WO2005010961A1 - Exposure apparatus - Google Patents

Exposure apparatus Download PDF

Info

Publication number
WO2005010961A1
WO2005010961A1 PCT/JP2004/010864 JP2004010864W WO2005010961A1 WO 2005010961 A1 WO2005010961 A1 WO 2005010961A1 JP 2004010864 W JP2004010864 W JP 2004010864W WO 2005010961 A1 WO2005010961 A1 WO 2005010961A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving body
exposure apparatus
mask
reticle
movable
Prior art date
Application number
PCT/JP2004/010864
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Inoue
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2005512084A priority Critical patent/JPWO2005010961A1/en
Publication of WO2005010961A1 publication Critical patent/WO2005010961A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70066Size and form of the illuminated area in the mask plane, e.g. reticle masking blades or blinds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Definitions

  • the present invention relates to an exposure apparatus that exposes a pattern of a mask onto a substrate by synchronously moving the mask and the substrate.
  • Microdevices such as semiconductor devices are manufactured by a so-called photolithography method in which a pattern formed on a mask or reticle (hereinafter collectively referred to as “reticle”) is transferred onto a photosensitive substrate such as a wafer.
  • reticle a pattern formed on a mask or reticle
  • An exposure apparatus used in the photolithography process has a reticle stage for supporting a reticle and a substrate stage for supporting a substrate, and projects a pattern formed on the reticle while sequentially moving the reticle stage and the substrate stage. It is transferred to a substrate via an optical system.
  • the exposure system includes a batch exposure system that simultaneously transfers the entire reticle pattern onto the substrate, and a scanning exposure system that continuously transfers the reticle pattern onto the substrate while synchronizing the reticle stage and the substrate stage.
  • a slit-shaped (rectangular) illumination area on a reticle is illuminated with exposure light while a reticle and a substrate are moved synchronously, and a reticle pattern is exposed on the substrate.
  • the illumination area on the reticle is controlled by moving the blade member synchronously with the reticle.
  • the present invention has been made in view of such circumstances, and has an influence on exposure accuracy even when vibration is generated due to movement of a movable body such as a movable reticle blind disposed between a light source and a reticle (mask).
  • An object of the present invention is to provide an exposure apparatus capable of suppressing the exposure.
  • the present invention employs the following configuration corresponding to FIGS. 1 to 13 shown in the embodiment.
  • a first aspect of the present invention is an exposure apparatus (EX) for exposing a pattern of a mask (R) to a substrate (P) by synchronously moving a mask (R) and a substrate (P).
  • the moving object (50, 5) is installed between the light source (1) that emits the illumination light (EL) for illuminating the mask (R) and the mask (R), and moves following the movement of the mask (R). 2, 5 4), the first base (6, 59) on which the moving body (50, 52, 54) is arranged, and the first body (50, 52, 54) due to the movement of the moving body (50, 52, 54).
  • a vibration isolator (20) for suppressing or eliminating vibration transmitted to the frame (6, 59) is provided.
  • the vibration isolator for suppressing or eliminating the vibration transmitted to the first gantry by the movement of the moving body disposed between the light source and the mask is provided, the vibration of the first gantry is provided. Deterioration of exposure accuracy caused by the exposure can be suppressed, and accurate exposure processing can be performed. In addition, since the movement of the moving body can be accelerated and accelerated by suppressing the vibration, the throughput of the exposure processing can be improved.
  • a second aspect of the present invention is an exposure apparatus for moving a mask and a substrate to expose a pattern of the mask on the substrate, wherein the exposure apparatus defines an illumination area of the mask and is movable.
  • a third aspect of the present invention is an illuminating device for illuminating a mask on which a pattern is formed, wherein the illuminating area of the mask is defined, and the movable first movable body and the first movable body are provided.
  • the second moving body in the direction opposite to the moving direction of the first moving body in accordance with the movement of the first moving body. Equipped with a moving object
  • FIG. 1 is a schematic configuration diagram showing an embodiment of the exposure apparatus of the present invention.
  • FIG. 2 is a plan view schematically showing a movable reticle blind.
  • FIG. 3 is a side view schematically showing a movable reticle blind.
  • FIG. 4 is a plan view showing an embodiment of the vibration isolator according to the present invention.
  • FIG. 5 is a diagram schematically showing a fixed reticle blind.
  • FIG. 6 is a schematic diagram showing a relationship between a mask and an illumination area set by a movable reticle blind and a fixed reticle blind.
  • FIG. 7 is a side view showing another embodiment of the vibration isolator according to the present invention.
  • FIG. 8 is a plan view of FIG.
  • FIG. 9 is a diagram illustrating an embodiment of a measurement device that forms a part of the adjustment device.
  • FIG. 10 is a side view showing another embodiment of the vibration isolator according to the present invention.
  • FIG. 11 is a plan view showing another embodiment of the vibration isolator according to the present invention.
  • FIG. 12 is a side view showing another embodiment of the vibration isolator according to the present invention.
  • FIG. 13 is a flowchart illustrating an example of a semiconductor device manufacturing process. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic configuration diagram showing an embodiment of the exposure apparatus of the present invention.
  • an exposure apparatus EX includes a reticle stage RST supporting a reticle (mask) R, a substrate stage PST supporting a photosensitive substrate P, and a light source 1 for emitting a light beam for illuminating the reticle R;
  • the luminous flux from the light source 1 is converted into the exposure light EL, and the reticle R supported by the reticle stage RST is illuminated with the exposure light EL.
  • the illumination optical system IOP and the pattern image of the reticle R illuminated with the exposure light EL substrate A projection optical system PL for projecting onto the substrate P supported by the stage PST, and a control device CONT for controlling the overall operation of the exposure apparatus EX are provided.
  • the second partial illumination optical system IOP2 which is a part of the illumination optical system IOP, which constitutes the main body section S that exposes the substrate P with the exposure light EL via the reticle R, the reticle stage RST, the projection optical system PL, The substrate stage PST and the like are supported by the main body column (second stand) 10.
  • the exposure apparatus EX is a scanning type exposure apparatus that exposes the pattern formed on the reticle R to the substrate P while synchronously moving the reticle R and the substrate P in different directions (opposite directions) in the scanning direction. An example in which an apparatus (a so-called scanning stepper) is used will be described.
  • the synchronous movement direction (running direction) of the reticle R and the substrate P in the horizontal plane is the Y-axis direction
  • the direction orthogonal to the Y-axis direction (the non-scanning direction) in the horizontal plane is the X-axis direction
  • the direction orthogonal to the axis and the Y axis is defined as the Z axis.
  • the directions around the X, Y, and Z axes are defined as 0 °, ⁇ and ⁇ directions, respectively.
  • the “substrate” includes a semiconductor wafer or a glass plate coated with a resist.
  • an ArF excimer laser light source that outputs pulsed ultraviolet light narrowed so as to avoid the oxygen absorption band between the wavelengths of 192 and 194 nm is used.
  • the main body of the light source 1 is installed on a floor FD in a clean room of a semiconductor manufacturing plant via an anti-vibration unit 1A.
  • the light source, as 1, may be used F 2 laser light source for outputting a K r F excimer laser light source or the wavelength 1 5 7 nm pulsed ultraviolet light and outputs the pulse ultraviolet light having a wavelength of 2 4 8 nm.
  • the light source 1 may be installed in another room (service room) having a lower degree of cleanliness than the clean room, or in a utility space provided under the floor of the clean room.
  • the illumination optical system IOP is composed of two parts, a first partial illumination optical system IOP1 and a second partial illumination optical system IOP2 provided between the light source 1 and the reticle stage RST (reticle R). ing.
  • the first partial illumination optical system I OP 1 has a first illumination system housing (first frame) 6, and the second partial illumination optical system I OP 2 has a second illumination system housing (second frame) 8 have.
  • the first and second lighting system housings 6, 8 are Includes a housing for housing the partial illumination optical system and a lens barrel.
  • the first illumination system housing 6 of the first partial illumination optical system IOP 1 is installed via a vibration isolating unit 5 on a base plate (frame caster) BP that serves as a reference for a device mounted horizontally on the floor FD. I have.
  • the second partial illumination optical system IOP 2 (second illumination system housing 8) is supported from below by a second support column 14 constituting the main body column 10.
  • the light source 1 is connected to one end (incident end) of the beam matching unit BMU via a light-blocking bellows and a pipe, and the other end (exit end) of the beam matching unit BMU is internally connected to a relay. It is connected to the first partial illumination optical system IOP 1 of the illumination optical system IOP via a pipe 2 having a built-in optical system.
  • the beam matching unit BMU is equipped with a relay optical system and a plurality of movable reflecting mirrors, etc., and the narrow band pulsed ultraviolet light (A r) incident from the light source 1 using these movable reflecting mirrors and the like.
  • the optical path of F excimer laser light) is positionally matched with the first partial illumination optical system IOP1.
  • First partial illumination optical system In the first illumination system housing 6 of the IOP 1, a variable attenuator, beam shaping optical system, optical integrator, condensing optical system, relay lens system, etc. are arranged in a predetermined positional relationship. ing.
  • the pulsed ultraviolet light from the light source 1 enters the first partial illumination optical system IOP 1 via the beam matching unit BMU and the relay optical system, the pulsed ultraviolet light is supplied to a predetermined part by the ND filter of the variable attenuator. After being adjusted to the peak intensity, the cross-sectional shape is shaped by the beam shaping optics so as to efficiently enter the optical integrator.
  • a surface light source that is, a secondary light source composed of a large number of light source images (point light sources) is formed on the emission end side.
  • the pulsed ultraviolet light diverging from each of these many point light sources reaches the movable reticle brand 50 as exposure light EL.
  • the movable reticle blind (moving body) 50 includes movable blades (movable light-blocking members, moving bodies) 52 and 54 that regulate the illumination area of the exposure light EL to the reticle R. (Moving body housing unit) 59
  • the movable reticle blind 50 and the blind housing part 59 accommodating the movable reticle blind 50, It is mounted near the exit end of the first illumination system housing 6.
  • the movable blades 52, 54 of the movable reticle plant 50 are arranged at positions substantially conjugate with the pattern forming surface (pattern surface) of the reticle R. Further, an anti-vibration device 20 is provided between the first illumination system housing 6 and the blind housing portion 59.
  • FIG. 2 is a plan view of the movable reticle blind 50 viewed from the + Z side
  • FIG. 3 is a new side view.
  • the movable reticle blind 50 is arranged on the first illumination system housing 6 at intervals in the X direction, and extends in the X direction, and a pair of Y guides 51 extending in the Y direction, which is the scanning direction.
  • a movable blade (movable light-blocking member) 52 whose one end is movable in the Y direction along the Y guide 51 is provided at both ends of the Y guide 51 in the Y-axis direction, and extends in the X-axis direction.
  • a pair of existing X guides 53 and an X movable blade (movable light shielding member) 54 extending in the Y-axis direction and having one end movable in the X direction along the X guide 53 are provided.
  • An air bearing 53 A which is a non-contact bearing, is provided on the guide surface of the X guide 53, and the X movable blade 54 is non-contact supported by the X guide 53 by the air bearing 53A. ing. Further, at one end of the X movable blade 54, a mover 56A constituting a part of the linear motor 56 is provided, and corresponding to the mover 56A, a position aligned with the X guide 53 is provided. Is provided with a stator 56B extending in the X-axis direction.
  • the linear motor 56 may be a so-called moving magnet type linear motor in which the mover 56 A is a magnet unit and the stator 56 B is a coil cut, or the mover 56 A is a coil unit and the stator is A moving coil type linear motor using 56 B as a magnet unit may be used.
  • a non-contact air bearing 51 A is provided on the guide surface of the Y guide 51, and the Y movable blade 52 is supported by the air bearing 51 A in a non-contact manner with respect to the Y guide 51. Have been.
  • a mover 55A that constitutes a part of the linear motor 55 is provided, and at a position aligned with the Y guide 51 corresponding to the mover 55A.
  • a stator 55B extending in the Y-axis direction is provided.
  • the stators 55B, 56B and the guides 51, 53 of the linear motors 55, 56 are fixed to the inner wall surface 59B of the blind housing portion 59.
  • An encoder (not shown) is provided in the blind housing section 59, The linear scales provided on the moving blades 52 and 54 are read to detect the position and output to the control device CONT.
  • the controller CONT drives the movable blades 52, 54 via the linear motors 55, 56 to adjust the size of the rectangular opening K that regulates the optical path through which the exposure light EL passes. Further, during scanning exposure, the controller CONT moves the Y movable blade 52 following the movement of the reticle R based on a detection signal of a reticle laser interferometer described later to regulate the illumination area on the reticle R. The reticle R is moved.
  • the movable blade driven is mainly the Y movable blade 52, which is a scan blade
  • the X movable blade 54 which is a non-scan blade
  • the X movable blade 54 is in the non-scanning direction (X-axis direction).
  • a linear motor may be used, and an actuator having a stationary holding force such as an ultrasonic motor may be used.
  • both the X movable blade 54 and the Y movable blade 52 drive the two blades on separate guides.However, a linear motor is placed on a common guide to drive the two blades. You may comprise.
  • the anti-vibration device 20 is disposed between a blind housing part 59 for accommodating the movable reticle blind 50 and the first illumination system housing 6.
  • the vibration isolator 20 includes an air pad (air mount) 21 that is a cushioning material. As shown in FIG. 4, the air pad 21 is arranged annularly along the upper end surface 6A of the first lighting system housing 6.
  • the internal space (optical path of the exposure light EL) 6B of the first illumination system housing 6 is formed in a rectangular shape, but may be in a circular shape.
  • a pressure regulator 21 A is connected to the air pad 21, and the controller CONT can regulate the internal pressure of the air pad 21 by controlling the pressure regulator 21 A.
  • the movable blades 52, 54 can be moved.
  • the transmission of the vibration generated by the first illumination system housing 6 can be suppressed. That is, the reaction force accompanying the movement of the movable blades 52 and 54 is generated by the air pad 21 and the first lighting Transmission to the system housing 6 can be suppressed.
  • an elastic body such as rubber may be arranged instead of the air pad 21 as a cushioning material constituting the vibration isolator 20.
  • the air pad 21 and an elastic body such as rubber may be arranged in combination.
  • the second partial illumination optical system IOP 2 is a fixed reticle blind (fixed field stop) 80 housed in a predetermined positional relationship within the second illumination system housing 8, a lens, a mirror, a relay lens system, and a condenser lens system. Etc. are provided.
  • the fixed reticle blind 80 is arranged on a surface slightly defocused from a conjugate plane with respect to the pattern forming surface of the reticle R near the incident end of the second illumination system housing 8, and defines an illumination area on the reticle R. It has a rectangular (slit-shaped) opening 81.
  • the second partial illumination optical system IOP 2 constitutes a part of the main body S, and is arranged on the reticle R side of the movable reticle blind 50.
  • FIG. 5 is a plan view of a fixed reticle blind (fixed field stop) 80.
  • the fixed reticle blind 80 is a slit extending linearly in the X-axis direction orthogonal to the moving direction of the reticle R during exposure (Y-axis direction) at the center in the circular field of view of the projection optical system PL. (Rectangular) opening 81.
  • a variable slit device having a rectangular opening and capable of adjusting the shape of the opening to an arbitrary shape may be provided instead of the fixed reticle blind 80.
  • the defocusing of the fixed reticle blind 80 on the plane on which the reticle R is arranged slightly from the conjugate plane with respect to the pattern forming surface of the reticle R is performed in a scanning type exposure apparatus, particularly an apparatus using pulsed light as the exposure light EL in the scanning direction.
  • the illuminance distribution in the illumination area on the reticle R of the pulsed UV light is trapezoidal (that is, a shape having slopes at both ends), and the distribution of the integrated light amount in each shot area on the substrate P during scanning exposure is
  • the edges may be partially missing or not accurately formed straight. This is for appropriately blurring the periphery of the illumination area on the pattern formation area of the reticle R.
  • the pulsed ultraviolet light that has passed through the rectangular opening K formed by the movable blades 52, 54 of the movable reticle blind 50 passes through the opening 81 of the fixed reticle blind 80. Illumination with various intensity distributions.
  • the pulsed ultraviolet light that has passed through the opening 81 of the fixed reticle blind 80 passes through a lens, mirror, relay lens system, condenser lens system, etc., and passes through a predetermined area on the reticle R held on the reticle stage RST.
  • the illumination area (slit or rectangular illumination area extending linearly in the X-axis direction) is illuminated with a uniform illuminance distribution.
  • the first illumination system housing 6 and the blind housing section 59 of the first partial illumination optical system IOP 1 and the second illumination system housing 8 and the main body column 1 of the second partial illumination optical system IOP 2 0 is independent with respect to vibration.
  • the blind housing 59 and the second illumination system housing 8 are physically separated from each other with a slight separation.
  • expansion and contraction as a connecting member that enables relative displacement between the two and allows the inside to be in an airtight state with respect to the outside air. It can be joined via a flexible bellows member.
  • the main body column 10 is composed of a plurality (four in this case) of support members 11 A to 1 ID provided on the base plate BP (however, the support columns 11 C and 11 D on the back side of the drawing are not shown) and The anti-vibration units 13 A to 13 D fixed on the upper parts of these support members 11 A to 11 D, respectively (However, in FIG.
  • the anti-vibration units 13 C and 13 D on the back side of the paper are (Not shown), a lens barrel base 16 supported substantially horizontally, a hanging column 18 hung downward from the lower surface of the lens barrel base 16, and a lens barrel base 16
  • First and second support columns 12 and 14 provided above are provided.
  • the lens barrel base 16 is made of an object or the like, and has a circular opening in a plan view at the center thereof, into which the projection optical system PL is inserted from above with its optical axis direction as the Z axis direction. Have been.
  • a flange FLG integrated with the lens barrel is provided on the outer periphery of the lens barrel of the projection optical system PL.
  • the material of the flange FLG is a material having a low thermal expansion, such as Inper (Inver; a low-expansion alloy composed of 36% nickel, 0.25% manganese, and iron containing trace amounts of carbon and other elements).
  • the flange FLG is used to connect the projection optical system PL to the barrel
  • the so-called kinematic support mount is supported at three points through the kinematics.
  • the suspension column 18 includes a substrate base plate 60 and four suspension members 61 for suspending and supporting the substrate base plate 60 almost horizontally.
  • the first support column 12 includes four legs 65 (surrounded by the projection optical system PL) on the top surface of the lens barrel base 16 (the legs on the far side of the drawing are not shown).
  • the reticle base plate 63 is supported substantially horizontally by the legs 65 of the reticle.
  • the second support column 14 has four supports 62 provided on the upper surface of the lens barrel base 16 so as to surround the first support column 12 (the support on the back side of the paper is shown. (Omitted) and a top plate 64 supported almost horizontally by these four columns 62.
  • the second partial illumination optical system IOP 2 described above is supported by the top plate 64 of the second support column 14.
  • the reticle stage R ST is arranged on a reticle base base 63 that forms the first support column 12 that forms the main body column 14.
  • the reticle stage RST is driven by a reticle stage drive system including, for example, a magnetic levitation type two-dimensional linear actuator, and linearly drives the reticle R on the reticle base surface plate 63 with a large stroke in the Y-axis direction.
  • a reticle stage drive system including, for example, a magnetic levitation type two-dimensional linear actuator, and linearly drives the reticle R on the reticle base surface plate 63 with a large stroke in the Y-axis direction.
  • it has a configuration that enables micro drive in the X-axis direction and the ⁇ Z direction.
  • a moving mirror 71 that reflects a length measurement beam from a reticle laser interferometer 70 that is a position detecting device for measuring the position and the amount of movement of the reticle stage RST is attached to a part of the reticle stage RST.
  • Reticle laser interferometer 70 is fixed to reticle base surface plate 63, and is fixed to reticle stage RST (that is, reticle R) with reference to fixed mirror 72 fixed to the side of the upper end of projection optical system PL. Detects the position in the XY plane including rotation.
  • Position information (or speed information) of reticle stage R ST (reticle R) measured by reticle laser interferometer 70 is output to control device CONT.
  • the controller CONT controls the position information (or speed information) output from the reticle laser interferometer 70 so that it matches the command value (target position, target speed) (specifically, it follows the substrate stage PST). Control the reticle stage drive system.
  • the projection optical system PL here, the object plane (reticle R) side and the image plane (substrate P) Both sides are telecentric, have a circular projection field, and are composed of only refractive optical elements (lens elements) made of quartz or fluorite as optical materials. 1/4, 1/5, or 1/6 reduction magnification Is used.
  • the image forming light flux from the portion of the pattern formation area on the reticle R illuminated by the pulsed ultraviolet light enters the projection optical system PL, and the pattern portion
  • the inverted image is limited to a rectangular shape (slit shape) at the center of the circular field on the image plane side of the projection optical system PL at each pulse irradiation of the pulsed ultraviolet light, and is formed.
  • the partial inverted image of the projected pattern is reduced and transferred to the resist layer on the surface of one of the plurality of shot areas on the substrate P arranged on the imaging plane of the projection optical system PL.
  • the substrate stage PST is arranged on the substrate base platen 60 constituting the above-mentioned hanging column 18 and is moved in the XY plane by a substrate stage drive system composed of, for example, a magnetic levitation type two-dimensional linear actuator. It is designed to be driven freely.
  • the substrate stage PST holds the substrate P by vacuum suction or the like via the substrate holder PH.
  • the XY position and the amount of rotation (the amount of rolling, the amount of pitching, and the amount of pitching) of the substrate stage PST are determined based on the reference mirror 75 fixed to the lower end of the barrel of the projection optical system PL.
  • the measurement is performed in real time at a predetermined resolution by a substrate laser interferometer 73 that measures a change in the position of a movable mirror 74 fixed to a part.
  • the measurement value of the substrate laser interferometer 73 is output to the control device CONT.
  • the control device CONT controls the substrate stage drive system based on the measurement result of the substrate laser interferometer 73.
  • the controller CONT controls the substrate stage drive system while monitoring the measurement value of the substrate laser interferometer 73 based on the alignment result, and controls the substrate stage drive system.
  • the substrate stage PST is moved to a running start position for exposing the shot area set on P.
  • control device CONT is a reticle stage drive system and substrate stage drive
  • the scanning of the reticle stage RST and the substrate stage PST in the Y-axis direction is started via the system.
  • the controller CONT starts illuminating the reticle R pattern formation region with the exposure light EL that is pulsed ultraviolet light.
  • the controller CONT controls each movable blade 52 (54) of the movable reticle blind 50. Since the opening K (illumination area IA) is moved synchronously with respect to the reticle stage RST (that is, the reticle R) by moving, the irradiation of the exposure light EL outside the pattern formation area PA on the reticle R is prevented. It is shaded. In the example shown in FIG.
  • a light-shielding band MB is provided around the pattern forming area PA of the reticle R, and the illumination area IA set by the opening K of the movable reticle blind 50 has a size corresponding to the light-shielding band MB.
  • the illumination area IB set by the opening 81 of the fixed reticle blind 80 has a slit shape extending in the X-axis direction.
  • the controller CONT operates such that the moving speed of the reticle stage RST in the Y-axis direction and the moving speed of the substrate stage PST in the Y-axis direction during the scanning exposure are maintained at a speed ratio corresponding to the projection magnification of the projection optical system PL.
  • the reticle stage RST and the substrate stage PST are moved synchronously via the reticle stage drive system and wafer stage drive system.
  • the control device CONT drives the movable blade 52 of the movable reticle blind 50 to move the opening (illumination area IA) so as to follow the reticle R.
  • the first lighting unit is provided by the air pad 21 serving as a cushioning material between the blind housing part 59 and the first lighting system housing 6. Transmission of vibration to the system housing 6 is suppressed. Then, the pattern formation area PA of the reticle R is sequentially illuminated with the exposure light E, and the illumination of the entire pattern formation area PA is completed, thereby completing the scanning exposure on the shot area on the substrate P.
  • the vibration transmitted to the first illumination system housing 6 by the movement of the movable blade 52 (54) arranged in the illumination optical system IOP is suppressed by the air pad 21 which is a cushioning material.
  • the air pad 21 which is a cushioning material.
  • the movement of the movable blade 52 (54) can be accelerated and accelerated, and the scanning movement speed and acceleration of the reticle stage RST and substrate stage PST can be improved.
  • by forming the vibration isolator 20 from an air pad 21 or an elastic body such as rubber vibration transmitted to the first illumination system housing 6 can be suppressed with a simple and inexpensive configuration.
  • the blind housing part 59 is held so as to be finely movable in the YX direction with respect to the first illumination system housing 6, the movable element 5 connected to the movable blade 52 (54) according to the law of conservation of momentum.
  • the whole of the stator 56B and the blind housing part 59 slightly move in the one X direction (or the + X direction).
  • the reaction of the movable blade 52 (54) is offset by the movement of the stator 56B and the entire blind housing portion 59. That is, in the present embodiment, the stator 56 B and the entire blind housing portion 59 are counter masses that receive a reaction force when the movable blade 52 (54) moves.
  • the first illumination system housing 6 has been described as the first gantry. However, when a gantry supporting the first illumination system housing 6 is provided, the vibration isolator 20 Can be suppressed or eliminated.
  • the air pads 21 are provided in a ring shape (endless shape). However, a plurality of air pads 21 are formed in an island shape between the first lighting system housing 6 and the blind housing portion 59 (see FIG. (Discretely). In this way, by adjusting the internal pressure of each of the plurality of air pads 21 individually, the positional relationship between the blind housing 59 and the first lighting system housing 6 (the blind housing relative to the first lighting system housing 6). Part 59) can be adjusted.
  • the description has been made such that the Y movable blade 52 moves in the Y axis direction and the X movable blade 54 moves in the X axis direction. (0 Z direction).
  • the opening portion 81 of the blinds 80 may be rotatable in the ⁇ Z direction. Accordingly, even when the reticle R is misaligned during the scanning exposure, the opening K and the opening 81 can be accurately moved to follow the reticle R.
  • the moving body is not limited to the movable reticle blind 50.
  • the filter device may be driven (moved) to adjust the illuminance of the exposure light EL to the reticle R or to adjust the optical characteristics of the illumination optical system IOP.
  • the present invention can be applied to suppress or eliminate vibration transmitted to the housing. That is, the present invention is applicable to all vibrations generated due to the movement of the moving body provided between the light source 1 and the reticle R.
  • the vibration isolator 20 includes a plurality of (four) piezo elements provided at predetermined positions between the first illumination system housing 6 and the blind housing part 59. 22 and a plurality of air pads 21 provided between the plurality of piezo elements 22.
  • vibration sensors (acceleration sensors) 23 are attached to a plurality of predetermined positions of the blind housing portion 59. The role of the vibration sensor 23 will be described below. For example, vibrations transmitted from the floor FD to the blind housing unit 59 via the first illumination system housing 6 and signals for driving the movable blades 52, 54 are transmitted to the linear motors 55, 56. The ideal thrust may not be given to the movable blades 52 and 54 depending on the tension of the given signal cable.
  • the blind housing portion 59 vibrates to a predetermined value or more.
  • the vibration sensor 23 detects such a vibration having a predetermined value or more and sends a signal to the control device CONT.
  • the control device CONT applies a driving voltage based on the detection result of the vibration sensor to each of the piezo elements 22 when the vibration sensor 23 detects the vibration that is equal to or more than a predetermined allowable value.
  • the piezo element 22 is displaced.
  • a desired thrust is applied to the movable blades 52, 54, and the movable blades 52, 54 are driven with high precision. It becomes possible.
  • piezo element 22 is used here, it is a matter of course that any vibration-reducing actuator other than the piezo element 22 can be used. Although four piezo elements 22 are provided here, at least three piezo elements 22 may be provided.
  • a measuring device 100 for measuring the position of the blind housing portion 59 with respect to the first illumination system housing 6 can be provided.
  • the measuring device 100 is a surface on the + X side of the blind housing part 59, on the one Z side of the L-shaped member 163 protruding outward (this surface is a surface substantially parallel to the XY plane).
  • eddy current displacement sensors 16 1 A and 16 1 B it has two eddy current displacement sensors 16 1 A and 16 1 B attached.
  • an AC voltage is applied to a coil wound on an insulator, and when the sensor is brought close to a measuring object made of a conductor (in this case, a metal plate), the coil is operated by the coil.
  • An eddy current is generated in the conductor by the applied alternating magnetic field.
  • the magnetic field generated by this eddy current is in the opposite direction to the magnetic field created by the coil current, and these two magnetic fields overlap and affect the output of the coil, and the intensity and phase of the current flowing through the coil change. Change. This change becomes larger as the measurement target is closer to the coil and becomes smaller as the measurement target is farther from it.
  • the position and displacement of the measurement target can be known by extracting electric signals from the coil. Therefore, if the eddy current displacement sensors 161A and 161B are used, the position and displacement of the measurement target can be measured even when both are stationary, that is, the absolute distance can be measured.
  • the control device CONT drives the piezo element 22 based on the measurement result of the measuring device 100.
  • the movable blades 52, 54 can be driven with high accuracy without the movement accuracy of the movable blades 52, 54 being deteriorated by disturbance. That is, when only the air pad 21 is disposed between the first lighting system housing 6 and the blind housing part 59, it is not possible to suppress the vibration transmitted from the blind housing part 59 to the first lighting system housing 6. Possible, but not affected by disturbances Therefore, the position (posture) of the movable reticle blind 50 may be displaced. In this case, there is a possibility that the illumination area on the reticle R cannot be defined in a desired state. However, by using a piezo element (actuator) 22 to eliminate the excessive vibration of the blind housing section 59, the influence of disturbance is suppressed, and the illumination area is defined on the reticle R in a desired state. be able to.
  • the control device CONT measures the position of the blind housing portion 59 with respect to the first illumination system housing 6 with the measuring device 100, and drives the piezo element 22 based on the measurement result.
  • the position of the second illumination system housing 8 with respect to the blind housing part 59 (the first illumination system housing 6) is measured by the measuring device 100, and the piezo element 22 is driven based on the measurement result. You can do it.
  • the control device CONT detects a displacement of the blind housing part 59 with respect to the base plate BP and the second illumination system housing 8 based on detection signals of the vibration sensor 23 and the measuring device 100, and detects the displacement. The result may be fed back to the position control of the movable blade 52 (54). Thereby, even if the first illumination system housing 6 is displaced from the second illumination system housing 8, the movable blade 52 (54) can follow the reticle R with high accuracy.
  • a measuring device for directly measuring the displacement of the first lighting system housing 6 with respect to the second lighting system housing 8 is provided separately, and a detection signal from this measuring device is used to control the position of the movable blade 52 (54). You may give feedback.
  • FIG. 10 is a diagram showing another embodiment of the present invention.
  • the air pad 21 is not provided, the blind housing part 59 is connected to the first lighting system housing 6, and the blind housing part 59 is a part of the first lighting system housing 6. Is composed.
  • the stator 56B (55B) of the linear motor 56 (55) that drives the movable blade 54 (52) is connected to the blind housing by the air bearing 25, which is a non-contact bearing. It is supported in a non-contact manner with the inner wall surface 59 B of 59.
  • the stator 56B moves in the ⁇ X direction (+ X direction) in accordance with the movement of the mover 56A connected to the movable blade 54 in the + X direction (or one X direction) according to the law of conservation of momentum.
  • the movable blade 5 is moved by the movement of the stator 5 6 B.
  • the reaction force accompanying the movement of 4 is offset. That is, in the present embodiment, the stator 56B is a counter mass that receives a reaction force when the movable blade 54 moves.
  • stator 56B (55B) as a counter mass
  • the stator 55B is also supported in a non-contact manner with respect to the inner wall surface 59B, and has a function as a counter mass.
  • FIG. 11 is a schematic view showing another embodiment of the present invention.
  • FIG. 11 the same members as those shown in FIG. 2 are denoted by the same reference numerals.
  • This embodiment is different from the embodiment shown in FIG. 2 in that two balancers 90 having a function of a counter mass receiving a reaction force when the movable blade moves are added.
  • the balancer 90 is provided on a linear motor 91 extending in the Y direction, and can move on the linear motor 91.
  • the two linear motors 91 are arranged at the same distance from the pair of linear motors 55.
  • the driving of the dancer 90 is controlled by the control device C ON T, and moves in the direction opposite to the moving direction with the movement of the movable blade 52.
  • the travel distance of the balancer 90 can be set to 1 Z 4 with respect to the travel distance of the movable blade 52. Since the balancer 90 and the linear motor 91 are provided in the blind housing section 59, respectively, the reaction force accompanying the movement of the movable blade 52 is offset in the blind housing section 59, and the first lighting Transmission to the system housing 6 can be suppressed.
  • one linear motor 91 can be brought closer to the linear motor 55 along the X direction.
  • the thrust of the closer balancer 90 needs to be increased in proportion to the distance from the linear motor 55.
  • the balancer 90 is activated to change the acceleration of the balancer 90 and cancel the reaction force of the movable plate 52. Adjust the thrust to be generated.
  • the Y guide 51 and the linear motor 55 are provided for each of the two movable plates 52, but the stator 55 of the Y guide 51 and the linear motor 55 is shared. Is also good. Specifically, the upper Y guide 51 and the stator 55B in FIG. 11 are omitted, and the two movable blades 52 are guided by the lower Y guide 51 and the two movable plates 52 are driven. In this case, the stator 55B of the lower linear motor in FIG. 11 may be shared. In this case, the thrust applied to the upper balancer 90 in FIG. 11 may be reduced in proportion to the distance from the lower linear motor 55.
  • FIG. 12 is a schematic diagram showing another embodiment of the present invention.
  • the stator 56B (55B) of the linear motor 56 (55) is separated from the inner wall surface 59B of the blind housing part 59, and the floor FD (or Supported by base plate BP). That is, the blind housing part 59 and the first illumination system housing 6 connected thereto and the support member 28 supporting the stator 56B are separated (independent) with respect to vibration, and are connected to the movable blade 54.
  • the reaction force accompanying the movement of the mover 56A is transmitted to the floor FD (base plate BP).
  • the use of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing semiconductors or an exposure apparatus for liquid crystal for exposing a liquid crystal display element pattern on a square glass plate. It is widely applicable to exposure equipment for manufacturing heads.
  • projection optical system PL using a material which transmits far ultraviolet rays such as quartz and fluorite as the glass material when using a far ultraviolet ray such as an excimer laser, use of F 2 laser and X-ray If it is, use a catadioptric or refractive optical system (use a reflective type mask as the mask), and if an electron beam is used, use an electron optical system consisting of an electron lens and a deflector as the optical system. Good. It goes without saying that the optical path through which the electron beam passes is in a vacuum state.
  • the stage may be of a type that moves along a guide or a guideless type that does not have a guide.
  • either the magnet unit (permanent magnet) or the armature unit is connected to the stage, and the other of the magnet unit and the armature unit is placed on the moving surface side (base) of the stage. It may be provided.
  • the present invention is also applicable to an exposure apparatus having such a structure.
  • the present invention is also applicable to an exposure apparatus having such a structure.
  • the exposure apparatus EX of the present embodiment is manufactured by assembling various subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Is done. To ensure these various precisions, before and after this assembly, adjustments to achieve optical precision for various optical systems, adjustments to achieve mechanical precision for various mechanical systems, various Electric systems will be adjusted to achieve electrical accuracy.
  • the process of assembling the exposure apparatus from various subsystems includes mechanical connections, wiring connections of electric circuits, and piping connections of pneumatic circuits among the various subsystems. It goes without saying that there is an individual assembly process for each subsystem before the assembly process from these various subsystems to the exposure apparatus. Assembling various subsystems into exposure equipment When the process is completed, the overall adjustment is performed, and various precisions of the entire exposure apparatus are secured. It is desirable that the exposure apparatus be manufactured in a clean room where the temperature and cleanliness are controlled.
  • a semiconductor device has a step 201 for designing the function and performance of the device, a step 202 for manufacturing a mask (reticle) based on this design step, and a device base.
  • the present invention is an exposure apparatus for exposing a pattern of the mask onto the substrate by synchronously moving the mask and the substrate, wherein a light source that emits illumination light for illuminating the mask is disposed between the light source and the mask.
  • a moving body that moves following the movement of the mask; a first gantry on which the moving body is arranged; and a prevention mechanism that suppresses or eliminates vibration transmitted to the first gantry by the movement of the moving body. Since it is provided with a vibration device, accurate exposure processing can be realized. Further, by suppressing the vibration, the movement of the moving body can be accelerated and the acceleration can be increased, so that the throughput of the exposure processing can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

A scanning exposure apparatus for exposing a pattern of a reticle on a substrate by synchronously moving the reticle and the substrate. The apparatus has a light source emitting exposure light for illuminating the reticle, a movable reticle blind provided between the light source and the reticle and moving while following the movement of the reticle, a first illumination system housing where the movable reticle blind is placed, and a vibration isolation device for suppressing or eliminating vibration transmitted by the movement of the movable reticle blind to the first illumination system housing.

Description

明 細 書 露光装置 技術分野  Description Exposure equipment Technical field
本発明は、 マスクと基板とを同期移動してマスクのパターンを基板に露光する 露光装置に関する。  The present invention relates to an exposure apparatus that exposes a pattern of a mask onto a substrate by synchronously moving the mask and the substrate.
本願は、 2 0 0 3年 7月 2 5日に出願された特願 2 0 0 3— 2 7 9 9 2 6号に 対し優先権を主張し、 その内容をここに援用する。 背景技術  This application claims the priority of Japanese Patent Application No. 2003-2797926 filed on July 25, 2003, the content of which is incorporated herein by reference. Background art
半導体デバイス等のマイクロデバイスは、マスク又はレチクル(以下、 「レチタ ル」 と総称する) 上に形成されたパターンを、 ウェハ等の感光性の基板上に転写 するいわゆるフォトリソグラフィの手法により製造される。 このフォトリソグラ フイエ程で使用される露光装置は、 レチクルを支持するレチクルステージと基板 を支持する基板ステージとを有し、 レチクル上に形成されたパターンをレチクル ステージ及び基板ステージを逐次移動しながら投影光学系を介して基板に転写す るものである。 露光装置としては、 基板上にレチクルのパターン全体を同時に転 写する一括型露光装置と、 レチクルステージと基板ステージとを同期走査しつつ レチクルのパターンを連続的に基板上に転写する走查型露光装置との 2種類が主 に知られている。 走査型露光装置では、 レチクルと基板とを同期移動しつつレチ クル上のスリット状 (矩形状) の照明領域を露光光で照明しレチクルのパターン を基板に露光するが、 レチクル上のパターン形成領域以外の不要な部分の露光を 防止するために、 例えば、 国際公開第 9 9 / 6 3 5 8 5号パンフレツトに示すよ うに、 ブレード部材をレチクルと同期移動することでレチクル上の照明領域を制 限する可動レチクルブラインドと呼ばれる遮光装置を備えたものがある。  Microdevices such as semiconductor devices are manufactured by a so-called photolithography method in which a pattern formed on a mask or reticle (hereinafter collectively referred to as “reticle”) is transferred onto a photosensitive substrate such as a wafer. . An exposure apparatus used in the photolithography process has a reticle stage for supporting a reticle and a substrate stage for supporting a substrate, and projects a pattern formed on the reticle while sequentially moving the reticle stage and the substrate stage. It is transferred to a substrate via an optical system. The exposure system includes a batch exposure system that simultaneously transfers the entire reticle pattern onto the substrate, and a scanning exposure system that continuously transfers the reticle pattern onto the substrate while synchronizing the reticle stage and the substrate stage. Two types are mainly known: the device and the device. In a scanning exposure apparatus, a slit-shaped (rectangular) illumination area on a reticle is illuminated with exposure light while a reticle and a substrate are moved synchronously, and a reticle pattern is exposed on the substrate. In order to prevent the exposure of unnecessary parts other than the reticle, for example, as shown in the pamphlet of International Publication No. WO 99/63585, the illumination area on the reticle is controlled by moving the blade member synchronously with the reticle. Some have a light shielding device called a movable reticle blind.
ところで、 露光処理のスループット向上の観点等からレチクルステージ及ぴ基 板ステージの移動の高速化及ぴ高加速度化が求められており、 これに伴って可動 レチクルブラインドのブレード部材の移動も高速ィヒ及ぴ髙加速度化する必要があ る。 ところが、 ブレード部材の高速化及び高加速度化に伴って振動が発生し、 例 えば照明光学系やこの照明光学系を支持する架台を振動させ、 露光精度に影響を 及ぼすという問題が生じるようになつてきた。 発明の開示 By the way, from the viewpoint of improving the throughput of the exposure processing, etc., it is required to move the reticle stage and the substrate stage at a high speed and at a high acceleration. Accordingly, the moving of the blade member of the movable reticle blind is also performed at a high speed. Need to be accelerated The However, vibrations are generated as the blade members are accelerated and accelerated, and, for example, the illumination optical system and the gantry supporting the illumination optical system are vibrated, which causes a problem that the exposure accuracy is affected. Have been. Disclosure of the invention
本発明は、 このような事情に鑑みてなされたもので、光源とレチクル(マスク) との間に配置される可動レチクルブラインド等の移動体の移動により振動が生じ ても露光精度に与える影響を抑制できる露光装置を提供することを目的とする。 上記の課題を解決するために、 本発明は、 実施の形態に示す図 1〜図 1 3に対 応付けした以下の構成を採用している。  The present invention has been made in view of such circumstances, and has an influence on exposure accuracy even when vibration is generated due to movement of a movable body such as a movable reticle blind disposed between a light source and a reticle (mask). An object of the present invention is to provide an exposure apparatus capable of suppressing the exposure. In order to solve the above problem, the present invention employs the following configuration corresponding to FIGS. 1 to 13 shown in the embodiment.
本発明の第 1の態様は、マスク (R) と基板(P ) とを同期移動してマスク (R) のパターンを基板 (P ) に露光する露光装置 (E X) であって、 マスク (R) を 照明するための照明光 (E L ) を射出する光源 (1 ) とマスク (R) との間に設 けられ、 マスク (R) の移動に追従して移動する移動体(5 0、 5 2、 5 4 ) と、 移動体 (5 0、 5 2、 5 4 ) が配置される第 1架台 (6、 5 9 ) と、 移動体 (5 0、 5 2、 5 4 ) の移動により第 1架台 (6、 5 9 ) に伝達する振動を抑制又は 除去する防振装置 (2 0 ) とを備える。  A first aspect of the present invention is an exposure apparatus (EX) for exposing a pattern of a mask (R) to a substrate (P) by synchronously moving a mask (R) and a substrate (P). The moving object (50, 5) is installed between the light source (1) that emits the illumination light (EL) for illuminating the mask (R) and the mask (R), and moves following the movement of the mask (R). 2, 5 4), the first base (6, 59) on which the moving body (50, 52, 54) is arranged, and the first body (50, 52, 54) due to the movement of the moving body (50, 52, 54). 1 A vibration isolator (20) for suppressing or eliminating vibration transmitted to the frame (6, 59) is provided.
本態様によれば、 光源とマスクとの間に配置される移動体の移動により第 1架 台に伝達する振動を抑制又は除去する防振装置を設けたので、 この第 1架台の振 動に起因する露光精度の劣化を抑え、 精度良い露光処理を行うことができる。 そ して、 振動を抑制することで移動体の移動を高速化及び高加速度化できるので露 光処理のスループットを向上することができる。  According to this aspect, since the vibration isolator for suppressing or eliminating the vibration transmitted to the first gantry by the movement of the moving body disposed between the light source and the mask is provided, the vibration of the first gantry is provided. Deterioration of exposure accuracy caused by the exposure can be suppressed, and accurate exposure processing can be performed. In addition, since the movement of the moving body can be accelerated and accelerated by suppressing the vibration, the throughput of the exposure processing can be improved.
また、 本発明の第 2の態様は、 マスクと基板とを移動して、 前記マスクのパタ ーンを前記基板に露光する露光装置であって、 前記マスクの照明領域を規定し、 移動可能な第 1移動体と、 前記第 1移動体の移動に応じて、 前記第 1移動体の移 動方向と反対方向に移動する第 2移動体とを備える。  Further, a second aspect of the present invention is an exposure apparatus for moving a mask and a substrate to expose a pattern of the mask on the substrate, wherein the exposure apparatus defines an illumination area of the mask and is movable. A first moving body; and a second moving body that moves in a direction opposite to a moving direction of the first moving body in accordance with the movement of the first moving body.
また、 本発明の第 3の態様は、 パターンが形成されたマスクを照明する照明装 置であって、 前記マスクの照明領域を規定し、 移動可能な第 1移動体と、 前記第 1移動体の移動に応じて、 前記第 1移動体の移動方向と反対方向に移動する第 2 移動体とを備える Further, a third aspect of the present invention is an illuminating device for illuminating a mask on which a pattern is formed, wherein the illuminating area of the mask is defined, and the movable first movable body and the first movable body are provided. The second moving body in the direction opposite to the moving direction of the first moving body in accordance with the movement of the first moving body. Equipped with a moving object
図面の簡単な説明 Brief Description of Drawings
図 1は、 本発明の露光装置の一実施形態を示す概略構成図である。  FIG. 1 is a schematic configuration diagram showing an embodiment of the exposure apparatus of the present invention.
図 2は、 可動レチクルブラインドの概略を示す平面図である。  FIG. 2 is a plan view schematically showing a movable reticle blind.
図 3は、 可動レチクルブラインドの概略を示す側面図である。  FIG. 3 is a side view schematically showing a movable reticle blind.
図 4は、 本発明に係る防振装置の一実施形態を示す平面図である。  FIG. 4 is a plan view showing an embodiment of the vibration isolator according to the present invention.
図 5は、 固定レチクルブラインドの概略を示す図である。  FIG. 5 is a diagram schematically showing a fixed reticle blind.
図 6は、 マスクと可動レチクルブラインド及ぴ固定レチクルブラインドにより 設定された照明領域との関係を示す模式図である。  FIG. 6 is a schematic diagram showing a relationship between a mask and an illumination area set by a movable reticle blind and a fixed reticle blind.
図 7は、 本発明に係る防振装置の他の実施形態を示す側面図である。  FIG. 7 is a side view showing another embodiment of the vibration isolator according to the present invention.
図 8は、 図 7の平面図である。  FIG. 8 is a plan view of FIG.
図 9は、 調整装置の一部を構成する計測装置の一実施形態を示す図である。 図 1 0は、 本発明に係る防振装置の他の実施形態を示す側面図である。  FIG. 9 is a diagram illustrating an embodiment of a measurement device that forms a part of the adjustment device. FIG. 10 is a side view showing another embodiment of the vibration isolator according to the present invention.
図 1 1は、 本発明に係る防振装置の他の実施形態を示す平面図である。  FIG. 11 is a plan view showing another embodiment of the vibration isolator according to the present invention.
図 1 2は、 本発明に係るの防振装置の他の実施形態を示す側面図である。 図 1 3は、 半導体デバイスの製造工程の一例を示すフローチャート図である。 発明を実施するための最良の形態  FIG. 12 is a side view showing another embodiment of the vibration isolator according to the present invention. FIG. 13 is a flowchart illustrating an example of a semiconductor device manufacturing process. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の露光装置について図面を参照しながら説明する。 ただし、 本発 明は、 以下の各実施例に限定されるものではなく、 例えば、 これら実施例の構成 要素同士を適宜組み合わせてもよい。  Hereinafter, an exposure apparatus of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and for example, the components of these embodiments may be appropriately combined.
図 1は、 本発明の露光装置の一実施形態を示す概略構成図である。  FIG. 1 is a schematic configuration diagram showing an embodiment of the exposure apparatus of the present invention.
図 1において、 露光装置 E Xは、 レチクル (マスク) Rを支持するレチクルス テージ R S Tと、 感光性の基板 Pを支持する基板ステージ P S Tと、 レチクル R を照明するための光束を射出する光源 1と、 光源 1からの光束を露光光 E Lに変 換し、 レチクルステージ R S Tに支持されたレチクル Rを露光光 E Lで照明する 照明光学系 I O Pと、 露光光 E Lで照明されたレチクル Rのパターンの像を基板 ステージ P S Tに支持された基板 Pに投影する投影光学系 P Lと、 露光装置 E X 全体の動作を統括制御する制御装置 CONTとを備えている。 レチクル Rを介し て露光光 E Lで基板 Pを露光する本体部 Sを構成する照明光学系 I OPの一部で ある第 2部分照明光学系 I OP 2、 レチクルステージ R ST、 投影光学系 P L、 及び基板ステージ P S Tなどは本体コラム (第 2架台) 1 0に支持されている。 本実施形態では、 露光装置 EXとしてレチクル Rと基板 Pとを走査方向におけ る互いに異なる向き (逆方向) に同期移動しつつレチクル Rに形成されたパター ンを基板 Pに露光する走査型露光装置 (所謂スキャニングステツパ) を使用する 場合を例にして説明する。 In FIG. 1, an exposure apparatus EX includes a reticle stage RST supporting a reticle (mask) R, a substrate stage PST supporting a photosensitive substrate P, and a light source 1 for emitting a light beam for illuminating the reticle R; The luminous flux from the light source 1 is converted into the exposure light EL, and the reticle R supported by the reticle stage RST is illuminated with the exposure light EL.The illumination optical system IOP and the pattern image of the reticle R illuminated with the exposure light EL substrate A projection optical system PL for projecting onto the substrate P supported by the stage PST, and a control device CONT for controlling the overall operation of the exposure apparatus EX are provided. The second partial illumination optical system IOP2, which is a part of the illumination optical system IOP, which constitutes the main body section S that exposes the substrate P with the exposure light EL via the reticle R, the reticle stage RST, the projection optical system PL, The substrate stage PST and the like are supported by the main body column (second stand) 10. In the present embodiment, the exposure apparatus EX is a scanning type exposure apparatus that exposes the pattern formed on the reticle R to the substrate P while synchronously moving the reticle R and the substrate P in different directions (opposite directions) in the scanning direction. An example in which an apparatus (a so-called scanning stepper) is used will be described.
以下の説明において、 水平面内においてレチクル Rと基板 Pとの同期移動方向 (走查方向) を Y軸方向、 水平面内において Y軸方向と直交する方向 (非走査方 向) を X軸方向、 X軸及ぴ Y軸方向に直交する方向を Z軸方向とする。 また、 X 軸、 Y軸、 及び Z軸まわり方向をそれぞれ、 0 Χ、 Θ Ύ 及ぴ Θ Ζ方向とする。 なお、 ここでいう 「基板」 は、 半導体ウェハ又はガラスプレート上にレジストを 塗布したものを含む。  In the following description, the synchronous movement direction (running direction) of the reticle R and the substrate P in the horizontal plane is the Y-axis direction, and the direction orthogonal to the Y-axis direction (the non-scanning direction) in the horizontal plane is the X-axis direction. The direction orthogonal to the axis and the Y axis is defined as the Z axis. The directions around the X, Y, and Z axes are defined as 0 °, Θ and Ύ directions, respectively. Here, the “substrate” includes a semiconductor wafer or a glass plate coated with a resist.
光源 1としては、 ここでは波長 1 9 2〜1 94 nmの間で酸素の吸収帯を避け るように狭帯化されたパルス紫外光を出力する A r Fエキシマレーザ光源が用い られており、 この光源 1の本体は、 防振ユニット 1 Aを介して半導体製造工場の クリーンルーム内の床面 FD上に設置されている。 なお、 光源、 1として、 波長 2 4 8 nmのパルス紫外光を出力する K r Fエキシマレーザ光源あるいは波長 1 5 7 nmのパルス紫外光を出力する F2レーザ光源等を用いても良い。 また、 光源 1をクリーンルームよりクリーン度が低い別の部屋(サービスルーム)、あるいは クリーンルームの床下に設けられるユーティリテイスペースに設置しても構わな い。 As the light source 1, an ArF excimer laser light source that outputs pulsed ultraviolet light narrowed so as to avoid the oxygen absorption band between the wavelengths of 192 and 194 nm is used. The main body of the light source 1 is installed on a floor FD in a clean room of a semiconductor manufacturing plant via an anti-vibration unit 1A. The light source, as 1, may be used F 2 laser light source for outputting a K r F excimer laser light source or the wavelength 1 5 7 nm pulsed ultraviolet light and outputs the pulse ultraviolet light having a wavelength of 2 4 8 nm. The light source 1 may be installed in another room (service room) having a lower degree of cleanliness than the clean room, or in a utility space provided under the floor of the clean room.
照明光学系 I OPは、 光源 1とレチクルステージ R S T (レチクル R) との間 に設けられた第 1部分照明光学系 I OP 1と第 2部分照明光学系 I OP 2との 2 部分から構成されている。 第 1部分照明光学系 I OP 1は、 第 1照明系ハウジン グ (第 1架台) 6を有し、 第 2部分照明光学系 I OP 2は、 第 2照明系ハウジン グ (第 2架台) 8を有している。 ここで、 第 1、 第 2照明系ハウジング 6、 8は 部分照明光学系を収納する筐体及ぴ鏡筒を含む。 The illumination optical system IOP is composed of two parts, a first partial illumination optical system IOP1 and a second partial illumination optical system IOP2 provided between the light source 1 and the reticle stage RST (reticle R). ing. The first partial illumination optical system I OP 1 has a first illumination system housing (first frame) 6, and the second partial illumination optical system I OP 2 has a second illumination system housing (second frame) 8 have. Here, the first and second lighting system housings 6, 8 are Includes a housing for housing the partial illumination optical system and a lens barrel.
第 1部分照明光学系 I O P 1の第 1照明系ハゥジング 6は、 床面 F Dに水平に 載置された装置の基準となるベースプレート (フレームキャスタ) B P上に防振 ユニット 5を介して設置されている。 第 2部分照明光学系 I O P 2 (第 2照明系 ハウジング 8 ) は、 本体コラム 1 0を構成する第 2支持コラム 1 4によって下方 から支持されている。  The first illumination system housing 6 of the first partial illumination optical system IOP 1 is installed via a vibration isolating unit 5 on a base plate (frame caster) BP that serves as a reference for a device mounted horizontally on the floor FD. I have. The second partial illumination optical system IOP 2 (second illumination system housing 8) is supported from below by a second support column 14 constituting the main body column 10.
光源 1は、 遮光性のベローズ及ぴパイプを介してビームマッチングュニット B MUの一端 (入射端) に接続されており、 このビームマッチングユニット B MU の他端 (射出端) は、 内部にリレー光学系を内蔵したパイプ 2を介して照明光学 系 I O Pの第 1部分照明光学系 I O P 1に接続されている。 ビームマッチングュ ニット BMU内にはリレー光学系や複数の可動反射鏡等が設けられており、 これ らの可動反射鏡等を用いて光源 1から入射する狭帯化されたパルス紫外光 (A r Fエキシマレーザ光) の光路を第 1部分照明光学系 I O P 1 との間で位置的にマ ツチングさせている。  The light source 1 is connected to one end (incident end) of the beam matching unit BMU via a light-blocking bellows and a pipe, and the other end (exit end) of the beam matching unit BMU is internally connected to a relay. It is connected to the first partial illumination optical system IOP 1 of the illumination optical system IOP via a pipe 2 having a built-in optical system. The beam matching unit BMU is equipped with a relay optical system and a plurality of movable reflecting mirrors, etc., and the narrow band pulsed ultraviolet light (A r) incident from the light source 1 using these movable reflecting mirrors and the like. The optical path of F excimer laser light) is positionally matched with the first partial illumination optical system IOP1.
第 1部分照明光学系 I O P 1の第 1照明系ハウジング 6内には、 可変減光器、 ビーム整形光学系、 オプティカルインテグレータ、 集光光学系、 及びリレーレン ズ系等が所定の位置関係で配置されている。 光源 1からのパルス紫外光がビーム マッチングュニット B MU及びリレー光学系を介して第 1部分照明光学系 I O P 1内に入射すると、 このパルス紫外光は、 可変減光器の N Dフィルタにより所定 のピーク強度に調整された後、 ビーム整形光学系により、 オプティカルインテグ レータに効率よく入射するようにその断面形状が整形される。 次いで、 このパル ス紫外光がオプティカルインテグレータに入射すると、 射出端側に面光源、 すな わち多数の光源像 (点光源) から成る 2次光源が形成される。 これらの多数の点 光源の各々から発散するパルス紫外光は、 露光光 E Lとして可動レチクルプライ ンド 5 0に到達する。  First partial illumination optical system In the first illumination system housing 6 of the IOP 1, a variable attenuator, beam shaping optical system, optical integrator, condensing optical system, relay lens system, etc. are arranged in a predetermined positional relationship. ing. When the pulsed ultraviolet light from the light source 1 enters the first partial illumination optical system IOP 1 via the beam matching unit BMU and the relay optical system, the pulsed ultraviolet light is supplied to a predetermined part by the ND filter of the variable attenuator. After being adjusted to the peak intensity, the cross-sectional shape is shaped by the beam shaping optics so as to efficiently enter the optical integrator. Next, when this pulse ultraviolet light is incident on the optical integrator, a surface light source, that is, a secondary light source composed of a large number of light source images (point light sources) is formed on the emission end side. The pulsed ultraviolet light diverging from each of these many point light sources reaches the movable reticle brand 50 as exposure light EL.
可動レチクルプラインド (移動体) 5 0は、 レチクル Rに対する露光光 E Lの 照明領域を規制する可動ブレード (可動遮光部材、 移動体) 5 2、 5 4を備えて おり、プラインドハゥジング部(移動体ハゥジング部) 5 9内に収容されている。 可動レチクルブラインド 5 0及びこれを収容したブラインドハウジング部 5 9は、 第 1照明系ハゥジング 6の射出端部近傍に取り付けられている。 可動レチクルプ ラインド 5 0の可動ブレード 5 2、 5 4は、 レチクル Rのパターン形成面 (パタ ーン面) とほぼ共役な位置に配置されている。 そして、 第 1照明系ハウジング 6 とブラインドハウジング部 5 9との間に防振装置 2 0が設けられている。 The movable reticle blind (moving body) 50 includes movable blades (movable light-blocking members, moving bodies) 52 and 54 that regulate the illumination area of the exposure light EL to the reticle R. (Moving body housing unit) 59 The movable reticle blind 50 and the blind housing part 59 accommodating the movable reticle blind 50, It is mounted near the exit end of the first illumination system housing 6. The movable blades 52, 54 of the movable reticle plant 50 are arranged at positions substantially conjugate with the pattern forming surface (pattern surface) of the reticle R. Further, an anti-vibration device 20 is provided between the first illumination system housing 6 and the blind housing portion 59.
図 2は、 可動レチクルブラインド 5 0を + Z側から見た平面図、 図 3は側新面 図である。  FIG. 2 is a plan view of the movable reticle blind 50 viewed from the + Z side, and FIG. 3 is a new side view.
可動レチクルブラインド 5 0は、 第 1照明系ハウジング 6上に X方向に間隔を あけて配置され、 走査方向である Y軸方向に延在する一対の Yガイド 5 1と、 X 軸方向に延在し、 一端側が Yガイド 5 1に沿ってそれぞれ Y方向に移動自在な Y 可動ブレード (可動遮光部材) 5 2と、 Yガイド 5 1の Y軸方向両端側に設けら れ、 X軸方向に延在する一対の Xガイド 5 3と、 Y軸方向に延在し、 一端側が X ガイド 5 3に沿ってそれぞれ X方向に移動自在な X可動ブレード(可動遮光部材) 5 4とを備えている。 Xガイド 5 3のガイド面には非接触ベアリングであるエア ベアリング 5 3 Aが設けられており、 エアべァリング 5 3 Aにより X可動ブレー ド 5 4が Xガイド 5 3に対して非接触支持されている。 また、 X可動ブレード 5 4の一端部にはリニアモータ 5 6の一部を構成する可動子 5 6 Aが設けられ、 こ の可動子 5 6 Aに対応して、 Xガイド 5 3に並ぶ位置に X軸方向に延在する固定 子 5 6 Bが設けられている。 ここで、 リニアモータ 5 6は、 可動子 5 6 Aを磁石 ユニットとし固定子 5 6 Bをコイルュ-ットとする所謂ムービングマグネット型 リニアモータでもよいし、 可動子 5 6 Aをコイルュニットとし固定子 5 6 Bを磁 石ュニットとするムービングコイル型リニアモータでもよい。 同様に、 Yガイド 5 1のガイド面には非接触ベアリングであるエアベアリング 5 1 Aが設けられて おり、 エアベアリング 5 1 Aにより Y可動ブレード 5 2が Yガイド 5 1に対して 非接触支持されている。 そして、 Y可動プレード 5 2の一端部にはリニアモータ 5 5の一部を構成する可動子 5 5 Aが設けられ、 この可動子 5 5 Aに対応して、 Yガイド 5 1に並ぶ位置に Y軸方向に延在する固定子 5 5 Bが設けられている。 本実施形態において、 リニアモータ 5 5、 5 6の固定子 5 5 B、 5 6 B、 及びガ イド 5 1、 5 3は、 ブラインドハウジング部 5 9の内壁面 5 9 Bに固定されてい る。 また、 ブラインドハウジング部 5 9には不図示のエンコーダが設けられ、 可 動ブレード 5 2、 5 4に設けられたリニァスケールを読んで位置検出し、 制御装 置 C O N Tに出力する。 制御装置 C O N Tはリニアモータ 5 5、 5 6を介して可 動ブレード 5 2、 5 4を駆動することで、 露光光 E Lが通過する光路を規制する 矩形開口部 Kの大きさを調整する。 また、 制御装置 C O N Tは、 走査露光時にお いて、 後述するレチクルレーザ干渉計の検出信号に基づきレチクル Rの移動に追 従して Y可動ブレード 5 2を移動し、 レチクル R上の照明領域を規制するための 矩形開口部 Kをレチクル Rの移動に追従させる。 The movable reticle blind 50 is arranged on the first illumination system housing 6 at intervals in the X direction, and extends in the X direction, and a pair of Y guides 51 extending in the Y direction, which is the scanning direction. A movable blade (movable light-blocking member) 52 whose one end is movable in the Y direction along the Y guide 51 is provided at both ends of the Y guide 51 in the Y-axis direction, and extends in the X-axis direction. A pair of existing X guides 53 and an X movable blade (movable light shielding member) 54 extending in the Y-axis direction and having one end movable in the X direction along the X guide 53 are provided. An air bearing 53 A, which is a non-contact bearing, is provided on the guide surface of the X guide 53, and the X movable blade 54 is non-contact supported by the X guide 53 by the air bearing 53A. ing. Further, at one end of the X movable blade 54, a mover 56A constituting a part of the linear motor 56 is provided, and corresponding to the mover 56A, a position aligned with the X guide 53 is provided. Is provided with a stator 56B extending in the X-axis direction. Here, the linear motor 56 may be a so-called moving magnet type linear motor in which the mover 56 A is a magnet unit and the stator 56 B is a coil cut, or the mover 56 A is a coil unit and the stator is A moving coil type linear motor using 56 B as a magnet unit may be used. Similarly, a non-contact air bearing 51 A is provided on the guide surface of the Y guide 51, and the Y movable blade 52 is supported by the air bearing 51 A in a non-contact manner with respect to the Y guide 51. Have been. At one end of the Y movable blade 52, a mover 55A that constitutes a part of the linear motor 55 is provided, and at a position aligned with the Y guide 51 corresponding to the mover 55A. A stator 55B extending in the Y-axis direction is provided. In the present embodiment, the stators 55B, 56B and the guides 51, 53 of the linear motors 55, 56 are fixed to the inner wall surface 59B of the blind housing portion 59. An encoder (not shown) is provided in the blind housing section 59, The linear scales provided on the moving blades 52 and 54 are read to detect the position and output to the control device CONT. The controller CONT drives the movable blades 52, 54 via the linear motors 55, 56 to adjust the size of the rectangular opening K that regulates the optical path through which the exposure light EL passes. Further, during scanning exposure, the controller CONT moves the Y movable blade 52 following the movement of the reticle R based on a detection signal of a reticle laser interferometer described later to regulate the illumination area on the reticle R. The reticle R is moved.
なお、 走查露光中において、 駆動される可動プレードは主にスキャンブレード である Y可動ブレード 5 2であって、 非スキャンブレードである X可動ブレード 5 4は、 非走查方向 (X軸方向) に関するレチクル Rのパターン形成領域の幅に 応じて照明領域の大きさを設定するために、 走查露光に先立って駆動されるだけ である。 したがって、 この X可動ブレード 5 4を駆動するために、 リニアモータ を用 、ずに例えば超音波モータ等の静止保持力を有するァクチユエータを用いる ようにしてもよい。 また、 X可動ブレード 5 4、 Y可動ブレード 5 2ともに、 2 枚のブレードを別々のガイド上で駆動しているが、 共通のガイドにリニアモータ を配置して 2枚のプレードを駆動するように構成してもよい。  During scanning exposure, the movable blade driven is mainly the Y movable blade 52, which is a scan blade, and the X movable blade 54, which is a non-scan blade, is in the non-scanning direction (X-axis direction). In order to set the size of the illuminated area according to the width of the pattern forming area of the reticle R, it is only driven prior to scanning exposure. Therefore, in order to drive the X movable blade 54, a linear motor may be used, and an actuator having a stationary holding force such as an ultrasonic motor may be used. In addition, both the X movable blade 54 and the Y movable blade 52 drive the two blades on separate guides.However, a linear motor is placed on a common guide to drive the two blades. You may comprise.
防振装置 2 0は、 可動レチクルブラインド 5 0を収容するプラインドハウジン グ部 5 9と、 第 1照明系ハウジング 6との間に配置されている。 本実施形態にお いて、 防振装置 2 0は、 緩衝材であるエアパッド (エアマウント) 2 1により構 成されている。 図 4に示すように、 エアパッド 2 1は、 第 1照明系ハウジング 6 の上端面 6 Aに沿って環状に配置されている。 なお、 本実施形態において、 第 1 照明系ハウジング 6の内部空間 (露光光 E Lの光路) 6 Bは矩形状に形成されて いるが、 円形状であってもよい。 エアパッド 2 1には圧力調整装置 2 1 Aが接続 されており、 制御装置 C O N Tは、 圧力調整装置 2 1 Aを制御することでエアパ ッド 2 1の内圧を調整可能である。 緩衝材としてのエアパッド 2 1を、 可動レチ クルブラインド 5 0を収容したプラインドハウジング部 5 9と第 1照明系ハウジ ング 6との間に設けたことにより、 可動ブレード 5 2、 5 4の移動により生じる 振動が第 1照明系ハウジング 6に伝達することを抑制することができる。つまり、 エアパッド 2 1により、 可動ブレード 5 2、 5 4の移動に伴う反力が、 第 1照明 系ハウジング 6に伝達することを抑制することができる。 なお、 防振装置 2 0を 構成する緩衝材として、 エアパッド 2 1の代わりにゴム等の弾性体を配置しても よい。 あるいは、 エアパッド 2 1とゴム等の弾性体とを組み合わせて配置しても よい。 The anti-vibration device 20 is disposed between a blind housing part 59 for accommodating the movable reticle blind 50 and the first illumination system housing 6. In the present embodiment, the vibration isolator 20 includes an air pad (air mount) 21 that is a cushioning material. As shown in FIG. 4, the air pad 21 is arranged annularly along the upper end surface 6A of the first lighting system housing 6. In the present embodiment, the internal space (optical path of the exposure light EL) 6B of the first illumination system housing 6 is formed in a rectangular shape, but may be in a circular shape. A pressure regulator 21 A is connected to the air pad 21, and the controller CONT can regulate the internal pressure of the air pad 21 by controlling the pressure regulator 21 A. By providing an air pad 21 as a cushioning material between the blind housing part 59 containing the movable reticle blind 50 and the first lighting system housing 6, the movable blades 52, 54 can be moved. The transmission of the vibration generated by the first illumination system housing 6 can be suppressed. That is, the reaction force accompanying the movement of the movable blades 52 and 54 is generated by the air pad 21 and the first lighting Transmission to the system housing 6 can be suppressed. It should be noted that an elastic body such as rubber may be arranged instead of the air pad 21 as a cushioning material constituting the vibration isolator 20. Alternatively, the air pad 21 and an elastic body such as rubber may be arranged in combination.
第 2部分照明光学系 I O P 2は、 第 2照明系ハウジング 8内に所定の位置関係 で収納された固定レチクルブラインド (固定視野絞り) 8 0、 レンズ、 ミラー、 リレーレンズ系、 及ぴコンデンサレンズ系等を備えている。 固定レチクルブライ ンド 8 0は、 第 2照明系ハウジング 8の入射端部近傍のレチクル Rのパターン形 成面に対する共役面から僅かにデフォーカスした面に配置され、 レチクル R上の 照明領域を規定する矩形状 (スリット状) の開口部 8 1を有している。 上述した ように、 第 2部分照明光学系 I O P 2は本体部 Sの一部を構成しており、 可動レ チクルブラインド 5 0よりもレチクル R側に配置された構成となっている。  The second partial illumination optical system IOP 2 is a fixed reticle blind (fixed field stop) 80 housed in a predetermined positional relationship within the second illumination system housing 8, a lens, a mirror, a relay lens system, and a condenser lens system. Etc. are provided. The fixed reticle blind 80 is arranged on a surface slightly defocused from a conjugate plane with respect to the pattern forming surface of the reticle R near the incident end of the second illumination system housing 8, and defines an illumination area on the reticle R. It has a rectangular (slit-shaped) opening 81. As described above, the second partial illumination optical system IOP 2 constitutes a part of the main body S, and is arranged on the reticle R side of the movable reticle blind 50.
図 5は固定レチクルブラインド (固定視野絞り) 8 0の平面図である。 固定レ チクルプラインド 8 0は、 投影光学系 P Lの円形視野内の中央で走查露光時のレ チクル Rの移動方向 (Y軸方向) と直交する X軸方向に直線状に延びたスリッ ト 状 (矩形状) の開口部 8 1を有している。 なお、 固定レチクルブラインド 8 0の 代わりに、 矩形状の開口部を有するとともに、 開口部の形状を任意の形に調整で きる可変スリット装置を設けてもよい。  FIG. 5 is a plan view of a fixed reticle blind (fixed field stop) 80. FIG. The fixed reticle blind 80 is a slit extending linearly in the X-axis direction orthogonal to the moving direction of the reticle R during exposure (Y-axis direction) at the center in the circular field of view of the projection optical system PL. (Rectangular) opening 81. Note that instead of the fixed reticle blind 80, a variable slit device having a rectangular opening and capable of adjusting the shape of the opening to an arbitrary shape may be provided.
なお、 固定レチクルブラインド 8 0の配置面をレチクル Rのパターン形成面に 対する共役面から僅かにデフォーカスするのは、 走査型露光装置、 特にパルス光 を露光光 E Lとする装置では、 走查方向に関するパルス紫外光のレチクル R上で の照明領域内の照度分布を台形状 (すなわち両端でそれぞれスロープを持つ形状) とし、 走查露光時の基板 P上の各ショット領域内の積算光量の分布がほぼ均一に なるようにするためであり、 また、 固定レチクルブラインド 8 0のエッジ部が一 部欠けていたり、 正確に真直に形成されていないおそれもあるので、 これらの影 響を軽減するためにレチクル Rのパターン形成領域上の照明領域の周縁部を適度 にぼかすためである。  It should be noted that the defocusing of the fixed reticle blind 80 on the plane on which the reticle R is arranged slightly from the conjugate plane with respect to the pattern forming surface of the reticle R is performed in a scanning type exposure apparatus, particularly an apparatus using pulsed light as the exposure light EL in the scanning direction. The illuminance distribution in the illumination area on the reticle R of the pulsed UV light is trapezoidal (that is, a shape having slopes at both ends), and the distribution of the integrated light amount in each shot area on the substrate P during scanning exposure is In order to reduce the influence of the fixed reticle blind 80, the edges may be partially missing or not accurately formed straight. This is for appropriately blurring the periphery of the illumination area on the pattern formation area of the reticle R.
可動レチクルブラインド 5 0の可動ブレード 5 2、 5 4で形成される矩形開口 部 Kを通過したパルス紫外光は、 固定レチクルブラインド 8 0の開口部 8 1を一 様な強度分布で照明する。 固定レチクルブラインド 8 0の開口部 8 1を通過した パルス紫外光は、 レンズ、 ミラー、 リ レ一レンズ系、 及びコンデンサレンズ系な どを経て、 レチクルステージ R S T上に保持されたレチクル R上の所定の照明領 域 (X軸方向に直線的に伸びたスリ ット状又は矩形状の照明領域) を均一な照度 分布で照明する。 The pulsed ultraviolet light that has passed through the rectangular opening K formed by the movable blades 52, 54 of the movable reticle blind 50 passes through the opening 81 of the fixed reticle blind 80. Illumination with various intensity distributions. The pulsed ultraviolet light that has passed through the opening 81 of the fixed reticle blind 80 passes through a lens, mirror, relay lens system, condenser lens system, etc., and passes through a predetermined area on the reticle R held on the reticle stage RST. The illumination area (slit or rectangular illumination area extending linearly in the X-axis direction) is illuminated with a uniform illuminance distribution.
図 1に戻って、 第 1部分照明光学系 I O P 1の第 1照明系ハウジング 6及びブ ラインドハウジング部 5 9と、 第 2部分照明光学系 I O P 2の第 2照明系ハウジ ング 8及び本体コラム 1 0とは、 振動に関して独立している。 本実施形態では、 ブラインドハゥジング部 5 9と第 2照明系ハゥジング 8とは僅かに離間して物理 的に分離されている。 なお、 ブラインドハウジング部 5 9と第 2照明系ハウジン グ 8との間に、 両者の相対変位を可能にし、 且つその内部を外気に対して気密状 態にすることが可能な接続部材としての伸縮自在の蛇腹状部材を介して接合して もよレ、。 こうすることにより、 可動レチクルブラインド 5 0の駆動に起因して露 光動作中にプラインドハウジング部 5 9に生じる振動が本体コラム 1 0に支持さ れた第 2部分照明光学系 I O P 2に伝達されることを防止することができる。 本体コラム 1 0は、ベースプレート B P上に設けられた複数本(ここでは 4本) の支持部材 1 1 A〜 1 I D (但し、 紙面奥側の支柱 1 1 C、 1 1 Dは図示省略) 及びこれらの支持部材 1 1 A〜1 1 Dの上部にそれぞれ固定された防振ュニット 1 3 A〜 1 3 D (但し、 図 1においては紙面奥側の防振ュニット 1 3 C、 1 3 D は図示せず) を介してほぼ水平に支持された鏡筒定盤 1 6と、 この鏡筒定盤 1 6 の下面から下方に吊り下げられた吊り下げコラム 1 8と、 鏡筒定盤 1 6上に設け られた第 1、 第 2支持コラム 1 2、 1 4とを備えている。  Returning to FIG. 1, the first illumination system housing 6 and the blind housing section 59 of the first partial illumination optical system IOP 1 and the second illumination system housing 8 and the main body column 1 of the second partial illumination optical system IOP 2 0 is independent with respect to vibration. In the present embodiment, the blind housing 59 and the second illumination system housing 8 are physically separated from each other with a slight separation. In addition, between the blind housing part 59 and the second lighting system housing 8, expansion and contraction as a connecting member that enables relative displacement between the two and allows the inside to be in an airtight state with respect to the outside air. It can be joined via a flexible bellows member. In this way, the vibration generated in the blind housing section 59 during the exposure operation due to the driving of the movable reticle blind 50 is transmitted to the second partial illumination optical system IOP 2 supported by the main body column 10. Can be prevented. The main body column 10 is composed of a plurality (four in this case) of support members 11 A to 1 ID provided on the base plate BP (however, the support columns 11 C and 11 D on the back side of the drawing are not shown) and The anti-vibration units 13 A to 13 D fixed on the upper parts of these support members 11 A to 11 D, respectively (However, in FIG. 1, the anti-vibration units 13 C and 13 D on the back side of the paper are (Not shown), a lens barrel base 16 supported substantially horizontally, a hanging column 18 hung downward from the lower surface of the lens barrel base 16, and a lens barrel base 16 First and second support columns 12 and 14 provided above are provided.
鏡筒定盤 1 6は、 錶物等で構成されており、 その中央部に平面視円形の開口が 形成され、 その内部に投影光学系 P Lがその光軸方向を Z軸方向として上方から 挿入されている。 投影光学系 P Lの鏡筒部の外周部には、 該鏡筒部に一体化され たフランジ F L Gが設けられている。 このフランジ F L Gの素材としては、 低熱 膨張の材質、 例えばインパー (Inver;ニッケル 3 6 %、 マンガン 0 . 2 5 %、 及 び微量の炭素と他の元素を含む鉄からなる低膨張の合金) が用いられており、 こ のフランジ F L Gは、 投影光学系 P Lを鏡筒定盤 1 6に対して点と面と V溝とを 介して 3点で支持するいわゆるキネマティック支持マウントを構成している。 吊り下げコラム 1 8は、 基板べ一ス定盤 6 0と、 基板ベース定盤 6 0をほぼ水 平に吊り下げ支持する 4本の吊り下げ部材 6 1とを備えている。 また、 第 1支持 コラム 1 2は、 鏡筒定盤 1 6の上面に投影光学系 P Lを取り囲んで設けられた 4 本の脚 6 5 (紙面奥側の脚は図示省略) と、 これら 4本の脚 6 5によってほぼ水 平に支持されたレチクルベース定盤 6 3とを備えている。 同様に、 第 2支持コラ ム 1 4は、 鏡筒定盤 1 6の上面に、 第 1支持コラム 1 2を取り囲む状態で設けら れた 4本の支柱 6 2 (紙面奥側の支柱は図示省略) と、 これら 4本の支柱 6 2に よってほぼ水平に支持された天板 6 4とによって構成されている。 この第 2支持 コラム 1 4の天板 6 4によって、 前述した第 2部分照明光学系 I O P 2が支持さ れている。 The lens barrel base 16 is made of an object or the like, and has a circular opening in a plan view at the center thereof, into which the projection optical system PL is inserted from above with its optical axis direction as the Z axis direction. Have been. A flange FLG integrated with the lens barrel is provided on the outer periphery of the lens barrel of the projection optical system PL. The material of the flange FLG is a material having a low thermal expansion, such as Inper (Inver; a low-expansion alloy composed of 36% nickel, 0.25% manganese, and iron containing trace amounts of carbon and other elements). The flange FLG is used to connect the projection optical system PL to the barrel The so-called kinematic support mount is supported at three points through the kinematics. The suspension column 18 includes a substrate base plate 60 and four suspension members 61 for suspending and supporting the substrate base plate 60 almost horizontally. The first support column 12 includes four legs 65 (surrounded by the projection optical system PL) on the top surface of the lens barrel base 16 (the legs on the far side of the drawing are not shown). The reticle base plate 63 is supported substantially horizontally by the legs 65 of the reticle. Similarly, the second support column 14 has four supports 62 provided on the upper surface of the lens barrel base 16 so as to surround the first support column 12 (the support on the back side of the paper is shown. (Omitted) and a top plate 64 supported almost horizontally by these four columns 62. The second partial illumination optical system IOP 2 described above is supported by the top plate 64 of the second support column 14.
レチクルステージ R S Tは、 本体コラム 1 4を構成する第 1支持コラム 1 2を 構成するレチクノレベース定盤 6 3上に配置されている。 レチクルステージ R S T は、 例えば磁気浮上型の 2次元リニアァクチユエータ等から成るレチクルステー ジ駆動系によって駆動され、 レチクル Rをレチクルベース定盤 6 3上で Y軸方向 に大きなストロークで直線駆動するとともに、 X軸方向と Θ Z方向に関しても微 小駆動が可能な構成となっている。  The reticle stage R ST is arranged on a reticle base base 63 that forms the first support column 12 that forms the main body column 14. The reticle stage RST is driven by a reticle stage drive system including, for example, a magnetic levitation type two-dimensional linear actuator, and linearly drives the reticle R on the reticle base surface plate 63 with a large stroke in the Y-axis direction. At the same time, it has a configuration that enables micro drive in the X-axis direction and the ΘZ direction.
レチクルステージ R S Tの一部には、 その位置や移動量を計測するための位置 検出装置であるレチクルレーザ干渉計 7 0からの測長ビームを反射する移動鏡 7 1が取り付けられている。 レチクルレーザ干渉計 7 0は、 レチクルベース定盤 6 3に固定され、 投影光学系 P Lの上端部側面に固定された固定鏡 7 2を基準とし て、 レチクルステージ R S T (すなわちレチクル R) の 0 Z回転を含む X Y面内 の位置を検出する。  A moving mirror 71 that reflects a length measurement beam from a reticle laser interferometer 70 that is a position detecting device for measuring the position and the amount of movement of the reticle stage RST is attached to a part of the reticle stage RST. Reticle laser interferometer 70 is fixed to reticle base surface plate 63, and is fixed to reticle stage RST (that is, reticle R) with reference to fixed mirror 72 fixed to the side of the upper end of projection optical system PL. Detects the position in the XY plane including rotation.
レチクルレーザ干渉計 7 0によって計測されるレチクルステージ R S T (レチ クル R) の位置情報 (又は速度情報) は、 制御装置 C O N Tに出力される。 制御 装置 C O N Tは、 レチクルレーザ干渉計 7 0から出力される位置情報 (或いは速 度情報) が指令値 (目標位置、 目標速度) と一致するように (具体的には基板ス テージ P S Tと追従するように) レチクルステージ駆動系を制御する。  Position information (or speed information) of reticle stage R ST (reticle R) measured by reticle laser interferometer 70 is output to control device CONT. The controller CONT controls the position information (or speed information) output from the reticle laser interferometer 70 so that it matches the command value (target position, target speed) (specifically, it follows the substrate stage PST). Control the reticle stage drive system.
投影光学系 P Lとしては、 ここでは、 物体面 (レチクル R) 側及び像面 (基板 P) 側の両方がテレセントリックで円形の投影視野を有し、 石英や螢石を光学硝 材とした屈折光学素子 (レンズ素子) のみから成る 1/4、 1/5, 又は 1/6 縮小倍率の屈折光学系が使用されている。 このため、 レチクル Rにパルス紫外光 が照射されると、 レチクル R上のパターン形成領域のうちパルス紫外光によって 照明された部分からの結像光束が投影光学系 P Lに入射し、 そのパターンの部分 倒立像がパルス紫外光の各パルス照射の度に投影光学系 P Lの像面側の円形視野 の中央に矩形状 (スリット状) に制限されて結像される。 これにより、 投影され たパターンの部分倒立像は、 投影光学系 P Lの結像面に配置された基板 P上の複 数のショット領域のうちの 1つのショット領域表面のレジスト層に縮小転写され る。 Here, as the projection optical system PL, here, the object plane (reticle R) side and the image plane (substrate P) Both sides are telecentric, have a circular projection field, and are composed of only refractive optical elements (lens elements) made of quartz or fluorite as optical materials. 1/4, 1/5, or 1/6 reduction magnification Is used. For this reason, when the reticle R is irradiated with the pulsed ultraviolet light, the image forming light flux from the portion of the pattern formation area on the reticle R illuminated by the pulsed ultraviolet light enters the projection optical system PL, and the pattern portion The inverted image is limited to a rectangular shape (slit shape) at the center of the circular field on the image plane side of the projection optical system PL at each pulse irradiation of the pulsed ultraviolet light, and is formed. As a result, the partial inverted image of the projected pattern is reduced and transferred to the resist layer on the surface of one of the plurality of shot areas on the substrate P arranged on the imaging plane of the projection optical system PL. .
基板ステージ PSTは、 前述した吊り下げコラム 1 8を構成する基板ベース定 盤 60上に配置され、 例えば磁気浮上型の 2次元リニアァクチユエータ等から成 る基板ステージ駆動系によって XY面内で自在に駆動されるようになっている。 基板ステージ P STは、 基板ホルダ PHを介して基板 Pを真空吸着等により保持 する。基板ステージ P STの XY位置及び回転量(ョ一^ fング量、ローリング量、 ピッチング量) は、 投影光学系 PLの鏡筒下端に固定された参照鏡 75を基準と して基板ステージ P S Tの一部に固定された移動鏡 74の位置変化を計測する基 板レーザ干渉計 73によつて所定の分解能でリアルタイムに計測される。 この基 板レーザ干渉計 73の計測値は制御装置 CONTに出力される。 制御装置 CON Tは、 基板レーザ干渉計 73の計測結果に基づいて、 基板ステージ駆動系を制御 する。  The substrate stage PST is arranged on the substrate base platen 60 constituting the above-mentioned hanging column 18 and is moved in the XY plane by a substrate stage drive system composed of, for example, a magnetic levitation type two-dimensional linear actuator. It is designed to be driven freely. The substrate stage PST holds the substrate P by vacuum suction or the like via the substrate holder PH. The XY position and the amount of rotation (the amount of rolling, the amount of pitching, and the amount of pitching) of the substrate stage PST are determined based on the reference mirror 75 fixed to the lower end of the barrel of the projection optical system PL. The measurement is performed in real time at a predetermined resolution by a substrate laser interferometer 73 that measures a change in the position of a movable mirror 74 fixed to a part. The measurement value of the substrate laser interferometer 73 is output to the control device CONT. The control device CONT controls the substrate stage drive system based on the measurement result of the substrate laser interferometer 73.
次に、 上述した構成を有する露光装置 EXの動作について説明する。  Next, the operation of the exposure apparatus EX having the above-described configuration will be described.
基板ステージ P ST上に基板 Pが搬送され、 フォーカス調整が終了すると、 不 図示のァライメント系を用いてレチクル Rと基板 Pとの位置決め(ァヲィメント) が行われる。 このようにして、 基板 Pの露光のための準備動作が終了すると、 制 御装置 CONTは、 ァライメント結果に基づいて基板レーザ干渉計 73の計測値 をモニタしつつ基板ステージ駆動系を制御して基板 P上に設定されたショット領 域を露光するための走查開始位置に基板ステージ P STを移動する。  When the substrate P is transported onto the substrate stage PST and the focus adjustment is completed, positioning (alignment) between the reticle R and the substrate P is performed using an alignment system (not shown). In this way, when the preparatory operation for exposure of the substrate P is completed, the controller CONT controls the substrate stage drive system while monitoring the measurement value of the substrate laser interferometer 73 based on the alignment result, and controls the substrate stage drive system. The substrate stage PST is moved to a running start position for exposing the shot area set on P.
そして、 制御装置 CONTは、 レチクルステージ駆動系及び基板ステージ駆動 系を介してレチクルステージ R ST及び基板ステージ P STの Y軸方向の走査を 開始する。 両ステージ RST、 P STがそれぞれの目標走査速度に達すると、 制 御装置 CONTは、 パルス紫外光である露光光 E Lによりレチクル Rのパターン 形成領域に対する照明を開始する。 And the control device CONT is a reticle stage drive system and substrate stage drive The scanning of the reticle stage RST and the substrate stage PST in the Y-axis direction is started via the system. When the two stages RST and PST reach their respective target scanning speeds, the controller CONT starts illuminating the reticle R pattern formation region with the exposure light EL that is pulsed ultraviolet light.
なお、 この走查露光の開始に先立って、 光源 1の発光は開始されているが、 図 6の模式図に示すように、 制御装置 CONTは可動レチクルブラインド 50の各 可動プレード 52 (54) を移動することで開口部 K (照明領域 I A) をレチク ルステージ RST (すなわちレチクル R) に対して同期移動させているため、 レ チクル R上のパターン形成領域 P A外への露光光 ELの照射が遮光される。 図 6 に示す例では、 レチクル Rのパターン形成領域 P Aの周囲に遮光帯 MBが設けら れており、 可動レチクルブラインド 50の開口部 Kで設定される照明領域 I Aは 遮光帯 MBに応じた大きさを有し、 固定レチクルブラインド 80の開口部 81で 設定される照明領域 I Bは X軸方向に延在するスリツト状である。  Prior to the start of the scanning exposure, light emission of the light source 1 has been started, but as shown in the schematic diagram of FIG. 6, the controller CONT controls each movable blade 52 (54) of the movable reticle blind 50. Since the opening K (illumination area IA) is moved synchronously with respect to the reticle stage RST (that is, the reticle R) by moving, the irradiation of the exposure light EL outside the pattern formation area PA on the reticle R is prevented. It is shaded. In the example shown in FIG. 6, a light-shielding band MB is provided around the pattern forming area PA of the reticle R, and the illumination area IA set by the opening K of the movable reticle blind 50 has a size corresponding to the light-shielding band MB. The illumination area IB set by the opening 81 of the fixed reticle blind 80 has a slit shape extending in the X-axis direction.
制御装置 C O N Tは、 走查露光時にレチクルステージ RSTの Y軸方向の移動 速度と基板ステージ P S Tの Y軸方向の移動速度とが投影光学系 P Lの投影倍率 に応じた速度比に維持されるようにレチクルステージ駆動系及びウェハステージ 駆動系を介してレチクルステージ RS T及ぴ基板ステージ P S Tを同期移動する。 走查露光中においても、 制御装置 CONTは、 可動レチクルブラインド 50の可 動ブレード 52を駆動し、 開口部 (照明領域 I A) をレチクル Rに追従するよ うに移動する。 可動ブレード 52が移動することにより振動が発生しても、 ブラ インドハウジング部 59と第 1照明系ハウジング 6との間に緩衝材であるエアパ ッド 21が介在されていることにより、 第 1照明系ハウジング 6に対する振動の 伝達は抑制される。 そして、 レチクル Rのパターン形成領域 PAが露光光 E で 逐次照明され、 パターン形成領域 P A全面に対する照明が完了することにより、 基板 P上のショット領域に対する走査露光が終了する。  The controller CONT operates such that the moving speed of the reticle stage RST in the Y-axis direction and the moving speed of the substrate stage PST in the Y-axis direction during the scanning exposure are maintained at a speed ratio corresponding to the projection magnification of the projection optical system PL. The reticle stage RST and the substrate stage PST are moved synchronously via the reticle stage drive system and wafer stage drive system. Even during the running exposure, the control device CONT drives the movable blade 52 of the movable reticle blind 50 to move the opening (illumination area IA) so as to follow the reticle R. Even if the movable blade 52 moves and generates vibration, the first lighting unit is provided by the air pad 21 serving as a cushioning material between the blind housing part 59 and the first lighting system housing 6. Transmission of vibration to the system housing 6 is suppressed. Then, the pattern formation area PA of the reticle R is sequentially illuminated with the exposure light E, and the illumination of the entire pattern formation area PA is completed, thereby completing the scanning exposure on the shot area on the substrate P.
以上説明したように、 照明光学系 I OP内に配置された可動ブレード 52 (5 4 ) の移動により第 1照明系ハウジング 6に伝達する振動を緩衝材であるエアパ ッド 21で抑制するようにしたので、 第 1照明系ハウジング 6 (第 1部分照明光 学系 I OP 1) の振動に起因する露光精度の劣化を防止することができる。 そし て、 振動を抑制することで可動ブレード 5 2 ( 5 4 ) の移動を高速化及ぴ高加速 度化でき、 レチクルステージ R S T及ぴ基板ステージ P S Tの走査移動速度及び 加速度を向上できるので、 露光処理のスループットを向上することができる。 ま た、 防振装置 2 0をエアパッド 2 1あるいはゴム等の弾性体で構成することで、 安価且つ簡易な構成で第 1照明系ハゥジング 6に伝達する振動を抑制することが できる。 As described above, the vibration transmitted to the first illumination system housing 6 by the movement of the movable blade 52 (54) arranged in the illumination optical system IOP is suppressed by the air pad 21 which is a cushioning material. As a result, it is possible to prevent exposure accuracy from deteriorating due to vibration of the first illumination system housing 6 (first partial illumination optical system IOP 1). And By suppressing the vibration, the movement of the movable blade 52 (54) can be accelerated and accelerated, and the scanning movement speed and acceleration of the reticle stage RST and substrate stage PST can be improved. Can be improved. Further, by forming the vibration isolator 20 from an air pad 21 or an elastic body such as rubber, vibration transmitted to the first illumination system housing 6 can be suppressed with a simple and inexpensive configuration.
また、 ブラインドハウジング部 5 9は、 第 1照明系ハウジング 6に対して Y X 方向に微動可能に保持されているため、 運動量保存の法則により、 可動ブレード 5 2 ( 5 4 ) に接続する可動子 5 6 Aの + X方向 (又は一 X方向) の移動に応じ て固定子 5 6 B及ぴブラインドハウジング部 5 9全体が一X方向(又は + X方向) に微少量移動する。 この固定子 5 6 B及びブラインドハウジング部 5 9全体の移 動により、 可動ブレード 5 2 ( 5 4 ) の移動に伴う反力が相殺される。 つまり、 本実施形態において、 固定子 5 6 B及びブラインドハウジング部 5 9全体が、 可 動ブレード 5 2 ( 5 4 ) が移動するときの反力を受けるカウンタマスとなってい る。 なお、 固定子 5 6 B及びブラインドハウジング部 5 9全体の移動により可動 ブレード 5 2 ( 5 4 ) の位置に微少量の誤差が生じる場合は、 その分を予め求め ておき、 可動ブレードの駆動指令信号にフィードフォヮ一ドすればよい。  In addition, since the blind housing part 59 is held so as to be finely movable in the YX direction with respect to the first illumination system housing 6, the movable element 5 connected to the movable blade 52 (54) according to the law of conservation of momentum. In accordance with the movement of 6 A in the + X direction (or one X direction), the whole of the stator 56B and the blind housing part 59 slightly move in the one X direction (or the + X direction). The reaction of the movable blade 52 (54) is offset by the movement of the stator 56B and the entire blind housing portion 59. That is, in the present embodiment, the stator 56 B and the entire blind housing portion 59 are counter masses that receive a reaction force when the movable blade 52 (54) moves. If the movement of the stator 56B and the entire blind housing portion 59 causes a small amount of error in the position of the movable blade 52 (54), the position is determined in advance and the movable blade drive command is issued. What is necessary is just to feed the signal.
なお、本実施形態では、第 1照明系ハウジング 6を第 1架台として説明したが、 この第 1照明系ハウジング 6を支持する架台を設けた場合、 防振装置 2 0は、 こ の架台に対する振動の伝達を抑制あるいは除去することができる。  In the present embodiment, the first illumination system housing 6 has been described as the first gantry. However, when a gantry supporting the first illumination system housing 6 is provided, the vibration isolator 20 Can be suppressed or eliminated.
なお、 上記実施形態において、 エアパッド 2 1は環状 (無端状) に設けられて いるが、 複数のエアパッド 2 1を第 1照明系ハウジング 6とブラインドハウジン グ部 5 9との間に島状に (離散的に) 配置してもよい。 こうすることにより、 複 数のエアパッド 2 1それぞれの内圧を個別に調整することで、 ブラインドハウジ ング部 5 9と第 1照明系ハウジング 6との位置関係 (第 1照明系ハウジング 6に 対するブラインドハウジング部 5 9の傾斜方向の姿勢)を調整することができる。 なお、 上記実施形態において、 Y可動ブレード 5 2は、 Y軸方向に移動し、 X 可動プレード 5 4は X軸方向に移動するように説明したが、 これら可動ブレード 5 2、 5 4が回転方向 (0 Z方向) に微動可能であってもよい。 また、 固定レチ クルブラインド 8 0の開口部 8 1が θ Z方向に回転可能であってもよい。 これに より、 走査露光中にレチクル Rに位置ずれが生じた場合でも、 開口部 Kや開口部 8 1をレチクル Rに対して正確に追従移動させることができる。 In the above embodiment, the air pads 21 are provided in a ring shape (endless shape). However, a plurality of air pads 21 are formed in an island shape between the first lighting system housing 6 and the blind housing portion 59 (see FIG. (Discretely). In this way, by adjusting the internal pressure of each of the plurality of air pads 21 individually, the positional relationship between the blind housing 59 and the first lighting system housing 6 (the blind housing relative to the first lighting system housing 6). Part 59) can be adjusted. In the above embodiment, the description has been made such that the Y movable blade 52 moves in the Y axis direction and the X movable blade 54 moves in the X axis direction. (0 Z direction). Also, fixed retic The opening portion 81 of the blinds 80 may be rotatable in the θZ direction. Accordingly, even when the reticle R is misaligned during the scanning exposure, the opening K and the opening 81 can be accurately moved to follow the reticle R.
上記実施形態において、 移動体は、 可動レチクルブラインド 5 0に限定されな い。 例えば、 走査露光中に、 レチクル Rに対する露光光 E Lの照度調整や照明光 学系 I O Pの光学特性調整のためにフィルタ装置を駆動 (移動) する場合がある が、 このフィルタ装置の移動により照明系ハウジングに伝達する振動を抑制又は 除去するために、 本発明を適用することができる。 すなわち、 光源 1とレチクル Rとの間に設けられた移動体の移動に起因して発生する振動の全てに対して本発 明を適用可能である。  In the above embodiment, the moving body is not limited to the movable reticle blind 50. For example, during scanning exposure, the filter device may be driven (moved) to adjust the illuminance of the exposure light EL to the reticle R or to adjust the optical characteristics of the illumination optical system IOP. The present invention can be applied to suppress or eliminate vibration transmitted to the housing. That is, the present invention is applicable to all vibrations generated due to the movement of the moving body provided between the light source 1 and the reticle R.
以下、 本発明の他の実施形態について図 7及び図 8を参照しながら説明する。 以下の説明において、 上述した実施形態と同一又は同等の構成部分については同 一の符号を付し、 その説明を簡略若しくは省略する。  Hereinafter, another embodiment of the present invention will be described with reference to FIGS. In the following description, the same reference numerals are given to the same or equivalent components as those in the above-described embodiment, and the description thereof will be simplified or omitted.
図 7及び図 8に示すように、 防振装置 2 0は、 第 1照明系ハウジング 6とブラ インドハウジング部 5 9との間において複数 (4箇所) の所定位置にそれぞれ設 けられたピエゾ素子 2 2と、 これら複数のピエゾ素子 2 2どうしの間に設けられ た複数のエアパッド 2 1とを備えている。 また、 ブラインドハウジング部 5 9の 複数の所定位置には、 振動センサ (加速度センサ) 2 3が取り付けられている。 この振動センサ 2 3の役割について以下に説明する。 例えば、 床面 F Dから第 1照明系ハウジング 6を介してブラインドハゥジング部 5 9に伝達される振動や、 可動ブレード 5 2、 5 4を駆動するための信号をリニアモータ 5 5、 5 6に与え る信号ケーブルのテンション等によって、 理想的な推力を可動ブレード 5 2、 5 4に対して与えられない場合がある。 例えば推力が大きすぎてしまった場合、 ブ ラインドハウジング部 5 9は、 所定の値以上に振動してしまう。 振動センサ 2 3 は、 このような所定値以上の振動を検出し、 制御装置 C O N Tに信号を送る。 制 御装置 C O N Tは、 振動センサ 2 3が所定の許容値以上の振動を検出したときピ ェゾ素子 2 2のそれぞれに対して振動センサの検出結果に基づいた駆動電圧を印 加し、 それぞれのピエゾ素子 2 2を変位させる。 これによつて、 所望の推力が可 動ブレード 5 2、 5 4に与えられ、 可動ブレード 5 2、 5 4を高精度に駆動する ことが可能となる。 As shown in FIGS. 7 and 8, the vibration isolator 20 includes a plurality of (four) piezo elements provided at predetermined positions between the first illumination system housing 6 and the blind housing part 59. 22 and a plurality of air pads 21 provided between the plurality of piezo elements 22. In addition, vibration sensors (acceleration sensors) 23 are attached to a plurality of predetermined positions of the blind housing portion 59. The role of the vibration sensor 23 will be described below. For example, vibrations transmitted from the floor FD to the blind housing unit 59 via the first illumination system housing 6 and signals for driving the movable blades 52, 54 are transmitted to the linear motors 55, 56. The ideal thrust may not be given to the movable blades 52 and 54 depending on the tension of the given signal cable. For example, when the thrust is too large, the blind housing portion 59 vibrates to a predetermined value or more. The vibration sensor 23 detects such a vibration having a predetermined value or more and sends a signal to the control device CONT. The control device CONT applies a driving voltage based on the detection result of the vibration sensor to each of the piezo elements 22 when the vibration sensor 23 detects the vibration that is equal to or more than a predetermined allowable value. The piezo element 22 is displaced. As a result, a desired thrust is applied to the movable blades 52, 54, and the movable blades 52, 54 are driven with high precision. It becomes possible.
なお、 ここではピエゾ素子 2 2を用いているが、 もちろん、 ピエゾ素子 2 2以 外の任意の防振用ァクチユエータを用いることができる。 また、 ここではピエゾ 素子 2 2を 4つ設けているが、 少なくとも 3つ設けられていればよい。  Although the piezo element 22 is used here, it is a matter of course that any vibration-reducing actuator other than the piezo element 22 can be used. Although four piezo elements 22 are provided here, at least three piezo elements 22 may be provided.
また、 図 9に示すように、 第 1照明系ハウジング 6に対するブラインドハウジ ング部 5 9の位置を計測する計測装置 1 0 0を設けることができる。 計測装置 1 0 0は、 ブラインドハウジング部 5 9の + X側の側面において外方に突設された L字状部材 1 6 3の一 Z側の面 (この面は X Y面にほぼ平行な面である) に固定 された金属板 1 6 O Aと、 L字状部材 1 6 3の + X側の面 (この面は Y Z面にほ ぼ平行な面である) に固定された金属板 1 6 0 Bと、 これら金属板 1 6 0 A、 1 6 0 Bにそれぞれ対向して第 1照明系ハウジング 6の + X側の側面の外方に突設 された L字状取付部材 1 6 2に取り付けられた 2つの渦電流変位センサ 1 6 1 A、 1 6 1 Bとを備えている。 渦電流変位センサ 1 6 1 A、 1 6 1 Bでは、 絶縁体に 卷いたコイルに交流電圧を加えておき、 導電体からなる測定対象 (この場合、 金 属板) に近づけると、 コイルによって作られた交流磁界によって導電体に渦電流 が発生する。 この渦電流によって発生する磁界は、 コイルの電流によって作られ た磁界と逆方向であり、 これら 2つの磁界が重なりあって、 コイルの出力に影響 を与え、 コイルを流れる電流の強さ及び位相が変化する。 この変化は、 測定対象 がコイルに近いほど大きくなり、 逆に遠いほど小さくなるので、 コイルから電気 信号を取り出すことにより、 測定対象の位置、 変位を知ることができる。 したが つて、 渦電流変位センサ 1 6 1 A、 1 6 1 Bを用いれば、 両者が静止状態にある ときでも測定対象の位置、 変位の計測が可能、 すなわち絶対距離の計測が可能で ある。  Further, as shown in FIG. 9, a measuring device 100 for measuring the position of the blind housing portion 59 with respect to the first illumination system housing 6 can be provided. The measuring device 100 is a surface on the + X side of the blind housing part 59, on the one Z side of the L-shaped member 163 protruding outward (this surface is a surface substantially parallel to the XY plane). OA and the metal plate 16 fixed to the + X side of the L-shaped member 16 3 (this surface is almost parallel to the YZ plane) 0 B and L-shaped mounting members 16 2 projecting outward on the + X side of the first lighting system housing 6 so as to face these metal plates 16 0 A and 16 0 B, respectively. It has two eddy current displacement sensors 16 1 A and 16 1 B attached. In the eddy current displacement sensors 16 A and 16 B, an AC voltage is applied to a coil wound on an insulator, and when the sensor is brought close to a measuring object made of a conductor (in this case, a metal plate), the coil is operated by the coil. An eddy current is generated in the conductor by the applied alternating magnetic field. The magnetic field generated by this eddy current is in the opposite direction to the magnetic field created by the coil current, and these two magnetic fields overlap and affect the output of the coil, and the intensity and phase of the current flowing through the coil change. Change. This change becomes larger as the measurement target is closer to the coil and becomes smaller as the measurement target is farther from it. Conversely, the position and displacement of the measurement target can be known by extracting electric signals from the coil. Therefore, if the eddy current displacement sensors 161A and 161B are used, the position and displacement of the measurement target can be measured even when both are stationary, that is, the absolute distance can be measured.
制御装置 C O N Tは、 計測装置 1 0 0の計測結果に基づいて、 ピエゾ素子 2 2 を駆動する。 こうすることにより、 外乱によって可動プレード 5 2、 5 4の移動 精度が悪化することがなく、 精度良く可動ブレード 5 2、 5 4を駆動することが できる。 つまり、 エアパッド 2 1のみを第 1照明系ハウジング 6とブラインドハ ウジング部 5 9との間に配置した場合、 ブラインドハウジング部 5 9から第 1照 明系ハウジング 6へ伝達する振動を抑制することは可能であるが、 外乱の影響に よって可動レチクルブラインド 5 0の位置 (姿勢) が変位する可能性がある。 こ の場合、 レチクル R上で照明領域を所望状態に規定することができなくなる可能 性が生じる。 しかしながら、 ピエゾ素子 (ァクチユエータ) 2 2を使って、 ブラ インドハウジング部 5 9の過剰な振動を除去することで、 外乱の影響を抑制しつ つ、 レチクル R上で照明領域を所望状態に規定することができる。 The control device CONT drives the piezo element 22 based on the measurement result of the measuring device 100. By doing so, the movable blades 52, 54 can be driven with high accuracy without the movement accuracy of the movable blades 52, 54 being deteriorated by disturbance. That is, when only the air pad 21 is disposed between the first lighting system housing 6 and the blind housing part 59, it is not possible to suppress the vibration transmitted from the blind housing part 59 to the first lighting system housing 6. Possible, but not affected by disturbances Therefore, the position (posture) of the movable reticle blind 50 may be displaced. In this case, there is a possibility that the illumination area on the reticle R cannot be defined in a desired state. However, by using a piezo element (actuator) 22 to eliminate the excessive vibration of the blind housing section 59, the influence of disturbance is suppressed, and the illumination area is defined on the reticle R in a desired state. be able to.
なお、 本実施形態において、 制御装置 C O N Tは、 第 1照明系ハウジング 6に 対するブラインドハゥジング部 5 9の位置を計測装置 1 0 0で計測し、 この計測 結果に基づいてピエゾ素子 2 2を駆動しているが、 プラインドハウジング部 5 9 (第 1照明系ハウジング 6 ) に対する第 2照明系ハウジング 8の位置を計測装置 1 0 0で計測し、 この計測結果に基づいてピエゾ素子 2 2を駆動するようにして よい。  In the present embodiment, the control device CONT measures the position of the blind housing portion 59 with respect to the first illumination system housing 6 with the measuring device 100, and drives the piezo element 22 based on the measurement result. However, the position of the second illumination system housing 8 with respect to the blind housing part 59 (the first illumination system housing 6) is measured by the measuring device 100, and the piezo element 22 is driven based on the measurement result. You can do it.
なお、 制御装置 C O N Tは、 振動センサ 2 3や計測装置 1 0 0の検出信号に基 づいて、 ブラインドハウジング部 5 9のベースプレート B P及び第 2照明系ハウ ジング 8に対する位置ずれを検出し、 その検出結果を可動ブレード 5 2 ( 5 4 ) の位置制御にフィードパックしてもよい。 これによつて、 第 2照明系ハウジング 8に対して第 1照明系ハウジング 6がずれたとしても、 高精度に可動ブレード 5 2 ( 5 4 ) をレチクル Rに追従させることができる。 また、 第 2照明系ハウジン グ 8に対する第 1照明系ハウジング 6の位置ずれを直接計測する計測装置を別個 に設け、 この計測装置からの検出信号を可動プレード 5 2 ( 5 4 ) の位置制御に フィードバックしてもよい。  The control device CONT detects a displacement of the blind housing part 59 with respect to the base plate BP and the second illumination system housing 8 based on detection signals of the vibration sensor 23 and the measuring device 100, and detects the displacement. The result may be fed back to the position control of the movable blade 52 (54). Thereby, even if the first illumination system housing 6 is displaced from the second illumination system housing 8, the movable blade 52 (54) can follow the reticle R with high accuracy. In addition, a measuring device for directly measuring the displacement of the first lighting system housing 6 with respect to the second lighting system housing 8 is provided separately, and a detection signal from this measuring device is used to control the position of the movable blade 52 (54). You may give feedback.
図 1 0は、 本発明の他の実施形態を示す図である。 本実施形態において、 エア パッド 2 1は設けられておらず、 ブラインドハウジング部 5 9と第 1照明系ハウ ジング 6とは接続され、 プラインドハウジング部 5 9は第 1照明系ハウジング 6 の一部を構成している。 そして、 可動ブレード 5 4 ( 5 2 ) を駆動するリニアモ ータ 5 6 ( 5 5 ) の固定子 5 6 B ( 5 5 B ) は、 非接触ベアリングであるエアべ ァリング 2 5により、 ブラインドハウジング部 5 9の内壁面 5 9 Bに対して非接 触支持されている。 このため、 運動量保存の法則により可動ブレード 5 4に接続 する可動子 5 6 Aの + X方向 (又は一 X方向) の移動に応じて固定子 5 6 Bがー X方向 (+ X方向) に移動する。 この固定子 5 6 Bの移動により可動ブレード 5 4の移動に伴う反力が相殺される。 つまり、 本実施形態において、 固定子 5 6 B が、可動ブレード 5 4が移動するときの反力を受けるカウンタマスとなっている。 これにより、 可動ブレード 5 4の移動により第 1照明系ハウジング 6 (ブライン ドハゥジング部 5 9 ) に伝達する振動を抑制することができる。 FIG. 10 is a diagram showing another embodiment of the present invention. In this embodiment, the air pad 21 is not provided, the blind housing part 59 is connected to the first lighting system housing 6, and the blind housing part 59 is a part of the first lighting system housing 6. Is composed. The stator 56B (55B) of the linear motor 56 (55) that drives the movable blade 54 (52) is connected to the blind housing by the air bearing 25, which is a non-contact bearing. It is supported in a non-contact manner with the inner wall surface 59 B of 59. Therefore, the stator 56B moves in the −X direction (+ X direction) in accordance with the movement of the mover 56A connected to the movable blade 54 in the + X direction (or one X direction) according to the law of conservation of momentum. Moving. The movable blade 5 is moved by the movement of the stator 5 6 B. The reaction force accompanying the movement of 4 is offset. That is, in the present embodiment, the stator 56B is a counter mass that receives a reaction force when the movable blade 54 moves. Thus, the vibration transmitted to the first illumination system housing 6 (blind housing part 59) due to the movement of the movable blade 54 can be suppressed.
なお、 固定子 5 6 B ( 5 5 B ) をカウンタマスとすることで、 エアパッド (緩 衝材) 2 1やアクティブ防振のためのピエゾ素子 2 2を設けない構成であっても 防振効果を得ることができるが、 カウンタマスとエアパッド (あるいはピエゾ素 子) とを組み合わせることもできる。 また、 固定子 5 5 Bも内壁面 5 9 Bに対し て非接触支持されており、 カウンタマスとしての機能を有している。  By using the stator 56B (55B) as a counter mass, even if the air pad (absorbing material) 21 and the piezo element 22 for active vibration isolation are not provided, the vibration isolation effect can be obtained. However, it is also possible to combine a counter mass with an air pad (or piezo element). Further, the stator 55B is also supported in a non-contact manner with respect to the inner wall surface 59B, and has a function as a counter mass.
図 1 1は、 本発明の他の実施形態を示す模式図である。  FIG. 11 is a schematic view showing another embodiment of the present invention.
図 1 1において図 2に示す部材と同じ部材には同一の符号を付している。 本実 施形態は、 図 2に示す実施形態に対して、 可動ブレードが移動するときの反力を 受けるカウンタマスの機能を有する 2つのバランサー 9 0を加えたものである。 図 1 1に示すように、 パランサー 9 0は Y方向に延びるリニアモータ 9 1上に設 けられており、 リニアモータ 9 1上を移動可能である。 2つのリニアモータ 9 1 は、 一対のリニアモータ 5 5から同じ距離だけ離れて配置されている。 このパラ ンサー 9 0は、 制御装置 C O N Tによって駆動が制御され、 可動ブレード 5 2の 移動に伴って、 その移動方向とは逆方向に移動する。 可動ブレード 5 2の重さに 対してバランサー 9 0の重さを 4倍に設定すると、 可動ブレード 5 2の移動距離 に対してバランサー 9 0の移動距離を 1 Z 4にすることができる。 バランサー 9 0及ぴリニアモータ 9 1は、 それぞれブラインドハウジング部 5 9内に設けられ ているので、 可動ブレード 5 2の移動に伴う反力はプラインドハウジング部 5 9 内で相殺され、 第 1照明系ハゥジング 6への伝達を抑制することができる。  In FIG. 11, the same members as those shown in FIG. 2 are denoted by the same reference numerals. This embodiment is different from the embodiment shown in FIG. 2 in that two balancers 90 having a function of a counter mass receiving a reaction force when the movable blade moves are added. As shown in FIG. 11, the balancer 90 is provided on a linear motor 91 extending in the Y direction, and can move on the linear motor 91. The two linear motors 91 are arranged at the same distance from the pair of linear motors 55. The driving of the dancer 90 is controlled by the control device C ON T, and moves in the direction opposite to the moving direction with the movement of the movable blade 52. When the weight of the balancer 90 is set to be four times the weight of the movable blade 52, the travel distance of the balancer 90 can be set to 1 Z 4 with respect to the travel distance of the movable blade 52. Since the balancer 90 and the linear motor 91 are provided in the blind housing section 59, respectively, the reaction force accompanying the movement of the movable blade 52 is offset in the blind housing section 59, and the first lighting Transmission to the system housing 6 can be suppressed.
なお、 ブラインドハウジング部 5 9内のスペースの関係で、 例えば片側のリニ ァモータ 9 1を X方向に沿ってリニアモータ 5 5に近づけることも可能である。 この場合、 近づけた方のパランサー 9 0の推力を、 リニアモータ 5 5からの距離 に比例して大きくする必要がある。  In addition, due to the space in the blind housing portion 59, for example, one linear motor 91 can be brought closer to the linear motor 55 along the X direction. In this case, the thrust of the closer balancer 90 needs to be increased in proportion to the distance from the linear motor 55.
また、 バランサー 9 0の重量を変えることができない場合は、 パランサー 9 0 の加速度を変えて可動プレート 5 2の反力を相殺するようにバランサー 9 0が発 生する推力を調整すればよレ、。 If the weight of the balancer 90 cannot be changed, the balancer 90 is activated to change the acceleration of the balancer 90 and cancel the reaction force of the movable plate 52. Adjust the thrust to be generated.
なお、 図 1 1に示す実施例では、 2つの可動プレート 52に対してそれぞれ Y ガイド 51およびリニアモータ 55を設けているが、 Yガイド 51及びリニアモ ータ 55の固定子 55部を共用してもよい。 具体的には、 図 1 1の上側の Yガイ ド 51と固定子 55 Bとを省略して、 下側の Yガイド 51で 2つの可動ブレード 52をガイドするとともに、 2つの可動プレート 52を駆動する際に、 図 1 1の 下側のリニアモータの固定子 55 Bを共用すればよい。 この場合、 図 1 1の上側 のパランサー 90に与える推力は、 下側のリニアモータ 55から距離に比例して 小さくすればよい。  In the embodiment shown in FIG. 11, the Y guide 51 and the linear motor 55 are provided for each of the two movable plates 52, but the stator 55 of the Y guide 51 and the linear motor 55 is shared. Is also good. Specifically, the upper Y guide 51 and the stator 55B in FIG. 11 are omitted, and the two movable blades 52 are guided by the lower Y guide 51 and the two movable plates 52 are driven. In this case, the stator 55B of the lower linear motor in FIG. 11 may be shared. In this case, the thrust applied to the upper balancer 90 in FIG. 11 may be reduced in proportion to the distance from the lower linear motor 55.
図 12は、 本発明の他の実施形態を示す模式図である。 図 12において、 リニ ァモータ 56 (55) の固定子 56 B (55 B) はブラインドハウジング部 59 の内壁面 59 Bに対して離間しており、 支持部材 28を介して床面 FD (あるい はベースプレート BP) に支持されている。 すなわち、 ブラインドハウジング部 59及ぴこれに接続する第 1照明系ハウジング 6と、 固定子 56 Bを支持する支 持部材 28とが振動に関して分離 (独立) しており、 可動ブレード 54に接続す る可動子 56 Aの移動に伴う反力は、 床面 FD (ベースプレート BP) に伝達さ れるようになっている。 このように、 可動ブレード 54 (52) の移動に伴う反 力を、 第 1照明系ハウジング 6 (ブラインドハウジング部 59) に対して振動的 に分離された床面 F Dに逃がすことにより、 第 1照明系ハウジング 6に振動が伝 達されるのを防止することができる。 ここで、 第 1照明系ハウジング 6はベース プレート BPに対して防振ュニット 5を介して支持されているため、 支持部材 2 8を介して床面 FD (あるいはベースプレート BP) に逃がした振動は第 1照明 系ハウジング 6に伝達されない。  FIG. 12 is a schematic diagram showing another embodiment of the present invention. In FIG. 12, the stator 56B (55B) of the linear motor 56 (55) is separated from the inner wall surface 59B of the blind housing part 59, and the floor FD (or Supported by base plate BP). That is, the blind housing part 59 and the first illumination system housing 6 connected thereto and the support member 28 supporting the stator 56B are separated (independent) with respect to vibration, and are connected to the movable blade 54. The reaction force accompanying the movement of the mover 56A is transmitted to the floor FD (base plate BP). In this way, the reaction force caused by the movement of the movable blade 54 (52) is released to the floor FD, which is vibrated and separated from the first illumination system housing 6 (blind housing portion 59), so that the first illumination Vibration can be prevented from being transmitted to the system housing 6. Here, since the first illumination system housing 6 is supported on the base plate BP via the vibration isolating unit 5, vibrations released to the floor FD (or the base plate BP) via the support member 28 are not affected. 1 Not transmitted to lighting system housing 6.
なお、 上記各実施形態において、 露光装置 EXの用途としては半導体製造用の 露光装置や、 角型のガラスプレートに液晶表示素子パターンを露光する液晶用の 露光装置に限定されることなく、 薄膜磁気へッドを製造するための露光装置にも 広く適当できる。  In each of the above embodiments, the use of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing semiconductors or an exposure apparatus for liquid crystal for exposing a liquid crystal display element pattern on a square glass plate. It is widely applicable to exposure equipment for manufacturing heads.
投影光学系 P Lとしては、 エキシマレーザなどの遠紫外線を用いる場合は硝材 として石英や蛍石などの遠紫外線を透過する材料を用い、 F 2レーザや X線を用 いる場合は反射屈折系または屈折系の光学系にし (マスクも反射型タイプのもの を用いる)、また、電子線を用いる場合には光学系として電子レンズおよび偏向器 からなる電子光学系を用いればいい。 なお、 電子線が通過する光路は真空状態に することはいうまでもない。 As projection optical system PL, using a material which transmits far ultraviolet rays such as quartz and fluorite as the glass material when using a far ultraviolet ray such as an excimer laser, use of F 2 laser and X-ray If it is, use a catadioptric or refractive optical system (use a reflective type mask as the mask), and if an electron beam is used, use an electron optical system consisting of an electron lens and a deflector as the optical system. Good. It goes without saying that the optical path through which the electron beam passes is in a vacuum state.
基板ステージ P S Tやマスクステージ M S丁にリニァモータを用いる場合は、 エアベアリングを用いたエア浮上型およびローレンツ力またはリアクタンス力を 用いた磁気浮上型のどちらを用いてもいい。 また、 ステージは、 ガイドに沿って 移動するタイプでもいいし、 ガイドを設けないガイドレスタイプでもよい。  When a linear motor is used for the substrate stage PST and the mask stage MS, either an air levitation type using an air bearing or a magnetic levitation type using Lorentz force or reactance force may be used. The stage may be of a type that moves along a guide or a guideless type that does not have a guide.
ステージの駆動装置として平面モータを用いる場合、磁石ュニット (永久磁石) と電機子ュエツトのいずれか一方をステージに接続し、 磁石ュニットと電機子ュ ニットの他方をステージの移動面側 (ベース) に設ければよい。  When a planar motor is used as the stage drive, either the magnet unit (permanent magnet) or the armature unit is connected to the stage, and the other of the magnet unit and the armature unit is placed on the moving surface side (base) of the stage. It may be provided.
基板ステージ P S Tの移動により発生する反力は、 特開平 8—1 6 6 4 7 5号 公報に記載されているように、 フレーム部材を用いて機械的に床 (大地) に逃が してもよい。 本発明は、 このような構造を備えた露光装置においても適用可能で ある。  The reaction force generated by the movement of the substrate stage PST, even if it is mechanically released to the floor (ground) using a frame member, as described in JP-A-8-166475 Good. The present invention is also applicable to an exposure apparatus having such a structure.
マスクステージ M S Tの移動により発生する反力は、 特開平 8— 3 3 0 2 2 4 号公報に記載されているように、 フレーム部材を用いて機械的に床 (大地) に逃 がしてもよい。 本発明は、 このような構造を備えた露光装置においても適用可能 である。  The reaction force generated by the movement of the mask stage MST, even if it is mechanically released to the floor (ground) using a frame member, as described in JP-A-8-330224. Good. The present invention is also applicable to an exposure apparatus having such a structure.
本実施形態の露光装置 E Xは、 本願特許請求の範囲に挙げられた各構成要素を 含む各種サブシステムを、 所定の機械的精度、 電気的精度、 光学的精度を保つよ うに、 組み立てることで製造される。 これら各種精度を確保するために、 この組 み立ての前後には、 各種光学系については光学的精度を達成するための調整、 各 種機械系については機械的精度を達成するための調整、 各種電気系については電 気的精度を達成するための調整が行われる。  The exposure apparatus EX of the present embodiment is manufactured by assembling various subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Is done. To ensure these various precisions, before and after this assembly, adjustments to achieve optical precision for various optical systems, adjustments to achieve mechanical precision for various mechanical systems, various Electric systems will be adjusted to achieve electrical accuracy.
各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、 機械的接続、 電気回路の配線接続、 気圧回路の配管接続等が含まれる。 この各種 サブシステムから露光装置への組み立て工程の前に、 各サブシステム個々の組み 立て工程があることはいうまでもない。 各種サブシステムの露光装置への組み立 て工程が終了したら、 総合調整が行われ、 露光装置全体としての各種精度が確保 される。 なお、 露光装置の製造は温度およびクリーン度等が管理されたクリーン ルームで行うことが望ましい。 The process of assembling the exposure apparatus from various subsystems includes mechanical connections, wiring connections of electric circuits, and piping connections of pneumatic circuits among the various subsystems. It goes without saying that there is an individual assembly process for each subsystem before the assembly process from these various subsystems to the exposure apparatus. Assembling various subsystems into exposure equipment When the process is completed, the overall adjustment is performed, and various precisions of the entire exposure apparatus are secured. It is desirable that the exposure apparatus be manufactured in a clean room where the temperature and cleanliness are controlled.
半導体デバイスは、 図 1 3.に示すように、 デバイスの機能 ·性能設計を行うス テツプ 2 0 1、 この設計ステップに基づいたマスク (レチクル) を製作するステ ップ 2 0 2、 デバイスの基材である基板 (ウェハ、 ガラスプレート) を製造する ステップ 2 0 3、 前述した実施形態の露光装置によりマスクのパターンを感光基 板 Pに露光する基板処理ステップ 2 0 4、 デバイス組み立てステップ (ダイシン グ工程、 ボンディング工程、 パッケージ工程を含む) 2 0 5、 検査ステップ 2 0 6等を経て製造される。 産業上の利用の可能性  As shown in Figure 13.3, a semiconductor device has a step 201 for designing the function and performance of the device, a step 202 for manufacturing a mask (reticle) based on this design step, and a device base. Manufacturing substrate (wafer, glass plate) as substrate Step 203, substrate processing step 204 for exposing mask pattern onto photosensitive substrate P using the exposure apparatus of the above-described embodiment, device assembly step (dicing) (Including process, bonding process, package process) 205, inspection step 206, etc. Industrial potential
本発明は、 マスクと基板とを同期移動して、 前記マスクのパターンを前記基板 に露光する露光装置であって、 前記マスクを照明するための照明光を射出する光 源と前記マスクとの間に設けられ、 前記マスクの移動に追従して移動する移動体 と、 前記移動体が配置される第 1架台と、 前記移動体の移動により前記第 1架台 に伝達する振動を抑制又は除去する防振装置とを備えるので、 精度良い露光処理 を実現することができる。 さらに、 振動を抑制することで移動体の移動を高速化 及ぴ高加速度化できるので露光処理のスループットを向上することができる。  The present invention is an exposure apparatus for exposing a pattern of the mask onto the substrate by synchronously moving the mask and the substrate, wherein a light source that emits illumination light for illuminating the mask is disposed between the light source and the mask. A moving body that moves following the movement of the mask; a first gantry on which the moving body is arranged; and a prevention mechanism that suppresses or eliminates vibration transmitted to the first gantry by the movement of the moving body. Since it is provided with a vibration device, accurate exposure processing can be realized. Further, by suppressing the vibration, the movement of the moving body can be accelerated and the acceleration can be increased, so that the throughput of the exposure processing can be improved.

Claims

請求の範囲 The scope of the claims
1 . マスクと基板とを同期移動して、 前記マスクのパターンを前記基板に露光す る露光装置であって、 1. An exposure apparatus that synchronously moves a mask and a substrate to expose the pattern of the mask to the substrate,
前記マスクを照明するための照明光を射出する光源と前記マスクとの間に設け られ、 前記マスクの移動に追従して移動する移動体と、  A moving body that is provided between a light source that emits illumination light for illuminating the mask and the mask, and that moves following the movement of the mask;
前記移動体が配置される第 1架台と、  A first gantry on which the moving body is arranged;
前記移動体の移動により前記第 1架台に伝達する振動を抑制又は除去する防振 装置と、 を備える。  A vibration isolator that suppresses or eliminates vibration transmitted to the first gantry due to movement of the moving body.
2 . 請求項 1記載の露光装置であって、 2. The exposure apparatus according to claim 1, wherein
前記移動体は、 前記照明光の照明領域を規制する可動遮光部材である。  The moving body is a movable light shielding member that regulates an illumination area of the illumination light.
3 . 請求項 2記載の露光装置であって、 3. The exposure apparatus according to claim 2, wherein
前記可動遮光部材は、前記マスクのパターン面とほぼ共役な位置に配置される。  The movable light shielding member is arranged at a position substantially conjugate with the pattern surface of the mask.
4 . 請求項 1記載の露光装置であって、 4. The exposure apparatus according to claim 1, wherein
前記防振装置は、 前記移動体を収容する移動体ハゥジング部と前記第 1架台と の間に配置される緩衝材を含む。  The anti-vibration device includes a cushioning member disposed between a moving body housing for accommodating the moving body and the first gantry.
5 . 請求項 4記載の露光装置であって、 5. The exposure apparatus according to claim 4, wherein
前記緩衝材は、 エアパッドを含む。  The cushioning material includes an air pad.
6 . 請求項 4記載の露光装置であって、 6. The exposure apparatus according to claim 4, wherein
前記緩衝材は、 弾性体を含む。  The cushioning material includes an elastic body.
7 . 請求項 4記載の露光装置であって、 7. The exposure apparatus according to claim 4, wherein
前記移動体ハゥジング部と前記第 1架台との間に配置され、 前記移動体ハゥジ ング部と前記第 1架台との位置関係を調整する調整装置を備える。 An adjusting device is provided between the moving body housing and the first frame, and adjusts a positional relationship between the moving body housing and the first frame.
8 . 請求項 1記載の露光装置であって、 8. The exposure apparatus according to claim 1, wherein
前記防振装置は、 前記移動体が移動するときの反力を受けるカウンタマスを有 する。  The anti-vibration device has a counter mass that receives a reaction force when the moving body moves.
9 . 請求項 8記載の露光装置であって、 9. The exposure apparatus according to claim 8, wherein
前記移動体は、 前記移動体ハウジング部に対して非接触で保持されており、 前記カウンタマスは、 前記移動体ハウジング部を含む。  The moving body is held in non-contact with the moving body housing part, and the counter mass includes the moving body housing part.
1 0 . 請求項 1記載の露光装置であって、 10. The exposure apparatus according to claim 1, wherein
前記マスクを介して前記照明光で前記基板を露光する本体部と、  A main body for exposing the substrate with the illumination light through the mask,
前記本体部が配置される第 2架台とを備え、  A second frame on which the main body is disposed,
前記第 1架台と前記第 2架台とは、 振動に関して独立している。  The first mount and the second mount are independent with respect to vibration.
1 1 . 請求項 1 0記載の露光装置であって、 11. The exposure apparatus according to claim 10, wherein
前記本体部は、 前記照明光の照明領域を規定する固定視野絞りを有する。  The main body has a fixed field stop that defines an illumination area of the illumination light.
1 2 . 請求項 1 0記載の露光装置であって、 12. The exposure apparatus according to claim 10, wherein
前記本体部は、 前記マスクを介した前記照明光を前記基板上に投射する投影光 学系を有する。  The main body has a projection optical system that projects the illumination light through the mask onto the substrate.
1 3 . 請求項 1記載の露光装置であって、 13. The exposure apparatus according to claim 1, wherein
前記照明光で前記マスクを照明する照明光学系を備え、  An illumination optical system that illuminates the mask with the illumination light,
前記移動体は、 前記照明光学系内に配置されている。  The moving body is arranged in the illumination optical system.
1 4 . 請求項 1 0記載の露光装置であって、 14. The exposure apparatus according to claim 10, wherein
前記照明光で前記マスクを照明する照明光学系を備え、  An illumination optical system that illuminates the mask with the illumination light,
前記移動体は、 前記照明光学系内に配置されており、  The moving body is disposed in the illumination optical system,
前記移動体よりも前記マスク側に配置される前記照明光学系の一部が前記本体 部に設けられている A part of the illumination optical system disposed on the mask side of the moving body is the main body. Is provided in the department
1 5 . マスクと基板とを移動して、 前記マスクのパターンを前記基板に露光する 露光装置であって、 15. An exposure apparatus that moves a mask and a substrate to expose the pattern of the mask onto the substrate,
前記マスクの照明領域を規定し、 移動可能な第 1移動体と、  A movable first movable body that defines an illumination area of the mask;
前記第 1移動体の移動に応じて、 前記第 1移動体の移動方向と反対方向に移動 する第 2移動体とを備える。  A second moving body that moves in a direction opposite to a moving direction of the first moving body in accordance with the movement of the first moving body.
1 6 . 請求項 1 5記載の露光装置であって、 16. The exposure apparatus according to claim 15, wherein
前記第 2移動体の重量は、 前記第 1移動体の重量よりも大きい。  The weight of the second moving body is larger than the weight of the first moving body.
1 7 . 請求項 1 5記載の露光装置であって、 17. The exposure apparatus according to claim 15, wherein
前記第 1移動体と前記第 2移動体とは、 共通の架台に支持されている。  The first moving body and the second moving body are supported by a common gantry.
1 8 . 請求項 1 5記載の露光装置であって、 18. The exposure apparatus according to claim 15, wherein
前記第 2移動体を駆動する駆動装置を備える。  A driving device for driving the second moving body.
1 9 . パターンが形成されたマスクを照明する照明装置であって、 1 9. A lighting device for illuminating a mask on which a pattern is formed,
前記マスクの照明領域を規定し、 移動可能な第 1移動体と、  A movable first movable body that defines an illumination area of the mask;
前記第 1移動体の移動に応じて、 前記第 1移動体の移動方向と反対方向に移動 する第 2移動体とを備える。  A second moving body that moves in a direction opposite to a moving direction of the first moving body in accordance with the movement of the first moving body.
2 0 . 請求項 1 9記載の照明装置であって、 20. The lighting device according to claim 19, wherein
前記第 2移動体の重量は、 前記第 1移動体の重量よりも大きい。  The weight of the second moving body is larger than the weight of the first moving body.
2 1 . 請求項 1 9記載の露光装置であって、 21. The exposure apparatus according to claim 19, wherein
前記第 1移動体と前記第 2移動体とは、 共通の架台に支持されている。  The first moving body and the second moving body are supported by a common gantry.
2 2 . 請求項 1 9記載の露光装置であって、 前記第 2移動体を駆動する駆動装置を備える。 22. The exposure apparatus according to claim 19, wherein A driving device for driving the second moving body.
PCT/JP2004/010864 2003-07-25 2004-07-23 Exposure apparatus WO2005010961A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005512084A JPWO2005010961A1 (en) 2003-07-25 2004-07-23 Exposure equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003279926 2003-07-25
JP2003-279926 2003-07-25

Publications (1)

Publication Number Publication Date
WO2005010961A1 true WO2005010961A1 (en) 2005-02-03

Family

ID=34100839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010864 WO2005010961A1 (en) 2003-07-25 2004-07-23 Exposure apparatus

Country Status (3)

Country Link
JP (1) JPWO2005010961A1 (en)
TW (1) TW200507066A (en)
WO (1) WO2005010961A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120798A (en) * 2004-10-20 2006-05-11 Canon Inc Exposure apparatus
JP2006242282A (en) * 2005-03-03 2006-09-14 Nsk Ltd Guide device
JP2010056456A (en) * 2008-08-29 2010-03-11 Nikon Corp Blind unit, variable slit device, and exposure device
WO2010031754A1 (en) * 2008-09-16 2010-03-25 Carl Zeiss Smt Ag Vibration damping in projection exposure apparatuses for semiconductor lithography
JP2010135596A (en) * 2008-12-05 2010-06-17 Nikon Corp Stage unit, exposure apparatus, and device manufacturing method
JP2012060153A (en) * 2011-11-24 2012-03-22 Canon Inc Exposure device and device manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI508133B (en) * 2006-01-19 2015-11-11 尼康股份有限公司 Exposure method and exposure apparatus, and component manufacturing method
CN107450271B (en) * 2016-05-31 2019-10-25 上海微电子装备(集团)股份有限公司 Litho machine edge of a knife group, big visual field litho machine and exposure method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152237A (en) * 1980-04-25 1981-11-25 Hitachi Ltd Pattern detector
JPH1050586A (en) * 1996-08-02 1998-02-20 Canon Inc Exposing device, manufacture of device, and stage device
WO1999025011A1 (en) * 1997-11-12 1999-05-20 Nikon Corporation Projection exposure apparatus
JPH11329954A (en) * 1998-05-20 1999-11-30 Canon Inc Scanning type aligner and manufacture of device
JP2003100602A (en) * 2001-09-25 2003-04-04 Canon Inc Aligner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152237A (en) * 1980-04-25 1981-11-25 Hitachi Ltd Pattern detector
JPH1050586A (en) * 1996-08-02 1998-02-20 Canon Inc Exposing device, manufacture of device, and stage device
WO1999025011A1 (en) * 1997-11-12 1999-05-20 Nikon Corporation Projection exposure apparatus
JPH11329954A (en) * 1998-05-20 1999-11-30 Canon Inc Scanning type aligner and manufacture of device
JP2003100602A (en) * 2001-09-25 2003-04-04 Canon Inc Aligner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120798A (en) * 2004-10-20 2006-05-11 Canon Inc Exposure apparatus
JP2006242282A (en) * 2005-03-03 2006-09-14 Nsk Ltd Guide device
JP2010056456A (en) * 2008-08-29 2010-03-11 Nikon Corp Blind unit, variable slit device, and exposure device
WO2010031754A1 (en) * 2008-09-16 2010-03-25 Carl Zeiss Smt Ag Vibration damping in projection exposure apparatuses for semiconductor lithography
US8212992B2 (en) 2008-09-16 2012-07-03 Carl Zeiss Smt Gmbh Device for damping vibrations in projection exposure apparatuses for semiconductor lithography
JP2010135596A (en) * 2008-12-05 2010-06-17 Nikon Corp Stage unit, exposure apparatus, and device manufacturing method
JP2012060153A (en) * 2011-11-24 2012-03-22 Canon Inc Exposure device and device manufacturing method

Also Published As

Publication number Publication date
TW200507066A (en) 2005-02-16
JPWO2005010961A1 (en) 2006-09-14

Similar Documents

Publication Publication Date Title
US9946171B2 (en) Movable body apparatus, exposure apparatus, exposure method, and device manufacturing method
KR102072076B1 (en) Movable body apparatus, object processing device, exposure apparatus, flat-panel display manufacturing method, and device manufacturing method
US6891603B2 (en) Manufacturing method in manufacturing line, manufacturing method for exposure apparatus, and exposure apparatus
WO2001027978A1 (en) Substrate, stage device, method of driving stage, exposure system and exposure method
JP4586367B2 (en) Stage apparatus and exposure apparatus
JP2019070815A (en) Mobile device, exposure device, manufacturing method of flat panel display, device manufacturing method, and mobile drive method
US8891064B2 (en) Moving body apparatus and exposure apparatus
JP2013502600A (en) Object processing apparatus, exposure apparatus, exposure method, and device manufacturing method
KR20010030903A (en) Projection exposure apparatus
US20070188732A1 (en) Stage apparatus and exposure apparatus
JP2004014915A (en) Stage apparatus and aligner
US6917412B2 (en) Modular stage with reaction force cancellation
WO2003063212A1 (en) Stage device and exposure device
US6549268B1 (en) Exposure method and apparatus
JP6228878B2 (en) Lithographic apparatus and device manufacturing method
WO2005010961A1 (en) Exposure apparatus
KR101296546B1 (en) Pattern forming method, pattern forming apparatus, exposure method, exposure apparatus and device manufacturing method
JP2002198285A (en) Stage device and its damping method and projection aligner
US20040145751A1 (en) Square wafer chuck with mirror
JP2006134921A (en) Holding device, stage apparatus, exposure device, and method of manufacturing device
JP2003299340A (en) Magnet unit, linear motor, stage device, and aligner
JP2007311597A (en) Interferometer system, stage apparatus, and exposure apparatus
JP2002198286A (en) Projection aligner
JP2004153092A (en) Aligner
JP2004235461A (en) Exposure system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005512084

Country of ref document: JP

122 Ep: pct application non-entry in european phase