JP4634072B2 - Water purification material - Google Patents

Water purification material Download PDF

Info

Publication number
JP4634072B2
JP4634072B2 JP2004183709A JP2004183709A JP4634072B2 JP 4634072 B2 JP4634072 B2 JP 4634072B2 JP 2004183709 A JP2004183709 A JP 2004183709A JP 2004183709 A JP2004183709 A JP 2004183709A JP 4634072 B2 JP4634072 B2 JP 4634072B2
Authority
JP
Japan
Prior art keywords
resin
wet heat
fiber
water purification
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004183709A
Other languages
Japanese (ja)
Other versions
JP2006007002A (en
Inventor
公紀 重田
尚利 元田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DaiwaboPolytecCo.,Ltd.
Daiwabo Holdings Co Ltd
Original Assignee
DaiwaboPolytecCo.,Ltd.
Daiwabo Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaiwaboPolytecCo.,Ltd., Daiwabo Holdings Co Ltd filed Critical DaiwaboPolytecCo.,Ltd.
Priority to JP2004183709A priority Critical patent/JP4634072B2/en
Priority to US10/566,617 priority patent/US20070128434A1/en
Priority to PCT/JP2004/011397 priority patent/WO2005012605A2/en
Priority to KR1020067002051A priority patent/KR101138567B1/en
Priority to TW094103356A priority patent/TW200540309A/en
Publication of JP2006007002A publication Critical patent/JP2006007002A/en
Priority to HK06111804.7A priority patent/HK1091244A1/en
Application granted granted Critical
Publication of JP4634072B2 publication Critical patent/JP4634072B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、有機物吸着性粒子を繊維表面に固着させた粒子固着繊維を有する水質浄化材に関する。   The present invention relates to a water purification material having particle-fixed fibers in which organic matter-adsorbing particles are fixed to the fiber surface.

従来から、工場廃水等を浄化する水質浄化材として、繊維状の活性炭、すなわち活性炭素繊維を用いた様々な水質浄化材が提案されている(例えば特許文献1等)。しかし、活性炭素繊維を用いた水質浄化材では、使用中に活性炭素繊維を構成する活性炭が脱落して、浄化性能が劣化するおそれがある。更に、浄化後の液体中に脱落した活性炭が混入するおそれがある。   Conventionally, various water purification materials using fibrous activated carbon, that is, activated carbon fibers have been proposed as water purification materials for purifying factory wastewater or the like (for example, Patent Document 1). However, in the water purification material using activated carbon fibers, activated carbon constituting the activated carbon fibers may fall off during use, and the purification performance may deteriorate. Furthermore, the activated carbon that has fallen into the purified liquid may be mixed.

他方、活性炭粒子等の有機物吸着性粒子を、不溶性のバインダーを介してシート状部材に固着させた水質浄化フィルターが、特許文献2に提案されている。
特開平9−234365号公報 特開平9−201583号公報
On the other hand, Patent Document 2 proposes a water purification filter in which organic substance-adsorbing particles such as activated carbon particles are fixed to a sheet-like member via an insoluble binder.
JP-A-9-234365 Japanese Patent Laid-Open No. 9-201583

しかし、特許文献2に提案された水質浄化フィルターでは、有機物吸着性粒子がバインダーに埋没してしまい、有機物吸着性粒子の比表面積が減少して、充分な浄化性能が得られなくなるおそれがある。   However, in the water purification filter proposed in Patent Document 2, the organic matter-adsorbing particles are buried in the binder, the specific surface area of the organic matter-adsorbing particles is reduced, and sufficient purification performance may not be obtained.

本発明は、前記従来の問題を解決するため、有機物吸着性粒子の脱落を防止し、かつ有機物吸着性粒子の比表面積の減少を抑制することができる水質浄化材を提供する。   In order to solve the above-mentioned conventional problems, the present invention provides a water purification material that can prevent the organic adsorbent particles from falling off and suppress the decrease in the specific surface area of the organic adsorbent particles.

本発明の水質浄化材は、繊維と、その表面のバインダー樹脂と、前記バインダー樹脂に固着された有機物吸着性粒子とを含む粒子固着繊維を有する水質浄化材であって、前記バインダー樹脂は、湿熱ゲル化樹脂であり、前記湿熱ゲル化樹脂は、エチレン−ビニルアルコール共重合樹脂であり、前記エチレン−ビニルアルコール共重合樹脂において、エチレンの含有率は、20モル%以上50モル%以下であり、前記有機物吸着性粒子は、前記湿熱ゲル化樹脂が湿熱ゲル化したゲル化物によって固着されていることを特徴とする。 The water purification material of the present invention is a water purification material having particle-fixed fibers containing fibers, a binder resin on the surface thereof, and organic matter-adsorbing particles fixed to the binder resin, wherein the binder resin is wet heat It is a gelling resin, the wet heat gelling resin is an ethylene-vinyl alcohol copolymer resin, and in the ethylene-vinyl alcohol copolymer resin, the ethylene content is 20 mol% or more and 50 mol% or less, The organic substance-adsorptive particles are fixed by a gelled product obtained by gelling the wet heat gelled resin.

本発明の水質浄化材によれば、有機物吸着性粒子が、繊維の表面に固定された湿熱ゲル化したゲル化物によって固着されているため、有機物吸着性粒子を表面に露出させた状態で固着することができる。これにより、繊維表面に固着された有機物吸着性粒子の脱落を防止し、かつ有機物吸着性粒子の比表面積の減少を抑制することができるため、従来の水質浄化材に比べて、浄化性能を向上させることができる。   According to the water purification material of the present invention, the organic matter-adsorbing particles are fixed by the wet-heat gelled gel fixed on the surface of the fiber, so that the organic matter-adsorbing particles are fixed in a state of being exposed on the surface. be able to. As a result, the organic adsorbent particles fixed on the fiber surface can be prevented from falling off, and the decrease in the specific surface area of the organic adsorbent particles can be suppressed, improving the purification performance compared to conventional water purification materials. Can be made.

本発明の水質浄化材においては、水分存在下で加熱することによってゲル化するバインダー樹脂として、湿熱ゲル化樹脂を用いるか、又は湿熱ゲル化繊維成分と他の熱可塑性合成繊維成分とを含む複合繊維(以下、「湿熱ゲル化複合繊維」という。)を用いる。湿熱ゲル化樹脂の形態は、パウダー状、チップ状、繊維状等が挙げられる。特に、湿熱ゲル化樹脂は、繊維状であることが好ましい。これにより、他の繊維又は少なくとも他の熱可塑性合成繊維成分は繊維の形態を保ち、かつ湿熱ゲル化樹脂又は湿熱ゲル化繊維成分がゲル化されて有機物吸着性粒子を固着させるバインダーとしての作用機能を発揮する。また、不織布等に加工する際、収縮を伴わずに加工できる。そして、本発明の水質浄化材における粒子固着繊維は、有機物吸着性粒子が、繊維の表面に固定された湿熱ゲル化樹脂又は湿熱ゲル化繊維成分が湿熱ゲル化したゲル化物によって固着されている。これにより、繊維表面に固着された有機物吸着性粒子の脱落を防止することができる。更に、有機物吸着性粒子が表面に露出した状態で固着することができるため、有機物吸着性粒子の比表面積の減少を抑制し、従来の水質浄化材に比べて、浄化性能を向上させることができる。また、活性炭素繊維を使用する場合に比べ、安価な材料で製造することができる。   In the water purification material of the present invention, a wet heat gelled resin is used as a binder resin that gels by heating in the presence of moisture, or a composite containing a wet heat gelled fiber component and another thermoplastic synthetic fiber component Fiber (hereinafter referred to as “wet heat gelled composite fiber”) is used. Examples of the wet heat gelled resin include powder, chip, and fiber. In particular, the wet heat gelled resin is preferably fibrous. As a result, other fibers or at least other thermoplastic synthetic fiber components maintain the form of the fibers, and the function as a binder to fix the organic matter-adsorbing particles by gelling the wet heat gelled resin or wet heat gelled fiber component. Demonstrate. Moreover, when processing into a nonwoven fabric etc., it can process without shrinkage | contraction. And the particle | grain fixed fiber in the water purification material of this invention has the organic substance adsorptive particle fixed by the gelled material which the wet heat gelled resin fixed to the surface of the fiber or the wet heat gelled fiber component gelled. As a result, it is possible to prevent the organic matter adsorbing particles fixed to the fiber surface from falling off. Furthermore, since the organic matter adsorptive particles can be fixed in a state exposed on the surface, the reduction of the specific surface area of the organic matter adsorbent particles can be suppressed, and the purification performance can be improved as compared with the conventional water purification material. . Moreover, it can manufacture with an inexpensive material compared with the case where activated carbon fiber is used.

湿熱ゲル化樹脂の好ましいゲル化温度の下限は、50℃である。より好ましいゲル化温度の下限は、80℃である。50℃未満でゲル化し得る樹脂を用いるとゲル加工の際、ロール等への粘着により繊維集合物の生産が難しくなったり、夏場や高温環境下での使用ができなくなったりする場合がある。なお、「ゲル加工」とは、湿熱ゲル化樹脂をゲル化させる加工のことをいう。   The minimum of the preferable gelation temperature of the wet heat gelling resin is 50 degreeC. A more preferable lower limit of the gelation temperature is 80 ° C. When a resin that can be gelled at a temperature lower than 50 ° C. is used, it may be difficult to produce a fiber assembly due to adhesion to a roll or the like during gel processing, or it may not be usable in summer or in a high temperature environment. The “gel processing” refers to processing for gelling a wet heat gelled resin.

湿熱ゲル化樹脂又は湿熱ゲル化繊維成分は、エチレン−ビニルアルコール共重合樹脂であることが好ましい。湿熱によってゲル化でき、他の熱可塑性合成繊維成分を変質させないからである。   The wet heat gelled resin or wet heat gelled fiber component is preferably an ethylene-vinyl alcohol copolymer resin. It is because it can be gelled by wet heat and does not alter other thermoplastic synthetic fiber components.

エチレン−ビニルアルコール共重合樹脂とは、エチレン−酢酸ビニル共重合樹脂を鹸化することによって得られる樹脂であり、その鹸化度は95%以上が好ましい。より好ましい鹸化度は、98%以上である。また、エチレン含有率の好ましい下限は、20モル%である。エチレン含有率の好ましい上限は、50モル%である。より好ましいエチレン含有率の下限は、25モル%である。より好ましいエチレン含有率の上限は、45モル%である。鹸化度が95%未満ではゲル加工の際、ロール等への粘着により繊維集合物の生産が難しくなる場合がある。また、エチレン含有率が20モル%未満の場合も同様に、ゲル加工の際、ロール等への粘着により繊維集合物の生産が難しくなる場合がある。一方、エチレン含有率が50モル%を超えると、湿熱ゲル化温度が高くなり、加工温度を融点近傍まで上げざるを得なくなり、その結果、繊維集合物の寸法安定性に悪影響を及ぼす場合がある。   The ethylene-vinyl alcohol copolymer resin is a resin obtained by saponifying an ethylene-vinyl acetate copolymer resin, and the saponification degree is preferably 95% or more. A more preferable degree of saponification is 98% or more. Moreover, the minimum with preferable ethylene content rate is 20 mol%. The upper limit with preferable ethylene content rate is 50 mol%. A more preferable lower limit of the ethylene content is 25 mol%. A more preferable upper limit of the ethylene content is 45 mol%. If the degree of saponification is less than 95%, it may be difficult to produce a fiber assembly due to adhesion to a roll or the like during gel processing. Similarly, when the ethylene content is less than 20 mol%, it may be difficult to produce a fiber assembly due to adhesion to a roll or the like during gel processing. On the other hand, when the ethylene content exceeds 50 mol%, the wet heat gelation temperature becomes high, and the processing temperature must be increased to near the melting point, and as a result, the dimensional stability of the fiber assembly may be adversely affected. .

前記繊維及び前記バインダー樹脂の好ましい組み合わせとしては、
(I)湿熱ゲル化樹脂成分と他の熱可塑性合成繊維成分とを含む複合繊維、
(II)前記複合繊維と他の繊維を混合したもの、
(III)前記複合繊維と湿熱ゲル化樹脂を混合したもの、及び
(IV)湿熱ゲル化樹脂と他の繊維を混合したもの
から選ばれる少なくとも一つが挙げられる(以下、「形態(I)〜(IV)」という。)。前記形態(I)は、「バインダー樹脂」を湿熱ゲル化樹脂成分とし、「繊維」を他の熱可塑性合成繊維成分とした湿熱ゲル化複合繊維である。前記形態(II)は、「バインダー樹脂」を湿熱ゲル化複合繊維とし、「繊維」を他の繊維としこれを混合したものである。前記形態(III)は、「繊維」を湿熱ゲル化複合繊維とし、さらに「バインダー樹脂」を湿熱ゲル化樹脂としこれを混合したものである。前記形態(IV)は、「バインダー樹脂」を前記湿熱ゲル化複合繊維以外の形態を採る湿熱ゲル化樹脂(例えば、湿熱ゲル化樹脂単独繊維)とし、「繊維」を他の繊維としこれを混合したものである。
As a preferable combination of the fiber and the binder resin,
(I) a composite fiber comprising a wet heat gelled resin component and another thermoplastic synthetic fiber component,
(II) a mixture of the composite fiber and other fibers,
(III) a mixture of the composite fiber and wet heat gelled resin, and
(IV) At least one selected from a mixture of a wet heat gelled resin and other fibers (hereinafter referred to as “forms (I) to (IV)”). The form (I) is a wet heat gelled composite fiber in which “binder resin” is a wet heat gelled resin component and “fiber” is another thermoplastic synthetic fiber component. In the form (II), the “binder resin” is a wet heat gelled composite fiber, and the “fiber” is another fiber and is mixed. In the form (III), the “fiber” is a wet heat gelled composite fiber, and the “binder resin” is a wet heat gelled resin, which are mixed. In the form (IV), the “binder resin” is a wet heat gelled resin other than the wet heat gelled composite fiber (for example, a wet heat gelled resin single fiber), and the “fiber” is mixed with another fiber. It is what.

前記形態(I)〜(III)に用いられる前記湿熱ゲル化複合繊維は、湿熱ゲル化樹脂成分が露出しているかまたは部分的に区分されている複合繊維であることが好ましい。その複合形状は、同心円型、偏心芯鞘型、並列型、分割型、海島型等を指す。特に同心円型が有機物吸着性粒子の固着性がよく、好ましい。また、その断面形状が円形、中空、異型、楕円形、星形、偏平形等いずれであってもよいが、繊維製造の容易さから円形であることが好ましい。分割繊維はあらかじめ加圧水流等を噴射して部分的に分割しておくのが好ましい。このようにすると、分割された湿熱ゲル化樹脂成分は、湿熱処理によりゲル化し、ゲル化物を形成して他の繊維の表面に付着し、有機物吸着性粒子を固着する。すなわち、バインダーとして機能する。   The wet heat gelled composite fiber used in the forms (I) to (III) is preferably a composite fiber in which the wet heat gelled resin component is exposed or partially divided. The composite shape indicates a concentric circle type, an eccentric core-sheath type, a parallel type, a split type, a sea-island type, and the like. In particular, concentric circular shapes are preferable because the adsorbability of the organic substance-adsorbing particles is good. The cross-sectional shape may be any of a circular shape, a hollow shape, an atypical shape, an elliptical shape, a star shape, a flat shape, etc., but a circular shape is preferable from the standpoint of easy fiber production. It is preferable to divide the split fiber in advance by spraying a pressurized water flow or the like. If it does in this way, the divided | segmented wet heat gelled resin component will gelatinize by wet heat processing, will form a gelled material, will adhere to the surface of another fiber, and will fix organic substance adsorbent particle | grains. That is, it functions as a binder.

前記湿熱ゲル化複合繊維に占める湿熱ゲル化樹脂成分の割合は、10mass%以上90mass%以下の範囲内であることが好ましい。より好ましい含有量は、30mass%以上である。より好ましい含有量は、70mass%以下である。湿熱ゲル化繊維成分の含有量が10mass%未満であると、有機物吸着性粒子の固着性が低下する傾向にある。湿熱ゲル化繊維成分の含有量が90mass%を超えると、複合繊維の繊維形成性が低下する傾向にある。   The ratio of the wet heat gelled resin component to the wet heat gelled composite fiber is preferably in the range of 10 mass% to 90 mass%. A more preferable content is 30 mass% or more. A more preferable content is 70 mass% or less. If the content of the wet heat gelled fiber component is less than 10 mass%, the sticking property of the organic matter adsorbing particles tends to be lowered. When the content of the wet heat gelled fiber component exceeds 90 mass%, the fiber-forming property of the composite fiber tends to decrease.

前記湿熱ゲル化複合繊維における他の熱可塑性合成繊維成分は、ポリオレフィン、ポリエステル、ポリアミド等いかなるものであってもよいが、好ましくはポリオレフィンである。湿熱ゲル化樹脂成分としてエチレン−ビニルアルコール共重合樹脂を使用した場合、溶融紡糸による複合繊維(コンジュゲート繊維)を形成しやすいからである。   The thermoplastic synthetic fiber component in the wet heat gelled composite fiber may be any material such as polyolefin, polyester, polyamide, etc., but is preferably polyolefin. This is because when an ethylene-vinyl alcohol copolymer resin is used as the wet heat gelling resin component, it is easy to form a composite fiber (conjugate fiber) by melt spinning.

また、他の熱可塑性合成繊維成分として、湿熱ゲル化樹脂成分をゲル化させる温度よりも高い融点を有する熱可塑性合成繊維成分を用いることが好ましい。他の熱可塑性合成繊維成分がゲル化物を形成させる温度よりも低い融点を有する熱可塑性合成繊維成分であると、他の熱可塑性合成繊維成分自体が溶融して硬くなり、ひいては成形体にしたときに収縮を伴って不均一になることがある。   Moreover, as another thermoplastic synthetic fiber component, it is preferable to use a thermoplastic synthetic fiber component having a melting point higher than the temperature at which the wet heat gelled resin component is gelled. When the other thermoplastic synthetic fiber component is a thermoplastic synthetic fiber component having a melting point lower than the temperature at which the gelled product is formed, the other thermoplastic synthetic fiber component itself melts and becomes hard, and as a result, is molded. May become non-uniform with shrinkage.

前記湿熱ゲル化複合繊維が繊維集合物に占める割合は、有機物吸着性粒子を固着することのできる量であれば特に限定されないが、ゲル化物によって繊維を固定し、または有機物吸着性粒子を有効に固着するのに要する複合繊維の割合は、10mass%以上であることが好ましい。より好ましい複合繊維の割合は、30mass%以上である。さらに好ましい複合繊維の割合は、50mass%以上である。   The proportion of the wet heat gelled composite fiber in the fiber aggregate is not particularly limited as long as it is an amount capable of fixing the organic matter-adsorbing particles, but the fibers are fixed by the gelled product or the organic matter-adsorbing particles are effectively used. The ratio of the composite fiber required for fixing is preferably 10 mass% or more. A more preferable ratio of the composite fiber is 30 mass% or more. Furthermore, the ratio of a preferable composite fiber is 50 mass% or more.

前記形態(III)では、前記湿熱ゲル化複合繊維に、さらに湿熱ゲル化樹脂を含有させて複合繊維の表面にゲル化物を形成させることも可能である。有機物吸着性粒子の固着効果をより向上させることができる。   In the form (III), the wet heat gelled composite fiber may further contain a wet heat gelled resin to form a gelled product on the surface of the composite fiber. The fixing effect of the organic matter adsorbing particles can be further improved.

前記形態(II)または前記形態(IV)に用いられる他の繊維としては、レーヨン等の化学繊維、コットン、麻、ウール等の天然繊維等、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、アクリル樹脂、ポリウレタン樹脂等の合成樹脂を単独又は複数成分とする合成繊維等、任意なものを選択して使用できる。   Other fibers used in the form (II) or the form (IV) include chemical fibers such as rayon, natural fibers such as cotton, hemp, wool, polyolefin resin, polyester resin, polyamide resin, acrylic resin, polyurethane Arbitrary things, such as a synthetic fiber which uses synthetic resins, such as resin individually or in multiple components, can be used.

前記形態(II)または前記形態(IV)において、湿熱ゲル化樹脂は、繊維集合物に対して1mass%以上90mass%以下の範囲内で含有させるのが好ましい。より好ましい含有量は、3mass%以上である。より好ましい含有量は、70mass%以下である。湿熱ゲル化樹脂の含有量が1mass%未満であると、ゲル化物によって他の繊維を固定することが困難となったり、有機物吸着性粒子の固着性が低下したりする傾向にある。湿熱ゲル化樹脂の含有量が90mass%を超えると、繊維形状が消失してフィルム状になったり、有機物吸着性粒子がゲル化物に埋没したりすることがある。   In the form (II) or the form (IV), the wet heat gelled resin is preferably contained in the range of 1 mass% to 90 mass% with respect to the fiber aggregate. A more preferable content is 3 mass% or more. A more preferable content is 70 mass% or less. If the content of the wet heat gelled resin is less than 1 mass%, it is difficult to fix other fibers by the gelled product, or the sticking property of the organic substance-adsorbing particles tends to be lowered. If the content of the wet heat gelled resin exceeds 90 mass%, the fiber shape may be lost to form a film, or the organic matter adsorbing particles may be buried in the gelled product.

前記有機物吸着性粒子は、液体中の有機物を吸着する機能を有するものであれば特に限定されないが、活性炭粒子、ゼオライト、シリカゲル、活性白土、層状リン酸塩等の多孔質粒子、これらの多孔質粒子に有機物吸着剤を担持させた多孔質粒子等が好ましい。多孔質粒子の中では、活性炭粒子が特に好ましい。   The organic matter-adsorbing particles are not particularly limited as long as they have a function of adsorbing organic matter in a liquid, but are porous particles such as activated carbon particles, zeolite, silica gel, activated clay, layered phosphate, and the like. The porous particle etc. which carry | supported organic substance adsorption agent to particle | grains are preferable. Among the porous particles, activated carbon particles are particularly preferable.

前記有機物吸着性粒子の平均粒子径は、0.01〜100μmの範囲であることが好ましい。より好ましい平均粒子径の下限は0.5μmであり、更に好ましい下限は1μmである。より好ましい平均粒子径の上限は80μmである。0.01μm未満では、有機物吸着性粒子がゲル化物に埋没することがある。一方、100μmを超える場合は、有機物吸着性粒子の比表面積が小さくなり、充分な浄化性能が得られなくなる場合がある。   The average particle size of the organic matter adsorbing particles is preferably in the range of 0.01 to 100 μm. A more preferable lower limit of the average particle diameter is 0.5 μm, and a further preferable lower limit is 1 μm. A more preferable upper limit of the average particle diameter is 80 μm. If it is less than 0.01 μm, the organic matter adsorbing particles may be buried in the gelled product. On the other hand, when it exceeds 100 μm, the specific surface area of the organic substance-adsorbing particles becomes small, and sufficient purification performance may not be obtained.

本発明の水質浄化材は、前記粒子固着繊維を少なくとも一表面に備えた不織布が好ましい。不織布は加工性が高いため、様々な用途へ適用することができる。また、前記不織布は、効率良く有機物を吸着させるために、前記有機物吸着性粒子の固着量が不織布1m2あたり2g以上であることが好ましく、20g以上であることがより好ましい。 The water purification material of the present invention is preferably a nonwoven fabric provided with the particle-fixed fibers on at least one surface. Nonwoven fabrics have high processability and can be applied to various applications. Moreover, in order that the said nonwoven fabric can adsorb | suck organic substance efficiently, it is preferable that the fixed amount of the said organic substance absorptive particle is 2 g or more per 1 m <2> of nonwoven fabric, and it is more preferable that it is 20 g or more.

本発明において湿熱処理とは、バインダー樹脂を付与した繊維、湿熱ゲル化繊維成分を含む繊維、又はこれらの繊維を含む繊維集合物に、例えば有機物吸着性粒子を含む水系液を付与した後に加熱する処理や、前記水系液を付与しながら加熱する処理のことを示す。加熱の方法は、加熱雰囲気中へ晒す方法、加熱空気中を貫通させる方法、加熱体へ接触させる方法等が挙げられる。   In the present invention, the wet heat treatment refers to heating after applying an aqueous liquid containing organic substance-adsorptive particles, for example, to a fiber provided with a binder resin, a fiber containing a wet heat gelling fiber component, or a fiber assembly containing these fibers. The treatment and the treatment of heating while applying the aqueous liquid are shown. Examples of the heating method include a method of exposing to a heated atmosphere, a method of passing through heated air, and a method of contacting a heated body.

前記水系液を付与した後に加熱する場合は、湿熱処理における繊維または繊維集合物に付与する水分の割合が(以下、水分率という)、20mass%〜800mass%であることが好ましい。より好ましい水分率の下限は、30mass%である。より好ましい水分率の上限は、700mass%である。さらに好ましい水分率の下限は、40mass%である。さらに好ましい水分率の上限は、600mass%である。水分率が20mass%未満であると、湿熱ゲル化が充分に起こらないことがある。一方、水分率が800mass%を超えると、湿熱処理が繊維集合物の表面と内部との間で均一に行われず、湿熱ゲル化の度合いが不均一となる傾向にある。なお、水分の付与方法としては、スプレー、水槽への浸漬等公知の方法で行うことができる。水分が付与された繊維又は繊維集合物は、絞りロール等で圧搾する等の方法で所定の水分率に調整することができる。   In the case of heating after applying the aqueous liquid, the ratio of moisture to be applied to the fiber or fiber aggregate in the wet heat treatment (hereinafter referred to as moisture content) is preferably 20 mass% to 800 mass%. A more preferable lower limit of the moisture content is 30 mass%. A more preferable upper limit of the moisture content is 700 mass%. Furthermore, the minimum of the preferable moisture content is 40 mass%. Furthermore, the upper limit of a preferable moisture content is 600 mass%. If the moisture content is less than 20 mass%, wet heat gelation may not occur sufficiently. On the other hand, when the moisture content exceeds 800 mass%, the wet heat treatment is not uniformly performed between the surface and the inside of the fiber assembly, and the degree of wet heat gelation tends to be uneven. In addition, as a provision method of a water | moisture content, it can carry out by well-known methods, such as spray and immersion to a water tank. The fiber or fiber aggregate to which moisture has been applied can be adjusted to a predetermined moisture content by a method such as squeezing with a squeeze roll or the like.

前記水系液を付与しながら加熱する場合は、湿熱ゲル化樹脂のゲル化が水分の付与と同時に進行するので、前記水系液中の有機物吸着性粒子の濃度と、前記水系液の温度を調整して、有機物吸着性粒子の固着量を調整すればよい。具体的には、有機物吸着性粒子を含む熱水中(90℃以上)に繊維又は繊維集合物を含浸することにより、水質浄化材を得ることができる。   When heating while applying the aqueous liquid, the gelation of the wet heat gelled resin proceeds simultaneously with the application of moisture, so the concentration of the organic matter adsorbing particles in the aqueous liquid and the temperature of the aqueous liquid are adjusted. Thus, the amount of organic substance-adsorbing particles fixed may be adjusted. Specifically, a water purification material can be obtained by impregnating fibers or fiber aggregates in hot water (90 ° C. or higher) containing organic substance-adsorbing particles.

湿熱処理温度は、湿熱ゲル化樹脂又は湿熱ゲル化繊維成分(以下、両者を併せて「バインダー樹脂」ともいう。)のゲル化温度以上融点−20℃以下である。好ましい湿熱処理温度の下限は、50℃である。より好ましい湿熱処理温度の下限は、80℃である。また、好ましい湿熱処理温度の上限は、バインダー樹脂の融点−30℃である。より好ましい湿熱処理温度の上限は、バインダー樹脂の融点−40℃である。湿熱処理温度がバインダー樹脂のゲル化温度未満であると、有機物吸着性粒子を有効に固着することができない場合がある。湿熱処理温度がバインダー樹脂の融点−20℃を超えると、湿熱ゲル化成分の融点に近くなるため、不織布にしたときに収縮を引き起こすことがある。   The wet heat treatment temperature is not lower than the gelation temperature of the wet heat gelled resin or wet heat gelled fiber component (hereinafter also referred to as “binder resin”) and has a melting point of −20 ° C. or lower. The lower limit of the preferred wet heat treatment temperature is 50 ° C. A more preferable lower limit of the wet heat treatment temperature is 80 ° C. Moreover, the upper limit of preferable wet heat treatment temperature is -30 degreeC of melting | fusing point of binder resin. The upper limit of the more preferable wet heat treatment temperature is the melting point of the binder resin −40 ° C. When the wet heat treatment temperature is lower than the gelation temperature of the binder resin, the organic substance adsorbing particles may not be effectively fixed. When the wet heat treatment temperature exceeds the melting point of the binder resin of −20 ° C., it becomes close to the melting point of the wet heat gelling component.

次に、本発明の一実施形態について図面を用いて説明する。なお、以下の実施形態においては、水質浄化材として不織布を用いた場合について説明する。   Next, an embodiment of the present invention will be described with reference to the drawings. In addition, in the following embodiment, the case where a nonwoven fabric is used as a water quality purification material is demonstrated.

図1A〜Cは本発明の一実施形態における不織布を構成する粒子固着繊維の断面図である。図1Aはポリプロピレンを芯成分2とし、エチレン−ビニルアルコール共重合樹脂を鞘成分1とした複合繊維5であって、鞘成分1に有機物吸着性粒子3を固着させた例である。図1Bはポリプロピレンを芯成分2とし、エチレン−ビニルアルコール共重合樹脂を鞘成分1とした複合繊維6であって、鞘成分6の外側にエチレン−ビニルアルコール共重合樹脂をバインダー4として付着させ、このバインダー4に有機物吸着性粒子3を固着させた例である。図1Cはポリプロピレン8とエチレン−ビニルアルコール共重合樹脂7を多分割に配置した複合繊維9とし、エチレン−ビニルアルコール共重合樹脂7の周辺部に有機物吸着性粒子3を固着させた例である。   1A to 1C are cross-sectional views of particle-fixed fibers constituting a nonwoven fabric in one embodiment of the present invention. FIG. 1A is an example of a composite fiber 5 having polypropylene as the core component 2 and ethylene-vinyl alcohol copolymer resin as the sheath component 1, in which the organic substance adsorbing particles 3 are fixed to the sheath component 1. FIG. 1B is a composite fiber 6 having polypropylene as the core component 2 and ethylene-vinyl alcohol copolymer resin as the sheath component 1, and having the ethylene-vinyl alcohol copolymer resin attached as the binder 4 on the outside of the sheath component 6; This is an example in which the organic substance adsorbing particles 3 are fixed to the binder 4. FIG. 1C shows an example in which a composite fiber 9 in which polypropylene 8 and ethylene-vinyl alcohol copolymer resin 7 are arranged in multiple parts is used, and organic substance adsorbing particles 3 are fixed to the periphery of ethylene-vinyl alcohol copolymer resin 7.

図2は本発明の一実施形態における不織布(水質浄化材)の製造方法の一例工程図である。不織布原反31を、槽32内の有機物吸着性粒子を含む水系液又は有機物吸着性粒子とエチレン−ビニルアルコール共重合樹脂とを含む溶液33に含浸し、絞りロール34で絞り、スチーマー35とサクション36の間で湿熱処理し、そのまま巻き取るか、又は一対の加熱ロール37,37にかけたパターニング用キャンバスロール38,38により圧縮成形し、不織布表面に所定のパターン模様を付与し、その後、巻き取り機39に巻き取る方法もある。   FIG. 2 is an example process diagram of a method for producing a nonwoven fabric (water purification material) in one embodiment of the present invention. The nonwoven fabric 31 is impregnated with an aqueous liquid containing organic matter-adsorbing particles in a tank 32 or a solution 33 containing organic matter-adsorbing particles and an ethylene-vinyl alcohol copolymer resin, squeezed with a squeeze roll 34, and steamer 35 and suction. 36 is wet-heated and wound up as it is, or compression-molded by a patterning canvas roll 38, 38 applied to a pair of heating rolls 37, 37 to give a predetermined pattern to the nonwoven fabric surface, and then wound up There is also a method of winding around the machine 39.

以上、本発明の一実施形態について説明したが、本発明は前記実施形態には限定されない。例えば、前記実施形態では、水質浄化材として不織布を例に挙げて説明したが、本発明はこれに限定されず、前記粒子固着繊維を複数束ねて形成された繊維束を有機物吸着部とする水質浄化モジュールとしてもよい。また、前記粒子固着繊維の集合物を円筒状に巻きつけたものや、プリーツ状に成型したものを、水質浄化フィルターとして用いることもできる。   As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment. For example, in the above-described embodiment, the nonwoven fabric is used as an example of the water purification material. However, the present invention is not limited to this, and the water quality using the fiber bundle formed by bundling a plurality of the particle-adhering fibers as an organic substance adsorbing portion. It may be a purification module. Moreover, the thing which wound the aggregate | assembly of the said particle | grain fixed fiber in the shape of a cylinder, and shape | molded in the shape of a pleat can also be used as a water quality purification filter.

[実施例1]
(不織布原反の作製)
鞘成分がエチレン−ビニルアルコール共重合樹脂(EVOH、エチレン含有量38モル%、融点176℃)であり、芯成分がポリプロピレン(PP、融点161℃)であり、EVOH:PPが50:50の割合(容積比)である芯鞘型複合繊維(繊度2.8dtex、繊維長51mm)を準備した。
[Example 1]
(Production of nonwoven fabric)
The sheath component is an ethylene-vinyl alcohol copolymer resin (EVOH, ethylene content 38 mol%, melting point 176 ° C.), the core component is polypropylene (PP, melting point 161 ° C.), and EVOH: PP is a ratio of 50:50. A core-sheath type composite fiber (fineness: 2.8 dtex, fiber length: 51 mm) having a (volume ratio) was prepared.

前記芯鞘型複合繊維をセミランダムカード機で開繊し、目付101g/m2のカードウェブを作製した。次いで、前記カードウェブを90メッシュの平織り支持体に載置し、前記カードウェブの幅方向に一列にオリフィス(径:0.12mm、ピッチ:0.6mm)が配置されたノズルから前記カードウェブに向けて水流を水圧3MPaで噴射した後、更に水圧4MPaで噴射した。続いて、前記カードウェブを裏返して、前記ノズルから水圧4MPaで水流を噴射して、実施例1に使用される水流交絡不織布原反を作製した。 The core-sheath type composite fiber was opened with a semi-random card machine to produce a card web having a basis weight of 101 g / m 2 . Next, the card web is placed on a 90-mesh plain weave support, and the nozzle is arranged on the card web from a nozzle in which orifices (diameter: 0.12 mm, pitch: 0.6 mm) are arranged in a row in the width direction of the card web. The water flow was injected at a water pressure of 3 MPa, and then further injected at a water pressure of 4 MPa. Subsequently, the card web was turned upside down, and a water flow was jetted from the nozzle at a water pressure of 4 MPa to produce a water-entangled nonwoven fabric used in Example 1.

(有機物吸着性粒子)
有機物吸着性粒子としては、活性炭粒子:「クラレコール PL−D」(クラレケミカル製、ヤシガラ炭、平均粒子径40〜50μm)を使用した。
(Organic adsorbent particles)
As the organic substance adsorbing particles, activated carbon particles: “Kuraray Coal PL-D” (manufactured by Kuraray Chemical Co., Ltd., coconut husk charcoal, average particle diameter of 40 to 50 μm) was used.

(粒子固着処理)
前記不織布原反を、10mass%の前記活性炭粒子を含む水分散液(20℃)に浸漬し、マングルロールの絞り圧力でピックアップ率を調整して、前記活性炭粒子の固着量を表1に示す数値となるように調整した。なお、ピックアップ率とは、不織布原反の質量に対する水分量と活性炭粒子量との和に100を乗じた値である。次いで、水分散液を含浸させた前記不織布原反を、線径:0.3mm、メッシュ数:縦30本/inch×横25本/inchの2枚の平織りのプラスチックネット(縦40cm×横40cm)で挟持して、150℃に加熱したホットプレートに載置し、更に、上側の前記プラスチックネットをアルミニウムシート(1g/cm2)で覆って15分間湿熱処理をした。得られた不織布を水洗し、熱風ドライヤー(100℃)で乾燥して、実施例1の不織布(水質浄化材)を得た。
(Particle fixing treatment)
The nonwoven fabric raw fabric is immersed in an aqueous dispersion (20 ° C.) containing 10% by mass of the activated carbon particles, and the pick-up rate is adjusted by the squeezing pressure of the mangle roll. It adjusted so that it might become. The pickup rate is a value obtained by multiplying the sum of the water content and the activated carbon particle amount by 100 with respect to the mass of the nonwoven fabric. Next, the nonwoven fabric original impregnated with the aqueous dispersion was made into two plain-woven plastic nets (40 cm long × 40 cm wide) having a wire diameter of 0.3 mm and the number of meshes: 30 vertical / inch × 25 horizontal / inch. ) And placed on a hot plate heated to 150 ° C., and the upper plastic net was covered with an aluminum sheet (1 g / cm 2 ) and subjected to wet heat treatment for 15 minutes. The obtained nonwoven fabric was washed with water and dried with a hot-air dryer (100 ° C.) to obtain the nonwoven fabric (water purification material) of Example 1.

[実施例2]
目付40g/m2のカードウェブを用い、前記活性炭粒子を固着させる際における水分散液中の前記活性炭粒子の濃度を5mass%とし、マングルロールでピックアップ率を調整して前記活性炭粒子の固着量を表1に示す数値となるように調整したこと以外は、実施例1と同様の方法で、実施例2の不織布(水質浄化材)を得た。
[Example 2]
Using a card web with a basis weight of 40 g / m 2 , the concentration of the activated carbon particles in the aqueous dispersion when the activated carbon particles are fixed is 5 mass%, and the pick-up rate is adjusted with a mangle roll to adjust the fixed amount of the activated carbon particles. A nonwoven fabric (water purification material) of Example 2 was obtained in the same manner as in Example 1 except that the values were adjusted to the values shown in Table 1.

表1に、実施例1及び実施例2の不織布(水質浄化材)について、不織布原反の目付、活性炭粒子の固着量、活性炭粒子の固着率及び不織布(水質浄化材)の目付を示した。なお、実施例1,2の不織布は、繊維形状を保持しており、ゲル加工時に不織布が収縮することはなかった。   In Table 1, about the nonwoven fabric (water purification material) of Example 1 and Example 2, the fabric weight of the nonwoven fabric raw material, the fixed amount of activated carbon particles, the fixed rate of activated carbon particles, and the fabric weight of the nonwoven fabric (water purification material) are shown. In addition, the nonwoven fabrics of Examples 1 and 2 maintained the fiber shape, and the nonwoven fabrics did not shrink during gel processing.

Figure 0004634072
Figure 0004634072

[比較例1]
自己架橋型アクリル酸エステルエマルジョン(日本カーバイド工業製、商品名「ニカゾールFX−555A」)を15mass%と、前記活性炭粒子を10mass%含有した配合液を準備した。次に、前記配合液に前述した実施例1に使用される水流交絡不織布原反と同じ不織布原反を浸漬し、マングルロールで絞り、熱風乾燥機を用いて温度140℃、処理時間15分で乾燥させるとともに硬化させ、活性炭粒子の固着量が38g/m2のケミカルボンド不織布(比較例1)を得た。
[Comparative Example 1]
A blending solution containing 15 mass% of a self-crosslinking acrylic ester emulsion (manufactured by Nippon Carbide Industries, trade name “Nicazole FX-555A”) and 10 mass% of the activated carbon particles was prepared. Next, the same nonwoven fabric raw material as the hydroentangled nonwoven fabric used in Example 1 described above is immersed in the blended solution, squeezed with a mangle roll, and a temperature of 140 ° C. and a processing time of 15 minutes using a hot air dryer. It was made to dry and hardened, and the chemical bond nonwoven fabric (comparative example 1) with the fixed amount of activated carbon particle of 38 g / m < 2 > was obtained.

[比較例2]
比較例2として、活性炭素繊維不織布(クラレケミカル(株)製、商品名「クラクティブ」、目付約180g/m2)を用意した。
[Comparative Example 2]
As Comparative Example 2, an activated carbon fiber non-woven fabric (manufactured by Kuraray Chemical Co., Ltd., trade name “Crativ”, about 180 g / m 2 per unit area) was prepared.

[水質浄化性能試験方法]
実施例1,2及び比較例1,2について、図3に示す水循環式簡易試験機にて水質浄化性能試験を行った。図3に示すように、水循環式簡易試験機40は、スタンド41と、スタンド41に取り付けられた固定治具42a,42bと、固定治具42aによりスタンド41に固定された有底円筒状の容器43と、容器43内の水を循環するポンプ44とを備えている。そして、ポンプ44は、容器43の底部の開口43aに取り付けられた管44aと、固定治具42bによりスタンド41に固定された管44bとを備え、容器43の開口43aから管44aにより容器43内の水を吸引し、吸引した水を管44bにより、容器43の上部へ排出する。なお、本試験において、実施例1及び比較例2については、容器43内に化学的酸素要求量(COD)が40ppmとなる工場廃水を入れて行い、実施例2及び比較例1については、CODが20ppmとなる工場廃水を入れて行った。また、ポンプ44に接続したスライダック(図示せず)により、水の循環流量を6リットル/分とし、試験中において、容器43内の前記工場廃水の液量を1リットルに維持した。
[Water purification performance test method]
About Examples 1 and 2 and Comparative Examples 1 and 2, the water purification performance test was done with the water circulation type simple tester shown in FIG. As shown in FIG. 3, the water circulation type simple testing machine 40 includes a stand 41, fixing jigs 42a and 42b attached to the stand 41, and a bottomed cylindrical container fixed to the stand 41 by the fixing jig 42a. 43 and a pump 44 for circulating the water in the container 43. The pump 44 includes a tube 44a attached to the opening 43a at the bottom of the container 43, and a tube 44b fixed to the stand 41 by a fixing jig 42b, and the inside of the container 43 through the tube 44a from the opening 43a of the container 43. The water is sucked and the sucked water is discharged to the upper part of the container 43 through the pipe 44b. In this test, for Example 1 and Comparative Example 2, factory wastewater with a chemical oxygen demand (COD) of 40 ppm was placed in the container 43, and for Example 2 and Comparative Example 1, COD The factory wastewater was 20 ppm. In addition, a slidac (not shown) connected to the pump 44 set the water circulation flow rate to 6 liters / minute, and maintained the amount of the factory waste water in the container 43 at 1 liter during the test.

[試験用サンプルの作製方法]
実施例1,2及び比較例1,2のそれぞれの不織布を、3cm×3cmの小片50(図3参照)に切断した。次に、実施例1,2及び比較例1,2のそれぞれについて、活性炭量が10gとなるように、小片50を秤量し、秤量した小片50を市販の茶パック51(図3参照)に入れて試験用サンプル52(図3参照)を作製した。なお、水質浄化性能試験の際は、図3に示すように、試験用サンプル52を、容器43内の前記工場廃水に浸漬し、ワイヤー53により固定治具42bに固定した。
[Test Sample Preparation Method]
The nonwoven fabrics of Examples 1 and 2 and Comparative Examples 1 and 2 were cut into small pieces 50 (see FIG. 3) of 3 cm × 3 cm. Next, for each of Examples 1 and 2 and Comparative Examples 1 and 2, the small piece 50 is weighed so that the amount of activated carbon is 10 g, and the weighed small piece 50 is placed in a commercially available tea pack 51 (see FIG. 3). Thus, a test sample 52 (see FIG. 3) was produced. In the water purification performance test, as shown in FIG. 3, the test sample 52 was immersed in the factory waste water in the container 43 and fixed to the fixing jig 42 b by the wire 53.

[COD濃度の測定方法]
COD濃度は、測定時間毎に容器43内の前記工場廃水をスポイトでビーカーに採取し、共立理化学研究所製の簡易水質分析製品「パックテスト」(WAK−COD、測定範囲0〜100mg/リットル)にて標準色と比色して測定した。結果を表2に示す。
[Method for measuring COD concentration]
For COD concentration, the factory waste water in the container 43 is collected in a beaker with a dropper every measurement time, and a simple water quality analysis product “Pack Test” (WAK-COD, measurement range 0 to 100 mg / liter) manufactured by Kyoritsu Riken. The color was measured with a standard color. The results are shown in Table 2.

Figure 0004634072
Figure 0004634072

[結果]
表2に示すとおり、実施例1,2の不織布を使用した場合は、比較例1,2に比べ、COD濃度の減少速度が速く、良好な水質浄化性能を示した。特に、測定開始から120分後において、実施例2のCOD濃度は、比較例1のCOD濃度の半分となり、水質浄化性能が向上した。これは、実施例2の不織布中の活性炭粒子(有機物吸着性粒子)が、繊維の表面に固定された湿熱ゲル化したゲル化物によって固着されているため、有機物吸着性粒子が表面に露出した状態で固着され、比較例1に比べ、有機物吸着性粒子の比表面積の減少が抑制されたことによるものと考えられる。
[result]
As shown in Table 2, when the nonwoven fabrics of Examples 1 and 2 were used, the COD concentration decrease rate was faster than that of Comparative Examples 1 and 2, and good water purification performance was exhibited. In particular, 120 minutes after the start of measurement, the COD concentration of Example 2 was half that of Comparative Example 1, and the water purification performance was improved. This is because the activated carbon particles (organic matter adsorptive particles) in the nonwoven fabric of Example 2 are fixed by the wet heat gelled gelled product fixed on the surface of the fiber, so that the organic matter adsorptive particles are exposed on the surface. This is probably because the decrease in the specific surface area of the organic substance-adsorbing particles was suppressed as compared with Comparative Example 1.

[活性炭脱落率]
実施例2及び比較例2について、以下に示す方法で活性炭脱落率を測定した。
[Activated carbon drop-off rate]
About Example 2 and Comparative Example 2, the activated carbon drop-off rate was measured by the method shown below.

実施例2及び比較例2のそれぞれの不織布を、活性炭量が1.21gとなるようにカットした。カットしたサンプルのサイズは、実施例2が30cm×20cmで、比較例2が6.6cm×10cmであった。次に、3リットルのビーカーに2リットルの水を入れ、実施例2及び比較例2の前記サンプルをそれぞれビーカー内の水に入れて、マグネットスターラーで4時間攪拌した。その後、サンプルを取り出して、ビーカー内の残存液を、予め質量を測定しておいたガラス濾紙(東洋濾紙社製、商品名「アドバンテック」、型番「GLASS FIBER GS25」、直径47mm)を用いて吸引濾過し、濾過したガラス濾紙を乾燥した後、乾燥後のガラス濾紙の質量を測定した。そして、得られたガラス濾紙の質量から、活性炭の脱落量及び脱落率を求めた。なお、活性炭の脱落量は、乾燥後のガラス濾紙の質量から濾過前のガラス濾紙の質量を減じた値とした。また、活性炭の脱落率は、前記活性炭の脱落量を試験前の活性炭量(1.21g)で除した値に100を乗じた値とした。結果を表3に示す。   The nonwoven fabrics of Example 2 and Comparative Example 2 were cut so that the amount of activated carbon was 1.21 g. The size of the cut sample was 30 cm × 20 cm in Example 2, and 6.6 cm × 10 cm in Comparative Example 2. Next, 2 liters of water was placed in a 3 liter beaker, and the samples of Example 2 and Comparative Example 2 were each placed in the water in the beaker and stirred with a magnetic stirrer for 4 hours. Then, the sample is taken out, and the residual liquid in the beaker is sucked using glass filter paper (manufactured by Toyo Roshi Kaisha, trade name “Advantech”, model number “GLASS FIBER GS25”, diameter 47 mm) whose mass has been measured in advance. After filtering and drying the filtered glass filter paper, the mass of the dried glass filter paper was measured. And from the mass of the obtained glass filter paper, the dropping amount and dropping rate of the activated carbon were determined. The amount of the activated carbon dropped out was a value obtained by subtracting the mass of the glass filter paper before filtration from the mass of the glass filter paper after drying. Moreover, the falling rate of activated carbon was set to a value obtained by multiplying 100 by the value obtained by dividing the amount of falling activated carbon by the amount of activated carbon before the test (1.21 g). The results are shown in Table 3.

Figure 0004634072
Figure 0004634072

[結果]
表3に示すとおり、実施例2の不織布は、比較例2に比べ活性炭の脱落量及び脱落率を抑えることができた。これは、実施例2の不織布中の活性炭(活性炭粒子)が、繊維の表面に固定された湿熱ゲル化したゲル化物によって固着されているため、比較例2に比べ、活性炭をより強固に保持できるからであると考えられる。
[result]
As shown in Table 3, the nonwoven fabric of Example 2 was able to suppress the falling amount and dropping rate of the activated carbon as compared with Comparative Example 2. This is because the activated carbon (activated carbon particles) in the nonwoven fabric of Example 2 is fixed by the wet-heat gelled gel fixed on the surface of the fiber, so that the activated carbon can be held more firmly than Comparative Example 2. It is thought that it is from.

本発明の一実施形態における不織布(水質浄化材)を構成する粒子固着繊維の断面図である。It is sectional drawing of the particle | grain fixed fiber which comprises the nonwoven fabric (water purification material) in one Embodiment of this invention. 本発明の一実施形態における不織布(水質浄化材)の製造方法の一例工程図である。It is an example process drawing of the manufacturing method of the nonwoven fabric (water quality purification material) in one Embodiment of this invention. 水循環式簡易試験機の概略斜視図である。It is a schematic perspective view of a water circulation type simple tester.

符号の説明Explanation of symbols

1 鞘成分
2 芯成分
3 有機物吸着性粒子
4 バインダー
5,6,9 複合繊維
7 エチレン−ビニルアルコール共重合樹脂
8 ポリプロピレン
DESCRIPTION OF SYMBOLS 1 Sheath component 2 Core component 3 Organic substance adsorptive particle 4 Binder 5, 6, 9 Composite fiber 7 Ethylene-vinyl alcohol copolymer resin 8 Polypropylene

Claims (6)

繊維と、その表面のバインダー樹脂と、前記バインダー樹脂に固着された有機物吸着性粒子とを含む粒子固着繊維を有する水質浄化材であって、
前記バインダー樹脂は、湿熱ゲル化樹脂であり、
前記湿熱ゲル化樹脂は、エチレン−ビニルアルコール共重合樹脂であり、前記エチレン−ビニルアルコール共重合樹脂において、エチレンの含有率は、20モル%以上50モル%以下であり、
前記有機物吸着性粒子は、前記湿熱ゲル化樹脂が湿熱ゲル化したゲル化物によって固着されていることを特徴とする水質浄化材。
A water purification material having a particle fixing fiber containing fibers, a binder resin on the surface thereof, and organic matter adsorbing particles fixed to the binder resin,
The binder resin is a wet heat gelling resin,
The wet heat gelling resin is an ethylene-vinyl alcohol copolymer resin, and the ethylene content in the ethylene-vinyl alcohol copolymer resin is 20 mol% or more and 50 mol% or less,
The organic substance adsorbing particles are fixed by a gelled product obtained by gelling the wet heat gelled resin.
前記有機物吸着性粒子は、多孔質粒子を含む請求項1に記載の水質浄化材。   The water purification material according to claim 1, wherein the organic matter adsorbing particles include porous particles. 前記多孔質粒子は、活性炭粒子である請求項2に記載の水質浄化材。   The water purification material according to claim 2, wherein the porous particles are activated carbon particles. 前記有機物吸着性粒子の平均粒子径は、0.01〜100μmの範囲である請求項1又は請求項2に記載の水質浄化材。   The water purification material according to claim 1 or 2, wherein an average particle size of the organic matter adsorbing particles is in a range of 0.01 to 100 µm. 前記繊維及び前記バインダー樹脂は、
(I)湿熱ゲル化樹脂成分と他の熱可塑性合成繊維成分とを含む複合繊維、
(II)前記複合繊維と他の繊維を混合したもの、
(III)前記複合繊維と湿熱ゲル化樹脂を混合したもの、及び
(IV)湿熱ゲル化樹脂と他の繊維を混合したもの
から選ばれる少なくとも一つの組み合わせを有する請求項1に記載の水質浄化材。
The fibers and the binder resin are
(I) a composite fiber comprising a wet heat gelled resin component and another thermoplastic synthetic fiber component,
(II) a mixture of the composite fiber and other fibers,
(III) a mixture of the composite fiber and wet heat gelled resin, and
(IV) The water purification material according to claim 1, which has at least one combination selected from a mixture of a wet heat gelled resin and other fibers.
前記水質浄化材は不織布であり、
前記粒子固着繊維は、前記不織布の少なくとも一表面に存在している請求項1に記載の水質浄化材。
The water purification material is a nonwoven fabric,
The water purification material according to claim 1, wherein the particle-fixed fibers are present on at least one surface of the nonwoven fabric.
JP2004183709A 2003-08-04 2004-06-22 Water purification material Expired - Fee Related JP4634072B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004183709A JP4634072B2 (en) 2004-06-22 2004-06-22 Water purification material
US10/566,617 US20070128434A1 (en) 2003-08-04 2004-08-02 Filler-affixed fiber, fiber structure, and fiber molded body, and method for producing the same
PCT/JP2004/011397 WO2005012605A2 (en) 2003-08-04 2004-08-02 Filler-fixed fiber, fiber structure, molded fiber, and processes for producing these
KR1020067002051A KR101138567B1 (en) 2003-08-04 2004-08-02 Filler-fixed fiber, fiber structure, molded fiber, and processes for producing these
TW094103356A TW200540309A (en) 2004-06-10 2005-02-03 Filler-fixed fiber, fiber structure, molded fiber, and processes for producing these
HK06111804.7A HK1091244A1 (en) 2003-08-04 2006-10-25 Filler-fixed fiber, fiber structure, molded fiber, and processes for producing these

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004183709A JP4634072B2 (en) 2004-06-22 2004-06-22 Water purification material

Publications (2)

Publication Number Publication Date
JP2006007002A JP2006007002A (en) 2006-01-12
JP4634072B2 true JP4634072B2 (en) 2011-02-16

Family

ID=35774823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004183709A Expired - Fee Related JP4634072B2 (en) 2003-08-04 2004-06-22 Water purification material

Country Status (1)

Country Link
JP (1) JP4634072B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194177A1 (en) * 2017-04-20 2018-10-25 東レ株式会社 Fibrous adsorbent, water purification filter, and water treatment method
CN111437708B (en) * 2020-05-15 2022-09-13 四川轻化工大学 Multifunctional VOC (volatile organic compound) gas barrier system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126840A (en) * 1994-10-31 1996-05-21 Unitika Ltd Composite sheet containing powdery active carbon and its production
JPH11100792A (en) * 1997-07-30 1999-04-13 Unitika Ltd Fibrous activated carbon-containing composite sheet and its production
JP2004148234A (en) * 2002-10-31 2004-05-27 Tomoegawa Paper Co Ltd Ion exchange fiber sheet for water treatment and treatment method of water using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126840A (en) * 1994-10-31 1996-05-21 Unitika Ltd Composite sheet containing powdery active carbon and its production
JPH11100792A (en) * 1997-07-30 1999-04-13 Unitika Ltd Fibrous activated carbon-containing composite sheet and its production
JP2004148234A (en) * 2002-10-31 2004-05-27 Tomoegawa Paper Co Ltd Ion exchange fiber sheet for water treatment and treatment method of water using the same

Also Published As

Publication number Publication date
JP2006007002A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
CN1279997C (en) Nanofiber filter media
CN101934172B (en) Filter medium and structure
JP2008518770A (en) Improved high strength, high capacity filter media and structure
CN100422427C (en) Filler-fixed fiber, fiber structure, molded fiber, and processes for producing these
CN102794051A (en) Air filtration material and application thereof
WO2012106659A1 (en) Filter media pack, filter assembly, and method
Zhu et al. Preparation of high strength ultrafine polyvinyl chloride fibrous membrane and its adsorption of cationic dye
KR101138567B1 (en) Filler-fixed fiber, fiber structure, molded fiber, and processes for producing these
JP5102992B2 (en) Functional separator, gas adsorber and tobacco deodorant filter
JP2007314904A (en) Moist heat adhesive conjugate fiber, filler-fixed fiber and fiber structure
CN111744273B (en) Activated carbon filter element and preparation method thereof
JP2008036880A (en) Laminated nonwoven fabric, gelled sheet and filler fixed sheet
JP4634072B2 (en) Water purification material
JP4582777B2 (en) Gas adsorbent and method for producing the same
JP4603898B2 (en) Fiber structure, method for producing the same, and method for producing filler-fixed fibers
JP2021006337A (en) Filter and filter element
JP4207485B2 (en) Rod-like fiber molded body
US6440266B1 (en) Production of reactive material containing webs
CN114272680B (en) Composite chromatographic filter membrane material based on nano-fiber and polymer microsphere and preparation method thereof
CN100423807C (en) Nanofiber filter media
JP4601442B2 (en) Method for producing filler-fixed fiber and method for producing fiber structure
TW200540309A (en) Filler-fixed fiber, fiber structure, molded fiber, and processes for producing these
JP3767722B2 (en) Adsorbent sheet and air purification filter
CN111744271A (en) Activated carbon filter element and preparation method thereof
CN113795323A (en) Filter medium for filter and filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101118

R150 Certificate of patent or registration of utility model

Ref document number: 4634072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees