WO2005004320A1 - Actuator - Google Patents

Actuator Download PDF

Info

Publication number
WO2005004320A1
WO2005004320A1 PCT/JP2004/009528 JP2004009528W WO2005004320A1 WO 2005004320 A1 WO2005004320 A1 WO 2005004320A1 JP 2004009528 W JP2004009528 W JP 2004009528W WO 2005004320 A1 WO2005004320 A1 WO 2005004320A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
actuator
pressing portion
film
actuator according
Prior art date
Application number
PCT/JP2004/009528
Other languages
French (fr)
Japanese (ja)
Inventor
Minoru Nakayama
Original Assignee
Eamex Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eamex Corporation filed Critical Eamex Corporation
Publication of WO2005004320A1 publication Critical patent/WO2005004320A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/005Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution

Definitions

  • the present invention relates to an actuator including a conductive polymer and a method for driving the actuator.
  • a conductive polymer represented by polypyrrole is known to exhibit electrolytic stretching, which is a phenomenon of stretching or deforming due to electrochemical redox.
  • the electrolytic expansion and contraction of the conductive polymer can be used to drive a linear actuator.
  • an actuator using a conductive polymer is light in weight, so that it is possible to reduce the weight of the entire device to be incorporated, and not only as a small driving device such as a micromachine but also as a large driving device. It is expected to be used, and in particular, is expected to be used as an artificial muscle, a robot arm, an artificial hand actuator, and the like.
  • a linear actuator using polypyrrole exhibits a maximum expansion rate of 15.1% per redox cycle due to electrolytic expansion and contraction, and can generate a maximum force of 22 MPa (for example, , Non-Patent Document 1). Therefore, it is expected as a large-sized drive device.
  • Non-Patent Document 1 Susumu Hara, 4 others, "Highly Stretchable and Powerful Polypyrrol e Linear Actuators", Chemistry Letters, Japan, Published by The Chemical Society of Japan, 2003, Vol. 32, No. 7, p576-577
  • An object of the present invention is to provide a mechanism capable of performing a larger operation because it is lightweight by using a conductive polymer and can be used for many practical applications. It is to provide an equipped actuator.
  • the invention of the present application is characterized in that the actuator includes a film-shaped conductive polymer and a pressing portion, and the conductive polymer is stretched, and the pressing portion has a high conductivity in a flat film state. It is an actuator that has a length in the direction perpendicular to the plane of the molecule. As a result of intensive studies, the present inventors have found that by using the above-described actuator, the actuator operates more than the amount of expansion and contraction of the conductive polymer.
  • the actuator is useful for practical use as an actuator having a mechanism capable of performing a large operation.
  • FIG. 1 is a top view of a first embodiment of an actuator according to the present invention.
  • FIG. 2 is a sectional view taken along the line AA of the actuator of FIG.
  • FIG. 3 is a partially enlarged view of a BB cross-sectional view of the actuator shown in FIG.
  • FIG. 4 (a) is a cross-sectional view of the actuator of the second embodiment of the present invention when the film-shaped conductive polymer contracts.
  • FIG. 4 (b) is a cross-sectional view of the actuator according to the second embodiment of the present invention when the film-like conductive polymer is elongated.
  • FIG. 5 is a bottom view of the actuator of FIG. 4.
  • FIG. 6 is a sectional view of a piston device using the actuator of FIG. 4.
  • FIG. 7 is a cross-sectional view of a third embodiment of the actuator of the present invention.
  • FIG. 8 is a schematic view of a joint device using the actuator of the present invention.
  • FIG. 9 is a schematic view of a joint device using a tandem-type actuator of the present invention.
  • FIG. 1 is a top view of the first embodiment of the actuator of the present invention.
  • the actuator 1 includes a circular film-shaped conductive polymer in a housing, and includes a ring-shaped fixing frame 2 for fixing the conductive polymer. Further, the actuator 1 has a lid 3. A frame 4 for holding the lid is fixed to the housing by screws 5 with the lid interposed therebetween.
  • FIG. 2 is a sectional view taken along line AA of the actuator shown in FIG.
  • a circular film-shaped conductive polymer 6 is provided, and attached to the housing 7 by the fixed frame 2.
  • the actuator 1 has a pressing portion 8.
  • the pressing portion has a length in a direction X perpendicular to a plane of the conductive polymer when the conductive polymer is in a flat film state.
  • the actuator of FIG. 2 further includes a lid 3.
  • the lid has a corrugated cross section and is provided with peaks and valleys that are concentric with the circular shape of the conductive polymer film, so that the lid has elasticity so that it can expand and contract freely.
  • the lid 3 has a thick portion at the center portion, and the pressing portion 8 is fitted in the thick concave portion. As a result, a space is formed in which the conductive polymer and the elastic lid are sealed, and the pressing portion is provided inside the space.
  • the conductive frame 6 is contracted by giving electric conductivity to the fixed frame 2 and applying a voltage to the circular conductive polymer film 6 using the fixed frame as a working electrode.
  • the cross section of the conductive polymer becomes a straight line in the horizontal direction, and applies a force in the X direction to the cylindrical pressing portion 8.
  • the pressing portion is raised Works in the opposite direction.
  • the pressing portion presses the conductive polymer film 6 downward by elasticity of the lid, and returns to the state shown in FIG. 2, and the pressing portion moves downward. Works. In this way, the pressing portion operates by applying a voltage to the conductive polymer.
  • FIG. 3 is a partially enlarged view of a sectional view taken along line BB of the actuator shown in FIG.
  • the fixed frame 2 has electrical conductivity and also functions as an electrode.
  • the fixed frame 2 is connected to the lead wire 10 and is connected to an external power supply to function as a working electrode.
  • the housing 7 has a counter electrode 9 on the inner surface.
  • the counter electrode 9 is connected to a lead wire 11 and is connected to the external power supply.
  • the actuator operates when a voltage is applied to the conductive polymer film 6 from a power supply by arranging an electrolyte such as filling the inside of the housing 7 with an electrolyte so that the conductive polymer film 6 expands and contracts electrolytically. Is generated.
  • the actuator of the present invention when a voltage is applied to the film-shaped conductive polymer and the pressing portion linearly moves, the pressing portion has a distance longer than the amount of expansion and contraction of the conductive polymer. You can do up and down movement. Therefore, the actuator of the present invention can be suitably used for many practical applications.
  • the actuator of the present invention can also be a tandem-type actuator that is driven up and down by having a structure in which the bottom surfaces of the housings of the two actuators are connected to each other.
  • the conductive polymer is not particularly limited, but is a conductive polymer produced by an electrolytic polymerization method, wherein the electrolytic polymerization method includes an ether bond, an ester bond, and a carbonate bond. , A hydroxyl group, a nitro group, a sulfone group or an nitrile group, an organic solution containing at least one bond or a functional group and / or a halogenated hydrocarbon as a solvent.
  • Conductive polymers are preferred which contain methanesulfonic acid ions and / or anions containing a plurality of fluorine atoms with respect to the central atom.
  • the electrolytic solution used in the electrolytic polymerization method contains at least one bond or functional group of an ether bond, an ester bond, a carbonate bond, a hydroxyl group, a nitro group, a sulfone group, and a nitrile group.
  • Organic compounds and / or halogenated hydrocarbons Included as solvent. Two or more of these solvents can be used in combination.
  • Examples of the organic compound include 1,2-dimethoxyethane, 1,2-diethoxytan, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane (the above-mentioned organic compounds containing an ether bond), y- Butamouth ratatone, ethyl acetate, n-butyl acetate, _t-butyl acetate, 1,2_diacetoxetane, 3-methyl-2_oxazolidinone, methyl benzoate, ethyl benzoate, butyl benzoate, getyl phthalate ( Above, organic compounds containing ester bonds), propylene carbonate, ethylene carbonate, dimethinolecarbonate, methyl carbonate, methylethyl carbonate (the above, organic compounds containing carbonate bonds), ethylene glycol, butanol, 1_ Xanol, cyclohexanol, 1_ octano
  • the organic compound containing a hydroxyl group is not particularly limited, but is preferably a polyhydric alcohol or a monohydric alcohol having 4 or more carbon atoms because of its good power expansion ratio.
  • the organic compound may have, in addition to the above examples, two or more bonds or functional groups among ether bonds, ester bonds, carbonate bonds, hydroxyl groups, nitro groups, sulfone groups, and nitrile groups. May be an organic compound containing in any combination.
  • the organic compound used as a solvent for the electrolytic solution is a benzoic acid, which is preferably an aromatic ester because the obtained conductive polymer has a large electrochemical expansion (electrolytic expansion). More preferably, it is ethyl.
  • the organic compound When the organic compound is used as a solvent for an electrolytic solution by mixing two or more of the organic compounds, an organic compound having an ether bond, an organic compound having an ester bond, an organic compound having a carbonate bond, Among the organic compounds containing a hydroxy group, the organic compounds containing a nitro group, the organic compounds containing a sulfone group, and the organic compounds containing a nitrile group, a combination of an organic compound having excellent extension and an organic compound having excellent contraction is provided. At the same time, it is also possible to improve the expansion / contraction rate per one oxidation-reduction cycle of the conductive polymer obtained by electrolytic polymerization.
  • the halogenated hydrocarbon contained as a solvent in the electrolytic solution of the above-mentioned electrolytic polymerization method is one in which at least one hydrogen atom in the hydrocarbon is replaced by a halogen atom, and is stable as a liquid under the conditions of the electrolytic polymerization. It is not particularly limited as long as it can exist.
  • Examples of the halogenated hydrocarbon include dichloromethane and dichloroethane. Only one kind of the halogenated hydrocarbon can be used as a solvent in the electrolytic solution. Two or more kinds of halogenated hydrocarbons can be used in combination.
  • the halogenated hydrocarbon may be used as a mixture with the organic compound, and a mixed solvent with the organic solvent may be used as a solvent in the electrolyte.
  • the electrolytic solution used in the electrolytic polymerization method contains an organic compound to be electrolytically polymerized (for example, pyrrole), trifluoromethanesulfonic acid ion, and anion containing a plurality of fluorine atoms with respect to Z or a central atom.
  • an organic compound to be electrolytically polymerized for example, pyrrole
  • trifluoromethanesulfonic acid ion trifluoromethanesulfonic acid ion
  • anion containing a plurality of fluorine atoms with respect to Z or a central atom By conducting electrolytic polymerization using this electrolytic solution, it is possible to obtain a conductive polymer having an excellent expansion / contraction ratio per oxidation-reduction cycle and / or a displacement ratio per specific time in electrolytic expansion / contraction.
  • trifluoromethanesulfonic acid ions and / or anions containing a plurality of fluorine atoms with respect to the central atom are
  • the anion containing a plurality of fluorine atoms with respect to the trifluoromethanesulfonate ion and / or the central atom is not particularly limited in the content in the electrolytic solution. 1-30% by weight is preferred. 1-15% by weight is more preferred.
  • Trifluoromethanesulfonic acid ion is a compound represented by the chemical formula CFSO-.
  • An anion containing a plurality of fluorine atoms with respect to the central atom has a structure in which a plurality of fluorine atoms are bonded to a central atom such as boron, phosphorus, antimony, and arsenic.
  • the anion containing a plurality of fluorine atoms with respect to the central atom is not particularly limited.
  • Anion containing multiple nitrogen atoms can be used with multiple types of anions Alternatively, trifluoromethanesulfonic acid ion and anion containing a plurality of fluorine atoms with respect to a plurality of central atoms may be used simultaneously.
  • the electrolyte may contain a dopant other than the above.
  • the conductive polymer used in the actuator of the present invention is a conductive polymer containing polypyrrole obtained by a method for producing polypyrrole using an electrolytic polymerization method, and the production method is used in an electrolytic polymerization method. It is preferable that the electrolytic solution includes pyrrole and / or a pyrrole derivative as a monomer component, the electrolytic solution includes an aromatic ester as a solvent, and the electrolytic solution includes a polypyrrole containing perchlorate ion.
  • This polypyrrole film can expand and contract with a maximum expansion ratio of 10% or more per oxidation-reduction as the maximum expansion ratio due to electrolytic expansion and contraction, and has a tensile strength of 60 MPa or more.
  • the above-mentioned trifluoromethanesulfonic acid ion and / or central atom is contained in the electrolytic solution.
  • the chemical formula (1) In place of an anion containing multiple fluorine atoms, the chemical formula (1)
  • the electrolytic solution used in the electrolytic polymerization method contains a conductive solution in a solution of the organic compound solvent and the trifluoromethanesulfonic acid ion and / or anion containing a plurality of fluorine atoms with respect to the central atom. It may include a polymer monomer.
  • the electrolyte may further contain other known additives such as polyethylene glycol and polyacrylamide.
  • the electrolytic polymerization method a known electrolytic polymerization method can be used as the electrolytic polymerization of the conductive polymer monomer, and any of the constant potential method, the constant current method, and the electric sweep method can be used. Can be used.
  • the electrolytic polymerization is performed under the conditions of a current density of 0.01 to 20 mAZcm 2 , a reaction temperature of 70 to 80 ° C, preferably a current density of 0.1 to 2 mA / cm 2 and a reaction temperature of 1 to 30 ° C. It is more preferable that the reaction temperature is preferably 20 to 30 ° C.
  • the monomer of the conductive polymer contained in the electrolytic solution used in the electrolytic polymerization method is not particularly limited as long as it is a compound that is polymerized by oxidation by electrolytic polymerization and exhibits conductivity.
  • 5-membered heterocyclic compounds such as pyrrole, thiophene and isothianaphthene, and derivatives thereof such as alkyl groups and oxyalkyl groups.
  • a five-membered heterocyclic compound such as pyrrole and thiophene and a derivative thereof are preferred.
  • a conductive polymer containing a pyrrole and / or a pyrrole derivative is preferred because the production is easy and the conductive polymer is preferable. It is preferable because it is stable. Also, two or more of the above monomers can be used in combination.
  • the conductive polymer in the present invention is not particularly limited as long as it has elasticity. Polypyrrole, polythiophene, polyaniline, polyphenylene film, and the like can be used.
  • As the conductive polymer a conductive polymer containing pyrrole and / or a pyrrole derivative in a molecular chain is easy to manufacture, and is not only stable as a conductive polymer but also has excellent electrolytic stretching performance. Is preferred.
  • the conductive polymer is excellent in electrolytic expansion and contraction because it contains, as a dopant, trifluoromethanesulfonate ion and / or anion containing a plurality of fluorine atoms with respect to the central atom contained in the electrolytic solution.
  • the conductive polymer contains a conductive polymer having a maximum expansion and contraction ratio of 8% or more due to electrolytic expansion and contraction as a material, and the expansion and contraction ratio of the drive unit when the driving mechanism is driven is set to the maximum expansion and contraction ratio of 50%
  • the film-shaped conductive polymer in the actuator of the present invention may be circular, square, or rectangular as long as it is in the form of a film.
  • the shape of the film-shaped conductive polymer, which is a film-shaped body, is preferably a circle because a force due to expansion and contraction can be evenly applied to the pressing portion.
  • the pressing portion is not particularly limited. However, when the pressing portion is in contact with an electrolyte that is preferably formed of a noble metal such as platinum, carbon, or a hard plastic in order to prevent dispersion of the force, It is preferable to have corrosion resistance.
  • the pressing portion may be provided with a spacer between the conductive portion and the film-shaped conductive polymer, which may be in direct contact with the conductive polymer.
  • the shape of the pressing portion is not particularly limited, but is preferably a rod, a cylinder, or a column in order to have a length of expansion and contraction and to reduce the size of the actuator itself.
  • the material of the fixed frame is not particularly limited. Since it is not necessary to separately provide a working electrode for applying a voltage to the film-shaped conductive polymer as the fixed frame, the fixed frame has a conductive property to apply a voltage to the conductive polymer, and It is preferable to fix the conductive polymer.
  • FIGS. 4A and 4B are cross-sectional views of a second embodiment of the actuator of the present invention.
  • FIG. 4A is a cross-sectional view when the film-shaped conductive polymer contracts.
  • FIG. 4 (b) is a cross-sectional view when the film-shaped conductive polymer is elongated.
  • the actuator 12 includes a film-shaped conductive polymer 14 inside the housing 13 and a pressing portion 15 on the upper surface of the housing 13. The actuator 12 fixes the film-shaped conductive polymer by holding the conductive polymer 14 between the fixing member 16 and the housing 13.
  • FIG. 5 is a bottom view of the actuator of FIG.
  • the fixing member is installed in the housing by engaging the claw portion 17 of the fixing member 16 with the notch of the housing 17.
  • the fixing member 16 has a through hole 18 communicating with the conductive polymer 14.
  • FIG. 6 is a sectional view of a piston device using the actuator of FIGS. 4 (a) and 4 (b).
  • Actuators 121-126 are inserted into holes in the fixing member of the other actuator and are stacked in the interior of case 19.
  • the case 19 includes a working electrode 20, which is in contact with the conductive polymer of the actuator 126.
  • a counter electrode 21 is provided inside the case 19.
  • the conductive polymer of each actuator in FIG. 6 is changed from the expanded state to the expanded state, so that the actuator operates to the left in the figure and the rod attached to the upper surface of the actuator 121 22 moves to the left.
  • the conductive polymer is stretched as shown in Fig. 6 by releasing the applied voltage of the conductive polymer of each actuator element, etc.
  • Each actuator is returned to the right side, and the rod moves rightward.
  • the piston device 19 functions as a piston.
  • the actuator of the present invention may include a plurality of film-shaped conductive polymers.
  • FIG. 7 is a sectional view of a third embodiment of the actuator of the present invention.
  • the actuator 30 includes film-shaped conductive polymers 31 and 32, and includes a pressing portion 33 having a length in a direction perpendicular to a plane of the conductive polymer in a flat film state.
  • Each conductive polymer film is fixed to the housing 36 by fixing frames 34 and 35, respectively.
  • a hole is provided in the side surface of the housing, a lead wire is passed through, the lead wire is connected to fixed frames 34 and 35 having conductivity, and after connecting each lead wire to a power source, the actuator 30 is placed in the electrolyte.
  • FIG. 7 shows a state in which the conductive polymer film 32 is extended and the conductive polymer film 31 is contracted.
  • the conductive polymer film 31 expands due to electrolytic expansion and contraction, and the conductive polymer film 32 contracts, and the pressing portion 33 is driven to the right in the drawing.
  • one conductive polymer film serves as a working electrode and the other conductive polymer film serves as a counter electrode
  • one conductive polymer film serves as a counter electrode
  • the other conductive polymer film serves as a working electrode.
  • FIG. 8 is a schematic view of a joint device using the actuator of the present invention.
  • the joint device 40 includes a first support member 41 and a second support member 42, and a plurality of actuators according to the present invention are stacked in the outer cylinder 43.
  • the actuator 44 by providing the pressing portion so that the pressing direction axis of the pressing portion is deviated from the center of the actuator, each actuator is driven to perform a curved operation as shown in FIG. It becomes possible.
  • a lightweight joint device can be obtained.
  • FIG. 9 is a schematic diagram of a joint device using the actuator of the present invention, similarly to FIG.
  • the joint device 50 includes a first support member 51 and a second support member 53, and a plurality of actuators of the present invention are stacked in the outer cylinder 53.
  • Actuator 54 drives up and down
  • the above-described tandem-type actuator is provided with a pressing portion such that a pressing direction axis of the pressing portion is deviated from the center of the actuator.
  • the joint device of FIG. 9 can make a large curve with a smaller number of actuators than the joint device of FIG.
  • the actuator of the present invention can be used as an artificial spine by laminating the same as in the above-described joint device.
  • the actuator of the present invention is driven by applying a voltage to the conductive polymer
  • the actuator is a lightweight device such as a positioning device, a posture control device, a lifting device, a transport device, a moving device, an adjusting device, It can be suitably used for a driving unit of an adjusting device, a guiding device, or a joint device. Further, the actuator of the present invention can be used for a lightweight joint device and an artificial spine.
  • the actuator of the present invention is lightweight because it uses a conductive polymer for the drive unit, and has a mechanism capable of operating that is larger than the amount of expansion and contraction of the conductive polymer. Therefore, it can be suitably used for many practical applications.
  • the actuator of the present invention is used for a positioning device, a posture control device, a lifting device, a transport device, a moving device, an adjusting device, an adjusting device, a guiding device, or a driving unit of a joint device, a lightweight joint device, or an artificial spine. It is suitable as an actuator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Micromachines (AREA)

Abstract

An actuator is characterized in that it has a film-like conductive polymer and a pressing portion, the conductive polymer is in a stretched state, the pressing portion is placed so as to receive a force from a film surface of the conductive polymer, the force being received in the axial direction of the pressing portion, and the pressing portion has its length direction in the direction normal to a flat surface of the conductive polymer in a flat film state. Accordingly, the actuator is light in weight, can be used in various practical applications, and has a mechanism capable of performing a greater movement.

Description

明 細 書  Specification
ァクチユエータ  Actuator
技術分野  Technical field
[0001] 本発明は、導電性高分子を含むァクチユエータ及びその駆動方法に関する。  The present invention relates to an actuator including a conductive polymer and a method for driving the actuator.
背景技術  Background art
[0002] ポリピロールに代表される導電性高分子は、電気化学的な酸化還元により伸縮若 しくは変形する現象である電解伸縮を発現することが知られている。この導電性高分 子の電解伸縮は、リニアァクチユエータの駆動として使用することが可能である。その ため、導電性高分子を用いたァクチユエータは、軽量であることから組み込まれる装 置全体の重量を軽減することが可能であり、マイクロマシン等の小型の駆動装置のみ ならず、大型の駆動装置として用いられることが期待され、特に、人工筋肉、ロボット アーム、義手ゃァクチユエータ等の用途として応用が期待されている。特に、ポリピロ ールを用いたリニアァクチユエータは、電解伸縮によって、 1酸化還元サイクノレ当たり 最大で 15· 1 %の伸縮率を示し、最大で 22MPaの力を発生することができる(例え ば、非特許文献 1)。そのため、大型の駆動装置として期待される。  [0002] A conductive polymer represented by polypyrrole is known to exhibit electrolytic stretching, which is a phenomenon of stretching or deforming due to electrochemical redox. The electrolytic expansion and contraction of the conductive polymer can be used to drive a linear actuator. For this reason, an actuator using a conductive polymer is light in weight, so that it is possible to reduce the weight of the entire device to be incorporated, and not only as a small driving device such as a micromachine but also as a large driving device. It is expected to be used, and in particular, is expected to be used as an artificial muscle, a robot arm, an artificial hand actuator, and the like. In particular, a linear actuator using polypyrrole exhibits a maximum expansion rate of 15.1% per redox cycle due to electrolytic expansion and contraction, and can generate a maximum force of 22 MPa (for example, , Non-Patent Document 1). Therefore, it is expected as a large-sized drive device.
[0003] 非特許文献 1 :原進、外 4名、「Highly Stretchable and Powerful Polypyrrol e Linear Actuators] , Chemistry Letters, 日本、 日本化学会発行、 2003年 、第 32卷、第 7号、 p576-577  [0003] Non-Patent Document 1: Susumu Hara, 4 others, "Highly Stretchable and Powerful Polypyrrol e Linear Actuators", Chemistry Letters, Japan, Published by The Chemical Society of Japan, 2003, Vol. 32, No. 7, p576-577
発明の開示  Disclosure of the invention
[0004] しかし、ァクチユエータを、ロボットの関節部分に用いるなど、多くの実用的な用途 に用いるには、より大きな伸縮量を得るために、ァクチユエータを長くする必要がある 。また、ァクチユエータの性能により大きな伸縮量を得るためには、更なる製造方法 · 材料開発が必要である。従って、更に大きな伸縮量を得るためには、導電性高分子 の伸縮量をより大きな距離の運動に変換することができる機構がァクチユエータとし て求められる。  [0004] However, in order to use the actuator in many practical applications, such as using it for a joint part of a robot, it is necessary to lengthen the actuator in order to obtain a larger amount of expansion and contraction. Further, in order to obtain a large amount of expansion and contraction due to the performance of the actuator, further manufacturing method and material development are required. Therefore, in order to obtain a larger amount of expansion and contraction, a mechanism capable of converting the amount of expansion and contraction of the conductive polymer into a movement of a larger distance is required as an actuator.
[0005] 本発明の目的は、導電性高分子を用いていることにより軽量であり、し力も、多くの 実用的な用途に用いることができるために、より大きな動作をすることができる機構を 備えたァクチユエータを提供することである。 [0005] An object of the present invention is to provide a mechanism capable of performing a larger operation because it is lightweight by using a conductive polymer and can be used for many practical applications. It is to provide an equipped actuator.
[0006] 本願発明は、ァクチユエータが膜状の導電性高分子と押圧部とを備え、該導電性 高分子が張られた状態であり、該押圧部が、平らな膜状態における該導電性高分子 の平面に対する垂線方向に長さを有するァクチユエータである。本発明者らは、鋭意 検討の結果、前記ァクチユエータを用いることにより、ァクチユエータが導電性高分子 の伸縮量よりも大きな動作をすることを見出した。前記ァクチユエータは、大きな動作 をすることができる機構を備えたァクチユエータとして、実用的用途に有用である。 図面の簡単な説明  [0006] The invention of the present application is characterized in that the actuator includes a film-shaped conductive polymer and a pressing portion, and the conductive polymer is stretched, and the pressing portion has a high conductivity in a flat film state. It is an actuator that has a length in the direction perpendicular to the plane of the molecule. As a result of intensive studies, the present inventors have found that by using the above-described actuator, the actuator operates more than the amount of expansion and contraction of the conductive polymer. The actuator is useful for practical use as an actuator having a mechanism capable of performing a large operation. Brief Description of Drawings
[0007] [図 1]図 1は、本発明のァクチユエータにおける第一の実施態様例の上面図である。  FIG. 1 is a top view of a first embodiment of an actuator according to the present invention.
[図 2]図 2は、図 1のァクチユエータの A— A断面図である。  [FIG. 2] FIG. 2 is a sectional view taken along the line AA of the actuator of FIG.
[図 3]図 3は、図 1のァクチユエータの B— B断面図の部分拡大図である。  [FIG. 3] FIG. 3 is a partially enlarged view of a BB cross-sectional view of the actuator shown in FIG.
[図 4]図 4 (a)は、本発明のァクチユエータにおける第二の実施態様例において膜状 の導電性高分子が収縮した場合の断面図である。 図 4 (b)は、本発明のァク チユエータにおける第二の実施態様例において膜状の導電性高分子が伸長した場 合の断面図である。  FIG. 4 (a) is a cross-sectional view of the actuator of the second embodiment of the present invention when the film-shaped conductive polymer contracts. FIG. 4 (b) is a cross-sectional view of the actuator according to the second embodiment of the present invention when the film-like conductive polymer is elongated.
[図 5]図 5は、図 4のァクチユエータの底面図である。  FIG. 5 is a bottom view of the actuator of FIG. 4.
[図 6]図 6は、図 4のァクチユエータを用いたピストン装置の断面図である。  FIG. 6 is a sectional view of a piston device using the actuator of FIG. 4.
[図 7]図 7は、本発明のァクチユエータの第三の実施態様例についての断面図である  FIG. 7 is a cross-sectional view of a third embodiment of the actuator of the present invention.
[図 8]図 8は、本発明のァクチユエータを用いた関節装置の模式図である。 FIG. 8 is a schematic view of a joint device using the actuator of the present invention.
[図 9]図 9は、本発明のタンデム型のァクチユエータを用いた関節装置の模式図であ る。  FIG. 9 is a schematic view of a joint device using a tandem-type actuator of the present invention.
符号の説明  Explanation of symbols
[0008] 1 ァクチユエータ 螺子 [0008] 1 Actuator Screw
膜状導電性高分子 筐体  Film-shaped conductive polymer housing
押圧部  Pressing part
対極  Opposite pole
リード線 リード線 ァクチユエータ ハウジング 導電性高分子 押圧部  Lead wire Lead wire Actuator housing Conductive polymer Press section
固定部材 ハウジング 貫通孔  Fixing member Housing Through hole
ケース  Case
作用電極 対極 Working electrode Counter electrode
Figure imgf000005_0001
Figure imgf000005_0001
バネ  Spring
ァクチユエータ 、 32 導電性高分子 押圧部 、 35 固定枠  Actuator, 32 conductive polymer pressing part, 35 fixed frame
筐体 関節装置 第一支持部材 第二支持部材 外筒 44 ァクチユエータ Housing Joint device First support member Second support member Outer cylinder 44 Actuator
50 関節装置  50 Joint device
51 第一支持部材  51 First support member
52 第二支持部材  52 Second support member
53 外筒  53 outer cylinder
54 ァクチユエータ 発明を実施するための最良の形態  54 BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 以下、本発明のァクチユエータについて図を用いて説明する。  Hereinafter, the actuator of the present invention will be described with reference to the drawings.
[0010] 図 1は、本発明のァクチユエータにおける第一の実施態様例の上面図である。ァク チユエータ 1は、筐体中に円形である膜状の導電性高分子を備え、前記導電性高分 子を固定するリング状の固定枠 2を備えている。さらに、ァクチユエータ 1は蓋体 3を備 える。前記蓋体を押さえるための枠 4は、蓋体を挟んで螺子 5により筐体に固定される FIG. 1 is a top view of the first embodiment of the actuator of the present invention. The actuator 1 includes a circular film-shaped conductive polymer in a housing, and includes a ring-shaped fixing frame 2 for fixing the conductive polymer. Further, the actuator 1 has a lid 3. A frame 4 for holding the lid is fixed to the housing by screws 5 with the lid interposed therebetween.
[0011] 図 2は、図 1のァクチユエータの A— A断面図である。円形の膜状導電性高分子 6が 備えられ、固定枠 2により筐体 7に取付けられている。ァクチユエータ 1には、押圧部 8 を備えている。前記押圧部は、前記導電性高分子が平らな膜状態であったときの前 記導電性高分子の平面に対する垂線方向 Xに、長さを有している。 FIG. 2 is a sectional view taken along line AA of the actuator shown in FIG. A circular film-shaped conductive polymer 6 is provided, and attached to the housing 7 by the fixed frame 2. The actuator 1 has a pressing portion 8. The pressing portion has a length in a direction X perpendicular to a plane of the conductive polymer when the conductive polymer is in a flat film state.
[0012] 図 2のァクチユエータにおいては、さらに蓋体 3を備えている。前記蓋体は、断面が 波状であり、導電性高分子膜の円形と同心円となる山部分及び谷部分を備えること により、伸縮が自在にできるように弾性を有している。蓋体 3は、中心部分において肉 厚部を有し、該肉厚の凹部において押圧部 8が嵌合している。これにより前記導電性 高分子と伸縮性蓋体が密閉された空間部を形成し、該空間部の内部に前記押圧部 を備えることとなる。  The actuator of FIG. 2 further includes a lid 3. The lid has a corrugated cross section and is provided with peaks and valleys that are concentric with the circular shape of the conductive polymer film, so that the lid has elasticity so that it can expand and contract freely. The lid 3 has a thick portion at the center portion, and the pressing portion 8 is fitted in the thick concave portion. As a result, a space is formed in which the conductive polymer and the elastic lid are sealed, and the pressing portion is provided inside the space.
[0013] 図 2のァクチユエータにおいては、固定枠 2に通電性を持たせ、固定枠を作用電極 として円形の導電性高分子膜 6に電圧を印加することにより、導電性高分子 6を収縮 させた場合には、該導電性高分子は、断面が水平方向に直線上となって、円筒状の 押圧部 8に X方向の力を与える。導電性高分子の収縮により、前記押圧部は、上方 向に動作する。また、印加電圧の解放等がされた場合には蓋体の弾性により前記押 圧部が導電性高分子膜 6を下方向に押して、図 2に示された状態にもどり、押圧部は 下方向に動作する。このようにして、押圧部は、導電性高分子への電圧印可により、 動作することになる。 In the actuator shown in FIG. 2, the conductive frame 6 is contracted by giving electric conductivity to the fixed frame 2 and applying a voltage to the circular conductive polymer film 6 using the fixed frame as a working electrode. In this case, the cross section of the conductive polymer becomes a straight line in the horizontal direction, and applies a force in the X direction to the cylindrical pressing portion 8. Due to the contraction of the conductive polymer, the pressing portion is raised Works in the opposite direction. When the applied voltage is released or the like, the pressing portion presses the conductive polymer film 6 downward by elasticity of the lid, and returns to the state shown in FIG. 2, and the pressing portion moves downward. Works. In this way, the pressing portion operates by applying a voltage to the conductive polymer.
[0014] 図 3は、図 1のァクチユエータの B—B断面図の部分拡大図である。図 1のァクチユエ ータにおいては、固定枠 2は通電性を有し、電極としても機能する。図 3において、固 定枠 2は、リード線 10が接続されて、外部電源と繋がって、作用極として機能する。 筐体 7には内側面に対極 9を備える。対極 9は、リード線 11が接続され、前記外部電 源と繋がる。前記ァクチユエータは、筐体 7の内側に電解液を充填するなど、導電性 高分子膜 6が電解伸縮するように電解質を配置して、電源から電圧を導電性高分子 膜 6に印加すると、動作を生じる。  FIG. 3 is a partially enlarged view of a sectional view taken along line BB of the actuator shown in FIG. In the actuator shown in FIG. 1, the fixed frame 2 has electrical conductivity and also functions as an electrode. In FIG. 3, the fixed frame 2 is connected to the lead wire 10 and is connected to an external power supply to function as a working electrode. The housing 7 has a counter electrode 9 on the inner surface. The counter electrode 9 is connected to a lead wire 11 and is connected to the external power supply. The actuator operates when a voltage is applied to the conductive polymer film 6 from a power supply by arranging an electrolyte such as filling the inside of the housing 7 with an electrolyte so that the conductive polymer film 6 expands and contracts electrolytically. Is generated.
[0015] 本発明のァクチユエータにおいて、膜状の導電性高分子に電圧が印加されて押圧 部が直線運動をすることにより、前記押圧部は、導電性高分子の伸縮量よりも長い距 離の上下運動をすることができる。従って、本発明のァクチユエータは、多くの実用的 な用途に好適に用いることができる。  [0015] In the actuator of the present invention, when a voltage is applied to the film-shaped conductive polymer and the pressing portion linearly moves, the pressing portion has a distance longer than the amount of expansion and contraction of the conductive polymer. You can do up and down movement. Therefore, the actuator of the present invention can be suitably used for many practical applications.
[0016] また、本発明のァクチユエータは、 2つのァクチユエータの筐体の底面を互いに合 わせた構造とすることで、上下に駆動するタンデム型のァクチユエータとすることもで きる。  [0016] The actuator of the present invention can also be a tandem-type actuator that is driven up and down by having a structure in which the bottom surfaces of the housings of the two actuators are connected to each other.
[0017] 前記導電性高分子は、特に限定されるものではないが、電解重合法により製造さ れた導電性高分子であって、前記電解重合法が、エーテル結合、エステル結合、力 ーボネート結合、ヒドロキシル基、ニトロ基、スルホン基及び二トリル基のうち少なくとも 1つ以上の結合あるいは官能基を含む有機化合物及び/又はハロゲン化炭化水素 を溶媒として含む電解液を用い、前記電解液中にトリフルォロメタンスルホン酸イオン 及び/または中心原子に対してフッ素原子を複数含むァニオンを含むものである、 導電性高分子が好ましい。  [0017] The conductive polymer is not particularly limited, but is a conductive polymer produced by an electrolytic polymerization method, wherein the electrolytic polymerization method includes an ether bond, an ester bond, and a carbonate bond. , A hydroxyl group, a nitro group, a sulfone group or an nitrile group, an organic solution containing at least one bond or a functional group and / or a halogenated hydrocarbon as a solvent. Conductive polymers are preferred which contain methanesulfonic acid ions and / or anions containing a plurality of fluorine atoms with respect to the central atom.
[0018] 前記電解重合法に用いられる電解液には、エーテル結合、エステル結合、カーボ ネート結合、ヒドロキシル基、ニトロ基、スルホン基及び二トリル基のうち少なくとも 1つ 以上の結合あるいは官能基を含む有機化合物及び/またはハロゲン化炭化水素を 溶媒として含まれる。これらの溶媒を 2種以上併用することもできる。 [0018] The electrolytic solution used in the electrolytic polymerization method contains at least one bond or functional group of an ether bond, an ester bond, a carbonate bond, a hydroxyl group, a nitro group, a sulfone group, and a nitrile group. Organic compounds and / or halogenated hydrocarbons Included as solvent. Two or more of these solvents can be used in combination.
[0019] 前記有機化合物としては、 1 , 2—ジメトキシェタン、 1 , 2—ジエトキシェタン、テトラヒ ドロフラン、 2—メチルテトラヒドロフラン、 1, 4_ジォキサン(以上、エーテル結合を含 む有機化合物)、 y—ブチ口ラタトン、酢酸ェチル、酢酸 n-ブチル、酢酸 _t-ブチル、 1 , 2_ジァセトキシェタン、 3—メチルー 2_ォキサゾリジノン、安息香酸メチル、安息香酸 ェチル、安息香酸プチル、フタル酸ジェチル (以上、エステル結合を含む有機化合 物)、プロピレンカーボネート、エチレンカーボネート、ジメチノレカーボネート、ジェチ ルカーボネート、メチルェチルカーボネート(以上、カーボネート結合を含む有機化 合物)、エチレングリコール、ブタノール、 1_へキサノール、シクロへキサノール、 1_ ォクタノール、 1—デカノール、 1_ドデカノール、 1—ォクタデカノール(以上、ヒドロキシ ル基を含む有機化合物)、ニトロメタン、ニトロベンゼン(以上、ニトロ基を含む有機化 合物)、スルホラン、ジメチルスルホン(以上、スルホン基を含む有機化合物)、及びァ セトニトリル、ブチロニトリル、ベンゾニトリル(以上、二トリル基を含む有機化合物)を 例示することができる。なお、ヒドロキシノレ基を含む有機化合物は、特に限定されるも のではないが、多価アルコール及び炭素数 4以上の 1価アルコールであること力 伸 縮率が良いために好ましい。なお、前記有機化合物は、前記の例示以外にも、分子 中にエーテル結合、エステル結合、カーボネート結合、ヒドロキシル基、ニトロ基、ス ルホン基及び二トリル基のうち、 2つ以上の結合あるいは官能基を任意の組合わせで 含む有機化合物であってもよい。また、電解液の溶媒として用いられる前記有機化合 物は、得られた導電性高分子の電気化学的な伸縮 (電解伸縮)が大きいことから、芳 香族エステルであることが好ましぐ安息香酸ェチルであることがより好ましい。 [0019] Examples of the organic compound include 1,2-dimethoxyethane, 1,2-diethoxytan, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane (the above-mentioned organic compounds containing an ether bond), y- Butamouth ratatone, ethyl acetate, n-butyl acetate, _t-butyl acetate, 1,2_diacetoxetane, 3-methyl-2_oxazolidinone, methyl benzoate, ethyl benzoate, butyl benzoate, getyl phthalate ( Above, organic compounds containing ester bonds), propylene carbonate, ethylene carbonate, dimethinolecarbonate, methyl carbonate, methylethyl carbonate (the above, organic compounds containing carbonate bonds), ethylene glycol, butanol, 1_ Xanol, cyclohexanol, 1_ octanol, 1-decanol, 1_ Decanol, 1-octadecanol (above, organic compound containing hydroxyl group), nitromethane, nitrobenzene (above, organic compound containing nitro group), sulfolane, dimethyl sulfone (above, organic compound containing sulfone group), and Examples include setonitrile, butyronitrile, and benzonitrile (the above is an organic compound containing a nitrile group). The organic compound containing a hydroxyl group is not particularly limited, but is preferably a polyhydric alcohol or a monohydric alcohol having 4 or more carbon atoms because of its good power expansion ratio. The organic compound may have, in addition to the above examples, two or more bonds or functional groups among ether bonds, ester bonds, carbonate bonds, hydroxyl groups, nitro groups, sulfone groups, and nitrile groups. May be an organic compound containing in any combination. In addition, the organic compound used as a solvent for the electrolytic solution is a benzoic acid, which is preferably an aromatic ester because the obtained conductive polymer has a large electrochemical expansion (electrolytic expansion). More preferably, it is ethyl.
[0020] 前記有機化合物は、前記有機化合物を 2種以上混合して電解液の溶媒に用いる 場合には、エーテル結合を含む有機化合物、エステル結合を含む有機化合物、力 ーボネート結合を含む有機化合物、ヒドロキシノレ基を含む有機化合物、ニトロ基を含 む有機化合物、スルホン基を含む有機化合物、及び二トリル基を含む有機化合物の うち、伸張に優れた有機化合物と収縮に優れた有機化合物とを組合わせて、電解重 合により得られた導電性高分子の 1酸化還元サイクル当たりの伸縮率の向上を図るこ ともできる。 [0021] 前記の電解重合法の電解液に溶媒として含まれるハロゲン化炭化水素は、炭化水 素中の水素が少なくとも 1つ以上ハロゲン原子に置換されたもので、電解重合条件で 液体として安定に存在することができるものであれば、特に限定されるものではなレ、。 前記ハロゲン化炭化水素としては、例えば、ジクロロメタン、ジクロロエタンを挙げるこ とができる。前記ハロゲン化炭化水素は、 1種類のみを前記電解液中の溶媒として用 レ、ることもできる力 2種以上併用することもできる。また、前記ハロゲン化炭化水素は 、上記の有機化合物との混合して用いてもよぐ該有機溶媒との混合溶媒を前記電 解液中の溶媒として用いることもできる。 When the organic compound is used as a solvent for an electrolytic solution by mixing two or more of the organic compounds, an organic compound having an ether bond, an organic compound having an ester bond, an organic compound having a carbonate bond, Among the organic compounds containing a hydroxy group, the organic compounds containing a nitro group, the organic compounds containing a sulfone group, and the organic compounds containing a nitrile group, a combination of an organic compound having excellent extension and an organic compound having excellent contraction is provided. At the same time, it is also possible to improve the expansion / contraction rate per one oxidation-reduction cycle of the conductive polymer obtained by electrolytic polymerization. [0021] The halogenated hydrocarbon contained as a solvent in the electrolytic solution of the above-mentioned electrolytic polymerization method is one in which at least one hydrogen atom in the hydrocarbon is replaced by a halogen atom, and is stable as a liquid under the conditions of the electrolytic polymerization. It is not particularly limited as long as it can exist. Examples of the halogenated hydrocarbon include dichloromethane and dichloroethane. Only one kind of the halogenated hydrocarbon can be used as a solvent in the electrolytic solution. Two or more kinds of halogenated hydrocarbons can be used in combination. The halogenated hydrocarbon may be used as a mixture with the organic compound, and a mixed solvent with the organic solvent may be used as a solvent in the electrolyte.
[0022] 前記電解重合法に用いられる電解液には、電解重合される有機化合物 (例えば、 ピロール)およびトリフルォロメタンスルホン酸イオン及び Zまたは中心原子に対して フッ素原子を複数含むァニオンを含む。この電解液を用いて電解重合を行うことによ り、電解伸縮において 1酸化還元サイクル当たりの伸縮率及び/または特定時間あ たりの変位率が優れた導電性高分子を得ることができる。上記電解重合により、トリフ ルォロメタンスルホン酸イオン及び/または中心原子に対してフッ素原子を複数含む ァニオンが導電性高分子に取り込まれることになる。  The electrolytic solution used in the electrolytic polymerization method contains an organic compound to be electrolytically polymerized (for example, pyrrole), trifluoromethanesulfonic acid ion, and anion containing a plurality of fluorine atoms with respect to Z or a central atom. By conducting electrolytic polymerization using this electrolytic solution, it is possible to obtain a conductive polymer having an excellent expansion / contraction ratio per oxidation-reduction cycle and / or a displacement ratio per specific time in electrolytic expansion / contraction. By the above-mentioned electrolytic polymerization, trifluoromethanesulfonic acid ions and / or anions containing a plurality of fluorine atoms with respect to the central atom are incorporated into the conductive polymer.
[0023] 前記トリフルォロメタンスルホン酸イオン及び/または中心原子に対してフッ素原子 を複数含むァニオンは、電解液中の含有量が特に限定されるものではなレ、が、電解 液中に 0. 1— 30重量%含まれるのが好ましぐ 1一 15重量%含まれるのがより好まし レ、。  The anion containing a plurality of fluorine atoms with respect to the trifluoromethanesulfonate ion and / or the central atom is not particularly limited in the content in the electrolytic solution. 1-30% by weight is preferred. 1-15% by weight is more preferred.
[0024] トリフルォロメタンスルホン酸イオンは、化学式 CF SO—で表される化合物である。  [0024] Trifluoromethanesulfonic acid ion is a compound represented by the chemical formula CFSO-.
3 3  3 3
また、中心原子に対してフッ素原子を複数含むァニオンは、ホウ素、リン、アンチモン 及びヒ素等の中心原子に複数のフッ素原子が結合をした構造を有している。中心原 子に対してフッ素原子を複数含むァニオンとしては、特に限定されるものではないが An anion containing a plurality of fluorine atoms with respect to the central atom has a structure in which a plurality of fluorine atoms are bonded to a central atom such as boron, phosphorus, antimony, and arsenic. The anion containing a plurality of fluorine atoms with respect to the central atom is not particularly limited.
、テトラフルォロホウ酸イオン(BF―)、へキサフルォロリン酸イオン(PF―)、へキサフ , Tetrafluoroborate ion (BF-), hexafluorophosphate ion (PF-), hexaf
4 6  4 6
ルォロアンチモン酸イオン(SbF―)、及びへキサフルォロヒ酸イオン(AsF―)を例示  Examples of fluoroantimonate ion (SbF-) and hexafluorofluoric acid ion (AsF-)
6 6 すること力 Sできる。なかでも、 CF SO _、 BF _及び PF _が人体等に対する安全性を  6 6 S ability to do. Above all, CF SO _, BF _ and PF _ are safe for human body etc.
3 3 4 6  3 3 4 6
考慮すると好ましぐ CF SO—及び BF—がより好ましい。前記の中心原子に対してフ  Considering this, CF SO— and BF—, which are preferable, are more preferable. With respect to the central atom
3 3 4  3 3 4
ッ素原子を複数含むァニオンは、 1種類のァニオンを用いても良ぐ複数種のァニォ ンを同時に用いても良ぐさらには、トリフルォロメタンスルホン酸イオンと複数種の中 心原子に対しフッ素原子を複数含むァニオンとを同時に用いても良い。 Anion containing multiple nitrogen atoms can be used with multiple types of anions Alternatively, trifluoromethanesulfonic acid ion and anion containing a plurality of fluorine atoms with respect to a plurality of central atoms may be used simultaneously.
[0025] 前記電解液中に、上記以外のドーパントを含んでいても良い。本願発明のァクチュ エータに用いられる導電性高分子は、電解重合法を用いたポリピロールの製造方法 により得られたポリピロールを含む導電性高分子であって、前記製造方法が、電解重 合法に用いられる電解液がピロール及び/又はピロール誘導体をモノマー成分とし て含み、前記電解液が芳香族エステルを溶媒として含み、前記電解液が過塩素酸ィ オンを含むポリピロールの製造方法であることが好ましい。このポリピロール膜は、電 解伸縮による最大の伸縮率として、 1酸化還元当たりの伸縮率が 10%以上の伸縮を することができ、し力も引張り強度が 60MPa以上である。  [0025] The electrolyte may contain a dopant other than the above. The conductive polymer used in the actuator of the present invention is a conductive polymer containing polypyrrole obtained by a method for producing polypyrrole using an electrolytic polymerization method, and the production method is used in an electrolytic polymerization method. It is preferable that the electrolytic solution includes pyrrole and / or a pyrrole derivative as a monomer component, the electrolytic solution includes an aromatic ester as a solvent, and the electrolytic solution includes a polypyrrole containing perchlorate ion. This polypyrrole film can expand and contract with a maximum expansion ratio of 10% or more per oxidation-reduction as the maximum expansion ratio due to electrolytic expansion and contraction, and has a tensile strength of 60 MPa or more.
[0026] また、得られた導電性高分子の 1酸化還元サイクル当たりの伸縮率が 16%以上と するために、前記電解液中に、上記のトリフルォロメタンスルホン酸イオン及び/また は中心原子に対してフッ素原子を複数含むァニオンの替りに、化学式(1)  [0026] Further, in order to make the obtained conductive polymer have an expansion / contraction rate of 16% or more per oxidation-reduction cycle, the above-mentioned trifluoromethanesulfonic acid ion and / or central atom is contained in the electrolytic solution. In place of an anion containing multiple fluorine atoms, the chemical formula (1)
(C F SO ) (C F SO ) N— (1)  (C F SO) (C F SO) N— (1)
n (2n+ l) 2 m (2m+ l) 2  n (2n + l) 2 m (2m + l) 2
(ここで、 n及び mは任意の整数。)  (Where n and m are arbitrary integers)
で表されるパーフルォロアルキルスルホ二ルイミドイオンをァニオンとして含む電解液 を用いることが好ましい。  It is preferable to use an electrolytic solution containing a perfluoroalkylsulfonylimide ion represented by the following formula as an anion.
[0027] 前記電解重合法に用いられる電解液には、前記有機化合物溶媒と前記トリフルォ ロメタンスルホン酸イオン及び/または中心原子に対してフッ素原子を複数含むァニ オンとの溶液中に、導電性高分子の単量体を含むことができる。前記電解液中には 、さらにポリエチレングリコールやポリアクリルアミドなどの公知のその他の添加剤を含 むこともできる。 [0027] The electrolytic solution used in the electrolytic polymerization method contains a conductive solution in a solution of the organic compound solvent and the trifluoromethanesulfonic acid ion and / or anion containing a plurality of fluorine atoms with respect to the central atom. It may include a polymer monomer. The electrolyte may further contain other known additives such as polyethylene glycol and polyacrylamide.
[0028] 前記電解重合法は、導電性高分子単量体の電解重合として、公知の電解重合方 法を用いることが可能であり、定電位法、定電流法及び電気掃引法のいずれをも用 いることができる。例えは、前記電解重合は、電流密度 0. 01— 20mAZcm2、反応 温度— 70 80°C、好ましくは電流密度 0. 1- 2mA/ cm2,反応温度一 30 40°Cの 条件下で行うことが好ましぐ反応温度カ 20 30°Cの条件であることがより好ましい [0029] 前記電解重合法に用いられる電解液に含まれる導電性高分子の単量体としては、 電解重合による酸化により高分子化して導電性を示す化合物であれば特に限定され るものではなぐ例えばピロール、チォフェン、イソチアナフテン等の複素五員環式化 合物及びそのアルキル基、ォキシアルキル基等の誘導体が挙げられる。その中でも ピロール、チオフヱン等の複素五員環式化合物及びその誘導体が好ましぐ特にピロ ール及び/またはピロール誘導体を含む導電性高分子であることが、製造が容易で あり、導電性高分子として安定であるために好ましい。また、上記モノマーは 2種以上 併用すること力 Sできる。 [0028] In the electrolytic polymerization method, a known electrolytic polymerization method can be used as the electrolytic polymerization of the conductive polymer monomer, and any of the constant potential method, the constant current method, and the electric sweep method can be used. Can be used. For example, the electrolytic polymerization is performed under the conditions of a current density of 0.01 to 20 mAZcm 2 , a reaction temperature of 70 to 80 ° C, preferably a current density of 0.1 to 2 mA / cm 2 and a reaction temperature of 1 to 30 ° C. It is more preferable that the reaction temperature is preferably 20 to 30 ° C. [0029] The monomer of the conductive polymer contained in the electrolytic solution used in the electrolytic polymerization method is not particularly limited as long as it is a compound that is polymerized by oxidation by electrolytic polymerization and exhibits conductivity. For example, there may be mentioned 5-membered heterocyclic compounds such as pyrrole, thiophene and isothianaphthene, and derivatives thereof such as alkyl groups and oxyalkyl groups. Among them, a five-membered heterocyclic compound such as pyrrole and thiophene and a derivative thereof are preferred. In particular, a conductive polymer containing a pyrrole and / or a pyrrole derivative is preferred because the production is easy and the conductive polymer is preferable. It is preferable because it is stable. Also, two or more of the above monomers can be used in combination.
[0030] 本発明における導電性高分子は、伸縮性を有していれば、特に限定されるもので はなぐポリピロール、ポリチォフェン、ポリア二リン、ポリフエ二レンフィルムなど用いる こと力 Sできる。前記導電性高分子としては、分子鎖にピロール及び/またはピロール 誘導体を含む導電性高分子であることが、製造が容易であり、導電性高分子として 安定であるだけではなぐ電解伸縮性能に優れているために好ましい。前記導電性 高分子は、電解液に含まれてレ、たトリフルォロメタンスルホン酸イオン及び/または 中心原子に対してフッ素原子を複数含むァニオンを、ドーパントとして含むために、 電解伸縮において優れた 1酸化還元サイクル当たりの伸縮率を示し、特定時間あた りの変位率をも示すものと考えられる。なお、前記導電性高分子が電解伸縮により最 大の伸縮率が 8%以上である導電性高分子を材料として含み、駆動機構の駆動時に おける前記駆動部の伸縮率を最大の伸縮率の 50%以下となるように前記駆動部を 伸縮させる駆動機構の駆動方法を用いることにより、駆動部を長くすることにより伸縮 量を大きくすることができ、伸縮速度を速くすることができる。  [0030] The conductive polymer in the present invention is not particularly limited as long as it has elasticity. Polypyrrole, polythiophene, polyaniline, polyphenylene film, and the like can be used. As the conductive polymer, a conductive polymer containing pyrrole and / or a pyrrole derivative in a molecular chain is easy to manufacture, and is not only stable as a conductive polymer but also has excellent electrolytic stretching performance. Is preferred. The conductive polymer is excellent in electrolytic expansion and contraction because it contains, as a dopant, trifluoromethanesulfonate ion and / or anion containing a plurality of fluorine atoms with respect to the central atom contained in the electrolytic solution. It indicates the rate of expansion and contraction per oxidation-reduction cycle, and is also considered to indicate the rate of displacement per specific time. The conductive polymer contains a conductive polymer having a maximum expansion and contraction ratio of 8% or more due to electrolytic expansion and contraction as a material, and the expansion and contraction ratio of the drive unit when the driving mechanism is driven is set to the maximum expansion and contraction ratio of 50% By using the driving method of the drive mechanism that expands and contracts the driving unit so as to be less than or equal to%, the amount of expansion and contraction can be increased by lengthening the driving unit, and the expansion and contraction speed can be increased.
[0031] 本発明のァクチユエータにおける膜状導電性高分子は、膜状であれば、円形、四 角形、長方形でも良い。膜状体である前記膜状導電性高分子の形状としては、伸縮 による力を押圧部に均等に掛けることができるので、円形が好ましい。  [0031] The film-shaped conductive polymer in the actuator of the present invention may be circular, square, or rectangular as long as it is in the form of a film. The shape of the film-shaped conductive polymer, which is a film-shaped body, is preferably a circle because a force due to expansion and contraction can be evenly applied to the pressing portion.
[0032] また、前記押圧部は、特に限定されないが、力を分散させないために、白金等の貴 金属、カーボンまたは硬質プラスチックで形成されていることが好ましぐ電解質と接 触する場合には、耐食性を有することが好ましい。また、前記押圧部は、直接導電性 高分子と接触しても良ぐ膜状の導電性高分子との間にスぺーサーを介してもよい。 前記押圧部の形状は、特に限定されないが、伸縮の長さを有し、ァクチユエータ自体 の大きさを小さくすることから、長さ棒状、円筒状、柱状が好ましい。 [0032] In addition, the pressing portion is not particularly limited. However, when the pressing portion is in contact with an electrolyte that is preferably formed of a noble metal such as platinum, carbon, or a hard plastic in order to prevent dispersion of the force, It is preferable to have corrosion resistance. The pressing portion may be provided with a spacer between the conductive portion and the film-shaped conductive polymer, which may be in direct contact with the conductive polymer. The shape of the pressing portion is not particularly limited, but is preferably a rod, a cylinder, or a column in order to have a length of expansion and contraction and to reduce the size of the actuator itself.
[0033] 前記固定枠は、材質が特に限定されるものでは無い。前記固定枠としては、膜状の 導電性高分子に電圧を印加するための作用極を別個に設ける必要がないことから、 通電性を有して導電性高分子に電圧を印加し、かつ、導電性高分子を固定するもの であることが好ましい。  [0033] The material of the fixed frame is not particularly limited. Since it is not necessary to separately provide a working electrode for applying a voltage to the film-shaped conductive polymer as the fixed frame, the fixed frame has a conductive property to apply a voltage to the conductive polymer, and It is preferable to fix the conductive polymer.
[0034] 図 4 (a)、 (b)は、本発明のァクチユエータにおける第二の実施態様例の断面図で ある。図 4 (a)は、膜状の導電性高分子が収縮した場合の断面図である。図 4 (b)は、 膜状の導電性高分子が伸長した場合の断面図である。ァクチユエータ 12は、ハウジ ング 13の内側に膜状の導電性高分子 14を備え、ハウジング 13の上面に押圧部 15 を備える。ァクチユエータ 12は、固定部材 16がハウジング 13との間に導電性高分子 14を挟持することで、膜状の導電性高分子を固定している。  FIGS. 4A and 4B are cross-sectional views of a second embodiment of the actuator of the present invention. FIG. 4A is a cross-sectional view when the film-shaped conductive polymer contracts. FIG. 4 (b) is a cross-sectional view when the film-shaped conductive polymer is elongated. The actuator 12 includes a film-shaped conductive polymer 14 inside the housing 13 and a pressing portion 15 on the upper surface of the housing 13. The actuator 12 fixes the film-shaped conductive polymer by holding the conductive polymer 14 between the fixing member 16 and the housing 13.
[0035] 図 5は、図 4のァクチユエータの底面図である。ハウジング 17の切り込みに固定部 材 16の爪部 17を係合させることにより、固定部材がハウジングに設置される。固定部 材 16は、導電性高分子 14に通じる貫通孔 18を備えている。  FIG. 5 is a bottom view of the actuator of FIG. The fixing member is installed in the housing by engaging the claw portion 17 of the fixing member 16 with the notch of the housing 17. The fixing member 16 has a through hole 18 communicating with the conductive polymer 14.
[0036] 図 6は、図 4 (a)、(b)のァクチユエータを用いたピストン装置の断面図である。ァク チュエータ 121— 126は、一のァクチユエ一タの押圧部力 他のァクチユエ一タの固 定部材における孔部に挿入されて、ケース 19の内部において積層されている。ケー ス 19には、作用電極 20を備え、該作用電極がァクチユエータ 126の導電性高分子 に接触するようになっている。ァクチユエータの側面に項を設けるなどして、ァクチュ エータ素子積層体の各導電性高分子と作用電極とが、直列となるようにリード線で接 続されている。ケース 19の内部に対極 21を設けている。ケース 19の内部を電解液で 満たし、作用電極及び対極に電圧を印加することで、各ァクチユエータ素子の導電 性高分子を電解伸縮するようにすることができる。この状態で、図 6における各ァクチ ユエータの導電性高分子を、伸長した状態から伸縮した状態とすることで、図の左方 向にァクチユエータが動作して、ァクチユエータ 121の上面に取付けられたロッド 22 が左方向に動作する。また、各ァクチユエータ素子の導電性高分子の印加電圧を解 放するなどにより、図 6の様に導電性高分子が伸長した状態とすることで、パネ 23に より各ァクチユエータが右側に戻されて、ロッドが右方向に動作する。このロッドの動 作により、ピストン装置 19はピストンとして機能する。 FIG. 6 is a sectional view of a piston device using the actuator of FIGS. 4 (a) and 4 (b). Actuators 121-126 are inserted into holes in the fixing member of the other actuator and are stacked in the interior of case 19. The case 19 includes a working electrode 20, which is in contact with the conductive polymer of the actuator 126. By providing a term on the side surface of the actuator, each conductive polymer of the actuator element laminate and the working electrode are connected by a lead wire so as to be in series. A counter electrode 21 is provided inside the case 19. By filling the inside of the case 19 with the electrolytic solution and applying a voltage to the working electrode and the counter electrode, the conductive polymer of each actuator element can be electrolytically expanded and contracted. In this state, the conductive polymer of each actuator in FIG. 6 is changed from the expanded state to the expanded state, so that the actuator operates to the left in the figure and the rod attached to the upper surface of the actuator 121 22 moves to the left. In addition, the conductive polymer is stretched as shown in Fig. 6 by releasing the applied voltage of the conductive polymer of each actuator element, etc. Each actuator is returned to the right side, and the rod moves rightward. By the operation of this rod, the piston device 19 functions as a piston.
[0037] また、本発明のァクチユエータは、膜状の導電性高分子を複数備えても良い。図 7 は、本発明のァクチユエータの第三の実施態様例についての断面図である。ァクチ ユエータ 30は、膜状の導電性高分子 31、 32を備え、平らな膜状態における該導電 性高分子の平面に対する垂線方向に長さを有する押圧部 33を備える。各導電性高 分子膜は、それぞれ固定枠 34、 35で筐体 36に固定されている。例えば、筐体の側 面に孔を設けてリード線を通し、該リード線を通電性を有する固定枠 34、 35に接続し 、各リード線を電源に繋いだ後にァクチユエータ 30を電解液中に浸漬して、各導電 性高分子膜に電圧を印加すると、各導電性高分子は電解伸縮を生じる。図 7におい ては導電性高分子膜 32が伸長し、導電性高分子膜 31が収縮している状態である。 電解伸縮により導電性高分子膜 31が伸長し、導電性高分子膜 32が収縮して、押圧 部 33は、図の右に駆動する。 [0037] Further, the actuator of the present invention may include a plurality of film-shaped conductive polymers. FIG. 7 is a sectional view of a third embodiment of the actuator of the present invention. The actuator 30 includes film-shaped conductive polymers 31 and 32, and includes a pressing portion 33 having a length in a direction perpendicular to a plane of the conductive polymer in a flat film state. Each conductive polymer film is fixed to the housing 36 by fixing frames 34 and 35, respectively. For example, a hole is provided in the side surface of the housing, a lead wire is passed through, the lead wire is connected to fixed frames 34 and 35 having conductivity, and after connecting each lead wire to a power source, the actuator 30 is placed in the electrolyte. When a voltage is applied to each conductive polymer film by immersion, each conductive polymer undergoes electrolytic expansion and contraction. FIG. 7 shows a state in which the conductive polymer film 32 is extended and the conductive polymer film 31 is contracted. The conductive polymer film 31 expands due to electrolytic expansion and contraction, and the conductive polymer film 32 contracts, and the pressing portion 33 is driven to the right in the drawing.
一の導電性高分子膜が作用電極となって、他の導電性高分子膜が対極となった後 に、一の導電性高分子膜を対極とし、他の導電性高分子膜を作用電極とするサイク ルを繰り返すことにより、図の左右方向に押圧部をさせることができる。なお、膜状の 導電性高分子の表面に、均一な電圧を印加するために伸縮可能な金属層を設ける ことちできる。  After one conductive polymer film serves as a working electrode and the other conductive polymer film serves as a counter electrode, one conductive polymer film serves as a counter electrode and the other conductive polymer film serves as a working electrode. By repeating the cycle described above, the pressing portion can be made to move in the left-right direction in the figure. Note that a metal layer that can expand and contract to apply a uniform voltage can be provided on the surface of the conductive polymer film.
[0038] 図 8は、本発明のァクチユエータを用いた関節装置の模式図である。関節装置 40 は、第一支持部材 41と第二支持部材 42とを備え、外筒 43内において本発明のァク チユエータが複数積層されている。ここで、ァクチユエータ 44において、押圧部の押 圧方向軸が前記ァクチユエータの中心から外れるように、押圧部を設けることにより、 各ァクチユエータが駆動することで図 8に示すように湾曲した動作をすることが可能と なる。本発明のァクチユエータを用いることにより、軽量な関節装置を得ることができ る。  FIG. 8 is a schematic view of a joint device using the actuator of the present invention. The joint device 40 includes a first support member 41 and a second support member 42, and a plurality of actuators according to the present invention are stacked in the outer cylinder 43. Here, in the actuator 44, by providing the pressing portion so that the pressing direction axis of the pressing portion is deviated from the center of the actuator, each actuator is driven to perform a curved operation as shown in FIG. It becomes possible. By using the actuator of the present invention, a lightweight joint device can be obtained.
[0039] 図 9も、図 8と同様に、本発明のァクチユエータを用いた関節装置の模式図である。  FIG. 9 is a schematic diagram of a joint device using the actuator of the present invention, similarly to FIG.
関節装置 50は、第一支持部材 51と第二支持部材 53とを備え、外筒 53内において 本発明のァクチユエータが複数積層されている。ァクチユエータ 54は、上下に駆動 する既述のタンデム型のァクチユエータであり、押圧部の押圧方向軸が前記ァクチュ エータの中心から外れるように、押圧部が設置されている。これにより図 9の関節装置 では、図 8の関節装置に比べて、少ないァクチユエータの個数で大きな湾曲をするこ とができる。 The joint device 50 includes a first support member 51 and a second support member 53, and a plurality of actuators of the present invention are stacked in the outer cylinder 53. Actuator 54 drives up and down The above-described tandem-type actuator is provided with a pressing portion such that a pressing direction axis of the pressing portion is deviated from the center of the actuator. As a result, the joint device of FIG. 9 can make a large curve with a smaller number of actuators than the joint device of FIG.
[0040] また、本発明のァクチユエータは、上記の関節装置と同様に、積層させることによつ て人工の背骨としても用いることができる。  [0040] Further, the actuator of the present invention can be used as an artificial spine by laminating the same as in the above-described joint device.
[0041] また、本発明のァクチユエータは、導電性高分子に電圧を印加することにより駆動 するので、軽量な装置としての位置決め装置、姿勢制御装置、昇降装置、搬送装置 、移動装置、調節装置、調整装置、誘導装置、または関節装置の駆動部に、好適に 用いることができる。また、本発明のァクチユエータは、軽量な関節装置、人工背骨に 用いることができる。  Further, since the actuator of the present invention is driven by applying a voltage to the conductive polymer, the actuator is a lightweight device such as a positioning device, a posture control device, a lifting device, a transport device, a moving device, an adjusting device, It can be suitably used for a driving unit of an adjusting device, a guiding device, or a joint device. Further, the actuator of the present invention can be used for a lightweight joint device and an artificial spine.
産業上の利用可能性  Industrial applicability
[0042] 本発明のァクチユエータは、駆動部に導電性高分子を用いている為に、軽量であり 、しかも、導電性高分子の伸縮量よりも大きな、動作をすることができる機構を備えて いるので、多くの実用的な用途に好適に用いることができる。特に、本発明のァクチ ユエータは、位置決め装置、姿勢制御装置、昇降装置、搬送装置、移動装置、調節 装置、調整装置、誘導装置、または関節装置の駆動部、軽量な関節装置または人工 背骨に用いるァクチユエータとして好適である。 [0042] The actuator of the present invention is lightweight because it uses a conductive polymer for the drive unit, and has a mechanism capable of operating that is larger than the amount of expansion and contraction of the conductive polymer. Therefore, it can be suitably used for many practical applications. In particular, the actuator of the present invention is used for a positioning device, a posture control device, a lifting device, a transport device, a moving device, an adjusting device, an adjusting device, a guiding device, or a driving unit of a joint device, a lightweight joint device, or an artificial spine. It is suitable as an actuator.

Claims

請求の範囲 The scope of the claims
[1] ァクチユエータが膜状の導電性高分子と押圧部とを備え、  [1] The actuator has a film-shaped conductive polymer and a pressing portion,
該導電性高分子が張られた状態であり、  The conductive polymer is in a stretched state,
該押圧部が、平らな膜状態における該導電性高分子の平面に対する垂線方向に 長さを有する  The pressing portion has a length in a direction perpendicular to a plane of the conductive polymer in a flat film state.
ァクチユエータ。  Actuator.
[2] 前記押圧部は、前記押圧部の長さ軸方向に前記導電性高分子の膜面から力を受け るように設置されてレ、る請求項 1に記載のァクチユエータ。  2. The actuator according to claim 1, wherein the pressing portion is installed so as to receive a force from a film surface of the conductive polymer in a longitudinal axis direction of the pressing portion.
[3] 前記導電性高分子が固定枠により設置され、該固定枠が通電性を有する請求項 1に 記載のァクチユエータ。 3. The actuator according to claim 1, wherein the conductive polymer is provided by a fixed frame, and the fixed frame has electrical conductivity.
[4] 前記導電性高分子と密閉された空間部を形成する伸縮性蓋体を備え、該空間部の 内部に前記押圧部を備える請求項 1に記載のァクチユエータ。  4. The actuator according to claim 1, further comprising: a stretchable lid that forms a closed space with the conductive polymer, and the pressing portion is provided inside the space.
[5] 前記押圧部の押圧方向軸が前記ァクチユエータの中心から外れるように、前記押圧 部が設置されてレ、る請求項 1に記載のァクチユエータ。  5. The actuator according to claim 1, wherein the pressing portion is installed such that a pressing direction axis of the pressing portion deviates from the center of the actuator.
[6] 前記導電性高分子が電解重合法により製造された導電性高分子であって、前記電 解重合法が、エーテル結合、エステル結合、カーボネート結合、ヒドロキシル基、ニト 口基、スルホン基及び二トリル基のうち少なくとも 1つ以上の結合あるいは官能基を含 む有機化合物及び/又はハロゲン化炭化水素を溶媒として含む電解液を用レ、、前 記電解液中にトリフルォロメタンスルホン酸イオン及び/または中心原子に対してフ ッ素原子を複数含むァニオンを含む導電性高分子の製造方法である  [6] The conductive polymer is a conductive polymer produced by an electrolytic polymerization method, wherein the electrolytic polymerization method comprises an ether bond, an ester bond, a carbonate bond, a hydroxyl group, a nitro group, a sulfone group, An electrolytic solution containing, as a solvent, an organic compound containing at least one bond or a functional group among nitrile groups and / or a halogenated hydrocarbon is used, and trifluoromethanesulfonate ion and trifluoromethanesulfonate ion are contained in the electrolytic solution. And / or a method for producing a conductive polymer containing anions containing a plurality of fluorine atoms with respect to a central atom.
請求項 1に記載のァクチユエータ。  An actuator according to claim 1.
[7] 前記導電性高分子として最大伸縮率が 8%以上である導電性高分子を用いた請求 項 1に記載のァクチユエータ。 [7] The actuator according to claim 1, wherein a conductive polymer having a maximum expansion and contraction rate of 8% or more is used as the conductive polymer.
[8] 請求項 5に記載のァクチユエ一タを積層させたァクチユエ一タ積層体。 [8] An actuator laminate in which the actuator according to claim 5 is laminated.
[9] 前記導電性高分子に電圧を印加することにより前記押圧部を直線運動させる請求項[9] The pressing portion is moved linearly by applying a voltage to the conductive polymer.
1に記載のァクチユエータを駆動させる駆動方法。 A driving method for driving the actuator according to claim 1.
[10] 前記導電性高分子に電圧を印加することによりァクチユエ一タ積層体を湾曲運動さ せる請求項 8に記載のァクチユエ一タ積層体の駆動方法。 10. The method for driving an actuator stack according to claim 8, wherein the actuator stack is curved by applying a voltage to the conductive polymer.
[11] 請求項 5に記載のァクチユエ一タ積層体を用いた関節装置。 [11] An articulation device using the actuator stack according to claim 5.
[12] 請求項 1に記載のァクチユエータを用いた位置決め装置、姿勢制御装置、昇降装置 、搬送装置、移動装置、調節装置、調整装置、誘導装置、関節装置、または人工背 骨。  [12] A positioning device, a posture control device, an elevating device, a transport device, a moving device, an adjusting device, an adjusting device, a guiding device, a joint device, or an artificial spine using the actuator according to claim 1.
PCT/JP2004/009528 2003-07-03 2004-07-05 Actuator WO2005004320A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-191529 2003-07-03
JP2003191529 2003-07-03

Publications (1)

Publication Number Publication Date
WO2005004320A1 true WO2005004320A1 (en) 2005-01-13

Family

ID=33562363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009528 WO2005004320A1 (en) 2003-07-03 2004-07-05 Actuator

Country Status (1)

Country Link
WO (1) WO2005004320A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155912A (en) * 2005-12-01 2007-06-21 Fujinon Corp Shake correcting unit and photographing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225706A (en) * 1987-03-11 1988-09-20 Fuji Tool & Die Co Ltd Diaphragm actuator
JPH0329707U (en) * 1989-08-01 1991-03-25
JPH05261061A (en) * 1992-03-17 1993-10-12 Olympus Optical Co Ltd Microactuator
JPH09267279A (en) * 1996-04-01 1997-10-14 Denso Corp Micromanipulator
JP2001286162A (en) * 2000-03-31 2001-10-12 Keiwa Ryu Drive device utilizing electrostrictive expansion and construction material
JP2003074703A (en) * 2001-08-30 2003-03-12 Jujo Sansho Kk Diaphragm actuator
JP2003152234A (en) * 2001-11-15 2003-05-23 Sony Corp Actuator and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225706A (en) * 1987-03-11 1988-09-20 Fuji Tool & Die Co Ltd Diaphragm actuator
JPH0329707U (en) * 1989-08-01 1991-03-25
JPH05261061A (en) * 1992-03-17 1993-10-12 Olympus Optical Co Ltd Microactuator
JPH09267279A (en) * 1996-04-01 1997-10-14 Denso Corp Micromanipulator
JP2001286162A (en) * 2000-03-31 2001-10-12 Keiwa Ryu Drive device utilizing electrostrictive expansion and construction material
JP2003074703A (en) * 2001-08-30 2003-03-12 Jujo Sansho Kk Diaphragm actuator
JP2003152234A (en) * 2001-11-15 2003-05-23 Sony Corp Actuator and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155912A (en) * 2005-12-01 2007-06-21 Fujinon Corp Shake correcting unit and photographing device

Similar Documents

Publication Publication Date Title
JP4038685B2 (en) Actuator element
JP4256470B1 (en) Conductive polymer actuator, manufacturing method thereof, and driving method thereof
JP4997773B2 (en) Actuator element
JP4598884B2 (en) Polymer actuator
Khan et al. Retracted: A concise review on the elastomeric behavior of electroactive polymer materials
JP4691703B2 (en) Actuator element and manufacturing method thereof
WO2006001106A1 (en) Electroconductive polymer electrode and actuator using the same
JP2010161870A (en) Conductive polymer actuator and method of producing the same
JP4646559B2 (en) Actuator
WO2005004320A1 (en) Actuator
JP2005210023A (en) Piezoelectric material, generator and high polymer actuator
Madden Polypyrrole actuators: Properties and initial applications
JP4727182B2 (en) Driving method of conductive polymer actuator element
JP5261730B2 (en) Conductive polymer actuator element
JP2014024954A (en) Actuator element including carbon electrode having clay material added thereto
JP2007023173A (en) Conductive polymer actuator element
JP4806745B2 (en) Conductive polymer composite structure and method for producing conductive polymer
JP2012135071A (en) Composite conductive thin film for actuator, and actuator element
JP6562319B2 (en) Nanocarbon polymer actuator
JP6481356B2 (en) Electrolyte for actuator element and actuator element
Gendron Conducting polymer based ionic polymer metal composite actuators
JP4685343B2 (en) Method for producing conductive polymer composite structure
JP2006241422A (en) Electroconductive polymer actuator
WO2011024219A1 (en) Electroconductive polymer actuator, method for driving the electroconductive polymer actuator, and method for manufacturing the electroconductive polymer actuator
JP2024108717A (en) Novel polymer, conductive thin film, laminate, actuator element, and method for producing same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP