WO2005012179A2 - 超臨界水又は亜臨界水、及びこれらを使用した有機物の酸化方法 - Google Patents

超臨界水又は亜臨界水、及びこれらを使用した有機物の酸化方法 Download PDF

Info

Publication number
WO2005012179A2
WO2005012179A2 PCT/JP2004/010969 JP2004010969W WO2005012179A2 WO 2005012179 A2 WO2005012179 A2 WO 2005012179A2 JP 2004010969 W JP2004010969 W JP 2004010969W WO 2005012179 A2 WO2005012179 A2 WO 2005012179A2
Authority
WO
WIPO (PCT)
Prior art keywords
water
nitrate
oxidizing
substance
supercritical water
Prior art date
Application number
PCT/JP2004/010969
Other languages
English (en)
French (fr)
Other versions
WO2005012179A3 (ja
Inventor
Hiroshi Tomiyasu
Ki-Chul Park
Original Assignee
Hiroshi Tomiyasu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshi Tomiyasu filed Critical Hiroshi Tomiyasu
Publication of WO2005012179A2 publication Critical patent/WO2005012179A2/ja
Publication of WO2005012179A3 publication Critical patent/WO2005012179A3/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/008Processes carried out under supercritical conditions
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/20Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by hydropyrolysis or destructive steam gasification, e.g. using water and heat or supercritical water, to effect chemical change
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/38Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by oxidation; by combustion
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/22Organic substances containing halogen
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2203/00Aspects of processes for making harmful chemical substances harmless, or less harmful, by effecting chemical change in the substances
    • A62D2203/04Combined processes involving two or more non-distinct steps covered by groups A62D3/10 - A62D3/40
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to supercritical water or subcritical water containing an oxidizing agent for oxidizing a chemical substance.
  • the technique for decomposing organic substances using supercritical water is generally a closed system treatment.
  • a typical example thereof is oxygen in supercritical water (including oxygen generated by adding hydrogen peroxide). ), which burns organic substances by the so-called supercritical hydroxide method.
  • Non-Patent Document 3 a method of reacting the organic substance with an alkalinized compound such as sodium hydroxide in a supercritical state for the purpose of dechlorination.
  • Non-patent document 1 Chemical Engineering Society, Environmental Partnership CLUB Co-edited Advances in Chemical Engineering 35 (Waste Treatment), Bookstore p. 222-230
  • Non-Patent Document 2 Motonobu GOTO, Sato shi KAWAJIRI, Super Green 200 2proceedings, Suwon, Korea, 2002
  • Non-patent document 3 Environmental technology of supercritical fluid p90-91 (Takeshi Sako), NTS Publishing Co., Ltd., 1999
  • the first is a problem in terms of safety management or operability by using hydrogen peroxide as an oxygen supply source.
  • hydrogen peroxide is used as a source of oxygen as an oxidizing agent, a large amount of oxygen is easily generated by the decomposition because hydrogen peroxide, which is easily decomposed, is present in excess. It is a force that creates dangerous pressure rise and is dangerous.
  • the organic substance and hydrogen peroxide react violently even in supercritical water, so that a rapid temperature rise is likely to occur.
  • the sudden rise in temperature if the temperature rises instantaneously to more than 1,000 degrees! /
  • There is also a report (Yoshio Yoshizawa; Japan Society for the Promotion of Science, Future Development Research Promotion Project, “Generation, Conversion, and Systemization of Innovative Future Energy” Research Project, Final Report 2002). Therefore, its handling is also difficult.
  • the third problem is that when chloride is oxidized as a chemical substance, a corrosive substance is generated. This is because, when chloride is oxidized, a chloride-based acid such as hydrochloric acid is generated based on the chlorine in the chloride.
  • the conventional method has the following problems caused by oxidizing organic substances.
  • soot In the supercritical water oxidation method, when an organic substance is burned in supercritical water using oxygen as an oxidizing agent, there is a problem that soot is usually generated. Soot itself does not belong to harmful substances such as PCB, but if the generated soot adheres to the equipment, it may increase the labor and cost required for maintenance and maintenance of the equipment.
  • the present inventors have conducted intensive studies to solve the above various problems, and as a result, have found that the use of a substance derived from nitrate as an oxidizing agent can solve all of the above problems. Reached.
  • the gist of the present invention is a supercritical water or a subcritical water containing a substance derived from a nitrate, and the use of the supercritical water or the subcritical water for oxidizing an organic substance.
  • Supercritical water or subcritical water that can oxidize chemical substances under conditions that minimize rapid pressure rise and temperature rise due to the use of oxygen as an oxidizing agent so-called mild conditions, and use of these A method for oxidizing organic substances can be provided.
  • a reaction that is completed in 10 seconds or more is performed (JR Portela, E. Nebot, E. Martinez de la Ossa, J. Supercritical Fluids 21, 125-145 (2001)). In, it is a mild condition that it takes about several tens of minutes.
  • the present invention also relates to an organic substance using supercritical water, which can reduce the volume and weight of chemical substances in industrial waste, in particular, organic substances based on vinyl chloride, including vinyl chloride.
  • the present invention can provide an acid-riding method, and can solve the problem caused by landfilling industrial waste.
  • water containing sodium nitrate as an oxidizing agent is mixed with PCB, which is an organic chlorine-based aromatic compound (specifically, para-dichlorobenzene, which is a simulated substance thereof), and the water is supercritical.
  • PCB an organic chlorine-based aromatic compound (specifically, para-dichlorobenzene, which is a simulated substance thereof)
  • the decomposition proceeds under such mild conditions that no rapid pressure or temperature increase is recognized, the knowledge and the decomposition of the PCB into harmless substances This is based on the knowledge that it can be done.
  • the supercritical water or subcritical water of the present invention contains an oxidizing agent as described in claim 1, and the oxidizing agent is composed of a substance derived from nitrate, which is different from conventional oxygen. It is characterized by being performed.
  • the substance derived from nitrate means a substance that generates nitrate power when water containing nitrate is in a supercritical state or a subcritical state, and the oxidizing agent is derived from nitrate.
  • the term “substance” refers to a substance having an oxidizing power and acting as an oxidizing agent among the substances generated from the nitrate. Specifically, it corresponds to nitrate ion in the concept of a solution, and when the nitrate ion force also generates a substance that acts as an oxidizing agent such as nitrite ion, the substance is also included.
  • the nitrate is not particularly limited, for example, sodium nitrate, rhodium nitrate, calcium nitrate, etc., from the viewpoint of suppressing the generation of salt-based acid such as hydrochloric acid, which is highly corrosive. From these, those which are easy to form a salt with the acid of the salted sardine are preferred.
  • the present invention is not limited to supercritical water, but may be subcritical water.
  • chemicals for example organics such as PCBs
  • subcritical water which has a lower pressure and temperature than the supercritical state, and also contain water containing sodium nitrate as an oxidizing agent. This is because nitrate ions generated in the subcritical state are also dissolved in the water, so that the organic substance and the nitrate ions can be reacted in a homogeneous system.
  • the oxidation reaction in the supercritical water or subcritical water proceeds under lower pressure and temperature conditions in the subcritical water than in the supercritical water.
  • the response speed is usually lower in the subcritical water than in the supercritical water.
  • a substance corresponding to nitrate ion in the concept of a solution is generated. Anything that can exist. Generally, mix with nitrate in water It is produced by making the solution of (1) into supercritical water or subcritical water.However, in the state of supercritical water or subcritical water, it is only necessary that the equivalent of nitrate ion in the concept of a solution can be present.
  • a method is also possible in which water is made into supercritical water or subcritical water, and nitrate is mixed while maintaining the state.
  • a substance to be oxidized (hereinafter referred to as a reducing substance) coexists in the supercritical water or subcritical water of the present invention
  • the reducing substance is mixed with water together with a nitrate.
  • a solution in which the nitrate is mixed with water is used for supercritical water.
  • a method of mixing the reducing substance in a state of subcritical water and maintaining the state or a method of converting the nitrate to a state of supercritical water or subcritical water and maintaining the state And a method of mixing the reducing substance.
  • the reducing substance is mixed with water together with nitrate, and this solution is subjected to supercritical water.
  • a method of making water or subcritical water is preferable.
  • the supercritical water means water in a supercritical state.
  • the critical state of water is achieved by heating the temperature to the critical temperature of 374 ° C and the pressure to the critical pressure of 22. IMPa.
  • supercritical water is specifically water that is heated to a temperature of 374 ° C or higher and has a pressure of 22. IMPa or higher. Even if it contains other substances, it is supercritical water.
  • subcritical water is in a state of a temperature lower than the critical temperature, and belongs to a liquid on a phase diagram.
  • this liquid state near the critical temperature is called a subcritical state.
  • the supercritical water or subcritical water of the present invention is constituted by a substance derived from sodium nitrate, which is one of nitrates in which the oxidizing agent is not oxygen. It is characterized by.
  • the substance derived from sodium nitrate means a substance generated from sodium nitrate when water containing sodium nitrate is in a supercritical state or a subcritical state, and the oxidizing agent is derived from sodium nitrate.
  • a substance that is oxidizing means a substance having an oxidizing power and acting as an oxidizing agent among the substances generated from the sodium nitrate.
  • the outline of the solution Forces that are equivalent to nitrate ions include those substances which, when produced from the nitrate ions, act as oxidizing agents, such as nitrite ions.
  • the method for oxidizing organic matter according to the present invention is directed to supercritical water or subcritical water containing a nitrate, for example, a substance derived from sodium nitrate as an oxidizing agent. And using these to oxidize organics.
  • a nitrate for example, a substance derived from sodium nitrate as an oxidizing agent.
  • supercritical water or subcritical water containing a nitrate for example, a substance derived from sodium nitrate as an oxidizing agent, means that oxygen (using hydrogen peroxide as a source) (Including the case where oxygen is used) is not used as an oxidizing agent.
  • Using these to oxidize an organic substance means that an organic substance is oxidized in supercritical water or subcritical water containing a substance derived from a nitrate as an oxidizing agent.
  • Organic substances to be oxidized are not particularly limited.
  • organic chlorine-based aromatic compounds such as PCBs discharged from waste incineration facilities and the like, and ion exchange used in radioisotope separation and the like.
  • resins and organic chlorinated solvents, etc. are hardly decomposable and harmful organic chlorinated aromatic compounds emitted from waste incineration facilities such as PCB are typical.
  • the supercritical water or subcritical water containing a nitrate for example, a substance derived from sodium nitrate as an oxidizing agent used in the method for oxidizing an organic substance of the present invention is as described in claim 4. Then, an organic substance and a nitrate such as sodium nitrate are mixed in water in advance, and then the solution is brought into a supercritical water or subcritical water state.
  • the reason for making the water sub-critical is to distinguish it from the method of mixing water and organic matter with nitrate in the supercritical water state.
  • the method for oxidizing an organic substance according to the present invention comprises, as described in claim 5, a nitrate such as
  • a harmless substance refers to a substance that can be tolerated when released into the natural environment.
  • Substances that can be accepted include those that can be judged to be acceptable from the concentration released even if the substance is a harmful substance.
  • Specific examples of harmless substances include gases such as carbon dioxide and nitrogen, and salts such as sodium chloride, sodium hydrogen carbonate and sodium nitrite.
  • the term "decompose into harmless substances” refers to a case where an organic substance to be decomposed can be determined to be completely decomposed into harmless substances by a measuring device used in an example of the following embodiment. It also includes cases where it can be determined that some have decomposed into harmless substances
  • the method for oxidizing an organic substance according to the present invention is directed to supercritical water or subcritical water containing a substance derived from a nitrate such as sodium nitrate as an oxidizing agent. And oxidizing the organic substance at a temperature of less than 500 ° C. in addition to the use of the organic substance in the supercritical water or the subcritical water.
  • oxidizing an organic substance in supercritical water or subcritical water includes decomposing the organic substance into a harmless substance.
  • the method for oxidizing an organic substance according to the present invention is directed to supercritical water or subcritical water containing a substance derived from a nitrate such as sodium nitrate as an oxidizing agent. And in addition to the use of water and oxidizing organic substances in the supercritical water or subcritical water, the organic substances are specified as organic chlorine-based aromatic compounds.
  • oxidizing an organic substance in supercritical water or subcritical water includes decomposing the organic substance into a harmless substance and oxidizing the organic substance at a temperature of less than 500 ° C. .
  • the organic chlorine-based aromatic compound is not particularly limited. Specific examples include PCB, dioxin, and dioxins, with PCB being particularly preferred.
  • dioxins include polychlorinated dibenzo-para-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF), and cobraner polychlorinated biphenyls (cobraner P). It is intended to include a dioxin-like compound called CB).
  • the first effect is that, according to the supercritical water of the present invention, since a hydrogen peroxide having a high reactivity with an organic substance is not used, a sudden increase in pressure or temperature of a chemical substance is suppressed as much as possible. Under such conditions, so-called mild conditions can be used, resulting in easier safety management and handling.
  • PaCB paradichlorobenzene
  • the second effect is that, according to the subcritical water of the present invention, in the subcritical region where the corrosiveness of the supercritical water reactor where the temperature and pressure are lower than in the supercritical region is easily suppressed, the If you can oxidize a substance, for example, PaCB!
  • a third effect is that, according to the supercritical water or subcritical water of the present invention, it is possible to suppress the generation of a highly corrosive salt-based acid generated by oxidizing a chloride. Things. This is because the supercritical water or subcritical water of the present invention uses a substance derived from nitrate as an oxidizing agent, so that chlorine generated by decomposition of a chlorine compound by oxidation of the substance derived from nitrate and nitrate of the nitrate are used. A counter ion that reacts to form a salt. For example, when sodium nitrate is used as the nitrate and PaCB is used as the organic substance, sodium chloride is generated, and generation of hydrochloric acid can be suppressed.
  • an object to be oxidized is specified as an organic substance, and oxidation is performed using the supercritical water or subcritical water. Therefore, the following effects are obtained.
  • the first effect is that super sodium nitrate as an oxidizing agent of the present invention is contained.
  • the organic substance for example, Pa CB or PCB can be decomposed into a harmless substance by oxidizing.
  • supercritical water when supercritical water was used, it could be completely decomposed into harmless substances.
  • the supercritical water or the like to be used is mixed with water beforehand with the organic matter and the nitrate, and then this solution is brought into a supercritical water or subcritical water state. Can be obtained.
  • the configuration and operability of the supercritical water reactor can be made simpler and easier than in the case where, for example, water is brought into a supercritical state and then an organic substance and a nitrate are mixed.
  • nitrate ions exist more stably than in the case where, for example, water is brought into a supercritical state and then an organic substance and a nitrate are mixed. Can be expected to be more efficient.
  • the second effect is that according to the method of the present invention for oxidizing an organic substance using supercritical water or subcritical water containing sodium nitrate as an oxidizing agent as a nitrate, the organic substance can be produced at a temperature of less than 500 ° C Can be oxidized.
  • the temperature is lower than 500 ° C required in the conventional supercritical water oxidation method, specifically, Was decomposed into a completely harmless substance by oxidation even at a temperature of 450 ° C.
  • PaCB can be used for dioxins and dioxins, which are hardly decomposable and harmful organic chlorine-based aromatic compounds. Similar effects can be expected. This is because dioxin and the like have a structure similar to PaCB or PCB in which a benzene ring is added to the benzene ring with chlorine.
  • Another effect is that according to the method of oxidizing an organic substance using supercritical water or subcritical water containing sodium nitrate as an oxidant as a nitrate of the present invention, the volume and weight of the organic substance can be reduced. It is to become.
  • the oxidation method of the present invention is applied to an organic substance such as vinyl chloride, ion exchange resin, or flame-retardant rubber gloves, the solid residue weight after application becomes It is a force reduced compared to the weight of organic matter.
  • the supercritical water or subcritical water of the present invention contains an oxidizing agent, and the oxidizing agent is composed of a substance derived from nitrate, and is prepared by using a supercritical reactor (manufactured by Pressure Glass Corporation). (Figs. 1 and 2).
  • a supercritical reaction apparatus (manufactured by Pressure Glass Corporation) has a reaction vessel (4) having a content of 10.6 ml made of a material of Hastelloy C22 or Inconel 625, and It consists of four rod-shaped heaters (1) for heating the reaction vessel (4) and an upper lid bolt (3) for measuring the internal temperature of the reaction vessel (4). It is set so that it can be attached and detached, so that the force sample can be taken in and out.
  • the internal temperature of the reaction vessel (4) is measured using a thermometer (5) inside the vessel, and the temperature of the rod-shaped heater is measured using the rod-shaped heater (6).
  • the reaction vessel (4) has a sapphire window (8) so that the inside can be observed.
  • the reaction vessel (4) is configured so that a magnetic stirrer can be used if necessary.
  • the supercritical water of the present invention comprises 3 ml of water, 100 mg of organic matter, and 400 mg of nitrate in a reaction vessel.
  • PaCB paradichlorobenzene
  • PCB PCB
  • PaCB was used as a simulated substance for PCBs because of the stringent regulations on handling PCBs in universities and the difficulty in measuring and analyzing them.
  • PaCB is similar to PCB in that it has a structure in which chlorine is added to the benzene ring as a basic structure, and it is difficult to decompose. Considering that it is much easier than that, it was judged to be the most suitable organic chlorine-based aromatic compound as a PCB mimic.
  • the temperature was raised to 450 ° C.
  • the pressure at the critical temperature also depends on the amount of water, and when the amount of water was 3 ml, the internal pressure in the reaction vessel (4) was 30 MPa when organic matter (PaCB) was decomposed.
  • the stirring of the sample did not affect the decomposition of the organic matter as long as the sample was uniformly dispersed in the fluid.
  • the supercritical water obtained by raising the temperature to 450 ° C in 1) was continuously heated for 2 hours. Thereafter, the mixture is allowed to cool, a part of the generated gas is extracted with a syringe, and the gas component is measured and analyzed by GC-MS (Gas chromatography-mass spectrometer: TCD-GC8APT, FID-GC8APF manufactured by Shimadzu). confirmed.
  • reaction vessel (4) is directly connected to a vacuum line so that the gas component generated in the reaction vessel and the amount thereof can be accurately measured. It is possible to tie.
  • the reaction vessel (4) is connected to a vacuum line, and the inside of the line is connected. Decompression and Ar The gas filling was repeated. This is to completely prevent gas from entering the inside of the line from the outside. Thereafter, the line was evacuated, the knob of the reaction vessel (4) was opened, and the gas in the reaction vessel (4) was led to the line. Gas introduced into the line was measured by the GC-MS.
  • Figure 3 shows the measurement results when PaCB was used as the organic substance.
  • the horizontal axis in Fig. 3 shows the force corresponding to the mass.
  • the large signonole force appears at masses 20, 28, 40, and 44!
  • the signal of mass 44 corresponds to CO
  • the signal of mass 28 corresponds to N
  • the signal of mass 40 corresponds to Ar.
  • NMR measurement was also performed on the reaction solution produced by the method for oxidizing organic matter of the present invention.
  • JEOL i ⁇ NM-LA 400WB NMR equipment was used for NMR measurement.
  • FIG. 5 shows the measurement results when PaCB was used as the organic substance.
  • Figure 4 shows that 3 ml of water and 100 mg of organic matter (PaCB) without nitrate (sodium nitrate) were added to the reaction vessel (4) and mixed, then the top cover bolt (2) was closed and sealed.
  • This figure shows the NMR measurement results by 1 H and 13 C when the supercritical water obtained by raising the temperature to 450 ° C with the rod-shaped heater (1) was continuously heated for 2 hours and then the solution after the reaction was allowed to cool. .
  • peaks derived from aromatic peaks appear at around 7 ppm in NMR and around 13 ppm in 13 C-NMR, but according to FIG. 5, these peaks are not observed. Therefore, based on this result, it was determined that the chlorine-based aromatic compound was completely decomposed, and according to the method for oxidizing organic substances using supercritical water of the present invention, it was found that the compound was not present as an aromatic compound.
  • the number of integrations in the NMR measurement at this time was 8000 times for NMR measurement by 1 3 C.
  • the peak around 2 ppm observed in the NMR measurement and the peak observed around 30 ppm observed in the 13 C-NMR measurement are based on the methyl group of acetone, and the 13 C-NMR The peak around 200 ppm observed in the measurement is presumed to be based on the ketone group of acetone.
  • the horizontal axis represents the elapsed time of the measurement start force
  • the vertical axis represents the peak intensity
  • a solid residue was obtained as follows. First, according to the method for oxidizing organic matter of the present invention, 3 ml of water, 100 mg of organic matter (PaCB) and 400 mg of nitrate (sodium nitrate) are charged into a reaction vessel (4) and mixed, and then a top cover bolt (2) was closed and sealed, and the supercritical water obtained by raising the temperature to 450 ° C with a rod-shaped heater (1) was continuously heated for 2 hours. After cooling, the reaction solution was filtered using a membrane filter (SIBATA 6168-2511) and dried at 55 ° C using a drier (IuchiDrying Oven DO-450). The solid residue obtained by the oxidation method of the present invention was determined. In the oxidation method of the present invention, no solid residue was found.
  • nitrate sodium nitrate
  • reaction solution was allowed to cool down, and the reaction solution was filtered using the above-mentioned membrane filter and dried using the above-mentioned drier.
  • the amount of the used hydrogen peroxide solution (HO) completely oxidizes the organic matter used.
  • the amount of oxygen required was sufficiently satisfied, and was set to be the same as the amount of oxygen generated when sodium nitrate was used.
  • the amount of the oxidizing agent (hydrogen peroxide or sodium nitrate) used in this experiment depends on the oxidation reaction of Pa CB and the reaction related to the oxygen supply from hydrogen peroxide or sodium nitrate. Calculated assuming that the following reaction formula is followed. However, these reaction formulas are proposed for convenience in estimating the amount of oxygen generated by the decomposition of ion nitrate, and do not mean that the reaction of sodium nitrate always proceeds in this way. Absent.
  • a solid residue was obtained as follows.
  • 150 mg of polychlorinated vinyl (special grade, manufactured by Wako), 600 mg of sodium nitrate, and 3 ml of water are charged into a reaction vessel (4) and mixed, and then the top cover bolt (2) is removed.
  • the container was closed and sealed, and the supercritical water obtained by raising the temperature to 450 ° C with a rod-shaped heater (1) was continuously heated for 30 minutes.
  • the mixture was allowed to cool, and the reaction solution was filtered using the membrane filter and dried using the dryer.
  • the solid obtained at this time was determined to be a solid residue.
  • the weight of this solid residue was defined as the amount of solid residue generated after decomposition. As a result, the amount of solid residue obtained was 3
  • the average of 17 tests was 17 mg.
  • a viscous liquid was obtained in addition to the solid residue, which was judged to be an oil residue. Oil residue averaged lmg from three tests.
  • the amount of oxygen supplied also with the sodium nitrate power of 600 mg used was 23 mmol, and the amount of oxygen required to completely oxidize 15 Omg of polychlorinated butyl (2.4 mmol in monomer conversion) (13. 2 mmol).
  • reaction solution was allowed to cool down, and the reaction solution was filtered using the above-mentioned membrane filter, dried by the above-mentioned dryer, and determined to be a solid residue obtained by the supercritical water oxidation method.
  • the weight of this solid residue was defined as the amount of solid residue generated after decomposition. As a result, the amount of the obtained solid residue was about 150 mg.
  • a viscous liquid was obtained in addition to the solid residue, which was judged to be an oil residue.
  • the used hydrogen peroxide (H 2 O) was 30 to 35.5% by weight of Kanto Chemical Co., Ltd.
  • the amount of H 2 O in 2.5 ml used was about 2226 mmol, and 150 mg of salt was used.
  • the amount of the oxidizing agent used in this experiment was determined assuming that the following oxidation reaction of vinyl chloride and the reaction relating to the supply of hydrogen peroxide or oxygen with the power of sodium nitrate follow the following reaction formula: It is calculated.
  • these reactions are proposed for the sake of convenience in estimating the amount of oxygen accompanying the decomposition of nitrate ions, and do not mean that the reaction of sodium nitrate necessarily proceeds in this manner.
  • the amount of solid residue remaining after the decomposition of organic substances (polyvinyl chloride, ion exchange resin, flame-retardant rubber) by the oxidation method of the present invention was measured while changing the amount of sodium nitrate based on the organic substances.
  • the amount of sodium nitrate used was such that the organic matter to be decomposed was completely CO 2, as represented by the above-mentioned reaction formula for the oxidation reaction of vinyl chloride.
  • the ion exchange resin used was manufactured by Dow Chemical Company (anion exchange resin: DOWEX1
  • the presence of NaHCO generated by the oxidation reaction of the organic substance of the present invention depends on the presence of NaHCO after the reaction.
  • the CO generated by the oxidation reaction of the organic matter is N generated by the decomposition of NaNO.
  • the organic oxidizing agent of the present invention is characterized in that NaNO which is formed only by the process of formula (1)
  • the generated gas is N and CO that has not been absorbed by NaOH. That is,
  • the size is extremely small as compared with the required supercritical hydroxyl method.
  • the self- The difference is expected to be even greater, since the solution often generates o.
  • the oxidation reaction rate of the organic substance of the present invention by the oxidation reaction is extremely slow as compared with the supercritical water oxidation method. It can be determined that the ascending speed is much smaller than that of the supercritical hydroxide method.
  • the heating temperature was 350 ° C.
  • Vinyl chloride was oxidized by a supercritical water oxidation method simulating the method for oxidizing organic substances of the present invention.
  • the amount of oxygen supplied from the oxidizing agent was the same, it was confirmed that the amount of the generated solid residue was much smaller in the organic matter oxidation method of the present invention.
  • the method for oxidizing organic substances of the present invention can decompose and reduce the amount of vinyl chloride and is suitable for reducing the amount of vinyl chloride.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Business, Economics & Management (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Management (AREA)
  • Organic Chemistry (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

明 細 書
超臨界水又は亜臨界水、及びこれらを使用した有機物の酸化方法 技術分野
[0001] 本発明は、化学物質を酸化するための酸化剤を含有する超臨界水又は亜臨界水
、及びこれらを使用した有機物の酸ィ匕方法に関するものである。
背景技術
[0002] 環境問題に対する認識の高まりから、難分解性で有害な化学物質、例えば、 PCB ( ポリ塩ィ匕ビフエ-ル)、ダイォキシン、ダイォキシン類、放射性同位体分離等で使用さ れたイオン交換榭脂及び有機塩素系溶剤の処理や処分が地球規模で問題となって いる。
[0003] 中でも廃棄物焼却施設等力 排出される PCBやダイォキシン類の有機物は、環境 ホルモンとして大きな影響を与えると言われていることからも明らかなように、極めて 深刻な環境汚染を弓 Iき起こして ヽる。
[0004] このような事情を踏まえて、近年では、難分解性で有害な化学物質、特に PCB等の 有機物を無害化する技術の研究や開発が盛んに行われているが、中でも超臨界水 を利用したものが非常に有効な技術として注目されている。
[0005] 超臨界水を利用した有機物の分解技術は通常、密閉系の処理であり、その代表的 なものとしては、超臨界水中で酸素 (過酸ィ匕水素を加えて発生する酸素も含む)によ り有機物を燃焼させる、いわゆる超臨界水酸ィ匕法と呼ばれるものがある(非特許文献
1、 2参照)。
[0006] この超臨界水酸化法は、 PCB等の有機塩素系芳香族化合物を燃焼させることによ り、該有機塩素系芳香族化合物が有する毒性の軽減を図っている。
[0007] 前記超臨界水酸化法には、脱塩素化を目的として該有機物を超臨界状態で水酸 化ナトリウム等のアルカリィ匕合物と反応させる方法も知られて 、る(非特許文献 3)。
[0008] また、一般の産業廃棄物や家庭力も生じるゴミの中の多くが、プラスチックに代表さ れる塩ィ匕ビニル系の高分子有機化合物によって占められているが、このような有機化 合物は、一般的に難燃性である。このため、このような廃棄物のかなりの量が、焼却 処分せずにそのまま埋立て処分されて!、る。
非特許文献 1 :化学工学会、環境パートナーシップ CLUB共編 化学工学の進歩 35 (廃棄物の処理)、稹書店 p. 222-230
非特許文献 2 : Motonobu GOTO、 Sato shi KAWAJIRI, Super Green 200 2proceedings、 Suwon、 Korea、 2002
非特許文献 3 :超臨界流体の環境技術 p90 - 91 (佐古猛)、株式会社 NTS出版、 1 999
発明の開示
発明が解決しょうとする課題
[0009] 前記超臨界水酸化法においては、化学物質を超臨界水中で酸化するにあたり、酸 ィ匕剤として酸素を使用することに起因する以下の課題があった。
[0010] 一つ目は、酸素供給源として過酸ィ匕水素を使用することによる安全管理上、或いは 操作性の課題である。これは、酸化剤である酸素の供給源として過酸化水素を使用 すると、分解し易い過酸ィ匕水素が過剰に存在するため、その分解で大量の酸素が容 易に発生してしまい、急激な圧力上昇を生じて危険だ力もである。特に、有機物と反 応させる場合にあっては、有機物と過酸ィ匕水素は超臨界水中においても激しく反応 するため、急激な温度上昇も招き易い。その急激な温度上昇に関して、瞬時に温度 が千度以上にも上昇すると!/ヽぅ報告もある (吉澤義男;日本学術振興会未来開拓研 究推進事業「革新的未来型エネルギーの生成 ·変換の方式、材料、システム化」研究 プロジェクト平成 14年最終報告書)。このため、その取り扱いも難しい。
[0011] 二つ目は、超臨界領域よりも温度や圧力が低ぐ超臨界水反応装置の腐食性を抑 制し易い亜臨界領域における前記超臨界水酸化法の適用を考えた場合、その適用 が本質的に困難であるという課題である。この課題は、前記超臨界水酸化法では酸 素を使用しなければならないこと及び超臨界或いは亜臨界状態においては、反応に 関与する物質が均一系であるか否かで反応の進行状態、例えば、反応速度が著しく 相異し、一般的に均一系での反応は容易であるが、不均一系では困難であることに 起因するものである。即ち、有機物は、通常、超臨界水或いは亜臨界水中で溶解し ているが、酸素は、超臨界水中と異なり、亜臨界水中であまり溶解しないため、反応 を容易に進めるために必要な均一系での反応が亜臨界水中では極めて起こりにく 、 力 である。
[0012] 三つ目は、化学物質として塩化物を酸化すると、腐食性に富む物質を生成してしま うという課題である。これは、塩化物を酸化すると、該塩化物の塩素に基づいて塩ィ匕 物系の酸、例えば塩酸を生成してしまうからである。
[0013] その他には、化学物質を燃焼させるために使用する気体酸素を反応容器に封入し ておくためのシステムが必要になるという課題がある。気体酸素を反応容器に封入し ておくためのシステムが必要になると、装置全体のシステムが複雑で煩雑なものにな り易ぐ経済コストを高める要因になる。
[0014] また、前記従来法においては、有機物を酸ィ匕することに起因する以下の課題があ つた o
[0015] 一つ目は、有機物を超臨界状態で水酸ィ匕ナトリウム等のアルカリィ匕合物と反応させ る方法においては、脱塩素化を目的としているために、該有機物を構成するべンゼ ン環を分解することはできず、ビフ -ルのような新たな芳香族系有害物質を大量に 生成してしまうという課題である。該有機物とは、一般に有機塩素系芳香族化合物の ことである。例えば、 PCBを反応させると、ビフエ-ルが生成することが知られている。
[0016] 超臨界水酸ィ匕法においては、超臨界水中で酸素を酸化剤として有機物を燃焼させ ると、通常、煤が発生するという課題がある。煤自体は PCBのような有害物質に属す るものではないが、発生した煤が装置に付着すると、装置の整備やメンテナンスに必 要な手間やコストの負担増を招く恐れがある。
[0017] 二つ目は、前記超臨界水酸化法の下で、難分解性で有害な有機物を燃焼させて 無害な物質にするためには、 500°C未満の加熱では難しぐより高温での加熱が必 要であるという課題である。これは、 PCBやダイォキシン類等の有機塩素系芳香族化 合物を酸ィ匕により分解する場合、通常、 500°C以上の高温加熱下で行うことからも明 らかである。
[0018] その他、プラスチックのような有機物を廃棄物として埋立て処分する方法は、土地 利用を制限するという課題がある。プラスチック類の埋立て処分は、土地の軟弱を招 く恐れもある。また、容積的に大きいものをそのまま埋立て処分しなければならないた め、広大な土地が必要である。更に、廃棄物を単に埋めるだけでは、廃棄物の重量 は変わらないので、減量することにはならない。
[0019] 本発明者等は、前記種々の課題を解決するために鋭意研究した結果、酸化剤とし て硝酸塩に由来する物質を使うことにより、前記課題をことごとく解決できることを見 出し、本発明に到達した。
[0020] すなわち、本発明の要旨とするところは、硝酸塩に由来する物質を含有する超臨界 水又は亜臨界水であって、この超臨界水又は亜臨界水を有機物の酸化に使用する ことを特徴とする有機物の酸化方法にある。
[0021] さらに詳細に説明すると、本発明によれば超臨界水中での化学物質の酸ィ匕にあた り、酸化剤として酸素を使用しなければならないことに起因する問題や従来法で有機 物を酸ィ匕することに起因する問題を解決できる。化学物質の中でもとりわけ、 PCBの ような難分解性で有害な有機物を無害な物質に酸ィヒできる超臨界水又は亜臨界水 、及びこれらを使用した有機物の酸化方法を提供できる。
[0022] 酸化剤として酸素を使用することによる急激な圧力上昇や温度上昇を極力抑制し た条件、いわゆる穏和な条件で化学物質を酸化できる超臨界水又は亜臨界水、及 びこれらを使用した有機物の酸化方法を提供できる。例えば、超臨界水酸化法では 10数秒で終了する反応が(J. R. Portela, E. Nebot, E. Martinez de la Ossa , J. Supercritical Fluids 21, 125—145 (2001) )本発明の有機物の酸化法で は数 10分程度力かるという穏和な条件である。
[0023] また、本発明は、産業廃棄物中の化学物質、とりわけ塩ィ匕ビニルを含む塩ィ匕ビニル 系の有機物に対して、減容ゃ減量が可能な超臨界水を使用した有機物の酸ィ匕方法 を提供することができ、産業廃棄物を埋立て処分することに起因する問題をも解決す ることがでさる。
課題を解決するための手段
[0024] 本発明は、硝酸ナトリウムを酸化剤として含有した水に有機塩素系芳香族化合物で ある PCB (具体的には、その模擬物質であるパラジクロロベンゼン)を混合して、この 水を超臨界状態又は亜臨界状態にすると、その分解が急激な圧力や温度上昇が認 められな 、ような穏和な条件で進行すると 、う知見と、該 PCBが無害な物質に分解 できるという知見に基づいてなされたものである。
[0025] 本発明の超臨界水又は亜臨界水は、請求項 1に記載されているように、酸化剤を 含有し、その酸化剤が従来のような酸素ではなぐ硝酸塩に由来する物質から構成さ れることを特徴とするものである。
[0026] ここで、硝酸塩に由来する物質とは、硝酸塩を含有する水が超臨界状態又は亜臨 界状態にある場合において、該硝酸塩力 生じる物質を意味し、その酸化剤が硝酸 塩に由来する物質であるとは、前記硝酸塩から生じる物質のうち、酸化力を有し、酸 ィ匕剤として作用する物質をいう。具体的には、溶液の概念で言うところの硝酸イオン に相当するものであるが、該硝酸イオン力も亜硝酸イオンのような酸化剤として作用 する物質を生じる場合には該物質も含む。
[0027] 溶液の概念で言うところの硝酸イオンに相当するものと述べたのは、超臨界状態で は、気液臨界点を超えた状態にあるため、液体や気体の概念が厳密には適用できな いからである。なお、亜臨界状態も超臨界状態と極めて近い状態にあるため、液体や 気体の概念が厳密には適用できない場合もあると考えられる。
[0028] 硝酸塩に関しては、特に限定するものではなぐ例えば、硝酸ナトリウム、硝酸力リウ ム、硝酸カルシウム等がある力 腐食性に富む塩酸のような塩ィ匕物系の酸の生成を 抑制する観点からは、該塩ィ匕物系の酸と塩を形成し易いものが好ましい。
[0029] また、本発明は、超臨界水に限定するものではなぐ亜臨界水も可能である。その 理由は、化学物質、例えば PCBのような有機物は、通常、超臨界状態よりも圧力や 温度の低い亜臨界状態の水にも溶解し、また、硝酸ナトリウムを酸化剤として含有し た水を亜臨界状態にした場合に生じる硝酸イオンもその水に溶解するため、該有機 物と該硝酸イオンを均一系で反応させることができるからである。
[0030] なお、該超臨界水又は亜臨界水中での酸化反応は、該亜臨界水中の方が該超臨 界水中よりも圧力や温度の低い条件で進行するので、同じ還元物質に対する酸化反 応速度は、通常、該亜臨界水中の方が該超臨界水中よりも遅い。
[0031] ここで、本発明の超臨界水又は亜臨界水を製造する方法としては、超臨界水又は 亜臨界水の状態において、溶液の概念で言うところの硝酸イオンに相当するものが 生成し、存在できるものであればよい。一般的には、硝酸塩とともに水に混合して、こ の溶液を超臨界水又は亜臨界水の状態にすることにより製造するが、超臨界水又は 亜臨界水の状態において、溶液の概念で言うところの硝酸イオンに相当するものが 存在できればよいので、水を超臨界水又は亜臨界水の状態にして、その状態を維持 したまま、硝酸塩を混合する方法も可能である。
[0032] 従って、本発明の超臨界水又は亜臨界水において、酸ィ匕したい物質 (以下、還元 物質と呼ぶ)が共存する場合にあっては、該還元物質を硝酸塩とともに水に混合して 、この溶液を超臨界水又は亜臨界水の状態にする方法の他、該硝酸塩を水に混合 した溶液を超臨界水
又は亜臨界水の状態にして、その状態を維持したまま、該還元物質を混合する方法 、或いは水を超臨界水又は亜臨界水の状態にして、その状態を維持したまま、該硝 酸塩と該還元物質を混合する方法が可能である。
[0033] もっとも、超臨界水反応装置の構成や超臨界水又は亜臨界超臨界水における硝 酸イオンの安定性等に鑑みると、還元物質を硝酸塩とともに水に混合して、この溶液 を超臨界水又は亜臨界水の状態にする方法が好ましい。
[0034] なお、超臨界水とは、超臨界状態にある水を意味する。水の臨界状態は、温度を臨 界温度の 374°Cに加熱し、圧力を臨界圧力の 22. IMPaにすると達成する。このた め、超臨界水とは、具体的には、温度が 374°C以上に加熱され、圧力が 22. IMPa 以上の状態にある水のことであり、水がこのような状態にあれば、他の物質を含有し ていても、超臨界水である。
[0035] また、亜臨界水は臨界温度よりも低い温度の状態にあり、相図上では液体に属する 。本発明では、この臨界温度近傍の液体状態を亜臨界状態と呼ぶ。
[0036] 本発明の超臨界水又は亜臨界水は、請求項 2に記載されているように、酸化剤が 酸素ではなぐ硝酸塩の一つである硝酸ナトリウムに由来する物質力 構成されてい ることを特徴とするちのである。
[0037] 硝酸ナトリウムに由来する物質とは、硝酸ナトリウムを含有する水が超臨界状態又 は亜臨界状態にある場合において、該硝酸ナトリウムから生じる物質を意味し、その 酸化剤が硝酸ナトリウムに由来する物質であるとは、前記硝酸ナトリウムから生じる物 質のうち、酸化力を有し、酸化剤として作用する物質をいう。具体的には、溶液の概 念で言うところの硝酸イオンに相当するものである力 該硝酸イオンから亜硝酸イオン のような酸化剤として作用する物質を生じる場合には該物質も含む。
[0038] 本発明の有機物の酸ィ匕方法は、請求項 3に記載されているように、硝酸塩、例えば 、硝酸ナトリウムに由来する物質を酸化剤として含有している超臨界水又は亜臨界水 を使用すること、及びこれらを使用して有機物を酸化することから構成される。
[0039] 硝酸塩、例えば、硝酸ナトリウムに由来する物質を酸化剤として含有している超臨 界水又は亜臨界水を使用するとは、従来のように酸素 (過酸ィ匕水素を発生源とした 酸素を利用する場合も含む)を酸化剤として使用するものではないということである。
[0040] これらを使用して有機物を酸化するとは、硝酸塩に由来する物質を酸化剤として含 有して 、る超臨界水又は亜臨界水中で有機物を酸ィ匕すると 、う意味である。
[0041] 酸化対象となる有機物に関しては、特に限定するものではなぐ例えば、廃棄物焼 却施設等から排出される PCB等の有機塩素系芳香族化合物、放射性同位体分離 等で使用されたイオン交換榭脂及び有機塩素系溶剤等があり、中でも PCBのような 廃棄物焼却施設等から排出される難分解性で有害な有機塩素系芳香族化合物が 代表的である。
[0042] 本発明の有機物の酸化方法で使用する硝酸塩、例えば、硝酸ナトリウムに由来す る物質を酸化剤として含有している超臨界水又は亜臨界水は、請求項 4に記載され ているように、有機物と硝酸塩、例えば硝酸ナトリウムを予め水に混合した後、この溶 液を超臨界水又は亜臨界水状態にすることにより得る。
[0043] 有機物と硝酸塩、例えば硝酸ナトリウムを予め水に混合した後、この溶液を超臨界 水又
は亜臨界水状態にするとしたのは、水を超臨界状態にした後、その状態で有機物と 硝酸塩を混合する方法等と区別するためである。
[0044] 本発明の有機物の酸ィ匕方法は、請求項 5に記載されているように、硝酸塩、例えば
、硝酸ナトリウムに由来する物質を酸化剤として含有している超臨界水又は亜臨界水 を使用すること及び該超臨界水又は亜臨界水において有機物を酸ィ匕することに加え て、該有機物を無害な物質に分解することから構成される。
[0045] 無害な物質とは、自然環境に放出しても許容され得る物質をいう。もっとも、その許 容され得る物質には、その物質が有害物質であっても、放出される濃度から許容範 囲にあると判断できるものも含む。無害な物質の具体例としては、二酸化炭素や窒素 等の気体、及び塩化ナトリウム、炭酸水素ナトリウムや亜硝酸ナトリウム等の塩等があ る。
[0046] なお、本発明において、無害な物質に分解するとは、下記実施形態の一例で使用 する測定装置により、分解対象物となる有機物が無害な物質に完全に分解したと判 断できる場合の他、一部が無害な物質に分解したと判断できる場合も含むものとする
[0047] 本発明の有機物の酸ィ匕方法は、請求項 6に記載されているように、硝酸塩、例えば 、硝酸ナトリウムに由来する物質を酸化剤として含有している超臨界水又は亜臨界水 を使用すること及び該超臨界水又は亜臨界水において有機物を酸ィ匕することに加え て、該有機物を 500°C未満の温度で酸化することにより構成される。
[0048] ここで、超臨界水又は亜臨界水において有機物を酸ィ匕することには、該有機物を 無害な物質に分解することも含む。
[0049] 有機物を 500°C未満の温度で酸化するので、例えば、 PCBを酸化する場合、硝酸 ナトリウムに由来する物質を酸化剤として含有している超臨界水の温度を 450°C程度 で酸化する。もっとも、反応速度は温度に依存するので、反応速度を遅くすれば、そ の温度は更に下げることができる。
[0050] 本発明の有機物の酸ィ匕方法は、請求項 7に記載されているように、硝酸塩、例えば 、硝酸ナトリウムに由来する物質を酸化剤として含有している超臨界水又は亜臨界水 を使用すること及び該超臨界水又は亜臨界水において有機物を酸ィ匕することに加え て、該有機物を有機塩素系芳香族化合物に特定することにより構成するものである。
[0051] ここで、超臨界水又は亜臨界水において有機物を酸ィ匕することには、該有機物を 無害な物質に分解することゃ該有機物を 500°C未満の温度で酸化することも含む。
[0052] 有機塩素系芳香族化合物は、特に限定するものではない。具体例としては、 PCB ,ダイォキシン、ダイォキシン類があげられ、特に PCBが好ましい。
[0053] なお、ここで!/、うダイォキシン類とは、ポリ塩化ジベンゾーパラージォキシン(PCDD) ,ポリ塩化ジベンゾフラン(PCDF)の他、コブラナーポリ塩化ビフヱ-ル(コブラナー P CB)と呼ばれるダイォキシン類似化合物も含む意である。
発明の効果
[0054] 本発明の超臨界水又は亜臨界水によれば、酸化剤として酸素ではなぐ硝酸塩に 由来する物質を使用するため、以下の効果を奏する。なお、発明を実施するための 最良の形態で述べるように、ノラジクロ口ベンゼン (以下、 PaCBと呼ぶ)を使用して得 られた効果は、 PCBでも得られると考える。
[0055] 一つ目の効果は、本発明の超臨界水によれば、有機物との反応性が高い過酸ィ匕 水素を使用しないため、化学物質を急激な圧力や温度上昇を極力抑制した条件、い わゆる穏和な条件で酸ィ匕でき、その結果、安全管理や取り扱いが容易になるというも のである。パラジクロロベンゼン(以下、 PaCBと呼ぶ)を例にとると、本発明の超臨界 水によれば、急激な圧力や温度上昇をさせることなぐ酸ィ匕できる。
[0056] 二つ目の効果は、本発明の亜臨界水によれば、超臨界領域よりも、温度や圧力が 低ぐ超臨界水反応装置の腐食性を抑制し易い亜臨界領域で、化学物質、例えば P aCBを酸化できると!、うものである。
[0057] 三つ目の効果は、本発明の超臨界水又は亜臨界水によれば、塩化物を酸化するこ とにより生じる腐食性に富む塩ィ匕物系の酸の生成を抑制できるというものである。これ は、本発明の超臨界水又は亜臨界水が酸化剤として硝酸塩に由来する物質を使用 するため、該硝酸塩に由来する物質の酸ィ匕による塩素化合物の分解により発生した 塩素と該硝酸塩の対イオンが反応して、塩を生成するカゝらである。前記硝酸塩として 硝酸ナトリウムを使用し、有機物として PaCBを使用した場合を例にとると、塩化ナトリ ゥムが生じて、塩酸の生成を抑制することができる。
[0058] その他、本発明の超臨界水又は亜臨界水によれば、化学物質を燃焼させるために 使用する気体酸素を反応容器に封入する必要がな ヽため、装置全体のシステムが 簡略ィ匕可能となり、経済コストの低減を図れるという効果を奏する。
[0059] また、本発明の超臨界水又は亜臨界水を使用した有機物の酸ィ匕方法によれば、酸 化対象を有機物に特定し、前記超臨界水又は亜臨界水を使用して酸化するため、 以下の効果を奏する。
[0060] 一つ目の効果は、本発明の硝酸塩として硝酸ナトリウムを酸化剤として含有する超 臨界水又は亜臨界水を使用した有機物の酸ィ匕方法によれば、該有機物、例えば Pa CBや PCBを酸ィ匕により無害な物質に分解できるというものである。特に、超臨界水を 使用した場合には、完全に無害な物質に分解できた。
[0061] また、煤の発生が認められな力つたことから、煤の発生を抑制する効果も奏する。
[0062] なお、本発明の有機物の酸化方法によれば、使用する超臨界水等を、有機物と硝 酸塩を予め水に混合した後、この溶液を超臨界水又は亜臨界水状態にすることによ り得ることができる。このため、超臨界水反応装置の構成や操作性を、例えば、水を 超臨界状態にした後、有機物と硝酸塩を混合する場合よりも、より簡便で容易なもの にすることが可能になる。また、超臨界水又は亜臨界水における溶液の概念で言うと ころの硝酸イオンは、例えば、水を超臨界状態にした後、有機物と硝酸塩を混合する 場合よりも、安定に存在するので、有機物をより効率的に酸ィ匕できると期待できる。
[0063] 二つ目の効果は、本発明の硝酸塩として硝酸ナトリウムを酸化剤として含有する超 臨界水又は亜臨界水を使用した有機物の酸化方法によれば、 500°C未満の温度で 該有機物を酸ィ匕できるというものである。例えば、超臨界水を使用した有機物の酸ィ匕 方法によれば、有機物として PaCBや PCBを使用すると、従来法の超臨界水酸化法 において必要とされる 500°Cよりも低温、具体的には 450°Cの温度でも酸化により、 完全に無害な物質に分解できた。また、 350°Cの亜臨界水を使用しても無害な物質 に分解できた。
[0064] 本発明の超臨界水又は亜臨界水、及びこれらを使用した有機物の酸化方法によれ ば、難分解性で有害な有機塩素系芳香族化合物のダイォキシンやダイォキシン類 に対しても PaCBと同様な効果が期待できる。ダイォキシン等は、 PaCBや PCBと同 様なベンゼン環ゃ該ベンゼン環に塩素を付加した構造を有するからである。
[0065] その他の効果は、本発明の硝酸塩として硝酸ナトリウムを酸化剤として含有する超 臨界水又は亜臨界水を使用した有機物の酸ィ匕方法によれば、有機物の減容ゃ減量 化が可能になるというものである。その理由は、後述するように、塩化ビニル、イオン 交換榭脂、又は難燃性ゴム手袋のような有機物に対して本発明の酸化方法を適用 すると、適用後の固形残渣重量が、適用前の有機物の重量に比べて減じた力 であ る。 [0066] 以上より、本発明の超臨界水又は亜臨界水、及びこれらを使用した有機物の酸ィ匕 方法によれば、超臨界水を利用して化学物質、特に難分解性で有害なものを酸化す るにあたり、従来よりも安全管理を本質的に容易に行うことができ、経済コストの低減 も図れる。
発明を実施するための最良の形態
[0067] 本発明の実施形態について詳細に説明する。以下、図面を用い、本発明の実施形 態の一例を説明する。
[0068] 本発明の超臨界水又は亜臨界水は、酸化剤を含有し、その酸化剤が硝酸塩に由 来する物質から構成され、超臨界反応装置 (耐圧硝子工業株式会社製)を使用して 製造した (図 1、図 2)。
[0069] 超臨界反応装置 (耐圧硝子工業株式会社製)は、図 1及び 2に示すように、ハステ ロイ C22或いはインコネル 625の材質からなる内容量 10. 6mlの反応容器 (4)と、該 反応容器 (4)を加熱するための 4本の棒状ヒーター( 1)と、反応容器 (4)の内部温度 を測定するための上蓋ボルト(3)とから構成され、該上蓋ボルト(2)は、取り付け、取 り外し可能となるように設定されていて、ここ力 試料の出し入れを行うことができるよ うに構成されている。反応容器 (4)の内部温度は、容器内温度計 (5)を使用して、棒 状ヒーター )の温度は、棒状ヒーター(6)を使用して測定し、反応容器 (4)の内部 圧力は圧力センサー(7)を使用して測定した。反応容器 (4)はサファイア製の窓 (8) を備えており、内部を観察することができる。なお、反応容器 (4)は必要に応じてマグ ネチックスターラーが使用できるように構成されて 、る。
[0070] また、超臨界反応装置は、棒状ヒーター(1)で温度を水の臨界温度である 374°Cま で昇温すると、反応容器 (4)の内部圧力は 22MPa以上になり、超臨界に達するよう に構成されている。
[0071] 本発明の超臨界水は、 3mlの水と lOOmgの有機物と 400mgの硝酸塩を反応容器
(4)に投入して混合した後、上蓋ボルト(2)を閉めて密閉し、棒状ヒーター(1)で昇温 することにより得た。
[0072] 但し、使用する有機物の取扱いや実験装置の操作上の制約等により、必要に応じ て、使用する有機物や硝酸塩の量等を変えた。 [0073] 有機物としてはパラジクロロベンゼン(PaCB)若しくは PCBを使用した力 主に PaC Bを使用した。 PaCBは、大学内での PCBの取り扱い規制が厳しぐその測定'分析 が容易ではないという事情から、 PCBの模擬物質として使用したものである。 PaCB は、構造がベンゼン環に塩素を付加した構造を基本構造として備えて ヽる点で PCB と共通し、分解も困難であること、また、大学内での取り扱いやその測定 ·分析力 SPC Bに比べてはるかに容易であることに鑑みて、 PCBの模擬物質として最適な有機塩 素系芳香族化合物であると判断した。
[0074] 硝酸塩としては硝酸ナトリウムを使用した。
昇温温度を 450°Cとした。
この条件下では、臨界温度における圧力は水の量にも依存し、水の量を 3mlとした ときの反応容器 (4)における内部圧力は、有機物(PaCB)が分解すると、 30MPaと なった。
また、試料の攪拌は、試料が流体に均一に分散している限り、前記有機物の分解 に影響を与えることはな力つた。
[0075] 本発明の超臨界水を使用した有機物の酸ィ匕方法により、有機物が酸化されて無害 な物質に分解されたことの確認は、以下のようにして行った。
[0076] 実験 1:有機物が無害な物質に分解されたことの確認 (その 1)
まず、 3mlの水と lOOmgの有機物(PaCB)と 400mgの硝酸塩(硝酸ナトリウム)を 反応容器 (4)に投入して混合した後、上蓋ボルト(2)を閉めて密閉し、棒状ヒーター(
1)で 450°Cに昇温して得た超臨界水をそのまま 2時間加熱し続けた。その後、放冷 して、発生した気体の一部をシリンジで抜き取り、その気体成分を GC— MS (ガスクロ マトグラフィ一'質量分析装置:島津製 TCD— GC8APT、 FID— GC8APF)で測定 分析することにより確認した。
[0077] ここで、前記反応容器 (4)は、反応容器内で発生する気体成分とその量を正確に 測定できるように、直接真空ラインに接合することにより該真空ラインを GC— MSと直 結させることち可會である。
[0078] 具体的には、前記超臨界状態での酸化反応により、前記反応容器 (4)で発生した 気体を放冷した後、前記反応容器 (4)を真空ラインに接続し、ライン内部の減圧と Ar ガスの封入を繰り返した。これは、ライン内部に外部から気体が混入するのを完全に 防ぐためである。その後、ラインを真空にし、前記反応容器 (4)のノ レブを開けて、前 記反応容器 (4)中の気体をラインへ導いた。ラインに導かれた気体は前記 GC— MS で測定した。
[0079] なお、 GC— MSの分析条件は以下の通りである。
Hydrocarbon: PorapakQ, Col. Temp. 60。C、 He 48ml/min, FID 8 X 10
2
CO: Silica Gel, Col. Temp. 60。C、 He 36ml/minゝ TCD 180mA,
2
H: Molecular seive 5 A、 Col. Temp. 50。C、 Ar 15ml/min, TCD 60m
2
A
有機物として PaCBを用いたときの測定結果を図 3に示す。図 3の横軸は質量に相 当する力 質量 20、 28、 40、 44に大きなシグナノレ力表れて!/、る。質量 44のシグナノレ は CO、質量 28のシグナルは N、質量 40のシグナルは Arに対応するものである。
2 2
[0080] NOx (窒素酸化物)に関しては、 30に表れる NOのシグナルと 46に表れる NOの
2 シグナルが認められなカゝつたことから、その発生はな ヽと判断できる。
[0081] なお、質量 20に表れるシグナルや質量 12、 14、 16、 18、 32に表れる小さなシグナ ルは、その質量力 Arガスに含まれる Ne等の不純物と推測されるので、 NOxに関 係するものではない。
[0082] 実験 2:有機物が無害な物質に分解されたことの確認 (その 2)
また、本発明の有機物の酸ィ匕方法により生じた反応溶液に対して NMR測定も行つ た。 NMR測定には、日本電子 i^NM— LA 400WB NMR装置を使用した。
[0083] 具体的には、まず、 3mlの水と lOOmgの有機物(PaCB若しくは PCB)と 400mgの 硝酸塩 (硝酸ナトリウム)を反応容器 (4)に投入して混合した後、上蓋ボルト (2)を閉 めて密閉し、棒状ヒーター(1)で 450°Cに昇温して得た超臨界水をそのまま 2時間加 熱し続けた。その後、放冷して力 反応溶液の一部を抜き取り、抜き取った反応溶液 に対して重水素化したクロ口ホルムによる溶媒抽出を施した上で、これを NMR測定 試料として1 H及び13 Cによる NMR測定を行った。なお、目視によると、放冷後の反応 溶液中に固体残渣は認められなかった。 [0084] 有機物として PaCBを用いたときの測定結果を図 5に示す。図 4には硝酸塩 (硝酸 ナトリウム)を含有させずに 3mlの水と lOOmgの有機物(PaCB)とを反応容器 (4)に 投入して混合した後、上蓋ボルト(2)を閉めて密閉し、棒状ヒーター(1)で 450°Cに 昇温して得た超臨界水をそのまま 2時間加熱し続けた後、反応後の溶液を放冷した ときの1 H及び13 Cによる NMR測定結果を示す。図 4によると、芳香族に由来するピー タカ — NMRでは 7ppm付近、 13C— NMRでは 130ppm付近に表れているが、図 5によると、これらのピークが観測されていない。従って、この結果を以つて、塩素系 芳香族化合物は完全に分解したと判断し、本発明の超臨界水を使用した有機物の 酸化方法によれば、芳香族化合物としても存在しな ヽことがゎカゝつた。
[0085] このときの NMR測定における積算回数は、 による NMR測定については 32回、 13Cによる NMR測定については 8000回であった。
[0086] なお、前記溶媒抽出方法では、「重水素化したクロ口ホルムによる溶媒抽出を施し た上で、これを NMR測定試料とした」と記載した力 実際は、クロ口ホルムによる溶媒 抽出のあと、抽出物を蒸発乾固させた物質を重水素化させたアセトンで溶解させ、こ れを NMR測定試料とした。この誤記は、 PaCBの分解の判断結果に全く影響を与え ないが、試料を溶解させた溶媒のピークが実験結果に表れるため、念のため付記し ておく。よって、図 4と図 5において、 — NMR測定で認められる 2ppm付近のピーク と、 13C— NMR測定で認められる 30ppm付近に認められるピークはアセトンのメチル 基に基づくものであり、 13C— NMR測定で認められる 200ppm付近のピークは、ァセ トンのケトン基に基づくピークであると推定される。
[0087] 一方、 Merk Ltd.製の重水素化したクロ口ホルム(重水素の同位体比率が 99. 8 %の CDC1 )による溶媒抽出を施した上で、これを NMR測定試料とした場合には、
3
アセトンに基づく前記ピークは全く現れず、クロ口ホルムに基づくピーク力 'Η-ΝΜ
Rでは 7ppm付近に、 13C-NMRでは 77ppm付近に観測される。
[0088] 本実験では、有機物として PCBを使用した場合も測定したが、芳香族化合物の存 在は確認できな力つた。
[0089] 実際に、有機物として PCBを使用した場合の測定方法及びその結果の一例を示 す。 [0090] まず、 3mlの水と lOOmgの PCBと lOOOmgの硝酸塩(硝酸ナトリウム)を反応容器 ( 4)に投入して混合した後、上蓋ボルト(2)を閉めて密閉し、棒状ヒーター(1)で 480 °Cに昇温して得た超臨界水をそのまま 30分加熱し続けた。その後、放冷してから反 応溶液の一部を抜き取り、抜き取った反応溶液に対して Merk Ltd.製の重水素化 したクロ口ホルム(重水素の同位体比率が 99. 8%の CDC1 )による溶媒抽出を施し
3
た上で、これを NMR測定試料として1 H及び13 Cによる NMR測定を行った。その結 果を図 6に示す。
[0091] 図 7には硝酸塩 (硝酸ナトリウム)を含有させずに 3mlの水と lOOOmgの有機物(PC B)とを反応容器 (4)に投入して混合した後、上蓋ボルト (2)を閉めて密閉し、棒状ヒ 一ター(1)で 480°Cに昇温して得た超臨界水をそのまま 30分間加熱し続けた後、反 応後の溶液を放冷したときの1 H及び13 Cによる NMR測定結果を示す。このときの積 算回数は、 による NMR測定については 100回、 13Cによる NMR測定については 15000回であった。
[0092] なお、前述したように、溶媒抽出に使用した重水素化したクロ口ホルムに由来するピ ークが、 iH-NMRでは 7ppm付近に、 13C—NMRでは 77ppm付近に観測される(図 6又は 7の削除したクロ口ホルムのピークを参照)。そこで、本発明の効果が容易に比 較できるように、図 6と 7では、芳香族に由来するピークと混同しないように、溶媒抽出 に使用したクロ口ホルムのピークを除いて表示した。
[0093] 図 7によると、芳香族に由来する複雑なピーク力 NMRでは 7ppm付近、 13C— NMRでは 130ppm付近に表れている力 図 6によると、これらのピークは観測されな い。
[0094] 従って、これらの結果を以つて、塩素系芳香族化合物は完全に分解したと判断し、 本発明の超臨界水を使用した有機物の酸化方法によれば、芳香族化合物としても存 在しないことがわかった。
[0095] なお、硝酸塩の種類を硝酸ナトリウムから亜硝酸ナトリウムへ代えて、前記の硝酸ナ トリウムを使用したときの反応条件下で反応させた後、前記の硝酸ナトリウムを使用し たときの測定条件下で NMR測定を行ったが、芳香族化合物の存在を示すピークは 観測されなかった。 [0096] ここで、有機物として PaCBを用いた実験により以下のことを確認した。
[0097] 混合する硝酸塩 (硝酸ナトリウム)の量を 400mg以下に設定しても、硝酸塩 (硝酸ナ トリウム)が化学当量より多目の場合、芳香族化合物の存在を確認できなカゝつた。
[0098] また、反応時間を 2時間から 1時間としても芳香族化合物の存在を確認できなかつ たが、 30分にすると、極微量の未反応 PaCBの存在が観測された。
[0099] 本発明によれば、有機物(PaCB若しくは PCB)を分解した後の溶液中には固体残 渣が生じない。このため、超臨界反応装置に関しては、バッチ式の他、フロー式を適 用することができる。
[0100] 実験 3:有機物が無害な物質に分解されたことの確認 (その 3)
更に、粉末 X線回折 (XRD)装置 (Rigaku PRNT2200V/PC-SV)を使用して
、本発明の有機物の酸化方法によって生じた反応溶液に含まれる成分の同定を行つ た。
[0101] 具体的には、まず、 3mlの水と lOOmgの有機物(PaCB)と 400mgの硝酸塩(硝酸 ナトリウム)を反応容器 (4)に投入して混合した後、上蓋ボルト(2)を閉めて密閉し、 棒状ヒーター(1)で 450°Cに昇温して得た超臨界水をそのまま 2時間加熱し続けた。 その後、放冷して力 反応溶液を蒸発乾固させて、その固体の XRDスペクトルを測 定した。有機物として PCBを使用した場合の結果を図 8に示す。図 8によると、蒸発 乾固した固体は、主成分を NaClと NaNOとし、これに NaHCOを少量含むもので
2 3
めつに。
[0102] 実験 4:有機物が無害な物質に分解されたことの確認 (その 4)
(気体成分の分析) 本発明の有機物の酸化方法により PCBが気体成分に含まれて いないこと、また有害な気体が生成していないことの確認を行った。具体的には、以 下のようにして行った。
[0103] まず、 3mlの水と、 lOOmgの PCBと、 lOOOmgの硝酸ナトリウムをガス封入型の反 応容器 (4)内に投入して混合した後、上蓋ボルト(2)を閉めて密閉し、棒状ヒータ(1) で 480°Cに昇温し、 30分間加熱し続けた。その後、反応容器 (4)を室温まで放冷し た後、ガラスラインに直結した GC— MS (ガスクロマトグラフィー '質量分析測定装置: 島津製 TCD— GC8APT(H、 CO測定用)、 FID— GC8APF (炭化水素測定用)) に接続して、発生した気体の分析を行った。
[0104] なお、 GC— MSの分析条件は以下の通りである。
Hydrocarbon: PorapakQ, Col. Temp. 60。C、 He 48ml/min, FID 8 X 10
2
CO : Silica Gel, Col. Temp. 60。C、 He 36ml/minゝ TCD 180mA,
2
H : Molecular seive 5 A、 Col. Temp. 50。C、 Ar 15ml/min, TCD 60m
2
A
[0105] その結果、キャリアーガスのアルゴン (質量 40)とその不純物(質量 20)以外には、 窒素 (質量 28)と二酸ィ匕炭素 (質量 44)しか観測されな力つた。よって、本発明による PCBの酸ィ匕方法は、有害な気体が発生しにく!/、と判断した。
[0106] (液体成分の確認) 3mlの水と、 lOOmgの PCBと、 lOOOmgの硝酸ナトリウムを超 臨界水反応容器 (気体捕集用のバルブがっ 、て 、な 、だけで、その他は前記のガ ス封入型反応容器 (4)と同じ)に入れ、 480°Cで 30分間反応させた。反応容器を室 温まで放冷した後、反応溶液 3mlを取り、 1. 5mlの重水素化クロ口ホルム(CDC1 )
3 により有機物を抽出した。抽出液の 40 1を GC-MS (ガスクロマトグラフィー ·質量分 析測定装置)に注入し、分析を行った。使用した GC— MS装置は SHIMADZU G CMS— QP5000である。
[0107] なお、測定条件は以下の通りである。
気化室温度 310°C、溶媒溶質時間 1分、保持時間 1. 0— 13. 5分、測定質量 4 0— 400
[0108] ガスクロマトグラムの測定結果を図 9に示した。
[0109] 図 9の横軸は、測定開始力ゝらの経過時間を示し、縦軸はピークの強度を示す。
[0110] 図 9によると、保持時間が 1分付近に複雑な小さなピーク、 2分前後付近に複雑な 大きなピーク、 2. 3分付近と 2. 60分付近に鋭いピークが認められた力 これよりも長
V、保持時間では、ピークが認められな力つた。
[0111] また、これらの 3分以内の保持時間で観測されるピークは、それらの保持時間にお ける質量分析の結果から、溶媒 (重水素化クロ口ホルム)若しくは溶媒に含まれる不 純物、或いは、 PCBの分解生成物に帰属すると判断した。 [0112] なお、その質量分析の結果によると、ビフヱニル (質量 154)以上の質量では、ピー クが認められなかった。
[0113] PCBのようにクロ口ホルムよりも揮発性の低い分子のピークは、保持時間が 3分以 内に表れる溶媒 (クロ口ホルム)のピークよりも遅く現れると予想される。しかし、図 9に は、保持時間が 3分以後になると、全くシグナルが観測されない。
[0114] そこで、本発明方法により PCBを酸ィ匕すると、 PCBは全て分解し、また、その分解 によりビフエ-ルのような有害物質も生成して 、な 、と判断した。
[0115] 実験 5:有機物が無害な物質に分解されたことの確認 (その 5)
本発明の有機物の酸化方法と超臨界水酸化法を模擬した方法により得られた固形 残渣を目視で比較した。
[0116] 比較するにあたり、固形残渣を以下のようにして得た。まず、本発明の有機物の酸 化方法では、 3mlの水と lOOmgの有機物(PaCB)と 400mgの硝酸塩(硝酸ナトリウ ム)を反応容器 (4)に投入して混合した後、上蓋ボルト(2)を閉めて密閉し、棒状ヒー ター(1)で 450°Cに昇温して得た超臨界水をそのまま 2時間加熱し続けた。その後、 放冷してカゝら反応溶液を、メンブランフィルター(SIBATA 6168— 2511)を使用し て濾過し、乾燥機(IuchiDrying Oven DO— 450)を用いて 55°Cで乾燥させ、こ れを本発明の酸化方法により得られる固形残渣と判断した。本発明の酸化方法では 、固形残渣は認められな力つた。
[0117] 一方、超臨界水酸ィ匕法を模擬した方法では、 lOOmgの有機物(PaCB)と水酸ィ匕 ナトリウムと過酸ィ匕水素水(関東ィ匕学製 特級、 30— 35wt%)を全容量が 3mlになる ようにカ卩えた。水酸ィ匕ナトリウムは PaCBが分解して発生する塩酸を中和するために P aCBに対して等量とし、過酸ィ匕水素は PaCBの炭素を全て二酸ィ匕炭素にするために PaCBに対して少なくとも 3倍当量とした。反応容器 (4)に投入して混合した後、上蓋 ボルト(2)を閉めて密閉し、棒状ヒーター(1)で 450°Cに昇温して得た超臨界水をそ のまま 2時間加熱し続けた。その後、放冷して力も反応溶液を、前記メンブランフィル ターを使用して濾過し、前記乾燥機を用いて乾燥させ、これを超臨界水酸化方法に より得られる固形残渣と判断した。この超臨界水酸化方法では、固形残渣として茶色 の固形物質が認められた。 [0118] なお、使用した過酸化水素水 (H O )の量は、使用した有機物を完全に酸化する
2 2
ために必要な酸素量を十分に満足するものであり、硝酸ナトリウムを使用した場合に 発生する酸素量と同じにした。
[0119] もっとも、本実験で使用した酸化剤 (過酸ィ匕水素水又は硝酸ナトリウム)の量は、 Pa CBの酸化反応と、過酸ィ匕水素水又は硝酸ナトリウムからの酸素供給に関する反応が 以下の反応式に従うと仮定して、算出したものである。但し、これらの反応式は硝酸ィ オンの分解に伴って生じる酸素量を見積もるために便宜的に提案したものであり、硝 酸ナトリウムの反応が必ずこのように進行するということを意味するものではない。
(PaCBの酸化反応)
13NaNO +C H CI → 13NaNO +6CO +H 0 + 2HC1
3 6 4 2 2 2 2
(過酸ィ匕水素水力 の酸素供給に関する反応)
H O → H 0+ 1/20
2 2 2 2
(硝酸ナトリウム力 の酸素供給に関する反応)
NaNO → NaNO + 1/20
3 2 2
NaNO + 1/2H O → NO + NaOH+ l/40
2 2 2
NO → 1/2N + 1/20
2 2
なお、反応後、蒸発乾固した後で測定した XRDスペクトル結果によると、硝酸ナトリ ゥムと微量の亜硝酸ナトリウムが観測された。
[0120] 実験 6 :有機物の固形残渣の発生量の確認
本発明の酸ィ匕方法と超臨界水酸ィ匕法を模擬した方法により、有機物であるポリ塩 化ビニルを酸化後に発生する固形残渣量を比較した。
[0121] 比較するにあたり、固形残渣を以下のようにして得た。本発明の有機物の酸化方法 では、まず、ポリ塩化ビュル (和光製 特級) 150mgと、硝酸ナトリウム 600mgと、水 3 mlを反応容器 (4)に投入して混合した後、上蓋ボルト(2)を閉めて密閉し、棒状ヒー ター(1)で 450°Cに昇温して得た超臨界水をそのまま 30分間加熱し続けた。その後 、放冷してカゝら反応溶液を、前記メンブランフィルターを使用して濾過し、前記乾燥機 を用いて乾燥させ、このときに得られた固形物を固形残渣と判断した。この固形残渣 の重量を分解後に発生する固形残渣量とした。その結果、得られた固形残渣量は 3 回の試験の平均で 17mgであった。なお、固形残渣以外に粘性のある液体も得られ たが、これは油分残渣と判断した。油分残渣は 3回の試験の平均で lmgであった。
[0122] なお、使用した 600mgの硝酸ナトリウム力も供給される酸素量は、 23mmolで、 15 Omgのポリ塩化ビュル (モノマー換算で 2. 4mmol)を完全に酸化するために必要な 酸素量(13. 2mmol)を十分満足する量である。
[0123] 一方、超臨界水酸ィ匕法を模擬した方法では、前記ポリ塩ィ匕ビュル 150mgと、過酸 化水素水(関東ィ匕学製 特級、 30— 35wt%) 2. 5mlと、 2molZlの水酸ィ匕ナトリウム 水溶液 1. 5mlを反応容器 (4)に投入して混合した後、上蓋ボルト(2)を閉めて密閉 し、棒状ヒーター(1)で 450°Cに昇温して得た超臨界水をそのまま 30分間加熱し続 けた。その後、放冷して力も反応溶液を、前記メンブランフィルターを使用して濾過し 、前記乾燥機により乾燥させ、これを超臨界水酸化方法により得られる固形残渣と判 断した。この固形残渣の重量を分解後に発生する固形残渣量とした。この結果、得ら れた固形残渣量は約 150mgであった。なお、固形残渣以外に粘性のある液体も得 られたが、これは油分残渣と判断した。
[0124] 超臨界水酸化法を模擬した方法で、水酸ィ匕ナトリウム水溶液を加えたのは、反応容 器の損傷を防ぐためである。
[0125] また、使用した過酸化水素水 (H O )は、重量百分率が 30— 35. 5%の関東化学
2 2
製の試薬であり、使用した 2. 5mlの H O量は約 22 26mmolであり、 150mgの塩
2 2
化ビニル (2. 4mmol)を完全に酸化するために必要な酸素量 (O換算では 6mmol、
2
酸素原子 O換算では 12mmol)を十分満足する量である。
[0126] もっとも、本実験で使用した酸化剤の量は、以下の塩化ビニルの酸化反応と、過酸 化水素水又は硝酸ナトリウム力 の酸素供給に関する反応が以下の反応式に従うと 仮定して、算出したものである。但し、これらの反応は硝酸イオンの分解に伴う酸素 量を見積もるために便宜的に提案したものであり、硝酸ナトリウムの反応が必ずこのよ うに進行すると 、うことを意味するものではな 、。
(塩化ビニルの酸化反応)
-CH CHC1-+ 5/20 → 2CO +H O+HCl
2 2 2 2
(過酸ィ匕水素水力 の酸素供給に関する反応) H O → H 0+ 1/20
2 2 2 2
(硝酸ナトリウム力 の酸素供給に関する反応)
NaNO → NaNO + 1/20
3 2 2
NaNO + 1/2H O → NO + NaOH+ l/40
2 2 2
NO → 1/2N + 1/20
2 2
ここでは、ポリ塩化ビュルに関して、その単量体 (一 CH CHC1—)で反応式を作成し
2
た。
なお、反応後、蒸発乾固した後で測定した XRDスペクトル結果によると、硝酸ナトリ ゥムと微量の亜硝酸ナトリウムが観測された。
[0127] 更に、本発明の酸化方法による有機物 (ポリ塩化ビニル、イオン交換榭脂、難燃性 ゴム)の分解後に残存する固形残渣量を、有機物に対する硝酸ナトリウムの量を変え ながら、測定した。このときに使用した硝酸ナトリウムの量は、前記の塩ィ匕ビ二ルの酸 化反応の反応式に代表されるように、分解させる有機物を完全に CO
2に分解させると 仮定し、そのために最低限必要な酸素量を等倍量とした。得られた結果を図 10— 13 の表 1一 4に示す。
[0128] なお、使用したイオン交換榭脂はダウケミカル社製 (陰イオン交換榭脂: DOWEX1
X8、陽イオン交換榭脂: DOWEX50W— X8)であり、難燃'性ゴムは、 CHIYODA TECHNOL CORPORATION (Tokyo, Japan)製のものを使用した。
[0129] 以上の結果をまとめると、以下のようになる。
[0130] NMR法の測定結果によれば、本発明の有機物の酸ィ匕方法によって PaCB若しく は PCBを酸ィ匕すると、塩素系芳香族化合物は無害な物質に分解できた。少なくとも、 前記実
施例条件下では、完全に無害な物質に分解でき、芳香族化合物としても存在しない
[0131] XRD法の測定結果によれば、本発明の有機物の酸化方法によって PaCBを酸ィ匕 すると、 NaCl、 NaNO及び NaHCOが生成する。
2 3
[0132] 従って、本発明の有機物の酸化方法により PaCB (化学式 C H C1 )を酸化すると、
6 4 2
反応に関与した NaNOは NaNOへ還元され、 COを発生することになる。この事実 13NaNO +C H CI→13NaNO +CO +H 0 + 2HCl(l)
3 6 4 2 2 2 2 し力し、実際に使用した NaNOは 400mg (4. 71mmol)であり、 PaCBは 100mg (
3
0. 68mmol)であることから、 NaNO ZPaCBのモル比は約 7となり、(1)式が成立
3
するために必要な 13と!、うモル比よりも極めて小さ!/、。
[0133] また、本発明の有機物の酸化反応によって生成する NaHCOの存在は、反応後の
3
溶液が弱アルカリ性であり、(1)式によると存在するはずの HC1が存在していないこと を意味する。
[0134] よって、有機物の酸化反応によって生成する COは、 NaNOの分解により生じた N
2 2
aOHと(2)式に従って反応し、 NaHCOを生じていると考えられる。
3
CO +NaOH→NaHCO (2)
2 3 なお、本発明の有機物の酸化反応によって生成する NaClの存在は、(1)式による と本来存在するはずの HC1が NaClへ中和されていることを意味する。
[0135] 以上より、本発明の有機物の酸ィ匕は、(1)式の過程だけでなぐ NaNOが NaNO
3 2 を経て Nへと還元される過程でも起きていると考えられる。
2
[0136] また、発生する気体は、 Nと NaOHにより吸収されなかった COである。即ち、本発
2 2
明の有機物の酸ィ匕方法によれば、有機物の酸化により発生する COがー部 NaOH
2
に吸収されることを意味する。し力も、有機物の反応に使用されな力つた NaNOはそ
2 のまま反応溶液中に残存することから、 NaNOの自己分解によって発生する気体の
2
量もほとんどなぐ NaNOの化学当量も有機物との反応に必要な量だけでほぼ足り
2
ると考えられる。従って、本発明の有機物の酸ィ匕反応過程で生じる圧力上昇は、この ような効果を得ることが難しぐ有機物との反応で発生する CO以上に大量の酸素を
2
必要とする超臨界水酸ィ匕法と比較して、極めて小さいと判断できる。とりわけ酸素供 給源として過酸ィ匕水素を用いる超臨界水酸ィ匕法と比較すると、過酸化水素の自己分 解による oの発生もかなり多いため、その差は更に大きくなると予想される。
2
[0137] 更に、超臨界水酸化法では、 10数秒で終了する反応が (J. R. Portela, E. Nebo t, E. Martinez de la Ossa, J. Supercritical Fluids 21, 125—145 (2001) )、本発明の有機物の酸ィ匕法では数 10分程度力かる。
[0138] 加えて、前記のように、 450°C、 1時間で完全に分解できた PaCB力 450°C、 30分 の条件では完全に分解できな力つたことから、 NaNOと PaCBとの反応過程が拡散
3
律速で起こるような迅速な反応ではないと考えられる。
[0139] 以上から、本発明の有機物の酸化反応による酸化反応速度は、超臨界水酸化法 に比べて極めて遅ぐ本発明の有機物の酸ィ匕反応における圧力や温度上昇は起こ るものの、その上昇速度は、超臨界水酸ィ匕法に比べてはるかに小さいと判断できる。
[0140] 煤の発生が生じないことは、反応終了後、装置内に煤の発生を示すような固形残 渣がなカゝつたことを目視で確認した。
[0141] 本発明の亜臨界水は、 3mlの水と lOOmgの有機物(PaCB)と 400mgの硝酸塩 ( 硝酸ナトリウム)を反応容器 (4)に投入して混合した後、上蓋ボルト(2)を閉めて密閉 し、棒状ヒーター(1)で昇温することにより得た。
[0142] 昇温温度は 350°Cとした。
[0143] 反応時間は 4時間とした。
[0144] 本発明の亜臨界水を使用した有機物の酸ィ匕方法により、有機物が酸化されて無害 な物質に分解されたことの確認は、前記本発明の超臨界水を使用した有機物の酸 化方法と同じ分析装置を使用して行った。
[0145] その結果、例えば、 PaCBを使用した場合、 NMR測定に基づき分解率を計算する と、超臨界水中の場合のように完全ではな力つたが、 9割以上を分解することができ、 その分解生成物が無害な物質に分解されたことを確認できた。
[0146] 本発明の有機物の酸化方法と模擬の超臨界水酸化法により、 PaCBを酸化した場 合、酸化剤カゝら供給される酸素量が同じであれば、本発明の有機物の酸ィ匕方法では 、固形残渣物が発生せず、完全に分解するが、模擬の超臨界水酸化法では、固形 残渣が発生することがわ力つた。
[0147] 本発明の有機物の酸化方法と模擬した超臨界水酸化法により、塩化ビニルを酸ィ匕 した場合、酸化剤カゝら供給される酸素量が同じであれば、発生する固形残渣の量は 、本発明の有機物の酸ィ匕方法の方がはるかに少ないことが確認できた。この結果、 本発明の有機物の酸化方法は、塩化ビュルの分解'減量化が可能で、塩化ビニル の減量ィ匕に適して ヽることがわかった。
[0148] また、イオン交換榭脂及び難燃性ゴムに関しても、分解'減量ィ匕できることが確認で きた。
産業上の利用可能性
[0149] 本発明の超臨界水又は亜臨界水及びこれらを使用した有機物の酸化方法によれ ば、廃棄物焼却施設等から排出される難分解性の PCBを無害な物質に分解できる ことから、類似構造を有するダイォキシンやダイォキシン類等への適用も期待できる。 また、放射性同位体分離等で使用されたイオン交換樹脂の減容化、有機塩素系溶 剤や塩素系プラスチック (例えばポリ塩ィ匕ビュル)の分解処理にも適用可能である。 図面の簡単な説明
[0150] [図 1]超臨界反応装置の側面図
[図 2]超臨界反応装置の上面図
[図 3]GC— MSによる測定結果
[図 4]¾及び13 Cによる NMR法による測定結果 (硝酸ナトリウム含有なし)
[図 5]¾及び13 Cによる NMR法による測定結果 (硝酸ナトリウム含有あり)
[図 6]¾及び13 Cによる NMR法による測定結果 (有機物; PCB、硝酸ナトリウム;含有 あり)
[図 7]¾及び13 Cによる NMR法による測定結果 (有機物; PCB、硝酸ナトリウム;含有 なし)
[図 8]XRD法による測定結果
[図 9]GC— MSによるガスクロマトグラムの測定結果
[図 10]表 1 塩化ビニルを分解したときの残渣量
[図 11]表 2 陰イオン交換榭脂を分解したときの残渣量
[図 12]表 3 陽イオン交換榭脂を分解したときの残渣量
[図 13]表 4 難燃性ゴム手袋を分解したときの残渣量 符号の説明 1 棒状ヒーター 2 上蓋ボルト 3 ジョイント用ボノレト 4 反応容器
5 反応容器内温度計 6 ヒーター温度計 7 圧力センサー 8 サファイア製の窓

Claims

請求の範囲
[1] 酸化剤を含有する超臨界水又は亜臨界水であって、その酸化剤が硝酸塩に由来す る物質であることを特徴とする超臨界水又は亜臨界水。
[2] 前記硝酸塩が硝酸ナトリウムであることを特徴とする請求項 1記載の超臨界水又は亜 臨界水。
[3] 請求項 1又は 2記載の超臨界水又は亜臨界水を有機物の酸化に使用することを特 徴とする有機物の酸化方法。
[4] 請求項 1又は 2記載の超臨界水又は亜臨界水が、前記有機物と前記硝酸塩を予め 水に混合した後、この溶液を超臨界水又は亜臨界水状態にしたものであることを特 徴とする請求項 3記載の有機物の酸化方法。
[5] 前記有機物を酸化により無害な物質へ分解することを特徴とする請求項 3又は 4記載 の有機物の酸化方法。
[6] 前記有機物を 500°C未満で酸化することを特徴とする請求項 3乃至 5記載の有機物 の酸化方法。
[7] 前記有機物が有機塩素系芳香族化合物であることを特徴とする請求項 3乃至 6記載 の有機物の酸化方法。
PCT/JP2004/010969 2003-08-04 2004-07-30 超臨界水又は亜臨界水、及びこれらを使用した有機物の酸化方法 WO2005012179A2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003286251 2003-08-04
JP2003-286251 2003-08-04
JP2004-167021 2004-06-04
JP2004167021A JP3816502B2 (ja) 2003-08-04 2004-06-04 超臨界水又は亜臨界水を使用した有機物の酸化方法

Publications (2)

Publication Number Publication Date
WO2005012179A2 true WO2005012179A2 (ja) 2005-02-10
WO2005012179A3 WO2005012179A3 (ja) 2005-04-14

Family

ID=34117949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010969 WO2005012179A2 (ja) 2003-08-04 2004-07-30 超臨界水又は亜臨界水、及びこれらを使用した有機物の酸化方法

Country Status (2)

Country Link
JP (1) JP3816502B2 (ja)
WO (1) WO2005012179A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524504B2 (en) 2007-08-31 2013-09-03 Vivacta Limited Sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273195A (ja) * 2001-03-16 2002-09-24 Kurita Water Ind Ltd 水熱反応方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273195A (ja) * 2001-03-16 2002-09-24 Kurita Water Ind Ltd 水熱反応方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524504B2 (en) 2007-08-31 2013-09-03 Vivacta Limited Sensor

Also Published As

Publication number Publication date
WO2005012179A3 (ja) 2005-04-14
JP3816502B2 (ja) 2006-08-30
JP2005066318A (ja) 2005-03-17

Similar Documents

Publication Publication Date Title
US11577111B2 (en) Hydrothermal technology for decontamination and mineralization of perfluoro- and polyfluoroalkyl substance (PFAS) in wastes, concentrate solutions, and chemical stockpiles
Chen et al. Photocatalytic degradation of clofibric acid by g-C3N4/P25 composites under simulated sunlight irradiation: the significant effects of reactive species
Okuno et al. Sonolytic degradation of hazardous organic compounds in aqueous solution
Bhatnagar et al. Sonochemical destruction of chlorinated C1 and C2 volatile organic compounds in dilute aqueous solution
EP0065865B1 (en) Method for disposal of chemical waste
Liu et al. Advanced degradation of brominated epoxy resin and simultaneous transformation of glass fiber from waste printed circuit boards by improved supercritical water oxidation processes
CA2249404A1 (en) Method for hot and supercritical water oxidation of material using specific reactants
Lesage et al. Degradation of chlorofluorocarbon-113 under anaerobic conditions
Hai et al. A novel and efficient method for dechlorination of hexachlorobenzene using a sodium carbonate/glycerol system
WO2005012179A2 (ja) 超臨界水又は亜臨界水、及びこれらを使用した有機物の酸化方法
Lee et al. Supercritical water oxidation of polychlorinated biphenyls based on the redox reactions promoted by nitrate and nitrite salts
JPH09117735A (ja) 水熱作用による毒ガス等の有機系ヘテロ化合物質 の分解処理法
Fujimori et al. Dechlorination of short-chain chlorinated paraffins by the metal sodium dispersion method
JP2021155478A (ja) フッ素原子含有ポリマーの分解方法、及びフッ素原子含有ポリマーの分解装置
KR20050115809A (ko) 초임계수 또는 아임계수 및 이를 사용한 유기물 산화방법
Kim et al. Mechanism and kinetics of reductive dehalogenation of PBB (polybrominated biphenyl) in the sonolytic and ketyl radical system
US5174985A (en) Process for the oxidation of water-insoluble organic compounds
JP2000334062A (ja) 有害有機化合物のマイクロ波−ソルボサーマル連続処理法
JP3210962B2 (ja) 高圧高温熱水酸化によるハロゲン化有機物の分解方法
JP7258319B1 (ja) フッ素原子含有ポリマーの分解方法、及びフッ素原子含有ポリマーの分解装置
JP2006045469A (ja) アンモニア含有水溶液による含ハロゲン高分子の脱ハロゲン化方法
JP3734963B2 (ja) 混合溶融塩による有機塩素化合物等の無害化処理方法
Qin et al. Photodegradation of 4‐Chlorobiphenyl in Hexane by UV Irradiation
JP2006087876A (ja) 有機塩素化合物の分解方法
Sánchez-Yepes et al. Regeneration of Granulated Spent Activated Carbon with 1, 2, 4-Trichlorobenzene by Persulfate Activated by Heat

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase