WO2005004350A1 - Procede d'amelioration de l'efficacite de la transmission de canal dans un reseau sans fil - Google Patents

Procede d'amelioration de l'efficacite de la transmission de canal dans un reseau sans fil Download PDF

Info

Publication number
WO2005004350A1
WO2005004350A1 PCT/CN2004/000446 CN2004000446W WO2005004350A1 WO 2005004350 A1 WO2005004350 A1 WO 2005004350A1 CN 2004000446 W CN2004000446 W CN 2004000446W WO 2005004350 A1 WO2005004350 A1 WO 2005004350A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
frame length
frame
wireless network
threshold
Prior art date
Application number
PCT/CN2004/000446
Other languages
English (en)
French (fr)
Inventor
Xuexian Yang
Zifeng Hou
Yinsi Yang
Hong Zhu
Mei Gao
Wenying Shan
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to US10/563,492 priority Critical patent/US20060153150A1/en
Priority to EP04731813A priority patent/EP1650880A4/en
Publication of WO2005004350A1 publication Critical patent/WO2005004350A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • H04L1/0034Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter where the transmitter decides based on inferences, e.g. use of implicit signalling

Definitions

  • the present invention relates to a data transmission technology of a wireless network, and in particular, to a method for improving channel transmission efficiency of a wireless network. Background of the invention
  • the wireless network is developed from a wired network with a cable connection. Compared with a commonly used network with a network cable, the main difference between the wireless network is the physical layer implementation.
  • the wireless network transmits through wireless channels.
  • the wired network uses Wired channel transmission.
  • the main characteristics of wired channels are stable transmission performance, sufficient bandwidth, low cost, low bit error rate, and less environmental impact.
  • the transmission characteristics of wireless channels are volatile, relatively lacking in bandwidth, expensive, high bit error rate, and sensitive to the surrounding environment. Physical layer and media access control layer of wireless network
  • the (MAC) protocol largely extends the technologies and methods used in the wired network.
  • MSDU MAC layer service data packets
  • MPDUs MAC protocol data units
  • the MPDU plus the preamble and header of the physical frame becomes a physical frame.
  • the physical layer performs transmission, and the MPDU is also called a physical layer convergence protocol (PLCP) service data unit (PSDU) in a physical frame.
  • PLCP physical layer convergence protocol
  • Figure 1 is a schematic diagram of the MSDU frame structure
  • Figure 2 is a schematic diagram of the physical frame structure.
  • the MSDU frame In addition to valid transmission data, the MSDU frame also contains additional information necessary for network transmission: MAC frame header, frame check sequence.
  • the physical frame contains: PLCP preamble, frame header ⁇ PSDU.
  • the packet splitting method of the wireless network is usually to split the MSDU into fixed MPDUs according to the fixed threshold specified in the protocol, which is generally split into data frames with the maximum frame length specified in the protocol.
  • This packet splitting method is a packet splitting method that extends the wired network. It is applied to a wired channel with stable transmission performance, sufficient bandwidth, low cost, low bit error rate, and less environmental impact. Efficiency is relatively high.
  • the wireless signal is rapidly attenuated during the space propagation process and it is difficult to accurately estimate it. Therefore, as the space and time change or the surrounding environment changes, the quality of the physical layer link will also change greatly. For example, indoors, if you open or close the doors and windows of a room, or open or close a child-rejecting door, the path of multipath reflection of wireless signals changes. The degree of signal absorption or attenuation varies with different building materials. In addition, in wireless communications, changes in the relative positions or orientations of the two communicating parties can cause large differences in signal strength.
  • Wireless network channel transmission efficiency can be considered from two aspects.
  • the signal quality if the signal quality is good and there are no adverse factors such as interference in the channel, there is generally no data error at this time, the larger the data frame, the more valid data, and the higher the channel transmission efficiency.
  • the receiver detects an error in the data frame, or when the error cannot be eliminated by the error correction code method, the receiver discards the error data frame and sends it The party needs to retransmit the packet. The retransmission of data packets obviously reduces the transmission efficiency of the wireless channel.
  • the bit error rate has little effect on the transmission efficiency.
  • the frame length is The longer the gradient, the less the effect of the frame header on the channel transmission efficiency.
  • the transmission time increases, and at a certain bit error rate, the probability of bit errors in the data frame increases, and the effect of the bit error rate on transmission efficiency becomes more and more obvious. If an uncorrectable error occurs in a data frame transmitted on a wireless channel, the entire data frame needs to be retransmitted, which results in a decrease in the data transmission efficiency of the channel.
  • An existing fixed frame length data transmission method is to select an optimal data frame length that is constant under an estimated channel bit error rate.
  • the transmission characteristics of wireless channels and the signal-to-noise ratio of wireless signals are variable, so the bit error rate is also constantly changing, sometimes the channel bit error rate is low, and sometimes the bit error rate is high.
  • the connection status of the wireless channel is not stable, but continuously changes, its bit error rate is greatly affected by factors such as signal strength, signal quality, and surrounding environment. Therefore, the current fixed-frame-length data transmission methods are used in wireless channels. It is impossible to obtain higher channel transmission efficiency.
  • the effective transmission rate can only reach about 5Mbps, which is far lower than the maximum rate of 11Mbps as stated by the protocol. Summary of the invention
  • an object of the present invention is to provide a method for improving the transmission efficiency of a wireless network channel.
  • the method can select a length value of valid data in a frame structure in wireless communication according to the characteristics of the wireless channel, thereby improving the data of the wireless communication channel. Transmission efficiency.
  • a method for improving the transmission efficiency of a wireless network channel During the data transmission process, the frame length of a media access control layer (MAC) service data packet split data frame is changed in real time according to the wireless network channel status.
  • the method may be as follows: during the data transmission process, the wireless network channel status is monitored in real time, and if the wireless network channel quality is good or there is no signal conflict phenomenon on the channel, the media access control layer (MAC) service data packet split is lengthened The frame length of the data frame. If the quality of the wireless network channel is poor or the signal collision on the channel is serious, shorten the frame length of the data frame.
  • MAC media access control layer
  • the method may include the following steps:
  • Steps 2), 3) and 4) are performed cyclically until the end of this data transmission.
  • the initial threshold may be a threshold specified in a wireless local area network media access control (MAC) and physical layer (PHY) specification (IEEEE 802.i l).
  • MAC wireless local area network media access control
  • PHY physical layer
  • the step 3) may include the following steps:
  • N and M may be the same or different.
  • the step 3) may also include the following steps:
  • step 3b determining whether a predetermined number of ACK messages are received within a predetermined time in step 3a); if the ACK information is successfully received a predetermined number of times, the wireless network channel quality is good, and the frame length threshold of the data frame is lengthened, otherwise the wireless network channel Poor quality, shorten the frame length threshold.
  • the predetermined time may be a product of the number of transmitted data frames and a maximum time required from sending a data frame to receiving an ACK of the frame as specified in the IEEEE 802.11 protocol.
  • the range of the predetermined number of times of receiving the ACK information may be: between the number of data frames sent minus the number of packet loss allowed by the user and the number of data frames sent.
  • the range of the frame length threshold of the lengthened data frame may be 0-100% of the original threshold value each time; the range of the frame length threshold of the shortened data frame may be 0-100% of the original threshold each time.
  • the range of the frame length threshold is between the minimum frame length threshold specified in the IEEEE802.i l specification and the maximum frame length threshold specified in the IEEEE802.i l specification.
  • the method for improving the transmission efficiency of a wireless network channel is an adaptive data packet splitting method that selects a MAC frame length according to channel characteristics, and can continuously Change the length of the effective data in the frame structure to ensure that under different channel bit error rates, data is transmitted using the near-optimal data frame length, thereby improving the efficiency of wireless channel data transmission, and achieving simple, no need to Hardware equipment changes.
  • Figure 1 is a schematic diagram of the MSDU frame structure
  • FIG. 2 is a schematic diagram of a physical frame structure
  • FIG. 3 is a schematic diagram of a data transmission process according to the first preferred embodiment of the present invention
  • FIG. 4 is a schematic diagram of a data transmission process according to the second preferred embodiment of the present invention.
  • the method for improving the transmission efficiency of a wireless network channel is an adaptive data packet splitting method that selects a MAC frame length according to channel characteristics, and continuously changes the length of effective data in the frame structure according to the quality of the wireless channel during data transmission. Value, under different channel bit error rates, use near-optimal data frame length for data transmission.
  • FIG. 3 is a schematic diagram of a data transmission process according to a first preferred embodiment of the present invention.
  • whether the ACK of the MPDU acknowledgement frame is received or not is used as the basis for adaptive adjustment.
  • Each MDU after the split of the MSDU is acknowledged with an ACK, that is, within a specified time, the receipt of the ACK indicates that the MPDU was successfully sent. Failed to send, need to resend. If the MPDU fails to be sent, the current channel state is considered to be poor, and the bit error rate is high, and the frame length needs to be shortened; otherwise, the channel is considered to be good, and the frame length can be increased.
  • This embodiment achieves the purpose of adapting the wireless channel by changing the split threshold of the MAC frame in real time.
  • the process includes the following steps:
  • step 301 the number of consecutive times of successfully receiving ACK information before the lengthened data frame length alarm value N is preset, and the number of times of consecutively unsuccessfully receiving ACK information M before shortening the data frame length threshold, M, N, M may be equal or different.
  • the data packet loss is considered to be caused by interference or noise, and the transmission medium of wireless communication is shared by multiple users, and data packet collisions between different users may also cause packet loss.
  • the transmission medium of wireless communication is shared by multiple users, and data packet collisions between different users may also cause packet loss.
  • the MAC frame length should not be immediately enlarged.
  • N and M should be chosen to be constants greater than 1. In the application, you can choose the appropriate N and M according to the actual situation.
  • Step 302 The data transmission starts, and the MAC service data packet is split and transmitted according to the initial threshold of the frame length of the data frame.
  • This initial threshold can use the threshold specified in the IEEEE 802.il specification.
  • Step 303 Read and record the confirmation information (ACK) sent by the other party in real time.
  • Step 304 Determine whether the ACK information is successfully received N consecutive times. If the ACK information is received successfully, perform steps 305-307, otherwise, perform step 312.
  • Steps 305-307 Lengthen the frame length threshold of the data frame split by the MAC service data packet; determine whether the threshold is greater than the maximum frame length threshold specified in the IEEEE802.11 specification; if so, set the data frame length threshold equal to the IEEEE802.11 specification The maximum frame length threshold specified in step 312 is performed, otherwise step 312 is performed directly.
  • step 308 it is determined whether the ACK information has not been successfully received for M consecutive times. If so, the wireless network channel quality is poor, and steps 309-311 are performed, otherwise step 312 is performed.
  • Steps 309-311 shorten the frame length threshold of the data frame, and determine whether the threshold is smaller than the minimum frame length threshold specified in the IEEEE802.il specification; if so, set the data frame length threshold equal to the minimum frame specified in the IEEEE802.il specification For the length threshold, go to step 312, otherwise go directly to step 312.
  • Step 312 Split subsequent data according to the frame length of the adjusted data frame, and return to step 302 to process subsequent transmission data until the end of the current data transmission.
  • the amplitude of the threshold for lengthening and shortening the frame length is set by the user according to the actual situation, and it is required to adjust so that no oscillation occurs and the transmission efficiency is relatively high. Before the actual implementation, multiple simulation experiments can be performed to obtain a relatively suitable amplitude to be applied to the implementation process. If oscillation occurs during the implementation process or the transmission efficiency is relatively low, you can also to modify. Generally, the length of each lengthening and shortening of the frame length is within the range of the original threshold.
  • the lengthened length is set to 30% of the original threshold, and the shortened width is set to 25% of the original threshold.
  • the test is performed within a certain period of time.
  • the number of bytes transmitted correctly during this period is more than 20% more than the fixed-length split transmission method.
  • FIG. 4 is a schematic diagram of a data transmission process according to a second preferred embodiment of the present invention.
  • This embodiment also uses the acknowledgment frame of the MPDU as the basis for adaptive adjustment, and achieves the purpose of adapting to the wireless channel by changing the split threshold of the MAC frame in real time.
  • the process includes the following steps:
  • Step 401 The data transmission starts, and the MAC service data packet is split and transmitted according to the initial threshold of the frame length of the data frame.
  • This initial threshold can use the threshold specified in the IEEEE 802.il specification.
  • Step 402 read and record the confirmation information (ACK) sent by the other party in real time;
  • Step 403 Determine whether a predetermined number of ACK messages are received within a predetermined time. If so, the wireless network channel quality is good, and steps 404-406 are performed, otherwise the wireless network channel quality is poor, and steps 407-409 are performed.
  • the predetermined time here may be the product of the number of data frames sent and the time required to receive an ACK as specified in the IEEEE 802.11 specification. That is, the setting of the predetermined time is also to set the frequency of adaptively adjusting the frame length, or to make an adaptive adjustment every number of data frames sent.
  • the data packet loss is considered to be caused by interference or noise, and the transmission medium of wireless communication is shared by multiple users, and data packet collisions between different users may also cause packet loss. So when only one packet is lost, it is not enough to think that the channel has deteriorated. Similarly, the success of a data packet transmission should not immediately increase the length of the MAC frame. It should be considered that the channel characteristics have indeed changed after several consecutive successful or unsuccessful transmissions. So in the booking At the time, it should not be adaptively adjusted every time a data packet is sent, and the number of ACK messages scheduled to be received within a predetermined time does not have to be exactly the same as the number of data frames sent, but according to the user The number of allowed packet loss is set. In this way, the predetermined number of received ACK messages can be the number of data frames sent minus the number of allowed packet loss by the user.
  • the predetermined time determines the speed at which the adaptive method tracks channel changes.
  • the tracking performance of the adaptive method will be better, but the tracking frequency may be too large, resulting in a large deviation; if the scheduled time is long, the algorithm result will not cause a large deviation from the channel performance, but the tracking speed It will be slower.
  • an appropriate predetermined time can be selected according to the actual use situation.
  • Steps 404-406 lengthen the frame length threshold of the data frame split by the MAC service data packet; determine whether the threshold is greater than the maximum frame length threshold specified in the IEEEE802.il specification; if so, set the data frame length threshold equal to the IEEEE802.il specification The maximum frame length threshold specified in step 410 is performed, otherwise step 410 is performed directly.
  • Steps 407-409 shorten the frame length threshold of the data frame, and determine whether the threshold is smaller than the minimum frame length threshold specified in the IEEEE802.il specification; if yes, set the data frame length alarm value equal to the minimum specified in the IEEEE802.il specification For the frame length threshold, go to step 410, otherwise go directly to step 410.
  • Step 410 Split subsequent data according to the adjusted data frame length threshold, and return to step 402 to process subsequent transmission data until the end of the current data transmission.
  • the width of the lengthening and shortening of the frame length threshold is set by the user according to the actual situation. It is required to adjust so that no oscillation occurs and the transmission efficiency is relatively high. Before the actual implementation, multiple simulation experiments can be performed to obtain a relatively suitable amplitude to be applied to the implementation process. If oscillation occurs during the implementation process or the transmission efficiency is relatively low, it can also be modified. Generally, the length of each lengthening and shortening of the frame length is within the range of the original threshold. More suitable between 0-100%.
  • the foregoing two embodiments can continuously change the length of the effective data in the frame structure according to the characteristics of the wireless channel during the data transmission process, ensuring that under different channel bit error rates, data is used near the optimal data frame length for data Transmission, thereby improving the efficiency of wireless channel data transmission.
  • the method for improving the transmission efficiency of a wireless network channel according to the present invention can effectively improve the efficiency of data transmission on a wireless channel and is simple to implement.

Description

一种提高无线网络信道传输效率的方法 技术领域
本发明涉及无线网络的数据传输技术, 特别涉及一种提高无线网络 信道传输效率的方法。 发明背景
无线网络是从有线缆连接的有线网络基础上发展起来的, 无线网络 与普遍应用的有连接网线的网络相比, 主要区别在于物理层的实现方 式, 无线网络通过无线信道传输, 有线网络采用有线信道传输。 有线信 道主要的特点是传输性能稳定, 带宽充足、 廉价, 误码率低, 受环境的 影响较小。 而无线信道是的传输特性是易变的, 带宽相对缺乏、 昂贵、 误码率高、 对周围环境比较敏感。 无线网络的物理层和媒体接入控制层
(MAC)协议为了尽可能与有线网络兼容, 在很大程度上延用了有线网络 中的技术和方法。在进行数据传输时 ,在将 MAC层业务数据包一一 MAC 服务数据单元(MSDU )拆分成 MAC协议数据单元(MPDU ), MPDU 加上物理帧的前导和帧头成为物理帧,物理帧在物理层进行传输, MPDU 在物理帧中也被称为物理层汇聚协议(PLCP )服务数据单元(PSDU )。
参见图 1、 图 2, 图 1为 MSDU帧结构示意图, 图 2为物理帧结构 示意图。 MSDU帧中除了有效的传输数据外, 还包含网络传输中所必须 的额外信息: MAC帧头、 帧校验序列。 物理帧包含: PLCP前导、 帧头 ^ PSDU。
在 MSDU拆分为 MPDU过程中,在无线网络中也像有线网络一样, 拆分后的 MPDU的帧长度一旦设置后就固定下来,数据传输过程中不考 虑无线信道传输特性的不断变化。
目前,无线网络的数据包拆分方法通常是将 MSDU按协议规定的固 定阈值拆分为固定的 MPDU, —般是拆分为协议规定的最大帧长度的数 据帧。 这种数据包拆分方法是延用了有线网络的数据包拆分方法, 其应 用于传输性能稳定, 带宽充足、 廉价, 误码率低, 受环境的影响较小的 有线信道时, 信道传输效率比较高。
然而无线信号在空间传播过程中迅速衰减并且很难准确估计, 因 此, 随着空间、 时间的变化或者周围环境的改变, 物理层链路的质量也 将发生较大的改变。 比如在室内, 打开或关上房间的门窗, 打开或关上 拒子的门, 无线信号多径反射的路径就改变了。 不同的建筑材料对信号 吸收或衰减的程度也存在较大的差异。 另外在无线通信中, 通信双方的 相对位置或方位的变化也会引起信号强度 4艮大的差异。
可见, 无线信道和有线信道相比在传输特性上存在较大差异, 适用 于有线网络的数据包拆分方法不能完全适用于无线网络, 主要的问题是 无线信道传输效率低。
无线网络信道传输效率可以从两个方面来考虑。 一方面, 从信号质 量来考虑: 如果信号质量很好并且信道中没有干扰等不利因素, 这时一 般没有数据误码, 则数据帧越大,有效数据越多, 则信道传输效率越高。 当信道存在干扰等因素引起误码时, 在接收方检测出数据帧中有误码时, 或者通过纠错码的方法也不能将误码消除时 , 接收方将出错的数据帧丟 弃,发送方需要重传该数据包。 数据包的重传显然降低了无线信道的传 输效率。
另一方面, 从帧长度来考虑: 当帧长度较小时, 由于固定的帧头部 分占全部帧的比例较大, 这时误码率对传输效率的影响不大。 随着帧长 度的不断增加, 而帧头部分不变, 信道传输效率不断提高。 当帧长度逐 渐变长,帧头对信道传输效率的影响就越来越小。但是由于帧长度变长, 传输时间增加, 在一定的误码率下, 数据帧中出现误码的概率加大, 误 码率对传输效率的影响就表现得越来越明显。 在无线信道传输的数据帧 中如果出现无法纠正的误码时, 需要整个数据帧重新传输, 从而导致信 道的数据传输效率下降。
所以, 在一定的信道误码率下, 存在一个最佳的数据帧长度,使得 无线信道的有效传输率达到最高。 现有的固定帧长度的数据传输方法, 是在一个估计的信道误码率下, 选择的一个最佳的数据帧长度固定不 变。
但是, 无线信道的传输特征以及无线信号的信噪比是易变的, 因此 误码率也在不断变化, 有时信道误码率低, 有时误码率高。 由于无线信 道的连接状况不是稳定的, 而是持续变化的, 其误码率受信号强度、 信 号质量、 周围环境等因素的影响很大, 因此目前固定帧长度的数据传输 方法, 在无线信道中不可能得到较高的信道传输效率。 实际上, 在 IEEE 802.11b中, 有效传输速率只能达到 5Mbps左右, 远低于协议所标称的 11Mbps的最大速率。 发明内容
有鉴于此, 本发明的目的在于提供一种提高无线网络信道传输效率 的方法, 该方法能够根据无线信道特性, 选择无线通讯中的帧结构中有 效数据的长度值, 从而提高无线通讯信道的数据传输效率。
为达到上述目的, 本发明的技术方案具体是这样实现的:
一种提高无线网络信道传输效率的方法, 在数据传输过程中, 根据 无线网络信道状况, 实时改变媒体接入控制层(MAC )业务数据包拆分 数据帧的帧长度。 该方法可以为: 在数据传输过程中, 实时监测无线网络信道状况, 如果无线网络信道质量好, 或信道上不存在信号冲突现象, 则加长媒体 接入控制层(MAC )业务数据包拆分的数据帧的帧长度, 如果无线网络 信道质量差,或信道上信号冲突的情况严重,则缩短该数据帧的帧长度。
该方法可以包括以下步骤:
1 )数据传输开始, 将 MAC业务数据包按数据帧的帧长度初始阈值 拆分传输;
2 ) 实时读取并记录对方发送的确认信息 (ACK );
3 )根据是否成功收到了预定次数的 ACK信息, 判断无线网络信道 质量; 如果无线网络信道质量好, 则加长 MAC业务数据包拆分的数据 帧的帧长度阈值, 否则缩短该数据帧的帧长度阔值;
4 )将后续 MAC业务数据包按步骤 3 )调整的数据帧长度阈值进行 拆分传输;
5 )循环执行步骤 2 )、 3 )、 4 )直到本次数据传输结束。
所述的初始阈值可以为无线局域网媒体接入控制 (MAC)和物理层 (PHY)规范(IEEEE 802.i l ) 中规定的阈值。
所述步骤 3 )可以包括以下步骤:
3A )预先设定加长数据帧长度阔值前需要连续成功接收 ACK信息 的次数 N, 和缩短数据帧长度阈值前需要连续未成功接收 ACK信息的 次数 M;
3B ) 当连续成功接收 N次 ACK信息时, 则无线网络信道质量好, 加长数据帧的帧长度阈值;
3C )当连续 M次没有成功接收 ACK信息时,则无线网络信道质量, 差缩短加长数据帧的帧长度阔值。
其中, N、 M可以相同也可以不相同。 所述步骤 3 )也可以包括以下步骤:
3a )预先设定调整数据帧帧长度阔值的时间;
3b )判断在步骤 3a ) 中预定的时间内是否收到了预定次数的 ACK 信息; 如果成功接收了预定次数的 ACK信息, 则无线网络信道质量好, 加长数据帧的帧长度阈值, 否则无线网络信道质量差, 缩短该帧长度阈 值。
所述的预定时间可以为发送的数据帧的个数与 IEEEE 802.11协议中 规定的从发送一个数据帧到收到该帧的 ACK所需要的最大时间的乘积。
所述预定收到的 ACK信息次数的范围可以为: 在发送的数据帧的 个数减去用户允许丟包的个数和发送的数据帧的个数之间。
所述加长数据帧的帧长度阈值的范围可以为每次加长原阔值的 0-100%; 缩短数据帧的帧长度阈值的范围可以为每次缩短原阈值的 0-100%。
所述帧长度阔值的范围为: IEEEE802.i l规范中规定的最小帧长度 阈值和 IEEEE802.i l规范中规定的最大帧长度阈值之间。
由本发明的技术方案可见, 本发明的这种提高无线网络信道传输效 率的方法,是根据信道特性选择 MAC帧长度的自适应数据包拆分方法, 在数据传输过程中能够根据无线信道特性, 不断改变帧结构中有效数据 的长度值, 保证在不同信道误码率下, 都使用接近最佳的数据帧长度进 行数据传输, 从而提高了无线信道数据传输的效率, 而且实现筒单, 不 需要对硬件设备进行改动。 附图简要说明
图 1为 MSDU帧结构示意图;
图 2为物理帧结构示意图; 图 3为本发明第一较佳实施例的数据传输流程示意图; 图 4为本发明第二较佳实施例的数据传输流程示意图。 实施本发明的方式
为使本发明的目的、 技术方案和优点更加清楚明白, 下面结合两个 实施例和附图, 对本发明进一步详细说明。
本发明的这种提高无线网络信道传输效率的方法, 是根据信道特性 选择 MAC帧长度的自适应数据包拆分方法, 在数据传输过程中根据无 线信道质量, 不断改变帧结构中有效数据的长度值, 在不同信道误码率 下, 使用接近最佳的数据帧长度进行数据传输。
本发明多种实施方式, 以下举两个较佳实施例进行说明。
第一较佳实施例: 参见图 3, 图 3 为本发明第一较佳实施例的数 据传输流程示意图。本实施例以 MPDU的确认帧 ACK收到与否作为 自适应调整的依据, 每个 MSDU拆分后的 MPDU分別用 ACK确认, 即在规定的时间内, 收到 ACK说明 MPDU发送成功, 否则认为发送 失败, 需要重发。 MPDU发送失败, 则认为当前信道状态较差, 误码 率较高, 需要减短帧长度; 反之认为信道较好, 可以加长帧长度。
本实施例通过实时改变 MAC帧的拆分阈值来达到适应无线信道 的目的, 该流程包括以下步骤:
步骤 301 ,预先设定加长数据帧长度闹值前需要连续成功接收 ACK 信息的次数 N, 和缩短数据帧长度阈值前需要连续未成功接收 ACK信 息的次数 M, N、 M可以相等可以不等。
本实施例中数据包丟失认为是由干扰或者噪声引起的, 而无线通 讯的传输介质是多用户共享的,不同用户间的数据包碰撞也会导致丟 包。 仅有一个包丢失时, 还不足以认为信道已经变差。 同样, 一个数 据包传输成功也不应该立即扩大 MAC帧长, 应该有连续多次发送成 功或不成功, 才认为信道特性确实发生了变化, 所以 N、 M应该选择 大于 1的常数。应用中可以根据实际使用的情况,选择合适的 N、 M。
步驟 302, 数据传输开始, 将 MAC业务数据包按数据帧的帧长度 初始阈值拆分传输。这个初始阔值可以采用 IEEEE 802.il规范中规定的 阈值。
步骤 303 , 实时读取并记录对方发送的确认信息 (ACK )。
步骤 304, 判断是否连续成功接收 N次 ACK信息, 如果是则无线 网絡信道质量好, 执行步骤 305-307, 否则执行步骤 312。
步骤 305-307, 加长 MAC 业务数据包拆分的数据帧的帧长度阈 值;判断该阈值是否大于 IEEEE802.11规范中规定的最大帧长度阈值; 如果是则设置数据帧长度阈值等于 IEEEE802.11规范中规定的最大帧 长度阈值, 执行步骤 312, 否则直接执行步骤 312。
步骤 308,判断是否连续有 M次没有成功接收 ACK信息,如果是, 则无线网络信道质量差, 执行步骤 309-311 , 否则执行步骤 312。
步骤 309-311,缩短该数据帧的帧长度阈值, 判断该阈值是否小于 IEEEE802.i l规范中规定的最小帧长度阔值; 如果是则设置数据帧长 度阈值等于 IEEEE802.i l 规范中规定的最小帧长度阈值, 执行步驟 312, 否则直接执行步骤 312。
步骤 312, 按调整后的数据帧的帧长度拆分后续数据, 返回步骤 302对后续传输数据进.行处理, 直到本次数据传输结束。
本实施例中,加长和缩短帧长度阈值的幅度由用户根据实际情况 进行设置, 要求调整不发生振荡, 且传输效率比较高。 在实际实施前 可以进行多次仿真实验, 得到一个相对合适的幅度运用到实施过程 中, 如果在实施过程中出现振荡, 或传输效率比较低的情况, 还可以 进行修改。 一般情况下, 每次加长和缩短帧长度的幅度在原阈值的
0-100%之间比较适合。 本实施例中, 加长幅度设置为原阈值的 30%, 缩短幅度设置为原阈值的 25%。 对于本实施例在一定时间内进行测 试,本实施例在该段时间内正确传输的字节数比固定长度拆分传输方 法多 20%以上。
第二较佳实施例: 参见图 4, 图 4为本发明第二较佳实施例的数 据传输流程示意图。本实施例也以 MPDU的确认帧 ACK收到与否作 为自适应调整的依据, 通过实时改变 MAC帧的拆分阈值来达到适应 无线信道的目的, 该流程包括以下步驟:
步骤 401 , 数据传输开始, 将 MAC业务数据包按数据帧的帧长度 初始阈值拆分传输。这个初始阔值可以采用 IEEEE 802.il规范中规定的 阈值。
步驟 402, 实时读取并记录对方发送的确认信息 (ACK );
步骤 403 , 判断是否在预定时间内收到了预定个数的 ACK信息, 如果是, 则无线网络信道质量好, 执行步骤 404-406, 否则无线网络信 道质量差, 执行步骤 407-409。
这里预定时间可以是发送的数据帧的个数与 IEEEE 802.11规范中 规定的收到一个 ACK需要的时间的乘积。 即, 预定时间的设置也就 是设置自适应调整帧长度的频率,或者说是每发送多少个数据帧进行 一次自适应调整。
本实施例中数据包丟失认为是由干扰或者噪声引起的, 而无线通 讯的传输介质是多用户共享的,不同用户间的数据包碰撞也会导致丟 包。 所以仅有一个包丟失时, 还不足以认为信道已经变差。 同样, 一 个数据包传输成功也不应该立即扩大 MAC帧长, 应该有连续多次发 送成功或不成功, 才认为信道特性确实发生了变化。 所以在设置预定 时间时,不应该是每发送一个数据包,就进行一次自适应调整, 而且, 在预定时间内预定收到的 ACK信息的数量不必与发送的数据帧的个 数相同完全相同, 而是根据用户允许丢包的个数进行设置, 这样, 预 定收到 ACK信息个数可以为发送的数据帧的个数减去用户允许丟包的 个数。
可见, 预定时间决定了自适应方法跟踪信道变化的速度。 当预定 时间较短时, 自适应方法的跟踪性能会比较好, 但是可能跟踪频率过 大, 产生较大偏差; 如果预定时间较长, 算法结果不会与信道性能产 生大的偏离,但跟踪速度会慢一些。应用中可以根据实际使用的情况, 选择合适的预定时间。
步骤 404-406 ,加长 MAC业务数据包拆分的数据帧的帧长度阈值; 判断该阈值是否大于 IEEEE802.i l规范中规定的最大帧长度阈值; 如 果是则设置数据帧长度阈值等于 IEEEE802.i l 规范中规定的最大帧 长度阔值, 执行步骤 410, 否则直接执行步驟 410。
步驟 407-409, 缩短该数据帧的帧长度阈值, 判断该阈值是否小 于 IEEEE802.i l规范中规定的最小帧长度阔值; 如果是则设置数据帧 长度闹值等于 IEEEE802.i l规范中规定的最小帧长度阈值,执行步骤 410, 否则直接执行步骤 410。
步驟 410, 按调整后的数据帧长度阔值拆分后续数据, 返回步骤 402对后续传输数据进行处理, 直到本次数据传输结束。
本实施例中,加长和缩短帧长度阔值的幅度由用户根据实际情况 进行设置, 要求调整不发生振荡, 且传输效率比较高。 在实际实施前 可以进行多次仿真实验, 得到一个相对合适的幅度运用到实施过程 中, 如果在实施过程中出现振荡, 或传输效率比较低的情况, 还可以 进行修改。 一般情况下, 每次加长和缩短帧长度的幅度在原阈值的 0-100%之间比较适合。
因此, 上述两个实施例在数据传输过程中能够根据无线信道特 性, 不断改变帧结构中有效数据的长度值, 保证了在不同信道误码率 下, 都使用接近最佳的数据帧长度进行数据传输, 从而提高了无线信 道数据传输的效率。
由上述的两个实施例可见, 本发明的这种提高无线网络信道传输 效率的方法, 能够有效地提高无线信道数据传输的效率, 而且实现简 单。

Claims

权利要求书
1、 一种提高无线网络信道传输效率的方法, 其特征在于: 在数据 传输过程中,根据无线网络信道状况, 实时改变媒体接入控制层(MAC ) 业务数据包拆分数据帧的帧长度。
2、 如权利要求 1 所述的方法, 其特征在于, 该方法为: 在数据传 输过程中, 实时监测无线网络信道状况, 如果无线网络信道质量好, 或 信道上不存在信号冲突现象, 则加长媒体接入控制层(MAC )业务数据 包拆分的数据帧的帧长度, 如果无线网络信道质量差, 或信道上信号冲 突的情况严重, 则缩短该数据帧的帧长度。
3、 如权利要求 2所述的方法, 其特征在于, 该方法包括以下步骤:
1 )数据传输开始, 将 MAC业务数据包按数据帧的帧长度初始阁值 拆分传输;
2 ) 实时读取并记录对方发送的确认信息 (ACK );
3 )根据是否成功收到了预定次数的 ACK信息, 判断无线网络信道 质量; 如果无线网络信道质量好, 则加长 MAC业务数据包拆分的数据 帧的帧长度阈值, 否则缩短该数据帧的帧长度阈值;
4 )将后续 MAC业务数据包按步骤 3 )调整后的数据帧长度阔值进 行拆分传输;
5 )循环执行步骤 2 )、 3 )、 4 )直到本次数据传输结束。
4、如权利要求 3所述的方法, 其特征在于: 所述的初始阈值为无线 局域网媒体接入控制 (MAC)和物理层 (PHY)规范(IEEEE 802.11 )中规定 的阈值。
5、 如权利要求 3所述的方法, 其特征在于, 所述步骤 3 ) 包括以下 步骤: 3A )预先设定加长数据帧长度阔值前需要连续成功接收 ACK信息 的次数 N, 和缩短数据帧长度阈值前需要连续未成功接收 ACK信息的 次数 M;
3B ) 当连续成功接收 N次 ACK信息时, 则无线网络信道质量好, 加长数据帧的帧长度阈值;
3C )当连续 M次没有成功接收 ACK信息时,则无线网络信道 量, 差缩短加长数据帧的帧长度阈值。
6、 如权利要求 3所述的方法, 其特征在于: 所述步驟 3 ) 包括以下 步骤:
3a )预先设定调整数据帧帧长度阈值的时间;
3b )判断在步骤 3a ) 中预定的时间内是否收到了预定次数的 ACK 信息; 如果成功接收了预定次数的 ACK信息, 则无线网络信道质量好, 加长数据帧的帧长度阈值, 否则无线网络信道质量差, 缩短该帧长度阈 值。 '
7、 如权利要求 6所述的方法, 其特征在于: 所述的预定时间为发送 的数据帧的个数与 IEEEE 802.11 协议中规定的从发送一个数据帧到收 到该帧的 ACK所需要的最大时间的乘积。
8、 如权利要求 6所述的方法, 其特征在于, 所述预定收到的 ACK 信息次数的范围为: 在发送的数据帧的个数减去用户允许丢包的个数和 发送的数据帧的个数之间。
9、 如权利要求 3所述的方法, 其特征在于: 所述加长数据帧的帧长 度阈值的范围为每次加长原闹值的 0-100%;缩短数据帧的帧长度阔值的 范围为每次缩短原阐值的 0-100%。
10、 如权利要求 3所述的方法, 其特征在于: 所述帧长度阈值的范 围为: IEEEE802.i l规范中规定的最小帧长度阈值和 IEEEE802.i l规 范中规定的最大帧长度阈值之间
PCT/CN2004/000446 2003-07-08 2004-05-08 Procede d'amelioration de l'efficacite de la transmission de canal dans un reseau sans fil WO2005004350A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/563,492 US20060153150A1 (en) 2003-07-08 2004-05-08 Method for improving channel transmission efficiency in wireless network
EP04731813A EP1650880A4 (en) 2003-07-08 2004-05-08 METHOD FOR IMPROVING THE EFFICIENCY OF CHANNEL TRANSMISSION IN A WIRELESS NETWORK

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN03146594.3 2003-07-08
CNB031465943A CN100411317C (zh) 2003-07-08 2003-07-08 一种提高无线网络信道传输效率的方法

Publications (1)

Publication Number Publication Date
WO2005004350A1 true WO2005004350A1 (fr) 2005-01-13

Family

ID=33557741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/000446 WO2005004350A1 (fr) 2003-07-08 2004-05-08 Procede d'amelioration de l'efficacite de la transmission de canal dans un reseau sans fil

Country Status (4)

Country Link
US (1) US20060153150A1 (zh)
EP (1) EP1650880A4 (zh)
CN (1) CN100411317C (zh)
WO (1) WO2005004350A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2435160A (en) * 2006-01-27 2007-08-15 Samsung Electronics Co Ltd A WLAN system which determines the length of frames on the basis of quality of channel
CN102264101A (zh) * 2010-05-28 2011-11-30 中国科学院声学研究所 一种用于水声传感器网络系统的数据传输方法
CN111211863A (zh) * 2019-12-20 2020-05-29 西安云维智联科技有限公司 Mac发射端、mac接收端及电路、fpga芯片及数据传输系统

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4110964B2 (ja) * 2002-12-25 2008-07-02 日本電気株式会社 伝送システムおよびデータ転送方法
US7631202B2 (en) * 2005-03-29 2009-12-08 Microsoft Corporation Power management of wireless local area network interface devices
US7565584B2 (en) * 2006-05-26 2009-07-21 Intel Corporation Setting transmission length based on estimated error rate
GB0622829D0 (en) * 2006-11-15 2006-12-27 Cambridge Silicon Radio Ltd Transmission rate selection
GB0622830D0 (en) * 2006-11-15 2006-12-27 Cambridge Silicon Radio Ltd Transmission rate selection
WO2008085842A1 (en) * 2007-01-04 2008-07-17 Interdigital Technology Corporation Node b based segmentation/concatenation
KR101531503B1 (ko) * 2007-09-10 2015-06-26 엘지전자 주식회사 다중 harq를 이용한 신호 전송 방법
CN101227414B (zh) * 2008-02-04 2010-12-29 浙江大学 基于传输数据包长度在线优化的无线网络数据传输方法
CN101621362B (zh) * 2008-07-04 2013-03-20 上海无线通信研究中心 提高无线个人网信道利用率的方法
US8295307B2 (en) * 2009-05-07 2012-10-23 Qualcomm Incorporated System and method for adapting transmit data block size and rate based on quality of communication link
CN101925117A (zh) * 2009-06-09 2010-12-22 中兴通讯股份有限公司 一种无线局域网帧聚合控制方法和装置
US9038073B2 (en) * 2009-08-13 2015-05-19 Qualcomm Incorporated Data mover moving data to accelerator for processing and returning result data based on instruction received from a processor utilizing software and hardware interrupts
US20110041128A1 (en) * 2009-08-13 2011-02-17 Mathias Kohlenz Apparatus and Method for Distributed Data Processing
CN102123103A (zh) * 2011-03-29 2011-07-13 中国人民解放军国防科学技术大学 一种传输报文的分片方法及系统
KR102282590B1 (ko) * 2014-12-03 2021-07-29 삼성전자 주식회사 비면허 대역에서 동작하는 이동통신 시스템에서의 채널 감지 방법 및 장치
CN106374974B (zh) * 2015-07-24 2018-08-17 国家电网公司 一种电力线载波通信帧长自适应调整方法和装置
US9680758B2 (en) * 2015-09-02 2017-06-13 Intel Corporation Apparatus and method to increase throughput of a transmitter
JP6711339B2 (ja) * 2017-10-25 2020-06-17 横河電機株式会社 通信処理装置、プログラム、および通信処理方法
CN111527779B (zh) * 2017-12-28 2023-09-01 超聚变数字技术有限公司 传输数据的方法和装置
CN108075875A (zh) * 2018-01-15 2018-05-25 海信集团有限公司 一种基于NB-IoT的数据传输方法和装置
CN110875806A (zh) * 2018-08-30 2020-03-10 广东新岸线计算机系统芯片有限公司 一种超高吞吐无线宽带数据传输方法和系统
CN109254788B (zh) * 2018-09-06 2022-02-08 四川爱联科技股份有限公司 低带宽下设备固件升级的方法
CN110017575A (zh) * 2019-04-16 2019-07-16 珠海格力电器股份有限公司 信息传输装置、方法和系统、空调
JP2021141463A (ja) * 2020-03-05 2021-09-16 キヤノン株式会社 通信装置、通信方法、およびプログラム
CN113225608A (zh) * 2021-03-16 2021-08-06 浙江大华技术股份有限公司 基于无线网络的视频传输方法、装置、设备、存储介质
CN114268677A (zh) * 2021-12-28 2022-04-01 厦门安胜网络科技有限公司 一种基于弱网络环境下的数据传输方法和系统
CN114980175B (zh) * 2022-05-25 2023-03-24 北京中电拓方科技股份有限公司 无线通信模式自适应修正平台

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6098103A (en) * 1997-08-11 2000-08-01 Lsi Logic Corporation Automatic MAC control frame generating apparatus for LAN flow control
KR20030057589A (ko) * 2001-12-29 2003-07-07 엘지전자 주식회사 가변길이 무선 패킷 데이터 시스템 및 그 운용 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5699364A (en) * 1995-03-16 1997-12-16 Kabushiki Kaisha Toshiba Data communication system, apparatus and method which optimize the set value of parameters
US6307867B1 (en) * 1998-05-14 2001-10-23 Telefonaktiebolaget Lm Ericsson (Publ) Data transmission over a communications link with variable transmission rates
FI108824B (fi) * 1998-06-03 2002-03-28 Nokia Corp Datasiirtomenetelmiä tietoliikennejärjestelmässä
EP1120932A1 (de) * 2000-01-28 2001-08-01 Abb Research Ltd. Datenübertragung mit variabler Paketlänge
EP1175034A2 (en) * 2000-07-18 2002-01-23 Eastman Kodak Company A packet data transmission system with adaptive packet size
US6459687B1 (en) * 2001-03-05 2002-10-01 Ensemble Communications, Inc. Method and apparatus for implementing a MAC coprocessor in a communication system
CN1148080C (zh) * 2001-06-28 2004-04-28 华为技术有限公司 一种信道质量估计方法
US6839566B2 (en) * 2001-08-16 2005-01-04 Qualcomm, Incorporated Method and apparatus for time-based reception of transmissions in a wireless communication system
US20050008035A1 (en) * 2001-11-12 2005-01-13 Carl Eklund Method and device for retransmission of transmitted units
US7301965B2 (en) * 2001-11-19 2007-11-27 At&T Corp. Packet shaping for mixed rate 802.11 wireless networks
US7489703B2 (en) * 2002-12-20 2009-02-10 Motorola, Inc. Apparatus and method for a coding scheme selection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6098103A (en) * 1997-08-11 2000-08-01 Lsi Logic Corporation Automatic MAC control frame generating apparatus for LAN flow control
KR20030057589A (ko) * 2001-12-29 2003-07-07 엘지전자 주식회사 가변길이 무선 패킷 데이터 시스템 및 그 운용 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1650880A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2435160A (en) * 2006-01-27 2007-08-15 Samsung Electronics Co Ltd A WLAN system which determines the length of frames on the basis of quality of channel
CN102264101A (zh) * 2010-05-28 2011-11-30 中国科学院声学研究所 一种用于水声传感器网络系统的数据传输方法
CN102264101B (zh) * 2010-05-28 2014-08-06 中国科学院声学研究所 一种用于水声传感器网络系统的数据传输方法
CN111211863A (zh) * 2019-12-20 2020-05-29 西安云维智联科技有限公司 Mac发射端、mac接收端及电路、fpga芯片及数据传输系统
CN111211863B (zh) * 2019-12-20 2023-03-28 西安云维智联科技有限公司 Mac发射端、mac接收端及电路、fpga芯片及数据传输系统

Also Published As

Publication number Publication date
CN100411317C (zh) 2008-08-13
CN1567736A (zh) 2005-01-19
EP1650880A4 (en) 2008-04-23
US20060153150A1 (en) 2006-07-13
EP1650880A1 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
WO2005004350A1 (fr) Procede d'amelioration de l'efficacite de la transmission de canal dans un reseau sans fil
US8238236B2 (en) Method for reporting reception result of packets in mobile communication system
JP3962405B2 (ja) リンク・アダプテーション
EP1829297B1 (en) Retransmission in wireless communication systems
EP0964548B1 (en) A system and method for link and media access control layer transaction initiation procedures
US7369510B1 (en) Wireless LAN using RSSI and BER parameters for transmission rate adaptation
EP2332045B1 (en) Method&apparatus for minimizing packet transmission loss in a wireless network
US20020122385A1 (en) Data throughput over lossy communication links
US20090074088A1 (en) Adaptive Fragmentation for HARQ in Wireless OFDMA Networks
US8451726B2 (en) Link adaptation in wireless networks
US20040252719A1 (en) Radio telecommunications network, a station, and a method of sending packets of data
EP0959589A2 (en) A system and method for link and media access control layer transaction completion procedures
Chiasserini et al. A reconfigurable protocol setting to improve TCP over wireless
JP2002135357A (ja) 通信システムにおけるデータ流れの制御方法
US7327694B2 (en) Adaptive radio link protocol (RLP) to improve performance of TCP in wireless environment for CDMAone and CDMA2000 systems
EP1661333B1 (en) Wireless device with dynamic fragmentation threshold adjustment
Chiasserini et al. Improving TCP over wireless through adaptive link layer setting
JP2001094574A (ja) 無線lanシステム
Shadmand et al. TCP dynamics and adaptive MAC retry-limit aware link-layer adaptation over IEEE 802.11 WLAN
Huang et al. TCP over packet radio link with adaptive channel coding
WO2004112407A1 (fr) Procede de commande d'une fenetre d'envoi d'une couche de liaison radio
CA2271419C (en) A system and method for link and media access control layer transaction initiation procedures
Huang et al. TCP over packet radio
KR100808392B1 (ko) 정보 통신을 위한 방법 및 그 방법을 채용한 장치
Shah et al. Block based window retransmission arq scheme for 100mbit/s infrared links

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006153150

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10563492

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004731813

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004731813

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10563492

Country of ref document: US