WO2005012605A2 - Filler-fixed fiber, fiber structure, molded fiber, and processes for producing these - Google Patents

Filler-fixed fiber, fiber structure, molded fiber, and processes for producing these Download PDF

Info

Publication number
WO2005012605A2
WO2005012605A2 PCT/JP2004/011397 JP2004011397W WO2005012605A2 WO 2005012605 A2 WO2005012605 A2 WO 2005012605A2 JP 2004011397 W JP2004011397 W JP 2004011397W WO 2005012605 A2 WO2005012605 A2 WO 2005012605A2
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
filler
wet heat
resin
fixed
Prior art date
Application number
PCT/JP2004/011397
Other languages
French (fr)
Japanese (ja)
Other versions
WO2005012605A3 (en
Inventor
Hisatoshi Motoda
Kouki Shigeta
Original Assignee
Daiwabo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003286185A external-priority patent/JP3884730B2/en
Priority claimed from JP2004181415A external-priority patent/JP4565902B2/en
Priority claimed from JP2004183709A external-priority patent/JP4634072B2/en
Application filed by Daiwabo Co., Ltd. filed Critical Daiwabo Co., Ltd.
Priority to KR1020067002051A priority Critical patent/KR101138567B1/en
Priority to US10/566,617 priority patent/US20070128434A1/en
Priority to TW094103356A priority patent/TW200540309A/en
Publication of WO2005012605A2 publication Critical patent/WO2005012605A2/en
Publication of WO2005012605A3 publication Critical patent/WO2005012605A3/en
Priority to HK06111804.7A priority patent/HK1091244A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/327Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
    • D06M15/333Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof of vinyl acetate; Polyvinylalcohol
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/407Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties containing absorbing substances, e.g. activated carbon
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/413Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties containing granules other than absorbent substances
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • D04H1/4258Regenerated cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/45Oxides or hydroxides of elements of Groups 3 or 13 of the Periodic System; Aluminates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/48Oxides or hydroxides of chromium, molybdenum or tungsten; Chromates; Dichromates; Molybdates; Tungstates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/49Oxides or hydroxides of elements of Groups 8, 9, 10 or 18 of the Periodic System; Ferrates; Cobaltates; Nickelates; Ruthenates; Osmates; Rhodates; Iridates; Palladates; Platinates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/327Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/4383Composite fibres sea-island
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43832Composite fibres side-by-side
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core

Definitions

  • the present invention relates to a filler-fixed fiber in which a filler is fixed to a fiber surface, a fiber structure, a fiber molded article, and production thereof. About the method.
  • Patent Document 1 a method of attaching a filler to the surface of a fiber
  • Patent Document 2 a method has been proposed in which particles are carried on the surface of a nonwoven fabric by a dry method, and then heated to a temperature above the softening point of the fiber to attach the particles.
  • Patent Document 2 a method is proposed in which a sheet-like or block fiber molded product is impregnated with an aqueous dispersion solution containing particles, pressed, and then heated at a temperature not higher than the melting point of the fiber or not more than 60 ° C from the melting point of the fiber to adhere the particles.
  • fiber products having a filler attached to the fiber surface have been used for various purposes.
  • filament fibers for polishing between teeth are generally well known as fibers for cleaning purposes.
  • polishing cloths or papers are used in various fields such as lenses, semiconductors, metals, plastics, ceramics and glass. Polishing cloth is also used in household or commercial kitchens.
  • Patent Document 3 proposes a gas adsorption sheet having an effect of adsorbing VOC gas in general. Proposed in Patent Document 3 In the gas adsorption sheet, activated carbon particles are sandwiched and fixed between two sheet materials, and the adsorbent particles are fixed to at least one of the sheet materials.
  • the adsorbent particles can be immobilized by (1) mixing the adsorbent particles into a binder-resin solution, coating one sheet material, and overlaying the other sheet material on it, or (2) A method in which one sheet material is coated with a hot-melt agent or the like, adsorbent particles are sprayed thereon, and the other sheet material is further stacked thereon is exemplified. Further, as a water purification material for purifying industrial wastewater and the like, various water purification materials using fibrous activated carbon, that is, activated carbon fibers have been proposed (for example, Patent Document 4 and the like).
  • Patent Document 5 proposes a water purification filter in which organic matter-adsorbing particles such as activated carbon particles are fixed to a sheet-like member via an insoluble binder.
  • a fiber product having a form of a fiber molded product as a fiber product in which a filler is attached to a fiber surface For example, there has been proposed a method for producing a fibrous molded body in which a fleece is formed by mixing particles and a binder resin with a fiber material, and a bulky mat is produced by fusing with the binder resin, and then press-molded into a predetermined shape. (Patent Document 6 below). Further, a three-dimensional molded article has been proposed in which a functional fiber sheet made of a plant fiber, a heat-fusible fiber, and a powdery or fibrous functional material is formed by thermoforming (Patent Document 7 below). .
  • Patent Document 2 Japanese Patent Publication No. 5-22-5557
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2000-246 827
  • Patent Document 4 JP-A-9-1234343
  • Patent Document 5 Japanese Patent Application Laid-Open No. 9-210583
  • Patent Document 6 Japanese Patent Application Laid-Open No. Hei 9-125 4 2 6 4
  • Patent Literature 7 Japanese Patent Application Laid-Open No. 2004-5-211 16
  • the adsorbent particles may be buried in the binder resin solution, and a sufficient gas adsorption effect may not be obtained. .
  • the contact area between the hot melt agent and the adsorbent particles is small, so that the adsorbent particles may fall off.
  • the gas adsorption sheet proposed in Patent Document 4 uses a porous sheet material for at least one of the two sheet materials in order to enhance air permeability. When sandwiching the activated carbon particles between the sheet materials, it was necessary to increase the particle size of the activated carbon particles to be larger than the maximum pore size of the porous sheet material so that the activated carbon particles did not fall off.
  • activated carbon particles having a particle size of 100 m to 100,000 are used, and there is a possibility that a sufficient gas adsorption effect may not be obtained because the specific surface area of the activated carbon particles is small.
  • the organic substance-adsorbing particles may be buried in the binder, and the specific surface area of the organic substance-adsorbing particles may decrease, so that sufficient purification performance may not be obtained.
  • Patent Document 7 attempts to melt the heat-fusible fiber to fix the particulate functional material.However, in this method, the particles cannot be melted unless the heat-fusible fiber is melted at a considerably high temperature. It cannot be fixed, and if it is melted at a high temperature, it may shrink, and it may be difficult to obtain a uniform molded body. In some cases, it was difficult to produce a deep drawn compact.
  • the present invention provides a filler-fixed fiber in which a filler is effectively fixed to a fiber surface while maintaining the properties of the original fiber.
  • a fiber structure that is useful for abrasives, gas adsorbents, water purification materials, etc., which can prevent the reduction of the specific surface area of the filler and prevent the decrease in the specific surface area of the filler, and effectively fix the filler to the fiber surface
  • the present invention provides a fiber molded body that can be formed uniformly, can obtain a deep drawn shape, and can reduce the molding cost even for general use, and a method for producing the same.
  • the filler fixing fiber of the present invention is a filler fixing fiber including a fiber, a binder resin on the surface thereof, and a filler fixed to the binder resin, wherein the binder resin is heated in the presence of moisture.
  • This is a wet heat gelling resin that is gelled by the above method, and the filler is characterized in that the wet heat gelling resin is fixed by a gelled gel.
  • the fibrous structure of the present invention is a fibrous structure containing fibers, a binder resin on the surface thereof, and a filler-fixing fiber containing a filler fixed to the binder resin, wherein the binder resin contains water. It is a wet heat gelling resin that gels when heated below, and the filler is characterized in that the wet heat gelled resin is fixed by a gelled gel.
  • the fiber molded article of the present invention is a fiber molded article formed by molding a fiber, a binder resin on the surface thereof, and a fibrous structure including filler-fixed fibers fixed to the binder resin, wherein the binder resin is
  • the fiber structure comprises a wet heat gelling resin that gels when heated in the presence of moisture, and the fibrous structure is formed into a predetermined shape while the fibers are fixed by a gel formed by wet heat gelation of the wet heat gelling resin. It is characterized by having.
  • the method for producing a fiber-fixed fiber according to the present invention is a method for producing a fiber-fixed fiber, comprising: a fiber; a binder resin on the surface thereof; and a filler fixed to the binder resin.
  • a wet-heat gelling fiber in which the resin gels by heating in the presence of moisture; applying a filler dispersion in which the filler is dispersed in a solution to the wet-heat gelled fiber; and then applying the wet heat in a wet-heat atmosphere. It is characterized in that the gelled fiber is subjected to wet heat treatment to gel the wet heat gelled fiber, and the filler is fixed to the fiber surface by a gelled substance.
  • Another method for producing a filler-fixed fiber according to the present invention is a method for producing a filler-fixed fiber including a fiber, a binder resin on the surface thereof, and a filler fixed to the binder resin, wherein the fiber and the binder are provided.
  • One resin is another fiber and a wet heat gelling resin, and after adding the wet heat gelling resin to the other fiber, a filler is added, or the filler and the wet heat gelling resin are dispersed in a solution. Applying the filler dispersion solution to the other fibers, and then performing a wet heat treatment in a wet heat atmosphere to gel the wet heat gelled resin, and fixing the filler to the surface of the other fibers by a gel.
  • a wet heat gelling resin After adding the wet heat gelling resin to the other fiber, a filler is added, or the filler and the wet heat gelling resin are dispersed in a solution.
  • the method for producing a fiber structure of the present invention is a method for producing a fiber structure containing fibers, a binder resin on the surface thereof, and a filler-fixed fiber including a filler fixed to the binder resin,
  • the binder resin is water Is a moist heat gelling resin that gels when heated in the presence of a minute, wherein the fiber and the binder resin are:
  • thermoplastic synthetic fiber component (I) a composite fiber comprising a wet heat gelled resin fiber component and another thermoplastic synthetic fiber component
  • the wet heat gelling resin is subjected to wet heat treatment in an atmosphere to gel the wet heat gelling resin, and the filler is fixed to the fiber surface by the gelling material to form filler-fixed fibers.
  • the method for producing a fiber molded article of the present invention is a method for producing a fiber molded article formed by molding a fiber, a binder resin on the surface thereof, and a fiber structure including a fiber-fixed fiber fixed to the binder resin.
  • the binder resin includes a wet heat gelling resin that gels by heating in the presence of moisture to form a fibrous structure containing the fibers and the binder resin, and the fibrous structure is wet-heated in a mold. It is characterized in that the heat-and-humidity gelling resin is made into a heat-and-humidity gel in an atmosphere and then subjected to wet heat molding.
  • FIG. 1A to 1C are cross-sectional views of filler-fixed fibers according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a three-layer nonwoven fabric according to one embodiment of the present invention.
  • FIG. 3 is a process chart of an example of the production method of the present invention.
  • FIG. 4A is a scanning electron microscope plan photograph (magnification: 100) showing the nonwoven fabric obtained in Example 1 of the present invention.
  • FIG. 4B is a photograph of the same section (magnification: 100).
  • FIG. 4C is an enlarged photograph of the fiber surface of the nonwoven fabric surface (magnification: 1 000).
  • FIG. 4D is a scanning electron microscope plane photograph (magnification: 100) showing the nonwoven fabric of the other part.
  • FIG. 4E is a photograph of the same section (magnification 100).
  • FIG. 4F is an enlarged photograph of the fiber surface of the nonwoven fabric surface (magnification: 1 000).
  • FIG. 5A is a scanning electron microscope plane photograph (magnification: 100) showing the nonwoven fabric obtained in Example 6 of the present invention.
  • FIG. 5B is a photograph of the same cross section (magnification: 100).
  • FIG. 5C is an enlarged photograph (magnification 100,000) of the fiber surface of the nonwoven fabric surface.
  • FIG. 6 is a schematic perspective view of a simple water circulation type testing machine.
  • FIG. 7 is a diagram illustrating an example of a process of applying moisture to a nonwoven fabric according to an embodiment of the present invention.
  • FIG. 8 is a perspective view of a fiber molded body (mask) according to one embodiment of the present invention.
  • FIG. 9 is a perspective view of a fiber molded body (a pleated product of the air purifier Fil Yuichi) in one embodiment of the present invention.
  • FIG. 10 is a process chart in another embodiment of the manufacturing method of the present invention.
  • FIG. 11A is a scanning electron micrograph (200 magnification) showing the nonwoven fabric obtained in Example 7 of the present invention.
  • FIG. 11B is an enlarged fiber surface photograph (magnification: 20000) of the surface of the nonwoven fabric.
  • 1 sheath component (binder resin), 2: core component, 3: filler, 4:) indah resin, 5, 6, 9: composite fiber, 7: ethylene-vinyl alcohol Copolymer resin (binder resin), 8: polypropylene, 11: filler—Fixed fiber layer, 12: rayon fiber layer, 20: simple water circulation type testing machine, 21: stand, 22a, 22b : Fixing jig, 23: Container, 23a: Opening, 24: Pump, 24a, 24b: Tube, 25: Small piece, 26: Tea pack, 27: Test sample, 2 8: wire, 31: fiber or non-woven fabric, 32: tank, 33: filler dispersion solution, 34: squeezing roll, 35: steamer, 36: suction, 37: heating roll, 38: patterning Camber roll, 39: Winder, 40: Mask, 41: Dryer, 50: Pre-processed product of air purifier filter
  • a wet heat gelled resin is used as a binder resin that gels when heated in the presence of moisture.
  • the form of the wet heat gelling resin include powder, chip, and fiber.
  • the wet heat gelling resin is preferably fibrous.
  • the fibrous wet heat gelling resin (hereinafter referred to as “wet heat gelled fiber”) may be a fiber made of a wet heat gelled resin alone or a compound containing a wet heat gelled resin fiber component and another thermoplastic synthetic fiber component. Synthetic fiber (hereinafter referred to as “wet-heat gelled conjugate fiber”) is used.
  • the other fibers or at least the other thermoplastic synthetic fiber components maintain the fiber form, and exhibit a function as a binder for fixing the filler by gelling the wet heat gelling resin.
  • the wet heat gelling resin fiber component or the wet heat gelling resin fixed on the surface of the fiber is fixed by a wet heat gelled gel.
  • the filler is exposed and secured.
  • the moist heat gelled fibers and Z or other fibers are fixed by the moist heat gelling resin gel component formed by moist heat gelling of the moist heat gelling resin component or the moist heat gelling resin adhered to the fiber surface.
  • the fiber molded article of the present invention has a state in which a fiber structure is gelled in a mold. By performing wet heat molding in a state, it can be molded into a molded body having a predetermined shape.
  • the form of the wet heat gelling resin include powder, chip, and fiber.
  • fibrous that is, wet heat gelled fiber is preferable.
  • the preferred gelling temperature of the wet heat gelling resin is 50 ° C. or higher. A more preferred gelling temperature is 80 ° C. or higher. If a resin that can gel at less than 50 ° C is used, the adhesion to rolls, molds, etc. will become severe during gel processing, making it difficult to produce fiber structures and fiber molded products. It may not be able to be used below.
  • the “gel processing” refers to processing for gelling the wet heat gelling resin.
  • the wet heat gelling resin is preferably an ethylene-vinyl alcohol copolymer resin. This is because it can be gelled by moist heat and does not deteriorate other fibers and / or other thermoplastic synthetic fiber components.
  • the ethylene-vinyl alcohol copolymer resin is a resin obtained by testing an ethylene-vinyl acetate copolymer resin, and its degree of degradation is preferably 95% or more. A more preferred degree of degradation is 98% or more.
  • the preferred ethylene content is 20 mol% or more.
  • the preferred ethylene content is 50 mol% or less.
  • a more preferred ethylene content is 25 mol% or more.
  • a more preferred ethylene content is 45 mol% or less.
  • the degree of vulcanization is less than 95%, it may be difficult to produce a fibrous structure and a fibrous molded product due to sticking to a roll, a mold or the like during gel processing.
  • the ethylene content is less than 20 mol%, the production of the fibrous structure and the fibrous molded product may be difficult due to adhesion to a roll, a mold or the like during gel processing.
  • the ethylene content exceeds 50 mol%, the wet heat gelation temperature rises, and the processing temperature must be raised to near the melting point, and as a result, the dimensional stability of the fibrous structure and the fibrous molding is adversely affected. May be exerted.
  • the fiber and the binder resin As a preferable combination of the fiber and the binder resin,
  • thermoplastic synthetic fiber component (I) a composite fiber comprising a wet heat gelled resin fiber component and another thermoplastic synthetic fiber component
  • the form (I) is a wet heat gelled composite fiber in which “binder resin” is a wet heat gelled resin fiber component and “fiber” is another thermoplastic synthetic fiber component.
  • the “binder resin” is a wet heat gelled conjugate fiber, and the “fiber” is another fiber, which is a mixture thereof.
  • the “fiber” is a wet heat gelling composite fiber, and the “binder resin” is a wet heat gelling resin.
  • the “binder resin” is a wet heat gelling resin (for example, a wet heat gelled resin alone fiber) that takes a form other than the wet heat gelled conjugate fiber, and the “fiber” is another fiber. This is a mixture of these.
  • the wet heat gelled conjugate fiber used in the forms (I) to (III) is a conjugate fiber in which the wet heat gelled resin fiber component is exposed or partially divided.
  • the composite shapes are concentric, eccentric core-sheath, side-by-side, split, sea-island, etc.
  • the concentric type is preferable because the filler easily adheres to the fiber surface.
  • the cross-sectional shape may be any of a circle, a hollow, an irregular shape, an ellipse, a star, a flat shape, and the like, but is preferably a circle for ease of fiber production.
  • the splittable conjugate fiber is partially split by injecting a high-pressure water flow or the like in advance. In this way, the split moist heat gelled resin fiber component gels by wet heat treatment, forms a gelled substance, adheres to the surface of other fibers, and fixes the filler. That is, Functions as a binder.
  • the content of the wet-heat gelling resin fiber component is preferably in the range of 1 Omass% to 90 mAss%, and more preferably 30 mAss% or more.
  • a more preferable content of the moist heat gelled resin fiber component is 70% by mass or less.
  • the other thermoplastic synthetic fiber component in the wet heat gelled conjugate fiber may be any of polyolefin, polyester, polyamide and the like, but is preferably polyolefin.
  • an ethylene-vinyl alcohol copolymer resin is used as the wet heat gelling resin fiber component, it is easy to form a conjugate fiber (conjugate fiber) by melt spinning.
  • thermoplastic synthetic fiber component a thermoplastic synthetic fiber component having a melting point higher than the temperature at which the wet heat gelled resin fiber component is gelled. If the other thermoplastic synthetic fiber component is a thermoplastic synthetic fiber component having a melting point lower than the temperature at which a gel is formed, the other thermoplastic synthetic fiber component itself tends to melt and become harder. When formed into a compact, it may become non-uniform with shrinkage.
  • the proportion of the wet heat gelled conjugate fiber in the fibrous structure is not particularly limited as long as it can fix the filler, but the fiber is fixed by the gelled material, and the Z or filler is effectively fixed.
  • the ratio of the conjugate fiber required for this is preferably 1 O mass% or more.
  • a more preferable ratio of the composite fiber is 3 O mass% or more.
  • a more preferable ratio of the conjugate fiber is 5 O mass% or more.
  • a textile structure In the case where a web containing conjugate fibers is present on both surfaces and other fibers are present inside, it refers to the content in the web containing conjugate fibers.
  • fibers used in the form (II) or the form (IV) include:
  • Any fiber such as synthetic fiber such as Yong and other synthetic fibers, natural fiber such as cotton, hemp and wool, and synthetic resin such as polyolefin resin, polyester resin, polyamide resin, acrylic resin, and polyurethane resin. You can select and use the appropriate one.
  • the wet heat gelling resin is preferably contained in a range of lmass% to 9 O mass% with respect to the fiber structure.
  • a more preferred content is at least 3 mass%.
  • a more preferred content is 7 O mass% or less.
  • the content of the wet heat gelling resin is less than lmass%, it becomes difficult to fix other fibers by the gelled matter, or it becomes difficult to fix the filler. If the content of the wet heat gelling resin exceeds 9 O mass%, the fiber shape may be lost and the film may be formed, or the filler may be buried in the gelled material.
  • the filler can be any particle.
  • the filler is preferably inorganic particles.
  • inorganic particles have a large polishing effect when used as an abrasive.
  • examples of the inorganic particles include alumina, silica, tripoly, diamond, corundum, emery, garnet, flint, synthetic diamond, boron nitride, silicon carbide, boron carbide, chromium oxide, cerium oxide, iron oxide, colloidal silicate, Carbon, graphite, zeolite and titanium dioxide, kaolin, clay And the like. These particles can also be used as an appropriate mixture.
  • the gas-adsorbing particle is not particularly limited as long as it has a function of adsorbing gaseous substances in the air.
  • Activated carbon particles, zeolite, silica gel, activated clay, layered phosphorus Preferred are porous particles such as acid salts, and porous particles in which a chemical adsorbent is supported on these porous particles.
  • activated carbon particles are particularly preferred.
  • the organic substance-adsorbing particle is not particularly limited as long as it has a function of adsorbing an organic substance in a liquid.
  • Activated carbon particles zeolite, silica gel, activated clay, layered phosphate, etc.
  • the porous particles are preferable, and the porous particles in which an organic adsorbent is carried on these porous particles are preferable.
  • activated carbon particles are particularly preferred.
  • the gas adsorbing particles and the organic adsorbing particles for example, silica gel as a drying agent, titanium dioxide as a photocatalyst, a virus adsorbing / decomposing agent, an antibacterial agent, a deodorant, a conductive agent, an antistatic agent
  • silica gel as a drying agent
  • titanium dioxide as a photocatalyst
  • a virus adsorbing / decomposing agent for example, silica gel as a drying agent
  • a virus adsorbing / decomposing agent for example, titanium dioxide as a photocatalyst, a virus adsorbing / decomposing agent, an antibacterial agent, a deodorant, a conductive agent, an antistatic agent
  • One or more functional fillers such as humectants, insect repellents, fungicides, and flame retardants can be used.
  • the average particle size of the filler is preferably in the range of 0.01 to 100 m.
  • a more preferred average particle size is 0.5 m or more, and a more preferred average particle size is 1 m or more.
  • a more preferred average particle size is 80 im or less. If the average particle size is less than 0.01 m, the filler may be buried in the gel. On the other hand, when the average particle size exceeds 100 m, the specific surface area of the filter becomes small, and a sufficient function of the filter, for example, a gas adsorption effect may not be obtained.
  • the fibrous structure contains the fibers and the binder resin.
  • the term “fiber structure” here refers to a fiber bundle, a fiber mass, a nonwoven fabric, a woven or knitted fabric, It is made of fibers such as fibers.
  • nonwoven fabrics can be applied to various uses because of their high workability.
  • the fibrous structure of the present invention is used as an abrasive nonwoven fabric containing a liquid, it is preferable that the fixed fibers are present in a web form on both surfaces and hydrophilic fibers are present inside.
  • the hydrophilic fiber is preferably at least one fiber selected from rayon fiber, cotton fiber and pulp. This is because when a liquid such as water, a surfactant or a cleaning agent is applied and polished, water retention is high.
  • a gas adsorbent using gas adsorbing particles as a filler is not limited to a nonwoven fabric, and a fiber bundle formed by bundling a plurality of the fixed fibers of the filler is referred to as a gas adsorber.
  • the gas adsorption module may be used.
  • a material obtained by winding the aggregate of the filler-fixed fibers in a cylindrical shape or a pleated shape can be used as a gas adsorption filter.
  • the water purification material using the organic substance-adsorbing particles as the filler is not limited to a nonwoven fabric, and may be a water purification module in which a fiber bundle formed by bundling a plurality of the filler-fixed fibers is used as the organic substance-adsorbing section.
  • an aggregate of the filler-fixed fibers wound in a cylindrical shape or a shape formed into a plied shape can also be used as a water purification filter.
  • the fiber structure is preferably a nonwoven fabric.
  • Non-woven fabrics have low manufacturing costs, are easy to process, and when moistened during the molding process, they stretch moderately and easily conform to the shape of the mold, making it easier to obtain deep drawn compacts. .
  • the preferred basis weight of the fiber structure is 20 g / m 2 or more and 600 g / m 2 or less.
  • the preferred thickness of the fibrous structure (under a load of 2.94 cN / cm 2 ) is in the range from 0.1 mm to 3 mm.
  • the amount sticking of the filler is fibrous structure lm 2 per 2 g or more, more preferably 1 at 0 g or more, particularly preferably and this is 20 g or more.
  • the wet heat treatment in the present invention is performed in a wet heat atmosphere.
  • the term “moist heat atmosphere” refers to a heated atmosphere containing moisture.
  • the wet heat treatment may be, for example, a treatment in which a fiber containing a binder resin, a fiber containing a wet heat gelling fiber component, or a fiber structure containing these fibers is heated after applying a filler monodispersed solution containing a filler. And a process of heating while applying the filler dispersion solution.
  • the heating method include a method of exposing to a heated atmosphere, a method of penetrating through heated air, and a method of contacting a heated body.
  • the ratio of water to be applied to the fiber or fiber structure in the wet heat treatment is 2 Omass% to 80 Omass%.
  • moisture percentage the ratio of water to be applied to the fiber or fiber structure in the wet heat treatment
  • a more preferable moisture regain is 3 Omass% or more.
  • a more preferable moisture content is 70 Omass% or less.
  • An even more preferred moisture content is 4 Omass% or more.
  • An even more preferable moisture content is 600 mass% or less. If the water content is less than 2 Omass%, the gelation under wet heat may not occur sufficiently.
  • the moisture content exceeds 80 Omass%, the wet heat treatment is not performed uniformly between the surface and the inside of the fibrous structure, and the degree of wet heat gelation tends to be non-uniform.
  • a known method such as spraying or immersion in a water tank can be used.
  • the method of impregnating the fiber structure with the filler dispersion solution is preferable because a large amount of filler is easily taken into the fiber structure.
  • the moisture-imparted fiber or fiber structure is adjusted to a predetermined moisture content by squeezing with a squeeze roll or the like. Can be adjusted.
  • the concentration of the filler in the filler dispersion solution and the temperature of the filler dispersion solution are adjusted. Then, the amount of sticking of the filler may be adjusted. Specifically, by impregnating the fiber or the fibrous structure in hot water (90 ° C. or higher) containing the filler, the filler can be fixed to the fiber surface.
  • the fibrous structure before the wet heat treatment may be subjected to a hydrophilic treatment.
  • a hydrophilic treatment By performing the hydrophilic treatment, when the fibrous structure contains hydrophobic fibers, the fibrous structure can be provided with water substantially uniformly. As a result, the composite fiber is almost uniformly wet-gelled, and the filler is easily fixed, which is preferable.
  • Hydrophilic treatments include surfactant treatment, corona discharge method, glow discharge method, plasma treatment method, electron beam irradiation method, ultraviolet irradiation method, T-ray irradiation method, photon method, flame method, fluorine treatment method, and graft treatment. And sulfonation treatment methods.
  • the wet heat treatment temperature in the wet heat treatment is not less than the gelation temperature of the wet heat gelling resin or the wet heat gelling resin fiber component (hereinafter, both are also referred to as “binder resin”) and the melting point is not more than 20 ° C. Is preferred.
  • a more preferred moist heat treatment temperature is 50 ° C or higher.
  • An even more preferred wet heat treatment temperature is 80 ° C. or higher.
  • a more preferable wet heat treatment temperature is a melting point of the binder resin—30 ° C. or lower.
  • An even more preferable wet heat treatment temperature is a melting point of the binder resin of 140 ° C. or less.
  • the filler may not be fixed effectively in some cases. If the temperature of the wet heat treatment exceeds the melting point of the binder resin, ie, more than 120 ° C, the melting point of the binder resin becomes close to that of the binder resin.
  • the surface pressure when contacting with a heating body, is 0.01 to It is preferably 0.2 MPa. A more preferable lower limit of the surface pressure is 0.02 MPa. A more preferable upper limit of the surface pressure is 0.08 MPa.
  • the linear pressure of the hot roll is preferably 10 to 40 ON / cm. A more preferable linear pressure of the hot hole is 50 N / cm. A more preferable upper limit of the linear pressure of the heat roll is 20 ON / cm.
  • the wet-heat gelling of the resin fiber component can be instantaneously wet-gelled, and at the same time, the gelled material can be pushed and spread, so that the filler can be fixed over a wide area. Further, according to this method, when the gel is wet-heated, the filler is pushed into the gelled material, and the filler can be more firmly fixed to the fiber surface.
  • the fiber and the web containing the wet heat gelling resin are subjected to a steam treatment to form a gelled product of the wet heat gelling resin.
  • the filler can be fixed.
  • the method of the steam treatment include a method of spraying steam from above and / or below a web or the like, a method of exposing to steam with an autoclave or the like, and the like. According to this method, pressure is not applied to the fiber structure more than necessary at the time of gel processing. As a result, the fibrous structure can be fixed in a state where the filler is exposed on the fiber surface while maintaining the fibrous form.
  • the term “wet heat forming” refers to a treatment in which a filler dispersion solution is applied to a fibrous structure and then heating, or heating while applying a filler dispersion solution to form the fiber structure into a predetermined shape.
  • the heating method include a method of exposing to a heating atmosphere and a method of contacting with a heating body.
  • the water content at the time of applying the filler monodispersed solution to the fiber structure is the same as the water content described above, and the description is omitted.
  • a fibrous structure containing a filler dispersion solution is inserted into a pair of molds and subjected to a heat and pressure treatment.
  • the nonwoven fabric When heated in a state where moisture is contained, the nonwoven fabric itself expands moderately and easily conforms to the shape of the mold, so that it is easy to obtain a deep drawn compact.
  • a molded article can be obtained by inserting a fibrous structure into a pair of molds and impregnating it in hot water (90 ° C. or more). it can.
  • the wet heat forming process is performed in a wet heat atmosphere. It is preferable that the wet heat forming temperature is not lower than the gelling temperature of the gelling resin and not higher than the melting point ⁇ 20 ° C. A more preferred wet thermoforming temperature is 50 ° C. or higher. An even more preferable wet thermoforming temperature is 80 ° C. or higher. On the other hand, a more preferable wet heat molding processing temperature is not more than 30 ° C of the melting point of the wet heat gelled resin. An even more preferable wet heat molding processing temperature is a melting point of the wet heat gelling resin of 140 ° C. or less.
  • wet heat molding temperature is lower than the gelling temperature of the wet heat gelling resin, it is difficult to form a gel. If the wet heat molding processing temperature exceeds the melting point of the wet heat gelled resin _20, the temperature of the wet heat gelled resin approaches the melting point of the wet heat gelled resin.
  • the contact pressure forming refers to a process of applying pressure to such an extent that the fibrous structure and the mold come into contact with each other.
  • the contact pressure is a concept that includes the pressure up to this point, when the fibrous structure and the mold adhere to each other, the mold's own weight is applied.
  • the moist heat gelling resin becomes soft when gelled in a moist heat atmosphere. Therefore, in the case of simple molding only, the molding pressure does not need to be so high.
  • the fiber molded body maintains its fiber shape, and the fibers are fixed by the gelled material, so that a bulky and flexible molded body can be obtained.
  • FIG. 1A shows a composite fiber 5 having polypropylene as a core component 2 and an ethylene-vinyl alcohol copolymer resin as a sheath component 1, wherein the sheath component 1 functions as a binder resin and is contained in the sheath component 1.
  • a filler 3 is fixed to the substrate.
  • FIG. 1B shows a composite fiber 6 having polypropylene as a core component 2 and an ethylene-vinyl alcohol copolymer resin as a sheath component 1, and an ethylene-vinyl alcohol copolymer resin as a binder component outside the sheath component 6.
  • Figure 1C shows a composite fiber 9 in which polypropylene 8 and ethylene-vinyl alcohol copolymer resin 7 are arranged in multiple segments. Ethylene-vinyl alcohol copolymer resin 7 functions as a binder-resin, and a filler 3 This is an example in which is fixed.
  • FIG. 2 is a cross-sectional view of a three-layer nonwoven fabric according to an embodiment of the present invention, in which filler-fixed fiber layers 11 and 11 are arranged on the outside and rayon fiber layer 12 is arranged on the inside. is there.
  • FIG. 3 is a process chart of an example of the production method of the present invention.
  • the fiber or non-woven fabric 31 is impregnated with a filler dispersion solution containing a filler or a filler dispersion solution containing a filler and an ethylene-vinyl alcohol copolymer resin 33 in a tank 32, squeezed with a squeezing roll 34, and steamer 35. And a suction heat, and then wind it as it is, or in the case of non-woven fabric, compress it with a pair of heating rolls 37, 37 for patterning canvas rolls 38, 38. Shape, give a predetermined pattern to the surface of the non-woven fabric, and then wind up
  • pressure treatment may be performed using upper and lower hot plates at a temperature of 150 ° C. for 5 minutes, for example.
  • Other embodiments include a method of compression molding with only a pair of heating rolls without a steamer 35, and a pattern Ninda canvas roll 38, 38 applied to a pair of heating rolls 37, 37 without a steamer 35. There is also a method in which compression molding is performed only by using the compression molding.
  • FIGS. 4A to 4F show a state in which a filler is fixed to the nonwoven fabric obtained in one example of the present invention and its constituent fibers
  • A is a scanning electron microscope plane photograph (magnification 100) showing the nonwoven fabric.
  • B is a cross-sectional photograph (magnification: 100) of the same
  • C is an enlarged fiber surface photograph of the same nonwoven fabric (magnification: 100,000)
  • D is the same, a scanning electron microscope plane photograph showing the other part of the nonwoven fabric (Magnification 100)
  • E is a photograph of the same cross section (magnification 100)
  • F is an enlarged photograph of the fiber surface of the nonwoven fabric surface (magnification 100).
  • FIGS. 5A to 5C show a nonwoven fabric obtained in another embodiment of the present invention and a state in which a filler is fixed to the constituent fibers thereof, wherein A is a scanning electron microscope plane photograph showing the nonwoven fabric (magnification: 10). 0) and B are photographs of the same cross section (magnification 100) and C is an enlarged photograph of the surface of the nonwoven fabric (magnification 100).
  • FIG. 7 is a process chart of an example of a method for producing a nonwoven fabric containing water and a filler in one embodiment of the fiber molded article of the present invention.
  • the raw nonwoven fabric 31 is impregnated with a filler-dispersed solution containing a filler or a filler-dispersed solution 33 containing an ethylene-vinyl alcohol copolymer resin containing a filler in a tank 32, and squeezed with a squeezing roll 34.
  • a filler-dispersed solution containing a filler or a filler-dispersed solution 33 containing an ethylene-vinyl alcohol copolymer resin containing a filler in a tank 32
  • squeezed with a squeezing roll 34 As a result, about 500 mass% of moisture and filler are added to the nonwoven fabric.
  • FIG. 8 shows the compact A mask 40 for covering the mouth and nose of the human body and a pleated product 50 of an air purifier filter shown in FIG. 9 were produced.
  • FIG. 10 is a process diagram illustrating an example of a method for producing a filler-fixed fiber or a nonwoven fabric according to another embodiment of the present invention.
  • the fibrous or non-woven fabric 31 is converted into an aqueous liquid or filler (for example, gas-adsorbing particles) containing a filler (for example, gas-adsorbing particles) and an ethylene-vinyl alcohol copolymer in a tank 32. It is impregnated with the dispersion liquid 33, squeezed by the squeezing roll 34, steam-processed by a steamer 35 from which steam is blown out from below, dried by the dryer 41, and wound up by the winder 39.
  • 11A and 11B show the nonwoven fabric obtained in one example of the present invention and the state in which the filler is fixed to the constituent fibers thereof, and A is a scanning electron microscope plane photograph (200 magnification) showing the nonwoven fabric. Panels B and B are enlarged photographs of the fiber surface of the nonwoven fabric (magnification: 2000).
  • the following three-layered hydroentangled nonwoven fabric was formed.
  • the first layer and the third layer are composed of a sheath component ethylene-vinyl alcohol copolymer resin (EV ⁇ H, ethylene 38 mol%, melting point 1760, and a core component polypropylene having a core component polypropylene ratio of 50:50). Fineness: 2.8 dte X, fiber length: 5 lmm) Card web with a basis weight of 30 g for each layer
  • the second layer was a card web made of rayon fiber (fineness: 1.7 dte X, fiber length: 40 mm), and the basis weight was 30 gZm 2 .
  • the basis weight of the three-layered hydroentangled nonwoven fabric was 90 gZm 2 . This These nonwoven fabrics were superposed in the order of first layer / second layer / third layer and subjected to a high-pressure water flow treatment of 6 MPa to entangle the fibers in the thickness direction.
  • a filler As a filler, "Alumina" (average particle diameter 0.7 m) manufactured by Nippon Light Metal Co., Ltd. was suspended in water at a ratio of 3 mass% to prepare a filler dispersion solution (abrasive solution).
  • the nonwoven fabric was immersed in the abrasive solution and squeezed with a mangle roll.
  • the pickup rate was adjusted at about 500%, and the amount of the adhered filler was adjusted to the value shown in Table 1.
  • the pickup rate is a value obtained by multiplying the sum of the amount of water and the amount of filler with respect to the mass of the nonwoven fabric by 100.
  • canvas nets were placed on the upper and lower hot plates heated to 120, the nonwoven fabric was sandwiched between the hot plates, and gel processing was performed at a pressure of 0.064 MPa for 2 seconds. Next, it was dried with hot air at 100 ° C.
  • inks were applied to a stainless steel plate and a ceramic dish, and after drying, dirt was removed using each abrasive. To remove the dirt, human samples were rubbed with the same force applied to each sample.
  • evaluation object and evaluation points are as follows.
  • FIGS. 4A to 4F show the state where the filler is fixed to the obtained nonwoven fabric and its constituent fibers.
  • the following three-layered hydroentangled nonwoven fabric was formed.
  • the first and third layers are made of a core-sheath composite fiber of ethylene-vinyl acetate copolymer resin (EVA, melting point: 101 ° C) and polypropylene in a ratio of 50:50 (density: 2.2 dte X , Fiber length: 51 mm), and the basis weight was 30 g / m 2 for each layer.
  • EVA ethylene-vinyl acetate copolymer resin
  • polypropylene in a ratio of 50:50 (density: 2.2 dte X , Fiber length: 51 mm), and the basis weight was 30 g / m 2 for each layer.
  • the second layer was a force web composed of rayon fiber (fineness: 1.7 dte X, fiber length: 40 mm), and the basis weight was 30 g / m 2 .
  • the basis weight of the three-layered hydroentangled nonwoven fabric was 90 gZm 2 .
  • This non-woven fabric is superposed in the order of 1st layer Z 2nd layer Z 3rd layer, high pressure of 6 MPa Water flow treatment was performed to entangle the fibers in the thickness direction.
  • the following three-layered hydroentangled nonwoven fabric was formed.
  • the first and third layers are made of a core-sheath composite fiber of ethylene-methyl acrylate copolymer resin (EMA, melting point 86) and polypropylene in a ratio of 50:50 (fineness: 2.2 dte X, fiber length) : a Kaduebu consisting 45 mm), weight per unit area was each with 30 gZm 2.
  • EMA ethylene-methyl acrylate copolymer resin
  • polypropylene in a ratio of 50:50 (fineness: 2.2 dte X, fiber length) : a Kaduebu consisting 45 mm), weight per unit area was each with 30 gZm 2.
  • the second layer rayon fiber (fineness: 1. 7 dtex, fiber length: 40 m m) is a card web of a basis weight was 30 g / m 2.
  • the basis weight of the three-layered hydroentangled nonwoven fabric was 90 gZm 2 .
  • This nonwoven fabric was superimposed in the order of first layer Z second layer Z third layer, and subjected to a high-pressure water flow treatment of 6 MPa to entangle the fibers in the thickness direction.
  • the nonwoven fabric containing the filler-fixed fibers of this example exhibited almost the same level of abrasiveness as a commercially available abrasive.
  • the nonwoven fabric containing the filler-fixed fibers of the present example did not lose the filler, and a good durability was obtained.
  • the absence of fillers is especially useful for polishing lenses and semiconductors.
  • a hydroentangled nonwoven fabric having a basis weight of 100 g Zm 2 and a high-pressure water flow treatment at a water pressure of 6 MPa comprising the core-sheath type composite fiber of Example 1 was used.
  • the nonwoven fabric was pretreated by immersing it in an aqueous solution containing 0.1% by mass of a surfactant (polyoxyethylene alkylphenol ether having an alkyl group having 9 carbon atoms) and squeezing.
  • a surfactant polyoxyethylene alkylphenol ether having an alkyl group having 9 carbon atoms
  • an ethylene-vinyl alcohol copolymer resin (EV0H) powder manufactured by Nippon Synthetic Chemical Co., Ltd., trade name "Soanol", powder type B-7, ethylene 29 mol%, melting point 188 ° C
  • activated carbon The product was immersed in an aqueous dispersion of Kuraray Chemical PL-D) (trade name, manufactured by Kuraray Chemical Co., Ltd.) and squeezed with a mulled roll.
  • the treatment was carried out in the same manner as in Example 2 except that a 60 g / m 2 hydroentangled nonwoven fabric (high-pressure water treatment at a water pressure of 6 MPa) consisting of rayon fiber 1.7 dtex and 51 iMi was used.
  • Example 2 The treatment was carried out in the same manner as in Example 2 except that a 50 g / m 2 hydroentangled nonwoven fabric (high-pressure water treatment at a water pressure of 6 MPa) composed of polyester fiber 1.7 dtex and 51 mm was used.
  • the activated carbon was firmly and uniformly fixed. Table 2 summarizes the results of the obtained filler-bonded nonwoven fabric.
  • Example 2 The treatment was carried out in the same manner as in Example 2 except that a hydro-entangled nonwoven fabric of 60 g / m 2 (high-pressure water treatment at a water pressure of 6 MPa) composed of polypropylene fiber 1.7 dtex and 51 thighs was used.
  • the activated carbon was firmly and uniformly fixed. Table 2 summarizes the results of the obtained filler-bonded nonwoven fabric.
  • the first layer and the third layer are made of a splittable conjugate fiber (fineness: 3.3 dtex, fineness: 3.3 dtex, ethylene / biel alcohol copolymer resin (EVOH) of Example 1) and polypropylene of Example 1 in a ratio of 50:50. Fiber length: 5 1mm) It was eb and the basis weight was 30 g / m 2 for each layer.
  • the second layer between the first and third layers is a card web in which the rayon fiber of Example 1 and polyester fiber (fineness: 1.7 dtex, fiber length: 51 mm) are mixed at a ratio of 1: 1. , is with the eye was 30 gZm 2.
  • FIGS. 5A to 5C show a state in which the filler is fixed to the obtained nonwoven fabric and its constituent fibers.
  • the sheath component is ethylene-vinyl alcohol copolymer resin (EVOH, 38 mol% of ethylene, melting point: 176 ° C), the core component is polypropylene (PP, melting point: 161 ° C), and EVOH: PP
  • EVOH ethylene-vinyl alcohol copolymer resin
  • the core component is polypropylene (PP, melting point: 161 ° C)
  • a core-sheath composite fiber fineness: 3.3 dtex, fiber length: 5 lmm having a ratio of 50:50 (volume ratio) was prepared.
  • the sheath component is polyethylene (PE, melting point 1 32 ° C) and the core component is polypropylene (PP, melting point 16 1 ° C).
  • Composite fiber manufactured by Daiwa Spinning Co., Ltd., NB F (H) was prepared.
  • the card web was placed on a 90-mesh plain weave support, and the orifices (diameter: 0.12 mm, pitch: 0.6 mm) were arranged in a line in the width direction of the card web.
  • the water stream was sprayed at a pressure of 3 MPa toward the card web, and was further sprayed at a pressure of 4 MPa.
  • the card web was turned over, and a water stream was jetted from the nozzle at a water pressure of 4 MPa to produce a hydro-entangled nonwoven fabric.
  • the raw nonwoven fabric is immersed in a filter dispersion solution (20 ° C) in which 8% by mass of the activated carbon particles are dispersed in water, and the pickup rate is reduced with a linear pressure of about 60 NZcm using a mangle roll. It was adjusted.
  • the nonwoven fabric impregnated with the filler dispersion solution was subjected to steam treatment at a bath temperature of 102 ° C and a processing time of 15 seconds using a steamer in which steam was blown from the lower part of the nonwoven fabric web. And dried with a hot air dryer (lo ot :) to obtain the nonwoven fabric of the present invention.
  • the basis weight of the obtained nonwoven fabric was 68 g / m 2 , and about 23 g / m 2 of the filler was fixed.
  • Figures 11A-B show the obtained nonwoven fabric and the state in which the filler is fixed to the constituent fibers.
  • the obtained nonwoven fabric maintained the fiber morphology, and was fixed with the filler exposed on the fiber surface.
  • the sheath component is ethylene-vinyl alcohol copolymer resin (EV ⁇ H, ethylene content 38 mol%, melting point 176 ° C), and the core component is polypropylene (PP, melting point 161 ° C). ⁇
  • EV ⁇ H ethylene-vinyl alcohol copolymer resin
  • PP polypropylene
  • the core-sheath type composite fiber was opened with a semi-random card machine to produce a card web having a basis weight shown in Table 3. Then, the force web was placed on a 90-mesh plain weave support, and orifices (diameter: 0.12 mm, pitch: 0.6 mm) were arranged in a line in the width direction of the card web. A water stream was jetted from the spill toward the card web at a water pressure of 3 MPa, and then jetted at a water pressure of 4 MPa. Subsequently, the card web was turned upside down, and a water stream was jetted from the nozzle at a water pressure of 4 MPa, to produce a hydro-entangled nonwoven fabric used in Examples 8 to 11.
  • Gas adsorbent particles were prepared as a filter.
  • Activated carbon particles “Kuraray Coal PL-D” (manufactured by Kuraray Chemical Co., Ltd., coconut shell charcoal, average particle size 40 to 50 / m) were used as the gas absorbing particles.
  • the raw nonwoven fabric was immersed in a filter dispersion solution (20 ° C) in which 10% by mass of the activated carbon particles were dispersed in water, and the pick-up rate was adjusted by the squeezing pressure of a mangle roll to obtain the activated carbon particles.
  • the amount of fixation was adjusted so that the values shown in Table 3 were obtained.
  • the pickup rate is a value obtained by multiplying 100 by the sum of the amount of water and the amount of activated carbon particles with respect to the mass of the nonwoven fabric.
  • the above-mentioned nonwoven fabric impregnated with the monofilament dispersion solution was treated with two plain weave plastic nets having a wire diameter of 0.3 mm, a mesh number of 30 vertical / inch X 25 horizontal 25 Z inch (length 40 c). mX horizontal 40 cm) was sandwiched between, 1 5 0 is placed on a hot plate heated to ° C, further, the wet heat treatment for 15 minutes covered with aluminum above the plastic Kunetto sheet (lg / cm 2) did.
  • the obtained nonwoven fabric was washed with water and dried with a hot air drier (100 ° C) to obtain a nonwoven fabric (gas adsorbent) of the present invention.
  • Example 8 The same nonwoven fabric as the hydroentangled nonwoven fabric used in Example 8 was immersed in a filler dispersion solution (95 ° C) in which 5 mass% of the activated carbon particles were dispersed in water for 30 seconds, and then pulled up. . Then, the nonwoven fabric was supported until the temperature of the nonwoven fabric reached 50 ° C. Then, the nonwoven fabric Is washed with water and dried with a hot air drier (100 ° C) to obtain the nonwoven fabric of the present invention.
  • a filler dispersion solution 95 ° C
  • 5 mass% of the activated carbon particles were dispersed in water for 30 seconds, and then pulled up. .
  • the nonwoven fabric was supported until the temperature of the nonwoven fabric reached 50 ° C.
  • the nonwoven fabric Is washed with water and dried with a hot air drier (100 ° C) to obtain the nonwoven fabric of the present invention.
  • Table 3 shows the basis weight of the nonwoven fabric web, the fixed amount of activated carbon particles, the fixed rate of activated carbon particles, and the basis weight of the nonwoven fabric (gas adsorbent) for the nonwoven fabrics (gas adsorbents) of Examples 8 to 12.
  • a filler dispersion solution containing 15 mass% of self-crosslinking acrylic ester emulsion (trade name “Nikkizol FX-5555A” manufactured by Nippon Carbide Industry Co., Ltd.) and 10 mass% of the activated carbon particles is used. Got ready. Next, the same nonwoven fabric as the hydroentangled nonwoven fabric used in Example 8 described above was immersed in the solution, squeezed with a mangle roll, and heated at a temperature of 140 ° C using a hot air drier for 15 minutes. And cured to obtain a chemically bonded nonwoven fabric having a fixed amount of activated carbon particles of 38 g / m 2 .
  • Each of the sheets of Examples 8 to 12 and Comparative Examples 3 and 4 was cut into a size of 10 cm in length and 10 cm in width, and a pollution analysis bag having a capacity of 5 liters. (Trade name “Tedra bag”), and each VOC gas mixed with air so as to have the initial concentration shown in Tables 4 to 6 was injected.
  • the injection time was set as the start time, and the concentration of each VOC gas in the bag was measured with a gas detector tube every time.
  • Tables 4-6 In Tables 4 to 6, “NDJ indicates the case where the concentration of each VOC gas is less than the measurement limit (2 ppm) of the gas detector tube used.
  • Example 12 exhibited the same formaldehyde adsorption performance as Comparative Example 3 even though the fixed amount of activated carbon particles was smaller than Comparative Example 3. Further, as shown in Tables 5 and 6, Example 12 exhibited improved gas adsorption performance, despite the smaller amount of activated carbon particles fixed than Comparative Example 4.
  • the activated carbon particles (gas-adsorbing particles) in the nonwoven fabrics of Examples 8 to 12 are fixed by the wet-heat gelled gel on the fiber surface, so that the gas-adsorbing particles are exposed on the surface. It is considered that the decrease in the specific surface area of the gas-adsorbing particles was suppressed as compared with Comparative Examples 3 and 4.
  • the nonwoven fabrics of Examples 8 to 12 retained the fiber shape, and the nonwoven fabric did not shrink during gel processing. Further, the nonwoven fabrics of Examples 8 to 12 did not have the gas-adsorbing particles falling off.
  • the sheath component is ethylene-vinyl alcohol copolymer resin (EV ⁇ H, ethylene content 38 mol%, melting point 176 ° C), and the core component is polypropylene (PP, melting point 161 ° C).
  • EV ⁇ H ethylene-vinyl alcohol copolymer resin
  • PP polypropylene
  • the core-sheath type composite fiber was opened with a semi-random card machine to produce a card web having a basis weight of 101 g Zm 2 .
  • the card web is placed on a 90-mesh plain weave support, and orifices (diameter: 0.12 mm, pitch: 0.6 mm) are arranged in a line in the width direction of the force web.
  • a water stream was jetted from the nozzle to the card web at a water pressure of 3 MPa, and further jetted at a water pressure of 4 MPa. Then, turn over the card web and A water stream was jetted from the nozzle at a water pressure of 4 MPa to produce a hydro-entangled nonwoven fabric used in Example 1.
  • Organic substance-adsorbing particles were prepared as fillers.
  • Activated carbon particles “Kuraray Coal PLD” (Kuraray Chemical Co., Ltd., coconut husk charcoal, average particle size 40 to 50 m) were used as the organic substance adsorbing particles.
  • the raw nonwoven fabric was immersed in a monofilament dispersion solution (20 ° C) in which 1 Omass% of the activated carbon particles were dispersed in water, and the pick-up rate was adjusted with a squeezing pressure of a mangle roll to obtain the activated carbon particles. The amount of fixation was adjusted so that the values shown in Table 7 were obtained.
  • the above nonwoven fabric impregnated with the filler dispersion solution was treated with two plain weave plastic nets having a wire diameter of 0.3 mm and a mesh number of 30 / inch X 25 / inch. (cm x 40 cm) and placed on a hot plate heated to 150 ° C.
  • Table 7 shows the nonwoven fabric fabric weight, the amount of activated carbon particles fixed, the fixed rate of activated carbon particles, and the nonwoven fabric of the nonwoven fabrics (water purification materials) of Examples 13 and 14 in Example 7. The basis weight of the cloth (water purification material) is shown. The nonwoven fabrics of Examples 13 and 14 retained the fiber shape and did not shrink during gel processing. Table 7
  • a water purification performance test was performed using a water circulation type simple testing machine shown in FIG.
  • the water circulating simple tester 20 is fixed to the stand 21 by the stand 21, the fixing jigs 22 a and 22 b attached to the stand 21, and the fixing jig 22 a.
  • a pump 24 that circulates water in the container 23.
  • the pump 24 includes a tube 24 a attached to the opening 23 a at the bottom of the container 23 and a tube 24 b fixed to the stand 21 by a fixing jig 22 b.
  • Examples 13 and Comparative Example 5 were carried out by placing factory wastewater having a chemical oxygen demand (COD) of 4 Oppm in the container 23. About, the factory wastewater with COD of 20 ppm was put.
  • the power circulation device (not shown) connected to the pump 24 set the circulation flow rate of water to 6 liters Z minutes, and maintained the liquid volume of the industrial wastewater in the container 23 at 1 liter during the test.
  • Example 13 and 14 and Comparative Examples 3 and 5 Each of the nonwoven fabrics of Examples 13 and 14 and Comparative Examples 3 and 5 was cut into small pieces 25 of 3 cm ⁇ 3 cm (see FIG. 6). Next, for each of Examples 13 and 14 and Comparative Examples 3 and 5, a small piece 25 was weighed so that the amount of activated carbon became 10 g, and the weighed small piece 25 was replaced with a commercially available tea pack 26. (See Fig. 6) and a test sample 27 (see Fig. 6) was prepared. At the time of the water purification performance test, the test sample 27 was immersed in the above-mentioned factory wastewater in the container 23 and fixed to the fixing jig 22 with the wire 28 as shown in FIG.
  • the COD concentration is determined by collecting the above-mentioned factory wastewater in the container 23 into a beaker with a spot at every measurement time, and using a simple water quality analysis product “Pack Test” (WAK-C ⁇ D, measurement range 0 to L) manufactured by Kyoritsu RIKEN. (00 mg / liter) and colorimetrically measured with the standard color. Table 8 shows the results.
  • Example 14 the activated carbon shedding rate was measured by the following method.
  • Example 14 and Comparative Example 5 Each of the nonwoven fabrics of Example 14 and Comparative Example 5 was cut so that the amount of activated carbon became 1.21 g.
  • the size of the cut sample was 30 cm ⁇ 20 c in Example 14, and 6.6 cm ⁇ 10 cm in Comparative Example 5.
  • 2 liters of water was placed in a 3 liter beaker, and the samples of Example 13 and Comparative Example 5 were respectively placed in water in the beaker and stirred with a magnetic stirrer for 4 hours.
  • Example 14 As shown in Table 9, the nonwoven fabric of Example 14 was able to reduce the amount and rate of activated carbon falling off as compared with Comparative Example 5. This is the nonwoven fabric of Example 14. This is presumably because the activated carbon (activated carbon particles) in the inside was fixed by the gelled gel which was fixed to the surface of the fiber by the heat-moisture gelation, so that the activated carbon could be held more firmly than in Comparative Example 5.
  • the sheath component is ethylene-vinyl alcohol copolymer resin (EV ⁇ H, 38 mol% of ethylene, melting point 176 ° C), the core component is polypropylene (PP, melting point 161 ° C), A core-sheath composite fiber (fineness: 2.8 dtex, fiber length: 5 lmm) having a ratio of EVOH: PP of 50: 50 (volume ratio) was prepared.
  • EV ⁇ H ethylene-vinyl alcohol copolymer resin
  • PP polypropylene
  • a core-sheath composite fiber fineness: 2.8 dtex, fiber length: 5 lmm having a ratio of EVOH: PP of 50: 50 (volume ratio) was prepared.
  • the core-sheath type composite fiber was opened by a semi-random card machine to produce a card web having a basis weight of 40 g / m 2 .
  • the card web is placed on a 90-mesh plain weave support, and the orifices (diameter: 0.12 mm, pitch: 0.6 mm) are arranged in a row in the width direction of the force web.
  • the water stream was sprayed at a pressure of 3 MPa toward, and was further sprayed at a water pressure of 4 MPa.
  • the force web was turned upside down, and a water flow was jetted from the nozzle at a water pressure of 4 MPa to produce a raw hydroentangled nonwoven fabric.
  • Activated carbon particles Kuraray Coal PL-DJ (Kuraray Chemical Co., Ltd., Yashigara charcoal, average particle diameter 40 to 50 im) was used as the filler.
  • the raw nonwoven fabric was immersed in a filler dispersion solution (20 ° C.) in which 10 mass% of the activated carbon particles were dispersed in water, and the pick-up rate was adjusted by the squeezing pressure of a mangle roll.
  • a non-woven fabric containing water and filler is sandwiched between a pair of 0.3 mm thick stainless steel plate molds, and then hot air dried at a processing temperature of 140 ° C.
  • the mixture was placed in a dryer and heat-treated at a contact pressure for 10 minutes.
  • the mask 40 shown in Fig. 8 is used to cover the mouth and nose of the human body, and a pleated mold is used to form a pleated product such as an air purifier filter shown in Fig. 9. It was made.
  • the fixation ratio of the activated carbon particles of the obtained mask and pleated product was determined, they were all about 100 mass%.
  • the mask shown in FIG. 8 was a deep drawn bowl-shaped molded body having appropriate flexibility, retaining the fiber morphology, and uniformly dispersing the fibers.
  • the activated carbon particles fixed by the gelled material did not fall off from the compact. Even wearing the mask, she did not feel stuffy.
  • the pre-processed product in Fig. 9 was a deep-drawn molded product that retained the fiber morphology, had a uniform distribution of the fibers, and had clear pleated peaks and valleys (folds).
  • the activated carbon particles fixed by the gelled matter did not fall off from the compact.
  • the processed pleated product in Fig. 9 was firmly folded, and the workability of the pleated cartridge fill was good.
  • the present invention can provide a filler-fixed fiber, a fibrous structure, a fibrous molded article, and a method for producing the same, which can effectively exhibit the function of the filler while maintaining the properties of the original fiber.
  • the filler since the filler is fixed to the fiber surface by the gel, the filler can be fixed in a state of being exposed on the fiber surface without easily falling off.
  • the fibrous structure of the present invention when used as a gas adsorbent, the gas adsorbing particles are fixed by the gelled material on the fiber surface, so that the gas adsorbing particles are fixed while being exposed on the surface. can do.
  • the fiber structure of the present invention is used for a water purification material
  • the particles are fixed by the gelled substance on the fiber surface
  • the organic substance-adsorbing particles can be fixed while being exposed on the surface.
  • the organic substance-adsorbing particles fixed to the fiber surface can be prevented from falling off, and the specific surface area of the organic substance-adsorbing particles can be prevented from decreasing.
  • the purification performance is improved compared to conventional water purification materials. Can be done.
  • the binder resin contains a wet heat gelling resin
  • the fiber structure is formed into a predetermined shape by fixing the fiber by the wet heat gelling of the wet heat gelling resin. Therefore, in the case of clothing use, it is flexible even when it comes into direct or indirect contact with human skin. In addition, the forming is uniform, and a deep drawn shape can be obtained. Further, the filler can be effectively fixed to the fiber surface.
  • the method for producing a fiber molded article of the present invention is capable of forming a fiber aggregate containing fibers and a wet heat gelling resin and performing a wet heat forming process, whereby uniform molding can be performed, and a deep drawn shape can be obtained. It can be easily formed. The molding cost can be reduced even for general use.
  • the filler-fixing fiber and the fiber structure of the present invention are used for polishing fibers between teeth (dental floss), abrasives for various fields such as lenses, semiconductors, metals, plastics, ceramics, and glass as industrial abrasives.
  • Abrasives used in home or commercial kitchens gas adsorbents that absorb harmful gases, antibacterial materials, deodorant materials, ion exchange materials, sewage treatment materials, oil absorbing materials, metal adsorbent materials, battery separators, etc. It is useful for woven materials, conductive materials, antistatic (antistatic) materials, humidity control, dehumidifying (condensation prevention) materials, sound absorbing and soundproofing materials, insect repellents, force-proofing materials, and boys' materials.
  • gas adsorbents and antiviral materials can be used for curing sheets for building materials, wallpapers, masks, filters for air conditioning, and the like.
  • the fiber molded article of the present invention includes, for example, a shoulder pad, a breast pad, a jacket collar upholstery, a sleeve interlining, a pocket interlining, a front body, a rearward lookout, a return, a pants waistliner, and the like. is there.

Abstract

A filler-fixed fiber which comprises a fiber (2), a binder resin (1) disposed on the surface thereof, and a filler (3) fixed to the binder resin (1), wherein the binder resin (1) is a moisture/heat-gelling resin which gels upon heating in the presence of water and the filler (3) has been fixed to the gel obtained by causing the moisture/heat-gelling resin to gel. Due to this, the fiber (2) retains its fiber form and the gel formed by the gelation of the moisture/heat-gelling resin functions as a binder for fixing the filler (3).

Description

明 細 書 フィラー固着繊維、 繊維構造物及び繊維成形体並びにそれらの製造方法 技術分野 ' 本発明は、 フィラーを繊維表面に固着したフィラー固着繊維、 繊維構 造物、 及び繊維成形体、 並びにそれらの製造方法に関する。  TECHNICAL FIELD The present invention relates to a filler-fixed fiber in which a filler is fixed to a fiber surface, a fiber structure, a fiber molded article, and production thereof. About the method.
背景技術 Background art
従来から、 繊維の表面にフィラーを付着させる方法として、 不織布の 表面に乾式法で粒子を担持させた後、 繊維の軟化点以上の温度に加熱し て粒子を付着させる方法が提案されている (下記特許文献 1 ) 。 さらに、 粒子を含有する水分散溶液に、 シート状またはブロック繊維成型物を含 浸、 圧搾後、 繊維の融点乃至融点より 6 0 °Cを超えない温度で加熱して 粒子を付着させる方法が提案されている (下記特許文献 2 ) 。  Conventionally, as a method of attaching a filler to the surface of a fiber, a method has been proposed in which particles are carried on the surface of a nonwoven fabric by a dry method, and then heated to a temperature above the softening point of the fiber to attach the particles ( Patent Document 1) below. Furthermore, a method is proposed in which a sheet-like or block fiber molded product is impregnated with an aqueous dispersion solution containing particles, pressed, and then heated at a temperature not higher than the melting point of the fiber or not more than 60 ° C from the melting point of the fiber to adhere the particles. (Patent Document 2 below).
そして、 従来からフイラ一を繊維表面に付着した繊維製品は、 様々な 用途に使用されている。 例えば、 研磨や清浄化を目的とする繊維や布は、 清浄化を目的とする繊維として、 歯間を磨くフィラメント繊維 (デン夕 ルフロス) が一般的に良く知られている。 また工業用途としては、 レン ズ、 半導体、 金属、 プラスチック、 セラミック、 ガラスなど様々な分野 で研磨布又は研磨紙が使用されている。 さらに家庭用又は業務用キツチ ンなどにおいても研磨布は使用されている。  Conventionally, fiber products having a filler attached to the fiber surface have been used for various purposes. For example, for fibers and cloths intended for polishing and cleaning, filament fibers for polishing between teeth (densyl floss) are generally well known as fibers for cleaning purposes. For industrial applications, polishing cloths or papers are used in various fields such as lenses, semiconductors, metals, plastics, ceramics and glass. Polishing cloth is also used in household or commercial kitchens.
また、 揮発性有機化合物 (以下、 V O Cと略称する) の吸入によるシ ックハウス症候群等のアレルギー症状の発生が増加しているため、 v〇 cガス等の有害ガスを吸着するガス吸着材が要望されている。 前記ガス 吸着材としては、 例えば特許文献 3に、 V O Cガス全般に対して吸着効 果を有するガス吸着シートが提案されている。 特許文献 3に提案された ガス吸着シートは、 2枚のシート材の間に活性炭粒子を挟持させ固定化 させるとともに、 前記シート材のうち少なくとも一方のシート材に吸着 剤粒子を固定化させている。 吸着剤粒子の固定化方法としては、 ( 1) バインダ一樹脂溶液に吸着剤粒子を混合して一方のシート材にコーティ ングし、 その上に他方のシート材を重ねる方法や、 (2) 予め一方のシ —ト材にホットメルト剤等をコーティングし、 その上に吸着剤粒子を散 布し、 更にその上に、 他方のシート材を重ねる方法等が例示されている。 さらに、 工場廃水等を浄化する水質浄化材として、 繊維状の活性炭、 すなわち活性炭素繊維を用いた様々な水質浄化材が提案されている (例 えば特許文献 4等) 。 しかし、 活性炭素繊維を用いた水質浄化材では、 使用中に活性炭素繊維を構成する活性炭が脱落して、 浄化性能が劣化す るおそれがある。 更に、 浄化後の液体中に脱落した活性炭が混入するお それがある。 他方、 活性炭粒子等の有機物吸着性粒子を、 不溶性のバイ ンダーを介してシート状部材に固着させた水質浄化フィルターが、 特許 文献 5に提案されている。 In addition, since the occurrence of allergic symptoms such as Sick House Syndrome due to inhalation of volatile organic compounds (hereinafter abbreviated as VOC) is increasing, gas adsorbents that adsorb harmful gases such as v〇c gas are required. ing. As the gas adsorbent, for example, Patent Document 3 proposes a gas adsorption sheet having an effect of adsorbing VOC gas in general. Proposed in Patent Document 3 In the gas adsorption sheet, activated carbon particles are sandwiched and fixed between two sheet materials, and the adsorbent particles are fixed to at least one of the sheet materials. The adsorbent particles can be immobilized by (1) mixing the adsorbent particles into a binder-resin solution, coating one sheet material, and overlaying the other sheet material on it, or (2) A method in which one sheet material is coated with a hot-melt agent or the like, adsorbent particles are sprayed thereon, and the other sheet material is further stacked thereon is exemplified. Further, as a water purification material for purifying industrial wastewater and the like, various water purification materials using fibrous activated carbon, that is, activated carbon fibers have been proposed (for example, Patent Document 4 and the like). However, in the case of a water purification material using activated carbon fibers, the activated carbon constituting the activated carbon fibers may fall off during use and the purification performance may be degraded. In addition, there is a possibility that activated carbon that has fallen may be mixed into the purified liquid. On the other hand, Patent Document 5 proposes a water purification filter in which organic matter-adsorbing particles such as activated carbon particles are fixed to a sheet-like member via an insoluble binder.
また、 フィラーを繊維表面に付着した繊維製品として繊維成形体の形 態を有するものがある。 例えば、 粒子とバインダー樹脂を繊維材料に混 合しフリースを形成し、 バインダー樹脂で融着した嵩高マツトを製造し た後、 所定の形状にプレス成形する繊維成形体の製造方法が提案されて いる (下記特許文献 6) 。 さらに、 植物繊維、 熱融着性繊維、 及び粉体 状もしくは繊維状の機能性材料からなる機能性繊維シートを熱成形によ り成形した立体成形体が提案されている (下記特許文献 7) 。  Further, there is a fiber product having a form of a fiber molded product as a fiber product in which a filler is attached to a fiber surface. For example, there has been proposed a method for producing a fibrous molded body in which a fleece is formed by mixing particles and a binder resin with a fiber material, and a bulky mat is produced by fusing with the binder resin, and then press-molded into a predetermined shape. (Patent Document 6 below). Further, a three-dimensional molded article has been proposed in which a functional fiber sheet made of a plant fiber, a heat-fusible fiber, and a powdery or fibrous functional material is formed by thermoforming (Patent Document 7 below). .
[特許文献 1 ] 特開平 7— 2687 6 7号公報  [Patent Document 1] JP-A-7-268767
[特許文献 2 ] 特公昭 5 1 - 22 5 5 7号公報  [Patent Document 2] Japanese Patent Publication No. 5-22-5557
[特許文献 3] 特開 2000— 246 82 7号公報  [Patent Document 3] Japanese Patent Application Laid-Open No. 2000-246 827
[特許文献 4] 特開平 9一 2 343 6 5号公報 [特許文献 5 ] 特開平 9— 2 0 1 5 8 3号公報 [Patent Document 4] JP-A-9-1234343 [Patent Document 5] Japanese Patent Application Laid-Open No. 9-210583
[特許文献 6 ] 特開平 9一 2 5 4 2 6 4号公報  [Patent Document 6] Japanese Patent Application Laid-Open No. Hei 9-125 4 2 6 4
[特許文献 7 ] 特開 2 0 0 4— 5 2 1 1 6号公報  [Patent Literature 7] Japanese Patent Application Laid-Open No. 2004-5-211 16
しかし、 前記特許文献 1〜 2のように、 繊維を軟化点又は融点以上の 温度に加熱すると、 繊維は収縮して硬くなり、 しかも軟化点程度では粒 子を繊維に有効に固着させることはできず、 融点以上の温度にする必要 があり、 このようにすると繊維形態を保てなくなる問題もあった。 さら に、 繊維は収縮して硬くなり、 ひいては不織布にしたときに収縮を伴つ て不織布形態を保てなくなる問題があった。  However, as described in Patent Documents 1 and 2, when the fiber is heated to a temperature higher than the softening point or the melting point, the fiber shrinks and becomes hard, and at about the softening point, the particles can be effectively fixed to the fiber. However, the temperature must be higher than the melting point, and there is a problem that the fiber form cannot be maintained. In addition, the fibers shrink and become hard, and as a result, when formed into a nonwoven fabric, there is a problem that the nonwoven fabric cannot be maintained due to shrinkage.
また、 前記特許文献 3に提案されたガス吸着シートにおける前記 ( 1 ) の固定化方法では、 吸着剤粒子がバインダー樹脂溶液に埋没して しまい、 充分なガス吸着効果が得られなくなるおそれがあった。 また、 前記 (2 ) の固定化方法では、 ホットメルト剤と吸着剤粒子との接触面 積が少ないため、 吸着剤粒子が脱落するおそれがあった。 さらに、 特許 文献 4に提案されたガス吸着シートは、 通気性を高めるために、 前記 2 枚のシ一ト材のうち、 少なくとも一方に多孔質シート材を使用している が、 前記 2枚のシート材の間に活性炭粒子を挟持させる際、 活性炭粒子 が脱落しないように、 活性炭粒子の粒径を多孔質シ一卜材の最大孔径ょ り大きくする必要があった。 そのため、 活性炭粒子には、 1 0 0 m〜 1 0 0 0 の粒径のものが使用されており、 活性炭粒子の比表面積が 小さいために充分なガス吸着効果が得られなくなるおそれがあった。 前記特許文献 5に提案された水質浄化フィルターでは、 有機物吸着性 粒子がバインダーに埋没してしまい、 有機物吸着性粒子の比表面積が減 少して、 充分な浄化性能が得られなくなるおそれがあつた。  Further, in the fixing method of (1) in the gas adsorption sheet proposed in Patent Document 3, the adsorbent particles may be buried in the binder resin solution, and a sufficient gas adsorption effect may not be obtained. . Further, in the immobilization method (2), the contact area between the hot melt agent and the adsorbent particles is small, so that the adsorbent particles may fall off. Further, the gas adsorption sheet proposed in Patent Document 4 uses a porous sheet material for at least one of the two sheet materials in order to enhance air permeability. When sandwiching the activated carbon particles between the sheet materials, it was necessary to increase the particle size of the activated carbon particles to be larger than the maximum pore size of the porous sheet material so that the activated carbon particles did not fall off. Therefore, activated carbon particles having a particle size of 100 m to 100,000 are used, and there is a possibility that a sufficient gas adsorption effect may not be obtained because the specific surface area of the activated carbon particles is small. In the water purification filter proposed in Patent Document 5, the organic substance-adsorbing particles may be buried in the binder, and the specific surface area of the organic substance-adsorbing particles may decrease, so that sufficient purification performance may not be obtained.
前記特許文献 6に提案された成形体は、 粒子とバインダー樹脂を予め 混合して繊維表面に粒子を固着するので、 粒子がバインダ一樹脂に埋没 して、 粒子の持つ機能を十分に発揮することができないという問題があ つた。 さらに前記特許文献 7は、 熱融着性繊維を溶融させて粒子状の機 能性材料を固着しようと試みているが、 当該方法では熱融着性繊維をか なり高温で溶融させないと粒子を固着することができず、 高温で溶融す れば収縮を伴う恐れがあり、 均一な成形体を得ることが困難な場合があ る。 また深絞りの成形体を作製するのが困難な場合があった。 In the molded article proposed in Patent Document 6, since particles and a binder resin are preliminarily mixed and the particles are fixed to the fiber surface, the particles are embedded in the binder resin. As a result, there was a problem that the functions of the particles could not be sufficiently exhibited. Further, Patent Document 7 attempts to melt the heat-fusible fiber to fix the particulate functional material.However, in this method, the particles cannot be melted unless the heat-fusible fiber is melted at a considerably high temperature. It cannot be fixed, and if it is melted at a high temperature, it may shrink, and it may be difficult to obtain a uniform molded body. In some cases, it was difficult to produce a deep drawn compact.
発明の開示 Disclosure of the invention
本発明は、 前記従来の問題を解決するため、 本来の繊維の性質を保持 したまま、 繊維表面にフィラーを有効に固着したフィラー固着繊維を提 供すること、 繊維表面に固着されたフイラ一の脱落を防止し、 フイラ一 の比表面積の減少を抑制することができる、 研磨材、 ガス吸着材、 水質 浄化材などに有用な繊維構造物を提供すること、 及びフィラーを繊維表 面に有効に固着することができ、 成形が均一で、 深絞りの形状を得るこ とができ、 一般的用途においても成形コストを安価にできる繊維成形体、 並びにそれらの製造方法を提供する。  In order to solve the above-mentioned conventional problems, the present invention provides a filler-fixed fiber in which a filler is effectively fixed to a fiber surface while maintaining the properties of the original fiber. To provide a fiber structure that is useful for abrasives, gas adsorbents, water purification materials, etc., which can prevent the reduction of the specific surface area of the filler and prevent the decrease in the specific surface area of the filler, and effectively fix the filler to the fiber surface The present invention provides a fiber molded body that can be formed uniformly, can obtain a deep drawn shape, and can reduce the molding cost even for general use, and a method for producing the same.
本発明のフイラ一固着繊維は、 繊維と、 その表面のバインダー樹脂と、 前記バインダ一樹脂に固着されたフイラ一を含むフィラ一固着繊維であ つて、 前記バインダー樹脂は、 水分存在下で加熱することによってゲル 化する湿熱ゲル化樹脂であり、 前記フイラ一は、 前記湿熱ゲル化樹脂が ゲル化したゲル化物によって固着されていることを特徴とする。  The filler fixing fiber of the present invention is a filler fixing fiber including a fiber, a binder resin on the surface thereof, and a filler fixed to the binder resin, wherein the binder resin is heated in the presence of moisture. This is a wet heat gelling resin that is gelled by the above method, and the filler is characterized in that the wet heat gelling resin is fixed by a gelled gel.
本発明の繊維構造物は、 繊維と、 その表面のバインダー樹脂と、 前記 バインダー樹脂に固着されたフィラーを含むフィラ一固着繊維を含有す る繊維構造物であって、 前記バインダー樹脂は、 水分存在下で加熱する ことによってゲル化する湿熱ゲル化樹脂であり、 前記フイラ一は、 前記 湿熱ゲル化榭脂がゲル化したゲル化物によって固着されていることを特 徵とする。 本発明の繊維成形体は、 繊維と、 その表面のバインダー樹脂と、 前記 バインダー樹脂に固着されたフィラー固着繊維を含む繊維構造物が成形 されてなる繊維成形体であって、 前記バインダー樹脂は、 水分存在下で 加熱することによってゲル化する湿熱ゲル化樹脂を含み、 前記繊維構造 物は、 前記湿熱ゲル化樹脂を湿熱ゲル化したゲル化物によって前記繊維 が固定されるとともに所定の形状に成形されていることを特徴とする。 本発明のフイラ一固着繊維の製造方法は、 繊維と、 その表面のバイン ダー樹脂と、 前記バインダー榭脂に固着されたフィラーを含むフイラ一 固着繊維の製造方法であって、 前記繊維及び前記バインダー榭脂が水分 存在下で加熱することによってゲル化する湿熱ゲル化繊維であり、 前記 フィラーを溶液に分散させたフィラー分散溶液を前記湿熱ゲル化繊維に 付与し、 次に、 湿熱雰囲気で前記湿熱ゲル化繊維を湿熱処理して、 前記 湿熱ゲル化繊維をゲル化させ、 ゲル化物によって前記フィラーを繊維表 面に固着することを特徴とする。 The fibrous structure of the present invention is a fibrous structure containing fibers, a binder resin on the surface thereof, and a filler-fixing fiber containing a filler fixed to the binder resin, wherein the binder resin contains water. It is a wet heat gelling resin that gels when heated below, and the filler is characterized in that the wet heat gelled resin is fixed by a gelled gel. The fiber molded article of the present invention is a fiber molded article formed by molding a fiber, a binder resin on the surface thereof, and a fibrous structure including filler-fixed fibers fixed to the binder resin, wherein the binder resin is The fiber structure comprises a wet heat gelling resin that gels when heated in the presence of moisture, and the fibrous structure is formed into a predetermined shape while the fibers are fixed by a gel formed by wet heat gelation of the wet heat gelling resin. It is characterized by having. The method for producing a fiber-fixed fiber according to the present invention is a method for producing a fiber-fixed fiber, comprising: a fiber; a binder resin on the surface thereof; and a filler fixed to the binder resin. A wet-heat gelling fiber in which the resin gels by heating in the presence of moisture; applying a filler dispersion in which the filler is dispersed in a solution to the wet-heat gelled fiber; and then applying the wet heat in a wet-heat atmosphere. It is characterized in that the gelled fiber is subjected to wet heat treatment to gel the wet heat gelled fiber, and the filler is fixed to the fiber surface by a gelled substance.
本発明のフィラー固着繊維の別の製造方法は、 繊維と、 その表面のバ インダー樹脂と、 前記バインダー樹脂に固着されたフィラーを含むフィ ラー固着繊維の製造方法であって、 前記繊維及び前記バインダ一樹脂は、 他の繊維と、 湿熱ゲル化樹脂であり、 前記他の繊維に前記湿熱ゲル化樹 脂を付与した後フィラーを付与するか、 又は前記フィラー及び前記湿熱 ゲル化樹脂を溶液に分散させたフィラー分散溶液を前記他の繊維に付与 し、 次に、 湿熱雰囲気で湿熱処理して前記湿熱ゲル化樹脂をゲル化させ、 ゲル化物によって前記フィラーを他の繊維表面に固着することを特徴と する。  Another method for producing a filler-fixed fiber according to the present invention is a method for producing a filler-fixed fiber including a fiber, a binder resin on the surface thereof, and a filler fixed to the binder resin, wherein the fiber and the binder are provided. One resin is another fiber and a wet heat gelling resin, and after adding the wet heat gelling resin to the other fiber, a filler is added, or the filler and the wet heat gelling resin are dispersed in a solution. Applying the filler dispersion solution to the other fibers, and then performing a wet heat treatment in a wet heat atmosphere to gel the wet heat gelled resin, and fixing the filler to the surface of the other fibers by a gel. And
本発明の繊維構造物の製造方法は、 繊維と、 その表面のバインダー樹 脂と、 前記バインダー樹脂に固着されたフイラ一を含むフィラー固着繊 維を含有する繊維構造物の製造方法であって、 前記バインダ一樹脂が水 分存在下で加熱することによってゲル化する湿熱ゲル化樹脂であり、 前 記繊維及び前記バインダ一樹脂が、 The method for producing a fiber structure of the present invention is a method for producing a fiber structure containing fibers, a binder resin on the surface thereof, and a filler-fixed fiber including a filler fixed to the binder resin, The binder resin is water Is a moist heat gelling resin that gels when heated in the presence of a minute, wherein the fiber and the binder resin are:
(I)湿熱ゲル化樹脂繊維成分と他の熱可塑性合成繊維成分とを含む複合 繊維、  (I) a composite fiber comprising a wet heat gelled resin fiber component and another thermoplastic synthetic fiber component,
(I I)前記複合繊維と他の繊維を混合したもの、 (I I) a mixture of the composite fiber and another fiber,
(I I I)前記複合繊維と湿熱ゲル化樹脂を混合したもの、 及び  (I I I) a mixture of the composite fiber and a wet heat gelling resin, and
(IV)湿熱ゲル化樹脂と他の繊維を混合したもの、  (IV) a mixture of a wet heat gelling resin and other fibers,
から選ばれる少なくとも一つの組み合わせであり、 前記繊維及び前記バ インダ一樹脂で繊維構造物を作製し、 前記フィラーを溶液に分散させた フィラー分散溶液を前記繊維構造物に付与し、 次に、 湿熱雰囲気で前記 湿熱ゲル化樹脂を湿熱処理して、 前記湿熱ゲル化樹脂をゲル化させ、 ゲ ル化物によって前記フィラーを繊維表面に固着してフィラー固着繊維を 形成させることを特徴とする。 At least one combination selected from the group consisting of: preparing a fibrous structure from the fibers and the binder resin; applying a filler dispersion in which the filler is dispersed in a solution to the fibrous structure; The wet heat gelling resin is subjected to wet heat treatment in an atmosphere to gel the wet heat gelling resin, and the filler is fixed to the fiber surface by the gelling material to form filler-fixed fibers.
本発明の繊維成形体の製造方法は、 繊維と、 その表面のバインダー樹 脂と、 前記バインダー樹脂に固着されたフイラ一固着繊維を含む繊維構 造物が成形されてなる繊維成形体の製造方法であって、 前記バインダー 樹脂が、 水分存在下で加熱することによってゲル化する湿熱ゲル化樹脂 を含み、 前記繊維及びバインダー樹脂を含む繊維構造物を形成し、 前記 繊維構造物を金型内において湿熱雰囲気で前記湿熱ゲル化樹脂を湿熱ゲ ル化させて湿熱成形加工することを特徵とする。  The method for producing a fiber molded article of the present invention is a method for producing a fiber molded article formed by molding a fiber, a binder resin on the surface thereof, and a fiber structure including a fiber-fixed fiber fixed to the binder resin. And wherein the binder resin includes a wet heat gelling resin that gels by heating in the presence of moisture to form a fibrous structure containing the fibers and the binder resin, and the fibrous structure is wet-heated in a mold. It is characterized in that the heat-and-humidity gelling resin is made into a heat-and-humidity gel in an atmosphere and then subjected to wet heat molding.
図面の簡単な説明 Brief Description of Drawings
図 1 A〜Cは、 本発明の一実施形態におけるフィラー固着繊維の断面 図である。  1A to 1C are cross-sectional views of filler-fixed fibers according to one embodiment of the present invention.
図 2は、 本発明の一実施形態における 3層構造の不織布の断面図であ る。  FIG. 2 is a cross-sectional view of a three-layer nonwoven fabric according to one embodiment of the present invention.
図 3は、 本発明の製造方法の一例工程図である。 図 4 Aは、 本発明の実施例 1で得られた不織布を示す走査電子顕微鏡 平面写真 (倍率 1 00) である。 FIG. 3 is a process chart of an example of the production method of the present invention. FIG. 4A is a scanning electron microscope plan photograph (magnification: 100) showing the nonwoven fabric obtained in Example 1 of the present invention.
図 4Bは、 同断面写真 (倍率 1 00) である。  FIG. 4B is a photograph of the same section (magnification: 100).
図 4 Cは、 同不織布表面の繊維表面拡大写真 (倍率 1 000 ) である。 図 4Dは、 同、 他の部分の不織布を示す走査電子顕微鏡平面写真 (倍 率 1 0 0) である。  FIG. 4C is an enlarged photograph of the fiber surface of the nonwoven fabric surface (magnification: 1 000). FIG. 4D is a scanning electron microscope plane photograph (magnification: 100) showing the nonwoven fabric of the other part.
図 4 Eは、 同断面写真 (倍率 1 00) である。  FIG. 4E is a photograph of the same section (magnification 100).
図 4 Fは、 同不織布表面の繊維表面拡大写真 (倍率 1 000) である。 図 5 Aは、 本発明の実施例 6で得られた不織布を示す走査電子顕微鏡 平面写真 (倍率 1 00) である。  Fig. 4F is an enlarged photograph of the fiber surface of the nonwoven fabric surface (magnification: 1 000). FIG. 5A is a scanning electron microscope plane photograph (magnification: 100) showing the nonwoven fabric obtained in Example 6 of the present invention.
図 5 Bは、 同断面写真 (倍率 1 00) である。  FIG. 5B is a photograph of the same cross section (magnification: 100).
図 5 Cは、 同不織布表面の繊維表面拡大写真 (倍率 1 00 0) である。 図 6は、 水循環式簡易試験機の概略斜視図である。  FIG. 5C is an enlarged photograph (magnification 100,000) of the fiber surface of the nonwoven fabric surface. FIG. 6 is a schematic perspective view of a simple water circulation type testing machine.
図 7は、 本発明の一実施形態における不織布への水分付与の一例工程 図である。  FIG. 7 is a diagram illustrating an example of a process of applying moisture to a nonwoven fabric according to an embodiment of the present invention.
図 8は、 本発明の一実施形態における繊維成形体 (マスク) の斜視図 である。  FIG. 8 is a perspective view of a fiber molded body (mask) according to one embodiment of the present invention.
図 9は、 本発明の一実施形態における繊維成形体 (空気清浄機フィル 夕一のプリーツ加工品) の斜視図である。  FIG. 9 is a perspective view of a fiber molded body (a pleated product of the air purifier Fil Yuichi) in one embodiment of the present invention.
図 1 0は、 本発明の製造方法の別の実施例における工程図である。 図 1 1 Aは、 本発明の実施例 7で得られた不織布を示す走査電子顕微 鏡平面写真 (倍率 200 ) である。  FIG. 10 is a process chart in another embodiment of the manufacturing method of the present invention. FIG. 11A is a scanning electron micrograph (200 magnification) showing the nonwoven fabric obtained in Example 7 of the present invention.
図 1 1 Bは、 同不織布表面の繊維表面拡大写真 (倍率 20 00) であ る。  FIG. 11B is an enlarged fiber surface photograph (magnification: 20000) of the surface of the nonwoven fabric.
1 :鞘成分 (バインダー樹脂) 、 2 :芯成分、 3 : フィラ一、 4 : ) インダ一樹脂、 5, 6, 9 :複合繊維、 7 :エチレン一ビニルアルコー ル共重合樹脂 (バインダー樹脂) 、 8 :ポリプロピレン、 1 1 : フイラ —固着繊維層、 1 2 : レーヨン繊維層、 2 0 :水循環式簡易試験機、 2 1 :スタンド、 2 2 a , 2 2 b : 固定治具、 2 3 :容器、 2 3 a : 開口、 2 4 :ポンプ、 2 4 a , 2 4 b :管、 2 5 :小片、 2 6 :茶パック、 2 7 :試験用サンプル、 2 8 : ワイヤー、 3 1 :繊維又は不織布、 3 2 : 槽、 3 3 : フィラー分散溶液、 3 4 :絞りロール、 3 5 :スチーマー、 3 6 :サクシヨン、 3 7 :加熱ロール、 3 8 :パターニング用キャンバ スロール、 3 9 :巻き取り機、 4 0 :マスク、 4 1 :乾燥機、 5 0 :空 気清浄機フィルターのプリ一ッ加工品 1: sheath component (binder resin), 2: core component, 3: filler, 4:) indah resin, 5, 6, 9: composite fiber, 7: ethylene-vinyl alcohol Copolymer resin (binder resin), 8: polypropylene, 11: filler—Fixed fiber layer, 12: rayon fiber layer, 20: simple water circulation type testing machine, 21: stand, 22a, 22b : Fixing jig, 23: Container, 23a: Opening, 24: Pump, 24a, 24b: Tube, 25: Small piece, 26: Tea pack, 27: Test sample, 2 8: wire, 31: fiber or non-woven fabric, 32: tank, 33: filler dispersion solution, 34: squeezing roll, 35: steamer, 36: suction, 37: heating roll, 38: patterning Camber roll, 39: Winder, 40: Mask, 41: Dryer, 50: Pre-processed product of air purifier filter
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明においては、 水分存在下で加熱することによってゲル化するバ インダ一樹脂として、 湿熱ゲル化榭脂を用いる。 湿熱ゲル化樹脂の形態 は、 パウダー状、 チップ状、 繊維状等が挙げられる。 特に、 湿熱ゲル化 樹脂は、 繊維状であることが好ましい。 繊維状の湿熱ゲル化樹脂 (以下、 「湿熱ゲル化繊維」 という) としては、 湿熱ゲル化樹脂単独の繊維か、 又は湿熱ゲル化樹脂繊維成分と、 他の熱可塑性合成繊維成分とを含む複 合繊維 (以下、 「湿熱ゲル化複合繊維」 という。 ) を用いる。 これによ り、 他の繊維又は少なくとも他の熱可塑性合成繊維成分は、 繊維の形態 を保ち、 かつ湿熱ゲル化樹脂がゲル化されてフィラーを固着させるバイ ンダ一としての作用機能を発揮する。 そして、 フイラ一は、 湿熱ゲル化 樹脂繊維成分又は繊維の表面に固着された湿熱ゲル化樹脂が湿熱ゲル化 したゲル化物によって固着されている。 好ましくは、 フイラ一は露出し て固着されている。 また、 湿熱ゲル化樹脂繊維成分又は繊維の表面に固 着された湿熱ゲル化樹脂が湿熱ゲル化したゲル化物によって、 湿熱ゲル 化繊維同士及び Z又は他の繊維は固定されている。  In the present invention, a wet heat gelled resin is used as a binder resin that gels when heated in the presence of moisture. Examples of the form of the wet heat gelling resin include powder, chip, and fiber. In particular, the wet heat gelling resin is preferably fibrous. The fibrous wet heat gelling resin (hereinafter referred to as “wet heat gelled fiber”) may be a fiber made of a wet heat gelled resin alone or a compound containing a wet heat gelled resin fiber component and another thermoplastic synthetic fiber component. Synthetic fiber (hereinafter referred to as “wet-heat gelled conjugate fiber”) is used. As a result, the other fibers or at least the other thermoplastic synthetic fiber components maintain the fiber form, and exhibit a function as a binder for fixing the filler by gelling the wet heat gelling resin. In the filler, the wet heat gelling resin fiber component or the wet heat gelling resin fixed on the surface of the fiber is fixed by a wet heat gelled gel. Preferably, the filler is exposed and secured. Further, the moist heat gelled fibers and Z or other fibers are fixed by the moist heat gelling resin gel component formed by moist heat gelling of the moist heat gelling resin component or the moist heat gelling resin adhered to the fiber surface.
また、 本発明の繊維成形体は、 金型内で繊維構造物をゲル化させた状 態で湿熱成形することにより、 所定の形状の成形体に成形できる。 湿熱 ゲル化樹脂の形態は、 パウダー状、 チップ状、 繊維状等が挙げられる。 特に、 成形加工性を考慮すると、 繊維状、 すなわち湿熱ゲル化繊維であ ることが好ましい。 Further, the fiber molded article of the present invention has a state in which a fiber structure is gelled in a mold. By performing wet heat molding in a state, it can be molded into a molded body having a predetermined shape. Examples of the form of the wet heat gelling resin include powder, chip, and fiber. In particular, in consideration of moldability, fibrous, that is, wet heat gelled fiber is preferable.
前記湿熱ゲル化榭脂の好ましいゲル化温度は、 5 0 °C以上である。 よ り好ましいゲル化温度は、 8 0 °C以上である。 5 0 °C未満でゲル化し得 る樹脂を用いると、 ゲル加工の際、 ロール、 金型等への粘着が激しくな つて繊維構造物及び繊維成形体の生産が難しくなるか、 夏場や高温環境 下での使用ができなくなる場合がある。 なお、 「ゲル加工」 とは、 湿熱 ゲル化樹脂をゲル化させる加工のことをいう。  The preferred gelling temperature of the wet heat gelling resin is 50 ° C. or higher. A more preferred gelling temperature is 80 ° C. or higher. If a resin that can gel at less than 50 ° C is used, the adhesion to rolls, molds, etc. will become severe during gel processing, making it difficult to produce fiber structures and fiber molded products. It may not be able to be used below. The “gel processing” refers to processing for gelling the wet heat gelling resin.
前記湿熱ゲル化樹脂は、 エチレン一ビニルアルコール共重合樹脂であ ることが好ましい。 湿熱によってゲル化でき、 他の繊維及び/又は他の 熱可塑性合成繊維成分を変質させないからである。 エチレンービニルァ ルコール共重合樹脂とは、 エチレン—酢酸ビニル共重合樹脂を験化する ことによって得られる樹脂であり、 その鹼化度は 9 5 %以上が好ましレ 。 より好ましい鹼化度は、 9 8 %以上である。 また、 好ましいエチレン含 有率は、 2 0モル%以上である。 好ましいエチレン含有率は、 5 0モ ル%以下である。 より好ましいエチレン含有率は、 2 5モル%以上であ る。 より好ましいエチレン含有率は、 4 5モル%以下である。 鹼化度が 9 5 %未満ではゲル加工の際、 ロール、 金型等への粘着により繊維構造 物及び繊維成形体の生産が難しくなる場合がある。 また、 エチレン含有 率が 2 0モル%未満の場合も同様に、 ゲル加工の際、 ロール、 金型等へ の粘着により繊維構造物及び繊維成形体の生産が難しくなる場合がある。 一方、 エチレン含有率が 5 0モル%を超えると、 湿熱ゲル化温度が高く なり、 加工温度を融点近傍まで上げざるを得なくなり、 その結果、 繊維 構造物及び繊維成形体の寸法安定性に悪影響を及ぼす場合がある。 前記繊維及び前記バインダ一樹脂の好ましい組み合わせとしては、The wet heat gelling resin is preferably an ethylene-vinyl alcohol copolymer resin. This is because it can be gelled by moist heat and does not deteriorate other fibers and / or other thermoplastic synthetic fiber components. The ethylene-vinyl alcohol copolymer resin is a resin obtained by testing an ethylene-vinyl acetate copolymer resin, and its degree of degradation is preferably 95% or more. A more preferred degree of degradation is 98% or more. The preferred ethylene content is 20 mol% or more. The preferred ethylene content is 50 mol% or less. A more preferred ethylene content is 25 mol% or more. A more preferred ethylene content is 45 mol% or less. If the degree of vulcanization is less than 95%, it may be difficult to produce a fibrous structure and a fibrous molded product due to sticking to a roll, a mold or the like during gel processing. Similarly, when the ethylene content is less than 20 mol%, the production of the fibrous structure and the fibrous molded product may be difficult due to adhesion to a roll, a mold or the like during gel processing. On the other hand, if the ethylene content exceeds 50 mol%, the wet heat gelation temperature rises, and the processing temperature must be raised to near the melting point, and as a result, the dimensional stability of the fibrous structure and the fibrous molding is adversely affected. May be exerted. As a preferable combination of the fiber and the binder resin,
(I)湿熱ゲル化樹脂繊維成分と他の熱可塑性合成繊維成分とを含む複合 繊維、 (I) a composite fiber comprising a wet heat gelled resin fiber component and another thermoplastic synthetic fiber component,
(Π)前記複合繊維と他の繊維を混合したもの、  (Π) a mixture of the composite fiber and another fiber,
(I I I)前記複合繊維と湿熱ゲル化樹脂を混合したもの、 及び (I I I) a mixture of the composite fiber and a wet heat gelling resin, and
(IV)湿熱ゲル化樹脂と他の繊維を混合したもの (IV) A mixture of wet heat gelling resin and other fibers
から選ばれる少なくとも一つが挙げられる (以下、 「形態(I)〜(IV)」 という。 ) 。 前記形態(I)は、 「バインダー樹脂」 を湿熱ゲル化榭脂繊 維成分とし、 「繊維」 を他の熱可塑性合成繊維成分とした湿熱ゲル化複 合繊維である。 前記形態(Π)は、 「バインダー樹脂」 を湿熱ゲル化複合 繊維とし、 「繊維」 を他の繊維としこれを混合したものである。 前記形 態(I I I)は、 「繊維」 を湿熱ゲル化複合繊維とし、 さらに 「バインダー 樹脂」 を湿熱ゲル化樹脂としこれを混合したものである。 前記形態(IV) は、 「バインダー樹脂」 を前記湿熱ゲル化複合繊維以外の形態を採る湿 熱ゲル化樹脂 (例えば、 湿熱ゲル化榭脂単独の繊維) とし、 「繊維」 を 他の繊維としこれを混合したものである。 At least one selected from the following (hereinafter, referred to as “forms (I) to (IV)”). The form (I) is a wet heat gelled composite fiber in which “binder resin” is a wet heat gelled resin fiber component and “fiber” is another thermoplastic synthetic fiber component. In the form (II), the “binder resin” is a wet heat gelled conjugate fiber, and the “fiber” is another fiber, which is a mixture thereof. In the form (III), the “fiber” is a wet heat gelling composite fiber, and the “binder resin” is a wet heat gelling resin. In the form (IV), the “binder resin” is a wet heat gelling resin (for example, a wet heat gelled resin alone fiber) that takes a form other than the wet heat gelled conjugate fiber, and the “fiber” is another fiber. This is a mixture of these.
前記形態(I)〜(I I I)に用いられる湿熱ゲル化複合繊維は、 湿熱ゲル化 樹脂繊維成分が露出しているかまたは部分的に区分されている複合繊維 であることが好ましい。 その複合形状は、 同心円型、 偏心芯鞘型、 並列 型、 分割型、 海島型等を指す。 特に同心円型はフイラ一が繊維表面に固 着しやすいので好ましい。 また、 その断面形状は、 円形、 中空、 異型、 楕円形、 星形、 偏平形等いずれであってもよいが、 繊維製造の容易さか ら円形であることが好ましい。 分割型複合繊維はあらかじめ高圧水流等 を噴射して部分的に分割しておくのが好ましい。 このようにすると、 分 割された湿熱ゲル化樹脂繊維成分は、 湿熱処理によりゲル化し、 ゲル化 物を形成して他の繊維の表面に付着し、 フィラーを固着する。 すなわち、 バインダーとして機能する。 It is preferable that the wet heat gelled conjugate fiber used in the forms (I) to (III) is a conjugate fiber in which the wet heat gelled resin fiber component is exposed or partially divided. The composite shapes are concentric, eccentric core-sheath, side-by-side, split, sea-island, etc. In particular, the concentric type is preferable because the filler easily adheres to the fiber surface. The cross-sectional shape may be any of a circle, a hollow, an irregular shape, an ellipse, a star, a flat shape, and the like, but is preferably a circle for ease of fiber production. It is preferable that the splittable conjugate fiber is partially split by injecting a high-pressure water flow or the like in advance. In this way, the split moist heat gelled resin fiber component gels by wet heat treatment, forms a gelled substance, adheres to the surface of other fibers, and fixes the filler. That is, Functions as a binder.
前記湿熱ゲル化複合繊維に占める湿熱ゲル化樹脂繊維成分の割合は、 The proportion of the wet heat gelled resin fiber component in the wet heat gelled conjugate fiber,
1 O m a s s %以上 9 0 m a s s %以下の範囲内であることが好ましレ^ より好ましい湿熱ゲル化樹脂繊維成分の含有量は、 3 0 m a s s %以上 である。 より好ましい湿熱ゲル化榭脂繊維成分の含有量は、 7 0 m a s s %以下である。 湿熱ゲル化樹脂繊維成分の含有量が 1 O m a s s %未 満であると、 フィラーが固着しにくくなる傾向にある。 湿熱ゲル化樹脂 繊維成分の含有量が 9 O m a s s %を超えると、 複合繊維の繊維形成性 が低下する傾向にある。 The content of the wet-heat gelling resin fiber component is preferably in the range of 1 Omass% to 90 mAss%, and more preferably 30 mAss% or more. A more preferable content of the moist heat gelled resin fiber component is 70% by mass or less. When the content of the wet heat gelling resin fiber component is less than 1 Omass%, the filler tends to be hardly fixed. When the content of the wet heat gelling resin fiber component exceeds 9 Omass%, the fiber forming properties of the composite fiber tend to decrease.
前記湿熱ゲル化複合繊維における他の熱可塑性合成繊維成分は、 ポリ ォレフィン、 ポリエステル、 ポリアミド等いかなるものであってもよい が、 好ましくはポリオレフインである。 湿熱ゲル化樹脂繊維成分として エチレン一ビニルアルコール共重合樹脂を使用した場合、 溶融紡糸によ る複合繊維 (コンジュゲート繊維) を形成しやすい。  The other thermoplastic synthetic fiber component in the wet heat gelled conjugate fiber may be any of polyolefin, polyester, polyamide and the like, but is preferably polyolefin. When an ethylene-vinyl alcohol copolymer resin is used as the wet heat gelling resin fiber component, it is easy to form a conjugate fiber (conjugate fiber) by melt spinning.
また、 他の熱可塑性合成繊維成分として、 湿熱ゲル化樹脂繊維成分を ゲル化させる温度よりも高い融点を有する熱可塑性合成繊維成分を用い ることが好ましい。 他の熱可塑性合成繊維成分がゲル化物を形成させる 温度よりも低い融点を有する熱可塑性合成繊維成分であると、 他の熱可 塑性合成繊維成分自体が溶融して硬くなる傾向にあり、 例えば繊維成形 体にしたときに収縮を伴って不均一になることがある。  Further, it is preferable to use, as the other thermoplastic synthetic fiber component, a thermoplastic synthetic fiber component having a melting point higher than the temperature at which the wet heat gelled resin fiber component is gelled. If the other thermoplastic synthetic fiber component is a thermoplastic synthetic fiber component having a melting point lower than the temperature at which a gel is formed, the other thermoplastic synthetic fiber component itself tends to melt and become harder. When formed into a compact, it may become non-uniform with shrinkage.
前記湿熱ゲル化複合繊維が繊維構造物に占める割合は、 フイラ一を固 着することのできる量であれば特に限定されないが、 ゲル化物によって 繊維を固定する、 及び Z又はフィラーを有効に固着するのに要する複合 繊維の割合は、 1 O m a s s %以上であることが好ましい。 より好まし い複合繊維の割合は、 3 O m a s s %以上である。 さらに好ましい複合 繊維の割合は、 5 O m a s s %以上である。 例えば、 繊維構造物におい て、 複合繊維を含むウェブが両表面に存在し、 内部に他の繊維が存在し ている場合、 複合繊維を含むウェブにおける含有量のことを指す。 The proportion of the wet heat gelled conjugate fiber in the fibrous structure is not particularly limited as long as it can fix the filler, but the fiber is fixed by the gelled material, and the Z or filler is effectively fixed. The ratio of the conjugate fiber required for this is preferably 1 O mass% or more. A more preferable ratio of the composite fiber is 3 O mass% or more. A more preferable ratio of the conjugate fiber is 5 O mass% or more. For example, in a textile structure In the case where a web containing conjugate fibers is present on both surfaces and other fibers are present inside, it refers to the content in the web containing conjugate fibers.
前記形態 ( I I I ) では、 前記湿熱ゲル化複合繊維に、 さらに湿熱ゲ ル化樹脂を含有させて複合繊維の表面にゲル化物を形成させることも可 能である。 これにより、 フィラーの固着効果をより向上させることがで きる。  In the form (III), it is possible to form a gel on the surface of the conjugate fiber by further adding a moist heat gelling resin to the wet heat gelled conjugate fiber. Thereby, the effect of fixing the filler can be further improved.
前記形態(I I)または前記形態(IV)に用いられる他の繊維としては、 レ Other fibers used in the form (II) or the form (IV) include:
—ヨン等の化学繊維、 コットン、 麻、 ウール等の天然繊維等、 ポリオレ フィン樹脂、 ポリエステル樹脂、 ポリアミド樹脂、 アクリル樹脂、 ポリ ウレタン樹脂等の合成樹脂を単独又は複数成分とする合成繊維等、 任意 なものを選択して使用できる。 — Any fiber, such as synthetic fiber such as Yong and other synthetic fibers, natural fiber such as cotton, hemp and wool, and synthetic resin such as polyolefin resin, polyester resin, polyamide resin, acrylic resin, and polyurethane resin. You can select and use the appropriate one.
前記形態(IV)において、 湿熱ゲル化樹脂は、 繊維構造物に対して l m a s s %以上 9 O m a s s %以下の範囲内で含有させるのが好ましい。 より好ましい含有量は、 3 m a s s %以上である。 より好ましい含有量 は、 7 O m a s s %以下である。 湿熱ゲル化樹脂の含有量が l m a s s %未満であると、 ゲル化物によって他の繊維を固定することが困難と なるか、 あるいはフィラーを固着しにくくなる傾向にある。 湿熱ゲル化 樹脂の含有量が 9 O m a s s %を超えると、 繊維形状が消失してフィル ム状になるか、 あるいはフィラーがゲル化物に埋没することがある。 前記フイラ一は、 粒子であればどのようなものでも使用できる。 例え ば、 フイラ一としては、 無機粒子であることが好ましい。 無機粒子であ れば、 研磨剤として用いた場合、 研磨作用が大きいからである。 前記無 機粒子としては、 アルミナ、 シリカ、 トリポリ、 ダイヤモンド、 コラン ダム、 ェメリ一、 ガーネット、 フリント、 合成ダイヤ、 窒化硼素、 炭化 珪素、 炭化硼素、 酸化クロム、 酸化セリウム、 酸化鉄、 ケィ酸コロイド、 炭素、 グラフアイト、 ゼォライト及び二酸化チタン、 カオリン、 クレイ などを挙げることができる。 これらの粒子は適宜混合して使用すること もできる。 In the above mode (IV), the wet heat gelling resin is preferably contained in a range of lmass% to 9 O mass% with respect to the fiber structure. A more preferred content is at least 3 mass%. A more preferred content is 7 O mass% or less. When the content of the wet heat gelling resin is less than lmass%, it becomes difficult to fix other fibers by the gelled matter, or it becomes difficult to fix the filler. If the content of the wet heat gelling resin exceeds 9 O mass%, the fiber shape may be lost and the film may be formed, or the filler may be buried in the gelled material. The filler can be any particle. For example, the filler is preferably inorganic particles. This is because inorganic particles have a large polishing effect when used as an abrasive. Examples of the inorganic particles include alumina, silica, tripoly, diamond, corundum, emery, garnet, flint, synthetic diamond, boron nitride, silicon carbide, boron carbide, chromium oxide, cerium oxide, iron oxide, colloidal silicate, Carbon, graphite, zeolite and titanium dioxide, kaolin, clay And the like. These particles can also be used as an appropriate mixture.
前記フィラーがガス吸着性粒子の場合、 ガス吸着性粒子は、 空気中の 気体物質を吸着する機能を有するものであれば特に限定されないが、 活 性炭粒子、 ゼォライト、 シリカゲル、 活性白土、 層状リン酸塩等の多孔 質粒子、 これらの多孔質粒子に化学吸着剤を担持させた多孔質粒子等が 好ましい。 多孔質粒子の中では、 活性炭粒子が特に好ましい。  When the filler is a gas-adsorbing particle, the gas-adsorbing particle is not particularly limited as long as it has a function of adsorbing gaseous substances in the air.Activated carbon particles, zeolite, silica gel, activated clay, layered phosphorus Preferred are porous particles such as acid salts, and porous particles in which a chemical adsorbent is supported on these porous particles. Among porous particles, activated carbon particles are particularly preferred.
前記フィラーが有機物吸着性粒子の場合、 有機物吸着性粒子は、 液体 中の有機物を吸着する機能を有するものであれば特に限定されないが、 活性炭粒子、 ゼォライト、 シリカゲル、 活性白土、 層状リン酸塩等の多 孔質粒子、 これらの多孔質粒子に有機物吸着剤を担持させた多孔質粒子 等が好ましい。 多孔質粒子の中では、 活性炭粒子が特に好ましい。 さらに前記研磨剤、 ガス吸着性粒子及び有機物吸着性粒子以外にも、 例えば乾燥剤としてのシリカゲル、 光触媒として二酸化チタン、 ウィル ス吸着/分解剤、 抗菌剤、 消臭剤、 導電剤、 制電剤、 調湿剤、 防虫剤、 防カビ剤、 難燃剤等の機能性フィラーを 1又は 2以上用いることができ る。  When the filler is an organic substance-adsorbing particle, the organic substance-adsorbing particle is not particularly limited as long as it has a function of adsorbing an organic substance in a liquid.Activated carbon particles, zeolite, silica gel, activated clay, layered phosphate, etc. The porous particles are preferable, and the porous particles in which an organic adsorbent is carried on these porous particles are preferable. Among porous particles, activated carbon particles are particularly preferred. Further, in addition to the abrasive, the gas adsorbing particles and the organic adsorbing particles, for example, silica gel as a drying agent, titanium dioxide as a photocatalyst, a virus adsorbing / decomposing agent, an antibacterial agent, a deodorant, a conductive agent, an antistatic agent One or more functional fillers such as humectants, insect repellents, fungicides, and flame retardants can be used.
前記フィラーの平均粒子径は、 0 . 0 1〜 1 0 0 mの範囲であるこ とが好ましい。 より好ましい平均粒子径は、 0 . 5 m以上であり、 さ らにより好ましい平均粒子径は、 1 m以上である。 より好ましい平均 粒子径は、 8 0 i m以下である。 平均粒子径が 0 . 0 1 m未満では、 フイラ一がゲル化物に埋没することがある。 一方、 平均粒子径が 1 0 0 mを超える場合は、 フイラ一の比表面積が小さくなり、 充分なフイラ 一の機能、 例えばガス吸着効果が得られなくなる場合がある。  The average particle size of the filler is preferably in the range of 0.01 to 100 m. A more preferred average particle size is 0.5 m or more, and a more preferred average particle size is 1 m or more. A more preferred average particle size is 80 im or less. If the average particle size is less than 0.01 m, the filler may be buried in the gel. On the other hand, when the average particle size exceeds 100 m, the specific surface area of the filter becomes small, and a sufficient function of the filter, for example, a gas adsorption effect may not be obtained.
前記繊維構造物は、 前記繊維及び前記バインダー樹脂を含むものであ る。 ここでいう繊維構造物とは、 繊維束、 繊維塊、 不織布、 織編物、 ネ ット等の繊維により形成されたものをいう。 特に、 不織布は、 加工性が 高いため、 様々な用途へ適用することができる。 例えば、 本発明の繊維 構造物に液体を含ませるような研磨不織布として使用する場合、 フイラ 一固着繊維が両表面にウェブ状に存在し、 内部に親水性繊維を存在させ たことが好ましい。 前記親水性繊維は、 レーヨン繊維、 コットン繊維及 びパルプから選ばれる少なくとも一つの繊維であることが好ましい。 水、 界面活性剤、 洗浄剤等の液体を付与して研磨する際に、 水分の保持性が 高いからである。 The fibrous structure contains the fibers and the binder resin. The term “fiber structure” here refers to a fiber bundle, a fiber mass, a nonwoven fabric, a woven or knitted fabric, It is made of fibers such as fibers. In particular, nonwoven fabrics can be applied to various uses because of their high workability. For example, when the fibrous structure of the present invention is used as an abrasive nonwoven fabric containing a liquid, it is preferable that the fixed fibers are present in a web form on both surfaces and hydrophilic fibers are present inside. The hydrophilic fiber is preferably at least one fiber selected from rayon fiber, cotton fiber and pulp. This is because when a liquid such as water, a surfactant or a cleaning agent is applied and polished, water retention is high.
本発明の一実施形態として、 例えばフイラ一としてガス吸着性粒子を 用いたガス吸着材は、 不織布に限定されず、 前記フイラ一固着繊維を複 数束ねて形成された繊維束をガス吸着部とするガス吸着モジュールとし てもよい。 また前記フィラー固着繊維の集合物を円筒状に巻きつけたも のや、 プリーツ状に成形したものを、 ガス吸着フィル夕一として用いる こともできる。 またフィラーとして有機物吸着性粒子を用いた水質浄化 材は、 不織布に限定されず、 前記フィラー固着繊維を複数束ねて形成さ れた繊維束を有機物吸着部とする水質浄化モジュールとしてもよい。 ま た前記フィラー固着繊維の集合物を円筒状に巻きつけたものや、 プリ一 ッ状に成形したものを、 水質浄化フィルタ一として用いることもできる。 また繊維構造物を金型で成形加工するには、 繊維構造物は不織布であ ることが好ましい。 不織布であると、 製造コストが安価であり、 加工も しゃすく、 成形加工時に水分を含ませたとき、 適度に伸長して金型の形 状に沿いやすくなり、 深絞りの成形体を得やすい。  As one embodiment of the present invention, for example, a gas adsorbent using gas adsorbing particles as a filler is not limited to a nonwoven fabric, and a fiber bundle formed by bundling a plurality of the fixed fibers of the filler is referred to as a gas adsorber. Alternatively, the gas adsorption module may be used. In addition, a material obtained by winding the aggregate of the filler-fixed fibers in a cylindrical shape or a pleated shape can be used as a gas adsorption filter. The water purification material using the organic substance-adsorbing particles as the filler is not limited to a nonwoven fabric, and may be a water purification module in which a fiber bundle formed by bundling a plurality of the filler-fixed fibers is used as the organic substance-adsorbing section. In addition, an aggregate of the filler-fixed fibers wound in a cylindrical shape or a shape formed into a plied shape can also be used as a water purification filter. Further, in order to mold and process the fiber structure with a mold, the fiber structure is preferably a nonwoven fabric. Non-woven fabrics have low manufacturing costs, are easy to process, and when moistened during the molding process, they stretch moderately and easily conform to the shape of the mold, making it easier to obtain deep drawn compacts. .
繊維構造物の好ましい目付は、 2 0 g /m 2以上 6 0 0 g /m 2以下 である。 繊維構造物の好ましい厚さ (2 . 9 4 c N / c m 2荷重時) は、 0 . 1 mm以上 3 mm以下の範囲である。 The preferred basis weight of the fiber structure is 20 g / m 2 or more and 600 g / m 2 or less. The preferred thickness of the fibrous structure (under a load of 2.94 cN / cm 2 ) is in the range from 0.1 mm to 3 mm.
前記繊維構造物は、 フィラーの機能性を効率良く発揮させるために、 前記フィラーの固着量が繊維構造物 lm2あたり 2 g以上であることが 好ましく、 1 0 g以上であることがより好ましく、 20 g以上であるこ とがとくに好ましい。 The fiber structure, in order to efficiently exhibit the functionality of the filler, Preferably the amount sticking of the filler is fibrous structure lm 2 per 2 g or more, more preferably 1 at 0 g or more, particularly preferably and this is 20 g or more.
次に、 本発明のフィラー固着繊維及び繊維構造物の製造方法について 説明する。 本発明における湿熱処理は、 湿熱雰囲気で施される。 ここで いう 「湿熱雰囲気」 とは、 水分を含み、 加熱された雰囲気のことをいう。 前記湿熱処理とは、 バインダー樹脂を付与した繊維、 湿熱ゲル化繊維成 分を含む繊維、 又はこれらの繊維を含む繊維構造物に、 例えばフィラー を含むフイラ一分散溶液を付与した後に加熱する処理や、 前記フィラー 分散溶液を付与しながら加熱する処理のことを示す。 加熱の方法は、 加 熱雰囲気中へ晒す方法、 加熱空気中を貫通させる方法、 及び加熱体へ接 触させる方法等が挙げられる。  Next, a method for producing the filler-fixed fiber and the fiber structure of the present invention will be described. The wet heat treatment in the present invention is performed in a wet heat atmosphere. Here, the term “moist heat atmosphere” refers to a heated atmosphere containing moisture. The wet heat treatment may be, for example, a treatment in which a fiber containing a binder resin, a fiber containing a wet heat gelling fiber component, or a fiber structure containing these fibers is heated after applying a filler monodispersed solution containing a filler. And a process of heating while applying the filler dispersion solution. Examples of the heating method include a method of exposing to a heated atmosphere, a method of penetrating through heated air, and a method of contacting a heated body.
前記フィラー分散溶液を付与した後に加熱する場合は、 湿熱処理にお ける繊維または繊維構造物に付与する水分の割合が (以下、 「水分率」 という) 、 2 Oma s s %〜80 Oma s s %であることが好ましい。 より好ましい水分率は、 3 Oma s s %以上である。 より好ましい水分 率は、 70 Oma s s %以下である。 さらにより好ましい水分率は、 4 Oma s s %以上である。 さらにより好ましい水分率は、 6 00ma s s %以下である。 水分率が 2 Oma s s %未満であると、 湿熱ゲル化が 充分に起こらないことがある。 一方、 水分率が 80 Oma s s %を超え ると、 湿熱処理が繊維構造物の表面と内部との間で均一に行われず、 湿 熱ゲル化の度合いが不均一となる傾向にある。 なお、 水分の付与方法と しては、 スプレー、 水槽への浸漬等公知の方法で行うことができる。 特 に、 フィラー分散溶液を繊維構造物に含浸させる方法は、 繊維構造物内 にフイラ一を多く取り込みやすく、 好ましい。 水分が付与された繊維又 は繊維構造物は、 絞りロール等で圧搾する等の方法で所定の水分率に調 整することができる。 When heating after applying the filler dispersion solution, the ratio of water to be applied to the fiber or fiber structure in the wet heat treatment (hereinafter referred to as “moisture percentage”) is 2 Omass% to 80 Omass%. Preferably, there is. A more preferable moisture regain is 3 Omass% or more. A more preferable moisture content is 70 Omass% or less. An even more preferred moisture content is 4 Omass% or more. An even more preferable moisture content is 600 mass% or less. If the water content is less than 2 Omass%, the gelation under wet heat may not occur sufficiently. On the other hand, when the moisture content exceeds 80 Omass%, the wet heat treatment is not performed uniformly between the surface and the inside of the fibrous structure, and the degree of wet heat gelation tends to be non-uniform. In addition, as a method for imparting water, a known method such as spraying or immersion in a water tank can be used. In particular, the method of impregnating the fiber structure with the filler dispersion solution is preferable because a large amount of filler is easily taken into the fiber structure. The moisture-imparted fiber or fiber structure is adjusted to a predetermined moisture content by squeezing with a squeeze roll or the like. Can be adjusted.
前記フィラー分散溶液を付与しながら加熱する場合は、 湿熱ゲル化樹 脂のゲル化が水分の付与と同時に進行するので、 前記フィラー分散溶液 中のフィラーの濃度と、 前記フィラー分散溶液の温度を調整して、 フィ ラーの固着量を調整すればよい。 具体的には、 フイラ一を含む熱水中 ( 9 0 °C以上) に繊維又は繊維構造物を含浸することにより、 フイラ一 を繊維表面に固着することができる。  When heating while applying the filler dispersion solution, since the gelling of the wet heat gelling resin proceeds simultaneously with the application of moisture, the concentration of the filler in the filler dispersion solution and the temperature of the filler dispersion solution are adjusted. Then, the amount of sticking of the filler may be adjusted. Specifically, by impregnating the fiber or the fibrous structure in hot water (90 ° C. or higher) containing the filler, the filler can be fixed to the fiber surface.
前記湿熱処理する前の繊維構造物には、 親水処理を施してもよい。 親 水処理を施すと、 繊維構造物が疎水性繊維を含む場合に、 繊維構造物を 略均一に水分を付与することができる。 その結果、 複合繊維が略均一に 湿熱ゲル化されて、 フィラーが固着しやすく好ましい。 親水処理として は、 界面活性剤処理、 コロナ放電法やグロ一放電法、 プラズマ処理法、 電子線照射法、 紫外線照射法、 T線照射法、 フオ トン法、 フレーム法、 フッ素処理法、 グラフト処理法、 及びスルホン化処理法等が挙げられる。 前記湿熱処理における湿熱処理温度は、 湿熱ゲル化樹脂又は湿熱ゲル 化樹脂繊維成分 (以下、 両者を併せて 「バインダー樹脂」 ともいう。 ) のゲル化温度以上融点一 2 0 °C以下であることが好ましい。 より好まし い湿熱処理温度は、 5 0 °C以上である。 さらにより好ましい湿熱処理温 度は、 8 0 °C以上である。 一方、 より好ましい湿熱処理温度は、 バイン ダー樹脂の融点— 3 0 °C以下である。 さらにより好ましい湿熱処理温度 は、 バインダー樹脂の融点一 4 0 °C以下である。 湿熱処理温度がバイン ダー樹脂のゲル化温度未満であると、 フィラーを有効に固着することが できない場合がある。 湿熱処理温度がバインダー樹脂の融点一 2 0 °Cを 超えると、 バインダー樹脂の融点に近くなるため、 繊維構造物にしたと きに収縮を引き起こすことがある。  The fibrous structure before the wet heat treatment may be subjected to a hydrophilic treatment. By performing the hydrophilic treatment, when the fibrous structure contains hydrophobic fibers, the fibrous structure can be provided with water substantially uniformly. As a result, the composite fiber is almost uniformly wet-gelled, and the filler is easily fixed, which is preferable. Hydrophilic treatments include surfactant treatment, corona discharge method, glow discharge method, plasma treatment method, electron beam irradiation method, ultraviolet irradiation method, T-ray irradiation method, photon method, flame method, fluorine treatment method, and graft treatment. And sulfonation treatment methods. The wet heat treatment temperature in the wet heat treatment is not less than the gelation temperature of the wet heat gelling resin or the wet heat gelling resin fiber component (hereinafter, both are also referred to as “binder resin”) and the melting point is not more than 20 ° C. Is preferred. A more preferred moist heat treatment temperature is 50 ° C or higher. An even more preferred wet heat treatment temperature is 80 ° C. or higher. On the other hand, a more preferable wet heat treatment temperature is a melting point of the binder resin—30 ° C. or lower. An even more preferable wet heat treatment temperature is a melting point of the binder resin of 140 ° C. or less. If the wet heat treatment temperature is lower than the gelling temperature of the binder resin, the filler may not be fixed effectively in some cases. If the temperature of the wet heat treatment exceeds the melting point of the binder resin, ie, more than 120 ° C, the melting point of the binder resin becomes close to that of the binder resin.
前記湿熱処理において、 加熱体へ接触させる場合、 面圧が 0 . 0 1〜 0. 2MP aであることが好ましい。 より好ましい面圧の下限は、 0. 02MP aである。 より好ましい面圧の上限は、 0. 0 8MP aである。 また、 加熱体が熱ロールによる圧縮成形処理である場合、 熱ロールの線 圧は、 1 0〜40 O N/cmであることが好ましい。 より好ましい熱口 一ルの線圧は、 50 N/cmである。 より好ましい熱ロールの線圧の上 限は、 20 ON/cmである。 かかる方法によれば、 瞬時に湿熱ゲル化 樹脂繊維成分を湿熱ゲル化することができると同時にゲル化物を押し拡 げることができるので、 広面積にわたりフィラーを固着することができ る。 また、 かかる方法によれば、 湿熱ゲル化したときに、 フィラーがゲ ル化物に押し込まれて、 繊維表面にフィラーをより強固に固着させるこ とができる。 In the above-mentioned wet heat treatment, when contacting with a heating body, the surface pressure is 0.01 to It is preferably 0.2 MPa. A more preferable lower limit of the surface pressure is 0.02 MPa. A more preferable upper limit of the surface pressure is 0.08 MPa. When the heating body is a compression molding process using a hot roll, the linear pressure of the hot roll is preferably 10 to 40 ON / cm. A more preferable linear pressure of the hot hole is 50 N / cm. A more preferable upper limit of the linear pressure of the heat roll is 20 ON / cm. According to this method, the wet-heat gelling of the resin fiber component can be instantaneously wet-gelled, and at the same time, the gelled material can be pushed and spread, so that the filler can be fixed over a wide area. Further, according to this method, when the gel is wet-heated, the filler is pushed into the gelled material, and the filler can be more firmly fixed to the fiber surface.
繊維構造物に嵩高性及びノ又は柔軟性を与える場合、 前記繊維及び前 記湿熱ゲル化樹脂を含むウェブ等をスチーム処理することによって、 湿 熱ゲル化樹脂をゲル化したゲル化物を形成してフイラ一を固着すること ができる。 スチーム処理の方法としては、 例えばウェブ等の上及び 又 は下からスチームを吹き付ける方法、 ォ一トクレーブ等でスチームに晒 す方法などが挙げられる。 かかる方法によれば、 ゲル加工時必要以上に 繊維構造物に圧力が加わらない。 その結果、 繊維構造物は、 繊維形態を 維持しながら、 フィラーを繊維表面に露出させた状態で固着することが できる。  When imparting bulkiness and noness or flexibility to the fibrous structure, the fiber and the web containing the wet heat gelling resin are subjected to a steam treatment to form a gelled product of the wet heat gelling resin. The filler can be fixed. Examples of the method of the steam treatment include a method of spraying steam from above and / or below a web or the like, a method of exposing to steam with an autoclave or the like, and the like. According to this method, pressure is not applied to the fiber structure more than necessary at the time of gel processing. As a result, the fibrous structure can be fixed in a state where the filler is exposed on the fiber surface while maintaining the fibrous form.
次に本発明の繊維成形体の製造方法について説明する。 本発明におい て湿熱成形加工とは、 繊維構造物にフィラー分散溶液を付与した後に加 熱する処理、 又はフィラー分散溶液を付与しながら加熱し、 所定の形状 に成形することを示す。 加熱の方法は加熱雰囲気中へ晒す方法、 加熱体 へ接触させる方法等が挙げられる。 前記繊維構造物にフイラ一分散溶液 を付与する際の水分率は上述した水分率と同じであり、 説明を省略する。 前記湿熱成形加工においては、 フィラー分散溶液を含む繊維構造物を、 一対の金型内に挿入し、 加熱加圧処理することが好ましい。 水分を含ま せた状態で加熱すると、 不織布自体が適度に伸長して金型の形状に沿い やすくなつて、 深絞りの成形体を得やすい。 前記フィラー分散溶液を付 与しながら加熱する場合、 例えば、 一対の金型内に繊維構造物を挿入し、 熱水中 (9 0 °C以上) に含浸することにより、 成形体を得ることができ る。 Next, a method for producing the fiber molded article of the present invention will be described. In the present invention, the term “wet heat forming” refers to a treatment in which a filler dispersion solution is applied to a fibrous structure and then heating, or heating while applying a filler dispersion solution to form the fiber structure into a predetermined shape. Examples of the heating method include a method of exposing to a heating atmosphere and a method of contacting with a heating body. The water content at the time of applying the filler monodispersed solution to the fiber structure is the same as the water content described above, and the description is omitted. In the wet heat forming process, it is preferable that a fibrous structure containing a filler dispersion solution is inserted into a pair of molds and subjected to a heat and pressure treatment. When heated in a state where moisture is contained, the nonwoven fabric itself expands moderately and easily conforms to the shape of the mold, so that it is easy to obtain a deep drawn compact. When heating while applying the filler dispersion solution, for example, a molded article can be obtained by inserting a fibrous structure into a pair of molds and impregnating it in hot water (90 ° C. or more). it can.
湿熱成形加工は、 湿熱雰囲気で施される。 湿熱成形加工温度は、 ゲル 化樹脂のゲル化温度以上融点 _ 2 0 °C以下であることが好ましい。 より 好ましい湿熱成形加工温度は、 5 0 °C以上である。 さらにより好ましい 湿熱成形加工温度は、 8 0 °C以上である。 一方、 より好ましい湿熱成形 加工温度は、 湿熱ゲル化樹脂の融点一 3 0 °C以下である。 さらにより好 ましい湿熱成形加工温度は、 湿熱ゲル化樹脂の融点一 4 0 °C以下である。 湿熱成形加工温度が湿熱ゲル化樹脂のゲル化温度未満であると、 ゲル化 物を形成させるのが困難である。 湿熱成形加工温度が湿熱ゲル化樹脂の 融点 _ 2 0 を超えると、 湿熱ゲル化樹脂の融点に近くなるため、 成形 体が不均一となることがある。  The wet heat forming process is performed in a wet heat atmosphere. It is preferable that the wet heat forming temperature is not lower than the gelling temperature of the gelling resin and not higher than the melting point−20 ° C. A more preferred wet thermoforming temperature is 50 ° C. or higher. An even more preferable wet thermoforming temperature is 80 ° C. or higher. On the other hand, a more preferable wet heat molding processing temperature is not more than 30 ° C of the melting point of the wet heat gelled resin. An even more preferable wet heat molding processing temperature is a melting point of the wet heat gelling resin of 140 ° C. or less. If the wet heat molding temperature is lower than the gelling temperature of the wet heat gelling resin, it is difficult to form a gel. If the wet heat molding processing temperature exceeds the melting point of the wet heat gelled resin _20, the temperature of the wet heat gelled resin approaches the melting point of the wet heat gelled resin.
本発明においては、 湿熱雰囲気で前記湿熱ゲル化樹脂を湿熱ゲル化さ せる際に、 金型内で接触圧成形加工して繊維成形体を製造することが好 ましい。 ここで接触圧成形加工とは、 繊維構造物と金型とが接触する程 度に圧を加える加工のことをいう。 接触圧とは、 繊維構造物と金型が密 着した時、 金型の自重がかかることになるが、 ここまでの圧力を含む概 念である。 前記湿熱ゲル化樹脂は、 湿熱雰囲気でゲル化させると柔らか くなるので、 単なる成形だけの場合は、 成形圧力はそれほど高くなくて も良い。 接触圧成形加工によれば、 繊維成形体は繊維の形態を維持しつ つ、 ゲル化物により繊維が固定されるので、 嵩高で、 柔軟な成形体が得 られる。 前記金型は、 例えば、 ステンレススチール板のような軽くて薄 い金型で十分であり、 緻密なメッシュ状金型であってもよい。 In the present invention, when the wet heat gelling resin is wet heat gelled in a wet heat atmosphere, it is preferable to produce a fiber molded body by contact pressure molding in a mold. Here, the contact pressure forming refers to a process of applying pressure to such an extent that the fibrous structure and the mold come into contact with each other. The contact pressure is a concept that includes the pressure up to this point, when the fibrous structure and the mold adhere to each other, the mold's own weight is applied. The moist heat gelling resin becomes soft when gelled in a moist heat atmosphere. Therefore, in the case of simple molding only, the molding pressure does not need to be so high. According to the contact pressure molding process, the fiber molded body maintains its fiber shape, and the fibers are fixed by the gelled material, so that a bulky and flexible molded body can be obtained. Can be As the mold, for example, a light and thin mold such as a stainless steel plate is sufficient, and a dense mesh mold may be used.
本発明において、 繊維成形体に硬さを求める、 あるいは湿熱ゲル化樹 脂を押し拡げて膜状のゲル化物を求める場合には、 通常の繊維成形体を 製造する圧力で加熱加圧加工することができる。  In the present invention, when the hardness of the fibrous molded body is to be obtained, or when the gelled material in the form of a film is obtained by expanding the wet heat gelling resin, it is necessary to perform the heating and pressurizing at a pressure for producing a normal fibrous molded body. Can be.
次に、 本発明について図面を用いて説明する。 図 1 A〜Cは、 本発明 の一実施形態におけるフィラー固着繊維の断面図である。 図 1 Aは、 ポ リプロピレンを芯成分 2とし、 エチレン一ビニルアルコール共重合樹脂 を鞘成分 1とした複合繊維 5であって、 鞘成分 1はバインダー樹脂とし て機能し、 鞘成分 1の中にフィラー 3を固着させた例である。 図 1 Bは、 ポリプロピレンを芯成分 2とし、 エチレン一ビニルアルコール共重合榭 脂を鞘成分 1とした複合繊維 6であって、 鞘成分 6の外側にエチレン— ビニルアルコール共重合樹脂をバインダ一 4として付着させ、 このバイ ンダー 4中にフィラー 3を混合させた例である。 図 1 Cは、 ポリプロピ レン 8とエチレン—ビニルアルコール共重合樹脂 7を多分割に配置した 複合繊維 9とし、 エチレン—ビニルアルコール共重合樹脂 7はバインダ —樹脂として機能し、 その周辺部内にフィラー 3を固着させた例である。 図 2は、 本発明の一実施形態における 3層構造の不織布の断面図で、 外側にフィラー固着繊維層 1 1 , 1 1を配置し、 内側にはレーヨン繊維 層 1 2を配置させた例である。  Next, the present invention will be described with reference to the drawings. 1A to 1C are cross-sectional views of filler-fixed fibers according to one embodiment of the present invention. FIG. 1A shows a composite fiber 5 having polypropylene as a core component 2 and an ethylene-vinyl alcohol copolymer resin as a sheath component 1, wherein the sheath component 1 functions as a binder resin and is contained in the sheath component 1. This is an example in which a filler 3 is fixed to the substrate. FIG. 1B shows a composite fiber 6 having polypropylene as a core component 2 and an ethylene-vinyl alcohol copolymer resin as a sheath component 1, and an ethylene-vinyl alcohol copolymer resin as a binder component outside the sheath component 6. This is an example in which filler 3 is mixed into binder 4. Figure 1C shows a composite fiber 9 in which polypropylene 8 and ethylene-vinyl alcohol copolymer resin 7 are arranged in multiple segments. Ethylene-vinyl alcohol copolymer resin 7 functions as a binder-resin, and a filler 3 This is an example in which is fixed. FIG. 2 is a cross-sectional view of a three-layer nonwoven fabric according to an embodiment of the present invention, in which filler-fixed fiber layers 11 and 11 are arranged on the outside and rayon fiber layer 12 is arranged on the inside. is there.
図 3は、 本発明の製造方法の一例工程図である。 繊維又は不織布 3 1 を、 槽 3 2内のフィラ一を含むフィラー分散溶液又はフィラーとェチレ ンービニルアルコール共重合樹脂を含むフィラー分散溶液 3 3に含浸し、 絞りロール 3 4で絞り、 スチーマー 3 5とサクション 3 6の間で湿熱処 理し、 そのまま巻き取るか、 又は不織布の場合は一対の加熱ロール 3 7, 3 7にかけたパタ一ニング用キャンバスロール 3 8 , 3 8により圧縮成 形し、 不織布表面に所定のパターン模様を付与し、 その後、 巻き取り機FIG. 3 is a process chart of an example of the production method of the present invention. The fiber or non-woven fabric 31 is impregnated with a filler dispersion solution containing a filler or a filler dispersion solution containing a filler and an ethylene-vinyl alcohol copolymer resin 33 in a tank 32, squeezed with a squeezing roll 34, and steamer 35. And a suction heat, and then wind it as it is, or in the case of non-woven fabric, compress it with a pair of heating rolls 37, 37 for patterning canvas rolls 38, 38. Shape, give a predetermined pattern to the surface of the non-woven fabric, and then wind up
3 9に巻き取る。 スチーマー 3 5とサクシヨン 3 6に代えて、 上下の熱 板を用いて例えば温度 1 5 0 °C、 5分間の加圧処理を行ってもよい。 他 の実施形態としては、 スチーマー 3 5なしに一対の加熱ロールのみで圧 縮成形する方法、 スチーマー 3 5なしに一対の加熱ロール 3 7, 3 7に かけたパターニンダキャンバスロール 3 8 , 3 8のみで圧縮成形する方 法もある。 3 Wind up to 9. Instead of the steamer 35 and the suction 36, pressure treatment may be performed using upper and lower hot plates at a temperature of 150 ° C. for 5 minutes, for example. Other embodiments include a method of compression molding with only a pair of heating rolls without a steamer 35, and a pattern Ninda canvas roll 38, 38 applied to a pair of heating rolls 37, 37 without a steamer 35. There is also a method in which compression molding is performed only by using the compression molding.
図 4 A〜Fは、 本発明の一実施例で得られた不織布とその構成繊維に フィラーが固着している状態を示し、 Aは不織布を示す走査電子顕微鏡 平面写真 (倍率 1 0 0 ) 、 Bは同断面写真 (倍率 1 0 0 ) 、 Cは同不織 布表面の繊維表面拡大写真 (倍率 1 0 0 0 ) 、 Dは同、 他の部分の不織 布を示す走査電子顕微鏡平面写真 (倍率 1 0 0 ) 、 Eは同断面写真 (倍 率 1 0 0 ) 、 Fは同不織布表面の繊維表面拡大写真 (倍率 1 0 0 0 ) で ある。  4A to 4F show a state in which a filler is fixed to the nonwoven fabric obtained in one example of the present invention and its constituent fibers, and A is a scanning electron microscope plane photograph (magnification 100) showing the nonwoven fabric. B is a cross-sectional photograph (magnification: 100) of the same, C is an enlarged fiber surface photograph of the same nonwoven fabric (magnification: 100,000), D is the same, a scanning electron microscope plane photograph showing the other part of the nonwoven fabric (Magnification 100), E is a photograph of the same cross section (magnification 100), and F is an enlarged photograph of the fiber surface of the nonwoven fabric surface (magnification 100).
図 5 A〜Cは、 本発明の他の実施例で得られた不織布とその構成繊維 にフイラ一が固着している状態を示し、 Aは不織布を示す走査電子顕微 鏡平面写真 (倍率 1 0 0 ) 、 Bは同断面写真 (倍率 1 0 0 ) 、 Cは同不 織布表面の繊維表面拡大写真 (倍率 1 0 0 0 ) である。  FIGS. 5A to 5C show a nonwoven fabric obtained in another embodiment of the present invention and a state in which a filler is fixed to the constituent fibers thereof, wherein A is a scanning electron microscope plane photograph showing the nonwoven fabric (magnification: 10). 0) and B are photographs of the same cross section (magnification 100) and C is an enlarged photograph of the surface of the nonwoven fabric (magnification 100).
図 7は、 本発明の繊維成形体の一実施形態における水分及びフィラー を含む不織布の製造方法の一例工程図である。 不織布原反 3 1を、 槽 3 2内のフィラーを含むフィラ一分散溶液又はフィラーとエチレンービニ ルアルコール共重合樹脂とを含むフイラ一分散溶液 3 3に含浸し、 絞り ロール 3 4で絞る。 これにより、 不織布に水分及びフイラ一が約 5 0 0 m a s s %付与される。 次に、 厚さ 0 . 3 mmのステンレススチール板 製の金型に密着させて接触圧状態にして、 加工温度 1 4 0 °Cの熱風乾燥 機に入れて 1 0分間熱処理して接触圧加工をした。 成形体は図 8に示す 人体の口と鼻を覆うマスク 40と、 図 9に示す空気清浄機用フィルター のプリーツ加工品 5 0を作製した。 FIG. 7 is a process chart of an example of a method for producing a nonwoven fabric containing water and a filler in one embodiment of the fiber molded article of the present invention. The raw nonwoven fabric 31 is impregnated with a filler-dispersed solution containing a filler or a filler-dispersed solution 33 containing an ethylene-vinyl alcohol copolymer resin containing a filler in a tank 32, and squeezed with a squeezing roll 34. As a result, about 500 mass% of moisture and filler are added to the nonwoven fabric. Next, it is brought into close contact with a 0.3 mm thick stainless steel plate mold, brought into contact pressure state, put into a hot air dryer at a processing temperature of 140 ° C, and heat-treated for 10 minutes for contact pressure processing. Did. Fig. 8 shows the compact A mask 40 for covering the mouth and nose of the human body and a pleated product 50 of an air purifier filter shown in FIG. 9 were produced.
図 1 0は本発明の別の実施形態におけるフィラー固着繊維又は不織布 の製造方法の一例工程図である。 繊維又は不織布原反 3 1を、 槽 32内 のフイラ一 (例えばガス吸着性粒子) を含む水系液又はフィラー (例え ばガス吸着性粒子) とエチレン一ビニルアルコール共重合体とを含むフ イラ一分散液 33に含浸し、 絞りロール 34で絞り、 下から蒸気が吹き だすスチーマ一 3 5でスチーム処理し、 乾燥機 41で乾燥させて巻き取 り機 3 9で巻き取る。 図 1 1 A、 Bは、 本発明の一実施例で得られた不 織布とその構成繊維にフィラーが固着している状態を示し、 Aは不織布 を示す走査電子顕微鏡平面写真 (倍率 200) 、 Bは同不織布表面の繊 維表面拡大写真 (倍率 2000) である。  FIG. 10 is a process diagram illustrating an example of a method for producing a filler-fixed fiber or a nonwoven fabric according to another embodiment of the present invention. The fibrous or non-woven fabric 31 is converted into an aqueous liquid or filler (for example, gas-adsorbing particles) containing a filler (for example, gas-adsorbing particles) and an ethylene-vinyl alcohol copolymer in a tank 32. It is impregnated with the dispersion liquid 33, squeezed by the squeezing roll 34, steam-processed by a steamer 35 from which steam is blown out from below, dried by the dryer 41, and wound up by the winder 39. FIGS. 11A and 11B show the nonwoven fabric obtained in one example of the present invention and the state in which the filler is fixed to the constituent fibers thereof, and A is a scanning electron microscope plane photograph (200 magnification) showing the nonwoven fabric. Panels B and B are enlarged photographs of the fiber surface of the nonwoven fabric (magnification: 2000).
実施例 Example
以下実施例を用いてさらに具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to examples.
[実施例 1 ]  [Example 1]
研磨不織布として、 以下のものを準備した。  The following were prepared as the polishing nonwoven fabric.
(不織布)  (Non-woven fabric)
下記の三層構成の水流交絡不織布を形成した。  The following three-layered hydroentangled nonwoven fabric was formed.
第 1層と第 3層は、 鞘成分エチレン一ビニルアルコール共重合樹脂 (EV〇H、 エチレン 38モル%、 融点 1 760 と芯成分ポリプロピ レンが 50 : 5 0の割合の芯鞘型複合繊維 (繊度: 2. 8 d t e X, 繊 維長: 5 lmm) からなるカードウェブであり、 目付は各層とも 3 0 g The first layer and the third layer are composed of a sheath component ethylene-vinyl alcohol copolymer resin (EV〇H, ethylene 38 mol%, melting point 1760, and a core component polypropylene having a core component polypropylene ratio of 50:50). Fineness: 2.8 dte X, fiber length: 5 lmm) Card web with a basis weight of 30 g for each layer
/m.2とし 7こ。 / m. 2 and 7
第 2層は、 レーヨン繊維 (繊度: 1. 7 d t e X , 繊維長: 40m m) からなるカードウェブであり、 目付は 30 gZm2とした。 The second layer was a card web made of rayon fiber (fineness: 1.7 dte X, fiber length: 40 mm), and the basis weight was 30 gZm 2 .
前記の三層構成の水流交絡不織布の目付は 90 gZm2であった。 こ の不織布は、 第 1層/第 2層/第 3層の順で重ね合わせ、 6 M P aの高 圧水流処理をして、 厚さ方向の繊維を交絡させた。 The basis weight of the three-layered hydroentangled nonwoven fabric was 90 gZm 2 . This These nonwoven fabrics were superposed in the order of first layer / second layer / third layer and subjected to a high-pressure water flow treatment of 6 MPa to entangle the fibers in the thickness direction.
(フイラ一分散溶液)  (Fila monodispersed solution)
フィラーとして日本軽金属社製の "アルミナ" (平均粒径 0 . 7 m) を 3 m a s s %の割合で水に懸濁させてフィラー分散溶液 (研磨剤 溶液) とした。  As a filler, "Alumina" (average particle diameter 0.7 m) manufactured by Nippon Light Metal Co., Ltd. was suspended in water at a ratio of 3 mass% to prepare a filler dispersion solution (abrasive solution).
(研磨剤の付与とゲル加工)  (Abrasive application and gel processing)
前記不織布を前記研磨剤溶液中に浸漬し、 マングルロールで絞った。 ピックアップ率は約 5 0 0 %前後で調整して、 固着するフィラー量を表 1に示す数値になるように調整した。 なお、 ピックアップ率とは、 不織 布の質量に対する水分量とフィラー量の和に 1 0 0を乗じた値である。 次いで 1 2 0 に加熱した上下の熱板にキャンバスネットを張り、 その 間に前記不織布を挟み、 0 . 0 6 4 M P aの圧力で 2秒間のゲル加工を した。 次に 1 0 0 °Cの熱風で乾燥した。  The nonwoven fabric was immersed in the abrasive solution and squeezed with a mangle roll. The pickup rate was adjusted at about 500%, and the amount of the adhered filler was adjusted to the value shown in Table 1. The pickup rate is a value obtained by multiplying the sum of the amount of water and the amount of filler with respect to the mass of the nonwoven fabric by 100. Subsequently, canvas nets were placed on the upper and lower hot plates heated to 120, the nonwoven fabric was sandwiched between the hot plates, and gel processing was performed at a pressure of 0.064 MPa for 2 seconds. Next, it was dried with hot air at 100 ° C.
(研磨特性評価試験)  (Polishing property evaluation test)
下記のィンキをステンレス板と陶器皿に塗りつけ、 乾燥した後に各研 磨材を用いて汚れの除去を行った。 汚れの除去は、 人間の手で各サンプ ルとも同一の力を加えて摩擦した。 ィンクと評価物体及び評価点は次の とおりとした。  The following inks were applied to a stainless steel plate and a ceramic dish, and after drying, dirt was removed using each abrasive. To remove the dirt, human samples were rubbed with the same force applied to each sample. Ink, evaluation object and evaluation points are as follows.
( 1 ) インク  (1) Ink
A:寺西化学工業社製油性ィンキ (N o . 5 0 0 )  A: Teranishi Kagaku Kogyo Co., Ltd. oil-based ink (No. 500)
B : シャチハタ社製油性ィンキ (a r t 1 i n e ) B: Shachihata oil-based ink (art1ine)
C :ゼブラ社製油性ィンキ (ハイ ·マッキ一) C: Zebra oil-based ink (high macchi)
D :三菱鉛筆社製油性インキ (三菱マーカ一ピース) D: Mitsubishi Pencil Oil Ink (Mitsubishi Marker One Piece)
E :サクラクレパス社製油性ィンキ (マイネーム) E: Sakura Crepa's oil-based ink (My name)
( 2 ) 評価物体と研磨材の状態 a :ステンレス板 (2) Condition of evaluation object and abrasive a: Stainless steel plate
b :陶器皿 b: Ceramic dish
d r y :乾いた状態で使用。 d r y: Use in a dry state.
we t :水につけて絞った状態で使用。 we t: Use with water and squeezed.
(3) 評価点  (3) Evaluation points
6点:摩擦回数が 5回で完全に汚れがなくなつている。  6 points: The number of frictions is 5 and the dirt is completely removed.
5点:摩擦回数が 1 0回で完全に汚れがなくなつている。  5 points: The number of times of rubbing is 10 and the dirt is completely removed.
4点:摩擦回数が 20回で完全に汚れがなくなつている。  4 points: The number of times of friction is 20 and the dirt is completely removed.
3点:摩擦回数が 30回で完全に汚れがなくなつている。 3 points: The number of rubs is 30 and the dirt is completely removed.
2点:摩擦回数が 30回で部分的にわずかに汚れが残っている。 2 points: The number of times of rubbing is 30 and slight dirt remains partially.
1点:摩擦回数が 30回で汚れが半分程度残っている。  1 point: The number of times of friction is 30 and about half of the dirt remains.
0点:摩擦回数が 30回で汚れがほとんど落ちない。  0 point: The number of rubs is 30 and dirt is hardly removed.
なお、 評価サンプルは、 各 5個試験をした。 研磨性試験の結果は後に まとめて表 1に示す。  In addition, each evaluation sample was tested five. The results of the polishing test are summarized in Table 1 below.
また、 得られた不織布とその構成繊維にフイラ一が固着している状態 を図 4 A〜Fに示す。  FIGS. 4A to 4F show the state where the filler is fixed to the obtained nonwoven fabric and its constituent fibers.
[比較例 1]  [Comparative Example 1]
下記の三層構成の水流交絡不織布を形成した。  The following three-layered hydroentangled nonwoven fabric was formed.
第 1層と第 3層は、 エチレン一酢酸ビニル共重合樹脂 (EVA、 融点 1 0 1 °C ) とポリプロピレンが 5 0 : 5 0の割合の芯鞘複合繊維 (繊 度: 2. 2 d t e X, 繊維長: 5 1 mm) からなるカードゥエブであり、 目付は各層とも 30 g/m2とした。 The first and third layers are made of a core-sheath composite fiber of ethylene-vinyl acetate copolymer resin (EVA, melting point: 101 ° C) and polypropylene in a ratio of 50:50 (density: 2.2 dte X , Fiber length: 51 mm), and the basis weight was 30 g / m 2 for each layer.
第 2層は、 レーヨン繊維 (繊度: 1. 7 d t e X, 繊維長: 40m m) からなる力一ドウエブであり、 目付は 30 g/m2とした。 The second layer was a force web composed of rayon fiber (fineness: 1.7 dte X, fiber length: 40 mm), and the basis weight was 30 g / m 2 .
前記の三層構成の水流交絡不織布の目付は 90 gZm2であった。 こ の不織布は第 1層 Z第 2層 Z第 3層の順で重ね合わせ、 6 MP aの高圧 水流処理をして、 厚さ方向の繊維を交絡させた。 The basis weight of the three-layered hydroentangled nonwoven fabric was 90 gZm 2 . This non-woven fabric is superposed in the order of 1st layer Z 2nd layer Z 3rd layer, high pressure of 6 MPa Water flow treatment was performed to entangle the fibers in the thickness direction.
研磨剤の付与など、 その他の条件は実施例 1と同様とした。 研磨性試 験の結果は後にまとめて表 1に示す。  Other conditions, such as application of an abrasive, were the same as in Example 1. Table 1 summarizes the results of the polishing test.
[比較例 2]  [Comparative Example 2]
下記の三層構成の水流交絡不織布を形成した。  The following three-layered hydroentangled nonwoven fabric was formed.
第 1層と第 3層は、 エチレン一アクリル酸メチル共重合体樹脂 (EM A、 融点 86で) とポリプロピレンが 50 : 50の割合の芯鞘複合繊維 (繊度: 2. 2 d t e X, 繊維長: 45 mm) からなるカードゥエブで あり、 目付は各層とも 30 gZm2とした。 The first and third layers are made of a core-sheath composite fiber of ethylene-methyl acrylate copolymer resin (EMA, melting point 86) and polypropylene in a ratio of 50:50 (fineness: 2.2 dte X, fiber length) : a Kaduebu consisting 45 mm), weight per unit area was each with 30 gZm 2.
第 2層は、 レーヨン繊維 (繊度: 1. 7 d t e x, 繊維長: 40m m) からなるカードウェブであり、 目付は 30 g/m2とした。 The second layer, rayon fiber (fineness: 1. 7 dtex, fiber length: 40 m m) is a card web of a basis weight was 30 g / m 2.
前記の三層構成の水流交絡不織布の目付は 90 gZm2であった。 こ の不織布は第 1層 Z第 2層 Z第 3層の順で重ね合わせ、 6 MP aの高圧 水流処理をして、 厚さ方向の繊維を交絡させた。 The basis weight of the three-layered hydroentangled nonwoven fabric was 90 gZm 2 . This nonwoven fabric was superimposed in the order of first layer Z second layer Z third layer, and subjected to a high-pressure water flow treatment of 6 MPa to entangle the fibers in the thickness direction.
研磨剤の付与など、 その他の条件は実施例 1と同様とした。 研磨性試 験の結果は後にまとめて表 1に示す。  Other conditions, such as application of an abrasive, were the same as in Example 1. Table 1 summarizes the results of the polishing test.
[従来品 1]  [Conventional product 1]
市販の研磨粒子付き不織布たわし (3M社製) を用いて実施例 1と同 様に研磨性試験をした。 結果は後にまとめて表 1に示す。  An abrasion test was conducted in the same manner as in Example 1 using a commercially available nonwoven cloth scourer with abrasive particles (manufactured by 3M). The results are summarized in Table 1 below.
[従来品 2]  [Conventional product 2]
市販の研磨粒子付きスポンジたわし (エステ一化学社製) を用いて実 施例 1と同様に研磨性試験をした。 結果は後にまとめて表 1に示す。 研磨性試験 An abrasion test was performed in the same manner as in Example 1 using a commercially available sponge scourer with abrasive particles (manufactured by Este Chemical Co., Ltd.). The results are summarized in Table 1 below. Abrasiveness test
実施例 アルミナ A B C D E 全平均点 比較例 固着率 a a b a a b a a b a a b a a b Example Alumina A B C D E Total average point Comparative example Adhesion rate a a b a a b a a b a a b a a b
(mass%) dry wet wet dry wet wet dry wet wet dry wet wet dry wet wet 実施例 1 1 6 6 ― 6 6 ― 3.2 4.7 ― 3.6 6 ― 0.4 6 ―  (mass%) dry wet wet dry wet wet dry wet wet dry wet wet dry wet wet Example 1 1 6 6-6 6-3.2 4.7-3.6 6-0.4 6-
1 1 4 6 6 6 6 6 5.6 3 4.7 6 3.2 6 6 0.6 6 6  1 1 4 6 6 6 6 6 5.6 3 4.7 6 3.2 6 6 0.6 6 6
1 6 6 6 ― 6 6 ― 2.8 5 ― 3.4 6 ― 0.8 6 ― 1 6 6 6 ― 6 6 ― 2.8 5 ― 3.4 6 ― 0.8 6 ―
1 8 一 ― 5.6 ― ― 6 ― ― 6 ― ― 6 ― ― 6 平均点 6 6 5.8 6 6 5.8 3 4.8 6 3.4 6 6 0.6 6 6 5.2 比較例 1 2 3 3 5 0 3 5 0 0 5 0 2.8 5.6 0 3.9 6 1 8 1 ― 5.6 ― ― 6 ― ― 6 ― ― 6 ― ― 6 Average 6 6 5.8 6 6 5.8 3 4.8 6 3.4 6 6 0.6 6 6 5.2 Comparative example 1 2 3 3 5 0 3 5 0 0 5 0 2.8 5.6 0 3.9 6
1 1 7 3 2.8 4.8 3.4 3.8 5.4 0 3.4 5 0 3 6 0 3.5 6  1 1 7 3 2.8 4.8 3.4 3.8 5.4 0 3.4 5 0 3 6 0 3.5 6
平均点 3 2.9 4.9 1.7 3.4 5.2 0 1.7 5 0 2.9 5.8 0 3.7 6 3.1 比較例 1 6 4.3 5 4.7 2 4.7 5.3 0 3 5 0 4.3 6 0 4.3 6  Average 3 2.9 4.9 1.7 3.4 5.2 0 1.7 5 0 2.9 5.8 0 3.7 6 3.1 Comparative Example 1 6 4.3 5 4.7 2 4.7 5.3 0 3 5 0 4.3 6 0 4.3 6
2 平均点 4.3 5 4.7 2 4.7 5.3 0 3 5 0 4.3 6 0 4.3 6 3.6 従来品 1 平均点 5.3 6 6 4.3 6 5.7 4 4.3 5.7 3.7 6 6 3.3 5.7 6 5.2 従来品 2 平均点 6 6 6 6 6 6 3 5 5.3 6 5.7 5.7 2.7 6 6 5.4 2 Average 4.3 5 4.7 2 4.7 5.3 0 3 5 0 4.3 6 0 4.3 6 3.6 Conventional 1 Average 5.3 6 6 4.3 6 5.7 4 4.3 5.7 3.7 6 6 3.3 5.7 6 5.2 Conventional 2 Average 6 6 6 6 6 6 3 5 5.3 6 5.7 5.7 2.7 6 6 5.4
表 1に示すとおり、 本実施例のフィラー固着繊維を含有する不織布は、 市販の研磨材とほぼ同一レベルの研磨性を示した。 その上、 本実施例の フィラー固着繊維を含有する不織布は、 フィラーが脱落せず、 耐久性が よい結果が得られた。 フィラーの脱落がないことは、 レンズや半導体の 研磨などに特に有用である。 As shown in Table 1, the nonwoven fabric containing the filler-fixed fibers of this example exhibited almost the same level of abrasiveness as a commercially available abrasive. In addition, the nonwoven fabric containing the filler-fixed fibers of the present example did not lose the filler, and a good durability was obtained. The absence of fillers is especially useful for polishing lenses and semiconductors.
[実施例 2 ]  [Example 2]
(不織布)  (Non-woven fabric)
実施例 1の芯鞘型複合繊維からなる目付 1 0 0 g Zm 2の水流交絡不 織布 (水圧 6 M P aの高圧水流処理) を用いた。 A hydroentangled nonwoven fabric having a basis weight of 100 g Zm 2 and a high-pressure water flow treatment at a water pressure of 6 MPa comprising the core-sheath type composite fiber of Example 1 was used.
(加工手順及び条件)  (Processing procedure and conditions)
前記不織布を界面活性剤(アルキル基の炭素数が 9のポリオキシェチ レンアルキルフエノールエーテル)を 0. lmas s%含む水溶液に浸漬し、 絞 ることにより前処理した。 次に、 エチレン一ビニルアルコール共重合樹 脂(EV0H)パウダー(日本合成化学社製、 商品名 「ソァノール」 、 パウダ 一タイプ B- 7、 エチレン 29モル%、 融点 1 88°C )と、 活性炭(クラレケミカ ル社製、 商品名 「クラレコール」 PL- D)の水分散溶液に浸漬し、 マング ルロールで絞った。 その後、 熱板油圧プレス機(上、 下の熱板を加熱)を 使用し、 キャンバスネット間に不織布を挟んでゲル加工を施した。 加熱 温度は 1 20°C、 プレス圧力は 0. 032MPa、 加熱時間は 2分とした。 その後余 剰分のフイラ一を洗い流し、 100°Cの熱風で乾燥した。  The nonwoven fabric was pretreated by immersing it in an aqueous solution containing 0.1% by mass of a surfactant (polyoxyethylene alkylphenol ether having an alkyl group having 9 carbon atoms) and squeezing. Next, an ethylene-vinyl alcohol copolymer resin (EV0H) powder (manufactured by Nippon Synthetic Chemical Co., Ltd., trade name "Soanol", powder type B-7, ethylene 29 mol%, melting point 188 ° C) and activated carbon ( The product was immersed in an aqueous dispersion of Kuraray Chemical PL-D) (trade name, manufactured by Kuraray Chemical Co., Ltd.) and squeezed with a mulled roll. After that, using a hot plate hydraulic press (heating the upper and lower hot plates), gel processing was performed with nonwoven fabric sandwiched between canvas nets. The heating temperature was 120 ° C, the press pressure was 0.032 MPa, and the heating time was 2 minutes. Then, the excess filler was washed away and dried with hot air at 100 ° C.
前記活性炭は強固にかつ均一に固着していた。 得られたフィラー固着 繊維を含有する不織布の結果を表 2にまとめて示す。  The activated carbon was firmly and uniformly fixed. Table 2 summarizes the results of the obtained nonwoven fabric containing filler-fixed fibers.
[実施例 3 ]  [Example 3]
レ一ョン繊維 1 . 7d t ex, 5 1 iMiからなる 60g/m2の水流交絡不織布(水圧 6MPaの高圧水流処理)を用いた以外は、 実施例 2と同様に処理した。 The treatment was carried out in the same manner as in Example 2 except that a 60 g / m 2 hydroentangled nonwoven fabric (high-pressure water treatment at a water pressure of 6 MPa) consisting of rayon fiber 1.7 dtex and 51 iMi was used.
前記活性炭は強固にかつ均一に固着していた。 得られたフィラー固着 不織布の結果を表 2にまとめて示す。 The activated carbon was firmly and uniformly fixed. Obtained filler fixation Table 2 summarizes the results for the nonwoven fabric.
[実施例 4]  [Example 4]
ポリエステル繊維 1.7dtex, 51mmからなる 50g/m2の水流交絡不織布(水 圧 6MPaの高圧水流処理)を用いた以外は、 実施例 2と同様に処理した。 前記活性炭は強固にかつ均一に固着していた。 得られたフィラー固着 不織布の結果を表 2にまとめて示す。 The treatment was carried out in the same manner as in Example 2 except that a 50 g / m 2 hydroentangled nonwoven fabric (high-pressure water treatment at a water pressure of 6 MPa) composed of polyester fiber 1.7 dtex and 51 mm was used. The activated carbon was firmly and uniformly fixed. Table 2 summarizes the results of the obtained filler-bonded nonwoven fabric.
[実施例 5]  [Example 5]
ポリプロピレン繊維 1.7dtex, 51腿からなる 60g/m2の水流交絡不織布 (水圧 6MPaの高圧水流処理)を用いた以外は、 実施例 2と同様に処理した。 前記活性炭は強固にかつ均一に固着していた。 得られたフィラー固着 不織布の結果を表 2にまとめて示す。 The treatment was carried out in the same manner as in Example 2 except that a hydro-entangled nonwoven fabric of 60 g / m 2 (high-pressure water treatment at a water pressure of 6 MPa) composed of polypropylene fiber 1.7 dtex and 51 thighs was used. The activated carbon was firmly and uniformly fixed. Table 2 summarizes the results of the obtained filler-bonded nonwoven fabric.
表 2 Table 2
Figure imgf000028_0001
Figure imgf000028_0001
[実施例 6]  [Example 6]
第 1層と第 3層は、 実施例 1のエチレン—ビエルアルコール共重合樹 脂 (EVOH) と実施例 1のポリプロピレンが 5 0 : 5 0の割合の分割 型複合繊維 (繊度: 3. 3dtex、 繊維長: 5 1mm) からなるカードウ エブであり、 目付は各層 3 0 g/m2とした。 第 1層と第 3層の間の第 2層は、 実施例 1のレーヨン繊維と、 ポリエステル繊維 (繊度: 1. 7 dtex、 繊維長: 5 1mm) を 1 : 1で混合したカードウェブであり、 目 付は 30 gZm2とした。 以下、 実施例 1と同様な方法で水流交絡不織 布とし、 ゲル加工した。 実施例 1と同様にフイラ一は強固にかつ均一に 固着していた。 得られた不織布とその構成繊維にフィラーが固着してい る状態を図 5 A〜Cに示す。 The first layer and the third layer are made of a splittable conjugate fiber (fineness: 3.3 dtex, fineness: 3.3 dtex, ethylene / biel alcohol copolymer resin (EVOH) of Example 1) and polypropylene of Example 1 in a ratio of 50:50. Fiber length: 5 1mm) It was eb and the basis weight was 30 g / m 2 for each layer. The second layer between the first and third layers is a card web in which the rayon fiber of Example 1 and polyester fiber (fineness: 1.7 dtex, fiber length: 51 mm) are mixed at a ratio of 1: 1. , is with the eye was 30 gZm 2. Thereafter, a hydroentangled nonwoven fabric was formed in the same manner as in Example 1 and gel-processed. As in Example 1, the filler was firmly and uniformly fixed. FIGS. 5A to 5C show a state in which the filler is fixed to the obtained nonwoven fabric and its constituent fibers.
[実施例 7]  [Example 7]
(不織布原反の作製)  (Preparation of raw nonwoven fabric)
鞘成分がエチレン—ビニルアルコール共重合樹脂 (EVOH、 ェチレ ン含有量 38モル%、 融点 1 76°C) であり、 芯成分がポリプロピレン ( P P、 融点 1 6 1 °C ) であり、 E V O H : P Pが 5 0 : 5 0の割合 (容積比) である芯鞘型複合繊維 (繊度 3. 3dtex、 繊維長 5 lmm) を準備した。 さらに、 鞘成分がポリエチレン (P E、 融点 1 32°C) で あり、 芯成分がポリプロピレン (P P、 融点 1 6 1°C) である繊度 2. 2 dtex、 繊維長 5 1 mmの乾熱接着性複合繊維 (大和紡績製、 NB F (H) ) を準備した。  The sheath component is ethylene-vinyl alcohol copolymer resin (EVOH, 38 mol% of ethylene, melting point: 176 ° C), the core component is polypropylene (PP, melting point: 161 ° C), and EVOH: PP A core-sheath composite fiber (fineness: 3.3 dtex, fiber length: 5 lmm) having a ratio of 50:50 (volume ratio) was prepared. In addition, the sheath component is polyethylene (PE, melting point 1 32 ° C) and the core component is polypropylene (PP, melting point 16 1 ° C). Composite fiber (manufactured by Daiwa Spinning Co., Ltd., NB F (H)) was prepared.
前記芯鞘型複合繊維を 7 5mass%、 前記乾熱接着性繊維を 2 5iass% を混合し、 セミランダムカード機で開織し、 目付 45 gZm2のカード ウェブを作製した。 次いで、 前記カードウェブを 90メッシュの平織り 支持体に載置し、 前記カードウェブの幅方向に一列にオリフィス (径: 0. 1 2 mm, ピッチ: 0. 6 mm) が配置されたノズルから前記カー ドウエブに向けて水流を水圧 3 MP aで噴射した後、 更に水圧 4 MP a で噴射した。 続いて、 前記カードウェブを裏返して、 前記ノズルから水 圧 4MP aで水流を噴射して、 水流交絡不織布原反を作製した。 75 mass% of the core-sheath type composite fiber and 25iass% of the dry heat-adhesive fiber were mixed and opened with a semi-random card machine to produce a card web having a basis weight of 45 gZm 2 . Then, the card web was placed on a 90-mesh plain weave support, and the orifices (diameter: 0.12 mm, pitch: 0.6 mm) were arranged in a line in the width direction of the card web. The water stream was sprayed at a pressure of 3 MPa toward the card web, and was further sprayed at a pressure of 4 MPa. Subsequently, the card web was turned over, and a water stream was jetted from the nozzle at a water pressure of 4 MPa to produce a hydro-entangled nonwoven fabric.
(フイラ一の準備) フイラ一として、 活性炭粒子: 「太閤 SA 1 00 0」 (二村化学製、 平均粒子径 1 0 /xm) を使用した。 (Preparation for Fila) Activated carbon particles: “Taiko SA 100000” (manufactured by Nimura Chemical Co., average particle diameter 10 / xm) was used as the filter.
(フイラ一固着繊維を含有する不織布の作製)  (Preparation of non-woven fabric containing filler fiber)
前記不織布原反を、 水中に 8mass%の前記活性炭粒子を分散させたフ イラ一分散溶液 (2 0°C) に浸漬し、 マングルロールを用いて線圧約 6 0 NZcmの絞り圧力でピックアップ率を調整した。 次いで、 フイラ一 分散溶液を含浸させた前記不織布原反を、 不織布原反の下部からスチー ムが吹き出すスチ一マーを用いて、 槽内温度 1 02°C、 加工時間 1 5秒 でスチーム処理を施し、 熱風ドライヤー (l o ot:) で乾燥して、 本発 明の不織布を得た。 得られた不織布の目付は、 6 8 g/m2であり、 約 2 3 g/m2のフィラーが固着していた。 得られた不織布とその構成繊 維にフィラーが固着している状態を図 1 1 A— Bに示す。 得られた不織 布は、 繊維形態を維持しており、 フイラ一が繊維表面に露出した状態で 固着していた。 The raw nonwoven fabric is immersed in a filter dispersion solution (20 ° C) in which 8% by mass of the activated carbon particles are dispersed in water, and the pickup rate is reduced with a linear pressure of about 60 NZcm using a mangle roll. It was adjusted. Next, the nonwoven fabric impregnated with the filler dispersion solution was subjected to steam treatment at a bath temperature of 102 ° C and a processing time of 15 seconds using a steamer in which steam was blown from the lower part of the nonwoven fabric web. And dried with a hot air dryer (lo ot :) to obtain the nonwoven fabric of the present invention. The basis weight of the obtained nonwoven fabric was 68 g / m 2 , and about 23 g / m 2 of the filler was fixed. Figures 11A-B show the obtained nonwoven fabric and the state in which the filler is fixed to the constituent fibers. The obtained nonwoven fabric maintained the fiber morphology, and was fixed with the filler exposed on the fiber surface.
[実施例 8〜 1 1 ]  [Examples 8 to 11]
ガス吸着材として、 以下のものを準備した。  The following were prepared as gas adsorbents.
(不織布原反の作製)  (Preparation of raw nonwoven fabric)
鞘成分がエチレン一ビニルアルコール共重合樹脂 (EV〇H、 ェチレ ン含有量 38モル%、 融点 1 76°C) であり、 芯成分がポリプロピレン ( P P、 融点 1 6 1 °C ) であり、 E V〇 H : P Pが 5 0 : 5 0の割合 (容積比) である芯鞘型複合繊維 (繊度 2. 8dtex、 繊維長 5 lmm) を準備した。  The sheath component is ethylene-vinyl alcohol copolymer resin (EV〇H, ethylene content 38 mol%, melting point 176 ° C), and the core component is polypropylene (PP, melting point 161 ° C).芯 A core-sheath composite fiber (fineness: 2.8 dtex, fiber length: 5 lmm) having a H: PP ratio of 50:50 (volume ratio) was prepared.
前記芯鞘型複合繊維をセミランダムカード機で開繊し、 表 3に示す目 付を有するカードウェブを作製した。 次いで、 前記力一ドウエブを 90 メッシュの平織り支持体に載置し、 前記カードウェブの幅方向に一列に オリフィス (径: 0. 1 2mm、 ピッチ: 0. 6 mm) が配置されたノ ズルから前記カードウェブに向けて水流を水圧 3 MP aで噴射した後、 更に水圧 4MP aで噴射した。 続いて、 前記カードウェブを裏返して、 前記ノズルから水圧 4MP aで水流を噴射して、 実施例 8〜 1 1に使用 される水流交絡不織布原反を作製した。 The core-sheath type composite fiber was opened with a semi-random card machine to produce a card web having a basis weight shown in Table 3. Then, the force web was placed on a 90-mesh plain weave support, and orifices (diameter: 0.12 mm, pitch: 0.6 mm) were arranged in a line in the width direction of the card web. A water stream was jetted from the spill toward the card web at a water pressure of 3 MPa, and then jetted at a water pressure of 4 MPa. Subsequently, the card web was turned upside down, and a water stream was jetted from the nozzle at a water pressure of 4 MPa, to produce a hydro-entangled nonwoven fabric used in Examples 8 to 11.
(フイラ一の準備)  (Preparation for Fila)
フイラ一としてガス吸着性粒子を準備した。 ガス吸養性粒子としては、 活性炭粒子: 「クラレコール PL— D」 (クラレケミカル製、 ヤシガ ラ炭、 平均粒子径 40〜 50 /m) を使用した。  Gas adsorbent particles were prepared as a filter. Activated carbon particles: “Kuraray Coal PL-D” (manufactured by Kuraray Chemical Co., Ltd., coconut shell charcoal, average particle size 40 to 50 / m) were used as the gas absorbing particles.
(フイラ一固着繊維を含有する不織布の作製)  (Preparation of non-woven fabric containing filler fiber)
前記不織布原反を、 水中に 1 0mass%の前記活性炭粒子を分散させた フイラ一分散溶液 (20°C) に浸漬し、 マングルロールの絞り圧力でピ ックアップ率を調整して、 前記活性炭粒子の固着量を表 3に示す数値と なるように調整した。 なお、 ピックアップ率とは、 不織布原反の質量に 対する水分量と活性炭粒子量との和に 1 00を乗じた値である。 次いで、 フイラ一分散溶液を含浸させた前記不織布原反を、 線径: 0. 3mm、 メッシュ数:縦 30本/ i n c h X横 2 5本 Z i n c hの 2枚の平織り のプラスチックネット (縦 40 c mX横 40 c m) で挟持して、 1 5 0°Cに加熱したホットプレートに載置し、 更に、 上側の前記プラスチッ クネットをアルミニウムシート ( l g/cm2) で覆って 1 5分間湿熱 処理をした。 得られた不織布を水洗し、 熱風ドライヤー (1 00°C) で 乾燥して、 本発明の不織布 (ガス吸着材) を得た。 The raw nonwoven fabric was immersed in a filter dispersion solution (20 ° C) in which 10% by mass of the activated carbon particles were dispersed in water, and the pick-up rate was adjusted by the squeezing pressure of a mangle roll to obtain the activated carbon particles. The amount of fixation was adjusted so that the values shown in Table 3 were obtained. The pickup rate is a value obtained by multiplying 100 by the sum of the amount of water and the amount of activated carbon particles with respect to the mass of the nonwoven fabric. Next, the above-mentioned nonwoven fabric impregnated with the monofilament dispersion solution was treated with two plain weave plastic nets having a wire diameter of 0.3 mm, a mesh number of 30 vertical / inch X 25 horizontal 25 Z inch (length 40 c). mX horizontal 40 cm) was sandwiched between, 1 5 0 is placed on a hot plate heated to ° C, further, the wet heat treatment for 15 minutes covered with aluminum above the plastic Kunetto sheet (lg / cm 2) did. The obtained nonwoven fabric was washed with water and dried with a hot air drier (100 ° C) to obtain a nonwoven fabric (gas adsorbent) of the present invention.
[実施例 1 2]  [Example 12]
実施例 8に使用される水流交絡不織布原反と同じ不織布原反を、 水中 に 5mass%の前記活性炭粒子を分散させたフィラ一分散溶液 (9 5°C) に 30秒間浸漬した後、 引き上げた。 そして、 前記不織布原反の温度が 50°Cになるまで前記不織布原反を釣支した。 その後、 前記不織布原反 を水洗し、 熱風ドライヤー ( 1 0 0°C) で乾燥して、 本発明の不織布The same nonwoven fabric as the hydroentangled nonwoven fabric used in Example 8 was immersed in a filler dispersion solution (95 ° C) in which 5 mass% of the activated carbon particles were dispersed in water for 30 seconds, and then pulled up. . Then, the nonwoven fabric was supported until the temperature of the nonwoven fabric reached 50 ° C. Then, the nonwoven fabric Is washed with water and dried with a hot air drier (100 ° C) to obtain the nonwoven fabric of the present invention.
(ガス吸着材) を得た。 (Gas adsorbent) was obtained.
表 3に、 実施例 8〜 1 2の不織布 (ガス吸着材) について、 不織布原 反の目付、 活性炭粒子の固着量、 活性炭粒子の固着率及び不織布 (ガス 吸着材) の目付を示した。  Table 3 shows the basis weight of the nonwoven fabric web, the fixed amount of activated carbon particles, the fixed rate of activated carbon particles, and the basis weight of the nonwoven fabric (gas adsorbent) for the nonwoven fabrics (gas adsorbents) of Examples 8 to 12.
表 3  Table 3
Figure imgf000032_0001
Figure imgf000032_0001
[比較例 3]  [Comparative Example 3]
自己架橋型アクリル酸エステルエマルジヨン (日本カーバイドエ業製、 商品名 「二力ゾ一ル FX— 5 55 A」 ) を 1 5mass%と、 前記活性炭粒 子を 1 0mass%含有したフィラー分散溶液を準備した。 次に、 前記溶液 に前述した実施例 8に使用される水流交絡不織布原反と同じ不織布原反 を浸漬し、 マングルロールで絞り、 熱風乾燥機を用いて温度 140°C、 処理時間 1 5分で乾燥させるとともに硬化させ、 活性炭粒子の固着量が 38 g/m2のケミカルボンド不織布を得た。 A filler dispersion solution containing 15 mass% of self-crosslinking acrylic ester emulsion (trade name “Nikkizol FX-5555A” manufactured by Nippon Carbide Industry Co., Ltd.) and 10 mass% of the activated carbon particles is used. Got ready. Next, the same nonwoven fabric as the hydroentangled nonwoven fabric used in Example 8 described above was immersed in the solution, squeezed with a mangle roll, and heated at a temperature of 140 ° C using a hot air drier for 15 minutes. And cured to obtain a chemically bonded nonwoven fabric having a fixed amount of activated carbon particles of 38 g / m 2 .
[比較例 4]  [Comparative Example 4]
比較例 4として、 表面に消臭剤が固定された 2枚のスパンポンド不織 布間に、 活性炭粒子がホットメルト剤で固定された V〇 Cガス吸着シー ト (旭化成せんい製、 商品名 「セミア V」 、 目付 1 34 g/m2、 活性 炭粒子の固着量約 40 gZm2) を用意した。 As Comparative Example 4, a V〇C gas adsorption sheet (made by Asahi Kasei Fibers Co., Ltd., in which activated carbon particles were fixed with a hot melt agent) between two spun-pound nonwoven fabrics on the surface of which a deodorant was fixed. Semia V ”, a basis weight of 134 g / m 2 , and a fixed amount of activated carbon particles of about 40 gZm 2 ) were prepared.
[V〇Cガス吸着試験方法]  [V〇C gas adsorption test method]
実施例 8〜 1 2及び比較例 3 , 4のシートを、 それぞれ縦 l O cmX 横 1 0 cmの大きさに切断し、 容量が 5リットルの公害分析用バッグ (商品名 「テドラ一バッグ」 ) に入れ、 表 4〜6に示す初期濃度となる ように空気と調合された各 VOCガスを注入した。 そして、 注入時点を 開始時間とし、 経時毎にガス検知管でバッグ内の各 VOCガスの濃度を 測定した。 結果を表 4〜 6に示す。 なお、 表 4〜 6において、 「NDJ とは、 各 VOCガスの濃度が、 使用したガス検知管の測定限界 (2 p p m) 未満となった場合を示す。 Each of the sheets of Examples 8 to 12 and Comparative Examples 3 and 4 was cut into a size of 10 cm in length and 10 cm in width, and a pollution analysis bag having a capacity of 5 liters. (Trade name “Tedra bag”), and each VOC gas mixed with air so as to have the initial concentration shown in Tables 4 to 6 was injected. The injection time was set as the start time, and the concentration of each VOC gas in the bag was measured with a gas detector tube every time. The results are shown in Tables 4-6. In Tables 4 to 6, “NDJ indicates the case where the concentration of each VOC gas is less than the measurement limit (2 ppm) of the gas detector tube used.
表 4
Figure imgf000033_0001
Table 4
Figure imgf000033_0001
表 5  Table 5
Figure imgf000033_0002
Figure imgf000033_0002
[結果]  [Result]
表 4〜 6に示すとおり、 実施例 8〜 1 1の不織布を使用した場合は、 比較例 3, 4に比べ、 各 VOCガスの濃度の減少速度が速く、 ガスの吸 着性能が向上した。 また、 表 4に示すように、 実施例 1 2は、 比較例 3 に比べ活性炭粒子の固着量が少ないにもかかわらず、 比較例 3と同等の ホルムアルデヒドの吸着性能を示した。 更に、 表 5 , 6に示すように、 実施例 1 2は、 比較例 4に比べ活性炭粒子の固着量が少ないにもかかわ らず、 ガスの吸着性能が向上した。 これは、 実施例 8〜 1 2の不織布中 の活性炭粒子 (ガス吸着性粒子) が、 繊維表面の湿熱ゲル化したゲル化 物によって固着されているため、 ガス吸着性粒子が表面に露出した状態 で固着され、 比較例 3, 4に比べ、 ガス吸着性粒子の比表面積の減少が 抑制されたことによるものと考えられる。 なお、 実施例 8〜 1 2の不織 布は、 繊維形状を保持しており、 ゲル加工時に不織布が収縮することは なかった。 また、 実施例 8〜 1 2の不織布は、 ガス吸着性粒子の脱落が なかった。 As shown in Tables 4 to 6, when the nonwoven fabrics of Examples 8 to 11 were used, the reduction rate of the concentration of each VOC gas was faster than that of Comparative Examples 3 and 4, and the gas absorption was higher. The wearing performance has improved. Further, as shown in Table 4, Example 12 exhibited the same formaldehyde adsorption performance as Comparative Example 3 even though the fixed amount of activated carbon particles was smaller than Comparative Example 3. Further, as shown in Tables 5 and 6, Example 12 exhibited improved gas adsorption performance, despite the smaller amount of activated carbon particles fixed than Comparative Example 4. This is because the activated carbon particles (gas-adsorbing particles) in the nonwoven fabrics of Examples 8 to 12 are fixed by the wet-heat gelled gel on the fiber surface, so that the gas-adsorbing particles are exposed on the surface. It is considered that the decrease in the specific surface area of the gas-adsorbing particles was suppressed as compared with Comparative Examples 3 and 4. The nonwoven fabrics of Examples 8 to 12 retained the fiber shape, and the nonwoven fabric did not shrink during gel processing. Further, the nonwoven fabrics of Examples 8 to 12 did not have the gas-adsorbing particles falling off.
[実施例 1 3 ]  [Example 13]
水質浄化材として、 以下のものを準備した。  The following materials were prepared as water purification materials.
(不織布原反の作製)  (Preparation of raw nonwoven fabric)
鞘成分がエチレン—ビニルアルコール共重合樹脂 (E V〇H、 ェチレ ン含有量 3 8モル%、 融点 1 7 6 °C ) であり、 芯成分がポリプロピレン ( P P、 融点 1 6 1 °C ) であり、 E V〇 H : P Pが 5 0 : 5 0の割合 (容積比) である芯鞘型複合繊維 (繊度 2 . 8 d tex、 繊維長 5 l mm) を準備した。  The sheath component is ethylene-vinyl alcohol copolymer resin (EV〇H, ethylene content 38 mol%, melting point 176 ° C), and the core component is polypropylene (PP, melting point 161 ° C). A core-sheath composite fiber (fineness: 2.8 dtex, fiber length: 5 lmm) having a ratio of EV: H: PP of 50: 50 (volume ratio) was prepared.
前記芯鞘型複合繊維をセミランダムカード機で開繊し、 目付 1 0 1 g Zm 2のカードウェブを作製した。 次いで、 前記カードウエブを 9 0メ ッシュの平織り支持体に載置し、 前記力一ドウエブの幅方向に一列にォ リフィス (径: 0 . 1 2 mm、 ピッチ: 0 . 6 mm) が配置されたノズ ルから前記カードウェブに向けて水流を水圧 3 M P aで噴射した後、 更 に水圧 4 M P aで噴射した。 続いて、 前記カードウェブを裏返して、 前 記ノズルから水圧 4 MP aで水流を噴射して、 実施例 1に使用される水 流交絡不織布原反を作製した。 The core-sheath type composite fiber was opened with a semi-random card machine to produce a card web having a basis weight of 101 g Zm 2 . Next, the card web is placed on a 90-mesh plain weave support, and orifices (diameter: 0.12 mm, pitch: 0.6 mm) are arranged in a line in the width direction of the force web. A water stream was jetted from the nozzle to the card web at a water pressure of 3 MPa, and further jetted at a water pressure of 4 MPa. Then, turn over the card web and A water stream was jetted from the nozzle at a water pressure of 4 MPa to produce a hydro-entangled nonwoven fabric used in Example 1.
(フイラ一の準備)  (Preparation for Fila)
フィラーとして有機物吸着性粒子を準備した。 有機物吸着性粒子とし ては、 活性炭粒子: 「クラレコール P L— D」 (クラレケミカル製、 ヤシガラ炭、 平均粒子径 40〜50 ^m) を使用した。  Organic substance-adsorbing particles were prepared as fillers. Activated carbon particles: “Kuraray Coal PLD” (Kuraray Chemical Co., Ltd., coconut husk charcoal, average particle size 40 to 50 m) were used as the organic substance adsorbing particles.
(フイラ一固着繊維を含有する不織布の作製)  (Preparation of non-woven fabric containing filler fiber)
前記不織布原反を、 水中に 1 Omass%の前記活性炭粒子を分散させた フイラ一分散溶液 (20°C) に浸漬し、 マングルロールの絞り圧力でピ ックアップ率を調整して、 前記活性炭粒子の固着量を表 7に示す数値と なるように調整した。 次いで、 フィラー分散溶液を含浸させた前記不織 布原反を、 線径: 0. 3mm、 メッシュ数:縦 30本/ i n c h X横 2 5本/ i n c hの 2枚の平織りのプラスチックネット (縦 40 cmX横 40 cm) で挟持して、 1 50°Cに加熱したホットプレートに載置し、 更に、 上側の前記プラスチックネットをアルミニウムシ一ト ( 1 g/c m2) で覆って 1 5分間湿熱処理をした。 得られた不織布を水洗し、 熱 風ドライヤー ( 1 00°C) で乾燥して、 本発明の不織布 (水質浄化材) を得た。 The raw nonwoven fabric was immersed in a monofilament dispersion solution (20 ° C) in which 1 Omass% of the activated carbon particles were dispersed in water, and the pick-up rate was adjusted with a squeezing pressure of a mangle roll to obtain the activated carbon particles. The amount of fixation was adjusted so that the values shown in Table 7 were obtained. Next, the above nonwoven fabric impregnated with the filler dispersion solution was treated with two plain weave plastic nets having a wire diameter of 0.3 mm and a mesh number of 30 / inch X 25 / inch. (cm x 40 cm) and placed on a hot plate heated to 150 ° C. Cover the upper plastic net with aluminum sheet (1 g / cm 2 ) and wet for 15 minutes. Heat treatment was performed. The obtained nonwoven fabric was washed with water and dried with a hot air dryer (100 ° C) to obtain a nonwoven fabric (water purification material) of the present invention.
[実施例 14]  [Example 14]
目付 40 gZm2のカードウェブを用い、 前記活性炭粒子を固着させ る際における水分散液中の前記活性炭粒子の濃度を 5mass%とし、 マン ダルロールでピックァップ率を調整して前記活性炭粒子の固着量を表 1 に示す数値となるように調整したこと以外は、 実施例 1 3と同様の方法 で、 本発明の不織布 (水質浄化材) を得た。 Using a card web having a basis weight 40 gZm 2, wherein the concentration of the activated carbon particles in the aqueous dispersion at the time of Ru by fixing activated charcoal particles with 5 mass%, the adhesion amount of the activated carbon particles to adjust the Pikkuappu rate Man dull A non-woven fabric (water purification material) of the present invention was obtained in the same manner as in Example 13 except that the values were adjusted to the values shown in Table 1.
表 7に、 実施例 1 3及び実施例 14の不織布 (水質浄化材) について、 不織布原反の目付、 活性炭粒子の固着量、 活性炭粒子の固着率及び不織 布 (水質浄化材) の目付を示した。 実施例 1 3, 14の不織布は繊維形 状を保持しており、 ゲル加工時に不織布が収縮することはなかった。 表 7
Figure imgf000036_0001
Table 7 shows the nonwoven fabric fabric weight, the amount of activated carbon particles fixed, the fixed rate of activated carbon particles, and the nonwoven fabric of the nonwoven fabrics (water purification materials) of Examples 13 and 14 in Example 7. The basis weight of the cloth (water purification material) is shown. The nonwoven fabrics of Examples 13 and 14 retained the fiber shape and did not shrink during gel processing. Table 7
Figure imgf000036_0001
[比較例 5]  [Comparative Example 5]
比較例 5として、 活性炭素繊維不織布 (クラレケミカル製、 商品名 「クラクティブ」 、 目付約 1 80 gZm2) を用意した。 As Comparative Example 5, an activated carbon fiber nonwoven fabric (manufactured by Kuraray Chemical Co., Ltd., trade name “Cractive”, weight per unit area: about 180 gZm 2 ) was prepared.
[水質浄化性能試験方法]  [Water purification performance test method]
実施例 1 3, 14及び比較例 3, 5について、 図 6に示す水循環式簡 易試験機にて水質浄化性能試験を行った。 図 6に示すように、 水循環式 簡易試験機 20は、 スタンド 2 1と、 スタンド 2 1に取り付けられた固 定治具 22 a, 22 bと、 固定治具 22 aによりスタンド 2 1に固定さ れた有底円筒状の容器 23と、 容器 23内の水を循環するポンプ 24と を備えている。 そして、 ポンプ 24は、 容器 2 3の底部の開口 23 aに 取り付けられた管 24 aと、 固定治具 22 bによりスタンド 2 1に固定 された管 24 bとを備え、 容器 2 3の開口 2 3 aから管 24 aにより容 器 23内の水を吸引し、 吸引した水を管 24 bにより、 容器 2 3の上部 へ排出する。 なお、 本試験において、 実施例 1 3及び比較例 5について は、 容器 23内に化学的酸素要求量 (COD) が 4 O p pmとなる工場 廃水を入れて行い、 実施例 14及び比較例 3については、 CODが 20 p pmとなる工場廃水を入れて行った。 また、 ポンプ 24に接続した電 力調整装置 (図示せず) により、 水の循環流量を 6リットル Z分とし、 試験中において、 容器 23内の前記工場廃水の液量を 1リットルに維持 した。 [試験用サンプルの作製方法] For Examples 13 and 14, and Comparative Examples 3 and 5, a water purification performance test was performed using a water circulation type simple testing machine shown in FIG. As shown in FIG. 6, the water circulating simple tester 20 is fixed to the stand 21 by the stand 21, the fixing jigs 22 a and 22 b attached to the stand 21, and the fixing jig 22 a. And a pump 24 that circulates water in the container 23. The pump 24 includes a tube 24 a attached to the opening 23 a at the bottom of the container 23 and a tube 24 b fixed to the stand 21 by a fixing jig 22 b. The water in the container 23 is sucked from the tube 3a by the tube 24a from 3a, and the sucked water is discharged to the upper part of the container 23 by the tube 24b. In this test, Examples 13 and Comparative Example 5 were carried out by placing factory wastewater having a chemical oxygen demand (COD) of 4 Oppm in the container 23. About, the factory wastewater with COD of 20 ppm was put. In addition, the power circulation device (not shown) connected to the pump 24 set the circulation flow rate of water to 6 liters Z minutes, and maintained the liquid volume of the industrial wastewater in the container 23 at 1 liter during the test. [Method of preparing test sample]
実施例 1 3, 14及び比較例 3, 5のそれぞれの不織布を、 3 cmX 3 cmの小片 2 5 (図 6参照) に切断した。 次に、 実施例 1 3 , 14及 び比較例 3, 5のそれぞれについて、 活性炭量が 1 0 gとなるように、 小片 2 5を秤量し、 秤量した小片 2 5を市販の茶パック 2 6 (図 6参 照) に入れて試験用サンプル 2 7 (図 6参照) を作製した。 なお、 水質 浄化性能試験の際は、 図 6に示すように、 試験用サンプル 27を、 容器 2 3内の前記工場廃水に浸漬し、 ワイヤー 28により固定治具 22 に 固定した。  Each of the nonwoven fabrics of Examples 13 and 14 and Comparative Examples 3 and 5 was cut into small pieces 25 of 3 cm × 3 cm (see FIG. 6). Next, for each of Examples 13 and 14 and Comparative Examples 3 and 5, a small piece 25 was weighed so that the amount of activated carbon became 10 g, and the weighed small piece 25 was replaced with a commercially available tea pack 26. (See Fig. 6) and a test sample 27 (see Fig. 6) was prepared. At the time of the water purification performance test, the test sample 27 was immersed in the above-mentioned factory wastewater in the container 23 and fixed to the fixing jig 22 with the wire 28 as shown in FIG.
[COD濃度の測定方法]  [Method of measuring COD concentration]
COD濃度は、 測定時間毎に容器 23内の前記工場廃水をスポィトで ビーカーに採取し、 共立理化学研究所製の簡易水質分析製品 「パックテ スト」 (WAK— C〇D、 測定範囲 0〜: L 00 mg/リットル) にて標 準色と比色して測定した。 結果を表 8に示す。  The COD concentration is determined by collecting the above-mentioned factory wastewater in the container 23 into a beaker with a spot at every measurement time, and using a simple water quality analysis product “Pack Test” (WAK-C〇D, measurement range 0 to L) manufactured by Kyoritsu RIKEN. (00 mg / liter) and colorimetrically measured with the standard color. Table 8 shows the results.
表 8  Table 8
Figure imgf000037_0001
Figure imgf000037_0001
[結果]  [Result]
表 8に示すとおり、 実施例 1 3, 14の不織布を使用した場合は、 比 較例 3, 5に比べ、 COD濃度の減少速度が速く、 良好な水質浄化性能 を示した。 特に、 測定開始から 1 2 0分後において、 実施例 14の CO D濃度は、 比較例 3の COD濃度の半分となり、 水質浄化性能が向上し た。 これは、 実施例 14の不織布中の活性炭粒子 (有機物吸着性粒子) が、 繊維の表面に固定された湿熱ゲル化したゲル化物によって固着され ているため、 有機物吸着性粒子が表面に露出した状態で固着され、 比較 例 3に比べ、 有機物吸着性粒子の比表面積の減少が抑制されたことによ るものと考えられる。 As shown in Table 8, when the nonwoven fabrics of Examples 13 and 14 were used, the COD concentration was reduced faster than in Comparative Examples 3 and 5, and good water purification performance was exhibited. In particular, 120 minutes after the start of the measurement, the COD concentration of Example 14 became half of the COD concentration of Comparative Example 3, and the water purification performance was improved. This is because the activated carbon particles (organic substance-adsorbing particles) in the nonwoven fabric of Example 14 are fixed by a gel formed by the heat and heat gelation fixed on the surface of the fiber. Therefore, it is considered that the organic substance-adsorbing particles were fixed in a state of being exposed on the surface, and the decrease in the specific surface area of the organic substance-adsorbing particles was suppressed as compared with Comparative Example 3.
[活性炭脱落率]  [Activated carbon shedding rate]
実施例 14及び比較例 5について、 以下に示す方法で活性炭脱落率を 測定した。  For Example 14 and Comparative Example 5, the activated carbon shedding rate was measured by the following method.
実施例 14及び比較例 5のそれぞれの不織布を活性炭量が 1. 2 1 g となるようにカットした。 カットしたサンプルのサイズは、 実施例 14 が 30 cmX 20 c で、 比較例 5が 6. 6 c mX 1 0 c mであつた。 次に、 3リットルのビーカーに 2リットルの水を入れ、 実施例 1 3及び 比較例 5の前記サンプルをそれぞれビーカー内の水に入れて、 マグネッ トスタ一ラ一で 4時間攪拌した。 その後、 サンプルを取り出して、 ビ一 力一内の残存液を、 予め質量を測定しておいたガラス濾紙 (東洋濾紙社 製、 商品名 「アドバンテック」 、 型番 「GLASS FIBER GS25J 、 直径 47 mm) を用いて吸引濾過し、 濾過したガラス濾紙を乾燥した後、 乾燥後 のガラス濾紙の質量を測定した。 そして、 得られたガラス濾紙の質量か ら、 活性炭の脱落量及び脱落率を求めた。 なお、 活性炭の脱落量は、 乾 燥後のガラス濾紙の質量から濾過前のガラス濾紙の質量を減じた値とし た。 また、 活性炭の脱落率は、 前記活性炭の脱落量を試験前の活性炭量 (1.21g)で除した値に 1 00を乗じた値とした。 結果を表 9に示す。 表 9
Figure imgf000038_0001
Each of the nonwoven fabrics of Example 14 and Comparative Example 5 was cut so that the amount of activated carbon became 1.21 g. The size of the cut sample was 30 cm × 20 c in Example 14, and 6.6 cm × 10 cm in Comparative Example 5. Next, 2 liters of water was placed in a 3 liter beaker, and the samples of Example 13 and Comparative Example 5 were respectively placed in water in the beaker and stirred with a magnetic stirrer for 4 hours. Thereafter, the sample was taken out, and the remaining liquid in the vial was removed from a glass filter paper (manufactured by Toyo Roshi Kabushiki Kaisha, trade name “Advantech”, model number “GLASS FIBER GS25J, diameter 47 mm”) whose weight was measured in advance. The filtered glass filter paper was dried, the dried glass filter paper was dried, the weight of the dried glass filter paper was measured, and the amount and rate of the activated carbon falling off were determined from the obtained glass filter paper. The amount of activated carbon falling off was the value obtained by subtracting the mass of glass filter paper before filtration from the mass of glass filter paper after drying. 1.21g) and multiplied by 100. The results are shown in Table 9. Table 9
Figure imgf000038_0001
[結果]  [Result]
表 9に示すとおり、 実施例 14の不織布は、 比較例 5に比べ活性炭の 脱落量及び脱落率を抑えることができた。 これは、 実施例 14の不織布 中の活性炭 (活性炭粒子) が、 繊維の表面に固定された湿熱ゲル化した ゲル化物によって固着されているため、 比較例 5に比べ、 活性炭をより 強固に保持できるからであると考えられる。 As shown in Table 9, the nonwoven fabric of Example 14 was able to reduce the amount and rate of activated carbon falling off as compared with Comparative Example 5. This is the nonwoven fabric of Example 14. This is presumably because the activated carbon (activated carbon particles) in the inside was fixed by the gelled gel which was fixed to the surface of the fiber by the heat-moisture gelation, so that the activated carbon could be held more firmly than in Comparative Example 5.
[実施例 1 5]  [Example 15]
(不織布原反の作製)  (Preparation of raw nonwoven fabric)
鞘成分がエチレン一ビニルアルコール共重合榭脂 (EV〇H、 ェチレ ン含有量 38モル%、 融点 1 76°C) であり、 芯成分がポリプロピレン ( P P、 融点 1 6 1 °C ) であり、 E V O H : P Pが 5 0 : 5 0の割合 (容積比) である芯鞘型複合繊維 (繊度 2. 8dtex、 繊維長 5 lmm) を準備した。  The sheath component is ethylene-vinyl alcohol copolymer resin (EV〇H, 38 mol% of ethylene, melting point 176 ° C), the core component is polypropylene (PP, melting point 161 ° C), A core-sheath composite fiber (fineness: 2.8 dtex, fiber length: 5 lmm) having a ratio of EVOH: PP of 50: 50 (volume ratio) was prepared.
前記芯鞘型複合繊維をセミランダムカード機で開織し、 目付 40 g/ m2のカードウェブを作製した。 次いで、 前記カードウェブを 90メッ シュの平織り支持体に載置し、 前記力一ドウエブの幅方向に一列にオリ フィス(径: 0.12mm, ピッチ: 0.6mm)が配置されたノズルから前記カード ウェブに向けて水流を水圧 3MP aで噴射した後、 更に水圧 4MPaで 噴射した。 続いて、 前記力一ドウエブを裏返して、 前記ノズルから水圧 4 MP aで水流を噴射して、 水流交絡不織布原反を作製した。 The core-sheath type composite fiber was opened by a semi-random card machine to produce a card web having a basis weight of 40 g / m 2 . Next, the card web is placed on a 90-mesh plain weave support, and the orifices (diameter: 0.12 mm, pitch: 0.6 mm) are arranged in a row in the width direction of the force web. The water stream was sprayed at a pressure of 3 MPa toward, and was further sprayed at a water pressure of 4 MPa. Subsequently, the force web was turned upside down, and a water flow was jetted from the nozzle at a water pressure of 4 MPa to produce a raw hydroentangled nonwoven fabric.
(フイラ一の準備)  (Preparation for Fila)
フイラ一としては、 活性炭粒子: 「クラレコール P L-DJ (クラ レケミカル製、 ヤシガラ炭、 平均粒子径 40〜5 0 im) を使用した。  Activated carbon particles: Kuraray Coal PL-DJ (Kuraray Chemical Co., Ltd., Yashigara charcoal, average particle diameter 40 to 50 im) was used as the filler.
(フイラ一固着湿熱成形加工)  (Filtration and sticking wet heat forming)
前記不織布原反を、 水中に 1 0mass%の前記活性炭粒子を分散させた フィラー分散溶液 (20°C) に浸漬し、 マングルロールの絞り圧力でピ ックアップ率を調整した。  The raw nonwoven fabric was immersed in a filler dispersion solution (20 ° C.) in which 10 mass% of the activated carbon particles were dispersed in water, and the pick-up rate was adjusted by the squeezing pressure of a mangle roll.
水分及びフイラ一を含む不織布を、 厚さ 0. 3 mmのステンレススチ ール板製の 1対の金型の間に挟み密着させ、 加工温度 140°Cの熱風乾 燥機に入れて 1 0分間接触圧で熱処理をした。 成形体はお椀型の金型を 用いて図 8に示す人体の口と鼻を覆うマスク 4 0と、 プリーツ型の金型 を用いて図 9に示す空気清浄機用フィルタ一のプリーツ加工品を作製し た。 得られたマスク及びプリーツ加工品の活性炭粒子の固着率を求める と、 いずれも約 1 0 0 mas s %であった。 A non-woven fabric containing water and filler is sandwiched between a pair of 0.3 mm thick stainless steel plate molds, and then hot air dried at a processing temperature of 140 ° C. The mixture was placed in a dryer and heat-treated at a contact pressure for 10 minutes. Using a bowl-shaped mold, the mask 40 shown in Fig. 8 is used to cover the mouth and nose of the human body, and a pleated mold is used to form a pleated product such as an air purifier filter shown in Fig. 9. It was made. When the fixation ratio of the activated carbon particles of the obtained mask and pleated product was determined, they were all about 100 mass%.
図 8に示すマスクは、 適度な柔軟性を有しており、 繊維形態を保持し、 繊維が均一に分散した深絞りのお椀型成形体であった。 ゲル化物によつ て固定された活性炭粒子は、 成形体から脱落することはなかった。 また、 マスクを装着しても、 息苦しさは感じることはなかった。 図 9のプリ一 ッ加工品は、 繊維形態を保持し、 繊維が均一に分散しており、 プリーツ の山谷 (折り目) が明瞭な深絞りの成形体であった。 ゲル化物によって 固定された活性炭粒子は、 成形体から脱落することはなかった。 図 9の プリーツ加工品は、 しっかり折り畳まれているので、 プリーツ型カート リッジフィル夕一への加工性も良好であった。  The mask shown in FIG. 8 was a deep drawn bowl-shaped molded body having appropriate flexibility, retaining the fiber morphology, and uniformly dispersing the fibers. The activated carbon particles fixed by the gelled material did not fall off from the compact. Even wearing the mask, she did not feel stuffy. The pre-processed product in Fig. 9 was a deep-drawn molded product that retained the fiber morphology, had a uniform distribution of the fibers, and had clear pleated peaks and valleys (folds). The activated carbon particles fixed by the gelled matter did not fall off from the compact. The processed pleated product in Fig. 9 was firmly folded, and the workability of the pleated cartridge fill was good.
本発明は、 本来の繊維の性質を保持したまま、 かつフィラ一の持つ機 能を有効に発揮できるフィラー固着繊維、 繊維構造物、 及び繊維成形体、 並びにそれらの製造方法を提供できる。  The present invention can provide a filler-fixed fiber, a fibrous structure, a fibrous molded article, and a method for producing the same, which can effectively exhibit the function of the filler while maintaining the properties of the original fiber.
本発明は、 繊維表面にフィラーがゲル化物によって固着しているため、 フィラーが容易に脱落することなく、 繊維表面に露出した状態で固着す ることができる。 例えば、 本発明の繊維構造物をガス吸着材に用いた場 合、 ガス吸着性粒子が、 繊維表面のゲル化物によって固着されているた め、 ガス吸着性粒子を表面に露出させた状態で固着することができる。 これにより、 繊維表面に固着されたガス吸着性粒子の脱落を防止し、 か つガス吸着性粒子の比表面積の減少を抑制することができるため、 従来 のガス吸着材に比べて、 ガスの吸着性能を向上させることができる。 ま た、 本発明の繊維構造物を水質浄化材に用いた場合、 有機物吸着性粒子 が、 繊維表面のゲル化物によって固着されているため、 有機物吸着性粒 子を表面に露出させた状態で固着することができる。 これにより、 繊維 表面に固着された有機物吸着性粒子の脱落を防止し、 かつ有機物吸着性 粒子の比表面積の減少を抑制することができるため、 従来の水質浄化材 に比べて、 浄化性能を向上させることができる。 In the present invention, since the filler is fixed to the fiber surface by the gel, the filler can be fixed in a state of being exposed on the fiber surface without easily falling off. For example, when the fibrous structure of the present invention is used as a gas adsorbent, the gas adsorbing particles are fixed by the gelled material on the fiber surface, so that the gas adsorbing particles are fixed while being exposed on the surface. can do. As a result, it is possible to prevent the gas-adsorbing particles fixed on the fiber surface from falling off and to suppress the decrease in the specific surface area of the gas-adsorbing particles. Performance can be improved. Further, when the fiber structure of the present invention is used for a water purification material, However, since the particles are fixed by the gelled substance on the fiber surface, the organic substance-adsorbing particles can be fixed while being exposed on the surface. As a result, the organic substance-adsorbing particles fixed to the fiber surface can be prevented from falling off, and the specific surface area of the organic substance-adsorbing particles can be prevented from decreasing.Therefore, the purification performance is improved compared to conventional water purification materials. Can be done.
本発明の繊維成形体は、 バインダー樹脂は湿熱ゲル化樹脂を含み、 繊 維構造物は繊維が湿熱ゲル化樹脂を湿熱ゲル化したゲル化物によって固 定されて、 所定の形状に成形されていることにより、 衣料用途の場合は、 人体の肌に直接または間接的に接触しても柔軟である。 また、 成形が均 一で、 深絞りの形状を得ることができる。 さらに、 フイラ一を繊維表面 に有効に固着することができる。  In the fiber molded article of the present invention, the binder resin contains a wet heat gelling resin, and the fiber structure is formed into a predetermined shape by fixing the fiber by the wet heat gelling of the wet heat gelling resin. Therefore, in the case of clothing use, it is flexible even when it comes into direct or indirect contact with human skin. In addition, the forming is uniform, and a deep drawn shape can be obtained. Further, the filler can be effectively fixed to the fiber surface.
また、 本発明の繊維成形体の製造方法は、 繊維と湿熱ゲル化樹脂を含 む繊維集合物を形成し、 湿熱成形加工することにより、 均一に成形する ことができ、 深絞りの形状にも容易に成形することができる。 一般的用 途においても成形コストを安価にできる。  In addition, the method for producing a fiber molded article of the present invention is capable of forming a fiber aggregate containing fibers and a wet heat gelling resin and performing a wet heat forming process, whereby uniform molding can be performed, and a deep drawn shape can be obtained. It can be easily formed. The molding cost can be reduced even for general use.
産業上の利用可能性 Industrial applicability
本発明のフィラー固着繊維及び繊維構造物は、 歯間を磨くフィラメン ト繊維 (デンタルフロス) 、 工業用研磨材として、 レンズ、 半導体、 金 属、 プラスチック、 セラミック、 ガラスなど様々な分野の研磨材、 家庭 用又は業務用キッチンなどで使用する研磨材、 有害ガスなどを吸着する ガス吸着材、 抗菌材、 消臭材、 イオン交換材、 汚水処理用材、 吸油材、 金属吸着材、 電池セパレー夕用不織材、 導電性材、 制電性 (帯電防止) 材、 調湿, 除湿 (結露防止) 材、 吸音, 防音材、 防虫, 防力ビ材、 坊ゥ ィルス材などに有用である。 例えば、 ガス吸着材、 抗ウィルス材は、 建 材の養生シート、 壁紙、 マスク、 空調用などのフィルタ一等に使用する ことができる。 本発明の繊維成形体は、 衣料用途の場合、 例えば肩パット、 乳房パッ ド、 ジャケットの襟芯地、 袖芯地、 ポケット芯地、 前身頃、 後ろ見頃、 見返し、 ズボンの腰芯地等がある。 また非衣料用途の場合、 マスク、 空 気清浄機ゃクリーンルームに使用するフィルタ一濾材のプリ一ッ加工品、 空調された空気ダクトの断熱材、 配管、 パイプ、 プレート、 カレンダー 加工された表面凹凸模様を有するシ一ト等様々な形に成形できる。 The filler-fixing fiber and the fiber structure of the present invention are used for polishing fibers between teeth (dental floss), abrasives for various fields such as lenses, semiconductors, metals, plastics, ceramics, and glass as industrial abrasives. Abrasives used in home or commercial kitchens, gas adsorbents that absorb harmful gases, antibacterial materials, deodorant materials, ion exchange materials, sewage treatment materials, oil absorbing materials, metal adsorbent materials, battery separators, etc. It is useful for woven materials, conductive materials, antistatic (antistatic) materials, humidity control, dehumidifying (condensation prevention) materials, sound absorbing and soundproofing materials, insect repellents, force-proofing materials, and boys' materials. For example, gas adsorbents and antiviral materials can be used for curing sheets for building materials, wallpapers, masks, filters for air conditioning, and the like. In the case of clothing use, the fiber molded article of the present invention includes, for example, a shoulder pad, a breast pad, a jacket collar upholstery, a sleeve interlining, a pocket interlining, a front body, a rearward lookout, a return, a pants waistliner, and the like. is there. In the case of non-clothing applications, masks, air purifiers, pre-processed products of filters and filter media used in clean rooms, insulation materials for air-conditioned air ducts, pipes, pipes, plates, and calendars It can be formed into various shapes such as a sheet having

Claims

請求の範囲 The scope of the claims
1 . 繊維と、 その表面のバインダー樹脂と、 前記バインダー樹脂に固着 されたフィラーを含むフィラ一固着繊維であって、  1. A filler-fixing fiber comprising a fiber, a binder resin on the surface thereof, and a filler fixed to the binder resin,
前記バインダ一樹脂は、 水分存在下で加熱 ^ "ることによってゲル化す る湿熱ゲル化樹脂であり、  The binder resin is a wet heat gelling resin that gels when heated in the presence of moisture.
前記フィラーは、 前記湿熱ゲル化樹脂がゲル化したゲル化物によって 固着されていることを特徴とするフィラ一固着繊維。  The filler-fixed fiber, wherein the filler is fixed by a gel formed by gelling the wet heat gelling resin.
2 . 前記湿熱ゲル化樹脂が、 エチレン一ビニルアルコール共重合樹脂で ある請求項 1に記載のフイラ一固着繊維。  2. The filler-fixed fiber according to claim 1, wherein the wet heat gelling resin is an ethylene-vinyl alcohol copolymer resin.
3 . 前記フイラ一の平均粒子径が、 0 . 0 1〜 1 0 0 x mの範囲である 請求項 1に記載のフィラー固着繊維。  3. The filler-fixed fiber according to claim 1, wherein the average particle diameter of the filler is in the range of 0.01 to 100 x m.
4 . 繊維と、 その表面のバインダー樹脂と、 前記バインダー樹脂に固着 されたフィラーを含むフィラ一固着繊維を含有する繊維構造物であって、 前記バインダ一樹脂は、 水分存在下で加熱することによつてゲル化す る湿熱ゲル化樹脂であり、  4. A fibrous structure containing fibers, a binder resin on the surface thereof, and a filler fixed fiber containing a filler fixed to the binder resin, wherein the binder resin is heated in the presence of moisture. This is a wet heat gelled resin that gels
前記フィラーは、 前記湿熱ゲル化樹脂がゲル化したゲル化物によって 固着されていることを特徴とする繊維構造物。  The fibrous structure, wherein the filler is fixed by a gel of the wet heat gelling resin.
5 . 前記湿熱ゲル化樹脂が、 エチレン一ビニルアルコール共重合樹脂で ある請求項 4に記載の繊維構造物。  5. The fiber structure according to claim 4, wherein the wet heat gelling resin is an ethylene-vinyl alcohol copolymer resin.
6 . 前記繊維及び前記バインダー樹脂は、 6. The fibers and the binder resin are:
(I)湿熱ゲル化樹脂成分と他の熱可塑性合成繊維成分とを含む複合繊 維、  (I) a composite fiber containing a moist heat gelling resin component and another thermoplastic synthetic fiber component,
(I I)前記複合繊維と他の繊維を混合したもの、  (I I) a mixture of the composite fiber and another fiber,
(I I I)前記複合繊維と湿熱ゲル化樹脂を混合したもの、 及び  (I I I) a mixture of the composite fiber and a wet heat gelling resin, and
(IV)湿熱ゲル化樹脂と他の繊維を混合したもの  (IV) A mixture of wet heat gelling resin and other fibers
から選ばれる少なくとも一つの組み合わせを有する請求項 4に記載の繊 維構造物。 The fiber according to claim 4, comprising at least one combination selected from the group consisting of: Weir structure.
7. 前記フイラ一の平均粒子径が、 0. 0 1〜 1 00 Aimの範囲である 請求項 4に記載の繊維構造物。  7. The fiber structure according to claim 4, wherein the average particle diameter of the filler is in a range of 0.01 to 100 Aim.
8. 前記フィラーが、 無機粒子である請求項 4に記載の繊維構造物。  8. The fiber structure according to claim 4, wherein the filler is an inorganic particle.
9. 前記無機粒子が、 アルミナ、 シリカ、 トリポリ、 ダイヤモンド、 コ ランダム、 エメリー、 ガーネット、 フリント、 合成ダイヤ、 窒化硼素、 炭化珪素、 炭化硼素、 酸化クロム、 酸化セリウム、 酸化鉄、 ケィ酸コロ イド、 炭素、 グラフアイト、 ゼォライト、 二酸化チタン、 カオリン、 ク レイ及びシリカゲルから選ばれる少なくとも一つの粒子である請求項 8 に記載の繊維構造物。 9. The inorganic particles are alumina, silica, tripoly, diamond, corundum, emery, garnet, flint, synthetic diamond, boron nitride, silicon carbide, boron carbide, chromium oxide, cerium oxide, iron oxide, colloidal silicate, 9. The fibrous structure according to claim 8, which is at least one particle selected from carbon, graphite, zeolite, titanium dioxide, kaolin, clay, and silica gel.
1 0. 前記フィラーが研磨剤であり、 前記繊維構造物が研磨不織布であ る請求項 9に記載の繊維構造物。  10. The fiber structure according to claim 9, wherein the filler is an abrasive, and the fiber structure is an abrasive nonwoven fabric.
1 1. 前記フィラーが、 多孔質粒子を含む請求項 4に記載の繊維構造物。 1 1. The fiber structure according to claim 4, wherein the filler contains porous particles.
1 2. 前記多孔質粒子が、 活性炭粒子である請求項 1 1に記載の繊維構 造物。 12. The fiber structure according to claim 11, wherein the porous particles are activated carbon particles.
1 3. 前記繊維構造物が、 ガス吸着材である請求項 1 2に記載の繊維構 造物。  13. The fiber structure according to claim 12, wherein the fiber structure is a gas adsorbent.
14. 前記繊維構造物が、 水質浄化材である請求項 1 2に記載の繊維構 造物。  14. The fiber structure according to claim 12, wherein the fiber structure is a water purification material.
1 5. 前記フィラー固着繊維が両表面に存在し、 内部に親水性繊維を存 在させた請求項 4に記載の繊維構造物。  1 5. The fiber structure according to claim 4, wherein the filler-fixed fibers are present on both surfaces, and hydrophilic fibers are present therein.
1 6. 前記親水性繊維が、 レーヨン繊維、 コットン繊維及びパルプから 選ばれる少なくとも一つの繊維である請求項 1 5に記載の繊維構造物。 16. The fiber structure according to claim 15, wherein the hydrophilic fiber is at least one fiber selected from rayon fiber, cotton fiber, and pulp.
1 7. 前記繊維構造物が厚さ方向に圧縮成形されて固着されている請求 項 4に記載の繊維構造物。 17. The fibrous structure according to claim 4, wherein the fibrous structure is compression molded in a thickness direction and fixed.
1 8. 繊維と、 その表面のバインダ一樹脂と、 前記バインダー樹脂に固 着されたフイラ一固着繊維を含む繊維構造物が成形されてなる繊維成形 体であって、 1 8. The fibers, the binder resin on the surface, and the binder resin A fibrous structure formed by molding a fibrous structure containing the attached fiber and fixed fibers,
前記バインダ一樹脂は、 水分存在下で加熱することによってゲル化す る湿熱ゲル化樹脂を含み、  The binder resin includes a wet heat gelling resin that gels when heated in the presence of moisture,
前記繊維構造物は、 前記湿熱ゲル化樹脂を湿熱ゲル化したゲル化物に よって前記繊維が固定されるとともに所定の形状に成形されていること を特徴とする繊維成形体。  The fibrous structure is characterized in that the fiber structure is fixed to a predetermined shape while the fiber is fixed by a gel formed by hydrothermal gelation of the wet heat gelling resin.
1 9 . 前記繊維成形体は、 接触圧成形加工によって成形されている請求 項 1 8に記載の繊維成形体。  19. The fiber molded article according to claim 18, wherein the fiber molded article is molded by contact pressure molding.
2 0 . 繊維と、 その表面のバインダー樹脂と、 前記バインダー樹脂に固 着されたフイラ一を含むフィラー固着繊維の製造方法であって、 前記繊維及び前記バインダ一樹脂が水分存在下で加熱することによつ てゲル化する湿熱ゲル化繊維であり、  20. A method for producing a filler-fixed fiber including a fiber, a binder resin on the surface thereof, and a filler adhered to the binder resin, wherein the fiber and the binder resin are heated in the presence of moisture. It is a wet heat gelled fiber that gels due to
前記フィラーを溶液に分散させたフィラー分散溶液を前記湿熱ゲル化 繊維に付与し、  A filler dispersion solution in which the filler is dispersed in a solution is applied to the wet heat gelled fiber,
次に、 湿熱雰囲気で前記湿熱ゲル化繊維を湿熱処理して、 前記湿熱ゲ ル化繊維をゲル化させ、 ゲル化物によって前記フィラーを繊維表面に固 着することを特徴とするフイラ一固着繊維の製造方法。  Next, the wet heat gelled fiber is subjected to wet heat treatment in a wet heat atmosphere to gel the wet heat gelled fiber, and the filler is adhered to the fiber surface with a gelled material. Production method.
2 1 . 前記湿熱ゲル化繊維が、 湿熱ゲル化樹脂単独、 又は湿熱ゲル化樹 脂成分と他の熱可塑性合成繊維成分とを含む複合繊維である請求項 2 0 に記載のフィラー固着繊維の製造方法。  21. The production of the filler-fixed fiber according to claim 20, wherein the wet heat gelled fiber is a wet heat gelled resin alone or a composite fiber containing a wet heat gelled resin component and another thermoplastic synthetic fiber component. Method.
2 2 . 前記湿熱雰囲気が、 前記湿熱ゲル化樹脂のゲル化温度以上融点一 2 O t:以下の温度範囲である請求項 2 0に記載のフィラー固着繊維の製 造方法。  22. The method for producing a filler-fixed fiber according to claim 20, wherein the moist heat atmosphere has a temperature range from the gelling temperature of the moist heat gelling resin to the melting point and less than or equal to 2 Ot :.
2 3 . 繊維と、 その表面のバインダ一樹脂と、 前記バインダー樹脂に固 着されたフィラーを含むフィラー固着繊維の製造方法であって、 前記繊維及び前記バインダー樹脂は、 他の繊維と、 湿熱ゲル化樹脂で あり、 23. A method for producing a filler-fixed fiber comprising a fiber, a binder resin on the surface thereof, and a filler fixed to the binder resin, The fibers and the binder resin are other fibers and a wet heat gelling resin,
前記他の繊維に前記湿熱ゲル化樹脂を付与した後フイラ一を付与する か、 又は前記フィラー及び前記湿熱ゲル化樹脂を溶液に分散させたフィ ラー分散溶液を前記他の繊維に付与し、  Applying a filler after applying the wet heat gelling resin to the other fiber, or applying a filler dispersion solution in which the filler and the wet heat gelling resin are dispersed in a solution to the other fiber;
次に、 湿熱雰囲気で湿熱処理して前記湿熱ゲル化樹脂をゲル化させ、 ゲル化物によって前記フィラーを他の繊維表面に固着することを特徴と するフィラー固着繊維の製造方法。  Next, a method for producing filler-fixed fibers, characterized in that the heat-moisture gelling resin is gelled by wet heat treatment in a moist heat atmosphere, and the filler is fixed to another fiber surface with a gelled material.
2 4 . 繊維と、 その表面のバインダー樹脂と、 前記バインダー樹脂に固 着されたフィラーを含むフィラー固着繊維を含有する繊維構造物の製造 方法であって、  24. A method for producing a fibrous structure comprising fibers, a binder resin on the surface thereof, and filler-fixed fibers containing a filler fixed to the binder resin,
前記バインダ一樹脂が水分存在下で加熱することによってゲル化する 湿熱ゲル化樹脂であり、  The binder resin is a wet heat gelled resin that gels when heated in the presence of moisture,
前記繊維及び前記バインダ一樹脂が、  The fiber and the binder resin are,
(I)湿熱ゲル化樹脂繊維成分と他の熱可塑性合成繊維成分とを含む複 合繊維、  (I) a composite fiber containing a wet heat gelled resin fiber component and another thermoplastic synthetic fiber component,
(I I)前記複合繊維と他の繊維を混合したもの、  (I I) a mixture of the composite fiber and another fiber,
(I I I)前記複合繊維と湿熱ゲル化樹脂を混合したもの、 及び  (I I I) a mixture of the composite fiber and a wet heat gelling resin, and
(IV)湿熱ゲル化樹脂と他の繊維を混合したもの  (IV) A mixture of wet heat gelling resin and other fibers
から選ばれる少なくとも一つの組み合わせであり、 At least one combination selected from
前記繊維及び前記バインダー樹脂で繊維構造物を作製し、  Producing a fiber structure with the fibers and the binder resin,
前記フィラーを溶液に分散させたフィラー分散溶液を前記繊維構造物 に付与し、  A filler dispersion in which the filler is dispersed in a solution is applied to the fibrous structure,
次に、 湿熱雰囲気で前記湿熱ゲル化樹脂を湿熱処理して、 前記湿熱ゲ ル化樹脂をゲル化させ、 ゲル化物によって前記フィラーを繊維表面に固 着してフィラー固着繊維を形成させる繊維構造物の製造方法。 Next, a fibrous structure in which the moist heat gelling resin is subjected to wet heat treatment in a moist heat atmosphere to gel the moist heat gelling resin, and the filler is adhered to the fiber surface by the gelled material to form filler-fixed fibers. Manufacturing method.
2 5 . 前記湿熱雰囲気が、 前記湿熱ゲル化樹脂のゲル化温度以上融点一 2 0 °C以下の温度範囲である請求項 2 4に記載の繊維構造物の製造方法。 25. The method for producing a fibrous structure according to claim 24, wherein the wet heat atmosphere has a temperature in a range from a gelling temperature of the wet heat gelling resin to a melting point of not more than 20 ° C.
2 6 . 前記湿熱処理が、 厚さ方向に圧縮成形する処理である請求項 2 4 に記載の繊維構造物の製造方法。 26. The method for producing a fibrous structure according to claim 24, wherein the wet heat treatment is a process of compression molding in a thickness direction.
2 7 . 前記湿熱処理が、 スチームによる処理である請求項 2 4に記載の 繊維構造物の製造方法。 27. The method according to claim 24, wherein the wet heat treatment is a treatment with steam.
2 8 . 前記フィラー分散溶液が、 水溶液又は湿熱ゲル化樹脂を含む水溶 液である請求項 2 4に記載の繊維構造物の製造方法。  28. The method for producing a fibrous structure according to claim 24, wherein the filler dispersion solution is an aqueous solution or an aqueous solution containing a wet heat gelling resin.
2 9 . 繊維と、 その表面のバインダー樹脂と、 前記バインダー樹脂に固 着されたフイラ一固着繊維を含む繊維構造物が成形されてなる繊維成形 体の製造方法であって、  29. A method for producing a fibrous molded article, comprising: forming a fiber, a binder resin on a surface thereof, and a fibrous structure including a fiber-fixed fiber fixed to the binder resin,
前記バインダ一樹脂が、 水分存在下で加熱することによってゲル化す る湿熱ゲル化樹脂を含み、  The binder resin includes a wet heat gelling resin that gels when heated in the presence of moisture,
前記繊維及びバインダ一樹脂を含む繊維構造物を形成し、  Forming a fiber structure comprising the fiber and the binder resin,
前記繊維構造物を金型内において湿熱雰囲気で前記湿熱ゲル化樹脂を 湿熱ゲル化させて湿熱成形加工することを特徴とする繊維成形体の製造 方法。  A method for producing a fibrous molded body, characterized in that the fibrous structure is subjected to wet heat molding in a wet heat atmosphere in a mold in a wet heat atmosphere.
3 0 . 前記湿熱成形加工が、 水分とフィラーを含む繊維構造物を、 一対 の金型内に挿入し、 加熱加圧処理する加工である請求項 2 9に記載の繊 維成形体の製造方法。  30. The method for producing a fiber molded article according to claim 29, wherein the wet heat molding processing is a processing in which a fibrous structure containing water and a filler is inserted into a pair of molds and subjected to heat and pressure treatment. .
3 1 . 前記湿熱成形加工が、 繊維構造物と金型とが接触する圧力で加工 する接触圧成形加工である請求項 2 9に記載の繊維成形体の製造方法。  31. The method for producing a fiber molded article according to claim 29, wherein the wet heat molding is a contact pressure molding in which the fiber structure and the mold are processed under a contact pressure.
PCT/JP2004/011397 2003-08-04 2004-08-02 Filler-fixed fiber, fiber structure, molded fiber, and processes for producing these WO2005012605A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020067002051A KR101138567B1 (en) 2003-08-04 2004-08-02 Filler-fixed fiber, fiber structure, molded fiber, and processes for producing these
US10/566,617 US20070128434A1 (en) 2003-08-04 2004-08-02 Filler-affixed fiber, fiber structure, and fiber molded body, and method for producing the same
TW094103356A TW200540309A (en) 2004-06-10 2005-02-03 Filler-fixed fiber, fiber structure, molded fiber, and processes for producing these
HK06111804.7A HK1091244A1 (en) 2003-08-04 2006-10-25 Filler-fixed fiber, fiber structure, molded fiber, and processes for producing these

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003286185A JP3884730B2 (en) 2003-08-04 2003-08-04 Filler-fixed fiber and nonwoven fabric and method for producing them
JP2003-286185 2003-08-04
JP2004-172920 2004-06-10
JP2004172920 2004-06-10
JP2004-181415 2004-06-18
JP2004181415A JP4565902B2 (en) 2004-06-18 2004-06-18 Fiber molded body and method for producing the same
JP2004183709A JP4634072B2 (en) 2004-06-22 2004-06-22 Water purification material
JP2004-183709 2004-06-22

Publications (2)

Publication Number Publication Date
WO2005012605A2 true WO2005012605A2 (en) 2005-02-10
WO2005012605A3 WO2005012605A3 (en) 2005-04-07

Family

ID=34119953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011397 WO2005012605A2 (en) 2003-08-04 2004-08-02 Filler-fixed fiber, fiber structure, molded fiber, and processes for producing these

Country Status (4)

Country Link
US (1) US20070128434A1 (en)
KR (1) KR101138567B1 (en)
HK (1) HK1091244A1 (en)
WO (1) WO2005012605A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2526434A (en) * 2015-05-04 2015-11-25 Daimler Ag Subframe for a vehicle, in particular a passenger vehicle
JPWO2019163659A1 (en) * 2018-02-21 2021-02-18 日本製紙株式会社 Fiber composite and its manufacturing method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155393A1 (en) * 2008-06-18 2009-12-23 Advanced Cerametrics, Inc. Boron carbide ceramic fibers
CN102373578B (en) 2010-08-18 2014-09-17 扬光绿能股份有限公司 Non-woven fabric and manufacturing method thereof, generating device and generating method for gas fuel
CN102587038B (en) * 2011-01-04 2014-10-08 扬光绿能股份有限公司 Non-woven fabric, manufacturing method of non-woven fabric and gas generation device
ES2399307B1 (en) * 2011-07-25 2014-01-29 José Antonio TORNEL GARCÍA ANTIHUMEDAD TABLET WRAPPED ON A SPECIAL FABRIC.
CN103373707B (en) * 2012-04-18 2015-05-20 扬光绿能股份有限公司 Hydrogen purification device
US20140044591A1 (en) 2012-08-10 2014-02-13 Zentox Corporation Photocatalytic oxidation media and system
US9205366B2 (en) 2012-09-07 2015-12-08 Helsatech Gmbh Method for producing a filter for the adsorption of volatile hydrocarbons
CN103220608B (en) * 2013-04-16 2016-08-24 歌尔声学股份有限公司 Speaker module
CN106012154B (en) * 2016-08-02 2018-05-18 南通双弘纺织有限公司 A kind of ice is felt well the production method of antibacterial blended yarn
CN107572626B (en) * 2017-10-19 2020-08-11 青岛大学 Black composite material with hydrophilicity and self-floating performance as well as preparation method and application thereof
US11390997B2 (en) 2017-10-31 2022-07-19 Nippon Paper Industries Co., Ltd. Titanium oxide composite fibers and method for producing same
CN110106561B (en) * 2019-04-23 2022-02-08 英鸿纳米科技股份有限公司 Preparation method of antibacterial nanofiber membrane
WO2023039218A1 (en) * 2021-09-11 2023-03-16 Medtextra Fabric Solutions, Llc Moisture absorbing fabric blend

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253317A (en) * 1994-12-13 1996-10-01 Nippon Shokubai Co Ltd Zinc oxide-based fine particle, its production and use
JPH09947A (en) * 1995-06-21 1997-01-07 Mitsubishi Rayon Co Ltd Photocatalytic fiber and its production
JPH09170176A (en) * 1995-12-20 1997-06-30 Kurabo Ind Ltd Fiber having cool feeling
JP2001040575A (en) * 1999-07-23 2001-02-13 Daiwabo Co Ltd Hydrophilic polyolefin fiber and its fiber composition

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2841823A (en) * 1954-02-08 1958-07-08 Carroll H Van Hartesveldt Molding apparatus
US3213549A (en) * 1963-02-20 1965-10-26 Philip E Caron Steaming apparatus
CA957214A (en) * 1970-12-24 1974-11-05 Teijin Limited Conjugate fiber
DE2323583A1 (en) * 1973-05-10 1974-11-28 Feldmuehle Anlagen Prod METHOD AND DEVICE FOR THE PRODUCTION OF FLATS
US4209563A (en) * 1975-06-06 1980-06-24 The Procter & Gamble Company Method for making random laid bonded continuous filament cloth
US4755575A (en) * 1981-07-01 1988-07-05 Union Carbide Corporation Process for preparing fiber reinforced molded articles
US4713134A (en) * 1982-09-30 1987-12-15 Chicopee Double belt bonding of fibrous web comprising thermoplastic fibers on steam cans
GR79403B (en) * 1982-11-24 1984-10-22 Bluecher Hubert
DE3686883T2 (en) * 1986-05-28 1993-04-15 Asahi Chemical Ind MOLDABLE, NON-WOVEN TRAIN.
US5057166A (en) * 1989-03-20 1991-10-15 Weyerhaeuser Corporation Method of treating discontinuous fibers
US5300192A (en) * 1992-08-17 1994-04-05 Weyerhaeuser Company Wet laid fiber sheet manufacturing with reactivatable binders for binding particles to fibers
US6919111B2 (en) * 1997-02-26 2005-07-19 Fort James Corporation Coated paperboards and paperboard containers having improved tactile and bulk insulation properties
WO1999005213A1 (en) * 1997-07-25 1999-02-04 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Resin composition, process for preparing the same, and laminate containing layer of said resin composition
US6291105B1 (en) * 1997-08-19 2001-09-18 Daiwabo Co., Ltd. Battery separator and method for manufacturing the same and battery
JP3539846B2 (en) * 1997-10-02 2004-07-07 日本合成化学工業株式会社 Resin composition and laminate thereof
CA2291217C (en) * 1998-12-09 2004-09-21 Kuraray Co., Ltd. Vinyl alcohol polymer and its composition
JP4577920B2 (en) * 1999-01-22 2010-11-10 ダイワボウホールディングス株式会社 Battery separator and battery using the same
JP2000325280A (en) * 1999-05-14 2000-11-28 Aarando:Kk Multipurpose washing cloth and its production
CN1231501C (en) * 2001-05-14 2005-12-14 可乐丽股份有限公司 Modified ethylene vinyl alcohol copolymer and method for the production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253317A (en) * 1994-12-13 1996-10-01 Nippon Shokubai Co Ltd Zinc oxide-based fine particle, its production and use
JPH09947A (en) * 1995-06-21 1997-01-07 Mitsubishi Rayon Co Ltd Photocatalytic fiber and its production
JPH09170176A (en) * 1995-12-20 1997-06-30 Kurabo Ind Ltd Fiber having cool feeling
JP2001040575A (en) * 1999-07-23 2001-02-13 Daiwabo Co Ltd Hydrophilic polyolefin fiber and its fiber composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2526434A (en) * 2015-05-04 2015-11-25 Daimler Ag Subframe for a vehicle, in particular a passenger vehicle
JPWO2019163659A1 (en) * 2018-02-21 2021-02-18 日本製紙株式会社 Fiber composite and its manufacturing method

Also Published As

Publication number Publication date
WO2005012605A3 (en) 2005-04-07
US20070128434A1 (en) 2007-06-07
KR20060059990A (en) 2006-06-02
HK1091244A1 (en) 2007-01-12
KR101138567B1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
US7247237B2 (en) Fluid cleaning filter and filter device
CN100422427C (en) Filler-fixed fiber, fiber structure, molded fiber, and processes for producing these
CN1279997C (en) Nanofiber filter media
WO2005012605A2 (en) Filler-fixed fiber, fiber structure, molded fiber, and processes for producing these
KR100535161B1 (en) Adsorption product with dust collection function
JP2000070646A (en) Air purifying filter member
JP4719081B2 (en) Wet-heat adhesive composite fiber and filler-fixed fiber, fiber structure
JP4959985B2 (en) Gas adsorbent
JP2008036880A (en) Laminated nonwoven fabric, gelled sheet and filler fixed sheet
JP2007111692A (en) Functional separation material, gas adsorbent and filter for deodorizing tobacco
JP4603898B2 (en) Fiber structure, method for producing the same, and method for producing filler-fixed fibers
JP4582777B2 (en) Gas adsorbent and method for producing the same
TW200540309A (en) Filler-fixed fiber, fiber structure, molded fiber, and processes for producing these
JP2004243233A (en) Biodegradable filtering material
CN100423807C (en) Nanofiber filter media
JP4601442B2 (en) Method for producing filler-fixed fiber and method for producing fiber structure
JP4907879B2 (en) Filler fixing yarn and woven / knitted fabric
JPS62279817A (en) Air filter
CN113795323A (en) Filter medium for filter and filter
JPH04126585A (en) Water purifying device
JP3767722B2 (en) Adsorbent sheet and air purification filter
JP4634072B2 (en) Water purification material
JP4565902B2 (en) Fiber molded body and method for producing the same
JP2006214051A (en) Fiber structural product and method for producing the same
JP2000189734A (en) Durable filtering adsorption sheet and production thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480022237.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067002051

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007128434

Country of ref document: US

Ref document number: 10566617

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067002051

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10566617

Country of ref document: US