JP6481356B2 - Electrolyte for actuator element and actuator element - Google Patents

Electrolyte for actuator element and actuator element Download PDF

Info

Publication number
JP6481356B2
JP6481356B2 JP2014258915A JP2014258915A JP6481356B2 JP 6481356 B2 JP6481356 B2 JP 6481356B2 JP 2014258915 A JP2014258915 A JP 2014258915A JP 2014258915 A JP2014258915 A JP 2014258915A JP 6481356 B2 JP6481356 B2 JP 6481356B2
Authority
JP
Japan
Prior art keywords
electrolyte
actuator element
actuator
ionic liquid
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014258915A
Other languages
Japanese (ja)
Other versions
JP2016119801A (en
Inventor
湯山 佳菜子
佳菜子 湯山
増田 現
現 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Holdings Inc filed Critical Nisshinbo Holdings Inc
Priority to JP2014258915A priority Critical patent/JP6481356B2/en
Publication of JP2016119801A publication Critical patent/JP2016119801A/en
Application granted granted Critical
Publication of JP6481356B2 publication Critical patent/JP6481356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、アクチュエータ素子用電解質及びアクチュエータ素子に関し、更に詳述すると、特定のイオン液体を含むアクチュエータ素子用電解質、及びこれを用いたアクチュエータ素子に関する。   The present invention relates to an electrolyte for an actuator element and an actuator element. More specifically, the present invention relates to an electrolyte for an actuator element containing a specific ionic liquid, and an actuator element using the same.

エレクトロニクスやエネルギー分野の飛躍的な進歩に伴って、小型軽量で柔軟性に富むアクチュエータの必要性が高まっている。特に、高分子アクチュエータ素子は、軽量かつ柔軟で、しかも構成が簡素であることから、カテーテル等の医療用デバイスの導入部や、種々の駆動装置、押圧装置への応用が期待されている。   Accompanying dramatic advances in the electronics and energy fields, there is a growing need for actuators that are compact, lightweight and flexible. In particular, since the polymer actuator element is lightweight and flexible and has a simple configuration, it is expected to be applied to an introduction part of a medical device such as a catheter, various driving devices, and a pressing device.

この高分子アクチュエータ素子は、ポリピロール、ポリアニリン等の電子導電性ポリマーの電解質中におけるレドックス伸縮を利用したもの(電子導電性高分子アクチュエータ)と、イオン交換膜と接合電極とからなり、イオン交換膜の含水状態において、電位差をかけてイオン交換膜に湾曲、変形を生じさせるもの(イオン導電性高分子アクチュエータ)に大別される。   This polymer actuator element is composed of an electroconductive polymer such as polypyrrole or polyaniline that utilizes redox expansion / contraction in the electrolyte (electroconductive polymer actuator), an ion exchange membrane, and a junction electrode. In a water-containing state, it is broadly classified into those that cause the ion exchange membrane to bend and deform by applying a potential difference (ion conductive polymer actuator).

これらの高分子アクチュエータ素子は、いずれも、その動作のために電解質が必要であり、この電解質としては、従来、水溶液が用いられている。特に、イオン導電性高分子アクチュエータは、イオン交換樹脂が水で膨潤した状態でないと十分なイオン伝導性を示さないため、基本的には水中で使用され、空気中でこのアクチュエータを使用するためには、水の蒸発を防ぐ必要がある。   Each of these polymer actuator elements requires an electrolyte for its operation, and an aqueous solution has been conventionally used as the electrolyte. In particular, ion conductive polymer actuators are basically used in water because ion exchange resins do not exhibit sufficient ion conductivity unless they are swollen with water. It is necessary to prevent water evaporation.

この点に鑑み、高分子アクチュエータ素子を樹脂で被覆し、素子からの水の蒸発を防止する方法が報告されている。しかし、素子を完全に被覆することは困難であるとともに、電極反応によるわずかな気体発生によって被覆が破れるという問題があるうえ、被覆自体が変形応答の抵抗となることから実用化には至っていない。また、水媒体系の高分子アクチュエータ素子では水の凝固点以下での使用が困難となるという問題もある。更に、溶媒の揮発に起因する長期安定性に問題があった。   In view of this point, a method has been reported in which a polymer actuator element is coated with a resin to prevent evaporation of water from the element. However, it is difficult to completely cover the device, and there is a problem that the coating is broken by a slight gas generation due to the electrode reaction, and since the coating itself becomes a resistance to deformation response, it has not been put into practical use. Further, there is a problem that it is difficult to use an aqueous medium polymer actuator element below the freezing point of water. Furthermore, there was a problem in long-term stability due to the volatilization of the solvent.

以上のように、従来の高分子アクチュエータ素子は、主に電解質水溶液中という限られた環境でのみ駆動するため、必然的にその用途も限られる。したがって、空気中や真空中で駆動可能なアクチュエータ素子の開発は、小型アクチュエータの幅広い用途への実用化のために不可欠である。   As described above, the conventional polymer actuator element is driven only in a limited environment mainly in an aqueous electrolyte solution, and its application is necessarily limited. Therefore, the development of an actuator element that can be driven in air or vacuum is indispensable for practical application of a small actuator to a wide range of applications.

前記問題を解決するために、最近、イオン液体を高分子アクチュエータ素子の電解質に用いる試みがなされている(特許文献1〜6)。イオン液体は、蒸気圧が無視できるため、揮発による溶媒の乾燥を防ぐことが可能であり、それを高分子アクチュエータ素子の電解質として用いることで、素子の空気中での使用を可能とし、その幅広い用途への適用が可能となることが期待される。しかし、それらのイオン液体も、電位窓が狭いため駆動電圧範囲が狭く、変位が小さいという問題があり、また、耐電圧性、粘度やイオン伝導性等の点でさらなる改良の余地がある。   Recently, attempts have been made to use an ionic liquid as an electrolyte of a polymer actuator element in order to solve the above problems (Patent Documents 1 to 6). Since the ionic liquid has negligible vapor pressure, it is possible to prevent the solvent from drying due to volatilization. By using it as the electrolyte of the polymer actuator element, the element can be used in the air, and its wide range It is expected to be applicable to applications. However, these ionic liquids also have a problem that the driving voltage range is narrow and the displacement is small because the potential window is narrow, and there is room for further improvement in terms of voltage resistance, viscosity, ion conductivity, and the like.

特開2008−054446号公報JP 2008-054446 A 特開2007−204682号公報JP 2007-204682 A 特開2006−050780号公報JP 2006-050780 A 特開2010−233429号公報JP 2010-233429 A 特開2011−050233号公報JP 2011-050233 A 特表2004−527902号公報JP-T-2004-527902

本発明は、このような事情に鑑みてなされたものであり、低電圧で駆動でき、空気中又は真空中で安定かつ変位量の大きいアクチュエータ素子を与えるアクチュエータ素子用電解質、及びこれを用いたアクチュエータ素子を提供することを目的とする。   The present invention has been made in view of such circumstances, and an electrolyte for an actuator element that can be driven at a low voltage, provides an actuator element that is stable in air or vacuum and has a large amount of displacement, and an actuator using the same An object is to provide an element.

本発明者らは、前記目的を達成するために鋭意検討を重ねた結果、所定のピロリジニウムカチオンを有するイオン液体が、安定性や耐電圧性に優れるとともに、低粘度で電気伝導性が良好であることから、アクチュエータ素子用電解質として好適であることを見出し、本発明を完成した。   As a result of intensive investigations to achieve the above object, the present inventors have found that an ionic liquid having a predetermined pyrrolidinium cation has excellent stability and voltage resistance, low viscosity and good electrical conductivity. Therefore, the present invention was completed by finding it suitable as an electrolyte for actuator elements.

すなわち、本発明は、下記アクチュエータ素子用電解質及びアクチュエータ素子を提供する。
1.下記式(1)で表されるイオン液体及び高分子化合物を含むアクチュエータ素子用電解質。

Figure 0006481356
(式中、R1は、炭素数1〜3のアルキル基を表し、R2は、メチル基又はエチル基を表し、nは、1又は2を表し、X-は、1価のアニオンを表す。)
2.前記X-が、BF4 -、CF3SO3 -、CF3CO2 -、PF6 -、(CF3SO2)2-又は(FSO2)2-を表す1のアクチュエータ素子用電解質。
3.前記X-が、(CF3SO2)2-を表す1又は2のアクチュエータ素子用電解質。
4.前記R1が、メチル基又はエチル基を表す1〜3のいずれかのアクチュエータ素子用電解質。
5.前記nが1である1〜4のいずれかのアクチュエータ素子用電解質。
6.前記高分子化合物がアクリル系樹脂である1〜5のいずれかのアクチュエータ素子用電解質。
7.前記高分子化合物がウレタン系樹脂である1〜5のいずれかのアクチュエータ素子用電解質。
8.前記高分子化合物がフッ素系樹脂である1〜5のいずれかのアクチュエータ素子用電解質。
9.前記高分子化合物がシリコーン系樹脂である1〜5のいずれかのアクチュエータ素子用電解質。
10.1〜9のいずれかのアクチュエータ素子用電解質を複数の電極で挟持してなるアクチュエータ素子。 That is, the present invention provides the following actuator element electrolyte and actuator element.
1. An electrolyte for an actuator element comprising an ionic liquid represented by the following formula (1) and a polymer compound.
Figure 0006481356
(In the formula, R 1 represents an alkyl group having 1 to 3 carbon atoms, R 2 represents a methyl group or an ethyl group, n represents 1 or 2, and X represents a monovalent anion. .)
2. 1. The electrolyte for an actuator element according to claim 1, wherein X represents BF 4 , CF 3 SO 3 , CF 3 CO 2 , PF 6 , (CF 3 SO 2 ) 2 N or (FSO 2 ) 2 N −. .
3. The electrolyte for actuator elements according to 1 or 2, wherein X represents (CF 3 SO 2 ) 2 N .
4). The electrolyte for actuator elements according to any one of 1 to 3, wherein R 1 represents a methyl group or an ethyl group.
5. The electrolyte for actuator elements according to any one of 1 to 4, wherein n is 1.
6). The electrolyte for actuator elements according to any one of 1 to 5, wherein the polymer compound is an acrylic resin.
7). The electrolyte for actuator elements according to any one of 1 to 5, wherein the polymer compound is a urethane resin.
8). The electrolyte for actuator elements according to any one of 1 to 5, wherein the polymer compound is a fluororesin.
9. The electrolyte for actuator elements according to any one of 1 to 5, wherein the polymer compound is a silicone resin.
10. An actuator element formed by sandwiching an electrolyte for an actuator element according to any one of 10.1 to 9 between a plurality of electrodes.

本発明で用いるイオン液体はピロリジニウム系であり、電位窓が芳香族系イオン液体に比べ広いため、駆動電圧範囲が狭く、その分変位も大きい。また、アンモニウム系イオン液体に比べ粘度が低く、樹脂内の移動性に優れ、応答性が良い。また、本発明で用いるイオン液体は不揮発性であるため、これを用いる本発明のアクチュエータ素子は、空気中でも長期にわたって安定に駆動することができ、また、真空条件下でも作動する。
すなわち、本発明で用いるイオン液体は、安定性や耐電圧性に優れるとともに、低粘度で電気伝導性が良好であることから、これを用いると、安定性及び耐久性に優れ、かつ、応答性の良好なアクチュエータ素子が得られる。
The ionic liquid used in the present invention is pyrrolidinium-based and has a wider potential window than the aromatic ionic liquid, so that the driving voltage range is narrow and the displacement is correspondingly large. In addition, the viscosity is lower than that of the ammonium-based ionic liquid, the mobility in the resin is excellent, and the response is good. In addition, since the ionic liquid used in the present invention is non-volatile, the actuator element of the present invention using the ionic liquid can be driven stably in the air for a long period of time, and also operates under vacuum conditions.
That is, the ionic liquid used in the present invention is excellent in stability and voltage resistance, and has low viscosity and good electrical conductivity. Therefore, when it is used, it has excellent stability and durability, and responsiveness. A good actuator element can be obtained.

合成例1で得られたMEMP・FSAの1H−NMRスペクトル図である。1 is a 1 H-NMR spectrum diagram of MEMP • FSA obtained in Synthesis Example 1. FIG. 合成例3で得られたMMMP・FSAの1H−NMRスペクトル図である。6 is a 1 H-NMR spectrum diagram of MMMP · FSA obtained in Synthesis Example 3. FIG. 合成例1及び3で得られた各イオン液体の電位窓測定結果を示す図である。It is a figure which shows the electric potential window measurement result of each ionic liquid obtained by the synthesis examples 1 and 3. FIG. 実施例で作製したアクチュエータの模式図である。It is a schematic diagram of the actuator produced in the Example.

本発明のアクチュエータ素子用電解質は、下記式(1)で表されるイオン液体及び高分子化合物を含む。   The actuator element electrolyte of the present invention includes an ionic liquid represented by the following formula (1) and a polymer compound.

Figure 0006481356
Figure 0006481356

式(1)中、R1は、炭素数1〜3のアルキル基を表す。前記アルキル基は、直鎖状、分岐状、環状のいずれでもよく、メチル基、エチル基、n−プロピル基、i−プロピル基及びc−プロピル基が挙げられるが、直鎖状のアルキル基が好ましく、中でもメチル基及びエチル基がより好ましく、メチル基がより一層好ましい。R2は、メチル基又はエチル基を表すが、メチル基が好ましい。nは、1又は2を表す。 In formula (1), R 1 represents an alkyl group having 1 to 3 carbon atoms. The alkyl group may be linear, branched or cyclic, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an i-propyl group and a c-propyl group. Among them, a methyl group and an ethyl group are more preferable, and a methyl group is even more preferable. R 2 represents a methyl group or an ethyl group, and is preferably a methyl group. n represents 1 or 2.

中でもカチオン構造としては、より熱安定性に優れているという点から、下記式(A)で表される構造が好ましく、より低粘度という点から、下記式(B)で表される構造が好ましい。   Among these, as the cationic structure, a structure represented by the following formula (A) is preferable from the viewpoint of more excellent thermal stability, and a structure represented by the following formula (B) is preferable from the viewpoint of lower viscosity. .

Figure 0006481356
Figure 0006481356

式(1)中、X-は1価のアニオンであり、イオン液体を形成し得るアニオンであれば特に限定されないが、BF4 -、CF3SO3 -、CF3CO2 -、PF6 -、(C49SO2)2-、(C37SO2)2-、(C25SO2)2-、(C25SO2)(CF3SO2)N-、(CF3SO2)2-、(CF3SO2)(FSO2)N-、(FSO2)2-等が挙げられる。本発明では、主に経済性の観点から、BF4 -、CF3SO3 -、CF3CO2 -、PF6 -、(CF3SO2)2-、(FSO2)2-等が好ましく、熱安定性、耐電圧性、低粘度性等を考慮すると、(CF3SO2)2-、(FSO2)2-がより好ましく、(CF3SO2)2-が更に好ましい。 In formula (1), X is a monovalent anion and is not particularly limited as long as it is an anion capable of forming an ionic liquid, but BF 4 , CF 3 SO 3 , CF 3 CO 2 , PF 6 −. , (C 4 F 9 SO 2 ) 2 N , (C 3 F 7 SO 2 ) 2 N , (C 2 F 5 SO 2 ) 2 N , (C 2 F 5 SO 2 ) (CF 3 SO 2 ) N , (CF 3 SO 2 ) 2 N , (CF 3 SO 2 ) (FSO 2 ) N , (FSO 2 ) 2 N − and the like. In the present invention, mainly from the viewpoint of economy, BF 4 , CF 3 SO 3 , CF 3 CO 2 , PF 6 , (CF 3 SO 2 ) 2 N , (FSO 2 ) 2 N − and the like. In view of thermal stability, voltage resistance, low viscosity, etc., (CF 3 SO 2 ) 2 N and (FSO 2 ) 2 N are more preferable, and (CF 3 SO 2 ) 2 N is more preferable. Further preferred.

本発明で用いられるイオン液体は、国際公開第2002/076924号記載の方法や、中国特許出願公開第101747243号明細書等により製造することができ、例えば、定法に従って製造したN−アルコキシアルキル−N−アルキルピロリジニウムハライド(例えば、クロライド、ブロマイド等)と、所望のアニオンのアルカリ金属(例えば、ナトリウム、カリウム等)塩とを水や有機溶媒中でアニオン交換反応させて得ることができる。また、陰イオン交換樹脂を用いてハライド塩を水酸化物塩に変換した後、アニオンに対応する酸との中和反応によって合成する等のその他公知の方法でも合成できる。   The ionic liquid used in the present invention can be produced by the method described in International Publication No. 2002/076924 or the specification of Chinese Patent Application No. 10147243, for example, N-alkoxyalkyl-N produced according to a conventional method. -An alkylpyrrolidinium halide (for example, chloride, bromide, etc.) and an alkali metal (for example, sodium, potassium, etc.) salt of a desired anion can be obtained by anion exchange reaction in water or an organic solvent. Moreover, after converting a halide salt into a hydroxide salt using an anion exchange resin, it can also be synthesized by other known methods such as synthesis by a neutralization reaction with an acid corresponding to an anion.

本発明で好適に用いることができるイオン液体としては以下に示すものが挙げられるが、これらに限定されない。   Examples of the ionic liquid that can be suitably used in the present invention include, but are not limited to, the following.

Figure 0006481356
Figure 0006481356

Figure 0006481356
Figure 0006481356

本発明のアクチュエータ素子に用いる前記イオン液体の使用量は、用いるイオン液体の種類と高分子化合物の種類との組み合わせによって最適量が異なり、適宜最適量を求め使用することが好ましいが、例えば、高分子化合物がゲル状である場合、前記イオン液体の使用量は、電解質中、通常60〜99質量%程度が好ましく、65〜95質量%程度がより好ましい。また、例えば、前記高分子化合物がエラストマーである場合、前記イオン液体の使用量は、電解質中、通常0.1〜60質量%程度が好ましく、1〜50質量%程度がより好ましい。   The amount of the ionic liquid used in the actuator element of the present invention varies depending on the combination of the type of ionic liquid used and the type of polymer compound, and it is preferable to obtain and use the optimum amount as appropriate. When the molecular compound is in a gel form, the amount of the ionic liquid used is usually preferably about 60 to 99% by mass and more preferably about 65 to 95% by mass in the electrolyte. For example, when the polymer compound is an elastomer, the amount of the ionic liquid used is usually preferably about 0.1 to 60% by mass and more preferably about 1 to 50% by mass in the electrolyte.

本発明の電解質に含まれる高分子化合物としては、従来高分子アクチュエータ素子用電解質に用いられている高分子化合物、例えば、ゲルを形成するものやエラストマーから適宜選択して用いればよく、導電性材料でも誘電性材料でもよい。このような高分子化合物としては、アクリル系樹脂、フッ素系樹脂、ウレタン系樹脂、シリコーン系樹脂等が好ましい。前記高分子化合物は、1種単独で用いても、2種以上組み合わせて用いてもよい。   As the polymer compound contained in the electrolyte of the present invention, a polymer compound conventionally used in electrolytes for polymer actuator elements, for example, a gel-forming material or an elastomer may be appropriately selected and used. However, it may be a dielectric material. As such a polymer compound, an acrylic resin, a fluorine resin, a urethane resin, a silicone resin, or the like is preferable. The polymer compounds may be used alone or in combination of two or more.

前記アクリル系樹脂としては、ポリ(メタ)アクリル酸、ポリ(メタ)アクリルアミド、ポリアルキルメタクリレート、ポリアルキルアクリレート、ポリヒドロキシアルキルメタクリレート、ポリヒドロキシアルキルアクリレート、ポリアクリロニトリル、スチレン−ヒドロキシアルキル(メタ)アクリレート共重合体、スチレン−(メタ)アクリル酸エステル共重合体、スチレン−(メタ)アクリル酸共重合体、アクリロニトリル−ブタジエン共重合体等が挙げられる。   Examples of the acrylic resin include poly (meth) acrylic acid, poly (meth) acrylamide, polyalkyl methacrylate, polyalkyl acrylate, polyhydroxyalkyl methacrylate, polyhydroxyalkyl acrylate, polyacrylonitrile, and styrene-hydroxyalkyl (meth) acrylate. Examples thereof include a polymer, a styrene- (meth) acrylic acid ester copolymer, a styrene- (meth) acrylic acid copolymer, and an acrylonitrile-butadiene copolymer.

フッ素系樹脂としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリトリフルオロエチレン、ポリフッ化ビニル、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、フッ化ビニリデン−(メタ)アクリル酸共重合体、フッ化ビニリデン−(メタ)アクリル酸エステル共重合体、エチレン−テトラフルオロエチレン共重合体、プロピレン−テトラフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロメチルビニルエーテル共重合体、テトラフルオロエチレン−パーフルオロプロピルビニルエーテル共重合体、テトラフルオロエチレン−パーフルオロ−2,2−ジメチル−1,3−ジオキソール共重合体、テトラフルオロエチレン−パーフルオロスルホン酸モノマー共重合体、エチレン−クロロトリフルオロエチレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−パーフルオロメチルビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン−パーフルオロプロピルビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン−ペンタフルオロプロピレン共重合体等が挙げられる。   Fluorine resins include polyvinylidene fluoride, polytetrafluoroethylene, polychlorotrifluoroethylene, polytrifluoroethylene, polyvinyl fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer Polymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-pentafluoropropylene copolymer, vinylidene fluoride- (meth) acrylic acid copolymer, fluoropolymer Vinylidene fluoride- (meth) acrylic acid ester copolymer, ethylene-tetrafluoroethylene copolymer, propylene-tetrafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene -Perfluoromethyl vinyl ether copolymer, tetrafluoroethylene-perfluoropropyl vinyl ether copolymer, tetrafluoroethylene-perfluoro-2,2-dimethyl-1,3-dioxole copolymer, tetrafluoroethylene-perfluorosulfone Acid monomer copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-perfluoromethyl vinyl ether copolymer, vinylidene fluoride -Tetrafluoroethylene-perfluoropropyl vinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene-pentafluoropropylene copolymer, and the like.

ウレタン系樹脂としては、ポリウレタン等が挙げられる。シリコーン系樹脂としては、ポリシロキサン等が挙げられる。   Examples of the urethane resin include polyurethane. Examples of the silicone resin include polysiloxane.

前述したもの以外に使用可能な高分子化合物の例としては、ポリエチレン、ポリプロピレン、ポリイソブテン、ポリメチルビニルケトン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリピロール、ポリインドール、ポリアニリン、ポリチオフェン、ポリアセチレン、ポリイソチアナフテン、ポリフラン、ポリセレノフェン、ポリテルロフェン、ポリチオフェンビニレン、ポリパラフェニレンビニレン、ポリカルボン酸ビニル、ポリカーボネート樹脂、ポリエステル樹脂、ポリイミド樹脂、セルロース樹脂、ポリビニルピリジン、デンプン、ポリペプチド、ポリスチレン、パーフルオロポリエーテル、ポリエチレンオキシド、ポリプロピレンオキシド等が挙げられる。   Examples of polymer compounds that can be used other than those mentioned above include polyethylene, polypropylene, polyisobutene, polymethyl vinyl ketone, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polypyrrole, polyindole, polyaniline, polythiophene, polyacetylene, polyacetylene. Isothianaphthene, polyfuran, polyselenophene, polytellurophene, polythiophene vinylene, polyparaphenylene vinylene, polycarboxylate vinyl, polycarbonate resin, polyester resin, polyimide resin, cellulose resin, polyvinyl pyridine, starch, polypeptide, polystyrene, par Fluoropolyether, polyethylene oxide, polypropylene oxide and the like can be mentioned.

本発明のアクチュエータ素子に用いる高分子化合物がゲル状である場合、その使用量は、電解質中、通常1〜40質量%程度が好ましく、5〜35質量%程度がより好ましい。また、前記高分子化合物がエラストマーである場合、その使用量は、電解質中、通常40〜99.9質量%程度が好ましく、50〜99質量%程度がより好ましい。   When the polymer compound used in the actuator element of the present invention is in a gel form, the amount used is usually preferably about 1 to 40% by mass and more preferably about 5 to 35% by mass in the electrolyte. Moreover, when the said high molecular compound is an elastomer, the usage-amount is normally about 40-99.9 mass% in an electrolyte, and about 50-99 mass% is more preferable.

本発明のアクチュエータ素子用電解質は、更に導電性フィラーを含んでもよい。前記導電性フィラーとしては、導電性金属ナノ粒子、導電性ナノカーボン材等が挙げられる。前記導電性金属ナノ粒子を構成する金属としては、金、銀、銅、白金、パラジウム、ニッケル、ロジウム、アルミニウム、スズ、亜鉛、鉛、チタン、タンタル、及びこれらの合金等が挙げられる。前記導電性ナノカーボン材としては、フラーレン、カーボンナノボール、カーボンナノファイバー、カーボンナノチューブ、カーボンナノホーン等が挙げられる。これらは、目的や用途に応じて適宜選択すればよい。   The electrolyte for actuator elements of the present invention may further contain a conductive filler. Examples of the conductive filler include conductive metal nanoparticles and conductive nanocarbon materials. Examples of the metal constituting the conductive metal nanoparticles include gold, silver, copper, platinum, palladium, nickel, rhodium, aluminum, tin, zinc, lead, titanium, tantalum, and alloys thereof. Examples of the conductive nanocarbon material include fullerene, carbon nanoball, carbon nanofiber, carbon nanotube, and carbon nanohorn. These may be appropriately selected according to the purpose and application.

前記導電性フィラーの配合量は、電解質中、0.1〜10質量%程度が好ましく、0.5〜5質量%程度がより好ましい。   The blending amount of the conductive filler is preferably about 0.1 to 10% by mass, and more preferably about 0.5 to 5% by mass in the electrolyte.

本発明のアクチュエータ素子は、前記アクチュエータ素子用電解質を複数の電極で挟持してなるものである。電極の材料としては、金属、導電性高分子、カーボン等の公知のものを用いることができる。本発明のアクチュエータ素子は、従来公知の方法で作製することができる。   The actuator element of the present invention comprises the actuator element electrolyte sandwiched between a plurality of electrodes. As a material for the electrode, a known material such as a metal, a conductive polymer, or carbon can be used. The actuator element of the present invention can be produced by a conventionally known method.

前記金属としては、例えば、金、白金、アルミニウム、インジウム、酸化インジウム、酸化スズ(IV)、ITO、銀等が挙げられる。金属電極を形成する方法としては、例えば、無電解めっき法、イオンプレーティング法、プラズマCVD法、イオンスパッタ被覆法、真空蒸着法、スクリーン印刷、イオンビームアシスト法、イオン化蒸着法等が挙げられる。また、金属微粒子を一般的に利用される公知のバインダー樹脂に混合し、膜状に成形することで電極を得ることもできる。   Examples of the metal include gold, platinum, aluminum, indium, indium oxide, tin (IV) oxide, ITO, and silver. Examples of the method for forming the metal electrode include an electroless plating method, an ion plating method, a plasma CVD method, an ion sputtering coating method, a vacuum deposition method, screen printing, an ion beam assist method, and an ionization deposition method. Moreover, an electrode can also be obtained by mixing metal fine particles with a commonly used known binder resin and forming it into a film shape.

前記導電性高分子としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン及びこれらの誘導体等が挙げられる。前記導電性高分子は、ドーパントでドープされたものでもよく、この場合のドーパントとしては、従来公知のもの、例えば、PF6 -、BF4 -、ClO4 -、SbF6 -、SO4 2-等の無機アニオン、アルキルベンゼンスルホン酸イオン、アルキルナフタレンスルホン酸イオン等の有機アニオンを用いることができる。 Examples of the conductive polymer include polyaniline, polypyrrole, polythiophene, and derivatives thereof. The conductive polymer may be doped with a dopant. In this case, as the dopant, conventionally known ones such as PF 6 , BF 4 , ClO 4 , SbF 6 , SO 4 2− are used. Inorganic anions such as alkylbenzene sulfonate ions and alkyl naphthalene sulfonate ions can be used.

導電性高分子からなる複数の電極間に電解質層を狭持させる方法としては、あらかじめシート状に作製した電解質の両面に、導電性高分子を化学的又は電気化学的に重合して形成させる方法、あらかじめシート状に作製した電極表面に、モノマー、イオン液体及び重合開始剤を塗布し加熱共重合することにより電解質を形成させる方法等が挙げられる。   As a method of sandwiching an electrolyte layer between a plurality of electrodes made of a conductive polymer, a method in which a conductive polymer is chemically or electrochemically formed on both surfaces of an electrolyte prepared in a sheet shape in advance. For example, a method of forming an electrolyte by applying a monomer, an ionic liquid, and a polymerization initiator to a surface of an electrode prepared in a sheet shape in advance and performing heat copolymerization may be used.

前記カーボンとしては、例えば、カーボンナノチューブ、カーボンブラック、フラーレン、活性炭等が挙げられる。カーボン電極を形成する方法としては、特に限定されないが、例えば、一般的に利用される公知のバインダー樹脂にカーボンを混合し、膜状に成形する方法が挙げられる。このようにして得られたカーボン電極と本発明の電解質とを、従来公知の方法で、例えば、複数のカーボン電極で本発明の電解質を挟み、プレスすることでアクチュエータ素子を製造することができる。   Examples of the carbon include carbon nanotubes, carbon black, fullerene, and activated carbon. The method for forming the carbon electrode is not particularly limited, and examples thereof include a method in which carbon is mixed with a commonly used known binder resin to form a film. The actuator element can be manufactured by sandwiching and pressing the carbon electrode thus obtained and the electrolyte of the present invention by a conventionally known method, for example, by sandwiching the electrolyte of the present invention between a plurality of carbon electrodes.

本発明のアクチュエータ素子は、電解質にイオン液体が含有されているため、イオン電導度が高く、溶媒の揮発による電解質層のドライアップが改善され、該電解質を用いた導電性高分子アクチュエータは、低電圧で変位量が大きく、空気中や真空中で長期安定的に作動することができる。   Since the ionic liquid is contained in the electrolyte, the actuator element of the present invention has high ionic conductivity, improved dry-up of the electrolyte layer due to volatilization of the solvent, and the conductive polymer actuator using the electrolyte has low Displacement is large with voltage, and it can operate stably for a long time in air or vacuum.

以下、合成例及び実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されない。なお、使用した分析装置は下記のとおりである。
[1]1H−NMRスペクトル
装置:日本電子(株)製、AL−400
溶媒:重ジメチルスルホキシド
[2]粘度計
装置:BROOK FIELD社製、プログラマブルレオメーター
[3]電気伝導率
装置:東亜ディーケーケー(株)製 電気伝導率計CM−30R
[4]電位窓
装置:北斗電工(株)製 スタンダードボルタンメトリツールHSV−100
EXAMPLES Hereinafter, although a synthesis example and an Example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example. The analyzers used are as follows.
[1] 1 H-NMR spectrum apparatus: AL-400 manufactured by JEOL Ltd.
Solvent: Heavy dimethyl sulfoxide [2] Viscometer device: manufactured by BROOK FIELD, programmable rheometer [3] Electrical conductivity device: manufactured by Toa DKK Corporation Electric conductivity meter CM-30R
[4] Potential window device: Standard voltammetric tool HSV-100 manufactured by Hokuto Denko Co., Ltd.

[1]イオン液体の合成
[合成例1]MEMP・FSAの合成

Figure 0006481356
[1] Synthesis of ionic liquid [Synthesis Example 1] Synthesis of MEMP • FSA
Figure 0006481356

ピロリジン(和光純薬工業(株)製)1.51質量部と塩化2−メトキシエチル(関東化学(株)製)1.00質量部とを混合し、還流しながら1時間反応させた。反応後、反応液は2層に分離したが、しばらく放冷すると下層は固化した。デカンテーションにより上層のみ回収し、減圧蒸留により精製し、目的物であるN−2−メトキシエチルピロリジン(沸点76℃/蒸気圧45mmHg)0.96質量部を得た(収率70%)。
得られたN−2−メトキシエチルピロリジン1.00質量部、及びこれに対して2倍容量のトルエン(和光純薬工業(株)製)を混合し、オートクレーブ中に入れ、系内を窒素置換した。密閉系にした後、室温攪拌下で塩化メチルガス(日本特殊化学工業(株)製)約1.00質量部を加えた。塩化メチルガス導入時には温度及び内圧の上昇が見られ、最高時で温度は約53℃、内圧は5.5kgf/cm2(約5.4×105Pa)まで上昇した。そのまま加熱せずに反応させ、2日後に塩化メチルガス約0.75質量部を加えた。更に1日反応させた後、加圧を解除し、系中に生成した結晶を減圧濾過にてろ別し、真空ポンプを用いて乾燥させ、N−2−メトキシエチル−N−メチルピロリジニウムクロライド1.29質量部を得た(収率92%)。
得られたN−2−メトキシエチル−N−メチルピロリジニウムクロライド1.00質量部に当倍容量のイオン交換水を加え、攪拌して溶解させた。この溶液を、カリウムビス(フルオロスルホニル)アミド(関東化学(株)製)1.29質量部を当倍容量のイオン交換水に溶かした溶液に攪拌下で加えた。室温で反応させ、3時間以上経過した後に、2層に分離した反応液を分液し、下層の有機層を2回イオン交換水で洗浄後、真空ポンプを用いて乾燥させ、目的物であるN−2−メトキシエチル−N−メチルピロリジニウムビス(フルオロスルホニル)アミド(MEMP・FSA)1.50質量部を得た(収率83%)。MEMP・FSAの1H−NMRスペクトルを図1に示す。なお、25℃での粘度は、35cPであった。
Pyrrolidine (manufactured by Wako Pure Chemical Industries, Ltd.) 1.51 parts by mass and 2-methoxyethyl chloride (manufactured by Kanto Chemical Co., Ltd.) 1.00 parts by mass were mixed and reacted for 1 hour while refluxing. After the reaction, the reaction solution was separated into two layers, but the lower layer solidified when allowed to cool for a while. Only the upper layer was recovered by decantation and purified by distillation under reduced pressure to obtain 0.96 parts by mass of N-2-methoxyethylpyrrolidine (boiling point 76 ° C./vapor pressure 45 mmHg) as the target product (yield 70%).
1.00 parts by mass of the obtained N-2-methoxyethylpyrrolidine and 2 times volume of toluene (manufactured by Wako Pure Chemical Industries, Ltd.) are mixed and placed in an autoclave, and the system is purged with nitrogen. did. After making the sealed system, about 1.00 parts by mass of methyl chloride gas (manufactured by Nippon Special Chemical Industry Co., Ltd.) was added with stirring at room temperature. When methyl chloride gas was introduced, the temperature and internal pressure increased. At the maximum, the temperature increased to about 53 ° C., and the internal pressure increased to 5.5 kgf / cm 2 (about 5.4 × 10 5 Pa). The reaction was continued without heating, and about 0.75 parts by mass of methyl chloride gas was added after 2 days. After further reaction for 1 day, the pressure was released, and the crystals formed in the system were filtered off under reduced pressure, dried using a vacuum pump, and N-2-methoxyethyl-N-methylpyrrolidinium chloride. 1.29 parts by mass were obtained (yield 92%).
An equivalent volume of ion-exchanged water was added to 1.00 parts by mass of the obtained N-2-methoxyethyl-N-methylpyrrolidinium chloride, and dissolved by stirring. This solution was added with stirring to a solution prepared by dissolving 1.29 parts by mass of potassium bis (fluorosulfonyl) amide (manufactured by Kanto Chemical Co., Inc.) in an equivalent volume of ion-exchanged water. After reacting at room temperature for 3 hours or more, the reaction solution separated into two layers is separated, and the lower organic layer is washed twice with ion-exchanged water and then dried using a vacuum pump. 1.50 parts by mass of N-2-methoxyethyl-N-methylpyrrolidinium bis (fluorosulfonyl) amide (MEMP · FSA) was obtained (yield 83%). The 1 H-NMR spectrum of MEMP • FSA is shown in FIG. The viscosity at 25 ° C. was 35 cP.

[合成例2]MEMP・TFSAの合成

Figure 0006481356
[Synthesis Example 2] Synthesis of MEMP • TFSA
Figure 0006481356

合成例1と同様の合成法で得たN−2−メトキシエチル−N−メチルピロリジニウムクロライド1.00質量部に当倍容量のイオン交換水を加え、攪拌して溶解させた。この溶液を、リチウムビス(トリフルオロメタンスルホニル)アミド(関東化学(株)製)1.68質量部を当倍容量のイオン交換水に溶かした溶液に攪拌下で加えた。室温で反応させ、3時間以上経過した後に、2層に分離した反応液を分液し、下層の有機層を2回イオン交換水で洗浄後、真空ポンプを用いて乾燥させ、目的物であるN−2−メトキシエチル−N−メチルピロリジニウムビス(トリフルオロメタンスルホニル)アミド(MEMP・TFSA)1.50質量部を得た(収率83%)。なお、25℃での粘度は、50cPであった。   An equivalent volume of ion-exchanged water was added to 1.00 parts by mass of N-2-methoxyethyl-N-methylpyrrolidinium chloride obtained by the same synthesis method as in Synthesis Example 1, and dissolved by stirring. This solution was added with stirring to a solution prepared by dissolving 1.68 parts by mass of lithium bis (trifluoromethanesulfonyl) amide (manufactured by Kanto Chemical Co., Inc.) in an equivalent volume of ion-exchanged water. After reacting at room temperature for 3 hours or more, the reaction solution separated into two layers is separated, and the lower organic layer is washed twice with ion-exchanged water and then dried using a vacuum pump. 1.50 parts by mass of N-2-methoxyethyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) amide (MEMP · TFSA) was obtained (yield 83%). The viscosity at 25 ° C. was 50 cP.

[合成例3]MMMP・FSAの合成

Figure 0006481356
Synthesis Example 3 Synthesis of MMMP • FSA
Figure 0006481356

N−メチルピロリジン(和光純薬工業(株)製)14.4質量部をテトラヒドロフラン(和光純薬工業(株)製)200質量部に溶かした溶液を氷冷し、攪拌下、クロロメチルメチルエーテル(東京化成工業(株)製)17.1質量部を加えた。一晩反応させた後、析出した固体を桐山ロートを用い減圧濾過した。得られた白色固体を真空ポンプを用いて乾燥させ、中間体N−メトキシメチル−N−メチルピロリジニウムクロライド26.7質量部を得た(収率96%)。
得られたN−メトキシメチル−N−メチルピロリジニウムクロライド8.58質量部をイオン交換水10質量部に溶解させた。この溶液をカリウムビス(フルオロスルホニル)アミド(関東化学(株)製)12.5質量部をイオン交換水5質量部に溶かした溶液に攪拌下加えた。室温で攪拌を一晩継続させた後、2層に分かれた反応液を分液し、下層の有機層イオン交換水で4回洗浄後、真空ポンプを用いて乾燥させ、目的物であるN−メトキシメチル−N−メチルピロリジニウムビス(フルオロスルホニル)アミド(MMMP・FSA)10.2質量部を得た(収率63%)。MMMP・FSAの1H−NMRスペクトルを図2に示す。なお、25℃での粘度は、20cPであった。
A solution prepared by dissolving 14.4 parts by mass of N-methylpyrrolidine (manufactured by Wako Pure Chemical Industries, Ltd.) in 200 parts by mass of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) was ice-cooled, and chloromethyl methyl ether was stirred. 17.1 parts by mass (manufactured by Tokyo Chemical Industry Co., Ltd.) was added. After reacting overnight, the precipitated solid was filtered under reduced pressure using a Kiriyama funnel. The obtained white solid was dried using a vacuum pump to obtain 26.7 parts by mass of an intermediate N-methoxymethyl-N-methylpyrrolidinium chloride (yield 96%).
8.58 parts by mass of the obtained N-methoxymethyl-N-methylpyrrolidinium chloride was dissolved in 10 parts by mass of ion-exchanged water. This solution was added with stirring to a solution prepared by dissolving 12.5 parts by mass of potassium bis (fluorosulfonyl) amide (manufactured by Kanto Chemical Co., Ltd.) in 5 parts by mass of ion-exchanged water. After stirring overnight at room temperature, the reaction solution separated into two layers was separated, washed four times with the lower organic layer ion-exchanged water, dried using a vacuum pump, and the target N- 10.2 parts by mass of methoxymethyl-N-methylpyrrolidinium bis (fluorosulfonyl) amide (MMMP • FSA) was obtained (yield 63%). The 1 H-NMR spectrum of MMMP · FSA is shown in FIG. The viscosity at 25 ° C. was 20 cP.

[合成例4]MMMP・TFSAの合成

Figure 0006481356
Synthesis Example 4 Synthesis of MMMP / TFSA
Figure 0006481356

N−2−メトキシエチル−N−メチルピロリジニウムクロライドを、合成例3と同様の合成法で得たN−2−メトキシメチル−N−メチルピロリジニウムクロライドにかえた以外は、合成例2と同様の方法で、目的物であるN−2−メトキシメチル−N−メチルピロリジニウムビス(トリフルオロメタンスルホニル)アミド(MMMP・TFSA)を得た。なお、25℃での粘度は、42cPであった。   Synthesis Example 2 except that N-2-methoxyethyl-N-methylpyrrolidinium chloride was replaced with N-2-methoxymethyl-N-methylpyrrolidinium chloride obtained by the same synthesis method as Synthesis Example 3. In the same manner as above, N-2-methoxymethyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) amide (MMMP • TFSA), which was the object, was obtained. The viscosity at 25 ° C. was 42 cP.

合成例1及び3で得られた各イオン液体について、電気伝導率を測定した。測定は電気伝導率計を用い、25℃の恒温槽内で計測した。結果を表1に示す。   The electric conductivity of each ionic liquid obtained in Synthesis Examples 1 and 3 was measured. The measurement was performed in a thermostatic bath at 25 ° C. using an electric conductivity meter. The results are shown in Table 1.

Figure 0006481356
Figure 0006481356

また、合成例1及び3で得られた各イオン液体について電位窓を測定した。結果を図3に示す。図3に示されるように、いずれのイオン液体とも広い電位窓を有することがわかった。   Further, the potential window was measured for each ionic liquid obtained in Synthesis Examples 1 and 3. The results are shown in FIG. As shown in FIG. 3, it was found that both ionic liquids have a wide potential window.

[2]アクチュエータの作製及び作動試験
[実施例1]
導電性高分子モノマーとしてピロールと、電解質塩としてテトラエチルアンモニウムテトラフルオロボレートとをプロピレンカーボネートに溶解して、電解重合液を調製した。
この電解重合液に、絶縁テープにより片面マスキングを施したステンレス板を水平に2枚浸漬し、一方を陽極に、他方を陰極として、0.5mA/cm2の電流密度で4時間、定電流電解を行い、陽極表面に電解重合ポリピロール膜を形成させた。前記ポリピロール膜をステンレス板から剥離し、アセトンで洗浄した後、所定の大きさに裁断して、幅3mm、長さ25mm、厚さ約20μmの板状電極を得た。
前記電極間に電解質層を形成させるために、まず、メチルメタアクリレート20%、架橋剤としてエチレングリコールジメタアクリレート0.5%、重合開始剤としてベンゾイルパーオキサイド0.5%、及びイオン液体としてMEMP・FSA79%の配合比となるように混合し、均一な電解質層形成用溶液を調製した。
前記溶液を、前記板状電極と同じ大きさのセパレータ紙(日本製紙クレシア(株)製、キムワイプ(登録商標)S−200)に充分含浸させ、先に作製した2枚の板状電極間に挟み込んで積層体とし、この積層体をガラス板に挟み込んで、温度90℃、3時間加熱共重合させて、2枚の板状電極間にゲル状電解質を狭持させたアクチュエータ素子を得た。該アクチュエータ素子の厚さは約100μmであった。
[2] Manufacture and operation test of actuator [Example 1]
An electrolytic polymerization solution was prepared by dissolving pyrrole as a conductive polymer monomer and tetraethylammonium tetrafluoroborate as an electrolyte salt in propylene carbonate.
In this electrolytic polymerization solution, two stainless steel plates that are masked on one side with an insulating tape are immersed horizontally. One is the anode, the other is the cathode, and a constant current electrolysis at a current density of 0.5 mA / cm 2 for 4 hours. Then, an electrolytic polymerization polypyrrole film was formed on the anode surface. The polypyrrole film was peeled from the stainless steel plate, washed with acetone, and then cut into a predetermined size to obtain a plate electrode having a width of 3 mm, a length of 25 mm, and a thickness of about 20 μm.
In order to form an electrolyte layer between the electrodes, first, 20% methyl methacrylate, 0.5% ethylene glycol dimethacrylate as a crosslinking agent, 0.5% benzoyl peroxide as a polymerization initiator, and MEMS as an ionic liquid -It mixed so that it might become a compounding ratio of FSA79%, and the solution for uniform electrolyte layer formation was prepared.
The solution is sufficiently impregnated with separator paper (Nippon Paper Crecia Co., Ltd., Kimwipe (registered trademark) S-200) having the same size as the plate-like electrode, and between the two plate-like electrodes prepared previously. A laminated body was sandwiched between the glass plates, and the laminated body was sandwiched between glass plates and subjected to heat copolymerization at 90 ° C. for 3 hours to obtain an actuator element in which a gel electrolyte was sandwiched between two plate-like electrodes. The thickness of the actuator element was about 100 μm.

[実施例2]
実施例1で用いたイオン液体をMEMP・FSAからMEMP・TFSAにかえた以外は、実施例1と同様の方法でアクチュエータ素子を作製した。
[Example 2]
An actuator element was produced in the same manner as in Example 1 except that the ionic liquid used in Example 1 was changed from MEMP · FSA to MEMP · TFSA.

[実施例3]
実施例1で用いたイオン液体をMEMP・FSAからMMMP・FSAにかえた以外は、実施例1と同様の方法でアクチュエータ素子を作製した。
[Example 3]
An actuator element was produced in the same manner as in Example 1 except that the ionic liquid used in Example 1 was changed from MEMP · FSA to MMMP · FSA.

[実施例4]
実施例1で用いたイオン液体をMEMP・FSAからMMMP・TFSAにかえた以外は、実施例1と同様の方法でアクチュエータ素子を作製した。
[Example 4]
An actuator element was produced in the same manner as in Example 1 except that the ionic liquid used in Example 1 was changed from MEMP · FSA to MMMP · TFSA.

[比較例1]
実施例1で用いたイオン液体をMEMP・FSAから1−エチル−3−メチルイミダゾリウムビス(トリフルオロメタンスルフォニル)アミド(EMI・TFSA)にかえた以外は、実施例1と同様の方法でアクチュエータ素子を作製した。
[Comparative Example 1]
The actuator element was prepared in the same manner as in Example 1 except that the ionic liquid used in Example 1 was changed from MEMP • FSA to 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) amide (EMI • TFSA). Was made.

<アクチュエータの作動試験>
実施例及び比較例で作製したアクチュエータ素子を用いて、図4に示す装置を組み立て、電圧印加を1回、10回及び50回繰り返し、素子先端部が5mm変形するまでの到達時間を測定した。
アクチュエータの板状電極への電圧印加条件としては、3Vの電圧をアクチュエータの板状電極間に印加し、アクチュエータが変形を開始して所定の変位量に到達するまでの時間を測定した。測定終了後、2枚の板状電極を短絡させてアクチュエータが変形する前の初期形状に戻し、次に、極性を切り替えて3Vの電圧印加し、所定の変形量に到達するまでの時間を測定した。測定終了後、2枚の板状電極を短絡させてアクチュエータを初期形状に戻した。このようにして、順方向/逆方向で板状電極に電圧印加させる操作を1サイクルとして、このサイクルを1回、10回及び50回繰り返した際の到達時間と変位量を測定した。各サイクル回数の順方向における変位量及び到達時間の測定結果を、表2に示す。
<Actuator operation test>
Using the actuator elements produced in the examples and comparative examples, the apparatus shown in FIG. 4 was assembled, voltage application was repeated once, ten times, and 50 times, and the arrival time until the tip of the element was deformed by 5 mm was measured.
As a voltage application condition to the plate electrode of the actuator, a voltage of 3V was applied between the plate electrodes of the actuator, and the time until the actuator reached the predetermined displacement after the deformation started was measured. After the measurement is completed, the two plate electrodes are short-circuited to return to the initial shape before the actuator is deformed, then the polarity is switched and a voltage of 3 V is applied to measure the time until the predetermined deformation amount is reached. did. After completion of the measurement, the two plate electrodes were short-circuited to return the actuator to the initial shape. Thus, the operation of applying a voltage to the plate-like electrode in the forward / reverse direction was taken as one cycle, and the arrival time and the displacement amount were measured when this cycle was repeated once, ten times, and 50 times. Table 2 shows the measurement results of the amount of displacement and the arrival time in the forward direction of each cycle number.

Figure 0006481356
Figure 0006481356

本発明のイオン液体を用いたアクチュエータ素子の方が、従来のイオン液体を用いたものに比べ応答速度が速いことが分かった。   It was found that the response speed of the actuator element using the ionic liquid of the present invention is faster than that using the conventional ionic liquid.

1 正極
2 電解質層
3 負極
1 Positive electrode 2 Electrolyte layer 3 Negative electrode

Claims (10)

下記式(1)で表されるイオン液体及び高分子化合物を含むアクチュエータ素子用電解質。
Figure 0006481356
(式中、R1は、炭素数1〜3のアルキル基を表し、R2は、メチル基又はエチル基を表し、nは、1又は2を表し、X-は、1価のアニオンを表す。)
An electrolyte for an actuator element comprising an ionic liquid represented by the following formula (1) and a polymer compound.
Figure 0006481356
(In the formula, R 1 represents an alkyl group having 1 to 3 carbon atoms, R 2 represents a methyl group or an ethyl group, n represents 1 or 2, and X represents a monovalent anion. .)
前記X-が、BF4 -、CF3SO3 -、CF3CO2 -、PF6 -、(CF3SO2)2-又は(FSO2)2-を表す請求項1記載のアクチュエータ素子用電解質。 2. The actuator according to claim 1, wherein X represents BF 4 , CF 3 SO 3 , CF 3 CO 2 , PF 6 , (CF 3 SO 2 ) 2 N or (FSO 2 ) 2 N −. Electrolyte for device. 前記X-が、(CF3SO2)2-を表す請求項1又は2記載のアクチュエータ素子用電解質。 The electrolyte for an actuator element according to claim 1, wherein the X represents (CF 3 SO 2 ) 2 N . 前記R1が、メチル基又はエチル基を表す請求項1〜3のいずれか1項記載のアクチュエータ素子用電解質。 The electrolyte for actuator elements according to claim 1, wherein R 1 represents a methyl group or an ethyl group. 前記nが1である請求項1〜4のいずれか1項記載のアクチュエータ素子用電解質。   5. The actuator element electrolyte according to claim 1, wherein n is 1. 5. 前記高分子化合物がアクリル系樹脂である請求項1〜5のいずれか1項記載のアクチュエータ素子用電解質。   The electrolyte for actuator elements according to claim 1, wherein the polymer compound is an acrylic resin. 前記高分子化合物がウレタン系樹脂である請求項1〜5のいずれか1項記載のアクチュエータ素子用電解質。   The electrolyte for an actuator element according to any one of claims 1 to 5, wherein the polymer compound is a urethane-based resin. 前記高分子化合物がフッ素系樹脂である請求項1〜5のいずれか1項記載のアクチュエータ素子用電解質。   The electrolyte for an actuator element according to claim 1, wherein the polymer compound is a fluororesin. 前記高分子化合物がシリコーン系樹脂である請求項1〜5のいずれか1項記載のアクチュエータ素子用電解質。   The electrolyte for an actuator element according to any one of claims 1 to 5, wherein the polymer compound is a silicone resin. 請求項1〜9のいずれか1項記載のアクチュエータ素子用電解質を複数の電極で挟持してなるアクチュエータ素子。   The actuator element formed by pinching | interposing the electrolyte for actuator elements of any one of Claims 1-9 with several electrodes.
JP2014258915A 2014-12-22 2014-12-22 Electrolyte for actuator element and actuator element Active JP6481356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014258915A JP6481356B2 (en) 2014-12-22 2014-12-22 Electrolyte for actuator element and actuator element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014258915A JP6481356B2 (en) 2014-12-22 2014-12-22 Electrolyte for actuator element and actuator element

Publications (2)

Publication Number Publication Date
JP2016119801A JP2016119801A (en) 2016-06-30
JP6481356B2 true JP6481356B2 (en) 2019-03-13

Family

ID=56244549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014258915A Active JP6481356B2 (en) 2014-12-22 2014-12-22 Electrolyte for actuator element and actuator element

Country Status (1)

Country Link
JP (1) JP6481356B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7456246B2 (en) 2020-04-06 2024-03-27 日清紡ホールディングス株式会社 Ionic liquid and lubricating oil composition containing fluorine-containing phosphate ester anion

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050780A (en) * 2004-08-04 2006-02-16 Japan Carlit Co Ltd:The Conductive high-polymer actuator
JP2009278787A (en) * 2008-05-15 2009-11-26 Sony Corp Actuator element
JP2011012033A (en) * 2009-07-06 2011-01-20 Sanyo Chem Ind Ltd Ionic liquid
WO2011013256A1 (en) * 2009-07-28 2011-02-03 東京エレクトロン株式会社 Actuator element and method for producing actuator element
JP6051757B2 (en) * 2012-10-16 2016-12-27 日清紡ホールディングス株式会社 Ionic liquid

Also Published As

Publication number Publication date
JP2016119801A (en) 2016-06-30

Similar Documents

Publication Publication Date Title
CN101657961B (en) Electrically conductive polymer actuator, method for manufacturing the same, and method of driving the same
US7315106B2 (en) Actuator element and production method therefor
Zhou et al. Solid state actuators based on polypyrrole and polymer-in-ionic liquid electrolytes
JP4256469B1 (en) Conductive polymer actuator and manufacturing method thereof
US7580246B2 (en) Solid electrolytic capacitor and method for manufacturing same
CN101828330A (en) Conductive-polymer actuator and process for producing the same
JP4315038B2 (en) Solid electrolytic capacitor
JP2003152234A (en) Actuator and its manufacturing method
Chen et al. Supramolecular hydrogels for high-voltage and neutral-pH flexible supercapacitors
JP4691703B2 (en) Actuator element and manufacturing method thereof
Mu et al. High-performance-integrated stretchable supercapacitors based on a polyurethane organo/hydrogel electrolyte
Vu et al. Flexible and self-healable supercapacitor with high capacitance restoration
JP2009278787A (en) Actuator element
Ebadi et al. Electroactive actuator based on polyurethane nanofibers coated with polypyrrole through electrochemical polymerization: a competent method for developing artificial muscles
JP2012226961A (en) Conductive polymer composite and method for manufacturing the same
JP6481356B2 (en) Electrolyte for actuator element and actuator element
Tao et al. ATMP doped conductive PANI/CNTs composite hydrogel electrodes toward high energy density flexible supercapacitors
Shen et al. Solid-state, single-anion-conducting networks for flexible and stable supercapacitor electrolytes
JP5261730B2 (en) Conductive polymer actuator element
JP4727182B2 (en) Driving method of conductive polymer actuator element
JP2013106491A (en) Polymer actuator
JP2016062651A (en) Method for producing conductive composite, and conductive composite
Ma et al. Dual-aspect expanding electrochemical characteristics of flexible supercapacitors via an ionic liquid and a high-boiling-point solvent
KR101729121B1 (en) Solid polymer electrolyte, its preparation method and capacitor comprising the same
JP2022173845A (en) Liquid crystal electrolyte membrane, actuator, piezoelectric element, and stress sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190128

R150 Certificate of patent or registration of utility model

Ref document number: 6481356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250