大きくなる。よって O型偏光子のみをクロスニコルに設定した場合は偏光軸か ら 45° 方位に入射した光は出射側偏光子を通過し、光抜けが起こる。なお、図 5Aは 正面から見た場合の偏光板軸角度を示し、図 5Bは斜めから見た場合の偏光板軸角 度を示している。
近似的に、 45° 方位から入射した場合に偏光軸の 0° 入射の場合からの偏光板 角度のズレ量 φは、媒質中での視角方向からの入射角を Θとして、次の(1 )式にて 示される。
[数 1]
φ{θ) = - - ί&η'1 [οο&(θ)] ( 1 ) 式
4 偏光子 1 1Aに入射して偏光子 1 1 Bから出射されるまでの光の経路にある偏光板保 護層 13A, 12Bは先述したように負の位相差板として機能し、遅相軸は入射面に垂 直となる。媒質中入射角 Θに対する光路の変化を求めると、光路長差 A nd を偏
TAC0 光板保護層 13A, 12Bが持つ負のリタ一デーシヨンとしたとき、媒質中入射角 Θにお ける光路長差 A nd は、近似的に次の(2)式にて示される。
TAC
[数 2] sin2 (め ( 2 ) 式
cos (め ここに偏光板保護層 13A, 12Bは、その各々の厚さが d であり、厚さ方向に光
TAC0
軸を持ち、その厚さ方向と直交する面内には概ね等方的な 1軸性の位相差板であつ て、厚さ方向の屈折率 nxtが面内の方向の屈折率 nxyより小さい負の位相差板として の特性を示す。また、上述の保護層の光路長差 A nd は、負の光路長差の絶対
TAC0
値 (nxy_nzt) ' d として規定されるものである。
TAC0
液晶層 21は先述したように 1軸性位相差板として機能し、概ね偏光子吸収軸と同じ 方位に遅相軸を持つ。また、 45° 方位では位相差変化はない。 図 6は 45° 方位に入射した光の各部材通過後の偏光状態をポアンカレ球表示で 示している。図 6Aは入射側偏光板 10Aの偏光子 11Aを通過後の偏光状態を示し、 図 6Bは入射側偏光板 10Aの保護層 13Aを通過後の偏光状態を示し、図 6Cは液晶 板 20の IPS液晶層 21を通過後の偏光状態を示し、図 6Dは出射側偏光板 10Bの保 護層 13Bを通過後の偏光状態を示してレ、る。
液晶層 21は緑色 Gの所定の波長では概ね λ /2板として機能する。ポアンカレ球 表示でわかるように IPSモードの場合、液晶層 21は偏光板保護層 13Aの負の位相 差の影響を低減する働きを持っている。し力、しながら先述したように偏光子のみでも 4 5° 方位の視角では出射側偏光板保護層 13Bを通過後の偏光状態は出射側偏光 子 11Bの吸収軸からずれており光抜けが起こる。また、波長により偏光状態が違うた め色付きが起こる。これは主に液晶層 21の光路長差 A nd の波長依存性による。
し C
本発明では、図 4に示した液晶表示装置 100のように、負の位相差を持つ保護層 で構成される偏光板 10A, 10Bを用いる場合にその負の位相差値に合わせて最適 化した位相差板を液晶板 20と出射側偏光板 1 OAとの間の位置 P 1又は入射側偏光 板 10Aと液晶板 20との間の位置 P2あるいは両方に挿入することにより、 45° 方位の 黒レベル光抜けを低減する。
上述の如き構成の液晶表示装置 100おいて、 45° 方位視角における黒レベルを 改善するための位相差板の第 1の最適化手法について説明する。
45° 方位視角における黒レベルを改善するためには、偏光子の偏光軸ズレを打ち 消す位相差板が必要になる。また、偏光板保護層の位相差を考慮する必要がある。 ところで、 45° 方位での入射偏光軸ズレ量と偏光板保護層の位相差の入射角依 存性を示したのが図 7である。
この図 7からわかるように入射角変化に対して入射偏光軸ズレ量と偏光板保護層保 護層の位相変化との比率は概ね一定である。これについては後述する。また、前述 したように液晶層 21は 1軸性位相差板とみなせ 45° 方位ではその位相差は一定と みなせる。 45° 方位の入射光に関して出射側の偏光子 11Bの吸収方向に対して偏 光軸を直交にするためには、入射角によらずに遅相軸が一定である位相差板で入 射角に依存しなレ、位相差を持つ位相差板が必要となる。 座標軸 xyzを考え、厚さ方向の屈折率を nz、厚さ方向と直交する面内で最大の屈 折率を nxとし、その最大の屈折率 nxとなる方向、及び、屈折率 nzとなる厚さ方向と直 交する方向の屈折率を nyとして、 nx>nz >nyの順の屈折率を示し、 nz= (nx+ny ) /2となる 2軸性位相差板の光軸は xy平面で x軸から ±45° 方位になる(ここで光 軸とは位相差板が複屈折を示さない光の方向を言う。)。このような位相差板を xy平 面を基板面となるように配置する。 X軸から 45° 方位を入射面とした場合にこの位相 差板の遅相軸は入射角によらずに 45° 方位となる。また、位相差は入射角によらず に一定となる。
本発明では、例えば図 8に示す液晶表示装置 100Aのように、厚さ方向の屈折率を nz、厚さ方向と直交する面内で最大の屈折率を nxとし、その最大の屈折率 nxとなる 方向、及び、屈折率 nzとなる厚さ方向と直交する方向の屈折率を nyとして、 nx>nz >nyの順の屈折率を示し、 nz= (nx + ny) /2となる 2軸性位相差板 30を液晶板 20 と偏光板保護層 12Bの間に配置し、液晶層 21の配向方位に平行に nxを設定する。
2軸位相差板 30の厚さを d とし、 2軸位相差板 30の面方向の光路長差 A nd を(
RF RF
nx-ny) - d と規定したとき、 2軸位相差板 30の面方向の光路長差 Δ Γ Ι が偏光板
RF RF
保護層 13A, 12Bの光路長差 Δ Γ Ι に基づき調整される。
TAC0
図 9は、この図 8に示した構成の液晶表示装置 100Aにおいて、 45° 方位に入射し た光の各部材通過後の偏光状態をポアンカレ球表示で示している。図 9Αは入射側 偏光板 10Aの偏光子 11Aを通過後の偏光状態を示し、図 9Βは入射側偏光板 10A の保護層 13Aを通過後の偏光状態を示し、図 9Cは液晶板 20の IPS液晶層 21を通 過後の偏光状態を示し、図 9Dは 2軸位相差板 30を通過後の偏光状態を示している 。図 9Eは出射側偏光板 10Bの保護層 13Bを通過後の偏光状態を示している。
この液晶表示装置 100Aにおいて、厚さ方向の屈折率を nz、厚さ方向と直交する 面内で最大の屈折率を nxとし、その最大の屈折率 nxとなる方向、及び、屈折率 nzと なる厚さ方向と直交する方向の屈折率を nyとして、 nx>nz >nyの順の屈折率を示 し、 nz= (nx + ny) Z2となる 2軸位相差板 30の遅相軸は図 9に示すポアンカレ球上 では S2座標軸となる。よって、 2軸位相差板 30の位相差を適当に調整することにより S2—S3座標軸を通る平面対して対称な点に偏光状態を変換することができる。その 後出射側偏光板保護層 13Bの負の位相差によって偏光状態を赤道上に戻し、出射 側偏光板偏光子 11Bの吸収軸方向になる。
2軸位相差板 30の最適 ΔΓ Ι は偏光板保護層 13A, 12Bの光路長差 ΔΓ Ι の
RF TAC0 関数として次の(3)式にて示すことができる。
[数 3]
ndTAr(0)
And, r— 2 tan (3) 式
2π 2 φ(θ)
二で、(1)式、 (2)式より、上記(3)式は次の(4)式のように変形することができる c
[数 4] sin 2 (め
■ And (4) 式
2-φ(θ) π
2 -cos (め — -tan■ cos この(4)式にぉレ、て sin ( Θ )/ (2cos ( θ ) ( π /4— tan (cos ( θ )))の部分にっレ、 て入射角 Θとの関係を調べると図 10となり、入射角 Θに拘わらず概ね一定で Θ =0 で近似的に 2となる。この値を(3)式に代入すると、 2軸位相差板 30の最適な面方向 の光路長差 Andは入射角 Θに拘わらない値となり、次の式(5)となる。
[数 5]
AndD (5) 式
Figure imgf000016_0001
ここで、偏光板保護層 13A, 12Bの光路長差 ΔΓ Ι と 2軸位相差板 30の光路長
TAC0
差 And 最適値との関係を図 11に示してある。このように、視角方向に角度をなす
RF
入射光 Θに対する偏光板保護層 13A, 12Bによる視野角依存性を、 2軸位相差板 3 0を適用することにより光学的に補償することができる。
次に、上述の如き構成の液晶表示装置 100おいて、 45° 方位視角における黒レ ベルを改善するための位相差板の第 2の最適化手法について説明する。
レ、ままで説明した第 1の最適化手法では 45° 方位の特定波長において黒レベル を改善するための位相差板 30を最適化することを目的とした。さらに、広い波長範囲 で黒レベルを改善するための位相差板 30の最適化手法を次に示す。
以下の説明に際し、液晶層 21の液晶分子の異常光屈折率を ne、常光屈折率を no 、液晶層 21の屈折率差 Δ ηを (ne— no)、そして、液晶層 21の光路長差 A nd を (n
LC
e-no) - d と規定する。
LC
先述したように、液晶層 21は特定波長では λ /2板として機能するが、液晶材料( 液晶分子)は屈折率差 Δ ηの波長分散がある。波長が短いほど屈折率差 Δ ηは大き くなる傾向にある。位相差は 2 π Ζ λ · A nd で示されるので波長が短いほど位相差
LC
は大きくなる。つまり、例えば緑色 Gの所定の波長で位相差が πに設定してある場合 には青色 Βの波長では πよりも大きく赤色 Rの波長では πよりも小さくなる。
位相差板 20の波長分散も多くは液晶と同様の傾向にある。
上記第 1の最適化手法の条件において、ポアンカレ球上で考えてみると、図 12に 示すように、入射偏光板保護層 13Aを通過した後の偏光状態は北半球に位置する 力 液晶層 21を通過後、赤道上の遅相軸を中心として右回りに位相差が πとなる波 長においては 180° 回転、南半球の対称な位置に変化する。それよりも短い波長で は 180° より大きぐ長い波長では 180° より小さくなる。
ここで、図 12Aは入射側偏光板 10Aの偏光子 11Aを通過後の偏光状態を示し、図 12Βは入射側偏光板 10Aの保護層 13Αを通過後の偏光状態を示し、図 12Cは液 晶板 20の IPS液晶層 21を通過後の偏光状態を示し、図 12Dは 2軸位相差板 30を 通過後の偏光状態を示してレ、る。図 12Eは出射側偏光板 10Bの保護層 13Bを通過 後の偏光状態を示している。
次に 2軸位相差板 30を通過後の偏光状態を考える。液晶層 21の配向方向と nx ( 屈折率最大)の方向を同じくしてあるため、 S2座標軸を中心としてやはり右回りに回 転する。設計波長においては、 S2-S3面を対称軸として対称位置に回転するが、設 計波長より短い波長では回転角が大きぐ長い波長では回転角が小さくなる。設計波 長からずれた場合に液晶層 21通過後の偏光状態のズレに 2軸位相差板 30通過後 のズレが加わることで、結果的に光り抜けが大きくなる。
広い波長範囲で補償するためには、液晶層 21の配向方向に対して直交する方向 に屈折率 nxとなるように 2軸位相差板 30を設定する。この場合における 2軸位相差 板最適値は、次の(6)式となる。
[数 6]
( 6 )
Δη π + 2 tan — nd 式
2π λ この第 2の最適化手法をポアンカレ球上で示すと図 13に示すようになる。ここで、図 13Aは入射側偏光板 10Aの偏光子 1 1Aを通過後の偏光状態を示し、図 13Bは入 射側偏光板 10Aの保護層 13Aを通過後の偏光状態を示し、図 13Cは液晶板 20の I PS液晶層 21を通過後の偏光状態を示し、図 13Dは 2軸位相差板 30を通過後の偏 光状態を示している。図 13Eは出射側偏光板 10Bの保護層 13Bを通過後の偏光状 態を示している。
すなわち、液晶層 21を通過した後の偏光状態は設計波長では π回転した位置と なるが、設計波長より短い場合には πより大きく回転した位置、設計波長より長い波 長の場合には πより小さく回転した位置となる。次に 2軸位相差板 30の進相軸が S2 座標軸となるため、液晶層 21と反対に左周りに回転する。設計波長の場合には第 1 の最適化手法と同じ位置となるが、設計波長より短い波長の場合には回転量が大き ぐ設計波長より長い場合には回転量が小さくなるため、液晶層 21通過後のズレ量を 補正する。よって、広い波長範囲で補償が可能となる。
ここで、偏光板保護層の厚さと視野角の関係について説明する。
偏光板保護層 13A, 12Bの光路長差 A nd が大きくても j、さくても特定波長で
TACO
45° 方位のみの補償であれば可能である。しかしながら 45° 方位以外での視角で も改善を望む場合、広い波長で改善を望む場合には偏光板保護層の光路長差 Δ η d は小さいほうが望ましレ、。大型 LCD用途では 80 μ m厚さ( Δ nd50nm)が広く
TAC0
使われている力 ディスプレイの薄さ、重さを重視する用途で 40 /i mの厚さ(A nd30 nm)の保護層も使われている。薄い保護層の偏光板を使うことで特性は改善する。 また、液晶層プレチルトとの関係について説明する。
液晶層 21の液晶分子のプレチルト角の大きさと方位によって特性は変化する。 90 ° 一 270° 方位に配向方位が設定されている場合には第 1象限、第 2象限がほぼ同 じ特性、第 3象限、第 4象限がほぼ同じ特性となる。全方位の特性を改善するために はプレチルト角は小さレ、ほうが望ましレ、。
さらに、液晶層の光路長差 A nd との関係について説明する。
LC
液晶層 21の光路長差 A nd に関して、黒レベルとの関係は、設計波長以外での
LC
黒レベルに影響する。黒レベルの分光透過率は設計波長を短波長側にすることで長 波長側の分光透過率を相対的に高ぐ短波長側の分光透過率を相対的に低くする ことで黒レベルの色度を調整可能である。設計波長とは液晶層 21の光路長差 A nd
L
が λ Ζ2の条件を満たす波長である。
C
次に、第 1の最適化手法と第 2の最適化手法 2の選定について説明する。
一般的には、これまでに説明してきたように第 2の最適化手法を用いたほうが第 1の 最適化手法を用いるより広い波長範囲で補償が可能となる。しかしながら実際の設 計に際しては、位相差板 30の製造の容易さ、位相差板 30と偏光板 10Bの貼り合せ 工程の容易さを考慮して行うべきものである。
一般的には 2軸位相差板 30の光路長差 Δ Γ Ι が大きくなるほど製造が困難になる
RF
。第 2の最適化手法を用いた場合には第 1の最適化手法と比べ光路長差 A nd が
RF
大きくなるため位相差板 30の製造上困難になるか光路長差 A nd のムラが生じる可
RF
能十生がある。
一方、 2軸位相差板 30と偏光板 10Bの貼合工程を考えると第 2の最適化手法の場 合には偏光板 10Bと位相差板 30の延伸方向が一致するが、第 1の最適化手法の場 合には直交する。そのため貼合工程に関しては第 2の最適化手法を用いたほうが製 造上望ましいと言える。 2軸位相差板 30の光路長差 A nd が目的とする値より小さ
RF
い値でしか製造できない場合には複数の位相差板を組合せて目的とする光路長差 に調整することも可能である。
ここで、上述の図 8に示した構造、すなわち、入射側偏光板 10A、液晶板 20、位相 差板 30、出射側偏光板 10Bの順に配置された液晶表示装置 100Aについて、以下 に具体的な実施例( <実施例 1 >一 <実施例 9 > )を示す。
ぐ実施例 1 > 次の条件にて液晶表示装置 100Aを構成した。
入射側偏光板吸収軸方位: 90°
液晶層配向方位: 90°
2軸位相差板 nx方位: 90°
出射偏光板吸収軸: 0°
設計波長: 550nm
液晶層 And :275nm
LC
液晶層プレチルト角: 2° (下側基板上で 90° 方位に開く方向)
2軸位相差板 And :126nm (ZEONOR)
RF
2軸位相差板屈折率比: nz= (nx + ny)/2
偏光板保護層材質: TAC
保護層 And :50nm (面に垂直に光軸、面方向 And>厚さ方向 And)
TAC0
この実施例 1は、黒表示レベルの視野角特性を図 14に示し、視角 Pola (仰角) 70 。 で方位角 Azimが 15° 、 30° 、45° 、 60° 、 75° の場合の黒レベル分光透過率 を図 15に示し、視角 Pola (仰角) 70° で方位角 Azimが 345° 、 330° 、 315。 、 3 00° 、 285° の場合の黒レベル分光透過率を図 16に示すような各特性を呈する。こ こで、方位角 Azimは向かって右方向からの視角 Polaを 0° として反時計周りの角度 で示している。
<実施例 2>
次の条件にて液晶表示装置 100Aを構成した。
入射側偏光板吸収軸方位: 90°
液晶層配向方位: 90°
2軸位相差板 nx方位: 0°
出射偏光板吸収軸: 0°
設計波長: 550nm
液晶層 And :275nm
LC
液晶層プレチルト角: 2° (下側基板上で 90° 方位に開く方向)
2軸位相差板 And :423nm (ZEONOR)
RF 2軸位相差板屈折率比: nz= (nx + ny)/2
偏光板保護層材質: TAC
保護層 ΔΓ Ι :50nm (面に垂直に光軸、面方向 And>厚さ方向 And)
TAC0
この実施例 2は、黒表示レベルの視野角特性を図 17に示し、視角 Pola (仰角) 70 。 で方位角 Azimが 15° 、 30° 、45° 、 60° 、 75° の場合の黒レベル分光透過率 を図 18に示し、視角 Pola (仰角) 70° で方位角 Azimが 345° 、 330° 、 315° 、 3 00° 、 285° の場合の黒レベル分光透過率を図 19に示すような各特性を呈する。こ こで、方位角 Azimは向かって右方向からの視角 Polaを 0° として反時計周りの角度 で示している。
ぐ実施例 3 >
次の条件にて液晶表示装置 100Aを構成した。
入射側偏光板吸収軸方位: 90°
液晶層配向方位: 90°
2軸位相差板 nx方位: 90°
出射偏光板吸収軸: 0°
設計波長: 550nm
液晶層 And :275nm
LC
液晶層プレチルト角: 2° (下側基板上で 90° 方位に開く方向)
2軸位相差板 And :184nm (ZEONOR)
RF
2軸位相差板屈折率比: nz= (nx + ny)/2
偏光板保護層材質: TAC
保護層 And :30nm (面に垂直に光軸、面方向 And>厚さ方向 And)
TAC0
この実施例 3は、黒表示レベルの視野角特性を図 20に示し、視角 Pola (仰角) 70 。 で方位角 Azimが 15° 、 30° 、45° 、 60° 、 75° の場合の黒レベル分光透過率 を図 21に示し、視角 Pola (仰角) 70° で方位角 Azim力 345° 、 330° 、 315° 、 3 00° 、 285° の場合の黒レベル分光透過率を図 22に示すような各特性を呈する。こ こで、方位角 Azimは向かって右方向からの視角 Polaを 0° として反時計周りの角度 で示している。 <実施例 4>
次の条件にて液晶表示装置 100Aを構成した。
入射側偏光板吸収軸方位: 90°
液晶層配向方位: 90°
2軸位相差板 nx方位: 0°
出射偏光板吸収軸: 0°
設計波長: 550nm
液晶層 And :275nm
LC
液晶層プレチルト角: 2° (下側基板上で 90° 方位に開く方向)
2軸位相差板 And :366nm (ZEONOR)
RF
2軸位相差板屈折率比: nz= (nx + ny)/2
偏光板保護層材質: TAC
保護層 ΔΓ Ι :30nm (面に垂直に光軸、面方向 And>厚さ方向 And)
TAC0
この実施例 4は、黒表示レベルの視野角特性を図 20に示し、視角 Pola (仰角) 70 。 で方位角 Azimが 15° 、 30° 、45° 、 60° 、 75° の場合の黒レベル分光透過率 を図 24に示し、視角 Pola (仰角) 70° で方位角 Azimが 345° 、 330° 、 315。 、 3 00° 、 285° の場合の黒レベル分光透過率を図 25に示すような各特性を呈する。こ こで、方位角 Azimは向かって右方向からの視角 Polaを 0° として反時計周りの角度 で示している。
<実施例 5>
次の条件にて液晶表示装置 100Aを構成した。
入射側偏光板吸収軸方位: 90°
液晶層配向方位: 90°
2軸位相差板 nx方位: 0°
出射偏光板吸収軸: 0°
設計波長: 550nm
液晶層 And :275nm
LC
液晶層プレチルト角: 0.5° (下側基板上で 90° 方位に開く方向) 2軸位相差板 ΔΓ Ι :366nm(ZEONOR)
RF
2軸位相差板屈折率比: nz= (nx + ny)/2
偏光板保護層材質: TAC
保護層 And :30nm (面に垂直に光軸、面方向 And>厚さ方向 And)
TAC0
この実施例 5は、黒表示レベルの視野角特性を図 26に示し、視角 Pola (仰角) 70 。 で方位角 Azimが 15° 30° 45° 60° 75° の場合の黒レベル分光透過率 を図 27に示し、視角 Pola (仰角) 70° で方位角 Azimが 345° 330° 315° 3 00° 285° の場合の黒レベル分光透過率を図 28に示すような各特性を呈する。こ こで、方位角 Azimは向かって右方向からの視角 Polaを 0° として反時計周りの角度 で示している。
ぐ実施例 6 >
次の条件にて液晶表示装置 100Aを構成した。
入射側偏光板吸収軸方位: 90°
液晶層配向方位: 90°
2軸位相差板 nx方位: 0°
出射偏光板吸収軸: 0°
設計波長: 520nm
液晶層 And :260
LC
液晶層プレチルト角: 0.5° (下側基板上で 90° 方位に開く方向)
2軸位相差板 Δ nd 364nm (ZEONOR)
RF
2軸位相差板屈折率比: nz= (nx + ny)/2
偏光板保護層材質: TAC
保護層 And :30nm (面に垂直に光軸、面方向 And>厚さ方向 And)
TAC0
この実施例 6は、黒表示レベルの視野角特性を図 29に示し、視角 Pola (仰角) 70 。 で方位角 Azimが 15° 30° 45° 60° 75° の場合の黒レベル分光透過率 を図 30に示し、視角 Pola (仰角) 70° で方位角 Azimが 345° 330° 315° 3 00° 285° の場合の黒レベル分光透過率を図 31に示すような各特性を呈する。こ こで、方位角 Azimは向かって右方向からの視角 Polaを 0° として反時計周りの角度 で示している。
<実施例 7>
次の条件にて液晶表示装置 100Aを構成した。
入射側偏光板吸収軸方位: 90°
液晶層配向方位: 90°
2軸位相差板 nx方位: 0°
出射偏光板吸収軸: 0°
設計波長: 550nm
液晶層 And :275nm
LC
液晶層プレチルト角: 2° (下側基板上で 90° 方位に開く方向)
2軸位相差板 Δ nd : 424nm (ポリカーボネート or変性ポリカーボネート)
RF
2軸位相差板屈折率比: nz= (nx + ny)/2
偏光板保護層材質: TAC
保護層 ΔΓ Ι :50nm (面に垂直に光軸、面方向 And>厚さ方向 And)
TAC0
この実施例 7は、黒表示レベルの視野角特性を図 32に示し、視角 Pola (仰角) 70 。 で方位角 Azimが 15° 、 30° 、45° 、 60° 、 75° の場合の黒レベル分光透過率 を図 33に示し、視角 Pola (仰角) 70° で方位角 Azimが 345° 、 330° 、 315。 、 3 00° 、 285° の場合の黒レベル分光透過率を図 34に示すような各特性を呈する。こ こで、方位角 Azimは向かって右方向からの視角 Polaを 0° として反時計周りの角度 で示している。
<実施例 8>
次の条件にて液晶表示装置 100Aを構成した。
入射側偏光板吸収軸方位: 90°
液晶層配向方位: 90°
2軸位相差板 nx方位: 90°
出射偏光板吸収軸: 0°
設計波長: 550nm
液晶層 And :275nm
LC 液晶層プレチルト角: 2° (下側基板上で 90° 方位に開く方向)
2軸位相差板 And : 170nm (ポリカーボネート or変性ポリカーボネート)
RF
2軸位相差板屈折率比: nz= (nx + ny)/2
偏光板保護層材質: TAC
保護層 And :50nm (面に垂直に光軸、面方向 And>厚さ方向 And)
TAC0
この実施例 8は、黒表示レベルの視野角特性を図 35に示し、視角 Pola (仰角) 70 。 で方位角 Azimが 15° 、 30° 、45° 、 60° 、 75° の場合の黒レベル分光透過率 を図 36に示し、視角 Pola (仰角) 70° で方位角 Azimが 345° 、 330° 、 315° 、 3 00° 、 285° の場合の黒レベル分光透過率を図 37に示すような各特性を呈する。こ こで、方位角 Azimは向かって右方向からの視角 Polaを 0° として反時計周りの角度 で示している。
ぐ実施例 9 >
次の条件にて液晶表示装置 100Aを構成した。
入射側偏光板吸収軸方位: 90°
液晶層配向方位: 90°
2軸位相差板 nx方位: 0°
出射偏光板吸収軸: 0°
設計波長: 550nm
液晶層 And :275nm
LC
液晶層プレチルト角: 2° (下側基板上で 90° 方位に開く方向)
2軸位相差板 Δ nd : 380nm (ポリカーボネート or変性ポリカーボネート)
RF
2軸位相差板屈折率比: nz= (nx + ny)/2
偏光板保護層材質: TAC
保護層 And :30nm (面に垂直に光軸、面方向 And>厚さ方向 And)
TAC0
この実施例 9は、黒表示レベルの視野角特性を図 38に示し、視角 Pola (仰角) 70 。 で方位角 Azimが 15° 、 30° 、45° 、 60° 、 75° の場合の黒レベル分光透過率 を図 39に示し、視角 Pola (仰角) 70° で方位角 Azimが 345° 、 330° 、 315° 、 3 00° 、 285° の場合の黒レベル分光透過率を図 40に示すような各特性を呈する。こ こで、方位角 Azimは向かって右方向からの視角 Polaを 0° として反時計周りの角度 で示している。
以上の構成に関して、位相差板位置と方位の関係は相対的に同じであれば同じ結 果を得ることが可能である。つまり表裏反対とした場合にも同じ結果が得られ、その場 合位相差板位置は入射側偏光板と液晶層の間に位置する。また、全体の方位を 90 。 回転しても同じ結果が得られる。
また、以上に関して基板に平行な電界により液晶分子を動作させるレ、わゆるインプ レーンスイッチングモードの液晶表示装置のみ有効ではなぐ基板に垂直な電界に ぉレ、ても強誘電性液晶を用いた液晶表示装置等インプレーンスイッチングする液晶 動作モードを用いる場合には同様の光学補償が可能である。さらに偏光板の光学補 償として液晶層の代わりに位相差板を用いても同様の効果を得ることが可能である。 例えば図 41に示す液晶表示装置 100Bのように入射側偏光板 10A、位相差板 30 、液晶板 20、出射側偏光板 10Bの順に配置された構成とすることができる。この液晶 表示装置 100Bの具体的な実施例 10を以下に示す。
<実施例 10 >
次の条件にて液晶表示装置 100Bを構成した。
入射側偏光板吸収軸方位: 0°
液晶層配向方位: 90°
2軸位相差板 nx方位: 0°
出射偏光板吸収軸: 90°
設計波長: 550nm
液晶層 A nd : 275nm
LC
液晶層プレチルト角: 2° (下側基板上で 90° 方位に開く方向)
2軸位相差板 Δ nd : 380nm (ポリカーボネート or変性ポリカーボネート)
RF
2軸位相差板屈折率比: nz= (nx + ny) /2
偏光板保護層材質: TAC
保護層 A nd : 30nm (面に垂直に光軸、面方向 A nd>厚さ方向 A nd)
TAC0
また、上記実施例 9における全体の方位を 90° 回転したものを実施例 11として以 下に示す。
<実施例 11 >
次の条件にて液晶表示装置 100Aを構成した。
入射側偏光板吸収軸方位: 0°
液晶層配向方位: 0°
2軸位相差板 nx方位: 90°
出射偏光板吸収軸: 90°
設計波長: 550nm
液晶層 A nd : 275nm
LC
液晶層プレチルト角: 2° (下側基板上で 0° 方位に開く方向)
2軸位相差板 Δ nd : 380nm (ポリカーボネート or変性ポリカーボネート)
RF
2軸位相差板屈折率比: nz= (nx + ny) /2
偏光板保護層材質: TAC
保護層 Δ Γ Ι : 30nm (面に垂直に光軸、面方向 A nd>厚さ方向 A nd)
TAC0
ここで、 2軸位相差板 30の屈折率に関して、 nz= (nx+ny) /2を完全に満たすこ とは製造上容易ではない。この条件は最も最適な条件を示しているに過ぎず、この関 係からたとえずれているとしても本発明の趣旨と違いがなければ本発明と同一とみな せるべきものである。また、先述した 2軸位相差板 30の最適 A ndを示す関係式につ いても同様である。
次に、 45° 方位視角における黒レベルを改善するための位相差板の第 3の最適化 手法について説明する。
両側に 2軸位相差板を各 1枚配置する場合の最適化手法を示す。
すなわち、図 42に示すように、入射側偏光板 10Α、 2軸位相差板 30Α、液晶板 20 、 2軸位相差板 30Β、出射偏光板 10Bの順に配置した構成の液晶表示装置 100Cと する。その時の 2軸位相差板 30Α及び 2軸位相差板 30Βの方位、光路長差、及び角 方位の屈折率 (nx、 ny、 nz)の比率の組合せは必ずしも一通りに限らなレ、。以下に 示す方法はその一つを示すにすぎなレ、。
両側に 2軸位相差板を配置することによる最適化手法の考え方として、液晶層 21 通過後の偏光状態を等価的に入射偏光板保護層 13A通過後の偏光状態になるよう に 2軸位相差板 30Aの光路長差 A nd を設定する。そうすることにより、 nz= (nx+
RF1
ny) /2となる 2軸性位相差板 30Bの光路長差 A nd を設計波長においてえ /2に
RF
固定する議論が可能となる。
すなわち、第 1の位相差板として 2軸位相差板 30Aを用いて液晶層 21を光が通過 することによる偏光状態の変化をキャンセルして入射偏光保護層 13A通過後の偏光 状態とし、第 2の位相差板として λ Ζ2板として作用する 2軸性位相差板 30Βを用い て偏光状態を 180° 変化させ、出射偏光板保護層 12Bを通過することによる偏光状 態の変化が入射偏光板保護層 13Aにより相殺される。 nz= (nx + ny) /2となる条 件で 2軸性位相差板 30Aの Δ nd は(5)式から次の(7)式にて示される。
RF1
[数 7]
2 tan"1 ( 7 ) 式 この第 3の最適化手法をポアンカレ球上で示すと図 43のようになる。図 43Αは入射 側偏光板 10Aの偏光子 11Aを通過後の偏光状態を示し、図 43Βは入射側偏光板 1 OAの保護層 13Aを通過後の偏光状態を示し、図 43Cは位相差板 30Aを通過後の 偏光状態を示し、図 43Dは液晶板 20の IPS液晶層 21を通過後の偏光状態を示し、 図 43Eは 2軸位相差板 30Bを通過後の偏光状態を示し、図 43Fは出射側偏光板 10 Bの保護層 13Bを通過後の偏光状態を示してレ、る。
ここで、入射側偏光板 10A、位相差板 30A1、液晶板 20、位相差板 30B、出射側 偏光板 10Bは、入射側偏光板 10Aの吸収軸を 90° 、位相差板 30Aの nx方位を 90 ° 、液晶層 21の配向方位を 90° 、位相差板 30Bの nx方位を 0° 、出射側偏光板 1 0Bの吸収軸 0° に設定した場合である。
位相差板 30Bの方位は 90° も可能である力 第 2の最適化手法で述べたように複 数の位相差板を同じ方位に設定した場合、設計波長から外れた場合の位相ズレ量 が大きくなり、結果的に黒レベル光漏れを広い範囲で抑えることは困難になる。 次に、 45° 方位視角における黒レベルを改善するための位相差板の第 4の最適化 手法について説明する。
両側に 2軸位相差板を各 1枚配置する場合の最適化手法で第 1及び第 2の最適化 手法の関係同様、第 3の最適化手法における 2軸位相差板 30Aの光路長差 A nd
RF1 は、次の(8)式にて示される。
[数 8]
( 4π
^RFi =― 2π ~? Aan'1 ― ^TAC ( 8 ) 式
L7T { λ この第 4の最適化手法をポアンカレ球上で示すと図 44のようになる。図 44Αは入射 側偏光板 10Aの偏光子 11Aを通過後の偏光状態を示し、図 44Βは入射側偏光板 1 OAの保護層 13Aを通過後の偏光状態を示し、図 44Cは位相差板 30Aを通過後の 偏光状態を示し、図 44Dは液晶板 20の IPS液晶層 21を通過後の偏光状態を示し、 図 44Eは 2軸位相差板 30Bを通過後の偏光状態を示し、図 44Fは出射側偏光板 10 Bの保護層 13Bを通過後の偏光状態を示してレ、る。
ここで、入射側偏光板 10A、位相差板 30A、液晶板 20、位相差板 30B、出射側偏 光板 10Bは、入射側偏光板 10Aの吸収軸を 90° 、位相差板 30Aの nx方位を 0° 、 液晶層 21の配向方位を 90° 、位相差板 30Bの nx方位を 0° 、出射側偏光板 10B の吸収軸を 0° に設定した場合である。
なお、位相差板 30Bの方位は 90° も可能であるが波長依存性が大きくなる。
次に、 45° 方位視角における黒レベルを改善するための位相差板の第 5の最適化 手法について説明する。
両側に位相差板を各 1枚配置する場合の最適化手法では必ずしも nz= (nx + ny) /2に限らないで補償できる。特に一方の位相差板 (位相差板 30B)を nz= (nx+n y) /2で且つ、設計波長において光路長差を λ /2とするならば、他方の位相差板( 位相差板 30Α)は 1軸性での補償も可能となる。
設計波長において 1軸性位相差板 (位相差板 30Α)の光路長差 A ndを液晶層 21 の光路長差 A nd との和が λとなるように設定する。また、 1軸性位相差板 (位相差 し C
板 30Α)の屈折率が nxとなる方位(ここで nx>ny=nz)と液晶層 21の配向方位を一 致させる。つまり、設計波長においては、位相差板通過後の偏光状態は液晶層 21が ない場合と同じ偏光状態になる。よって、位相差板 30Bを ny= (nx+ny) /2で且つ 、設計波長においてえ /2とすることで、出射側偏光板 10Bの保護層 13Bを通過後 の偏光状態は出射側偏光板 10Aの保護層 13Aの光路長差 A nd の値に拘わら
TAC0
ず出射側偏光板 10Bの吸収軸に一致する。
また、広い範囲で黒の光抜けを防止するためには 2軸性位相差板の屈折率が nxと なる方位と液晶層配向方向と直交させる。
ここで、上述の図 42に示した構造、すなわち、入射側偏光板 10A、位相差板 30A 、液晶板 20、位相差板 30B、出射側偏光板 10Bの順に配置された液晶表示装置 10 0Cにつレ、て、以下に具体的な実施例( <実施例 12 >— <実施例 14 > )を示す。
<実施例 12 >
次の条件にて液晶表示装置 100Cを構成した。
入射側偏光板吸収軸方位: 90°
2軸位相差板 1 nx方位: 90°
液晶層配向方位: 90°
2軸位相差板 2nx方位: 0°
出射偏光板吸収軸: 0°
設計波長: 520nm
液晶層 A nd : 260應
LC
液晶層プレチルト角: 2° (下側基板上で 90° 方位に開く方向)
2軸位相差板 1 A nd : 104nm (ポリカーボネート or変性ポリカーボネート)
RF1
2軸位相差板屈折率比: nz= (nx + ny) /2
2軸位相差板 2 A nd : 260nm (ポリカーボネート or変性ポリカーボネート)
RF2
2軸位相差板屈折率比: nz= (nx + ny) /2
偏光板保護層材質: TAC
保護層 A nd : 30nm (面に垂直に光軸、面方向 A nd>厚さ方向 A nd)
TAC0
この実施例 12は、黒表示レベルの視野角特性を図 45に示し、視角 Pola (仰角) 70 。 で方位角 Azimが 15° 、 30° 、45° 、 60° 、 75° の場合の黒レベル分光透過率 を図 46に示し、視角 Pola (仰角) 70° で方位角 Azimが 345° 330° 315 3 00° 285° の場合の黒レベル分光透過率を図 47に示すような各特性を呈する。こ こで、方位角 Azimは向かって右方向からの視角 Polaを 0° として反時計周りの角度 で示している。
<実施例 13>
次の条件にて液晶表示装置 100Cを構成した。
入射側偏光板吸収軸方位: 90°
2軸位相差板 lnx方位: 0°
液晶層配向方位: 90°
2軸位相差板 2nx方位: 0°
出射偏光板吸収軸: 0°
設計波長: 520nm
液晶層 And :260
LC
液晶層プレチルト角: 0.5° (下側基板上で 90° 方位に開く方向)
2軸位相差板 1 ΔΓ Ι :416nm (ポリカーボネート or変性ポリカーボネート)
RF1
2軸位相差板屈折率比: nz= (nx + ny)/2
2軸位相差板 2 And 260nm (ポリカーボネート or変性ポリカーボネート)
RF2
2軸位相差板屈折率比: nz= (nx + ny)/2
偏光板保護層材質: TAC
保護層 ΔΓ Ι :30nm (面に垂直に光軸、面方向 And>厚さ方向 And)
TAC0
この実施例 13は、黒表示レベルの視野角特性を図 48に示し、視角 Pola (仰角) 70 。 で方位角 Azimが 15° 30° 45° 60° 75° の場合の黒レベル分光透過率 を図 49に示し、視角 Pola (仰角) 70° で方位角 Azim力 345° 330° 315° 3 00° 285° の場合の黒レベル分光透過率を図 50に示すような各特性を呈する。こ こで、方位角 Azimは向かって右方向からの視角 Polaを 0° として反時計周りの角度 で示している。
<実施例 14>
次の条件にて液晶表示装置 100Cを構成した。 入射側偏光板吸収軸方位: 90°
1軸位相差板 lnx方位: 90°
液晶層配向方位: 90°
2軸位相差板 2nx方位: 0°
出射偏光板吸収軸: 0°
設計波長: 520nm
液晶層 And :260nm
LC
液晶層プレチルト角: 0.5° (下側基板上で 90° 方位に開く方向)
1軸位相差板 1 And :260nm (アートン)
RF1
1軸位相差板屈折率比: nx> ny= nz
2軸位相差板 2 And : 260nm (ポリカーボネート or変性ポリカーボネート)
RF2
2軸位相差板屈折率比: nz= (nx + ny)/2
偏光板保護層材質: TAC
保護層 ΔΓ Ι :30nm (面に垂直に光軸、面方向 And>厚さ方向 And)
TAC0
この実施例 14は、黒表示レベルの視野角特性を図 51に示し、視角 Pola (仰角) 70 。 で方位角 Azimが 15° 、 30° 、45° 、 60° 、 75° の場合の黒レベル分光透過率 を図 52に示し、視角 Pola (仰角) 70° で方位角 Azimが 345° 、 330° 、 315。 、 3 00° 、 285° の場合の黒レベル分光透過率を図 53に示すような各特性を呈する。こ こで、方位角 Azimは向かって右方向からの視角 Polaを 0° として反時計周りの角度 で示している。
なお、本発明は、図面を参照して説明した上述の実施例に限定されるものではなく 、添付の請求の範囲及びその趣旨を逸脱することなぐ様々な変更、置換又はその 同等のものを行うことができることは同業者にとって明らかである。

Claims

請求の範囲
[1] 1.それぞれ偏光子に保護層を積層してなり透過軸が互いに直交する一対の偏光板 の間に、一方の偏光板吸収軸方位と液晶分子が平行に配向された液晶層を持つ液 晶板を挟持した構造の液晶表示装置であって、
上記一対の偏光板の保護層は、少なくとも上記液晶層の側に積層され、厚さ方向 に光軸を持ちその厚さ方向と直交する面内には概ね等方的な 1軸性の位相差板で あって、厚さ方向の屈折率が面内の方向の屈折率より小さい負の位相差板としての 特性を示し、
上記液晶板と各偏光板との間の少なく一方に、視角方向に角度をなす入射光に対 する上記保護層による視野角依存性を補償する 2軸性の位相差板が配置されている ことを特徴とする液晶表示装置。
[2] 2.上記 2軸性の位相差板は、その厚さ方向と直交する面内の屈折率が異なり、当該 面内に最大の屈折率を示す方位を有する 2軸性位相差板であり、
上記位相差板における上記最大の屈折率と、上記方位と面内にて直交する方位に おける屈折率との差及び上記位相差板の厚さの積を位相差板の面内光路長差とし、 上記保護層における厚さ方向の屈折率と面内の方向の屈折率との差及び上記保護 層の積を上記保護層の光路長差としたとき、
可視光領域の所定の波長において、上記位相差板の面内光路長差が、上記保護 層の光路長差及び上記波長に基づき、視角方向に角度をなす入射光に対する視野 角依存性を補償するように設定されていることを特徴とする請求の範囲第 1項記載の
[3] 3.上記一方の偏光板吸収軸の方位と上記液晶層の異常光屈折率方位が一致して いることを特徴とする請求の範囲第 1項記載の液晶表示装置。
[4] 4.上記液晶板はインプレーンスイッチング (IPS)モードにて動作するように構成され 、上記保護層はトリアセチルセルロース (TAC)にて形成されていることを特徴とする 請求の範囲第 1項記載の液晶表示装置。
[5] 5.上記一対の偏光板の保護層は、その各々の厚さが d であり、厚さ方向に光軸
TAC0
を持ちその厚さ方向と直交する面内には概ね等方的な 1軸性の位相差板であって、 厚さ方向の屈折率 nztが面内の方向の屈折率 nxyより小さい負の位相差板としての 特性を示し、
上記 2軸性の位相差板は、厚さが d の
RF 2軸性位相差板であり、厚さ方向の屈折率 を nz、当該厚さ方向と直交する面内で最大の屈折率を nxとし、上記最大の屈折率 n Xを示す方向及び上記厚さ方向と直交する方向の屈折率を nyとして、 nx>nz >ny の順の屈折率を示し、 nz= (nx + ny) Z2の関係を概ね満たし、
可視光領域の所定の波長 λにおいて、上記位相差板の面内光路長差 A nd を (n
RF
x— ny) - d とし、上記保護層の負の光路長差の絶対値 A nd を(nxy— nzt) - d
RF TACO TAC
としたとき、上記位相差板の上記最大の屈折率 nxを示す方向が上記液晶層の配向
0
された上記液晶分子の異常光屈折率方位と一致し、上記位相差板の面方向の光路 長差 Δ nd は概ね下式で示されることを特徴とする請求の範囲第 2項記載の液晶表
RF
Δηί/ .ρ =—— π一 2 tan *1 — ndTAC0
RF
[6] 6.上記液晶板の液晶層の厚さを d 、上記液晶層の液晶分子の異常光屈折率を ne
LC
、上記液晶層の液晶分子の常光屈折率を noとし、上記液晶板の液晶層の光路長差 A nd を (ne— no) - d としたとき、可視光領域の所定の波長 λにおいて、上記液晶
LC LC
板の液晶層の光路長差 A nd は概ね; I Z2を示すことを特徴とする請求の範囲第 5
LC
項記載の液晶表示装置。
[7] 7.上記液晶板の液晶層の基板界面における液晶分子のプレチルト角は 0— 2° の 範囲であることを特徴とする請求の範囲第 5項記載の液晶表示装置。
[8] 8.それぞれ偏光子に保護層を積層してなり透過軸が互いに直交する一対の偏光板 の間に、その一方の偏光板吸収軸方位と液晶分子が平行に配向された液晶層を持 つ液晶板を挟持した構造の液晶表示装置であって、
上記液晶板と各偏光板との間の少なく一方に位相差板を配置してなり、 上記位相差板は、厚さが d の 2軸性位相差板であり、厚さ方向の屈折率を nz、当
RF
該厚さ方向と直交する面内で最大の屈折率を nxとし、上記最大の屈折率 nxを示す 方向及び上記厚さ方向と直交する方向の屈折率を nyとして、 nx>nz >nyの順の屈 折率を示し、 nz= (nx+ny) /2の関係を概ね満たし、
可視光領域の所定の波長 λにおいて、上記位相差板の面内光路長差 A nd を (n
RF
X— ny) - d とし、上記保護層の負の光路長差の絶対値 A nd を(nxy— nzt) - d
RF TACO TAC
としたとき、上記位相差板の上記最大の屈折率 nxを示す方向が上記液晶層の配向
0
された上記液晶分子の異常光屈折率方位と一致し、上記位相差板の面方向の光路 長差 Δ nd は概ね下式で示されることを特徴とする請求の範囲第 2項記載の液晶表
RF
A d. ; r + 2 tan -^AndTAC0
[9] 9.上記液晶板の液晶層の厚さを d 、上記液晶層の液晶分子の異常光屈折率を ne
LC
、上記液晶層の液晶分子の常光屈折率を noとし、上記液晶板の液晶層の光路長差 A nd を (ne— no) - d としたとき、可視光領域の所定の波長 λにおいて、上記液晶
LC LC
板の液晶層の光路長差 A nd は概ね λ /2を示すことを特徴とする請求の範囲第 8
LC
項記載の液晶表示装置。
[10] 10.上記液晶板の液晶層の基板界面における液晶分子のプレチルト角は 0— 2° の 範囲であることを特徴とする請求の範囲第 8項記載の液晶表示装置。
[11] 11.偏光子の透過軸が互いに直交する一対の偏光板の間に、一方の偏光板吸収軸 方位と液晶分子が平行に配向された液晶層を持つ液晶板を挟持した構造の液晶表 示装置であって、
上記一対の偏光板には、その各々の上記液晶層の側に、負の位相差を有する 1軸 性位相差板としての特性を示す同じ厚さの一対の保護層が積層され、
上記液晶板と各偏光板との間双方に第 1の位相差板及び第 2の位相板を各々配 置してなり、
上記第 1の位相差板は、その光路長差が上記液晶層を光が通過する前の偏光状 態になるように設定され、
上記第 2の位相差板は、その厚さ方向と直交する面内の屈折率が異なり、当該面 内に最大の屈折率を示す方位を有する 2軸性位相差板であり、 上記最大の屈折率と、上記方位と面内にて直交する方位における屈折率との差及 び上記位相差板の厚さの積として規定される位相差板の面内光路長差が概ね λ /
2となるように設定され、
上記第 1及び第 2の位相差板により、上記一対の保護層を通過した光の偏光状態 の変化を光学補償することを特徴とする液晶表示装置。
[12] 12.上記第 2の位相差板は nz= (nx + ny) /2の関係を概ね満たすことを特徴とす る請求の範囲第 11項記載の液晶表示装置。
[13] 13.上記第 1の液晶板は、 2軸性位相差板又は正の 1軸性位相差板であることを特 徴とする請求の範囲第 11項記載の液晶表示装置。
[14] 14.上記液晶板の液晶層の液晶層の基板界面のプレチルト角は 0— 2° の範囲で あることを特徴とする請求の範囲第 11項記載の液晶表示装置。
[15] 15.上記第 1の位相差板は、厚さが d の 2軸性位相差板であり、厚さ方向の屈折
RF1
率を nz、当該厚さ方向と直交する面内で最大の屈折率を nxとし、上記最大の屈折率 nxを示す方向及び上記厚さ方向と直交する方向の屈折率を nyとして、 nx>nz >ny の順の屈折率を示し、
上記保護層は、その各々の厚さが d であり、厚さ方向に光軸を持ちその厚さ方
TAC0
向と直交する面内には概ね等方的な 1軸性の位相差板であって、厚さ方向の屈折率 nztが面内の方向の屈折率 nxyより小さい負の位相差板としての特性を示し、 上記波長 λにおいて、上記位相差板の面方向の光路長差 (nx— ny) - d を A nd
RF1 R
、上記保護層の負の光路長差の絶対値 (nxy— nzt) ' d を A nd としたとき、
Fl TACO TAC0
上記位相差板の上記最大の屈折率 nxを示す方向が上記液晶層の配向された上記 液晶分子の異常光屈折率方位と一致し、上記位相差板の面方向の光路長差 A nd
R
は概ね下式で示されることを特徴とする請求の範囲第 11項記載の液晶表示装置。
F1
nd, 2tan" if4 — And ATACQ
[16] 16.上記液晶板の液晶層の厚さを d 、上記液晶層の液晶分子の異常光屈折率を n
LC
e、上記液晶層の液晶分子の常光屈折率を noとし、上記液晶板の液晶層の光路長 差 A nd を (ne— no) - d としたとき、可視光領域の所定の波長 λにおいて、上記液
LC LC 晶板の液晶層の光路長差 A nd は概ねえ /2を示すことを特徴とする請求の範囲
LC
第 11項記載の液晶表示装置。
[17] 17.上記第 1の位相差板は、厚さが d の 2軸性位相差板であり、厚さ方向の屈折
RF1
率を nz、当該厚さ方向と直交する面内で最大の屈折率を nxとし、上記最大の屈折率 nxを示す方向及び上記厚さ方向と直交する方向の屈折率を nyとして、 nx>nz >ny の順の屈折率を示し、
上記保護層は、その各々の厚さが d であり、厚さ方向に光軸を持ちその厚さ方
TACO
向と直交する面内には概ね等方的な 1軸性の位相差板であって、厚さ方向の屈折率 nztが面内の方向の屈折率 nxyより小さい負の位相差板としての特性を示し、 上記波長 λにおいて、上記位相差板の面方向の光路長差 (nx— ny) - d を A nd
RF1
、上記保護層の負の光路長差の絶対値 (nxy— nzt) ' d を A nd としたとき、
Fl TACO TACO
上記位相差板の上記最大の屈折率 nxを示す方向が上記液晶層の配向された上記 液晶分子の異常光屈折率方位と直交し、上記位相差板の面方向の光路長差 A nd
R
は概ね下式で示されることを特徴とする請求の範囲第 11項記載の液晶表示装置。 - 2 ~ 2π― / tan — And
λ
[18] 18.上記第 1の位相差板は、厚さが d の 1軸性位相差板であり、厚さ方向の屈折
RF1
率を nz、当該厚さ方向と直交する面内で最大の屈折率を nxとし、上記最大の屈折率 nxを示す方向及び上記厚さ方向と直交する方向の屈折率を nyとして、 nx>nz = ny の順の屈折率を示し、
可視光領域の所定の波長 λにおいて、上記位相差板の面方向の光路長差 (nx - η y) - d を A nd とし、上記液晶板の液晶層の厚さを d 、上記液晶層の液晶分子
RF1 RF1 LC
の異常光屈折率を ne、上記液晶層の液晶分子の常光屈折率を noとし、上記液晶板 の液晶層の光路長差 (ne— no) ' d を A nd としたとき、上記最大の屈折率 nxを示
LC LC
す方位が上記液晶層の配向された上記液晶分子の異常光屈折率方位と一致し、 Δ nndd とと上上記記液液晶晶層層のの光光路路長長差差 ΔA ηnd との和が概ね; Iとなることを特徴とする請求の
RRFF11 LC
範囲第 11項記載の液晶表示装置。
PCT/JP2004/011489 2003-08-11 2004-08-10 液晶表示装置 WO2005015297A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/530,828 US7532283B2 (en) 2003-08-11 2004-08-10 Liquid crystal display
EP04771476A EP1586939A4 (en) 2003-08-11 2004-08-10 LIQUID CRYSTAL DISPLAY
KR1020057006244A KR101096310B1 (ko) 2003-08-11 2004-08-10 액정 표시 장치
JP2005512995A JP4419959B2 (ja) 2003-08-11 2004-08-10 液晶表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-291859 2003-08-11
JP2003291859 2003-08-11

Publications (1)

Publication Number Publication Date
WO2005015297A1 true WO2005015297A1 (ja) 2005-02-17

Family

ID=34131679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011489 WO2005015297A1 (ja) 2003-08-11 2004-08-10 液晶表示装置

Country Status (7)

Country Link
US (1) US7532283B2 (ja)
EP (1) EP1586939A4 (ja)
JP (1) JP4419959B2 (ja)
KR (1) KR101096310B1 (ja)
CN (1) CN100456107C (ja)
TW (1) TWI242083B (ja)
WO (1) WO2005015297A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006521570A (ja) * 2003-11-21 2006-09-21 エルジー・ケム・リミテッド 正の二軸性位相差フィルムを利用した視野角補償フィルムを含むインプレーンスイッチング液晶表示装置
JP2006293108A (ja) * 2005-04-13 2006-10-26 Teijin Ltd 液晶表示装置およびそれに用いられる光学フィルム
JP2006317854A (ja) * 2005-05-16 2006-11-24 Teijin Ltd 液晶表示装置およびそれに用いられる光学フィルム
JP2007193272A (ja) * 2006-01-23 2007-08-02 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
CN100454107C (zh) * 2005-06-30 2009-01-21 日东电工株式会社 液晶面板和液晶显示装置
US7852441B2 (en) 2005-06-30 2010-12-14 Nitto Denko Corporation Liquid crystal panel and liquid crystal display

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4536489B2 (ja) * 2004-11-15 2010-09-01 株式会社 日立ディスプレイズ 光学素子及びそれを用いた表示装置
JP4536543B2 (ja) * 2005-02-08 2010-09-01 株式会社 日立ディスプレイズ 液晶表示装置
JP2007057665A (ja) * 2005-08-23 2007-03-08 Fujifilm Corp 光学フィルム、画像表示装置、液晶表示装置
KR101386565B1 (ko) * 2006-06-30 2014-04-18 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
KR101197162B1 (ko) * 2008-08-27 2012-11-09 주식회사 엘지화학 면상 스위칭 모드 액정 표시 장치
KR101260841B1 (ko) * 2008-12-23 2013-05-06 엘지디스플레이 주식회사 횡전계방식 액정표시장치
KR101291806B1 (ko) * 2010-12-10 2013-07-31 엘지디스플레이 주식회사 입체영상 표시장치
WO2013022245A2 (ko) * 2011-08-05 2013-02-14 주식회사 엘지화학 광학 필름
CN103733095B (zh) * 2011-08-05 2016-04-20 Lg化学株式会社 光学膜
CN102854660B (zh) * 2012-09-24 2015-02-11 深圳市华星光电技术有限公司 一种使用光学补偿膜减弱va液晶显示器暗态漏光的方法
CN102981311B (zh) * 2012-12-07 2016-03-30 京东方科技集团股份有限公司 显示面板及显示装置
EP2953011B1 (en) * 2013-02-01 2019-04-17 Murata Manufacturing Co., Ltd. Display device and multilayered optical film
CN105700217A (zh) * 2014-11-26 2016-06-22 联想(北京)有限公司 一种偏光片、液晶显示屏和电子设备
KR102274545B1 (ko) 2014-12-01 2021-07-06 삼성전자주식회사 광학 필름용 조성물, 필름 및 표시 장치
CN104950375A (zh) * 2015-06-19 2015-09-30 南京中电熊猫液晶显示科技有限公司 一种液晶显示器用的上偏光板、液晶显示器
CN107367849B (zh) * 2017-08-31 2019-10-18 深圳市华星光电技术有限公司 显示装置及偏光太阳眼镜
KR102444973B1 (ko) * 2019-06-19 2022-09-19 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치
KR20210117391A (ko) * 2020-03-18 2021-09-29 삼성디스플레이 주식회사 표시 장치

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039610A (ja) * 1998-07-15 2000-02-08 Internatl Business Mach Corp <Ibm> 液晶表示装置
JP2002072215A (ja) * 2000-08-31 2002-03-12 Sharp Corp 液晶表示装置
JP2002148661A (ja) * 2000-08-31 2002-05-22 Sharp Corp 液晶表示装置
JP2002196138A (ja) * 2000-12-25 2002-07-10 Fuji Photo Film Co Ltd 光学補償シート、楕円偏光板および液晶表示装置
JP2002258041A (ja) * 2001-03-01 2002-09-11 Nitto Denko Corp 光学補償偏光板及び液晶表示装置
JP2003262870A (ja) * 2002-03-08 2003-09-19 Sharp Corp 液晶表示装置
JP2003262869A (ja) * 2002-03-08 2003-09-19 Sharp Corp 液晶表示装置
JP2003262872A (ja) * 2002-03-08 2003-09-19 Sharp Corp 液晶表示装置
JP2004157523A (ja) * 2002-10-15 2004-06-03 Nitto Denko Corp 光学フィルムおよび液晶表示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3942436B2 (ja) * 2001-07-19 2007-07-11 日東電工株式会社 偏光板およびその製造方法、偏光板用保護フィルム、偏光板を用いた光学フイルムならびに画像表示装置
KR100822247B1 (ko) * 2002-04-01 2008-04-16 닛토덴코 가부시키가이샤 광학 필름 및 화상 표시 시스템

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039610A (ja) * 1998-07-15 2000-02-08 Internatl Business Mach Corp <Ibm> 液晶表示装置
JP2002072215A (ja) * 2000-08-31 2002-03-12 Sharp Corp 液晶表示装置
JP2002148661A (ja) * 2000-08-31 2002-05-22 Sharp Corp 液晶表示装置
JP2002196138A (ja) * 2000-12-25 2002-07-10 Fuji Photo Film Co Ltd 光学補償シート、楕円偏光板および液晶表示装置
JP2002258041A (ja) * 2001-03-01 2002-09-11 Nitto Denko Corp 光学補償偏光板及び液晶表示装置
JP2003262870A (ja) * 2002-03-08 2003-09-19 Sharp Corp 液晶表示装置
JP2003262869A (ja) * 2002-03-08 2003-09-19 Sharp Corp 液晶表示装置
JP2003262872A (ja) * 2002-03-08 2003-09-19 Sharp Corp 液晶表示装置
JP2004157523A (ja) * 2002-10-15 2004-06-03 Nitto Denko Corp 光学フィルムおよび液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1586939A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006521570A (ja) * 2003-11-21 2006-09-21 エルジー・ケム・リミテッド 正の二軸性位相差フィルムを利用した視野角補償フィルムを含むインプレーンスイッチング液晶表示装置
JP2006293108A (ja) * 2005-04-13 2006-10-26 Teijin Ltd 液晶表示装置およびそれに用いられる光学フィルム
JP2006317854A (ja) * 2005-05-16 2006-11-24 Teijin Ltd 液晶表示装置およびそれに用いられる光学フィルム
CN100454107C (zh) * 2005-06-30 2009-01-21 日东电工株式会社 液晶面板和液晶显示装置
US7852441B2 (en) 2005-06-30 2010-12-14 Nitto Denko Corporation Liquid crystal panel and liquid crystal display
JP2007193272A (ja) * 2006-01-23 2007-08-02 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置

Also Published As

Publication number Publication date
TWI242083B (en) 2005-10-21
JP4419959B2 (ja) 2010-02-24
EP1586939A4 (en) 2008-02-20
TW200530638A (en) 2005-09-16
EP1586939A1 (en) 2005-10-19
KR101096310B1 (ko) 2011-12-20
US20060098146A1 (en) 2006-05-11
CN1717615A (zh) 2006-01-04
CN100456107C (zh) 2009-01-28
KR20060059855A (ko) 2006-06-02
JPWO2005015297A1 (ja) 2006-10-05
US7532283B2 (en) 2009-05-12

Similar Documents

Publication Publication Date Title
WO2005015297A1 (ja) 液晶表示装置
US9019451B2 (en) Liquid-crystal display device
US8139188B2 (en) Retardation film, polarizing film, liquid crystal display, and method of designing retardation film
EP2259131B1 (en) Liquid crystal display
WO2009113208A1 (ja) 液晶表示装置
US8077277B2 (en) Liquid crystal display device comprising a first optical compensating member disposed without a birefringent medium sandwiched between the liquid crystal layer and the first optical compensating member
US8018556B2 (en) Liquid crystal display device having a biaxial first anisotropic film and a second anisotropic film having an optical axis in a thickness direction
WO2010137372A1 (ja) 液晶表示装置
JP5193135B2 (ja) 高次波長板を含むマイクロディスプレイ・パネルのコントラスト補償
WO2012133137A1 (ja) 液晶表示装置
US7443473B2 (en) Optical compensation polarizing film achieving a higher viewing angle
US20120327342A1 (en) Optical compensation film and liquid crystal display including the same
US20080297712A9 (en) IPS-LCD device having optical compensation films
US20120257147A1 (en) Liquid crystal display panel and liquid crystal display device
WO2019239794A1 (ja) 液晶パネルおよび液晶表示装置
WO2010089930A1 (ja) 液晶表示パネル
JP2008249915A (ja) 液晶表示素子
JP2011112952A (ja) 液晶表示素子及びその光学補償方法
WO2012133155A1 (ja) 液晶表示装置
WO2005052679A1 (ja) 液晶表示装置
TWI408465B (zh) 液晶顯示器
KR100789681B1 (ko) 향상된 시야각 특성을 가지는 lcd 장치
WO2012133140A1 (ja) 液晶表示装置
WO2012133141A1 (ja) 液晶表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005512995

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004771476

Country of ref document: EP

Ref document number: 1020057006244

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048015181

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004771476

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006098146

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10530828

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10530828

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057006244

Country of ref document: KR