WO2005012969A1 - 光コネクタの接続損失計算方法及びそれを用いたシミュレータ - Google Patents

光コネクタの接続損失計算方法及びそれを用いたシミュレータ Download PDF

Info

Publication number
WO2005012969A1
WO2005012969A1 PCT/JP2004/011324 JP2004011324W WO2005012969A1 WO 2005012969 A1 WO2005012969 A1 WO 2005012969A1 JP 2004011324 W JP2004011324 W JP 2004011324W WO 2005012969 A1 WO2005012969 A1 WO 2005012969A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection loss
ferrule
calculated
moment
distribution
Prior art date
Application number
PCT/JP2004/011324
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Kobayashi
Masahiro Tanaka
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003205211A external-priority patent/JP2005049569A/ja
Priority claimed from JP2003300656A external-priority patent/JP3940712B2/ja
Priority claimed from JP2003332305A external-priority patent/JP3971727B2/ja
Priority claimed from JP2003394816A external-priority patent/JP3971742B2/ja
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to US10/566,670 priority Critical patent/US20060245711A1/en
Priority to EP04771325A priority patent/EP1666942A4/en
Publication of WO2005012969A1 publication Critical patent/WO2005012969A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3825Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres with an intermediate part, e.g. adapter, receptacle, linking two plugs

Definitions

  • the present invention, c bright relates simulator using a method and a method for estimating the push from configure the distribution data of the connection loss value of an optical connector used for optical communications
  • optical communication using optical fibers has been used.
  • optical connectors are used to connect optical fibers.
  • a plug 10 used in the optical connector has a cylindrical ferrule 1 in which an optical fiber protective device 2 is fixed in advance, and a through-hole 1 a formed in the ferrule 1.
  • the end of the optical fiber 3 from which the coating has been removed is inserted into the optical fiber 3, held and fixed with an adhesive 4, and a pair of ferrules 1 are inserted from both ends of the sleeve 5, and polished into a convex spherical shape inside the sleeve 5.
  • the end faces 1b are brought into contact with each other.
  • connection loss which indicates the light transmittance at the connection part of the optical connector
  • return loss which indicates the light reflectance
  • FIG. 20A and FIG. 20B are diagrams illustrating a method of measuring a random connection loss of an optical connector.
  • LD filter 11, reference optical cord 12, optical connector 12 a, reference optical connector 12 b, adapter 13, optical cords 14 with optical connectors at both ends to be measured It consists of an optical connector 14a to be measured, an optical connector 14b at the end, a light receiving unit 15 and a power meter 16.
  • the reference optical connector 12 b is an optical connector having the same specifications as the optical connectors 14 a and 14 b to be measured. Use randomly extracted from the same lot.
  • the reference setting of the connection loss is performed in the measurement system shown in Fig. 2 OA.
  • Attach one end of the optical connector 1 2 a reference beam code 1 2 to the LD light source 1 connects the reference optical connector 1 2 b on the light-receiving Interview two Tsu sheet 1 5.
  • Light emitted from the reference optical connector 1 2 b is received by the light reception Yunitto 1 5 via the air layer.
  • the output power P0 from the reference optical connector 12b is read by the power meter 16, and this value is defined as the reference value (connection loss is 0 dB) in the connection loss measurement.
  • the reference optical connector 12b is removed from the light receiving unit 15 and then, as shown in FIG.
  • the light emitted from the optical connector 14b is connected to the optical cord 14 to be measured, and is received by the light receiving unit 15 via the air layer as in the case of the reference value measurement.
  • the output power P1 at this time is measured by the power meter 16 (see Japanese Patent No. 3323919).
  • connection loss IL at the connection part of the optical connector is obtained by using the output power PO, the output power P1, the transmission loss (dB / Km) of the optical fiber, and the reflection loss ⁇ at the end face of the optical connector. It is expressed by the following equation.
  • the reflection at the end face of the optical connector is usually 0.01% or less, and the reflection loss ⁇ is less than the resolution of the measuring instrument. Good.
  • the transmission loss ⁇ is 0.35 dBZKm or less. Therefore, when the length of the optical code to be measured is 3 Om or less, the transmission loss ⁇ is approximately 0.01 dB, which is almost equal to the resolution of the measuring instrument, and can be ignored, and when the length is 30 m or more. If the transmission loss ( ⁇ ) of the optical fiber is measured or calculated in advance, the connection loss IL of the optical connector can be easily obtained from Equation 1 in any case.
  • connection loss in optical connectors include axial misalignment between cores of optical fibers, angular misalignment between optical fibers, gaps between end faces between optical connectors, and structural failure between optical fibers.
  • axis misalignment the main factor in ordinary single-mode optical connectors is axis misalignment between optical fiber cores (hereinafter referred to as “axis misalignment”).
  • the main cause of the axis deviation is the processing accuracy of the through hole 1 a of the ferrule 1.
  • the eccentricity required for a normal single-mode optical connector is about 0.7 / m or less
  • the eccentricity of the core of the optical fiber does not always coincide with the eccentricity of the through hole 1a. That is, a clearance of about 1 ⁇ is required between the through-hole 1 a of the optical connector and the optical fiber inserted into the through-hole 1 a, and the optical fiber itself has a center. Since the core is slightly eccentric with respect to the shaft, there is a case where the shaft is misaligned even if the through hole 1a is not eccentric.
  • the input loss IL (dB) is given by the following equation.
  • is the mode field radius of the optical fiber. Expanding this equation gives the following equation.
  • the insertion loss I LA (dB) due to the misalignment d between the optical fibers is about 0.05 dB and 1 when the misalignment d is 0.5. It becomes about 0.20 dB at m and about 0.79 dB at 2 m. Therefore, as the axial deviation between the optical fibers increases, the amount of change in the connection loss increases.
  • tuning As a method of suppressing an increase in connection loss due to axis deviation, there is a connection method called tuning. For all plugs, conduct a connection test with one plug called master in advance, and rotate the plug around the axis every 90 degrees to find the direction in which the connection loss is the smallest in four directions Mark the direction of the plug. Then, in the actual connection, the connection is made so that the marks match. This allows The direction of the misalignment of the two connected plugs is included in the same 90-degree range. As a result, the axis deviation is offset to some extent, and the increase in connection loss can be suppressed.
  • General tuning is intended to be within the same 90 degree range, and one direction is selected from among the four directions, so we will call it four times tuning here. Therefore, tuning that limits the axis deviation to the (360Zm) degree range, where m is a natural number, is generally referred to as tuning m times.
  • angle shift the main cause of the angle shift between the optical fibers (hereinafter, referred to as “angle shift”) is the angle shift of the through hole 1 a of the ferrule 1 with respect to the outer peripheral surface 1 c.
  • the input loss IL e (dB) is expressed by the following equation.
  • ILgidB -lOlog ⁇ xp [-( ⁇ / ⁇ ) 2
  • is the refractive index of the optical fiber, and represents the wavelength of light in a vacuum.
  • the following equation is obtained by substituting the general refractive index 1.46 of the optical fiber for ⁇ and expanding it.
  • the input loss IL e (dB) due to an angle shift of 0 between the optical fibers is about 0.014 dB when the angle shift 0 is 0.2 °, and about 0.014 dB when the angle shift 0 is 0.5 °. 0.089 dB, and as the angle shift 0 increases, the amount of change in connection loss increases. However, the effect is smaller than the connection loss for the axis deviation d.
  • the eccentricity of the shaft misalignment ferrule, for concentricity like core outer diameter difference and the optical fiber through-hole 1 a and the optical fiber of the ferrule are intertwined complex, Measure the degree of eccentricity of the position of the optical fiber core with respect to the center of the outer peripheral surface after the optical fiber is bonded and fixed to the ferrule.
  • the angle deviation it is necessary to determine how much the angle in the longitudinal direction of the optical fiber after bonding the optical fiber to the ferrule is inclined with respect to the outer peripheral surface. The connection loss could not be estimated unless the light was emitted from the tip of the device and the emission angle was measured.
  • the misalignment and misalignment measured by the conventional method can be used to analogize how the parameters affect the splice loss due to the complicated intertwining of the dimensional parameters of the optical fiber and ferrule. It was difficult to do. Disclosure of the invention
  • An object of the present invention is to provide a connection loss calculation method for an optical connector and a simulator using the same that can easily obtain distribution data of connection loss of the optical connector without requiring a great deal of man-hour and cost. .
  • a method for calculating a connection loss of an optical connector comprising: an optical connector in which an optical fiber is inserted and fixed in a ferrule having a through hole in a longitudinal direction, wherein at least distribution data of dimensional parameters of the ferrule; An axis shift amount is calculated from the distribution data of the dimensional parameters, and a splice loss value is calculated from the axis shift amount to simulate the splice loss value distribution.
  • specific data is randomly extracted from at least the distribution data of the dimensional parameters of the ferrule and at least the distribution data of the dimensional parameters of the optical fiber, and the amount of axis deviation is calculated based on a combination thereof. It is preferable to simulate the distribution of the connection loss values by calculating the connection loss values from the shift amounts and obtaining a plurality of data of the connection loss values.
  • connection loss calculation simulator distribution data of an angle parameter that is an angle shift with respect to an outer peripheral portion of the ferrule through hole is combined. Preferably.
  • connection loss calculation simulator it is preferable to combine distribution data of a dimension parameter or an angle parameter of the split sleeve or distribution data of a connection loss value of the split slip.
  • the present invention it is possible to calculate the amount of axis deviation from the inner diameter of the ferrule and the gap generated from the optical fiber, the concentricity between the outer peripheral portion of the ferrule and the through hole, and the concentricity between the core and the clad of the optical fiber. preferable.
  • the amount of axial misalignment is determined from the inner diameter of the ferrule and the gap generated from the optical fiber, the concentricity between the outer peripheral portion of the ferrule and the through hole, and the concentricity between the core and the clad of the optical fiber.
  • the connection loss value is calculated from the paired axial deviation calculated by taking into account the two axial deviation data of the single plug and the axial deviation due to the difference in outer diameter of the ferrule. It is preferable to simulate the distribution of the connection loss value by calculation.
  • the total connection loss value is obtained by summing the connection loss value calculated from the paired shaft deviation, the connection loss value calculated from the paired angle deviation, and the connection loss value of the split sleeve. It is preferable to simulate the distribution of connection loss values.
  • the method for calculating the connection loss of the optical connector according to the present invention includes a method of calculating the axial deviation amount and / or the angle parameter of the ferrule obtained from the distribution data of the dimensional parameters of the cylindrical single-core ferrule and the optical fiber inserted therein.
  • the amount of axial deviation and / or the amount of angular deviation in the connected state can be calculated. Calculate the distribution, and then calculate the splice loss distribution.
  • the sum is calculated as a vector amount in a plane perpendicular to the axial direction using only one or both of the above-mentioned axis shift amount and angle shift amount. Is possible.
  • the distribution of the axial deviation generated from the distribution data of the dimensional parameter of the ferrule and the distribution data of the dimensional parameter of the optical fiber When the angular displacement distribution generated from the angular parameter distribution data of the tool is combined as a betattle, the two axes that are combined or the angle formed by the angular displacement vectors are combined to obtain the combined axial displacement. It is preferable to convert the variables to the magnitude of the vector or angle shift vector.
  • the above-mentioned axial deviation amount is obtained from the gap formed by the inner diameter of the ferrule and the optical fiber, the concentricity between the outer peripheral portion of the ferrule and the through hole, and the concentricity between the core and the clad of the optical fiber. Is preferred.
  • the distribution of the gap generated from the inner diameter of the ferrule and the optical fiber, the distribution of concentricity between the outer peripheral portion of the ferrule and the through hole, and the concentricity of the optical fiber core and the clad are described.
  • the degree distribution is calculated as a vector, and the axis deviation amount distribution of a single plug is combined as a vector, and the axis deviation amount distribution of the single plug and the outer diameter difference distribution of the ferrule are combined as a vector to calculate a pair. It is preferable to calculate the connection loss distribution from the converted axial deviation distribution.
  • connection loss distribution from a paired angle shift amount distribution calculated by combining two angular shift amount distributions of Ferrule.
  • the total connection loss value is obtained by summing the connection loss value calculated from the paired shaft deviation, the connection loss value calculated from the paired angle deviation, and the connection loss value of the split sleeve. It is preferable to calculate the distribution of connection loss values.
  • the method for calculating the connection loss of the optical connector according to the present invention includes a method of calculating the axial misalignment obtained from the distribution data of the cylindrical single-core ferrule and the dimensional parameter of the optical fiber to be inserted thereinto, and the z or ferrule.
  • the angle deviation obtained from the distribution data of the angle parameters is calculated in a vector perpendicular to the axis of the optical fiber and ferrule.
  • the above-mentioned axial deviation amount is obtained from the gap formed by the inner diameter of the ferrule and the optical fiber, the concentricity between the outer peripheral portion of the ferrule and the through hole, and the concentricity between the core and the clad of the optical fiber. Is preferred.
  • the n-order moment of the gap generated from the inner diameter of the ferrule and the optical fiber ⁇ the n-order moment of concentricity between the outer peripheral portion of the ferrule and the through hole, and the concentricity of the core and the clad of the optical fiber
  • the n-th moment of the single plug is combined into the n-th moment of the axial displacement of the single plug, and the n-th moment of the axial displacement of the single plug and the n-th moment of the outer diameter difference of the ferrule It is preferable to calculate the n-th moment of the connection loss from the n-th moment of the paired axis shift amount calculated by combining as a vector.
  • n-th moment of the connection loss from the n-th moment of the paired angular displacement calculated by combining two n-th moments of the angular displacement of the ferrule.
  • the total connection loss value is obtained by summing the connection loss value calculated from the paired axis shift, the connection loss value calculated from the paired angle shift, and the connection loss value of the split sleep. , Calculate the nth moment of the splice loss Preferably.
  • the method for calculating the connection loss of an optical connector according to the present invention includes: a distribution data of the axial deviation of a single brag comprising a ferrule having a through hole in a longitudinal direction and an optical fiber inserted therein; and a distribution of an outer diameter of the ferrule.
  • nth-order moment of the axial deviation in the connected state when tuning is performed which is the method of aligning the direction of the axial deviation of a single plug (n 7 dimensional product ratio), and connect from there Calculate the nth moment of loss.
  • the above-mentioned amount of axial misalignment is determined from the gap formed by the inner diameter of the ferrule and the optical fiber, the concentricity between the outer peripheral portion of the ferrule and the through hole, and the concentricity between the core and the cladding of the optical fiber. Is preferred.
  • n-th moment of the connection loss from the n-th moment of the paired angular displacement calculated by combining two n-th moments of the angular displacement of the ferrule.
  • the total connection loss value is obtained by summing the connection loss value calculated from the paired axis shift, the connection loss value calculated from the paired angle shift, and the connection loss value of the split sleep. It is preferable to calculate the nth moment of the connection loss value.
  • the connection loss calculation method simulator for an optical connector according to the present invention can be realized by using any one or a combination of the above connection loss calculation methods for an optical connector.
  • optical connection can be performed without much man-hour and cost.
  • the distribution data of the connection loss of the rectifier can be easily obtained.
  • FIG. 1 is a flowchart showing the operation of the connection loss calculation simulator according to the first embodiment of the present invention.
  • FIG. 2A is a cross-sectional view illustrating the axial displacement of a single plug
  • FIG. 2B is an enlarged view of the ferrule in FIG. 2A viewed from the end face direction.
  • FIG. 3A is a cross-sectional view for explaining an axial deviation in a state where two plugs are brought into contact with each other to form a pair
  • FIG. 3B is an enlarged view showing an axial deviation on a ferrule contact surface
  • FIG. 4A is a cross-sectional view illustrating an angle shift in a state where two plugs are brought into contact with each other to form a pair
  • FIG. 4B is a three-dimensional view expressing the angle shift in polar coordinates.
  • FIG. 5 is a diagram illustrating a method of randomly extracting one piece of data from the distribution data of each parameter.
  • FIG. 6 is a diagram illustrating a method of randomly extracting one piece of data from an angle in the 360 ° direction.
  • FIG. 7 is a diagram illustrating a method of combining a plurality of data.
  • FIG. 8 is a histogram showing a result obtained by using the connection loss calculation simulator of the first embodiment.
  • FIG. 9 is a flowchart showing the operation of the connection loss calculation simulator according to the second embodiment of the present invention.
  • FIG. 10 is a diagram for explaining a method of synthesizing the size parameter distribution.
  • FIG. 11 is a diagram for explaining a method of calculating the total connection loss distribution by adding the connection loss distribution along the axis, the connection loss distribution along the angle, and the connection loss distribution along the split sleeve.
  • FIG. 12 is a histogram showing the result of using the connection loss calculation simulator of the second embodiment.
  • FIG. 13 is a flowchart showing the operation of the connection loss calculation simulator according to the third embodiment of the present invention.
  • FIG. 14 is a flowchart showing the operation of the connection loss calculation simulator according to the fourth embodiment of the present invention.
  • Fig. 15A is a cross-sectional view illustrating the shaft deviation when two plugs are abutted, tuned and paired, and
  • Fig. 15B shows the shaft deviation at the ferrule contact surface It is an enlarged view.
  • FIG. 16 is a diagram for explaining a method of synthesizing the nth moment of the dimension parameter in the case of tuning four times.
  • FIG. 17A shows the axial deviation distribution and the ferrule ⁇ # difference distribution of a single plug
  • FIG. 17B is a graph showing the relationship between the number of tunings and the average value and standard deviation of connection loss.
  • FIG. 18 is a cross-sectional view showing a general plug.
  • FIG. 19 is a cross-sectional view showing a general optical connector.
  • FIG. 20A and FIG. 20B are explanatory diagrams showing a method of measuring a connection loss of an optical connector.
  • FIG. 21 is a graph showing axis deviation, angle deviation, and connection loss.
  • the present embodiment is directed to an optical connector in which an optical fiber is inserted and fixed in a ferrule having a through hole in a longitudinal direction, wherein at least distribution data of dimensional parameters of the ferrule and at least distribution data of dimensional parameters of the optical fiber are used as an axis.
  • the shift amount is calculated, the connection loss value is calculated from the shaft shift amount, and the distribution of the connection loss value is simulated.
  • FIG. 1 shows a method of simulating a distribution of a connection loss value of an optical connector using a cylindrical single core ferrule by a Monte Carlo method.
  • the extraction method extracts data by generating random numbers. Because of the use of random numbers, it is named Monte Carlo in Monaco, famous for its betting city. Specifically, using a random number table or a personal computer, for example, a random number generation function RAND in Microsoft Excel spreadsheet software “Exce 1 J By using () and R AND BE TWE EN (), it can be obtained relatively easily. The details of the data extraction method will be described later.
  • one data is randomly extracted from the ferrule inner diameter distribution data in the same manner as described above.
  • the outer peripheral surface of the optical fiber since the outer peripheral surface of the optical fiber always comes into contact with the outer peripheral surface of the ferrule at at least one location at the tip of the ferrule, the outer diameter of the optical fiber is subtracted from the gap between the inner diameter of the ferrule and the outer diameter of the fiber, that is, the inner diameter of the ferrule.
  • the half value is the axis shift.
  • one data is randomly extracted from the data of the ferrule concentricity distribution in the same manner as described above. Furthermore, one data is randomly extracted from the distribution data of the concentricity of the optical fiber core in the same manner as described above.
  • the total axial misalignment of a single plug is calculated from the half value of the value obtained by subtracting the outer diameter of the optical fiber from the inner diameter of the ferrule, the concentricity of the ferrule, and the concentricity of the optical fiber core.
  • FIG. 2A an optical fiber protector 2 is fixed to a ferrule 1 having a through-hole 1a, and an optical fiber 3 is inserted and fixed from an opening of the optical fiber protector 2 to form a plug 10. Is done.
  • the axis shift means a shift in the position of the outer peripheral portion 1c from the center on the ferrule tip end surface 1b.
  • FIG. 2B is an enlarged view of Ferrule 1 viewed from the end face direction.
  • the center of the outer peripheral portion 1C is assumed to be. Assuming that the center of the through hole of the ferrule is o 2 , a displacement of 0 2 is a half value of the concentricity. Next, the center position of the optical fiber is 0 3 , and the distance between O 2 and O 3 is half the value obtained by bowing the optical fiber ⁇ S from the inner diameter of the ferrule. Further, the center position of the optical fiber core distance o 4 next, o 3 0 4 becomes half the concentricity of the optical Faibakoa. Finally, the distance between O and O 4 is the total axis deviation d T with respect to the outer peripheral portion 1 c of the ferrule.
  • FIG. 3A shows a state in which the ferrule 1 ′ is in contact with the ferrule 1, and the tip surfaces 1 b and 1 b are in contact with each other by the split sleeve 5.
  • the inner peripheral surface of the opposed portion 5b of the slit 5a of the split sleeve 5 becomes the position reference point of the ferrule 1 and the ferrule 1 ', and the large-diameter ferrule 1' is This will cause a displacement in the direction.
  • the center of the total axis deviation with respect to the center of the outer periphery of the small diameter ferrule 1 is 0 4
  • the center of the total axis deviation with respect to the center of the outer periphery of the large diameter ferrule 1 ′ is 0 4
  • the distance d between and An offset occurs in the direction of the s- slit 5a.
  • the distance d s between and is the half value of the difference between ⁇ # of the large diameter ferrule 1, and ⁇ of the small diameter ferrule 1. Accordingly, the center of the paired the final axial misalignment distance d P between o 5 next o 4 0 5 is the axis deviation were paired.
  • ⁇ g of the large diameter ferrule 1 'and the small diameter ferrule 1 are randomly extracted from the distribution data of the outer diameter of the ferrule as shown in FIG.
  • Fig. 4A is a cross-sectional view of the ferrules 1 and 1 'abutting on the tip surfaces 1b and 1 inside the split voop 5
  • Fig. 4B is a three-dimensional view showing the angular displacement in polar coordinates. It is.
  • the through-holes 1a, 1a ' are 0 on the cross-section on the outer peripheral portions 1c, 1c. , 0 ° tilted.
  • is inclined in the 360 ° direction with respect to the contact surface, and finally, the angle deviation vector r of ferrule 1 and the vector of ferrule 1 ' The relative angle with respect to the angle is shifted as a paired angle.
  • Data is numbered consecutively from 1 to n with integers.
  • the data X n There is no particular need to arrange them.
  • a random number is generated, the i-th data number is extracted, and the data X i is extracted.
  • the spreadsheet software “Ex cel” given above gives a function of RANDBETWEEN (1, n), generates integers from l to n, and calculates a single random number from the obtained random number. It can be obtained by extracting the data of the i-th cell to which the data is input.
  • the angle ranges from 0 ° to 359.9999 ⁇ ⁇ ⁇ °, but in the calculation of splice loss, the unit of 1 ° is sufficient, so ⁇ ° is extracted as 0 to 359 °.
  • the function of RAND BETWEEN (0, 359) is given to generate an integer from 0 to 359, and the obtained single random number is used as the angle. Can be obtained.
  • connection loss value IL A by axial displacement than the number 3 from the axis misalignment of the paired.
  • connection loss value IL e due to the angle shift is calculated from the angle shift from the paired angle shifts. Then, it extracts one connection loss value IL s to generate the same random numbers from the connection loss distribution data of the split sleeve.
  • connection loss value IL A due to the above-mentioned shaft deviation, the connection loss value IL e due to the angle deviation, and the connection loss value IL s of the split sleeve is the total connection loss. Since the total connection loss is a combination of a pair of ferrules, a plurality of connection loss values are calculated in the same manner as described above. Distribution data can be obtained from these multiple connection loss values.
  • connection loss distribution data is obtained by assuming the number of plugs as n as shown in Fig. 7 and the inner diameter, concentricity, ⁇ , angle deviation, concentricity of optical fiber, and outer diameter of the ferrule of each plug.
  • the six parameters are randomly extracted and combined in a brute force manner.
  • the connection loss value of the percent sleep is randomly Extract and add.
  • connection loss value is X i 2
  • connection loss value is X i
  • sample sum n ⁇ 1 and sample n the connection loss value is X n _ ln
  • the maximum value may not be a realistic value because the probability may be calculated to a small degree in the simulation. Therefore, the maximum value of 97% may be used as specified in IEC 6175-5-2-1.
  • connection loss data of the present invention is at least 100, and it is particularly preferable that there be 500 or more data. This is because the greater the number of data, the smoother the distribution of curves can be made when making a histogram.
  • connection loss value calculates the connection loss value from the axial deviation amount, and simulates the distribution of the connection loss value, which is an effect of the present invention. It is easy to obtain connection loss distribution data without complicated man-hours and costs. I can do it.
  • the present invention is not limited to this, and may be used for a cylindrical multi-core ferrule, or used for a rectangular ferrule. In this case, the same effects as those of the present invention can be obtained.
  • connection loss of the optical connector In order to reduce the connection loss of the optical connector, an alignment technique has been introduced, in which the direction of axis misalignment is adjusted to a certain direction, but the method for calculating the connection loss of the optical connector of the present invention can also be used. It is.
  • the optical connector connection loss calculation simulator of the present invention is simulation software using the above-described optical connector connection loss calculation method, and further refers to a device such as a personal computer on which the simulation software is installed.
  • the present invention can also be applied to a multimode optical fiber.
  • connection loss calculation simulator of the optical connector of the present invention shown in FIG. 1, the ferrule inner diameter is ⁇ 152.2 to 125.7 / ⁇ 111, the concentricity is 0 to 0.8 / 111, and ⁇ # is 2.4989 ⁇ 2.4992mm, angular deviation 0.02 ⁇ 0.14 °, concentricity of optical fiber 0 ⁇ 0.4, ⁇ 124.8 ⁇ 125.3 ⁇ m
  • a simulation was performed.
  • Fig. 7 we obtained 1,225 connection loss data numbers for a total of 50 plugs, and then plotted a histogram.
  • Figure 8 shows the histogram.
  • the probability is shown by dividing the vertical axis of the histogram by the total number of data, 2475. From the above, the average splice loss value is 0.154 dB, the variation is 0.096 dB, The maximum value was 0.68 dB, and the maximum value of 97% was 0.37 dB.
  • the inner diameter of the ferrule with the distribution data used in the above simulator is ⁇ 152.2-12.5.77 / 111
  • the concentricity is 0-0.8111
  • is 2.4989-2.4992 mm
  • Fifty samples with distribution data of 0.02 to 0.14 ° angular deviation, 0 to 0.4111 optical fiber concentricity, and 124.8 to 125.3 / im outer diameter were created.
  • the connection loss was measured by the method shown in Fig. 20A and Fig. 20B, and the total number of connection loss data was 1,225 by the method shown in Fig. 7.
  • the ferrule tip surface was measured with an optical microscope after confirming that there was no dust or flaw.
  • connection loss was 0.163 dB
  • variation was 0.112 dB
  • maximum value was 0.64 dB.
  • the amount of axial deviation is calculated from the distribution data of the dimensional parameters of the ferrule of the present invention and at least the distribution data of the dimensional parameters of the optical fiber, and the connection loss value is calculated from the amount of axial deviation. It was confirmed that the method of simulating the distribution can obtain almost the same value as the method of creating a sample and measuring the splice loss.
  • the time required for the present invention was several tens of minutes including data input, whereas the actual measurement method of the comparative example took several hours to prepare a sample, measure, and collect data.
  • the connection loss distribution data could be easily obtained without requiring a lot of man-hours and costs.
  • the amount of axial deviation obtained from the distribution data of the dimensional parameter of the ferrule having a through hole in the longitudinal direction and the optical fiber inserted therein, and / or the amount of angular deviation obtained from the distribution data of the angle parameter of the ferrule By calculating the sum as the amount of betatle in the plane perpendicular to the axial direction of the optical fiber and ferrule, the distribution of the axial deviation and the angular deviation in the connected state is calculated, and the connection loss distribution is calculated therefrom. I do.
  • FIG. 9 shows a method of simulating the distribution of connection loss values by a random variable conversion method.
  • the distribution data of the optical fiber ⁇ g and the distribution data of the inner diameter of the ferrule are converted into the distribution data of the half value of the gap between the optical fiber and the ferrule.
  • the outer surface of the optical fiber always contacts the inner surface of the ferrule at at least one location.
  • the gap between the inner diameter of the ferrule and the optical fiber ⁇ that is, the half value of the value obtained by dividing the optical fiber ⁇ g by the bow IV from the inner diameter of the ferrule, Axis misalignment occurs.
  • an optical fiber protector 2 is fixed to a ferrule 1 having a through hole 1a, and an optical fiber 3 is inserted and fixed from an opening of the optical fiber protector 2 to form a plug 10. Is formed.
  • the axis shift means a position shift from the center of the outer peripheral portion 1c on the ferrule tip end face 1b.
  • the center of the outer peripheral portion 1C is assumed to be.
  • the center of the through hole of the ferrule and O 2 thus, the positional deviation of the O 2 is half of the concentricity.
  • the center position of the optical fiber is o 3
  • the distance o 2 0 3 becomes half the value obtained by subtracting the ⁇ optical fiber from the ferrule inside diameter.
  • the center position of the optical fiber core 0 4 and the distance 0 3 0 4 becomes half the concentricity of the optical fiber core.
  • the distance between O and O 4 is the total axis deviation d ⁇ with respect to the outer peripheral portion 1 c of the ferrule.
  • the total axis shift does not necessarily increase if the axis shift in each parameter is large.
  • a state where ferrule 1 is in contact with ferrule 1 is shown.
  • the tip surfaces 1 b and 1 b ′ are in contact with each other by the split sleeve 5.
  • the inner peripheral surface of the facing portion 5 of the slit 5 a of the split sleeve 5 becomes a position reference point of the ferrule 1 and the ferrule 1 ′, and the large-diameter ferrule 1 ′ is the slit 5.
  • a displacement will occur in the direction of a.
  • the center of the total axis deviation with respect to the center of the outer periphery of the small diameter ferrule 1 is 0 4
  • the center of the total axis deviation with respect to the center of the outer periphery of the large diameter ferrule 11 is O 4
  • the distance d s between and A displacement occurs in the direction of the minute slit 5a.
  • the distance ds between and is the half value of the difference between the outer diameter of the large-diameter ferrule 1 ′ and ⁇ ⁇ of the small-diameter ferrule 1 ′. Accordingly, the center of the paired the final axial misalignment becomes axial misalignment distance d P between 5 Omicron and o 5 becomes 0 4 was paired.
  • ⁇ of the large diameter ferrule 1 'and the small diameter ferrule 1 are randomly extracted from the distribution data of the outer diameter of the ferrule as shown in FIG.
  • a paired angle shift distribution is calculated from the angle shift distribution data of a single ferrule in the same manner as described above.
  • the ferrules 1 and 1 ′ abut at the tip surfaces 1 b and 1 b inside the split sleeve 5, and the through holes 1 a , 1 &, have a cross section of 0 ° and ⁇ ′. . Leaning. However, it is necessary to take into account that ⁇ and ⁇ 'are inclined in the angular direction in the contact surface, and finally the angular displacement of the ferrule 1 and the vector r' of the ferrule 1 ' Are the angular deviations that are paired.
  • Figure 10 shows that the vector of dimension parameter 1 and the vector of dimension parameter 2 are combined to generate a vector of dimension parameter 3. Since the orientation of the solid is random, the angle 0 is uniformly distributed in the range of 0 to 180 degrees. Therefore, the dimensional parameters 1 and 2 and the angle 0 are all distributed. Using the trigonometric cosine theorem, the magnitude of dimension parameter 3 is represented by dimension parameters 1, 2, and the angle formed by 0. Combining dimension parameters 1 and 2 means transforming a probability distribution with dimension parameters 1, 2 and angle 0 as independent random variables into a distribution with combined dimension parameter 3 as the only random variable. No. That is, The distribution is obtained by converting the three random variables of dimension parameters 1, 2, and the angle ⁇ into dimension parameter 3.
  • This method is also used when combining two angle parameter distribution data taking into account the angle between the two angle parameters.
  • the paired axis shift distribution and the paired angle shift distribution could be calculated.
  • connection loss value distribution due to the axis shift is obtained from Equation 3 from the paired axis shift distribution. Furthermore, the connection loss distribution due to the angle shift is obtained from Equation 5 from the paired angle shift distribution.
  • the total connection loss distribution can be calculated by summing the connection loss value distribution due to the above-mentioned axis deviation, the connection loss value distribution due to the angle deviation, and the connection loss distribution of the split sleep. Specifically, do the following.
  • the splice loss including the different factors only needs to add up the splice loss due to the individual factors if each of them is low enough. Therefore, it can be said that the total connection loss is the sum of the connection loss due to the shaft deviation, the connection loss due to the angle deviation, and the connection loss of the split sleeve. This can be expressed by the following formula, where IL A is the connection loss due to the axis shift; IL ⁇ is the connection loss due to the angle shift; IL s L is the connection loss of the split sleep;
  • IL IL A + IL e + IL sl
  • connection loss is non-negative.
  • splice loss is a discrete variable, not a continuous variable. Therefore, using the non-negative integers i, j, k, and n, for example, in units of 0.01 dB, the connection loss due to the axial deviation is i; the connection loss due to the angular deviation is j; and the connection loss of the split sleeve is k.
  • the total connection loss is represented by n.
  • the probabilities are denoted as ⁇ ⁇ (i); ⁇ ⁇ (j); P sl (k); P (n), respectively. These probabilities are the height of the histogram in each splice loss probability distribution, and the non-negative integers i, j, k, n are the labels of the histogram. Therefore, the following equation is obtained by discretizing Equation (6).
  • Equation 7 is an equation that satisfies the coordinates (isj, k) included in a triangle formed by connecting points with values n on the i, j, and k axes.
  • a connection loss due to Re not a axis i,; ⁇ one angular deviation is due to connection loss mosquitoes, and the probability connection loss is k split sleep ⁇ ⁇ ( ⁇ ) ⁇ ⁇ ⁇ (j) XP sl (k).
  • the probability P (n) that the total connection loss becomes n is all i, j, and k that satisfy Equation 7. Is obtained by calculating the sum of ⁇ ⁇ (i) ⁇ ⁇ ⁇ (j) XP sl (k). This is given by:
  • the number of data of the dimension parameter used in the present invention is desirably at least 10 data, particularly desirably at least 100 data. This is because the greater the number of data, the smoother the distribution of curves when making a histogram.
  • the data step of the dimension parameter is desirably 0.1 m or less, and particularly desirably 0.05 / xm or less. This is because the smaller the data step, the closer the histogram can be to a continuous probability distribution.
  • the connection loss was calculated using both the amount of axial deviation and the amount of angular deviation. However, for example, when the amount of angular deviation is extremely small compared to the amount of axial deviation, the connection loss is calculated using only the amount of axial deviation. It is also possible to calculate the loss, and vice versa.
  • the example using the random variable conversion method has been described.However, without being limited to the random variable conversion method, at least the distribution data of the dimensional parameters of the ferrule of the optical connector having the ferrule, and at least the dimensional parameters of the optical fiber Axis from distribution data of Any method may be used as long as the method calculates the distribution of the amount of deviation and calculates the distribution of the connection loss value therefrom, and the effect of the present invention is that there is no need for a large number of man-hours and costs. Connection loss distribution data can be easily obtained.
  • connection loss calculation method of the optical connector of the present invention can also be used. is there.
  • connection loss calculation method of the optical connector of the present invention and the simulator using the same have been described for a single mode optical fiber, but can be applied to a multimode optical fiber.
  • connection loss calculation simulator of the optical connector of the present invention shown in Fig. 9
  • the ferrule inner diameter is ⁇ 125.2 to 125.7 / xm
  • concentricity is 0 to 0.8111
  • is 2.4989. ⁇ 2.4992mm
  • the angle shift is 0.02 ⁇ 0.14.
  • the simulation was performed with the concentricity of the optical fiber being 0 to 0.4 // 111 and the ⁇ # being 124.8 to 125.3 / iin.
  • Figure 12 shows the total connection loss probability distribution histogram.
  • the average connection loss value was 0.089 dB, and the maximum 97% value was 0.276 dB.
  • the inner diameter of the ferrule with the distribution data used in the above simulator was ⁇ 125.2 to 125.7111, the concentricity was 0 to 0.8111, ⁇ was 2.4989 to 2.4992 mm, Create and connect 50 samples with distribution data of 0.02 to 0.14 ° for angle deviation, 0 to 0.4 Atm for concentricity of optical fiber, and 124.8 to 125.3 for female. How losses are shown in Figures 20A and 20B We measured 1, 2 and 25 connection loss data numbers.
  • the average value of the connection loss was 0. Q85 dB, and the maximum value of 97% was 0.20 dB.
  • the respective axis deviation amounts obtained from the distribution data of the dimensional parameters of the ferrule and the optical fiber of the present invention and the angle deviation amounts obtained from the distribution data of the angle parameters of the ferrule are perpendicular to the optical fiber and the axial direction of the ferrule.
  • the time required for the present invention was several tens of minutes including data input, whereas the actual measurement method of the comparative example took several tens of hours including sample preparation, measurement, and data collection. We could easily obtain connection loss distribution data without requiring a lot of man-hours and costs.
  • the amount of axial deviation obtained from the distribution data of the dimensional parameter of the ferrule having a through hole in the longitudinal direction and the optical fiber that enters the ferrule, and the amount of angular deviation obtained from the distribution data of the angle parameter of Z or the ferrule are calculated as follows.
  • the n-th moment of the axial deviation and the angular deviation in the connected state is calculated, and the n-th moment of the connection loss is calculated therefrom. Calculate the moment.
  • the nth moment of the discrete random variable X (i) is expressed by the following formula using its probability distribution P (i).
  • the first moment is an average value as expressed by the following equation.
  • FIG. 13 shows a method of simulating the nth moment of the connection loss value.
  • the distribution data of the outer diameter of the optical fiber and the distribution data of the inner diameter of the ferrule are converted into distribution data of the half value of the gap between the optical fiber and the ferrule.
  • the outer surface of the optical fiber always abuts the inner surface of the ferrule at at least one location, so the gap between the inner diameter of the ferrule and the optical fiber, that is, the half value of the value obtained by subtracting the optical fiber ⁇ # from the inner diameter of the ferrule is the axis deviation.
  • the ⁇ -order moment of the total axis misalignment of a single plug is calculated from the distribution of the half value of the value obtained by subtracting the outer diameter of the optical fiber from the inner diameter of the ferrule, the concentricity distribution of the ferrule and the concentricity distribution of the optical fiber.
  • the ⁇ -order moment of the paired axis shift is calculated from the two ⁇ -order moments of the axis shift of a single plug and the ⁇ -order moment of the difference between the two ferrules.
  • the ferrule 1 with the through hole 1 a 2 is fixed, and the plug 10 is formed by inserting and fixing the optical fiber 3 from the opening of the optical fiber protector 2.
  • the axis shift means a position shift from the center of the outer peripheral portion 1c on the ferrule tip end face 1b.
  • the center of the outer peripheral portion 1C is O i. Assuming that the center of the through hole of the ferrule is o 2 , the displacement of 0 2 is half the concentricity. Next, the center position of the optical fiber is O 3 , and the distance between O 2 and O 3 is half the value obtained by subtracting the optical fiber from the inner diameter of the ferrule. Further, the center position of the optical fiber core distance o 4 next, o 3 0 4 becomes half the concentricity of the optical fiber core. Finally, the distance between and 4 is the total axis deviation d ⁇ with respect to the ferrule and the outer circumference 1 c.
  • the total axis shift does not necessarily increase if the axis shift in each parameter is large.
  • the inner peripheral surface of the opposed portion 5b of the slit 5a of the split sleep 5 serves as a position reference point of the ferrule 1 and the ferrule 1 ', and the large-diameter ferrule 1' is a slit.
  • a displacement will occur in the direction of 5a.
  • the distance d s between and is the half value of the difference between the outer diameter of the large-diameter ferrule 1 ′ and the small-diameter ferrule 1. Therefore, the distance d P of the center of the paired the final axial deviation 0 5 becomes 0 4 and 0 5 is the axis deviation were paired.
  • the nth moment of the paired angle shift is calculated from the distribution data of the angle shift of the single ferrule in the same manner as above.
  • ferrules 1 and 1 are split sleep 5
  • the through holes 1a, 1 & ' are inclined at 0 ° and 0' ° in cross section.
  • the contact surface is inclined about ⁇ and ⁇ in the angular direction.In the end, the angular displacement of Ferrule 1 and that of Ferrule 1 ' Are the angular deviations that are paired.
  • the vector of the dimension parameter 1 and the vector of the dimension parameter 2 are combined to generate the vector of the dimension parameter 3. Since the direction of the betattle is random, the angle ⁇ is uniformly distributed in the range of 0 to 180 degrees. Using the cosine theorem of trigonometric functions, the size of the dimension parameter 3 is represented by the dimension parameters 1, 2, and the angle formed by 0. Therefore, the ⁇ -order moment of the dimension parameter 3 can be expressed using the dimension parameters 1 and 2, the angle 6 and its probability distribution. Once this is integrated at angle ⁇ , the nth moment of dimension parameter 3 can be expressed only by the nth moment of dimension parameters 1 and 2.
  • This method is also used when combining the n-order moments of two angle parameters taking into account the angle between the two angle parameters.
  • the n-th moment of the paired angular deviation and the n-th moment of the paired angular deviation can be calculated.
  • the n-th moment of the connection loss value due to the shaft misalignment is obtained from Equation 3 from the n-th moment of the paired shaft misalignment. Further, the n-th moment of the connection loss value due to the angle shift is obtained from Equation 5 from the n-th moment of the paired angle shift.
  • the n-th moment of the connection loss value due to the above-mentioned shaft deviation, the n-th moment of the connection loss value due to the angular deviation, and the n-th moment of the connection loss of the split sleep can be summed to calculate the n-th moment of the total connection loss.
  • the following is performed.
  • the case of the first moment that is, the average value is described.
  • the splice loss including different factors only needs to add up the splice loss due to each factor if each of them is sufficiently low. Therefore, it can be said that the total connection loss is the sum of the connection loss due to the shaft deviation, the connection loss due to the angle deviation, and the connection loss of the split sleeve.
  • connection loss due to the axis shift is IL A ; the connection loss due to the angle shift is IL e ; the connection loss at the split sleep is IL s i; the total connection loss is IL, then the following equation is obtained.
  • IL IL A + IL 9 + IL sl
  • connection loss is non-negative.
  • their first moments that is, their average values
  • ⁇ IL> ⁇ IL A > + ⁇ IL d > + ⁇ IL sl >
  • the number of data of the dimensional parameter used in the present invention is desirably at least 10 data, particularly desirably 100 or more data. This is because the greater the number of data, the smoother the probability distribution of the histogram of the dimension parameters.
  • the data step of the dimension parameter is desirably 0.1 ⁇ or less, particularly desirably 0.05 tm or less. This is because the smaller the data step, the more accurate the nth moment can be calculated.
  • connection loss was calculated using both the amount of axial deviation and the amount of angular deviation.
  • the connection loss is calculated using only the amount of axial deviation. It is also possible to calculate the loss, and vice versa.
  • connection loss calculation method of the optical connector of the present invention can also be used. is there.
  • connection loss calculation method of the optical connector of the present invention and the simulator using the same have been described for a single mode optical fiber, but can be applied to a multimode optical fiber.
  • the inner diameter of the nozzle is ⁇ 125.2 to 125.7 ⁇
  • the concentricity is 0 to 0.8 ⁇ m
  • ⁇ 2 is ⁇ 2.
  • Angle deviation is 0.02 ⁇ 0.14 °
  • concentricity of optical fiber is 0 ⁇ 0.4111
  • outer diameter is 124.8 ⁇ : distribution data of L 25.3 m A simulation was performed.
  • the average connection loss value was 0.089 dB.
  • the inner diameter of the ferrule with the distribution data used in the above simulator was ⁇ 125.2 to 125.7111, the concentricity was 0 to 0.8 xm, and the diameter was 2.4989 to 2.4992 mm, Angle deviation: 0.02 to 0.14 °, concentricity of optical fiber: 0 to 0.4 / zm, outer diameter: 124.8 to: L 50 samples with distribution data of 25.3 / zm
  • the connection loss was measured by the method shown in Fig. 2 OA and Fig. 20B, and 1,225 connection loss data numbers were obtained.
  • connection loss was 0.085 dB.
  • the amount of each axis deviation obtained from the distribution data of the dimensional parameters of the ferrule and optical fiber of the present invention, and the amount of the angle deviation obtained from the distribution data of the angle parameters of the ferrule, are expressed by the optical fiber and the ferrule.
  • the time required for the present invention was several tens of minutes including the data input, whereas the actual measurement method of the comparative example required several tens of hours including sample preparation, measurement, and data collection.
  • the present invention it is possible to easily obtain connection loss distribution data without requiring much man-hour and cost.
  • the present embodiment is based on the distribution data of the axis deviation of a single plug composed of a ferrule having a through hole in the longitudinal direction and an optical fiber inserted therein, and the distribution data of ⁇ S of the ferrule. Calculate the nth-order moment (nth-moment) of the amount of axial misalignment in the connected state when tuning is performed, which is a method of aligning the direction of misalignment, and then calculate the ⁇ th-order moment of the splice loss.
  • the axial misalignment distribution data for a single plug includes the distribution of the gap between the inner diameter of the ferrule and the optical fiber ⁇ , the distribution of concentricity between the outer periphery of the ferrule and the through hole, and the same distribution of the core and cladding of the optical fiber. Determined from the distribution of the core.
  • the nth moment of the discrete random variable X (i) is expressed by the following formula using its probability distribution P (i).
  • the first moment is an average value as expressed by the following equation.
  • the average value and variance of the probability distribution can be calculated by using the nth moment.
  • the first moment of the splice loss is needed to find the average value of the splice loss
  • the first and second moments of the splice loss are needed to find the variance.
  • the connection loss itself is proportional to the square of the amount of axis deviation or angle deviation. Therefore, to find the average value of the connection loss, the first and second moments of the deviation are required, and to calculate the variance, the first to fourth moments of the deviation are required.
  • FIG. 14 shows a method of simulating the nth moment of the connection loss value.
  • the axial displacement distribution of a single plug is determined from the inner diameter of the ferrule and the gap generated by the optical fiber, the concentricity between the outer peripheral portion of the ferrule and the through hole, and the concentricity between the core and the cladding of the optical fiber. Then, from the two n-th moments of the shaft deviation of the single plug and the n-th moment of the outer diameter difference of the ferrule, the n-th moment of the shaft deviation paired by tuning is calculated.
  • an optical fiber protection device 2 is fixed to a ferrule 1 having a through hole 1a, and an optical fiber 3 is inserted and fixed from an opening of the optical fiber protection device 2 to be plugged. 10 is formed.
  • the axis shift means a position shift from the center of the outer peripheral portion 1c on the ferrule tip end face 1b.
  • the center of the outer peripheral portion 1 C is O. Assuming that the center of the through-hole of the ferrule is 0 2 , the displacement of O 2 is half the concentricity. Next, the center position of the optical fiber is 0 3 , and the distance between O 2 and O 3 is half the value of the inner diameter of the ferrule minus the external light fiber. Further, the center position of the optical fiber core distance o 4 next, o 3 0 4 becomes half the concentricity of the optical fiber core. Finally, the distance between O and O 4 becomes the total axis deviation d ⁇ with respect to the outer peripheral portion 1 c of the ferrule.
  • the total axis shift does not necessarily increase if the axis shift in each parameter is large.
  • FIG. 15A shows a state in which the ferrule 1 ′ is in contact with the ferrule 1, and the tip surfaces 1 b and 1 b are in contact with each other by the split sleep 5.
  • the slit 5a of the split sleep 5 The inner peripheral surface serves as a position reference point for ferrule 1 and ferrule 1 ', and large-diameter ferrule 1' is displaced in the direction of slit 5a.
  • the distance d s between and O is the half value of the difference between the outer diameter of the large diameter ferrule 1 ′ and the ⁇ of the small diameter ferrule 1 ′. Accordingly, the center of the final axis shift which is paired with tuning the axis shift distance d P is paired with o 5 next o 4 0 5. In this case, the angle formed by the line segment Omicron Omicron Alpha and a line segment O i '0 4' The effect of the tuning is within 9 0 °, d P stays smaller as a result.
  • the nth moment of the paired angle shift is calculated from the distribution data of the angle shift of the single ferrule in the same manner as above.
  • the ferrules 1 and 1 abut on the end surfaces 1b and 1b inside the split sleeve 5, and the through-holes 1a, 1 & 'are 0 in cross section. 6 '° tilted.
  • is inclined in the angular direction in the contact surface, and finally, the relative deviation between the ferrule 1 angular displacement vector and ferrule 1 'vector r' The actual angle becomes an angle shift that is paired.
  • Figure 16 shows that the vector of dimension parameter 1 and the vector of dimension parameter 2 are combined to produce the vector of dimension parameter 3.
  • the four tunings normally used are distributed in the same 90 degree range.
  • the magnitude of dimension parameter 3 is represented by dimension parameters 1, 2, and the angle between them (0 2 — 0 1). Therefore, the nth moment of the dimension parameter 3 can also be represented using the dimension parameters 1 and 2, the angles 01 and 02, and their probability distribution. If this is integrated by the angles 61 and ⁇ 2, the nth moment of the dimension parameter 3 is expressed only by the nth moment of the dimension parameters 1 and 2.
  • the n-th moment of the two angle parameters is This method is also used when the composition is performed in consideration of the angle.
  • the n-th moment of the paired angular deviation and the n-th moment of the paired angular deviation can be calculated.
  • the n-th moment of the connection loss due to the shaft misalignment is obtained from Equation 3 from the n-th moment of the shaft misalignment, which is described by force tuning and paired. Further, the nth moment of the connection loss value due to the angle shift is obtained from Equation 5 from the nth moment force of the paired angle shift.
  • the n-th moment of the connection loss value due to the above-mentioned shaft deviation, the n-th moment of the connection loss value due to the angular deviation, and the n-th moment of the connection loss of the split sleep can be summed to calculate the n-th moment of the total connection loss.
  • the given data is not a split-sleep connection loss distribution but a distribution of dimensional or angular parameters, convert it to a connection loss distribution using Equations 3 and 5, and then calculate its nth moment. Specifically, do the following. As an example, the case of the first moment, that is, the average value is explained.
  • the splice loss including the different factors only needs to be added to the splice loss due to the individual factors if each of them is sufficiently low.
  • the total connection loss is the sum of the connection loss due to the axis shift, the connection loss due to the angle shift, and the connection loss of the split sleep.
  • IL A is the connection loss due to the axis shift
  • IL e is the connection loss due to the angle shift
  • IL s is the connection loss of the split sleep
  • IL is the total connection loss.
  • connection loss is non-negative. Also, their first moment, the ie average value respectively, ⁇ IL A>; denoted ⁇ IL>; ⁇ ILe> ; ⁇ ILsl>. Since the connection loss of axis shift, angle shift and split sleep are independent, the primary moment of the total connection loss, that is, the average value is expressed by the following formula.
  • ⁇ IL> ⁇ IL,> + ⁇ IL e > + ⁇ IL s! >
  • the number of data of the dimension parameter used in the present invention is preferably at least 10 data, and more preferably at least 100 data. This is because the larger the number of data, the smoother the probability distribution of the dimension parameter histogram.
  • the data increment of the dimension parameter is desirably 0.1 ⁇ or less, particularly desirably 0.05 / xm or less. This is because the smaller the data step, the more accurate the nth moment can be calculated.
  • connection loss was calculated using both the amount of axial deviation and the amount of angular deviation.
  • the connection loss is calculated using only the amount of axial deviation. It is also possible to calculate the loss, and vice versa.
  • connection loss calculation simulator of the optical connector of the present invention shown in Fig. 14, the inner diameter of the ferrule is ⁇ 125.2 to 125.7 ⁇ , the concentricity is 0 to 0.8 ⁇ m, and ⁇ 2 is ⁇ 2. 4989 ⁇ 2.49 92mm, angular deviation 0.02 ⁇ 0.14 °, concentricity of optical fiber 0 ⁇ 0.4111, ⁇ 1 24.8 ⁇ 12.5.3 ⁇ Simulations.
  • Figure 17 7 shows the axial displacement distribution and the ferrule difference distribution of a single plug obtained from the dimensional data.
  • the Ferrule outside radius difference distribution is the difference between the Ferrule outside radius that appears when pairing two It is obtained from the outer diameter distribution of Hue / rail. From the above, the average and standard deviation of the connection loss values are as shown in Fig. 17B.
  • the respective axial deviation amounts obtained from the distribution data of the dimensional parameters of the ferrule and the optical fiber of the present invention, and the angular deviation amounts obtained from the distribution data of the angle parameters of the ferrule, are set in the axial direction of the optical fiber.
  • the method of calculating the 11th moment of the axis shift and the angle shift in the connected state by calculating the sum as the amount of vertical in-plane betattle, and then calculating the nth moment of the connection loss from there is another method. It was confirmed that almost the same value as the method using the simulator could be obtained.
  • the time required for the present invention was several tens of minutes including data input, whereas the actual measurement method of the comparative example took several tens of hours including sample preparation, measurement, and data collection. We could easily obtain connection loss distribution data without requiring a lot of man-hours and costs.
  • the present invention is a useful technique in that distribution data of connection loss values of optical connectors used for optical communication can be estimated by simulation.

Abstract

長手方向に貫通孔を有するフェルールに光ファイバを挿入固定した光コネクタにおいて、少なくとも上記フェルールの寸法パラメータの分布データと、少なくとも上記光ファイバの寸法パラメータの分布データから軸ずれ量を計算し、該軸ずれ量から接続損失値を計算し、該接続損失値の分布をシミュレーションする。こうした手法により、多大な工数と経費を要しないで、容易に接続損失の分布データが得られる。

Description

光コネクタの接続損失計算方法及びそれを用いたシミュレータ
技術分野
_、 本発明は、 光通信に用いられる光コネクタの接続損失値の分布データをシ ュ レーションにより推定する方法及びその方法を用いたシミュレータに関する c
背景技術
近年、 通信における情報量の増大に伴い、 光ファイバを用いた光通信が使用さ れている。 この光通信において、 光ファイバ同士の接続には光コネクタが用いら 書
れている。
該光コネクタに用いられるプラグ 1 0は、 図 1 8及び図 1 9に示すように円筒 形のフエルール 1に光ファイバ保護具 2が予め固定されており、 フエルール 1に 形成された貫通孔 1 aに被覆を除去した光ファイバ 3の先端部分を挿入し、 接着 剤 4により保持固定し、 一対のフエルール 1をスリーブ 5の両端から揷入して、 該スリーブ 5の内部で凸球面状に研磨加工した先端面 1 b同士を当接させるよう にした構造となっている。
上記光コネクタでは、 低損失でかつ低反射の光接続を保障するため、 光コネク タの組立後、 光学特性の測定が行われる。 測定項目としては、 光コネクタの接続 部での光の透過率を示す接続損失と、 光の反射率を示す反射減衰量とがあり、 現 在はこれらの接続損失と反射減衰量とを人手により個別に測定している。
図 2 0 A及び図 2 0 Bは光コネクタのランダム接続損失の測定法を説明する図 である。 この図において、 L D光濾 1 1、 リファレンス光コード 1 2、 光コネク タ 1 2 a、 リファレンス光コネクタ 1 2 b、 アダプタ 1 3、 被測定用である両端 に光コネクタ付きの光コード 1 4、 測定対象である光コネクタ 1 4 a、 終端側の 光コネクタ 1 4 b、 受光ュニット 1 5、 パワーメータ 1 6から構成されている。 ここでリファレンス光コネクタ 1 2 bとは、 測定対象である光コネクタ 1 4 a、 1 4 bと同一の仕様の光コネクタであり、 通常は製造上の被測定用光コネクタと 同一ロットからランダムに抽出されたものを用いる。
まず、 光コネクタの接続損失の測定に先立ち、 図 2 OAに示す測定系において、 接続損失の基準設定を行う。 リファレンス光コード 1 2の一端の光コネクタ 1 2 aを LD光源 1 1に接続し、 リファレンス光コネクタ 1 2 bを受光ュ二ット 1 5 に接続する。 リファレンス光コネクタ 1 2 bからの出射光は、 空気層を介して受 光ュニット 1 5により受光される。 このリファレンス光コネクタ 1 2 b力 ら出射 パワー P 0をパワーメータ 16により読み取り、 この値を接続損失測定における 基準値 (接続損失を 0 dB) と規定する。
次に、 測定対象である光コネクタ 14 aの接続損失を測定するため、 リファレ ンス光コネクタ 1 2 bを受光ユニット 1 5から取外した後、 図 20 Bに示すよう に、 アダプタ 1 3を介して被測定用の光コード 14と接続し、 光コネクタ 14 b カ^の出射光は、 基準値測定の時と同様に、 空気層を介して受光ュニット 1 5に より受光される。 この時の出射パワー P 1をパワーメータ 1 6により測定する (日本特許第 3 3 23 9 1 9号公報参照) 。
光コネクタの接続部での接続損失 I Lは、 前記出射パワー P O、 前記出射パヮ 一 P 1、 光ファイバの伝送損失ひ (d B/Km) 、 光コネクタの端面での反射損 失 βを用いて次式で表される。
(式 1)
IL(dB) = -101og— -or-y^ ここで、 光コネクタの端面での反射は、 通常 0. 01%以下であり、 反射損失 βは測定器の分解能以下となるため考えなくてもよい。 また、 シングルモード光 ファイバの場合は、 伝送損失 αは 0. 35 dBZKm以下である。 従って、 測定 対象とする光コードの長さが 3 Om以下の場合は、 伝送損失 αは測定器の分解能 にほぼ等しい 0. 0 1 dB程度となるため無視して差し支えなく、 30m以上の 場合も光ファイバの伝送損失 (αΖιη) を予め測定もしくは計算しておけば、 い ずれの場合も数 1より光コネクタの接続損失 I Lを簡単に求めることができる。 光コネクタにおける接続損失の要因としては、 光ファイバのコア相互の軸ずれ、 光ファイバ相互の角度ずれ、 光コネクタ間の端面間隙、 光ファイバ相互の構造不 一致等があるが、 通常の単一モード光コネクタでは、 光ファイバのコア間の軸ず れ (以下、 「軸ずれ」 と称する) が主要因である。
軸ずれの主要因は、 フェルール 1の貫通孔 1 aの加工精度である。 し力 し、 通 常の単一モード光コネクタで要求される偏心量が約 0. 7 / m以下の領域では、 貫通孔 1 aの偏心測定値と実際の接続損失値との間には殆ど相関は認められない。 これは、 光ファイバのコアの偏心と貫通孔 1 aの偏心とは必ずしも一致しないた めである。 即ち、 光コネクタの貫通孔 1 aと、 該貫通孔 1 aに揷入される光ファ ィバとの間には約 1 μιη程度のクリアランスが必要であり、 更に、 光ファイバ自 身も^ 中心に対してコアが僅かに偏心しているため、 貫通孔 1 aに偏心がない 場合であっても、 軸ずれが生ずることがある。
ここで、 光コネクタにおいて光ファイバ 3のコアのフエルール 1の外周面の中 心に対する偏心量を測定することにより、 単一モード光ファイバの光コネクタ接 続において、 光ファイバ間の軸ずれ dによる揷入損失 I L (dB) は次式で与え られる。
(式 2)
Figure imgf000005_0001
ここで、 ωは光ファイバのモードフィールド半径である。 この式を展開すると 次式となる。
(式 3)
Figure imgf000005_0002
ここで、 ω = 4. 7 πιと仮定すると、 光ファイバ間の軸ずれ dによる揷入損 失 I LA (dB) は、 軸ずれ dが 0. 5 の場合には約 0. 05 dB、 1 m で約 0. 20 dB、 2 mで約 0. 79 dBになる。 したがって、 光ファイバ間 の軸ずれが大きくなるにしたい、 接続損失の変化量が増大する。
軸ずれによる接続損失の増大を抑える方法として、 チューニングという接続方 法がある。 すべてのプラグに対して、 あらかじめ一本のマスタと呼ばれるプラグ との接続試験を行ない、 プラグを軸の周りに 90度毎に回転して 4方向の内で最 も接続損失が小さくなる方向を見つけ、 プラグのその方向に印をつける。 そして、 実際の接続の際には, その印同士が一致するように接続をする。 このことにより、 接続される 2本のプラグの軸ずれの方向は同じ 90度範囲に含まれることになる。 これにより、 軸ずれがある程度相殺されることになり、 接続損失の増大を抑制で 'きる。 一般的なチューニングは同じ 90度範囲に入れることを目的としたもので あり、 4方向の内から 1方向を選ぶので、 ここではそれを 4回チューニングと呼 ぶことにする。 よって、 mを自然数として一般的に (360Zm) 度範囲に軸ず れを限定するチューニングを m回チューニングと呼ぶことにする。
次に、 光ファイバ相互の角度ずれ (以下、 「角度ずれ」 と称する) の主要因は フエルール 1の貫通孔 1 aの外周面 1 cに対する角度ずれである。 ここで、 光コ ネクタにおいて、 光ファイバ 3の出射角の外周面 1 cに対する角度ずれを 0とす ると、 揷入損失 I Le (dB) は次式で表される。
(式 4)
ILgidB) = -lOlog^xp [- (πηθω/λ)2
ここで、 ηは光ファイバの屈折率であり、 は真空中の光の波長を表す。 ここ で、 ηに光ファイバの一般的な屈折率 1. 46を代入し展開すると次式となる。
(式 5)
ILe(dB) = 91 Α(θω/Λ)2
ここで、 光ファイバ間の角度ずれ 0による揷入損失 I Le (dB) は、 角度ず れ 0が 0. 2° の場合には約 0. 0 14 dB、 0. 5° の場合には約 0. 08 9 dBとなり、 角度ずれ 0が大きくなるにしたがい、 接続損失の変化量が増大す る。 し力 し、 軸ずれ dに対する接続損失に比べて影響が少ない。
上記数 1及び数 2より、 図 21に示すように、 軸ずれと角度ずれと接続損失を 示したグラフが簡易的に用いられ、 個別の光コネクタの角度ずれ及び軸ずれから 大まかな接続損失を推定していた (研究実用化報告第 32巻第 3号 (1 983) P 6 75、 「単一モードファイバ用光回路」 3. 1項参照) 。 ところが、 従来の接続損失を推定する方式では、 軸ずれはフエルールの偏心量、 フエルールの貫通孔 1 aと光ファイバの外径差及び光ファイバのコアの同芯度等 が複雑に絡み合うために、 光ファイバをフエルールに接着固定した後の光ファィ バのコアの位置が外周面の中心に対して、 どれだけ偏心しているかを測定しなけ ればならず、 また、 角度ずれについても同様に光ファイバをフエルールに接着固 定した後の光ファイバの長手方向の角度が外周面に対して、 どれだけ傾いている のかを、 光を光フアイバの先端から出射させて出射角を測定してからでないと、 接続損失を推定できなかった。
つまり、 全てサンプルを実際に製造してそれから、 測定しなければならなかつ たので、 サンプル作成上及び軸ずれ、 角度ずれの測定上多大な工数を要した。 また、 実際にサンプルを作成するのであれば、 出射角や軸ずれを一々測定しな くとも、 直接接続損失を測定すれば実測値を得ることが出来たが、 いずれにして も接続損失を測定するために多大な工数を要した。
更には、 従来の方法で測定した軸ずれおよび角度ずれは、 光ファイバ及びフエ ルールの寸法パラメータが複雑に絡み合つているために、 どのパラメータがどの ように接続損失に影響を与えているかを類推することは困難であった。 発明の開示
本発明の目的は、 多大な工数と経費を要しないで、 光コネクタの接続損失の分 布データが容易に得られる光コネクタの接続損失計算方法及びそれを用いたシミ ユレータを提供することである。
本発明に係る光コネクタの接続損失計算方法は、 長手方向に貫通孔を有するフ エルールに光ファイバを揷入固定した光コネクタにおいて、 少なくとも上記フエ ルールの寸法パラメータの分布データと、 少なくとも上記光ファイバの寸法パラ メータの分布データから軸ずれ量を計算し、 該軸ずれ量から接続損失値を計算し、 該接続損失値の分布をシミュレーションする。
本発明において、 少なくともフエルールの寸法パラメータの分布データと、 少 なくとも光ファイバの寸法パラメータの分布データから、 ランダムに特定のデー タを抽出し、 それらの組み合わせにより軸ずれ量を計算し、 該軸ずれ量から接続 損失値を計算し、 該接続損失値のデータを複数得ることにより、 接続損失値の分 布をシミュレーションすることが好ましい。
また本発明において、 上記接続損失計算シミュレータにおいて、 フエルール貫 通孔の外周部に対しての角度ずれである角度パラメータの分布データを組み合わ せることが好ましい。
また本発明において、 上記接続損失計算シミュレータにおいて、 割スリーブの 寸法パラメータもしくは角度パラメータの分布データ、 または、 割スリ一プの接 続損失値の分布データを組み合わせることが好ましい。
また本発明において、 フエルールの内径と光ファイバ^ から生じる隙間と、 フエルールの外周部と貫通孔との同芯度と、 光ファイバのコアとクラッドとの同 芯度から軸ずれ量を求めることが好ましい。
また本発明において、 フエルールの内径と光フアイバ から生じる隙間と、 フエルールの外周部と貫通孔との同芯度と、 光ファイバのコアとクラッドとの同 芯度から軸ずれ量を求めて単一のプラグの軸ずれ量とし、 該単一のプラグの軸ず れ量のデータを 2個と、 フエルールの外径差による軸ずれを加味して求めたペア 化した軸ずれ量から接続損失値を計算することにより、 接続損失値の分布をシミ ュレーンヨンすることが好ましい。
また本発明において、 ペア化した軸ずれから算出した接続損失値と、 ペア化し た角度ずれから算出した接続損失値と、 割スリーブの接続損失値を合計すること により総合接続損失値とすることにより、 接続損失値の分布をシミュレーション することが好ましい。 また本発明に係る光コネクタの接続損失計算方法は、 円筒形の単心フェルール およびそれに挿入する光フアイバの寸法パラメータの分布データから求まるそれ ぞれの軸ずれ量、 および/またはフエルールの角度パラメータの分布データから 求まる角度ずれ量を、 光ファイバおよぴフヱルールの軸方向に垂直な面内のべク トル量として総和を計算することで、 接続状態での軸ずれ量および/または角度 ずれ量の分布を計算し、 そこから接続損失分布を計算する。
即ち、 本発明は、 上記軸ずれ量、 角度ずれ量のいずれか一方のみ、 あるいは両 方を用いて、 これらのずれ量を軸方向に垂直な面内のべクトル量として総和を計 算することが可能である。
また本発明において、 フエルールの寸法パラメータの分布データと光ファイバ の寸法パラメータの分布データから生ずる軸ずれ量分布、 およぴ Zまたはフェル ールの角度パラメータの分布データから生ずる角度ずれ量分布を、 ベタトルとし て合成する際に、 合成される 2個の軸ずれべクトルまたは角度ずれべクトルの成 す角を、 合成した軸ずれべクトルまたは角度ずれべクトルの大きさに変数変換す ることが好ましい。
また本発明において、 割スリーブの寸法パラメータもしくは角度パラメータの 分布データ、 または、 割スリーブの接続損失値の分布データを組み合わせること が好ましい。
また本発明において、 フエルールの内径と光フアイバ^^から生じる隙間と、 フェルールの外周部と貫通孔との同芯度と、 光ファイバのコアとクラッドとの同 芯度から上記軸ずれ量を求めることが好ましい。
また本発明にぉ 、て、 フエルールの内径と光フアイバ^から生じる隙間の分 布と、 フェルールの外周部と貫通孔との同芯度の分布と、 光ファイバのコアとク ラッドとの同芯度の分布を、 ベタトルとして合成して単一プラグの軸ずれ量分布 とし、 該単一プラグの軸ずれ量分布 2個と、 フエルールの外径差分布をベク トル として合成することで算出したペア化した軸ずれ量分布から接続損失分布を計算 することが好ましい。
また本発明において、 フエルール貫通孔の外周部に対する長手方向の傾きから 上記角度ずれ量を求めることが好ましい。
また本発明において、 フエルールの角度ずれ量分布 2個を合成することで算出 したペア化した角度ずれ量分布から接続損失分布を計算することが好ましい。 また本発明において、 ペア化した軸ずれから算出した接続損失値と、 ペア化し た角度ずれから算出した接続損失値と、 割スリーブの接続損失値を合計すること により総合接続損失値とすることにより、 接続損失値の分布を計算することが好 ましい。 また本発明に係る光コネクタの接続損失計算方法は、 円筒形の単心フエルール およぴそれに揷入する光ファィバの寸法パラメータの分布データから求まるそれ ぞれの軸ずれ量、 および zまたはフエルールの角度パラメータの分布データから 求まる角度ずれ量を、 光フアイバぉよびフエルールの軸方向に垂直な面内のべク トル量として総和を計算することで、 接続状態での軸ずれ量および Zまたは角度 ずれ量の n次モーメントを計算し、 そこから接続損失値の n次モーメントを計算 する。
即ち、 本発明は、 上記軸ずれ量、 角度ずれ量のいずれか一方のみ、 あるいは両 方を用いて、 これらのずれ量を軸方向に垂直な面内のベクトル量として総和を計 算することが可能である。
また本発明において、 接続損失の 1次モーメントから平均値を、 同 1次モーメ ントと 2次モーメントから標準偏差/分散を計算することが好ましい。
また本発明において、 割スリーブの寸法パラメータもしくは角度パラメータの 分布データ、 または、 割スリープの接続損失値の分布データを組み合わせること が好ましい。
また本発明において、 フエルールの内径と光フアイバ^から生じる隙間と、 フエルールの外周部と貫通孔との同芯度と、 光ファイバのコアとクラッドとの同 芯度から上記軸ずれ量を求めることが好ましい。
また本発明において、 フエルールの内径と光ファイバ ^から生じる隙間の n 次モーメントと、 フエルールの外周部と貫通孔との同芯度の n次モーメントと、 光ファイバのコアとクラッドとの同芯度の n次モーメントを、 ベタトルとして合 成して単一プラグの軸ずれ量の n次モーメントとし、 該単一ブラグの軸ずれ量の n次モーメント 2個と、 フエルールの外径差の n次モーメントをべクトルとして 合成することで算出したペア化した軸ずれ量の n次モーメントから接続損失の n 次モーメントを計算することが好ましい。
また本発明において、 フエルール貫通孔の外周部に対する長手方向の傾きから 上記角度ずれ量を求めることが好ましい。
また本発明において、 フエルールの角度ずれ量の n次モーメント 2個を合成す ることで算出したペア化した角度ずれ量の n次モーメントから接続損失の n次モ 一メントを計算することが好ましい。
また本発明において、 ペア化した軸ずれから算出した接続損失値と、 ペア化し た角度ずれから算出した接続損失値と、 割スリープの接続損失値を合計すること により総合接続損失値とすることにより、 接続損失値の n次モーメントを計算す ることが好ましい。 また本発明に係る光コネクタの接続損失計算方法は、 長手方向に貫通孔を有す るフエルールとそれに挿入された光フアイバから成る単一ブラグの軸ずれの分布 データと、 フエルールの外径の分布データから、 単一プラグの軸ずれの方向を揃 える手法であるチューニングを行なつた場合の接続状態での軸ずれ量の n次モー メント (n 7夂積率) を計算し、 そこから接続損失の n次モーメントを計算する。 本発明において、 接続損失の 1次モーメントから平均値を、 同 1次モーメント と 2次モーメントから標準偏差 Z分散を計算することが好ましい。
また本発明において、 割スリーブの寸法パラメータもしくは角度パラメータの 分布データ、 または、 割スリープの接続損失値の分布データを組み合わせること が好ましい。
また本努明において、 フエルールの内径と光フアイバ^から生じる隙間と、 フエルールの外周部と貫通孔との同芯度と、 光ファイバのコアとクラッドとの同 芯度から上記軸ずれ量を求めることが好ましい。
また本発明において、 フエルール貫通孔の外周部に対する長手方向の傾きから 上記角度ずれ量を求めることが好ましい。
また本発明において、 フエルールの角度ずれ量の n次モーメント 2個を合成す ることで算出したペア化した角度ずれ量の n次モーメントから接続損失の n次モ 一メントを計算することが好ましい。
また本発明において、 ペア化した軸ずれから算出した接続損失値と、 ペア化し た角度ずれから算出した接続損失値と、 割スリープの接続損失値を合計すること により総合接続損失値とすることにより、 接続損失値の n次モーメントを計算す ることが好ましい。 さらに、 本発明に係る光コネクタの接続損失計算方法シミュレータは、 上記の 光コネクタの接続損失計算方法のいずれか 1つまたはそれ以上の組合せを用いて 実現できる。
こうした手法を用いることによって、 多大な工数と経費を要しないで、 光コネ クタの接続損失の分布データが容易に得られる。 図面の簡単な説明
図 1は、 本発明の第 1実施形態における接続損失計算シミュレータの動作を示 すフローチャートである。
図 2 Aは、 単一プラグの軸ずれを説明する断面図であり、 図 2 Bは、 図 2 A中 のフェルールを端面方向から見た拡大図である。
図 3 Aは、 2つのプラグを当接させてペア化した状態での軸ずれを説明する断 面図であり、 図 3 Bは、 フェルール当接面での軸ずれを示す拡大図である。 図 4 Aば、 2つのプラグを当接させてペア化した状態での角度ずれを説明する 断面図であり、 図 4 Bは、 角度ずれを極座標で表現した立体図である。
図 5は、 各パラメータの分布データからランダムに 1個のデータを抽出する方 法を説明する図である。
図 6は、 3 6 0 ° 方向の角度からランダムに 1個のデータを抽出する方法を 説明する図である。
図 7は、 複数データを組み合わせる方法を説明する図である。
図 8は、 第 1実施形態の接続損失計算シミュレータを用いた結果を示すヒスト グラムである。
図 9は、 本発明の第 2実施形態における接続損失計算シミュレータの動作を示 すフローチャートである。
図 1 0は、 寸法パラメータ分布を合成する方法を説明する図である。
図 1 1は、 軸ずれ接続損失分布と角度ずれ接続損失分布と割スリーブ接続損失 分布を合算して、 総合接続損失分布を計算する方法を説明する図である。
図 1 2は、 第 2実施形態の接続損失計算シミュレータを用いた結果を示すヒス トグラムである。
図 1 3は、 本発明の第 3実施形態における接続損失計算シミュレータの動作を 示すフローチャートである。
図 1 4は、 本発明の第 4実施形態における接続損失計算シミュレータの動作を 示すフローチャートである。 図 1 5 Aは、 2つのプラグを当接させ、 チューニングしてペア化した状態での 軸ずれを説明する断面図であり、 図 1 5 Bは、 フエルール当接面での軸ずれを示 す拡大図である。
図 1 6は、 4回チューニングの場合に、 寸法パラメータの n次モーメントを合 成する方法を説明する図である。
図 1 7 Aは、 単一プラグの軸ずれ分布とフェルール^ #差分布を示し、 図 1 7 Bは、 チューュングの回数と接続損失の平均値および標準偏差の関係を図示した グラフである。
図 1 8は、 一般的なプラグを示す断面図である。
図 1 9は、 一般的な光コネクタを示す断面図である。
図 2 0 A及ぴ図 2 0 Bは、 光コネクタの接続損失の測定方法を示す説明図であ る。
図 2 1は、 軸ずれと角度ずれと接続損失を表すグラフである。 発明を実施するための最良の形態
以下、 図面を参照して本発明の実施形態を説明する。
(実施形態 1 )
本実施形態は、 長手方向に貫通孔を有するフエルールに光ファイバを揷入固定 した光コネクタにおいて、 少なくとも上記フエルールの寸法パラメータの分布デ ータと、 少なくとも上記光ファイバの寸法パラメータの分布データから軸ずれ量 を計算し、 該軸ずれ量から接続損失値を計算し、 該接続損失値の分布をシミュレ ーションする。
本発明の一例として、 モンテカルロ法にて円筒形の単心フエルールを用いた光 コネクタの接続損失値の分布をシミュレーションする方法について図 1に示す。 まず、 予め用意した光ファイバ^の分布データから 1個のデータを抽出する。 抽出方法は、 乱数を発生させてデータの抽出を行う。 乱数を用いることから、 賭 け事の街で有名なモナコのモンテカルロの名前がつけられている。 具体的には、 乱数表を用いるか、 もしくはパーソナルコンピュータを用いて、 例えばマイクロ ソフト社の表計算ソフトウェアである 「E x c e 1 J での乱数発生関数 RAND () や R AND B E TWE E N () を用いることにより、 比較的容易に得ること が出来る。 データの抽出方法の詳細については後述する。
次に、 フエルール内径の分布のデータから上記同様にランダムに 1個のデータ を抽出する。 ここで、 フエルール先端面において光ファイバの外周面はフェルー ルの內周面に少なくとも 1箇所で必ず当接するので、 フェルール内径と光フアイ バ外径の隙間つまりフエルール内径から光ファイバ外径を引いた値の半値が軸ず れとなる。
次にフェルール同芯度の分布のデータから上記同様にランダムに 1個のデータ を抽出する。 更には、 光ファイバコア同芯度の分布のデータから上記同様にラン ダムに 1個のデータを抽出する。
以上のフエルール内径から光フアイバ外径を引いた値の半値及びフェルール同 芯度及び光ファイバコア同芯度から単一プラグの総軸ずれを計算する。
図 2 Aにおいて、 貫通孔 1 aを有するフェルール 1に光ファイバ保護具 2が固 定されており、 光ファイバ 3を光ファイバ保護具 2の開口部から揷入固定してプ ラグ 1 0が形成される。 軸ずれは、 フエルール先端面 1 bでの外周部 1 cの中心 からの位置のずれを意味する。 図 2 Bは、 フエルール 1を端面方向から見た拡大 図である。
ここで、 外周部 1 Cの中心を とする。 フエルールの貫通孔の中心を o 2と すると、 02の位置ずれが同芯度の半値となる。 次に、 光ファイバの中心位置が 03であり、 O 2と O 3の距離はフエルール内径から光フアイバ^ Sを弓 Iいた値の 半値となる。 更に、 光ファイバコアの中心位置は o4となり、 o 3と 04の距離は 光ファイバコァの同芯度の半値となる。 最終的に O と O 4の距離がフエルール 外周部 1 cに対する総軸ずれ d Tとなる。
この様に、 各パラメータにおける単一の軸ずれは軸ずれしている 3 6 0 ° 方 向の角度に依存するので、 各パラメータにおける軸ずれが大きければ総軸ずれが 大きくなるとは限らない。
以上により、 単一プラグの軸ずれを求めたが、 光コネクタとしては一対 2個の プラグを当接させた条件で計算する必要があり、 図 3を用いてペア化した軸ずれ の計算方法について説明する。 図 3 Aはフェルール 1にフエルール 1 'が当接した状態を示しており、 割ス リーブ 5によって先端面 1 bと 1 b が接触している。
ここで図 3 Bに示すように、 割スリーブ 5のスリット 5 aの対向部 5 bの内周 面がフエルール 1とフエルール 1 'の位置基準点となり、 大径のフエルール 1 'がスリット 5 aの方向へ位置ずれを生じることとなる。 小径フエルール 1の 外周部の中心 に対する総軸ずれの中心を 04とし、 大径フエルール 1 'の外 周部の中心 一に対する総軸ずれの中心を 04としたときに、 と の距 離 d s分スリット 5 aの方向へ位置ずれを生じる。 ここで と の距離 d s は大径フエルール 1 ,の^ #と小径フエルール 1の^との差の半値である。 従って、 ペア化した最終的な軸ずれの中心は o5となり o4と 05との距離 d P がペア化した軸ずれとなる。
ここで、 大径フエルール 1 'と小径フエルール 1の^ gは、 図 1に示す様に フエルール外径の分布データからランダムに抽出しておく。
次に、 角度ずれであるが、 これも上記同様に角度ずれの分布データから、 ラン ダムに 2個のデータを抽出して、 ペア化した角度ずれを計算する。
図 4 Aはフエルール 1、 1 'が割ス Vープ 5内部で先端面 1 b、 1 にて 当接している状態の断面図であり、 図 4 Bは角度ずれを極座標で表現した立体図 である。
貫通孔 1 a、 1 a 'は断面上、 外周部 1 c、 1 c ,に対して 0。 、 0 ° 傾 いている。 しかしながら、 接触面を基準として 3 6 0° 方向に φ、 傾斜し ていることも考慮に入れる必要があり、 最終的にフェルール 1の角度ずれのべク トル rとフェルール 1 'のべクトルで 'との相対的な角度がペア化した角度ず れとなる。
なお、 本発明のシミュレータでは各パラメータの分布データの数は多ければ多 いほど良い。 データ数が少なければ出力される接続損失値の精度が悪くなるが、 少なくとも 3 2データ程あればよい。
ここで、 分布データから乱数を用いて一様なランダムに 1個のデータを抽出す る方法について図 5を用いて説明する。
データには 1番から n番まで整数で連番をつけておく。 この場合、 データ X n は並べておく必要は特にない。 次に乱数を発生させて i番目のデータ番号を抽出 し、 そのデータ X iを抽出する。 具体的には一例として、 前出の表計算ソフト 「Ex c e l」 では RANDBETWEEN (1、 n) の関数を与えて l〜nま での整数を発生させて、 その得られた単一の乱数からデータの入力されている i 番目のセルのデータを抽出することにより得ることが出来る。
次に、 360° 方向の角度を乱数を用いて一様なランダムに 1個のデータを 抽出する方法について図 6を用いて説明する。
角度は 0° 〜359. 9999 · · · ° まであるが、 接続損失の計算上は 1° 単位で十分なので、 0〜359° として δ° を抽出する。 これも前記同様 に表計算ソフト 「Ex c e 1 J では RAND BETWEEN (0、 359) の関 数を与えて 0〜 359までの整数を発生させて、 その得られた単一の乱数を角度 とすることにより得ることが出来る。
以上によりペア化した軸ずれとペア化した角度ずれを算出することができた。 次に図 1に戻り説明するが、 ペア化した軸ずれから数 3より軸ずれによる接続 損失値 I LAを求める。 更にはペア化した角度ずれから数 5より角度ずれによる 接続損失値 I Leを求める。 そして、 割スリーブの接続損失分布データから前記 同様に乱数を発生させて 1個の接続損失値 I Lsを抽出する。
なお、 割スリープは接続損失分布データから乱数を発生させて接続損失値 I L sを抽出するとしているが、 割スリーブの寸法の分布データからランダムにデー タを抽出して接続損失を算出する方法を用いてもよい。
以上の軸ずれによる接続損失値 I LAと角度ずれによる接続損失値 I Leと割 スリーブの接続損失値 I Lsを合計したものが、 トータル接続損失となる。 該ト 一タル接続損失はペア化した一対のフエルールの組み合わせなので、 次に上記同 様に複数の接続損失値を計算する。 これらの複数の接続損失値から分布データを 得ることが出来る。
接続損失の分布データを求める方法は図 7に示すようにプラグのサンプノレ数を n個として、 各プラグのフェルールの内径、 同芯度、 ^ , 角度ずれ、 光フアイ バの同芯度、 外径の 6パラメータをランダムに抽出しておき、 総当りで組み合わ せる方法である。 各組み合わせにおいて、 割スリープの接続損失値はランダムに 抽出して加算していく。
例えば、 サンプル 1とサンプル 2では接続損失値を X i 2とし、 サンプル 1と サンプノレ iでは接続損失値を X i、 サンプノレ n— 1とサンプル nとでは接続損 失値を Xn_lnとして、 総数量が 0. 5 X (n2-n) のデータから、 各データの 平均値、 ばらつき、 最大値を求めて分布データとしてまとめ、 更にはそれをヒス トグラム化することが望ましい。
なお、 最大値はシミュレーション上は、 確率の僅かなところまで算出されてく る可能性があるので、 現実的な値とはならない。 そこで I EC 6 1 75 5— 2— 1で規定されているように 97%最大値を用いることでもよい。
本宪明の接続損失のデータ数は少なくとも 100個のデータがあることが望ま しく、 特に望ましくは 500個以上のデータがあることがよい。 これは、 データ 数が多ければ多いほど、 ヒストグラム化した際に滑らかな曲線の分布とすること ができるからである。
また、 上記総当り方式でなくとも、 I EC 6 1 300— 3— 34に規定されて いるような、 両端にプラグを有した 1 0本のパッチコードと、 割スリーブを有し た 1 0個のアダプタを用いて、 パッチコードとァダプタとで 10組とした各組み 合わせにより、 総数量が 380個のデータを求めて、 各データの平均 :、 ばらつ き、 最大値を求めて分布データとしてまとめる方法 1を用いてもよい。
更に、 I EC 6 1 300— 3— 34の方法 2に規定されているように、 両端に プラグを有した 10本のパッチコードと、 アダプタとパッチコードを一対とした に 5本のリファレンスプラグを用いて、 総数量が 100個のデータを求めて、 各 データの平均値、 ばらつき、 最大値を求めて分布データとしてまとめる方法を用 いてもよい。
以上、 モンテカルロ法を用いた例で説明してきたが、 モンテカルロ法に限るこ となくフエルールを有した光コネクタの少なくともフエルールの寸法パラメータ の分布データと、 少なくとも光フアイバの寸法パラメータの分布データから軸ず れ量を計算し、 該軸ずれ量から接続損失値を計算し、 該接続損失値の分布をシミ ュレーシヨンする方法であれば、 いかなる方法を用いてもよく、 本宪明の効果で ある、 多大な工数と経費を要しないで容易に接続損失の分布データを得ることが 出来る。
また、 上記説明は本発明の一例として円筒形の単心フエルールを用いて説明し たが、 これに限ることはなく、 円筒形の多心フェルールに用いることでもよいし、 また矩形のフェルールに用いることでも、 本発明の同等の効果を奏することがで さる。
光コネクタの接続損失を小さくするために、 軸ずれの方向をある一定方向に合 わせこむ、 調芯技術が導入されているが、 本発明の光コネクタの接続損失計算方 法を用いることも可能である。
なお、 本発明の光コネクタの接続損失計算シミュレータは、 上記説明した光コ ネクタの接続損失計算方法を用いたシミュレーションソフトウェアであり、 更に は該シミュレーションソフトウエアをインストールしたパーソナルコンピュータ 等の機器をいう。
前記、 パーソナルコンピュータの総合型表計算ソフト 「Ex c e 1」 で作成す る方法が、 簡便、 低価格でしかももっとも一般的に使い慣れた方法であるために 特に望ましいが、 B a s i c、 Fo r t r a n、 C言語等を用いて作成すること でも、 同様に本発明の効果を奏することができる。
本発明の光コネクタの接続損失計算方法及びそれを用いたシミュレータは、 シ ングルモード光フアイバで説明してきたが、 マルチモード用光ファイバにも適用 することができる。
以下、 本発明の実施例を説明する。
図 1に示す本発明の光コネクタの接続損失計算シミュレータを用いて、 フェル ール内径を φ 152. 2〜125. 7/^ 111、 同芯度を0〜0. 8 /111、 ^#を 2. 4989〜2. 4992mm、 角度ずれを 0. 02〜0. 14° 、 光ファ ィパの同芯度を 0〜0. 4 、 舰を 124. 8—125. 3 μ mの分布デー タとして、 シミュレーションを行った。 図 7の方法にて、 50個のプラグとして、 総当りで 1, 225個の接続損失のデータ数を得た後、 ヒストグラムを描いた。 そのヒストグラムを図 8に示す。
ここで、 ヒストグラムの縦軸をデータ総数 2475で除した確率で示した。 以上より、 接続損失値の平均値が 0. 154 dB、 ばらつきが 0. 096 dB、 最大値が 0. 68 dB、 97%最大値が 0, 37 dBという結果となった。
次に比較として、 上記シミュレータにて使用した分布データをもつフエルール 内径を Φ 152. 2〜125. 7 /111、 同芯度を0〜0. 8 111、 ^ を 2. 4989〜 2. 4992mm、 角度ずれを 0. 02〜0. 14° 、 光ファイバ の同芯度を 0〜0. 4 111、 外径を124. 8〜125. 3 /imの分布データを もつサンプルを 50個作成して、 接続損失を図 20 Aおよび図 20 Bに示す方法 にて実測し、 図 7の方法にて、 総当りで 1, 225個の接続損失のデータ数を得 このとき、 研磨後損失測定前のフエルール先端面は光学顕微鏡にてごみ、 きず 等のなきことを確認してから測定した。
その結果は、 接続損失の平均値が 0. 163 dB、 ばらつきが 0. 112 dB、 最大値が 0. 64 dBとなった。
以上より、 本発明のフエルールの寸法パラメータの分布データと、 少なくとも 光ファイバの寸法パラメータの分布データから軸ずれ量を計算し、 該軸ずれ量か ら接続損失値を計算し、 該接続損失値の分布をシミュレーションする方法は、 サ ンプルを作成し接続損失を実測する方法とほぼ同等の値が得られることが確認で きた。
なお、 所要時間は、 本発明はデータ入力を含めて数十分であったのに対して、 比較例の実測する方法では、 サンプル作成、 測定、 データまとめ含めて数+時間 かかり、 本発明では多大な工数と経費を要しないで容易に接続損失の分布データ を得-ることが出来た。
(実施形態 2)
本実施形態は、 長手方向に貫通孔を有するフェルールおよびそれに挿入する光 ファイバの寸法パラメータの分布データから求まるそれぞれの軸ずれ量、 および /またはフェルールの角度パラメータの分布データから求まる角度ずれ量を、 光 ファイバおよぴフエルールの軸方向に垂直な面内のベタトル量として総和を計算 することで、 接続状態での軸ずれ量ならびに角度ずれ量の分布を計算し、 そこか ら接続損失分布を計算する。 本発明の一例として、 確率変数変換法にて接続損失値の分布をシミュレーショ ンする方法について図 9に示す。
まず、 光ファイバ^ gの分布データとフエルール内径の分布のデータから、 光 ファイバとフエルールの隙間の半値の分布データに変換する。 フエルール先端面 において光ファイバの外周面はフエルールの内周面に少なくとも 1箇所で必ず当 接するので、 フェルール内径と光ファイバ^の隙間つまりフェルール内径から 光フアイバ^ gを弓 I V、た値の半値が軸ずれとなる。
次にフエルール同芯度の分布のデータと光ファイバコァ同芯度の分布のデータ を用意する。
以上のフエルール内径から光ファイバ外径を引いた値の半値の分布及ぴフェル 一ル同芯度分布及ぴ光フアイバコア同芯度分布から単一ブラグの総軸ずれ分布を 計算する。
図 2 Aに示したように、 貫通孔 1 aを有するフエルール 1に光ファイバ保護具 2が固定されており、 光ファイバ 3を光ファイバ保護具 2の開口部から揷入固定 してプラグ 1 0が形成される。 軸ずれは、 図 2 Bに示したように、 フエルール先 端面 1 bでの外周部 1 cの中心からの位置のずれを意味する。
ここで、 外周部 1 Cの中心を とする。 フエルールの貫通孔の中心を O 2と すると、 O 2の位置ずれが同芯度の半値となる。 次に、 光ファイバの中心位置が o3であり、 o2と 03の距離はフェルール内径から光ファイバ^を引いた値の 半値となる。 更に、 光ファイバコアの中心位置は 04となり、 03と 04の距離は 光ファイバコアの同芯度の半値となる。 最終的に O と O 4の距離がフエルール 外周部 1 cに対する総軸ずれ d τとなる。
この様に、 各パラメータにおける単一の軸ずれは軸ずれしている方向がランダ ムなので、 各パラメータにおける軸ずれが大きければ総軸ずれが大きくなるとは 限らない。
以上により、 単一プラグの軸ずれを求めたが、 光コネクタとしては一対 2個の プラグを当接させた条件で計算する必要があり、 図 3を用いてペア化した軸ずれ の計算方法について説明する。
図 3 Αに示したように、 フエルール 1にフエルール 1 が当接した状態を示 しており、 割スリーブ 5によって先端面 1 bと 1 b 'が接触している。
ここで、 図 3 Bに示したように、 割スリーブ 5のスリット 5 aの対向部 5 の 内周面がフエルール 1とフエルール 1 'の位置基準点となり、 大径のフエルー ル 1 'がスリット 5 aの方向へ位置ずれを生じることとなる。 小径フエルール 1の外周部の中心 に対する総軸ずれの中心を 04とし、 大径フェルール 1一 の外周部の中心 'に対する総軸ずれの中心を O 4としたときに、 と ' の距離 d s分スリット 5 aの方向へ位置ずれを生じる。 ここで と の距離 d sは大径フエルール 1 'の外径と小径フエルール 1の^ ¾との差の半値である。 従って、 ペア化した最終的な軸ずれの中心は ο 5となり 04と Ο 5との距離 d P がペア化した軸ずれとなる。
ここで、 大径フエルール 1 'と小径フエルール 1の^は、 図 9に示す様に フエルール外径の分布データからランダムに抽出しておく。
次に、 角度ずれであるが、 これも上記同様に単一フェルールの角度ずれの分布 データから、 ペア化した角度ずれ分布を計算する。
図 4 Aに示したように、 フエルール 1、 1 'が割スリーブ 5内部で先端面 1 b、 1 b にて当接しており、 貫通孔 1 a、 1 & ,は断面上0 ° 、 Θ '。 傾い ている。 しかしながら、 接触面内の角度方向に φ、 φ '傾斜していることも考 慮に入れる必要があり、 最終的にフェルール 1の角度ずれのベタトル rとフェル ール 1 'のべクトル r ' との相対的な角度がペア化した角度ずれとなる。
ここで、 2個の寸法パラメータ分布データを、 その 2個の寸法パラメータのな す角を考慮して合成する方法について説明する。
図 1 0は寸法パラメータ 1のべク トルと寸法パラメータ 2のべク トルが合成さ れて寸法パラメータ 3のべクトルが生成されるということを示している。 ベタト ルの向きに関してはランダムであるから、 なす角度 0は 0〜1 8 0度の範囲に一 様分布している。 よって、 寸法パラメータ 1、 2、 なす角 0はいずれも分布を持 つている。 寸法パラメータ 3の大きさは、 三角関数の余弦定理を使えば寸法パラ メータ 1、 2、 なす角 0で表される。 寸法パラメータ 1と 2の合成とは、 寸法パ ラメータ 1、 2、 なす角 0を独立な確率変数とした確率分布を、 合成された寸法 パラメータ 3を唯一確率変数とする分布に変換することに他ならない。 つまり、 寸法パラメータ 1、 2、 なす角 Θの計 3確率変数を寸法パラメータ 3に変換する ことで分布が求まる。
2個の角度パラメータ分布データを、 その 2個の角度パラメータのなす角を考 慮して合成する場合にもこの方法を用いる。
以上によりペア化した軸ずれ分布とペア化した角度ずれ分布を算出することが できた。
次に図 9に戻り説明するが、 ペア化した軸ずれ分布から数 3より軸ずれによる 接続損失値分布を求める。 更にはペア化した角度ずれ分布から数 5より角度ずれ による接続損失値分布を求める。
以上の軸ずれによる接続損失値分布と角度ずれによる接続損失値分布と、 割ス リープの接続損失分布を合計して総合接続損失分布が算出できる。 具体的に次の ようにする。 異なる要因を含んだ接続損失は、 それら一つ一つが十分に低損失な 場合、 個々の要因による接続損失を足し合わせるだけでよい。 よって、 総合接続 損失は、 軸ずれによる接続損失と角度ずれによる接続損失と割スリーブの接続損 失の和であるといえる。 このことは、 軸ずれによる接続損失を I L A;角度ずれ による接続損失を I L β;割スリープの接続損失を I L s L ;総合接続損失を I L とすると、 次の式で表される。
(式 6 )
IL = ILA +ILe +ILsl
但し、 接続損失はいずれも非負である。 実際のデータとしては、 接続損失は連 続変数ではなく離散変数である。 よって、 非負の整数 i、 j、 k、 n を用いて、 例えば 0 . 0 1 d Bを単位として、 軸ずれによる接続損失を i ;角度ずれによる 接続損失を j ;割スリーブの接続損失を k ;総合接続損失を nと表す。 また、 そ れらの確率をそれぞれ、 Ρ Λ ( i ) ; Ρ θ ( j ) ; P s l ( k ) ; P ( n ) と表す。 これらの確率は、 それぞれの接続損失確率分布中のヒストグラムの高さであり、 非負の整数 i、 j、 k、 n はそのヒストグラムのラベルである。 よって、 数 6を離散化して以下の式になる。
(式 7 ) 幾何学的には図 1 1に示すように、 数 7は i、 j 、 k軸上の値 nの点を結んで できる三角形に含まれる座標 ( i s j 、 k) の満たす方程式である。 一方、 軸ず れによる接続損失が iであり、 ; ^つ角度ずれによる接続損失カ であり、 かつ割 スリープの接続損失が kである確率は ΡΔ ( ί ) Χ ΡΘ ( j ) X Ps l (k) であ る。 よって、 数 7を満たすすべての i、 j、 k の組が総合接続損失を nにする ので、 総合接続損失が nになる確率 P (n) は、 数 7を満たすすべての i、 j 、 kの組に関して ΡΔ ( i ) Χ ΡΘ ( j ) X P s l (k) の和を計算することで得ら れる。 これは次式で与えられる。
(式 8) P(n) =∑∑∑PA(i)PeU)Ps!(k)
i j k この総合接続損失分布を用いると、 総合接続損失の平均値、 ばらつき、 最大値 が計算できる。 なお、 最大値はシミュレーション上は、 確率の僅かなところまで 算出されてくる可能性があるので、 現実的な値とはならない。 そこで I EC 6 1 75 5— 2— 1で規定されているように 9 7%最大値を用いることでもよい。 本発明で使用する寸法パラメータのデータ数は少なくとも 1 0個のデータがあ ることが望ましく、 特に望ましくは 1 00個以上のデータがあることがよい。 こ れは、 データ数が多ければ多いほど、 ヒストグラム化した際に滑らかな曲線の分 布とすることができるからである。
また、 寸法パラメータのデータ刻みは 0. 1 m以下であることが望ましく、 特に望ましくは 0. 0 5 /xm以下であることがよい。 これは、 データ刻みが小さ ければ小さいほど、 連続確率分布に近いヒストグラムを生成できるからである。 なお、 以上の実施形態では軸ずれ量と角度ずれ量の両方を用いて接続損失を計 算したが、 例えば軸ずれ量に比べて角度ずれ量が非常に小さい場合は軸ずれ量の みで接続損失を計算することも可能であり、 その逆の場合は角度ずれ量のみで計 算することも可能である。
以上、 確率変数の変換法を用いた例で説明してきたが、 確率変数変換法に限る ことなくフエルールを有した光コネクタの少なくともフェルールの寸法パラメ一 タの分布データと、 少なくとも光ファイバの寸法パラメータの分布データから軸 ずれ量分布を計算し、 そこから該接続損失値の分布を計算する方法であれば、 い 力なる方法を用いてもよく、 本宪明の効果である、 多大な工数と経費を要しない で容易に接続損失の分布データを得ることが出来る。
光コネクタの接続損失を小さくするために、 軸ずれの方向をある一定方向に合 わせこむ、 調芯技術が導入されている力 本発明の光コネクタの接続損失計算方 法を用いることも可能である。
本発明では、 上記光コネクタの接続損失計算方法を用いてシミュレーションソ フトウェアとすることが可能である。
前記、 パーソナルコンピュータの総合型表計算ソフト 「EX C e 1」 で作成す る方法が、 簡便、 低価格でしかももっとも一般的に使い慣れた方法であるために 特に望ましいが、 B a s i c、 Fo r t r a n、 C言語等を用いて作成すること でも、 同様に本発明の効果を奏することができる。
本発明の光コネクタの接続損失計算方法及びそれを用いたシミュレータは、 シ ングルモード光ファイバで説明してきたが、 マルチモード用光ファイバにも適用 することができる。
以下、 本発明の実施例を説明する。
図 9に示す本 明の光コネクタの接続損失計算シミュレータを用いて、 フェル ール内径を φ 125. 2〜125. 7 /xm、 同芯度を 0〜0. 8 111、 ^ を 2. 4989〜2. 4992mm 角度ずれを 0. 02〜0. 14。 、 光ファ ィバの同芯度を 0〜0. 4// 111、 ^#を124. 8〜125. 3/iinの分布デー タとして、 シミュレーションを行った。
その総合接続損失確率分布ヒストグラムを図 12に示す。
以上より、 接続損失値の平均値が 0. 089 dB、 97 %最大値が 0. 276 dBという結果となった。
次に比較として、 上記シミュレータにて使用した分布データをもつフエルール 内径を φ 125. 2〜125. 7 111、 同芯度を0〜0. 8 111、 ^ を 2. 4989〜2. 4992 mm、 角度ずれを 0. 02〜0. 14° 、 光ファイバ の同芯度を 0〜0. 4 At m、 雌を 124. 8〜125. 3 の分布データを もつサンプルを 50個作成して、 接続損失を図 20 Aおよび図 20 Bに示す方法 にて実測し、 総当りで 1, 2 2 5個の接続損失のデータ数を得た。
このとき、 研磨後損失測定前のフエルール先端面は光学顕微鏡にてごみ、 きず 等のなきことを確認してから測定した。
その結果は、 接続損失の平均値が 0. Q 8 5 d B, 9 7 %最大値が 0 . 2 0 0 d Bとなった。
以上より、 本発明のフエルールおよび光ファイバの寸法パラメータの分布デー タから求まるそれぞれの軸ずれ量、 ならびにフエルールの角度パラメータの分布 データから求まる角度ずれ量を、 光フアイバぉよびフヱルールの軸方向に垂直な 面内のベタトル量として総和を計算することで、 接続状態での軸ずれ量ならびに 角度ずれ量の分布を計算し、 そこから接続損失分布を計算する方法は、 サンプル を作成し接続損失を実測する方法とほぼ同等の値が得られることが確認できた。 なお、 所要時間は、 本発明はデータ入力を含めて数十分であったのに対して、 比較例の実測する方法では、 サンプル作成、 測定、 データまとめ含めて数十時間 かかり、 本発明では多大な工数と経費を要しないで容易に接続損失の分布データ を得ることが出来た。
(実施形態 3 )
本実施形態は、 長手方向に貫通孔を有するフェルールおよびそれに揷入する光 フアイパの寸法パラメータの分布データから求まるそれぞれの軸ずれ量、 および Zまたはフエルールの角度パラメータの分布データから求まる角度ずれ量を、 光 ファイバおよびフェルールの軸方向に垂直な面内のベタトル量として総和を計算 することで、 接続状態での軸ずれ量ならびに角度ずれ量の n次モーメントを計算 し、 そこから接続損失の n次モーメントを計算する。 離散確率変数 X ( i ) の n 次モーメントは、 その確率分布 P ( i ) を用いて次の式で表される。
(式 9 )
Figure imgf000025_0001
1次モーメントは、 次の式であらわされるように平均値である。
(式 1 0 ) ∑P(M また、 2次モーメントと 1次モーメントを利用して、 次の式のように分散を表 すことができる。
(式 1 1 ) yPQ)x(if -{ P(i)x(i)}2 このように、 n次モーメントを用いれば確率分布の平均値や分散を計算できる。 具体的には、 接続損失の平均値を求めるには接続損失の 1次モーメント、 分散を 求めるには接続損失の 1次モーメント及び 2次モーメントが必要である。 一方、 接続損失自体は軸ずれ量や角度ずれ量の 2乗に比例する。 よって、 接続損失の平 均値を求めるには、 それらずれ量の 2次モーメント及ぴ 4次モーメントが必要で ある。 但し、 より一般的な光コネクタ接続法も考慮するとずれ量の 1〜4次モー メントすべて必要である。
本発明の一例として、 接続損失値の n次モーメントをシミュレーションする方 法について図 1 3に示す。
まず、 光ファイバ外径の分布データとフエルール内径の分布のデータから、 光 ファイバとフエルールの隙間の半値の分布データに変換する。 フエルール先端面 において光ファイバの外周面はフェルールの内周面に少なくとも 1箇所で必ず当 接するので、 フエルール内径と光フアイバタ の隙間つまりフエルール内径から 光ファイバ^ #を引いた値の半値が軸ずれとなる。
次にフェルール同芯度の分布のデータと光ファイバコア同芯度の分布のデータ を用意する。
以上のフエルール内径から光ファィバ外径を引いた値の半値の分布及びフエル 一ル同芯度分布及び光ファイノくコァ同芯度分布から単一ブラグの総軸ずれの η次 モーメントを計算する。
さらに、 単一プラグの軸ずれの η次モーメント 2個及ぴフエルールの^差の η次モーメントから、 ペア化された軸ずれの η次モーメントを計算する。
図 2 Αに示したように、 貫通孔 1 aを有するフエルール 1に光ファイバ保護具 2が固定されており、 光ファイバ 3 光ファイバ保護具 2の開口部から挿入固定 してプラグ 1 0が形成される。 軸ずれは、 図 2 Bに示したように、 フェルール先 端面 1 bでの外周部 1 cの中心からの位置のずれを意味する。
ここで、 外周部 1 Cの中心を O iとする。 フェル一ルの貫通孔の中心を o 2と すると、 02の位置ずれが同芯度の半値となる。 次に、 光ファイバの中心位置が O 3であり、 O 2と O 3の距離はフエルール内径から光ファィバ^を引いた値の 半値となる。 更に、 光ファイバコアの中心位置は o4となり、 o 3と 04の距離は 光ファイバコアの同芯度の半値となる。 最終的に と 04の距離がフエルール · 外周部 1 cに対する総軸ずれ d τとなる。
この様に、 各パラメータにおける単一の軸ずれは軸ずれしている方向がランダ ムなので、 各パラメータにおける軸ずれが大きければ総軸ずれが大きくなるとは 限らない。
以上により、 単一プラグの軸ずれを求めたが、 光コネクタとしては一対 2個の ブラグを当接させた条件で計算する必要があり、 図 3を用いてペア化した軸ずれ の計算方法について説明する。
図 3 Αに示したように、 フエルール 1にフエルール 1 'が当接した状態を示 しており、 割スリープ 5によって先端面 1 bと 1 b 'が接触している。
ここで、 図 3 Bに示したように、 割スリープ 5のスリット 5 aの対向部 5 bの 内周面がフエルール 1とフエルール 1 'の位置基準点となり、 大径のフエルー ル 1 'がスリット 5 aの方向へ位置ずれを生じることとなる。 小径フェルール 1の外周部の中心 に対する総軸ずれの中心を 04とし、 大径フエルール 1 の外周部の中心 'に対する総軸ずれの中心を 04としたときに、 と O の距離 d s分スリット 5 aの方向へ位置ずれを生じる。 ここで と の距離 d sは大径フエルール 1 'の外径と小径フエルール 1の との差の半値である。 従って、 ペア化した最終的な軸ずれの中心は 05となり 04と 05との距離 d P がペア化した軸ずれとなる。
次に、 角度ずれであるが、 これも上記同様に単一フェルールの角度ずれの分布 データから、 ペア化した角度ずれの n次モーメントを計算する。
図 4 Aに示したように、 フエルール 1、 1 が割スリープ 5内部で先端面 1 b、 1 b 'にて当接しており、 貫通孔 1 a、 1 & 'は断面上0 ° 、 0 ' ° 傾い ている。 しかしながら、 接触面内の角度方向に Ψ、 Φ 頃斜していることも考 慮に入れる必要があり、 最終的にフエルール 1の角度ずれのベタトルでとフェル ール 1一のべクトルで 'との相対的な角度がペア化した角度ずれとなる。
ここで、 2個の寸法パラメータの η次モーメントを、 その 2個の寸法パラメ一 タのなす角を考慮して合成する方法について説明する。
図 1 0に示したように、 寸法パラメータ 1のべクトルと寸法パラメータ 2のべ クトルが合成されて寸法パラメータ 3のべクトルが生成される。 ベタトルの向き に関してはランダムであるから、 なす角度 Θは 0〜1 8 0度の範囲に一様分布し ている。 寸法パラメータ 3の大きさは、 三角関数の余弦定理を使えば寸法パラメ ータ 1、 2、 なす角 0で表される。 よって、 寸法パラメータ 3の η次モーメント も、 寸法パラメータ 1、 2、 なす角 6とその確率分布を用いて表すことができる。 これをなす角 Θで積分してしまえば、 寸法パラメータ 3の n次モーメントは、 寸 法パラメータ 1と 2の n次モーメントのみで表される。
2個の角度パラメータの n次モーメントを、 その 2個の角度パラメータのなす 角を考慮して合成する場合にもこの方法を用いる。
以上によりペア化した軸ずれの n次モーメントとペア化した角度ずれの n次モ 一メントを算出することができた。
次に図 1 3に戻り説明するが、 ペア化した軸ずれの n次モーメントから数 3よ り軸ずれによる接続損失値の n次モーメントを求める。 更にはペア化した角度ず れの n次モーメントから数 5より角度ずれによる接続損失値の n次モーメントを 求める。
以上の軸ずれによる接続損失値の n次モーメントと角度ずれによる接続損失値 の n次モーメントと、 割スリープの接続損失の n次モーメントを合計して総合接 続損失の n次モーメントが算出できる。 具体的に次のようにする。 例として 1次 モーメント、 すなわち平均値の場合に関して解説する。 異なる要因を含んだ接続 損失は、 それら一つ一つが十分に低損失な場合、 個々の要因による接続損失を足 し合わせるだけでよい。 よって、 総合接続損失は、 軸ずれによる接続損失と角度 ずれによる接続損失と割スリーブの接続損失の和であるといえる。 このことは、 軸ずれによる接続損失を I LA;角度ずれによる接続損失を I Le;割スリープ の接続損失を I L s i ;総合接続損失を I Lとすると、 次の式で表される。
(式 12)
IL = ILA+IL9+ILsl
但し、 接続損失はいずれも非負である。 また、 それらの 1次モーメント、 すな わち平均値をそれぞれ、 く I LA〉;く I Le> ;く I Ls l>;く I L>と表す。 軸ずれ、 角度ずれ、 割スリープの接続損失は独立なので、 総合接続損失の 1次モ ーメント、 すなわち平均値は次の式で表される。
(式 13)
< IL >=<ILA > + <ILd > + < ILsl >
本発明で使用する寸法パラメータのデータ数は少なくとも 10個のデータがあ ることが望ましく、 特に望ましくは 100個以上のデータがあることがよい。 こ れは、 データ数が多ければ多いほど、 寸法パラメータのヒストグラムを滑らかな 確率分布とすることができるからである。
また、 寸法パラメータのデータ刻みは 0. 1 μπι以下であることが望ましく、 特に望ましくは 0. 05 tm以下であることがよい。 これは、 データ刻みが小さ ければ小さいほど、 高精度の n次モーメントを計算できるからである。
なお、 以上の実施形態では軸ずれ量と角度ずれ量の両方を用いて接続損失を計 算したが、 例えば軸ずれ量に比べて角度ずれ量が非常に小さい場合は軸ずれ量の みで接続損失を計算することも可能であり、 その逆の場合は角度ずれ量のみで計 算することも可能である。
光コネクタの接続損失を小さくするために、 軸ずれの方向をある一定方向に合 わせこむ、 調芯技術が導入されている力 本発明の光コネクタの接続損失計算方 法を用いることも可能である。
本発明では、 上記光コネクタの接続損失計算方法を用いてシミュレーションソ フトウェアとすることが可能である。
前記、 パーソナルコンピュータの総合型表計算ソフト 「Ex c e 1」 で作成す る方法が、 簡便、 低価格でしかももっとも一般的に使い慣れた方法であるために 特に望ましいが、 B a s i c、 Fo r t r a n, C言語等を用いて作成すること でも、 同様に本発明の効果を奏することができる。
本発明の光コネクタの接続損失計算方法及びそれを用いたシミュレータは、 シ ングルモード光ファイバで説明してきたが、 マルチモード用光ファイバにも適用 することができる。
以下本発明の実施例を説明する。
図 13に示す本発明の光コネクタの接続損失計算シミュレータを用いて、 フエ ノレ一ノレ内径を φ 125. 2〜125. 7 μΐη、 同芯度を 0〜0. 8 μ m、 を φ 2. 4989〜 2. 4992mms 角度ずれを 0. 02〜0. 14° 、 光フ アイバの同芯度を 0〜0. 4 111、 外径を124. 8〜: L 25. 3 mの分布デ ータとして、 シミュレーションを行った。
以上より、 接続損失値の平均値が 0. 089 d Bという結果となった。
次に比較として、 上記シミュレータにて使用した分布データをもつフエルール 内径を ψ 125. 2〜125. 7 111、 同芯度を0〜0. 8 x m、 を φ 2. 4989〜2. 4992 mm、 角度ずれを 0. 02〜0. 14° 、 光ファイバ の同芯度を 0〜0. 4 /zm、 外径を 124. 8〜: L 25. 3 /zmの分布データを もつサンプルを 50個作成して、 接続損失を図 2 OAおよび図 20 Bに示す方法 にて実測し、 総当りで 1, 225個の接続損失のデータ数を得た。
このとき、 研磨後損失測定前のフエルール先端面は光学顕微鏡にてごみ、 きず 等のなきことを確認してから測定した。
その結果は、 接続損失の平均値が 0. 085 d Bとなった。
以上より、 本発明のフエルールおょぴ光フアイバの寸法パラメータの分布デー タから求まるそれぞれの軸ずれ量、 ならぴにフエルールの角度パラメータの分布 データから求まる角度ずれ量を、 光ファイバおよぴフエルールの軸方向に垂直な 面内のベタトル量として総和を計算することで、 接続状態での軸ずれ量ならぴに 角度ずれ量の n次モーメントを計算し、 そこから接続損失の n次モーメントを計 算する方法は、 サンプルを作成し接続損失を実測する方法とほぼ同等の値が得ら れることが確認できた。
なお、 所要時間は、 本発明はデータ入力を含めて数十分であったのに対して、 比較例の実測する方法では、 サンプル作成、 測定、 データまとめ含めて数十時間 かかり、 本発明では多大な工数と経費を要しないで容易に接続損失の分布データ を得ることが出来た。
(実施形態 4 )
本実施形態は、 長手方向に貫通孔を有するフエルールとそれに挿入された光フ ァィバから成る単一プラグの軸ずれの分布データと、 フエルールの^ Sの分布デ ータから、 単一プラグの軸ずれの方向を揃える手法であるチューニングを行なつ た場合の接続状態での軸ずれ量の n次モーメント (n次積率) を計算し、 そこか ら接続損失の η次モーメントを計算する。 単一プラグの軸ずれ分布データは、 フ エルールの内径と光ファイバ ^^から生ずる隙間の分布と、 フエルール外周部と 貫通孔との同芯度の分布と、 光ファイバのコアとクラッドとの同芯度の分布から もとめる。
離散確率変数 X ( i ) の n次モーメントは、 その確率分布 P ( i ) を用いて次 の式で表される。
(式 1 4 )
Figure imgf000031_0001
1次モーメントは、 次の式であらわされるように平均値である。
(式 1 5 )
Figure imgf000031_0002
また、 2次モーメントと 1次モーメントを利用して、 次の式のように分散を表 すことができる。
(式 1 6 ) yp(i)x(if -{yp(i)x )}2 このように、 n次モーメントを用いれば確率分布の平均値や分散を計算できる。 具体的には、 接続損失の平均値を求めるには接続損失の 1次モーメント、 分散を 求めるには接続損失の 1次モーメント及ぴ 2次モーメントが必要である。 一方、 接続損失自体は軸ずれ量や角度ずれ量の 2乗に比例する。 よって、 接続損失の平 均値を求めるには、 それらずれ量の 1次モーメント及び 2次モーメントが必要で あり、 分散を求めるにはずれ量の 1〜 4次モーメントが必要である。
本発明の一例として、 接続損失値の n次モーメントをシミュレ ションする方 法について図 1 4に示す。
フエルールの内径と光フアイバ から生じる隙間と、 フエルールの外周部と 貫通孔との同芯度と、 光ファイバのコアとクラッドとの同芯度から単一プラグの 軸ずれ分布を求める。 そして、 単一プラグの軸ずれの n次モーメント 2個及ぴフ エルールの外径差の n次モーメントから、 チューニングしてペア化された軸ずれ の n次モーメントを計算する。
図 2 Aに示したように、 貫通孔 1 aを有するフエルール 1に光フ了ィバ保護具 2が固定されており、 光ファイバ 3を光ファイバ保護具 2の開口部から挿入固定 してプラグ 1 0が形成される。 軸ずれは、 図 2 Bに示したように、 フエルール先 端面 1 bでの外周部 1 cの中心からの位置のずれを意味する。
ここで、 外周部 1 Cの中心を O とする。 フエルールの貫通孔の中心を 02と すると、 O 2の位置ずれが同芯度の半値となる。 次に、 光ファイバの中心位置が 03であり、 O 2と O 3の距離はフエルール内径から光フアイパ外怪を引いた値の 半値となる。 更に、 光ファイバコアの中心位置は o4となり、 o3と 04の距離は 光ファイバコアの同芯度の半値となる。 最終的に O と O 4の距離がフェルール 外周部 1 cに対する総軸ずれ d τとなる。
この様に、 各パラメータにおける単一の軸ずれは軸ずれしている方向がランダ ムなので、 各パラメータにおける軸ずれが大きければ総軸ずれが大きくなるとは 限らない。
以上により、 単一プラグの軸ずれを求めたが、 光コネクタとしては一対 2個の プラグを当接させた条件で計算する必要があり、 図 1 5 Aおよび図 1 5 Bを用い てチューニングしてペア化した軸ずれの計算方法について説明する。
図 1 5 Aはフエルール 1にフエルール 1 'が当接した状態を示しており、 割 スリープ 5によって先端面 1 bと 1 b が接触している。
ここで、 図 1 5 Bに示すように、 割スリープ 5のスリット 5 aの対向部 5 の 内周面がフエルール 1とフエルール 1 'の位置基準点となり、 大径のフェルー ル 1 'がスリット 5 aの方向へ位置ずれを生じることとなる。 小径フエルール 1の外周部の中心 に対する総軸ずれの中心を 04とし、 大径フヱルール 1 の外周部の中心 'に対する総軸ずれの中心を 04としたときに、 O iと 0ェ ' の距離 d s分スリット 5 aの方向へ位置ずれを生じる。 ここで と O の距離 d sは大径フエルール 1 'の外径と小径フエルール 1の^との差の半値である。 従って、 チューニングしてペア化した最終的な軸ずれの中心は o5となり o4 と 0 5との距離 d Pがペア化した軸ずれとなる。 このとき、 チューニングの効果 として線分 Ο Ο Αと線分 O i ' 04 'の成す角は 9 0度以内であり、 この結果と して d Pが小さく留まっている。
次に、 角度ずれであるが、 これも上記同様に単一フェルールの角度ずれの分布 データから、 ペア化した角度ずれの n次モーメントを計算する。
図 4 Aに示したように、 フエルール 1、 1 が割スリーブ 5内部で先端面 1 b、 1 b にて当接しており、 貫通孔 1 a、 1 & 'は断面上0。 、 6 ' ° 傾い ている。 しかしながら、 接触面内の角度方向に Φ、 傾斜していることも考 慮に入れる必要があり、 最終的にフェルール 1の角度ずれのベタ トルでとフェル ール 1 ' べゥトル r ' との相対的な角度がペア化した角度ずれとなる。
ここで、 2個の寸法パラメータの n次モーメントを、 その 2個の寸法パラメ一 タのなす角を考慮して合成する方法について説明する。
図 1 6は寸法パラメータ 1のべクトルと寸法パラメータ 2のべクトルが合成さ れて寸法パラメータ 3のべクトルが生成されるということを示している。 べクト ルの向きに関しては通常用いられる 4回チューニングでは、 同じ 9 0度の範囲に —様分布している。 寸法パラメータ 3の大きさは、 三角関数の余弦定理を使えば 寸法パラメータ 1、 2、 なす角 (0 2— 0 1 ) で表される。 よって、 寸法パラメ ータ 3の n次モーメントも、 寸法パラメータ 1、 2、 角 0 1、 0 2とその確率分 布を用いて表すことができる。 これを角 6 1、 Θ 2で積分してしまえば、 寸法パ ラメータ 3の n次モーメントは、 寸法パラメータ 1と 2の n次モーメントのみで 表される。
2個の角度パラメータの n次モーメントを、 その 2個の角度パラメータのなす 角を考慮して合成する場合にもこの方法を用いる。
以上によりペア化した軸ずれの n次モーメントとペア化した角度ずれの n次モ 一メントを算出することができた。
次に図 1 4に戻り説明する力 チューニングしてペア化した軸ずれの n次モー メントから数 3より軸ずれによる接続損失値の n次モーメントを求める。 更には ペア化した角度ずれの n次モーメント力 ら数 5より角度ずれによる接続損失値の n次モーメントを求める。
以上の軸ずれによる接続損失値の n次モーメントと角度ずれによる接続損失値 の n次モーメントと、 割スリープの接続損失の n次モーメントを合計して総合接 続損失の n次モーメントが算出できる。 与えられたデータが、 割スリープの接続 損失分布ではなく寸法または角度パラメータの分布である場合には、 数 3または 数 5を用いて接続損失分布に変換してから、 その n次モーメントを求める。 具体 的に次のようにする。 例として 1次モーメント、 すなわち平均値の場合に関して 解説する。 異なる要因を含んだ接続損失は、 それら一つ一つが十分に低損失な場 合、 個々の要因による接続損失を足し合わせるだけでよい。 よって、 総合接続損 失は、 軸ずれによる接続損失と角度ずれによる接続損失と割スリープの接続損失 の和であるといえる。 このことは、 軸ずれによる接続損失を I L A;角度ずれに よる接続損失を I L e;割スリープの接続損失を I L sい;総合接続損失を I Lと すると、 次の式で表される。
(式 1 7 )
IL = ILA +ILe +ILs!
但し、 接続損失はいずれも非負である。 また、 それらの 1次モーメント、 すな わち平均値をそれぞれ、 < I L A > ; < I L e > ; < I L s l > ; < I L >と表す。 軸ずれ、 角度ずれ、 割スリープの接続損失は独立なので、 総合接続損失の 1次モ —メント、 すなわち平均値は次の式で表される。
(式 1 8 )
<IL >=<IL, > + <ILe > + <ILs! >
本宪明で使用する寸法パラメ^ "タのデータ数は少なくとも 1 0個のデータがあ ることが望ましく、 特に望ましくは 1 0 0個以上のデータがあることがよい。 こ れは、 データ数が多ければ多いほど、 寸法パラメータのヒストグラムを滑らかな 確率分布とすることができるからである。
また、 寸法パラメータのデータ刻みは 0. 1 μπι以下であることが望ましく、 特に望ましくは 0. 05 /xm以下であることがよい。 これは、 データ刻みが小さ ければ小さいほど、 高精度の n次モーメントを計算できるからである。
なお、 以上の実施形態では軸ずれ量と角度ずれ量の両方を用いて接続損失を計 算したが、 例えば軸ずれ量に比べて角度ずれ量が非常に小さい場合は軸ずれ量の みで接続損失を計算することも可能であり、 その逆の場合は角度ずれ量のみで計 算することも可能である。
光コネクタの接続損失を小さくするために、 軸ずれの方向をある一定方向に 合わせこむ、 調芯技術が導入されている力 本発明の光コネクタの接続損失計算 方法を用いることも可能である。
本宪明では、 上記光コネクタの接続損失計算方法を用いてシミュレーションソ フトウェアとすることが可能である。
前記、 パーソナルコンピュータの総合型表計算ソフト ΓΕ χ c e 1 j で作成す る方法が、 簡便、 低価格でしかももっとも一般的に使い慣れた方法であるために 特に望ましいが、 B a s i c、 F o r t r a n, C言語等を用いて作成すること でも、 同様に本発明の効果を奏することができる。
本発明の光コネクタの接続損失計算方法及ぴそれを用いたシミュレータは、 シ ングルモード光ファイバで説明してきたが、 マルチモード用光ファイバにも適用 することができる。
以下本発明の実施例を説明する。
図 14に示す本発明の光コネクタの接続損失計算シミュレータを用いて、 フエ ルーノレ内径を φ 1 25. 2〜1 25. 7 μιη、 同芯度を 0〜 0. 8 μ m、 を φ 2. 4989〜2. 49 92mm、 角度ずれを 0. 02〜0. 14° 、 光フ アイパの同芯度を 0〜0. 4 111、 ^^を1 24. 8〜1 25. 3 μπιの分布デ ータとしてシミュレーションした。 図 1 7 Αはその寸法データから求めた単一プ ラグの軸ずれ分布とフエルール 差分布を示したものである。 ここでフェルー ル外半径差分布は、 2ブラグをペア化した際に現われるフエルール外半径の差を 分布にしたものであり、 フエ/レールの外径分布から求まる。 以上より、 接続損失 値の平均値と標準偏差は図 1 7 Bのようになった。
次に比較として、 別シミュレータの結果は、 接続損失の平均値がチューニング なしの場合で 0. 0 7 d Bとなった。 一方無限回チューニングの場合は、 ペア化 されるプラグの軸ずれの方向が同じであるので 0. 0 1 d Bとなった。
以上より、 本発明のフエルールおよび光ファイバの寸法パラメータの分布デー タから求まるそれぞれの軸ずれ量、 ならびにフエルールの角度パラメータの分布 データから求まる角度ずれ量を、 光フアイバぉよぴフエルールの軸方向に垂直な 面内のベタトル量として総和を計算することで、 接続状態での軸ずれ量ならびに 角度ずれ量の 11次モーメントを計算し、 そこから接続損失の n次モーメントを計 算する方法は、 別シミュレータによる方法とほぼ同等の値が得られることが確認 できた。
なお、 所要時間は、 本発明はデータ入力を含めて数十分であったのに対して、 比較例の実測する方法では、 サンプル作成、 測定、 データまとめ含めて数十時間 かかり、 本発明では多大な工数と経費を要しないで容易に接続損失の分布データ を得ることが出来た。 産業上の利用の可能性
本発明は、 光通信に用いられる光コネクタの接続損失値の分布データをシミュ レーシヨンにより推定できる点で有用な技術である。

Claims

請 求 の 範 囲
1 . 長手方向に貫通孔を有するフエルールに光ファィバを揷入固定した光コネ クタにおいて、 少なくとも上記フエルールの寸法パラメータの分布データと、 少 なくとも上記光ファイバの寸法パラメータの分布データから軸ずれ量を計算し、 該軸ずれ量から接続損失値を計算し、 該接続損失値の分布をシミュレーシヨンす る光コネクタの接続損失計算方法。
2 . 少なくともフェルールの寸法パラメータの分布データと、 少なくとも光フ ァィバの寸法パラメータの分布データから、 ランダムに特定のデータを抽出し、 それらの組み合わせにより軸ずれ量を計算し、 該軸ずれ量から接続損失値を計算 し、 該接続損失値のデータを複数得ることにより、 接続損失値の分布をシミュレ ーションする請求項 1記載の光コネクタの接続損失計算方法。
3 . 上記接続損失計算方法において、 フエルール貫通孔の外周部に対しての角 度ずれである角度パラメータの分布データを組み合わせる請求項 1記載の光コネ クタの接続損失計算方法。
4 . さらに、 割スリーブの寸法パラメータもしくは角度パラメータの分布デー タ、 または割スリープの接続損失値の分布データを組み合わせる請求項 3記載の 光コネクタの接続損失計算方法。
5 . フエルールの内径と光ファイバ ^^から生じる隙間と、 フエルールの外周 部と貫通孔との同芯度と、 光ファイバのコアとクラッドとの同芯度から軸ずれ量 を求める請求項 4記載の光コネクタの接続損失計算方法。
6 . フエルールの内径と光ファイバ ^から生じる隙間と、 フエルールの外周 部と貫通孔との同芯度と、 光ファイバのコアとクラッドとの同芯度から軸ずれ量 を求めて単一のプラグの軸ずれ量とし、 該単一のプラグの軸ずれ量のデータを 2 個と、 フエルールの^ 差による軸ずれを加味して求めたペア化した軸ずれ量か ら接続損失値を計算することにより、 接続損失値の分布をシミュレーションする 請求項 5記載の光コネクタの接続損失計算方法。
7 . ペア化した軸ずれから算出した接続損失値と、 ペア化した角度ずれから算 出した接続損失値と、 割スリープの接続損失値を合計することにより総合接続損 失値とすることにより、 接続損失値の分布をシミュレーションする請求項 6記載 の光コネクタの接続損失計算方法。
8 . フエルールの角度パラメータの分布データから求まる角度ずれ量を、 光フ アイバおよびフエルールの軸方向に垂直な面内のベタトル量として総和を計算す ることで、 接続状態での軸ずれ量および Zまたは角度ずれ量の分布を計算し、 そ こから接続損失分布を計算する請求項 1記載の光コネクタの接続損失計算方法。
9 . フェルールの寸法パラメータの分布データと光ファイバの寸法パラメータ の分布データから生ずる軸ずれ量分布、 および Zまたはフエルールの角度パラメ ータの分布データから生ずる角度ずれ量分布を、 ベタトルとして合成する際に、 合成される 2個の軸ずれベクトルまたは角度ずれベク トルの成す角を、 合成した 軸ずれべクトルまたは角度ずれべクトルの大きさに変数変換する請求項 8記載の 光コネクタの接続損失計算方法。
1 0 . フェルールの内径と光ファイバ^ ¾から生じる隙間の分布と、 フェルー ルの外周部と貫通孔との同芯度の分布と、 光ファイバのコアとクラッドとの同芯 度の分布を、 ベタトルとして合成して単一プラグの軸ずれ量分布とし、 該単一プ ラグの軸ずれ量分布 2個と、 フエルールの^ g差分布をべクトルとして合成する ことで算出したペア化した軸ずれ量分布から接続損失分布を計算する請求項 8記 載の光コネクタの接続損失計算方法。
1 1 . フェルール貫通孔の外周部に対する長手方向の傾きから上記角度ずれ量 を求める請求項 8記載の光コネクタの接続損失計算方法。
1 2 . フェルールの角度ずれ量分布 2個を合成することで算出したペア化した 角度ずれ量分布から接続損失分布を計算する請求項 8記載の光コネクタの接続損 失計算方法。
1 3 . ペア化した軸ずれから算出した接続損失値と、 ペア化した角度ずれから 算出した接続損失値と、 割スリープの接続損失値を合計して総合接続損失値とす ることにより、 接続損失値の分布を計算する請求項 1 0記載の光コネクタの接続 損失計算方法。
1 4 . フエルールの角度パラメータの分布データから求まる角度ずれ量を、 光 ファイバおよびフエルールの軸方向に垂直な面内のベタトル量として総和を計算 することで、 接続状態での軸ずれ量および/または角度ずれ量の n次モーメント (n次積率) を計算し、 そこから接続損失の n次モーメントを計算する請求項 1 記載の光コネクタの接続損失計算方法。
1 5 . 接続損失の 1次モーメントから平均 を、 同 1次モーメントと 2次モー メントから標準偏差/分散を計算する請求項 1 4記載の光コネクタの接続損失計 算方法。
1 6 . フエルールの内径と光ファイバ^から生じる隙間の n次モーメントと、 フエルールの外周部と貫通孔との同芯度の n次モーメントと、 光ファイバのコア とクラッドとの同芯度の n次モーメントを、 ベタトルとして合成して単一プラグ の軸ずれ量の n次モーメントとし、 該単一プラグの軸ずれ量の n次モーメント 2 個と、 フエルールの^差の n次モーメントをべクトルとして合成することで算 出したペア化した軸ずれ量の n次モーメントから接続損失の n次モーメントを計 算する請求項 1 4記載の光コネクタの接続損失計算方法。
1 7 . フエルール貫通孔の外周部に対する長手方向の傾きから上記角度ずれ量 を求める請求項 1 4記載の光コネクタの接続損失計算方法。
1 8 . フエルールの角度ずれ量の n次モーメント 2個を合成することで算出し たペア化した角度ずれ量の n次モーメントから接続損失の n次モーメントを計算 する請求項 1 4記載の光コネクタの接続損失計算方法。
1 9 . ペア化した軸ずれから算出した接続損失値と、 ペア化した角度ずれから 算出した接続損失値と、 割スリープの接続損失値を合計して総合接続損失値とす ることにより、 接続損失値の n次モーメントを計算する請求項 1 6記載の光コネ クタの接続損失計算方法。
2 0 . フエルールおよび光ファイバから成る単一プラグの軸ずれの分布データ と、 フエルールの^の分布データから、 単一プラグの軸ずれの方向を揃える手 法であるチューニングを行なった場合の接続状態での軸ずれ量の n次モーメント ( n次積率) を計算し、 そこから接続損失の n次モーメントを計算する請求項 1 記載の光コネクタの接続損失計算方法。
2 1 . 接続損失の 1次モーメントから平均値を、 同 1次モーメントと 2次モー メントから標準偏差 Z分散を計算する請求項 2 0記載の光コネクタの接続損失計 算方法。
2 2 . フエルール貫通孔の外周部に対する長手方向の傾きから角度ずれ量を求 める請求項 2 0記載の光コネクタの接続損失計算方法。
2 3 . フエルールの角度ずれ量の n次モーメント 2個を合成することで算出し たペア化した角度ずれ量の n次モーメントから接続損失の n次モーメントを計算 する請求項 2 0記載の光コネクタの接続損失計算方法。
2 4 . ペア化した軸ずれから算出した接続損失値と、 ペア化した角度ずれから 算出した接続損失値と、 割スリーブの接続損失値を合計して総合接続損失値とす ることにより、 接続損失値の n次モーメントを計算する請求項 2 0記載の光コネ クタの接続損失計算方法。
2 5 . 請求項 1記載の光コネクタの接続損失計算方法を用いた光コネクタの接 続損失計算シミュレータ。
PCT/JP2004/011324 2003-07-31 2004-07-30 光コネクタの接続損失計算方法及びそれを用いたシミュレータ WO2005012969A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/566,670 US20060245711A1 (en) 2003-07-31 2004-07-30 Method for calculating connection loss of optical fiber and simulator using the same
EP04771325A EP1666942A4 (en) 2003-07-31 2004-07-30 CONNECTION LOSS CALCULATION METHOD FOR OPTICAL CONNECTORS AND SIMULATOR THEREWITH

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003205211A JP2005049569A (ja) 2003-07-31 2003-07-31 光コネクタの接続損失計算方法及びそれを用いた光コネクタの接続損失計算シミュレータ
JP2003-205211 2003-07-31
JP2003-300656 2003-08-25
JP2003300656A JP3940712B2 (ja) 2003-08-25 2003-08-25 光コネクタの接続損失計算方法及びそれを用いたシミュレータ
JP2003332305A JP3971727B2 (ja) 2003-09-24 2003-09-24 光コネクタの接続損失計算方法及びそれを用いたシミュレータ
JP2003-332305 2003-09-24
JP2003394816A JP3971742B2 (ja) 2003-11-25 2003-11-25 光コネクタの接続損失計算方法及びそれを用いたシミュレータ
JP2003-394816 2003-11-25

Publications (1)

Publication Number Publication Date
WO2005012969A1 true WO2005012969A1 (ja) 2005-02-10

Family

ID=34119946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011324 WO2005012969A1 (ja) 2003-07-31 2004-07-30 光コネクタの接続損失計算方法及びそれを用いたシミュレータ

Country Status (3)

Country Link
US (1) US20060245711A1 (ja)
EP (1) EP1666942A4 (ja)
WO (1) WO2005012969A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070200149A1 (en) * 2006-02-28 2007-08-30 Veronika Polei Semiconductor device and method of production
US9983364B2 (en) * 2015-07-29 2018-05-29 Sumix Corporation Interferometric measurement method for angular misalignment, fiber core concentricity and end face polish angle of single fiber connectors and ferrules

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4563057A (en) * 1982-08-31 1986-01-07 The United States Of America As Represented By The Secretary Of The Air Force Fiber optic cable connector
US5301118A (en) * 1991-11-18 1994-04-05 International Business Machines Corporation Monte carlo simulation design methodology
WO2003045663A1 (fr) * 2001-11-29 2003-06-05 Sumitomo Electric Industries, Ltd. Moule metallique et procede de fabrication d'une ferrule pour connecteur optique, ferrule ainsi produite, connecteur et cablage optiques utilisant cette ferrule

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANDO YASUHIRO ET AL.: "Statistical analysis on connection characteristics of optical fiber connectors", IEICE TRANS. ELECTRON., vol. E77-C, no. 12, 1994, pages 1970 - 1982, XP000497031 *
See also references of EP1666942A4 *
VOKEY: "Statistical modeling of mechanical splice and connector losses for optical fibers", INTERNATIONAL WIRE & CABLE SYMPOSIUM PROCEEDINGS, 1984, pages 76 - 81, XP002982498 *

Also Published As

Publication number Publication date
EP1666942A1 (en) 2006-06-07
US20060245711A1 (en) 2006-11-02
EP1666942A4 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
JP7067568B2 (ja) 接続装置、光コネクタ製造装置、接続方法及び光コネクタ製造方法
Childers et al. New single-mode, multi-fiber, expanded-beam, passive optical interconnect
WO2005012969A1 (ja) 光コネクタの接続損失計算方法及びそれを用いたシミュレータ
CN103168262A (zh) 光传输线
Bourdine et al. Method for estimation of reflection on fiber optic connection based on ferrule end-face photo-image analysis
JP3940712B2 (ja) 光コネクタの接続損失計算方法及びそれを用いたシミュレータ
Bourdine et al. Fast and simple method for estimation of the insertion loss at the connection of singlemode optical fibers with contaminated ferrule end faces
JP3971727B2 (ja) 光コネクタの接続損失計算方法及びそれを用いたシミュレータ
JP3971742B2 (ja) 光コネクタの接続損失計算方法及びそれを用いたシミュレータ
Bourdine et al. Fast approximate method for VCSEL-MMF transverse mode coupling analysis
Dainese et al. Novel optical fiber design for low-cost optical interconnects in consumer applications
JP2005049569A (ja) 光コネクタの接続損失計算方法及びそれを用いた光コネクタの接続損失計算シミュレータ
Runge et al. Atlanta fiber system experiment: Demountable single-fiber optic connectors and their measurement on location
Kadar-Kallen et al. Single-Mode Expanded Beam MT Connector with Angled Lens Array for Improved Optical Performance
CN114257300B (zh) 光网络单元onu设备运行状态的测试方法及装置
JP2005215085A (ja) 光コネクタの接続損失計算方法及びそれを用いたシミュレータ
Ma et al. Optical Power Ring Model for Coupling Efficiency Estimation in VCSEL-MMF Links
US11243140B2 (en) Fiber connectors for multimode optical fibers
Abe et al. Design and Performance of Field Installable Optical Connector Realizing Physical Contact Connection without Fiber Endface Polishing
JPS6049239A (ja) 光コネクタの損失評価法
Sakaime et al. Connection characteristics of MU-type multicore fiber connector
Ma et al. Large core multimode fiber with high tolerance to coupling misalignment and dust contamination in intra-vehicle networks
Wojewoda et al. No-polish Air-gap Single-mode Low-loss Multi-fiber Anti-reflection Coated Connector
Ferguson et al. Project report on ‘metrology needs for quantum communication networks’
Hevey et al. Theoretical splice loss study of single-mode fibers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480022300.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006245711

Country of ref document: US

Ref document number: 10566670

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004771325

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004771325

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10566670

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004771325

Country of ref document: EP