WO2005003422A1 - Fiber sheet and its molding - Google Patents

Fiber sheet and its molding Download PDF

Info

Publication number
WO2005003422A1
WO2005003422A1 PCT/JP2004/009310 JP2004009310W WO2005003422A1 WO 2005003422 A1 WO2005003422 A1 WO 2005003422A1 JP 2004009310 W JP2004009310 W JP 2004009310W WO 2005003422 A1 WO2005003422 A1 WO 2005003422A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fiber sheet
sheet
phenol
aldehyde
Prior art date
Application number
PCT/JP2004/009310
Other languages
French (fr)
Japanese (ja)
Inventor
Masanori Ogawa
Kuninori Ito
Original Assignee
Nagoya Oilchemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Oilchemical Co., Ltd. filed Critical Nagoya Oilchemical Co., Ltd.
Priority to TW093119391A priority Critical patent/TWI295699B/en
Publication of WO2005003422A1 publication Critical patent/WO2005003422A1/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/413Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties containing granules other than absorbent substances

Definitions

  • the present invention relates to a fiber sheet used for interior materials of automobiles and buildings.
  • Patent Document 1
  • Patent Document 2
  • This type of fiber sheet is required to have soundproofing and heat insulating properties. It is desirable to increase the porosity in the fiber sheet for sound insulation and heat insulation. However, if the porosity in the fiber sheet is increased, the rigidity of the fiber sheet is reduced, and the fiber sheet is easily deformed during carrying, and the molded shape becomes unstable when molded. Furthermore, simply increasing the porosity in the fiber sheet does not guarantee sound absorption for a wide range of frequencies from low frequencies to high frequencies. Disclosure of the invention
  • the present invention solves the above-mentioned conventional problems by mixing thermally expandable particles with fibers to form a sheet, and heating while controlling the thickness to thermally expand the thermally expandable particles. It is intended to provide a reinforced fiber sheet.
  • the fiber is preferably a hollow fiber or a mixture of a hollow fiber, and the fiber is preferably mixed with a low-melting fiber having a melting point of 180 ° C. or lower.
  • the fibers are desirably bound by a synthetic resin binder.
  • the thermally expandable particles are microcapsules in which a low boiling point solvent is sealed in a thermoplastic resin shell having a low softening point, or thermoplastic resin beads having a low softening point are impregnated with a low boiling point solvent. Desirably, they are foam beads or, alternatively, thermally expandable inorganic particles.
  • the present invention provides a molded product obtained by molding the above fiber sheet into a predetermined shape.
  • the thermally expandable particles expand. Since the thickness of the fibrous sheet is regulated as described above, the surrounding fibers are compressed by the expansion of the granules, and the density of the fibrous portion is increased and the rigidity is improved. However, the porosity of the fiber sheet as a whole does not change, and thus the weight does not change.
  • the fiber is compressed by the expansion of the thermally expandable particles, and the density of the fiber portion can be increased without increasing the weight.
  • the fibers used in the present invention include, for example, polyester fibers, polya Synthetic fibers such as mid fiber, acrylic fiber, urethane fiber, polyvinyl chloride fiber, polyvinyl chloride fiber, and acetate fiber, wool, mohair, cashmere, camel hair, alpaca, bikuna, angora, silk, silk, and ama Natural fibers such as fiber, pulp, cotton, palm fiber, hemp fiber, bamboo fiber, kenaf fiber, etc., cellulosic man-made fibers such as rayon (human silk, soup), polynosic, cuvula, acetate, triacetate, glass fiber, carbon Inorganic fibers such as fibers, ceramic fibers and asbestos fibers, and recycled fibers obtained by defibrating scraps of textile products using these fibers. These fibers are used alone or in combination of two or more. More desirable fibers include hollow fibers.
  • the hollow fiber is made of polyester such as polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate, poly-1,4-dimethylcyclohexane terephthalate, nylon 6, nylon 66, nylon 46, and nylon mouth.
  • thermoplastic resins such as polyamide, polyethylene, polypropylene, and other polyolefins, acrylic, urethane, polyvinyl chloride, polyvinylidene chloride, acetate, and the like. These hollow fibers are used alone or in combination of two or more.
  • the hollow fiber is produced by a known method such as a melt spinning method or a method in which one component of a fiber obtained by composite spinning two kinds of polymers is preferentially eluted and removed.
  • the hollow fiber has one or two or more hollow tubular portions having a circular or elliptical cross section, and has a hollow ratio of 5% to 70%, preferably 10% to 50%. It is.
  • the void ratio is the ratio of the cross-sectional area of the hollow tube to the cross-sectional area of the fiber.
  • the fineness of the hollow fiber is in the range of 1 dtex to 50 dtex, preferably in the range of 2 dtex to 2 O dte.
  • the above-mentioned hollow fiber is used by being mixed with another fiber, it is preferable that the above-mentioned hollow fiber is mixed with 30% by mass or more.
  • the rigidity of the fiber sheet is improved by the tube effect.
  • a low melting point fiber having a melting point of 180 ° C. or less may be used.
  • the low-melting-point fiber include polyolefin-based fibers such as polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, polyvinyl chloride fiber, polyurethane fiber, polyester fiber, and polyester fiber.
  • the low melting point fiber is usually mixed with the above fiber in an amount of 1 to 50% by mass.
  • the thermally expandable particles used in the present invention are composed of, for example, a thermoplastic resin having a low softening point and a low boiling point solvent.
  • thermoplastic resin having a low softening point examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, iso-propyl acrylate, ⁇ -butyl acrylate, iso-butyl acrylate, and t-butyl acrylate.
  • ⁇ ,] 3-unsaturated carboxylic acids such as olefins, isoprene, chloroprene, and benzoic acid, and acrylic acid, methacrylic acid, itaconic acid, maleic acid, crotonic acid, atropic acid, and citraconic acid.
  • water-soluble monomers such as bierpyrrolidone, vinylpyridine, and vinylcarbazole, and the above-mentioned methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, P-trimethoxysilylstyrene, and P-triethoxysilyl.
  • Styrene P-trimethoxy Silyl- -methylstyrene, P-triethoxysilyl- -methylstyrene, T-acryloxycyprovir trimethoxysilane, vinyltrimethoxysilane, N-i3 (N-vinylbenzylaminoethyl-aminopropyl) trimethoxysilane '
  • One or two or more polymers such as hydrolyzable silyl group-containing vinyl monomers such as hydrochloride or the above-mentioned polymers are converted to polyvalent acrylates or methacrylates such as divinylbenzene, diethylene dalicol diacrylate, etc.
  • thermoplastic resin having a softening point of preferably 180 ° C. or less such as a polymer crosslinked with a crosslinking agent such as diaryl phthalate or arylglycidyl ether, a low softening point polyamide, or a low softening point polyester.
  • low-boiling solvents include, for example, n-hexane, cyclohexane, n-pentane, isopentane, n
  • organic solvents with a boiling point of 150 ° C or less such as butane, isobutane, n-heptane, n-octane, isooctane, gasoline, ethyl ether, acetone and benzene.
  • the thermally expandable particles are expanded beads obtained by impregnating the above-mentioned thermoplastic resin particles with the above-mentioned low-boiling-point solvent, and a microphone having a low-boiling-point solvent filled in a shell of the above-mentioned low-softening-point thermoplastic resin.
  • Etc. The diameter of the granules is usually from 0.5 to 100 m.
  • thermally expandable particles used in the present invention there are thermally expandable inorganic particles such as vermiculite, perlite, and shirasparun.
  • the fiber sheet of the present invention is obtained by needle panning a fiber web sheet or mat.
  • a fiber web sheet or mat is impregnated or mixed with a synthetic resin binder, or a fiber web sheet or mat is entangled by $ 21 punching. It is manufactured by a method of binding and impregnating a synthetic resin binder, or a method of knitting and weaving fibers.
  • the thermally expandable particles are usually mixed with the fibers before the fibers are converted into a sheet or mat, but when the sheets or mats are impregnated or mixed with a synthetic resin binder, they are mixed with the synthetic resin binder. You may keep it.
  • the mixing ratio may be arbitrarily selected, but usually, the granules are added in an amount of from 0.1 to 50% by mass based on the fiber.
  • the sheeted fiber In order to impregnate the sheeted fiber with the synthetic resin, the sheeted fiber is usually immersed in a liquid synthetic resin or a synthetic resin solution, or the liquid synthetic resin or the synthetic resin solution is sprayed on the sheeted fiber. Or, apply with a knife co.
  • the sheeted fiber is squeezed using a drawing roll or a press machine.
  • the thickness of the sheeting fiber decreases, but when the sheeting fiber contains hollow fibers, the sheeting fiber has high rigidity, and after being squeezed, the thickness is sexually restored.
  • the sheeted fiber contains a low-melting fiber
  • the fiber is sheeted, heated to melt the low-melting fiber, and the fiber is bonded by the melt. Then, the strength and rigidity of the fiber sheet are further improved, the workability during impregnation with the synthetic resin is improved, and the thickness of the sheet after drawing is remarkably restored.
  • the sheet becomes highly rigid when formed into a sheet, and the content of the synthetic resin binder in the sheeted fiber is adjusted to a sheet not including the hollow fiber. Content of the synthetic fiber binder can be reduced.
  • the synthetic fibers After impregnating or mixing the synthetic fibers with the synthetic fibers, the synthetic fibers are dried.
  • the synthetic resin binder contained in the sheeted fiber is a thermosetting resin, setting the resin to the B state enables long-term storage, and enables low-temperature short-time molding. It will work.
  • Examples of the synthetic resin used as a binder for the above fiber include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, and fluorine acetate.
  • thermoplastic acrylic resin thermoplastic polyester, thermoplastic polyamide, thermoplastic urethane resin, acrylonitrile-butadiene copolymer, styrene-butene copolymer, acrylonitrile-butadiene-styrene copolymer, ethylene-propylene copolymer
  • Thermoplastic synthetic resins such as polymers, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, urethane resins, melamine resins, thermosetting acrylic resins, urea resins, phenolic resins, epoxy resins, thermosetting polyesters
  • a thermosetting durable synthetic resin such as phenolic resin is used, but a urethane resin prepolymer, an epoxy resin prepolymer, a melamine resin prepolymer, a urea resin prepolymer, a phenol resin prepolymer, and a phenol resin prepolymer which produce the synthetic resin are used.
  • Synthetic resin precursors such as prepolymers, oligomers and monomers such as diaryl phthalate prepolymer, acryl oligomer, polyvalent isocyanate, methyl acrylate ester monomer, and diaryl phthalate monomer may be used.
  • the above synthetic resins may be used alone or in combination of two or more, and are usually used as an emulsion, a latex, an aqueous solution, an organic solvent solution or the like.
  • Preferred as the synthetic resin binder used in the present invention is a phenolic resin.
  • the phenolic resin used in the present invention will be described.
  • a phenolic resin is obtained by condensing a phenolic compound with an aldehyde and a Z or aldehyde donor.
  • the phenolic resin may be sulfoalkylated and Z- or sulfialkylated to impart water solubility.
  • the phenolic resin of the present invention is impregnated on a sheet substrate as an aqueous solution of a precondensate (a precondensate solution).
  • a precondensate solution may be, if desired, methanol, ethanol, isopropanol, n-propanol, isopropanol, n-butanol, isopropanol.
  • the phenolic compound used in the phenolic resin may be a monovalent phenol, a polyvalent phenol, or a mixture of a monovalent phenol and a polyvalent phenol. However, if only monovalent phenol is used, formaldehyde is easily released during curing and after curing, so polyvalent phenol or a mixture of monovalent phenol and polyvalent phenol is preferably used. .
  • the above monovalent phenols include phenol, o-cresol, m-cresol , P_cresol, ethyl phenol, isopropyl phenol, xylenol,
  • Alkylphenols such as 3,5-xylenol, butylphenol, t-butylphenol, nonylphenol, o-fluorophenol, m-fluorophenol, p-fluorophenol, 0-cloth Phenol, m-chlorophenol, ⁇ -chlorophenol, o-bromophenol, m-bromophenol, ⁇ -bromophenol, o-dophenol, m-dophenol, p-phenol, o-Aminophenol, m-Aminophenol, p-Aminophenol, o-Nito Mouth phenol, m-Nitrophenol, p-Ditrophenol, 2,4-Dinitrophenol, 2,4,6-Trinitro Examples thereof include monovalent phenol-substituted products such as phenol, and polycyclic monovalent phenols such as naphthol. These can be mixed and used.
  • polyvalent phenol examples include resorcin, alkyl resorsis pyrogallol, catechol, alkyl catechol, octahydroquinone, alkyl octahydroquinone, fluorolodarcin, bisphenol, dihydroxynaphthalene, and the like. These polyphenols may be used alone or in combination of two or more. They can be mixed and used. Preferred among the polyhydric phenols are resorcinol and alkylresorcinol, and particularly preferred is alkylresorcinol, which has a higher reaction rate with aldehydes than resorcinol.
  • alkyl resorcinol examples include 5-methyl resorcin, 5-ethyl resorcinol, 5-propyl resorcinol, 5-n-butyl resorcinol, 4,5-dimethyl resorcinol, 2,5-dimethylresorcinol, 4,5-getyl resorcinol, 2,5 monoethyl resorcinol, 4,5-dipropyl resorcinol, 2,5-dipropyl resorcinol, 4-methyl-5-ethyl resorcinol, 2-methyl-5-ethyl resorcinol, 2-methyl-5-propyl resorcinol, 2,, There are 4,5-trimethylresorcinol and 2,4,5-triethylresorcinol.
  • Polyvalent phenol mixture obtained by dry distillation of Estonian oil shale Is a particularly preferable polyvalent phenol raw material in the present invention because it is inexpensive and contains a large amount of highly reactive various alkylresorcinols in addition to 5-methylresorcinol.
  • the phenolic compound and the aldehyde and Z or aldehyde donor are condensed, and the aldehyde donor means a compound which decomposes to produce an aldehyde or a mixture thereof.
  • aldehydes include formaldehyde, acetaldehyde, propionaldehyde, chloral, furfural, glyoxal, n-butyraldehyde, capaldehyde, arylaldehyde, benzaldehyde, crotonaldehyde, acrolein, and phenylacetaldehyde.
  • aldehyde donors include, for example, paraformaldehyde, trioxane, hexamethylenetetramine, tetraoxymethylene and the like.
  • Sulfomethylating agents that can be used to improve the stability of the water-soluble phenolic resin include, for example, sulfurous acid, bisulfite or metabisulfite, and alkali metals or trimethylamine or benzyltrimethylammonium.
  • Water-soluble sulfites obtained by reacting quaternary amines or quaternary ammoniums, and aldehyde adducts obtained by reacting these water-soluble sulfites with aldehydes are exemplified.
  • the aldehyde adducts include formaldehyde, acetaldehyde, propionaldehyde, chloral, furfural, dalioxal, n-butyraldehyde, forceproaldehyde, acrylaldehyde, benzaldehyde, crotonaldehyde, acrolein, phenylacetaldehyde, o-
  • An addition reaction between an aldehyde such as tolualdehyde and salicylaldehyde and the above-mentioned water-soluble sulfite.
  • an aldehyde adduct composed of formaldehyde and sulfite is hydroxymethane sulfoxide. It is a fonate.
  • Sulfimethylating agents that can be used to improve the stability of the water-soluble phenolic resin include aliphatic and aromatic aldehydes such as formaldehyde sodium sulfoxylate (Rongalit) and benzaldehyde sodium sulfoxylate. 7 Alkali metal sulfoxylates, sodium hydrosulfite, magnesium hydrosulfite, etc. 7 alkali metals, alkaline earth metal hydrosulfites (dithionites), hydroxymethane sulfinates, etc. And the like.
  • phenolic resin if necessary, for example, hydrochloric acid, sulfuric acid, orthophosphoric acid, boric acid, oxalic acid, formic acid, acetic acid, butyric acid, benzenesulfonic acid, phenolsulfonic acid, paratoluenesulfonic acid, naphthalene- ⁇ Inorganic or organic acids such as sulfonic acid, naphthalene- ⁇ -sulfonic acid, etc., esters of organic acids such as dimethyl oxalate, acid anhydrides such as maleic anhydride, phthalic anhydride, ammonium chloride, ammonium sulfate Ammonium, ammonium nitrate, ammonium succinate, ammonium acetate, ammonium phosphate, ammonium thiocyanate, ammonium imidesulfonate, etc., monochloroacetic acid or its sodium salt, and organic halogens such as ⁇ ,
  • Urea adducts such as hydrochloride of amines, urea salicylate, urea stearate, urea heptanoate, acidic substances such as trimethyltaurine, zinc chloride, ferric chloride, ammonia, amines, Alkali earth metal hydroxides such as sodium hydroxide, potassium hydroxide, barium hydroxide and calcium hydroxide, oxides of alkaline earth metals such as lime, sodium carbonate, sodium sulfite, acetic acid An alkaline substance such as a weak acid salt of an alkaline metal such as sodium or sodium phosphate may be mixed as a catalyst or a ⁇ modifier.
  • the phenolic resin (initial condensate) can be produced by a conventional method. Specifically, (a) a method of condensing a phenol and an aldehyde with a polyhydric phenol and Z, or (b) a precondensate and a Z or a polycondensate obtained by combining a monohydric phenol and an aldehyde with an aldehyde.
  • a method of condensing an initial condensate condensed (e) an initial condensate obtained by condensing a phenol and an aldehyde, and an initial condensate obtained by condensing an aldehyde with a Z or polyphenol.
  • a desirable phenolic resin is a phenol monoalkyl resorcinol cocondensate.
  • the phenol-alkyl resorcinol co-condensate has good aqueous stability of the co-condensate (initial co-condensate) and is longer at room temperature than a condensate consisting of phenol alone (initial condensate).
  • a condensate consisting of phenol alone initial condensate
  • alkyl resorcin captures and reacts with a free aldehyde having a high reactivity with an aldehyde, it also has an advantage that the amount of the free aldehyde in the resin is reduced.
  • a preferred method for producing the phenol monoalkyl resorcinol cocondensate is to first react phenol with an aldehyde to produce a phenolic resin precondensate, and then to convert the phenolic resin precondensate to alkyl This is a method in which resorcinol is added and, if desired, an aldehyde is added and reacted.
  • a sulfomethylating agent and Z or a sulfimethylating agent are added to the precondensate at any stage to obtain a phenolic compound or Sulfomethylate and Z or sulfimethylate the precondensate.
  • the sulfomethylating agent and the Z or sulfimethylating agent may be added at any stage before, during, or after the condensation reaction.
  • the total amount of the sulfomethylating agent and / or sulfimethylating agent is usually 0.001 to 1.5 mol per 1 mol of the phenolic compound.
  • the amount is less than 0.01 mol, the hydrophilicity of the phenolic resin is not sufficient, and when the amount is more than 1.5 mol, the water resistance of the phenolic resin becomes poor.
  • the amount is preferably about 0.01 to 0.8 mol.
  • the sulfomethylating agent and the Z or sulfimethylating agent added for sulfomethylating and Z or sulfimethylating the precondensate are combined with the methyl group of the precondensate and Z or the aromatic ring of the precondensate. Upon reaction, a sulfomethyl group and a Z or sulfistyl group are introduced into the precondensate.
  • the aqueous solution of the precondensate of the phenolic resin thus sulfomethylated and Z- or sulfimethylated is stable in a wide range from acidic (pH 1.0) to alkaline, and is acidic, neutral and alkaline. It can harden in any area. In particular, when curing is performed on the acidic side, residual methylol groups are reduced, and there is no possibility that the cured product is decomposed to generate formaldehyde.
  • the phenolic resin may be urea, thiourea, melamine, thiomelamine, dicyandiamine, guanidine, guanamine, acetoguanamine, benzoguanamine, 2,6-diamino-1,3-diamine amino-based resin.
  • Addition of monomer or initial condensate composed of the amino resin monomer It may be co-condensed with a anol compound and z or a precondensate.
  • a curing agent such as an aldehyde and Z or an aldehyde donor or an alkylolated triazone derivative may be further added to and mixed with the initial condensate (including the initial cocondensate) of the phenolic resin of the present invention.
  • the Ruidan triazone derivative is obtained by reacting a urea compound, an amine, an aldehyde and Z or an aldehyde donor.
  • Examples of the urea-based compound used in the production of the alkylated triazone derivative include urea, thiourea, alkyl urea such as methyl urea, alkyl thiourea such as methyl thiourea, phenyl urea, naphthyl urea, halogenated phenyl urea, A single type or a mixture of two or more types, such as a nitrile alkyl urea, is exemplified.
  • a particularly desirable urea compound is urea or thiourea.
  • amines aliphatic amines such as methylamine, ethylamine, propylamine, isopropylamine, butylamine, amylamine, etc .; amines such as benzylamine, furfurylamine, ethanolamine, ethylenediamine, hexamethylenediamine, hexamethylenetetramine, etc.
  • amines such as benzylamine, furfurylamine, ethanolamine, ethylenediamine, hexamethylenediamine, hexamethylenetetramine, etc.
  • ammonia which are used alone or as a mixture of two or more.
  • the aldehyde and Z or aldehyde donor used in the production of the above alkylated triazone derivative are the same as the aldehyde and Z or the aldehyde donor used in the production of the initial condensate of the phenolic resin.
  • alkylolated triazone derivative usually 0.1 to 1.2 mol of amines and Z or ammonia, and 1.5 to 1.2 mol of aldehyde and Z or aldehyde donor are used per 1 mol of urea compound.
  • the reaction is performed at a ratio of 4.0 mol.
  • the order of addition is arbitrary, but a preferable reaction method is that a required amount of aldehyde and Z or an aldehyde donor is first charged into a reactor, and usually the temperature is reduced to 60 or less at 60 or less.
  • reaction of a urea compound, an amine and / or ammonia with an aldehyde and Z or an aldehyde donor is usually carried out in an aqueous solution, but methanol, ethanol, isopropanol, n —Alcohols such as butanol, ethylene glycol and diethylene glycol may be used alone or in combination of two or more, and water-soluble organic solvents such as ketones such as T-cetone and methyl ethyl ketone may be used alone. Alternatively, a mixture of two or more can be used.
  • the amount of the curing agent added is 10 to 100 parts by mass, and 100 to 100 parts by mass of the initial condensate (initial cocondensate) of the phenolic resin of the present invention.
  • the amount is 10 to 500 parts by mass with respect to 100 parts by mass of the initial condensate (initial cocondensate) of the phenolic resin.
  • the synthetic resin binder used in the present invention further includes calcium carbonate, magnesium carbonate, barium sulfate, calcium sulfate, calcium sulfite, calcium phosphate, calcium hydroxide, magnesium hydroxide, 7K aluminum oxide, magnesium oxide, and magnesium oxide.
  • Organic foaming agents such as azodicarbonamide, dinitrosopentamethylenetetramine, P, P'-oxobis (benzenesulfonylhydrazide), azobis-2,2,-(2-methylglopinitrile); Sodium bicarbonate, bicarbonate rim, bicarbonate ammonium, etc.
  • Inorganic foaming agents such as glass balloons, perlite, glass powder, foamed glass, hollow ceramics; plastic foams and foamed particles such as foamed polyethylene, foamed polystyrene and foamed polypropylene; pigments, dyes, antioxidants , Antistatic agent, crystallization accelerator, flame retardant, flame retardant, water repellent, oil repellent, insect repellent, preservative, waxes, lubricant, antioxidant, ultraviolet absorber; DBP, DOP, dicyclohexyl A phthalic acid ester-based plasticizer such as a latex or other plasticizers such as tricresyl phosphate may be added and mixed.
  • plastic foams and foamed particles such as foamed polyethylene, foamed polystyrene and foamed polypropylene
  • the fiber sheet of the present invention causes the thermally expandable particles to thermally expand by heating to a temperature equal to or higher than the thermal expansion temperature of the thermally expandable particles contained while regulating the thickness.
  • the fiber sheet of the present invention is formed into a flat plate or a predetermined shape. Usually, hot press molding is applied, and the thermal expansion of the thermally expandable particles regulates the thickness of the fiber sheet during the press molding. It is performed while doing.
  • the fiber sheet of the present invention may be formed into a flat shape by hot pressing, and then formed into a predetermined shape by hot pressing, and when the low melting point fiber or the thermoplastic resin binder is contained. May be heated to soften the low-melting fiber or the thermoplastic resin binder and then formed into a predetermined shape by a cold press.
  • the fiber sheet of the present invention may be used by stacking a plurality of sheets. Further, the fiber sheet may be laminated with another member such as a skin material, a back material, and a core material.
  • the fiber sheet of the present invention can be used, for example, in automobile ceiling materials, dash silencers, food silencers, engine Cover silencer, cylinder head cover silencer, dasher-base material for interior materials such as silencer, floor mat, dash pod, door trim, or reinforcing material laminated on the base material, sound absorbing material, heat insulation It is useful as materials and building materials.
  • Polyester fiber fineness: 4dtex, fiber length: 54 mm
  • sheeted fiber by needle punching method (basis weight: 500 g / m Thickness: 1 5mm).
  • 95 mass parts of phenol formaldehyde precondensate (45 mass% solid content) 5 mass parts of microcapsules filled with isopentane in polyvinylidene chloride shell (softening point 150 ° C) as thermally expandable granules
  • the impregnating liquid to which the mixture was added and mixed was impregnated into the sheeted fiber so as to have a solid content of 50% by mass, and dried at 100 ° C for 3 minutes while sucking in a drying chamber.
  • the sheet fiber was precured to obtain a fiber sheet.
  • the precured fiber sheet was subjected to hot press molding at 200 ° C. for 60 seconds, and the microcapsules were expanded while controlling the thickness to obtain a molded product having a thickness of 8.pi.
  • Example 1 The molded articles of Example 1 and Comparative Example 1 were subjected to a bending test, a sound absorption coefficient, and a ventilation resistance test.
  • the bending test was performed according to the bending strength of 5.17 in JI S-K6911, and the test conditions were as follows: width: 25 mm, distance between supporting points: 10 Omrn.
  • the sound absorption coefficient was in accordance with JIS-A1405 "Method of measuring the normal incidence sound absorption coefficient of building materials by the in-pipe method". Ventilation resistance according to the Frazier type air permeability tester, using force Totekku Ltd. breathable tester (KE S- F 8- AP I) , and the airflow rate per unit area and 4 cc / s' cm 2 The ventilation resistance at that time was measured. Table 1 shows the test results. ⁇ table 1 ⁇
  • polyester hollow fiber 50% by mass of polyester hollow fiber (fineness: 5dtex, hollow ratio: 20%, fiber length: 56mm), 35% by mass of polyester fiber (fineness: 7dtex, fiber length: 60mm), and polyester low melting point fiber (fineness: 2. 5 dtex, melting point: 120 ° (:, fiber length: 65 mm)
  • a sheet of a mixed fiber web consisting of 15% by mass is heated at 180 ° C for 5 minutes to melt the polyester low melting point fiber, and the fiber melt is caused by the melt.
  • Aqueous solution of phenol-alkyl resorcinol-formaldehyde initial cocondensate (50 mass% solids) 90 parts by mass 2 parts by weight of nitrogen-based flame retardant, 2 parts by weight of fluorine-based water-repellent and oil-repellent, and heat-expandable granules (capsule type, Matsumoto Microsphere I F-100: manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.
  • Polyester hollow fiber fineness: 7dtex, hollow ratio: 30%, fiber length: 75mm) 45% by mass, polyamide fiber (fineness: 12dtex, fiber length: 75mm) 30% by mass, and kenaf fiber (fineness: 20-25dtex, Fiber length: 50mm) 10% by mass, polyester low melting point fiber (fineness: 12dtex, melting point: 110 ° C, fiber length: 65mm) 15
  • sheeted fiber basis weight: 400 gm 2 , thickness: 18 mm
  • the sheet fiber was impregnated with the impregnating liquid used in Example 2 so as to have a solid content of 50% by mass, and dried at 100 ° C for 4 minutes while sucking in a drying chamber. Then, the sheeted fiber was precured to obtain a fiber sheet. The precured fiber sheet was subjected to hot press molding in the same manner as in Example 2, and the granules were expanded while regulating the thickness to obtain a molded product having a thickness of 15 mm.
  • Example 2 The molded products of Examples 2 and 3 and Comparative Example 2 were subjected to a bending test, a workability, a P ratio, and a ventilation resistance test. Table 2 shows the results of the test.
  • Dust derived from glass was scattered during molding operation and the like, and the dust (glass) was stabbed, resulting in extremely poor workability and adversely affecting the human body.
  • Example 1 has a higher sound absorption coefficient and a higher bending strength over a wider frequency range than the sample of Comparative Example 1. This is because the sample fiber is thermally expanded This is thought to be due to the decrease in the incident sound energy due to the compression due to the expansion of the granular material and the increase in the ventilation resistance. This can be seen from the value of ventilation resistance.
  • polyester hollow fiber fineness: 4dtex, hollow ratio: 15%, fiber length: 55mm
  • vinylon fiber fineness: 7.5dtex, fiber length: 60mm
  • rayon fiber fineness: 6dtex
  • a hot melt adhesive polyamide resin, melting point: 160 ° C, particle size: all through 200 mesh
  • application amount: 8 gZm 2 is applied to one side of the fiber sheet.
  • Production and a basis weight of 30 gZm 2 were laminated as a skin material, and hot-pressed at 200 ° C. for 60 seconds to thermally expand the thermally expandable granules while controlling the thickness to obtain a molded product.
  • the molded product was excellent in flame retardancy, water repellency, rigidity, and sound absorption.
  • Polyester hollow fiber fineness: 7dtex, hollow ratio: 20%, fiber length: 75mm
  • flame-retardant polyester fiber fineness: 4dte X , fiber length: 55mm
  • a sheet-shaped web of the mixed fiber having the amount of 100% by weight
  • a sheeted fiber (basis weight: 400 g / m ⁇ thickness: 12 mm) was produced by a needle punching method.
  • a molded article having a thickness of 1 Omm was obtained in the same manner as in Example 5, except that the thermally expanded particles were omitted.
  • Example 5 Using the samples obtained in Example 5 and Comparative Example 3, a flammability test was performed in accordance with the horizontal test method of FMVSS-302. Table 3 shows the results.
  • Example 5 has better flammability than Comparative Example 3. This is considered to be due to the fact that the void force S of the fiber of the sample is buried due to the expansion effect of the expandable particles, and the amount of air in the sample decreases during combustion.
  • the fiber sheet molded article of the present invention is extremely useful, for example, as a sound absorbing material or a heat insulating material for automobiles and buildings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

A high-strength, lightweight fiber sheet exhibiting excellent acoustic absorption, and its molding. Fibers are admixed with thermally expanding granules to be formed into a sheet, and when the thermally expanding granules are thermally expanded by heating the sheet while regulating the thickness thereof, peripheral fibers are compressed and a high-density fiber sheet is obtained. The fiber sheet can be molded into a specified shape as desired.

Description

明 細 書  Specification
繊維シ一卜およびその成形物 技術分野  Fiber sheet and molded product
本発明は、自動車や建築物の内装材等に使用される繊維シートに関するもので ある。 技術背景  The present invention relates to a fiber sheet used for interior materials of automobiles and buildings. Technology background
従来、 .この種の繊維シートとしては、繊維のウェブシートを二一ドルパンチン グによって絡合した二一ドル不織布あるいは二一ドルフェルト、繊維のウェブを合 成樹脂によって結着した樹脂不織布あるいは樹脂フェルト、繊維の編織物等が提供 されている (例えば特許文献 1 , 2参照) 。  Conventionally, as this type of fiber sheet, a 21-dollar nonwoven fabric or a 21-dollar felt in which a fiber web sheet is entangled by 21-dollar punching, a resin nonwoven fabric or a resin felt in which a fiber web is bound by a synthetic resin In addition, fiber knitted fabrics and the like are provided (for example, see Patent Documents 1 and 2).
特許文献 1  Patent Document 1
特開平 1 1—6 1 6 1 6号公報  Japanese Patent Application Laid-Open No. Hei 11-6-1616
特許文献 2  Patent Document 2
特開平 8— 3 9 5 9 6号公報  Japanese Patent Application Laid-Open No. Hei 8-399596
この種の繊維シートには防音性や断熱性が要求される。防音性や断熱性のため には該繊維シート内の空隙率を高めることが望ましい。しかし繊維シ一ト内の空隙 率を高めると繊維シー卜の剛性が低下してしまい、 持運び中に形崩れし易くなり、 また成形した場合には成形形状が不安定になる。更に該繊維シート内の空隙率を単 純に高めるだけでは、低周波から高周波までの広い範囲の周波数に対する吸音性が 保証されない。 発明の開示  This type of fiber sheet is required to have soundproofing and heat insulating properties. It is desirable to increase the porosity in the fiber sheet for sound insulation and heat insulation. However, if the porosity in the fiber sheet is increased, the rigidity of the fiber sheet is reduced, and the fiber sheet is easily deformed during carrying, and the molded shape becomes unstable when molded. Furthermore, simply increasing the porosity in the fiber sheet does not guarantee sound absorption for a wide range of frequencies from low frequencies to high frequencies. Disclosure of the invention
本発明は上記従来の課題を解決するための手段として、繊維に熱膨張性粒体を 混合してシ一ト化すると共に、厚みを規制しつつ加熱して該熱膨張性粒体を熱膨張 せしめた繊維シートを提供するものである。 該繊維は中空繊維であるかまたは中空繊維が混合されていることが望ましく、 更に該繊維には融点 1 8 0 °C以下の低融点繊維が混合されていることが望ましい。 The present invention solves the above-mentioned conventional problems by mixing thermally expandable particles with fibers to form a sheet, and heating while controlling the thickness to thermally expand the thermally expandable particles. It is intended to provide a reinforced fiber sheet. The fiber is preferably a hollow fiber or a mixture of a hollow fiber, and the fiber is preferably mixed with a low-melting fiber having a melting point of 180 ° C. or lower.
繊維シートを成形する場合には、該繊維は合成樹脂バインダ一によって結着さ れていることが望ましい。  When forming a fiber sheet, the fibers are desirably bound by a synthetic resin binder.
該熱膨張性粒体は、低軟化点を有する熱可塑性樹脂シェル中に低沸点溶剤を封 入したマイクロカプセルであるか、あるいは低軟化点を有する熱可塑性樹脂ビーズ に低沸点溶剤を含浸させた発泡性ビーズであるか、あるいはまた熱膨張性無機粒体 であることが望ましい。  The thermally expandable particles are microcapsules in which a low boiling point solvent is sealed in a thermoplastic resin shell having a low softening point, or thermoplastic resin beads having a low softening point are impregnated with a low boiling point solvent. Desirably, they are foam beads or, alternatively, thermally expandable inorganic particles.
更に本発明では上記繊維シ一トを所定形状に成形した成形物が提供される。 〔作用〕  Further, the present invention provides a molded product obtained by molding the above fiber sheet into a predetermined shape. [Action]
該繊維シートを厚みを規制しつつ含有する該熱膨張性粒体の膨張温度以上に 加熱すると、該熱膨張性粒体が膨張する。該繊維シートは上記したように厚みを規 制されているから、該粒体の膨張によって周りの繊維は圧縮され、繊維部分の密度 は高くなって剛性が向上する。しかし繊維シ一ト全体としては、空隙率は変わらず、 したがって重量も変わらない。  When the fiber sheet is heated to a temperature equal to or higher than the expansion temperature of the thermally expandable particles containing the fiber sheet while regulating the thickness, the thermally expandable particles expand. Since the thickness of the fibrous sheet is regulated as described above, the surrounding fibers are compressed by the expansion of the granules, and the density of the fibrous portion is increased and the rigidity is improved. However, the porosity of the fiber sheet as a whole does not change, and thus the weight does not change.
〔発明の効果〕  〔The invention's effect〕
本発明の繊維シ一トにあつては、熱膨張性粒体の膨張によつて繊維が圧縮され、 重量を増大させることなく繊維部分を高密度にすることが出来るので、曲げ強度が 大でかつ低周波から高周波までの広い周波数にわたって吸音性に優れた繊維シ一 卜およびその成形物を得ることが出来、更に難燃化が実現されると云う予期せざる 効果も発現され、該繊維シ一トゃ成形物は自動車や建築物の吸音材や断熱材として 極めて有用である。 発明を実施するための最良の形態  In the fiber sheet of the present invention, the fiber is compressed by the expansion of the thermally expandable particles, and the density of the fiber portion can be increased without increasing the weight. In addition, it is possible to obtain a fiber sheet having excellent sound absorbing properties over a wide frequency range from a low frequency to a high frequency and a molded product thereof, and furthermore, an unexpected effect that flame retardancy is realized is exhibited. Molded products are extremely useful as sound absorbing materials and heat insulating materials for automobiles and buildings. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
隱〕  Hidden)
本発明において使用される繊維としては、例えば、 ポリエステル繊維、 ポリア ミド繊維、 アクリル繊維、 ウレタン繊維、 ポリ塩化ビニル繊維、 ポリ塩化ビニリデ ン繊維、 アセテート繊維等の合成繊維、 羊毛、 モヘア、 カシミア、 ラクダ毛、 アル パカ、 ビキュナ、 アンゴラ、 蚕糸、 キヮ夕、 ガマ繊維、 パルプ、 木綿、 ヤシ繊維、 麻繊維、 竹繊維、 ケナフ繊維等の天然繊維、 レーヨン (人絹、 スフ) 、 ポリノジッ ク、 キュブラ、 アセテート、 トリアセテート等のセルロース系人造繊維、 ガラス繊 維、 炭素繊維、 セラミック繊維、 石綿繊維等の無機繊維、 これらの繊維を使用した 繊維製品のスクラップを解繊して得られた再生繊維等である。 これらの繊維は、単 独あるいは 2種以上組合わせて使用される。更に望ましい繊維としては、中空繊維 がある。 The fibers used in the present invention include, for example, polyester fibers, polya Synthetic fibers such as mid fiber, acrylic fiber, urethane fiber, polyvinyl chloride fiber, polyvinyl chloride fiber, and acetate fiber, wool, mohair, cashmere, camel hair, alpaca, bikuna, angora, silk, silk, and ama Natural fibers such as fiber, pulp, cotton, palm fiber, hemp fiber, bamboo fiber, kenaf fiber, etc., cellulosic man-made fibers such as rayon (human silk, soup), polynosic, cuvula, acetate, triacetate, glass fiber, carbon Inorganic fibers such as fibers, ceramic fibers and asbestos fibers, and recycled fibers obtained by defibrating scraps of textile products using these fibers. These fibers are used alone or in combination of two or more. More desirable fibers include hollow fibers.
該中空繊維は、 ポリエチレンテレフ夕レート、 ポリブチレンテレフ夕レート、 ポリへキサメチレンテレフ夕レート、ポリ— 1, 4ージメチルシクロへキサンテレ フタレート等のポリエステル、 ナイロン 6、 ナイロン 6 6、 ナイロン 4 6、 ナイ口 ン 1 0等のポリアミド、 ポリエチレン、 ポリプロピレン等のポリオレフイン、 ァク リル、 ウレタン、 ポリ塩化ビニル、 ポリ塩化ビニリデン、 ァセテ一ト等の熱可塑性 樹脂からなる。 これらの中空繊維は単独あるいは 2種以上組合わせて使用される。  The hollow fiber is made of polyester such as polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate, poly-1,4-dimethylcyclohexane terephthalate, nylon 6, nylon 66, nylon 46, and nylon mouth. And thermoplastic resins such as polyamide, polyethylene, polypropylene, and other polyolefins, acrylic, urethane, polyvinyl chloride, polyvinylidene chloride, acetate, and the like. These hollow fibers are used alone or in combination of two or more.
該中空繊維は、溶融紡糸法や、 2種のポリマ一を複合紡糸して得られた繊維の 一方の成分を優先的に溶出除去する等の公知の方法によって製造される。  The hollow fiber is produced by a known method such as a melt spinning method or a method in which one component of a fiber obtained by composite spinning two kinds of polymers is preferentially eluted and removed.
該中空繊維は、 1個または 2個以上の断面円形、楕円形等の形状の中空管部を 有しており、 中空率が 5 %〜 7 0 %、望ましくは 1 0 %〜5 0 %である。なお該中 空率は繊維断面積に対する中空管部断面積の割合である。  The hollow fiber has one or two or more hollow tubular portions having a circular or elliptical cross section, and has a hollow ratio of 5% to 70%, preferably 10% to 50%. It is. The void ratio is the ratio of the cross-sectional area of the hollow tube to the cross-sectional area of the fiber.
また該中空繊維の繊度は、 1 dtex〜 5 0 dtexの範囲であり、 望ましくは 2 dtex 〜2 O dte の範囲である。  The fineness of the hollow fiber is in the range of 1 dtex to 50 dtex, preferably in the range of 2 dtex to 2 O dte.
上記中空繊維を他の繊維と混合して使用する場合には、上記中空繊維は 3 0質 量%以上混合されることが望ましい。  When the above-mentioned hollow fiber is used by being mixed with another fiber, it is preferable that the above-mentioned hollow fiber is mixed with 30% by mass or more.
上記中空繊維を使用すると、チューブ効果によって繊維シ一トの剛性が向上す る。  When the hollow fiber is used, the rigidity of the fiber sheet is improved by the tube effect.
更に本発明にあっては、融点が 1 8 0 °C以下である低融点繊維を使用してもよ レ^ 該低融点繊維としては、 例えば、 ポリエチレン、 ポリプロピレン、 エチレン一 酢酸ビニル共重合体、エチレン一ェチルァクリレー卜共重合体等のポリオレフィン 系繊維、 ポリ塩化ビニル繊維、 ポリウレタン繊維、 ポリエステル繊維、 ポリエステ ル共重合体繊維、 ポリアミド繊維、 ポリアミド共重合体繊維等がある。 これらの低 融点繊維は、単独あるいは 2種以上組合わせて使用される。該低融点繊維の繊度は、 0 . 1 dtex〜 6 0 dtexの範囲である。 上記低融点繊維は通常上記繊維に 1〜 5 0質 量%混合される。 Further, in the present invention, a low melting point fiber having a melting point of 180 ° C. or less may be used. Examples of the low-melting-point fiber include polyolefin-based fibers such as polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, polyvinyl chloride fiber, polyurethane fiber, polyester fiber, and polyester fiber. Polymer fibers, polyamide fibers, polyamide copolymer fibers, and the like. These low-melting fibers are used alone or in combination of two or more. The fineness of the low-melting fiber ranges from 0.1 dtex to 60 dtex. The low melting point fiber is usually mixed with the above fiber in an amount of 1 to 50% by mass.
〔熱膨張性粒体〕  (Thermally expandable particles)
本発明に使用する熱膨張性粒体は、例えば低軟化点を有する熱可塑性樹脂と低 沸点溶剤とからなる。低軟化点を有する熱可塑性樹脂としては、例えばメチルァク リレート、 ェチルァクリレ一卜、 n-プロピルァクリレート、 iso-プ ΰピルァクリレ ート、 η-ブチルァクリレート、 iso-プチルァクリレー卜、 t-ブチルァクリレート、 2- ェチルへキシルァクリレート、 シクロへキシルァクリレート、テトラヒドロフルフ リルァクリレート、 メチルメタクリレート、 ェチルメタクリレート、 n-プロピルメ タクリレー卜、 iso-プロピルメタクリレ一ト、 n-ブチルメタクリレ一ト、 iso-ブチル メタクリレート、 2-ェチルへキシルメタクリレー卜、 シクロへキシルメ夕クリレ一 ト、 テトラヒドロフルフリルメタクリレート、 ステアリルメタクリレート、 ラウリ ルメ夕クリレート等の脂肪族または環式ァクリレートおよび Zまたはメタクリレ ―卜、メチルビニルエーテル、ェチルビ二ルェ一テル、 n-プロピルビニルエーテル、 n-ブチルビ二ルェ一テル、 iso-ブチルビ二ルェ一テル等のビニルエーテル類、 スチ レン、 α—メチルスチレン等のスチレン類、 、 アクリロニトリル、 メ夕クリロニト リル等の二トリル系単量体、 酢酸ビニル、 プロピオン酸ビニル等の脂肪酸ビニル、 塩化ビニル、塩化ビニリデン、弗化ビニル、弗化ビニリデン等のハロゲン含有単量 体、 エチレン、 プロピレン、 等のォレフィン類、 イソプレン、 クロ口プレン、 ブ夕 ジェン等のジェン類、 アクリル酸、 メ夕クリル酸、 ィタコン酸、 マレイン酸、 クロ トン酸、 アトロパ酸、 シトラコン酸等の α , ]3—不飽和カルボン酸、 2-ヒドロキシ ェチルメタクリレート、 2-ヒドロキシェチルァクリレート、 2-ヒドロキシプロピル メタクリレ一ト、 2-ヒドロキシプロピルァクリレート、 ァリルアルコール等の水酸 基含有単量体、 アクリルアミド、 メタクリルアミド、 ジアセトンアクリルアミド等 のアミド類、ジメチルアミノエチルメタクリレ一ト、ジメチルアミノエチルァクリ レート、ジメチルァミノプロピルメタクリレート、ジメチルァミノプロピルァクリ レート等のアミノ基含有単量体、ダリシジルァクリレート、ダリシジルメタクリレ —ト、グリシジルァリルエーテル等のエポキシ基含有単量体、その他ビエルピロリ ドン、 ビニルピリジン、 ビニルカルバゾ一ル等の水溶性単量体、 また上記ァ- メタ クリロキシプロピルトリメトキシシラン、 ビニルトリァセトキシシラン、 P-卜リメ トキシシリルスチレン、 P-トリエトキシシリルスチレン、 P-トリメトキシシリル- - メチルスチレン、 P-トリエトキシシリル- - メチルスチレン、 T -ァクリロキ シプロビルトリメトキシッシラン、 ビニルトリメトキシシラン、 N- i3 (N-ビニル ベンジルアミノエチル- ァ-ァミノプロピル) トリメトキシシラン'塩酸塩等のよ うな加水分解性シリル基含有ビニル単量体等の一種または二種以上の重合体また は上記重合体をジビニルベンゼン、ジエチレンダリコールジァクリレート等の多価 ァクリレートまたはメタクリレート、ジァリルフタレート、ァリルグリシジルエー テル等の架橋剤で架橋させた重合体、低軟化点ポリアミド、低軟化点ポリエステル 等の望ましくは 1 8 0 °C以下の軟化点を有する熱可塑性樹脂であり、低沸点溶剤と しては、 例えば n—へキサン、 シクロへキサン、 n—ペンタン、 イソペンタン、 n 一ブタン、 イソブタン、 n—ヘプタン、 n—オクタン、 イソオクタン、 ガソリン、 ェチルェ一テル、 アセトン、ベンゼン等の沸点 1 5 0 °C以下の有機溶剤がある。そ して熱膨張性粒体は上記熱可塑性樹脂粒体に上記低沸点溶剤を含浸させた発泡性 ビーズ、上記低軟化点熱可塑性樹脂のシェル中に上記低沸点溶剤を充填したマイク 口力プセル等からなる。 該粒体の径は通常 0. 5〜; 1 0 0 0 mである。 The thermally expandable particles used in the present invention are composed of, for example, a thermoplastic resin having a low softening point and a low boiling point solvent. Examples of the thermoplastic resin having a low softening point include methyl acrylate, ethyl acrylate, n-propyl acrylate, iso-propyl acrylate, η-butyl acrylate, iso-butyl acrylate, and t-butyl acrylate. Acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, tetrahydrofurfuryl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, iso-propyl methacrylate, n-butyl methacrylate Aliphatic or cyclic acrylates such as iso-butyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, tetrahydrofurfuryl methacrylate, stearyl methacrylate, lauryl methacrylate, and Z or methacrylate , Meth Vinyl ethers such as vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, n-butyl vinyl ether, iso-butyl vinyl ether, styrenes such as styrene and α-methylstyrene, acrylonitrile, Nitrile monomers such as acrylonitrile, etc .; fatty acid vinyls such as vinyl acetate and vinyl propionate; halogen-containing monomers such as vinyl chloride, vinylidene chloride, vinyl fluoride and vinylidene fluoride; ethylene, propylene, etc. Α,] 3-unsaturated carboxylic acids such as olefins, isoprene, chloroprene, and benzoic acid, and acrylic acid, methacrylic acid, itaconic acid, maleic acid, crotonic acid, atropic acid, and citraconic acid. Acid, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxy Propyl Hydroxyl-containing monomers such as methacrylate, 2-hydroxypropyl acrylate and aryl alcohol; amides such as acrylamide, methacrylamide and diacetone acrylamide; dimethylaminoethyl methacrylate and dimethylaminoethyl Amino group-containing monomers such as acrylate, dimethylaminopropyl methacrylate, and dimethylaminopropyl acrylate; and epoxy group-containing monomers such as daricidyl acrylate, dalicidyl methacrylate, and glycidylaryl ether. And other water-soluble monomers such as bierpyrrolidone, vinylpyridine, and vinylcarbazole, and the above-mentioned methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, P-trimethoxysilylstyrene, and P-triethoxysilyl. Styrene, P-trimethoxy Silyl- -methylstyrene, P-triethoxysilyl- -methylstyrene, T-acryloxycyprovir trimethoxysilane, vinyltrimethoxysilane, N-i3 (N-vinylbenzylaminoethyl-aminopropyl) trimethoxysilane ' One or two or more polymers such as hydrolyzable silyl group-containing vinyl monomers such as hydrochloride or the above-mentioned polymers are converted to polyvalent acrylates or methacrylates such as divinylbenzene, diethylene dalicol diacrylate, etc. A thermoplastic resin having a softening point of preferably 180 ° C. or less, such as a polymer crosslinked with a crosslinking agent such as diaryl phthalate or arylglycidyl ether, a low softening point polyamide, or a low softening point polyester. And low-boiling solvents include, for example, n-hexane, cyclohexane, n-pentane, isopentane, n There are organic solvents with a boiling point of 150 ° C or less, such as butane, isobutane, n-heptane, n-octane, isooctane, gasoline, ethyl ether, acetone and benzene. The thermally expandable particles are expanded beads obtained by impregnating the above-mentioned thermoplastic resin particles with the above-mentioned low-boiling-point solvent, and a microphone having a low-boiling-point solvent filled in a shell of the above-mentioned low-softening-point thermoplastic resin. Etc. The diameter of the granules is usually from 0.5 to 100 m.
更に本発明に使用する熱膨張性粒体としては、 ひる石、パ一ライト、 シラスパ ル一ンのような熱膨張性無機粒体がある。  Further, as the thermally expandable particles used in the present invention, there are thermally expandable inorganic particles such as vermiculite, perlite, and shirasparun.
〔繊維シート〕  (Fiber sheet)
本発明の繊維シートは、繊維のウェブのシートあるいはマツトをニードルパン チングによって絡合する方法、あるいは繊維のウェブのシートあるいはマツ卜に合 成樹脂バインダ一を含浸あるいは混合して結着するか、あるいは繊維のウェブのシ —トまたはマツトを二一ドルパンチングによって絡合した上で合成樹脂バインダ —を含浸して結着する方法、 繊維を編織する方法等によって製造される。 The fiber sheet of the present invention is obtained by needle panning a fiber web sheet or mat. A fiber web sheet or mat is impregnated or mixed with a synthetic resin binder, or a fiber web sheet or mat is entangled by $ 21 punching. It is manufactured by a method of binding and impregnating a synthetic resin binder, or a method of knitting and weaving fibers.
上記熱膨張性粒体は、通常繊維をシートまたはマツト化する前に繊維に混合さ れるが、シートまたはマツ卜に合成樹脂バインダ一を含浸あるいは混合する場合に は、該合成樹脂バインダーに混合しておいてもよい。混合比率は任意でよいが、通 常繊維に対して該粒体を 0 . ;!〜 5 0質量%添加する。  The thermally expandable particles are usually mixed with the fibers before the fibers are converted into a sheet or mat, but when the sheets or mats are impregnated or mixed with a synthetic resin binder, they are mixed with the synthetic resin binder. You may keep it. The mixing ratio may be arbitrarily selected, but usually, the granules are added in an amount of from 0.1 to 50% by mass based on the fiber.
上記シ一ト化した繊維に合成樹脂を含浸するには、通常液状合成樹脂あるいは 合成樹脂溶液に該シート化繊維を浸漬するか、あるいは液状合成樹脂あるいは合成 樹脂溶液を該シート化繊維にスプレーするか、 あるいはナイフコー夕一、 口一ルコ 一夕一、 フロ一コ一夕一等によって塗布する。  In order to impregnate the sheeted fiber with the synthetic resin, the sheeted fiber is usually immersed in a liquid synthetic resin or a synthetic resin solution, or the liquid synthetic resin or the synthetic resin solution is sprayed on the sheeted fiber. Or, apply with a knife co.
合成樹脂を含浸または混合したシート化繊維中の合成樹脂量を調節するには、 合成樹脂含浸または混合後、シート化繊維を絞りロールやプレス盤を使用して絞る。 この場合シ一ト化繊維は厚みを減少するが、該シ一ト化繊維に中空繊維が含まれて いる場合には剛性が高く、絞った後は厚みが弹性的「こ復元し、ある程度の厚みが確 保される。特に該シート化繊維に低融点繊維が含まれている場合には、該繊維をシ ート化し、加熱して低融点繊維を溶融させ、繊維を該溶融物によって結着しておく ことが望ましい。そうすると該繊維のシートは強度および剛性が更に向上し、合成 樹脂含浸の際の作業性が向上し、 また絞り後の厚みの復元も顕著になる。  In order to adjust the amount of synthetic resin in the sheeted fiber impregnated or mixed with the synthetic resin, after impregnating or mixing the synthetic resin, the sheeted fiber is squeezed using a drawing roll or a press machine. In this case, the thickness of the sheeting fiber decreases, but when the sheeting fiber contains hollow fibers, the sheeting fiber has high rigidity, and after being squeezed, the thickness is sexually restored. Particularly when the sheeted fiber contains a low-melting fiber, the fiber is sheeted, heated to melt the low-melting fiber, and the fiber is bonded by the melt. Then, the strength and rigidity of the fiber sheet are further improved, the workability during impregnation with the synthetic resin is improved, and the thickness of the sheet after drawing is remarkably restored.
上記したように本発明の繊維に中空繊維を含む場合は、シ一ト化した場合シー トは高剛性になり、 シート化繊維の合成樹脂バインダーの含有量を、中空繊維を含 まないシー卜化繊維の合成樹脂バインダ一の含有量よりも少なくすることが出来 る。  As described above, when hollow fibers are included in the fiber of the present invention, the sheet becomes highly rigid when formed into a sheet, and the content of the synthetic resin binder in the sheeted fiber is adjusted to a sheet not including the hollow fiber. Content of the synthetic fiber binder can be reduced.
該シ一卜化繊維に合成樹脂溶液を含浸あるいは混合した後、該シ一ト化繊維は 乾燥する。該シ一ト化繊維に含まれる合成樹脂バインダ一が熱硬化性樹脂である場 合は、該樹脂を B状態にすると長期保存が可能になり、かつ低温短時間の成形が可 能になる。 After impregnating or mixing the synthetic fibers with the synthetic fibers, the synthetic fibers are dried. When the synthetic resin binder contained in the sheeted fiber is a thermosetting resin, setting the resin to the B state enables long-term storage, and enables low-temperature short-time molding. It will work.
〔合成樹脂バインダ—〕  [Synthetic resin binder]
上記繊維のバインダーとして使用される合成樹脂としては、例えばポリェチレ ン、 ポリプロピレン、エチレン一プロピレン共重合体、エチレン一酢酸ビニル共重 合体、 ポリ塩化ビニル、 ポリ塩化ビニリデン、 ポリスチレン、 ポリ酢酸ビニル、 フ ッ素樹脂、 熱可塑性アクリル樹脂、 熱可塑性ポリエステル、 熱可塑性ポリアミド、 熱可塑性ウレタン樹脂、アクリロニトリル一ブタジエン共重合体、スチレン—ブ夕 ジェン共重合体、アクリロニトリル—ブタジエン—スチレン共重合体、エチレン一 プロピレン共重合体、エチレン一プロピレン夕一ポリマ一、エチレン一酢酸ビニル 共重合体等の熱可塑性合成樹脂、 ウレタン樹脂、 メラミン樹脂、熱硬化型アクリル 樹脂、 尿素樹脂、 フエノール樹脂、 エポキシ樹脂、熱硬化型ポリエステル等のよう な熱硬ィ匕性合成樹脂等が使用されるが、該合成樹脂を生成するウレタン榭脂プレボ リマー、エポキシ樹脂プレボリマ一、 メラミン樹脂プレボリマー、尿素樹脂プレボ リマー、 フエノール樹脂プレボリマ一、 ジァリルフタレ一トプレポリマ一、 ァクリ ルオリゴマー、多価イソシアナート、 メ夕クリルエステルモノマ一、 ジァリルフタ レートモノマ一等のプレボリマ一、オリゴマー、モノマー等の合成樹脂前駆体が使 用されてもよい。上記合成樹脂は単独あるいは二種以上併用されてもよく、通常ェ マルジヨン、 ラテックス、 水溶液、 有機溶剤溶液等として使用される。  Examples of the synthetic resin used as a binder for the above fiber include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, and fluorine acetate. Polyethylene resin, thermoplastic acrylic resin, thermoplastic polyester, thermoplastic polyamide, thermoplastic urethane resin, acrylonitrile-butadiene copolymer, styrene-butene copolymer, acrylonitrile-butadiene-styrene copolymer, ethylene-propylene copolymer Thermoplastic synthetic resins such as polymers, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, urethane resins, melamine resins, thermosetting acrylic resins, urea resins, phenolic resins, epoxy resins, thermosetting polyesters A thermosetting durable synthetic resin such as phenolic resin is used, but a urethane resin prepolymer, an epoxy resin prepolymer, a melamine resin prepolymer, a urea resin prepolymer, a phenol resin prepolymer, and a phenol resin prepolymer which produce the synthetic resin are used. Synthetic resin precursors such as prepolymers, oligomers and monomers such as diaryl phthalate prepolymer, acryl oligomer, polyvalent isocyanate, methyl acrylate ester monomer, and diaryl phthalate monomer may be used. The above synthetic resins may be used alone or in combination of two or more, and are usually used as an emulsion, a latex, an aqueous solution, an organic solvent solution or the like.
本発明で使用される合成樹脂バインダーとして望ましいのは、フエノール系樹 脂である。 以下、 本発明で使用するフエノール系樹脂について説明する。  Preferred as the synthetic resin binder used in the present invention is a phenolic resin. Hereinafter, the phenolic resin used in the present invention will be described.
フエノール系樹脂は、フエノール系化合物とアルデヒドおよび Zまたはアルデ ヒド供与体とを縮合させることによって得られる。該フエノ一ル系樹脂は、水溶性 を付与するためにスルホアルキル化および Zまたはスルフィアルキル化されても 良い。  A phenolic resin is obtained by condensing a phenolic compound with an aldehyde and a Z or aldehyde donor. The phenolic resin may be sulfoalkylated and Z- or sulfialkylated to impart water solubility.
本発明のフエノール系樹脂は、初期縮合物の水溶液(初期縮合物液) としてシ —ト基材に含浸される。該初期縮合物液は、所望により、メタノール、エタノール、 イソプロパノール、 n—プロパノール、 イソプロパノール、 n—ブ夕ノール、 イソ ブタノ一ル、 s e c—ブ夕ノール、 tーブ夕ノール、 n—ァミルアルコール、 イソ ァミルアルコール、 n _へキサノール、 メチルァミルアルコール、 2—ェチルブ夕 ノール、 n—ヘプ夕ノール、 n—ォクタノール、 トリメチルノニルアルコール、 シ クロへキサノール、ベンジルアルコール、 フルフリルアルコール、テトラヒドロフ ルフリルアルコール、アビエチルアルコール、ジアセトンアルコール等のアルコー ル類、 アセトン、 メチルアセトン、 メチルェチルケトン、 メチルー n—プロピルケ トン、 メチルー n—プチルケトン、 メチルイソプチルケトン、 ジェチルケトン、 ジ 一 n—プロピルケトン、 ジイソプチルケトン、 ァセトニルアセトン、 メチルォキシ ド、 シクロへキサノン、 メチルシクロへキサノン、 ァセトフエノン、 ショウノウ等 のケトン類、 エチレングリコール、 ジエチレングリコール、 トリエチレングリコー ル、 プロピレングリコール、 トリメチレングリコ一ル、 ポリエチレングリコール等 のグリコ一ル類、エチレングリコールモノメチルエーテル、エチレングリコ一ルモ ノエチルエーテル、エチレングリコ一ルイソプロピルエーテル、ジエチレングリコ ールモノメチルエーテル、トリエチレングリコールモノメチルエーテル等のグリコ —ルェ一テル類、エチレングリコールジアセテート、ジエチレングリコールモノエ チルエーテルアセテート等の上記グリコール類のエステル類やその誘導体、 1 , 4 一ジォキサン等のエーテル類、 ジェチルセ口ルブ、 ジェチルカルビ! ^一ル、 ェチル ラクテート、イソプロピルラクテート、 ジグリコールジアセテート、 ジメチルホル ムアミド等の水溶性有機溶剤が使用されてもよい。 The phenolic resin of the present invention is impregnated on a sheet substrate as an aqueous solution of a precondensate (a precondensate solution). The precondensate solution may be, if desired, methanol, ethanol, isopropanol, n-propanol, isopropanol, n-butanol, isopropanol. Butanol, sec-butanol, t-butyl alcohol, n-amyl alcohol, isoamyl alcohol, n_hexanol, methylamyl alcohol, 2-ethylethyl alcohol, n-hepanol, n —Alcohols such as octanol, trimethylnonyl alcohol, cyclohexanol, benzyl alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, abiethyl alcohol, diacetone alcohol, acetone, methylacetone, methylethylketone, methyl-n —Propyl ketone, Methyl-n-butyl ketone, Methyl isobutyl ketone, Getyl ketone, Di-n-propyl ketone, Diisobutyl ketone, Acetonylacetone, Methyl oxide, Cyclohexanone, Methylcyclohexanone, Acetofphenone, Sho Ketones such as Uno, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, glycols such as polyethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol Glycols such as isopropyl ether, diethylene glycol monomethyl ether and triethylene glycol monomethyl ether; esters of the above glycols such as ethylene glycol diacetate and diethylene glycol monoethyl ether acetate and derivatives thereof; Ethers such as dioxane, getylserub, getyl ribs! A water-soluble organic solvent such as ethyl, ethyl lactate, isopropyl lactate, diglycol diacetate, or dimethylformamide may be used.
〔フエノール系化合物〕  (Phenol compound)
上記フエノール系樹脂に使用されるフエノ一ル系化合物としては、ー価フエノ —ルであってもよいし、多価フエノールであってもよいし、一価フエノールと多価 フエノールとの混合物であってもよいが、一価フエノ一ルのみを使用した場合、硬 化時および 化後にホルムアルデヒドが放出され易いため、好ましくは多価フエノ ールまたは一価フエノールと多価フエノールとの混合物を使用する。  The phenolic compound used in the phenolic resin may be a monovalent phenol, a polyvalent phenol, or a mixture of a monovalent phenol and a polyvalent phenol. However, if only monovalent phenol is used, formaldehyde is easily released during curing and after curing, so polyvalent phenol or a mixture of monovalent phenol and polyvalent phenol is preferably used. .
〔一価フエノール〕  (Monovalent phenol)
上記一価フエノールとしては、 フエノールや、 o—クレゾール、 m—クレゾ一 ル、 p _クレゾール、ェチルフエノール、イソプロピルフエノール、キシレノール、The above monovalent phenols include phenol, o-cresol, m-cresol , P_cresol, ethyl phenol, isopropyl phenol, xylenol,
3, 5—キシレノ一ル、 ブチルフエノール、 t—プチルフエノ一ル、 ノニルフエノ ール等のアルキルフェノ一ル、 o一フルオロフェノ一ル、 m—フルォロフエノ一ル、 p—フルオロフエノ一ル、 0—クロ口フエノール、 m—クロ口フエノール、 ρ—ク ロロフエノ一ル、 o—ブロモフエノール、 m—ブロモフエノール、 ρ—ブロモフエ ノール、 o—ョ一ドフエノール、 m—ョ一ドフエノ一ル、 p—ョ一ドフエノール、 o—ァミノフエノール、 m—アミノフエノ一ル、 p—ァミノフエノール、 o—ニト 口フエノール、 m—ニトロフエノール、 p—二トロフエノール、 2, 4—ジニトロ フエノール、 2 , 4, 6 _トリニトロフエノール等の一価フエノール置換体、 ナフ トール等の多環式一価フエノールなどが挙げられ、これら一価フエノールは単独で または二種以上混合して使用することが出来る。 Alkylphenols such as 3,5-xylenol, butylphenol, t-butylphenol, nonylphenol, o-fluorophenol, m-fluorophenol, p-fluorophenol, 0-cloth Phenol, m-chlorophenol, ρ-chlorophenol, o-bromophenol, m-bromophenol, ρ-bromophenol, o-dophenol, m-dophenol, p-phenol, o-Aminophenol, m-Aminophenol, p-Aminophenol, o-Nito Mouth phenol, m-Nitrophenol, p-Ditrophenol, 2,4-Dinitrophenol, 2,4,6-Trinitro Examples thereof include monovalent phenol-substituted products such as phenol, and polycyclic monovalent phenols such as naphthol. These can be mixed and used.
〔多価フエノール〕  (Polyvalent phenol)
上記多価フエノールとしては、 レゾルシン、 アルキルレゾルシス ピロガロー ル、カテコール、アルキルカテコール、八ィドロキノン、アルキル八ィドロキノン、 フロロダルシン、 ビスフエノール、 ジヒドロキシナフタリン等が挙げられ、 これら 多価フエノールは単独でまたは二種以上混合して使用することができる。多価フエ ノールのうち好ましいものは、 レゾルシンまたはアルキルレゾルシンであり、特に 好ましいものはレゾルシンよりもアルデヒドとの反応速度が速いアルキルレゾル シンである。  Examples of the polyvalent phenol include resorcin, alkyl resorsis pyrogallol, catechol, alkyl catechol, octahydroquinone, alkyl octahydroquinone, fluorolodarcin, bisphenol, dihydroxynaphthalene, and the like. These polyphenols may be used alone or in combination of two or more. They can be mixed and used. Preferred among the polyhydric phenols are resorcinol and alkylresorcinol, and particularly preferred is alkylresorcinol, which has a higher reaction rate with aldehydes than resorcinol.
アルキルレゾルシンとしては、例えば 5—メチルレゾルシン、 5—ェチルレゾ ルシン、 5—プロピルレゾルシン、 5— n—ブチルレゾルシン、 4 , 5—ジメチル レゾルシン、 2 , 5 _ジメチルレゾルシン、 4 , 5—ジェチルレゾルシン、 2 , 5 一ジェチルレゾルシン、 4 , 5—ジプロピルレゾルシン、 2 , 5—ジプロピルレゾ ルシン、 4ーメチルー 5—ェチルレゾルシン、 2ーメチル— 5—ェチルレゾルシン、 2—メチルー 5 _プロピルレゾルシン、 2 , 4, 5—卜リメチルレゾルシン、 2, 4 , 5—トリェチルレゾルシン等がある。  Examples of the alkyl resorcinol include 5-methyl resorcin, 5-ethyl resorcinol, 5-propyl resorcinol, 5-n-butyl resorcinol, 4,5-dimethyl resorcinol, 2,5-dimethylresorcinol, 4,5-getyl resorcinol, 2,5 monoethyl resorcinol, 4,5-dipropyl resorcinol, 2,5-dipropyl resorcinol, 4-methyl-5-ethyl resorcinol, 2-methyl-5-ethyl resorcinol, 2-methyl-5-propyl resorcinol, 2,, There are 4,5-trimethylresorcinol and 2,4,5-triethylresorcinol.
エストニア産オイルシェールの乾留によつて得られる多価フエノ一ル混合物 は安価であり、かつ 5—メチルレゾルシンのほか反応性の高い各種アルキルレゾル シンを多量に含むので、 本発明において特に好ましい多価フエノール原料である。 Polyvalent phenol mixture obtained by dry distillation of Estonian oil shale Is a particularly preferable polyvalent phenol raw material in the present invention because it is inexpensive and contains a large amount of highly reactive various alkylresorcinols in addition to 5-methylresorcinol.
本発明では上記フエノール系化合物とアルデヒドおよび Zまたはアルデヒド 供与体(アルデヒド類)が縮合せしめられるが、上記アルデヒド供与体とは分解す るとアルデヒドを生成供与する化合物またはそれらの混合物を意味する。このよう なアルデヒドとしては、 ホルムアルデヒド、 ァセトアルデヒド、 プロピオンアルデ ヒド、 クロラール、 フルフラール、 グリオキザール、 n—ブチルアルデヒド、 カプ 口アルデヒド、 ァリルアルデヒド、 ベンズアルデヒド、 クロトンアルデヒド、 ァク ロレイン、 フエニルァセトアルデヒド、 o—トルアルデヒド、サリチルアルデヒド 等が例示され、アルデヒド供与体としては例えばパラホルムアルデヒド、 トリオキ サン、 へキサメチレンテトラミン、 テトラオキシメチレン等が例示される。  In the present invention, the phenolic compound and the aldehyde and Z or aldehyde donor (aldehydes) are condensed, and the aldehyde donor means a compound which decomposes to produce an aldehyde or a mixture thereof. Examples of such aldehydes include formaldehyde, acetaldehyde, propionaldehyde, chloral, furfural, glyoxal, n-butyraldehyde, capaldehyde, arylaldehyde, benzaldehyde, crotonaldehyde, acrolein, and phenylacetaldehyde. , O-tolualdehyde, salicylaldehyde and the like; and aldehyde donors include, for example, paraformaldehyde, trioxane, hexamethylenetetramine, tetraoxymethylene and the like.
上記したように水溶性フエノ一ル系樹脂の安定性を改良するために、上記フエ ノール系樹脂をスルホメチル化および Zまたはスルフィメチル化することが望ま しい。  As described above, in order to improve the stability of the water-soluble phenolic resin, it is desirable to sulfomethylate and Z or sulfimethylate the phenolic resin.
〔スルホメチル化剤〕  (Sulfomethylating agent)
水溶性フエノール系樹脂の安定性を改良するために使用できるスルホメチル 化剤としては、 例えば、 亜硫酸、 重亜硫酸またはメタ重亜硫酸と、 アルカリ金属ま たは卜リメチルアミンやべンジルトリメチルアンモニゥム等の第四級アミンもし くは第四級アンモニゥムとを反応させて得られる水溶性亜硫酸塩や、これらの水溶 性亜硫酸塩とアルデヒドとの反応によって得られるアルデヒド付加物が例示され る。  Sulfomethylating agents that can be used to improve the stability of the water-soluble phenolic resin include, for example, sulfurous acid, bisulfite or metabisulfite, and alkali metals or trimethylamine or benzyltrimethylammonium. Water-soluble sulfites obtained by reacting quaternary amines or quaternary ammoniums, and aldehyde adducts obtained by reacting these water-soluble sulfites with aldehydes are exemplified.
該アルデヒド付加物とは、 ホルムアルデヒド、 ァセトアルデヒド、 プロピオン アルデヒド、クロラール、フルフラール、ダリオキザール、 n—ブチルアルデヒド、 力プロアルデヒド、 ァリルアルデヒド、 ベンズアルデヒド、 クロトンアルデヒド、 ァクロレイン、 フエニルァセトアルデヒド、 o—トルアルデヒド、サリチルアルデ ヒド等のアルデヒドと、上記水溶性亜硫酸塩とが付加反応したものであり、例えば ホルムアルデヒドと亜硫酸塩からなるアルデヒド付加物は、ヒド キシメタンスル ホン酸塩である。 The aldehyde adducts include formaldehyde, acetaldehyde, propionaldehyde, chloral, furfural, dalioxal, n-butyraldehyde, forceproaldehyde, acrylaldehyde, benzaldehyde, crotonaldehyde, acrolein, phenylacetaldehyde, o- An addition reaction between an aldehyde such as tolualdehyde and salicylaldehyde and the above-mentioned water-soluble sulfite. For example, an aldehyde adduct composed of formaldehyde and sulfite is hydroxymethane sulfoxide. It is a fonate.
〔スルフィメチル化剤〕  (Sulfimethylating agent)
水溶性フエノール系樹脂の安定性を改良するために使用できるスルフィメチ ル化剤としては、ホルムアルデヒドナトリゥムスルホキシラ一ト(ロンガリット)、 ベンズアルデヒドナトリゥムスルホキシラート等の脂肪族、芳香族アルデヒドのァ ルカリ金属スルホキシラ一ト類、ナトリウムハイドロサルフアイト、マグネシウム ハイドロサルフアイト等の 7ルカリ金属、アルカリ土類金属のハイドロサルフアイ ト (亜ジチオン酸塩)類、 ヒドロキシメタンスルフィン酸塩等のヒドロキシアル力 ンスルフィン酸塩等が例示される。  Sulfimethylating agents that can be used to improve the stability of the water-soluble phenolic resin include aliphatic and aromatic aldehydes such as formaldehyde sodium sulfoxylate (Rongalit) and benzaldehyde sodium sulfoxylate. 7 Alkali metal sulfoxylates, sodium hydrosulfite, magnesium hydrosulfite, etc. 7 alkali metals, alkaline earth metal hydrosulfites (dithionites), hydroxymethane sulfinates, etc. And the like.
上記フエノール系樹脂の製造の際、 必要に応じて、 例えば塩酸、 硫酸、 オルト 燐酸、 ホウ酸、 蓚酸、 蟻酸、 酢酸、 酪酸、 ベンゼンスルホン酸、 フエノールスルホ ン酸、パラトルエンスルホン酸、 ナフタリン— α—スルホン酸、 ナフタリン一 β— スルホン酸等の無機または有機酸、蓚酸ジメチルエステル等の有機酸のエステル類、 マレイン酸無水物、 フタル酸無水物等の酸無水物、塩化アンモニゥム、硫酸アンモ 二ゥム、硝酸アンモニゥム、篠酸アンモニゥム、 酢酸アンモニゥム、 憐酸アンモニ ゥム、チォシアン酸アンモニゥム、イミドスルホン酸アンモニゥム等のアンモニゥ ム塩、 モノクロル酢酸またはそのナトリウム塩、 α, ' 一ジクロロヒドリン等の 有機ハロゲン化物、 トリエタノールァミン塩酸塩、塩酸ァニリン等のアミン類の塩 酸塩、サルチル酸尿素ァダクト、 ステアリン酸尿素ァダクト、 ヘプタン酸尿素ァダ クト等の尿素ァダクト、 Ν—トリメチルタウリン、塩化亜鉛、塩化第 2鉄等の酸性 物質、 アンモニア、 アミン類、 水酸化ナトリウム、 水酸化カリウム、 水酸化バリウ ム、水酸化カルシウム等のアルカリ金属やアルカリ土類金属の水酸化物、石灰等の アル力リ土類金属の酸化物、炭酸ナトリウム、亜硫酸ナトリウム、酢酸ナトリウム、 燐酸ナトリゥム等のアル力リ金属の弱酸塩類等のアル力リ性物質を触媒または ρ Η調整剤として混合してもよい。  In the production of the above phenolic resin, if necessary, for example, hydrochloric acid, sulfuric acid, orthophosphoric acid, boric acid, oxalic acid, formic acid, acetic acid, butyric acid, benzenesulfonic acid, phenolsulfonic acid, paratoluenesulfonic acid, naphthalene-α Inorganic or organic acids such as sulfonic acid, naphthalene-β-sulfonic acid, etc., esters of organic acids such as dimethyl oxalate, acid anhydrides such as maleic anhydride, phthalic anhydride, ammonium chloride, ammonium sulfate Ammonium, ammonium nitrate, ammonium succinate, ammonium acetate, ammonium phosphate, ammonium thiocyanate, ammonium imidesulfonate, etc., monochloroacetic acid or its sodium salt, and organic halogens such as α, '-dichlorohydrin Chloride, triethanolamine hydrochloride, aniline hydrochloride, etc. Urea adducts such as hydrochloride of amines, urea salicylate, urea stearate, urea heptanoate, acidic substances such as trimethyltaurine, zinc chloride, ferric chloride, ammonia, amines, Alkali earth metal hydroxides such as sodium hydroxide, potassium hydroxide, barium hydroxide and calcium hydroxide, oxides of alkaline earth metals such as lime, sodium carbonate, sodium sulfite, acetic acid An alkaline substance such as a weak acid salt of an alkaline metal such as sodium or sodium phosphate may be mixed as a catalyst or a ρΗ modifier.
〔フエノ一ル系棚旨の製造〕  [Manufacture of phenol-based shelves]
上記フエノール系樹脂(初期縮合物)は常法により製造することができ、具体 的には、 (a)—価フエノールおよび Zまたは多価フエノールとアルデヒド類とを縮 合させる方法、 (b)一価フエノールとアルデヒド類とを t合させた初期縮合物およ び Zまたは多価フエノールとアルデヒド類とを縮合させた初期縮合物と、一価フエ ノ一ルおよび Zまたは多価フエノールとを縮合させる方法、 (C)一価フエノールと 多価フエノールとアルデヒド類とを縮合させた初期縮合物と、一価フエノールおよ び Zまたは多価フエノールとを縮合させる方法、 (d)一価フエノールとアルデヒド 類とを縮合させた初期縮合物と、多価フエノールとアルデヒド類とを縮合させた初 期縮合物とを縮合させる方法、 (e)—価フエノールとアルデヒド類とを縮合させた 初期縮合物および Zまたは多価フエノールとアルデヒド類とを縮合さ,せた初期縮 合物と、一価フエノールと多価フエノールとアルデヒド類とを縮合させた初期縮合 物とを縮合させる方法等により製造することが出来る。 The phenolic resin (initial condensate) can be produced by a conventional method. Specifically, (a) a method of condensing a phenol and an aldehyde with a polyhydric phenol and Z, or (b) a precondensate and a Z or a polycondensate obtained by combining a monohydric phenol and an aldehyde with an aldehyde. A method of condensing an initial condensate obtained by condensing a monovalent phenol and an aldehyde with a monovalent phenol and Z or a polyvalent phenol, (C) condensing a monovalent phenol with a polyvalent phenol and an aldehyde (D) condensing monohydric phenol and aldehydes with monovalent phenol and Z or polyhydric phenol; A method of condensing an initial condensate condensed, (e) an initial condensate obtained by condensing a phenol and an aldehyde, and an initial condensate obtained by condensing an aldehyde with a Z or polyphenol. When, it is possible to produce a precondensate with a monovalent phenol and polyhydric phenol and an aldehyde condensation by a method such as condensation.
本発明において、望ましいフエノール系樹脂は、 フエノ一ルーアルキルレゾル シン共縮合物である。上記フエノ一ル—アルキルレゾルシン共縮合物は、該共縮合 物(初期共縮合物)の水溶液の安定が良く、かつフエノールのみからなる縮合物(初 期縮合物) に比較して、 常温で長期間保存することが出来るという利点がある。 ま た該水溶液をシート基材に含浸させ、プレキュアして得られる繊維シートの安定性 が良 該繊維シートを長期間保存しても成形性を喪失しない。また更にアルキル レゾルシンはアルデヒドとの反応性が高ぐ遊離アルデヒドを捕捉して反応するの で、樹脂中の遊離アルデヒド量が少なくなる等の利点も有する。 上記フエノール 一アルキルレゾルシン共縮合物の望ましい製造方法は、まずフエノールとアルデヒ ドとを反応させてフエノ一ル系樹脂初期縮合物を製造し、次いで該フェノ一ル系樹 月旨初期縮合物にアルキルレゾルシンを添加し、所望なればアルデヒドを添カ卩して反 応せしめる方法である。  In the present invention, a desirable phenolic resin is a phenol monoalkyl resorcinol cocondensate. The phenol-alkyl resorcinol co-condensate has good aqueous stability of the co-condensate (initial co-condensate) and is longer at room temperature than a condensate consisting of phenol alone (initial condensate). There is an advantage that it can be stored for a period. Further, the stability of the fiber sheet obtained by impregnating the sheet base material with the aqueous solution and pre-curing is good. Even if the fiber sheet is stored for a long time, the formability is not lost. Furthermore, since alkyl resorcin captures and reacts with a free aldehyde having a high reactivity with an aldehyde, it also has an advantage that the amount of the free aldehyde in the resin is reduced. A preferred method for producing the phenol monoalkyl resorcinol cocondensate is to first react phenol with an aldehyde to produce a phenolic resin precondensate, and then to convert the phenolic resin precondensate to alkyl This is a method in which resorcinol is added and, if desired, an aldehyde is added and reacted.
例えば、 上記 (a)—価フエノールおょぴンまたは多価フエノールとアルデヒド 類との縮合では、通常一価フエノール 1モルに対し、アルデヒド類 0. 2 ~ 3モル、 多価フエノ一ル 1モルに対し、 アルデヒド類 0 . 1〜0 . 8モルと、 必要に応じて 溶剤、 第三成分とを添加し、 液温 5 5〜1 0 0 °Cで 8〜2 0時間加熱反応させる。 このときアルデヒド類は、反応開始時に全量加えてもよいし、分割添加または連続 滴下してもよい。 For example, in the above-mentioned condensation of (a) —a phenol or polyhydric phenol with an aldehyde, usually 0.2 mol to 3 mol of the aldehyde and 1 mol of the polyhydric phenol per 1 mol of the monohydric phenol. Then, 0.1 to 0.8 mol of aldehydes and, if necessary, a solvent and a third component are added, and the mixture is heated and reacted at a liquid temperature of 55 to 100 ° C for 8 to 20 hours. At this time, the aldehyde may be added in its entirety at the start of the reaction, or may be added in portions or continuously added dropwise.
上記フエノール系樹脂初期縮合物をスルホメチル化および Zまたはスルフィ メチル化する場合、該初期縮合物に任意の段階でスルホメチル化剤および Zまたは スルフィメチル化剤を添加して、フエノール系化合物おょぴンまたは初期縮合物を スルホメチル化および Zまたはスルフィメチル化する。  When the above phenolic resin precondensate is subjected to sulfomethylation and Z or sulfimethylation, a sulfomethylating agent and Z or a sulfimethylating agent are added to the precondensate at any stage to obtain a phenolic compound or Sulfomethylate and Z or sulfimethylate the precondensate.
スルホメチル化剤および Zまたはスルフィメチル化剤の添加は、 縮合反応前、 反応中、 反応後のいずれの段階で行ってもよい。  The sulfomethylating agent and the Z or sulfimethylating agent may be added at any stage before, during, or after the condensation reaction.
スルホメチル化剤および/またはスルフィメチル化剤の総添加量は、フエノ一 ル系化合物 1モルに対して、 通常 0 . 0 0 1〜1 . 5モルである。 0 . 0 0 1モル 以下の場合はフェノ一ル系樹脂の親水性が充分でなく、 1 . 5モル以上の場合はフ エノ一ル系樹脂の耐水性が悪くなる。製造される初期縮合物の硬化性、硬化後の樹 脂の物性等の性能を良好に保持するためには、 0 . 0 1〜0 . 8モル程度とするの が好ましい。  The total amount of the sulfomethylating agent and / or sulfimethylating agent is usually 0.001 to 1.5 mol per 1 mol of the phenolic compound. When the amount is less than 0.01 mol, the hydrophilicity of the phenolic resin is not sufficient, and when the amount is more than 1.5 mol, the water resistance of the phenolic resin becomes poor. In order to maintain good properties such as the curability of the produced initial condensate and the physical properties of the resin after curing, the amount is preferably about 0.01 to 0.8 mol.
初期縮合物をスルホメチル化および Zまたはスルフィメチル化するために添 加されるスルホメチル化剤および Zまたはスルフィメチル化剤は、該初期縮合物の メチ口一ル基および Zまたは該初期縮合物の芳香環と反応して、該初期縮合物にス ルホメチル基および Zまたはスルフィスチル基力 s導入される。  The sulfomethylating agent and the Z or sulfimethylating agent added for sulfomethylating and Z or sulfimethylating the precondensate are combined with the methyl group of the precondensate and Z or the aromatic ring of the precondensate. Upon reaction, a sulfomethyl group and a Z or sulfistyl group are introduced into the precondensate.
このようにしてスルホメチル化および Zまたはスルフィメチル化したフエノ ール系樹脂の初期縮合物の水溶液は、酸性(p H l . 0 ) 〜アルカリ性の広い範囲 で安定であり、酸性、中性およびアルカリ性のいずれの領域でも硬化することが出 来る。特に、酸性側で硬化させると、 残存メチロール基が減少し、硬化物が分解し てホルムアルデヒドを発生するおそれがなくなる。  The aqueous solution of the precondensate of the phenolic resin thus sulfomethylated and Z- or sulfimethylated is stable in a wide range from acidic (pH 1.0) to alkaline, and is acidic, neutral and alkaline. It can harden in any area. In particular, when curing is performed on the acidic side, residual methylol groups are reduced, and there is no possibility that the cured product is decomposed to generate formaldehyde.
更に本発明では、上記フエノール系樹脂として、所望なれば、尿素、チォ尿素、 メラミン、 チォメラミン、 ジシアンジァミン、 グァニジン、 グアナミン、 ァセトグ アナミン、 ベンゾグアナミン、 2 , 6ジァミノ一 1, 3—ジァミンのアミノ系樹月旨 単量体おょぴンまたは該アミノ系樹脂単量体からなる初期縮合体を添加してフエ ノール系化合物および zまたは初期縮合物と共縮合せしめてもよい。 なお本発明のフェノ一ル系樹脂の初期縮合物 (初期共縮合物を含む)に、更に、 アルデヒドおよび Zまたはアルデヒド供与体、あるいはアルキロール化トリァゾン 誘導体等の硬化剤を添加混合しても良い。 Further, in the present invention, if desired, the phenolic resin may be urea, thiourea, melamine, thiomelamine, dicyandiamine, guanidine, guanamine, acetoguanamine, benzoguanamine, 2,6-diamino-1,3-diamine amino-based resin. Addition of monomer or initial condensate composed of the amino resin monomer It may be co-condensed with a anol compound and z or a precondensate. In addition, a curing agent such as an aldehyde and Z or an aldehyde donor or an alkylolated triazone derivative may be further added to and mixed with the initial condensate (including the initial cocondensate) of the phenolic resin of the present invention. .
上記アルデヒドおよび Zまたはアルデヒド供与体としては、フエノール系樹 J5旨 の初期縮合物(初期共縮合物)の製造に使用されるアルデヒドおよび Zまたはアル デヒド供与体と同様なものが使用され、アルキロ一ルイ匕トリァゾン誘導体は尿素系 化合物と、ァミン類と、アルデヒドおよび Zまたはアルデヒド供与体との反応によ つて得られる。アルキロ一ル化トリァゾン誘導体の製造に使用される上記尿素系化 合物として、 尿素、 チォ尿素、 メチル尿素等のアルキル尿素、 メチルチオ尿素等の アルキルチオ尿素、 フエニル尿素、 ナフチル尿素、 ハロゲン化フエニル尿素、 ニト ' 口化アルキル尿素等の単独または二種以上の混合物が例示される。特に望ましい尿 素系化合物は尿素またはチォ尿素である。またアミン類としてメチルァミン、ェチ ルァミン、 プロピルァミン、 イソプロピルァミン、 プチルァミン、 アミルァミン等 の脂肪族ァミン、 ベンジルァミン、 フルフリルァミン、 エタノールァミン、 ェチレ ンジァミン、へキサメチレンジァミン、へキサメチレンテトラミン等のアミン類の ほか更にアンモニアが例示され、これらは単独でまたは二種以上の混合物として使 用される。上記アルキロ一ル化トリァゾン誘導体の製造に使用されるアルデヒドぉ よび Zまたはアルデヒド供与体はフエノール系樹脂の初期縮合物の製造に使用さ れるアルデヒドおよび Zまたはアルデヒド供与体と同様なものである。  As the aldehyde and Z or the aldehyde donor, those similar to the aldehyde and Z or aldehyde donor used for producing the initial condensate (initial cocondensate) of the phenolic tree J5 are used. The Ruidan triazone derivative is obtained by reacting a urea compound, an amine, an aldehyde and Z or an aldehyde donor. Examples of the urea-based compound used in the production of the alkylated triazone derivative include urea, thiourea, alkyl urea such as methyl urea, alkyl thiourea such as methyl thiourea, phenyl urea, naphthyl urea, halogenated phenyl urea, A single type or a mixture of two or more types, such as a nitrile alkyl urea, is exemplified. A particularly desirable urea compound is urea or thiourea. As amines, aliphatic amines such as methylamine, ethylamine, propylamine, isopropylamine, butylamine, amylamine, etc .; amines such as benzylamine, furfurylamine, ethanolamine, ethylenediamine, hexamethylenediamine, hexamethylenetetramine, etc. Other examples include ammonia, which are used alone or as a mixture of two or more. The aldehyde and Z or aldehyde donor used in the production of the above alkylated triazone derivative are the same as the aldehyde and Z or the aldehyde donor used in the production of the initial condensate of the phenolic resin.
上記アルキロール化トリァゾン誘導体の合成には、通常、尿素系化合物 1モル に対してアミン類および Zまたはアンモニアは 0 . 1〜1 . 2モル、 アルデヒドお よび Zまたはアルデヒド供与体は 1 . 5〜4. 0モルの割合で反応させる。上記反 応の際、 これらの添加順序は任意であるが、好ましい反応方法としては、 まずアル デヒドおよび Zまたはアルデヒド供与体の所要量を反応器に投入し、通常 6 0で以 下の温度に保ちながらアミン類および Zまたはアンモニアの所要量を徐々に添加 し、更に所要量の尿素系化合物を添加し、 8 0〜9 0 °Cで 2〜3時間攪拌加熱して 反応せしめる方法がある。アルデヒドおよび Zまたはアルデヒド供与体としては通 常 3 7 %ホルマリンが用いられるが、反応生成物の濃度をあげるためにその一部を パラホルムアルデヒドに置き換えても良い。またへキサメチレンテトラミンを用い ると、 より高い固形分の反応生成物が得られる。尿素系化合物と、 アミン類および ノまたはアンモニアと、アルデヒドおよび Zまたはアルデヒド供与体との反応は通 常水溶液で行われるが、水の一部または全部に代えてメタノール、 エタノール、ィ ソプロパノール、 n—ブタノ一ル、 エチレングリコール、 ジエチレングリコール等 のアルコール類の単独または二種以上の混合物が使用されても差し支えないし、ま た Tセトン、メチルェチルケトン等のケトン類等の水可溶性有機溶剤の単独または 二種以上の混合物が添加使用出来る。上記硬化剤の添加量はアルデヒドおよびアル デヒド供与体の場合は本発明のフエノール系樹脂の初期縮合物(初期共縮合物) 1 0 0質量部に対して 1 0〜1 0 0質量部、アルキロール化トリァゾン誘導体の場合 は上記フエノール系樹脂の初期縮合物(初期共縮合物) 1 0 0質量部に対して 1 0 〜5 0 0質量部である。 In the synthesis of the above-mentioned alkylolated triazone derivative, usually 0.1 to 1.2 mol of amines and Z or ammonia, and 1.5 to 1.2 mol of aldehyde and Z or aldehyde donor are used per 1 mol of urea compound. The reaction is performed at a ratio of 4.0 mol. In the above-mentioned reaction, the order of addition is arbitrary, but a preferable reaction method is that a required amount of aldehyde and Z or an aldehyde donor is first charged into a reactor, and usually the temperature is reduced to 60 or less at 60 or less. While maintaining the temperature, gradually add the required amount of amines and Z or ammonia, further add the required amount of urea compound, and stir and heat at 80-90 ° C for 2-3 hours. There is a method to make it react. As aldehyde and Z or aldehyde donor, 37% formalin is usually used, but part of it may be replaced with paraformaldehyde to increase the concentration of the reaction product. When hexamethylenetetramine is used, a higher solid content reaction product can be obtained. The reaction of a urea compound, an amine and / or ammonia with an aldehyde and Z or an aldehyde donor is usually carried out in an aqueous solution, but methanol, ethanol, isopropanol, n —Alcohols such as butanol, ethylene glycol and diethylene glycol may be used alone or in combination of two or more, and water-soluble organic solvents such as ketones such as T-cetone and methyl ethyl ketone may be used alone. Alternatively, a mixture of two or more can be used. In the case of aldehyde and aldehyde donors, the amount of the curing agent added is 10 to 100 parts by mass, and 100 to 100 parts by mass of the initial condensate (initial cocondensate) of the phenolic resin of the present invention. In the case of a rolled triazone derivative, the amount is 10 to 500 parts by mass with respect to 100 parts by mass of the initial condensate (initial cocondensate) of the phenolic resin.
本発明で使用する合成樹脂バインダーには、更に、 炭酸カルシウム、炭酸マグ ネシゥム、 硫酸バリウム、 硫酸カルシウム、 亜硫酸カルシウム、 燐酸カルシウム、 水酸化カルシウム、水酸化マグネシウム、 7K酸ィ匕アルミニウム、酸化マグネシウム、 酸化チタン、 酸化鉄、 酸化亜鉛、 アルミナ、 シリカ、 珪藻土、 ドロマイト、 石膏、 タルク、 クレー、 アスベスト、 マイ力、 ケィ酸カルシウム、 ベントナイト、 ホワイ トカ一ボン、 カーボンブラック、 鉄粉、 アルミニウム粉、 ガラス粉、 石粉、 高炉ス ラグ、 フライアッシュ、 セメント、 ジルコニァ粉等の無機充填材;天然ゴムまたは その誘導体;スチレン一ブタジエンゴム、 アクリロニトリル一ブタジエンゴム、 ク ロロプレンゴム、 エチレン一プロピレンゴム、 イソプレンゴム、イソプレン—イソ ブチレンゴム等の合成ゴム;ポリビニルアルコール、アルギン酸ナトリゥム、澱粉、 澱粉誘導体、 二カヮ、 ゼラチン、 血粉、 メチルセル口一ス、 カルボキシメチルセル ロース、 ヒドロキシェチルセル口一ス、ポリアクリル酸塩、 ポリアクリルアミド等 の水溶性高分子や天然ガム類;炭酸カルシウム、タルク、石膏、カーボンブラック、 木粉、 クルミ粉、 ヤシガラ粉、 小麦粉、 米粉等の充填材;界面活性剤;ステアリン 酸、パルミチン酸等の高級脂肪酸、 パルミチルアルコール、 ステアリルアルコール 等の高級アルコール;ブチリルステアレート、グリセリンモノステアレート等の脂 肪酸のエステル類; S旨肪酸アミド類;カルナバワックス等の天然ワックス類、合成 ワックス類;パラフィン類、 パラフィン油、 シリコンオイル、 シリコン樹脂、 フッ 素樹脂、 ポリビニルアルコール、 グリス等の離型剤;ァゾジカーボンアミド、 ジニ トロソペンタメチレンテトラミン、 P, P ' 一ォキシビス (ベンゼンスルホニルヒ ドラジド) 、 ァゾビス— 2, 2、 - ( 2—メチルグロピオ二トリル) 等の有機発泡 剤;重炭酸ナトリゥム、 重炭酸力リゥム、 重炭酸アンモニゥム等の無機発泡剤;シ ラスバルーン、 パーライト、 ガラスパル一ン、 発泡ガラス、 中空セラミックス等の 中空粒体;発泡ポリエチレン、発泡ポリスチレン、発泡ポリプロピレン等のプラス チック発泡体や発泡粒;顔料、 染料、 酸化防止剤、 帯電防止剤、 結晶化促進剤、 難 燃剤、 防炎剤、撥水剤、撥油剤、防虫剤、防腐剤、 ワックス類、滑剤、老化防止剤、 紫外線吸収剤; D B P、 D O P、 ジシクロへキシルフ夕レートのようなフタ一ル酸 エステル系可塑剤やその他のトリクレジルホスフエ一ト等の可塑剤等を添加、混合 してもよい。 The synthetic resin binder used in the present invention further includes calcium carbonate, magnesium carbonate, barium sulfate, calcium sulfate, calcium sulfite, calcium phosphate, calcium hydroxide, magnesium hydroxide, 7K aluminum oxide, magnesium oxide, and magnesium oxide. Titanium, iron oxide, zinc oxide, alumina, silica, diatomaceous earth, dolomite, gypsum, talc, clay, asbestos, my strength, calcium silicate, bentonite, white carbon, carbon black, iron powder, aluminum powder, glass powder, Inorganic fillers such as stone powder, blast furnace slag, fly ash, cement, and zirconia powder; natural rubber or its derivatives; styrene-butadiene rubber, acrylonitrile-butadiene rubber, chloroprene rubber, ethylene-propylene rubber, isop Rubber, synthetic rubber such as isoprene-isobutylene rubber; polyvinyl alcohol, sodium alginate, starch, starch derivatives, disaccharide, gelatin, blood starch, methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, polyacrylic Water-soluble polymers such as acid salts and polyacrylamides and natural gums; calcium carbonate, talc, gypsum, carbon black, Fillers such as wood flour, walnut flour, coconut flour, wheat flour, rice flour; surfactants; higher fatty acids such as stearic acid and palmitic acid; higher alcohols such as palmityl alcohol and stearyl alcohol; butyryl stearate, glycerin monostea Esters of fatty acids such as fatty acids; S fatty amides; natural waxes such as carnauba wax; synthetic waxes; paraffins, paraffin oil, silicone oil, silicone resin, fluorine resin, polyvinyl alcohol, grease, etc. Organic foaming agents such as azodicarbonamide, dinitrosopentamethylenetetramine, P, P'-oxobis (benzenesulfonylhydrazide), azobis-2,2,-(2-methylglopinitrile); Sodium bicarbonate, bicarbonate rim, bicarbonate ammonium, etc. Inorganic foaming agents; hollow particles such as glass balloons, perlite, glass powder, foamed glass, hollow ceramics; plastic foams and foamed particles such as foamed polyethylene, foamed polystyrene and foamed polypropylene; pigments, dyes, antioxidants , Antistatic agent, crystallization accelerator, flame retardant, flame retardant, water repellent, oil repellent, insect repellent, preservative, waxes, lubricant, antioxidant, ultraviolet absorber; DBP, DOP, dicyclohexyl A phthalic acid ester-based plasticizer such as a latex or other plasticizers such as tricresyl phosphate may be added and mixed.
本発明の繊維シートは厚みを規制しつつ含有する熱膨張性粒体の熱膨張温度 以上の温度に加熱することによって、該熱膨張性粒体を熱膨張せしめる。本発明の 繊維シートは平板状あるいは所定形状に成形されるが、通常成形にはホットプレス 成形が適用され、該熱膨張性粒体の加熱膨張は上記プレス成形時に該繊維シー卜の 厚みを規制しつつ行われる。本発明の繊維シ一トはホットプレスにより平板状に成 形した後、熱圧プレスにより所定形状に成形されてもよく、 また低融点繊維や熱可 塑性樹脂バインダ一が含まれている場合には、加熱して該低融点繊維や熱可塑性樹 脂バインダ一を軟化させてからコ一ルドプレスによつて所定形状に成形してもよ い。本発明の繊維シートは、複数枚重ねて使用してもよい。 また該繊維シートを表 皮材、 裏面材、 芯材等の他の部材と積層してもよい。本発明の繊維シートは、例え ば、 自動車の天井材、 ダッシュサイレンサ一、 フードサイレンサー、 エンジンアン ダ一カバ一サイレンザー、 シリンダ一へッドカバーサイレンザー、ダッシュァゥ夕 —サイレンサ一、フロアマツト、ダッシュポード、ドアトリアム等の内装材の基材、 あるいは基材に積層する補強材あるいは、 吸音材、 断熱材、建築材料等として有用 である。 The fiber sheet of the present invention causes the thermally expandable particles to thermally expand by heating to a temperature equal to or higher than the thermal expansion temperature of the thermally expandable particles contained while regulating the thickness. The fiber sheet of the present invention is formed into a flat plate or a predetermined shape. Usually, hot press molding is applied, and the thermal expansion of the thermally expandable particles regulates the thickness of the fiber sheet during the press molding. It is performed while doing. The fiber sheet of the present invention may be formed into a flat shape by hot pressing, and then formed into a predetermined shape by hot pressing, and when the low melting point fiber or the thermoplastic resin binder is contained. May be heated to soften the low-melting fiber or the thermoplastic resin binder and then formed into a predetermined shape by a cold press. The fiber sheet of the present invention may be used by stacking a plurality of sheets. Further, the fiber sheet may be laminated with another member such as a skin material, a back material, and a core material. The fiber sheet of the present invention can be used, for example, in automobile ceiling materials, dash silencers, food silencers, engine Cover silencer, cylinder head cover silencer, dasher-base material for interior materials such as silencer, floor mat, dash pod, door trim, or reinforcing material laminated on the base material, sound absorbing material, heat insulation It is useful as materials and building materials.
以下、本発明を実施例によって説明する。なお本発明は以下に示される実施例 のみに限定されるものではなレ ^。  Hereinafter, the present invention will be described with reference to examples. It should be noted that the present invention is not limited to only the examples described below.
〔実施例 1〕  (Example 1)
ポリエステル繊維 (繊度: 4dtex、 繊維長: 54 mm) 1 0 0質量%からなる 繊維のシート状のウェブを使用し、 ニードルパンチング法によってシート化繊維 (目付量: 5 0 0g/m 厚さ: 1 5mm) を製造した。 フエノールホルムアルデヒ ド初期縮合物(45質量%固形分) 9 5質量部に、熱膨張性粒体としてポリ塩化ビ 二リデンシェル(軟化点 1 50°C)の中にイソペンタンを充填したマイクロカプセ ル 5質量部を添加混合した含浸液を、該シ一ト化繊維に固形分として 5 0質量%の 含有量になるように含浸せしめ、乾燥室内で吸引しながら 1 0 0°Cで 3分間乾燥し て該シー卜繊維をプレキュアして繊維シートを得た。プレキュア後の該繊維シ一ト を 2 0 0°Cで 6 0秒間熱圧プレス成形し、厚みを規制しつつ該マイクロカプセルを 膨張させ厚さ 8·π皿の成形物を得た。  Polyester fiber (fineness: 4dtex, fiber length: 54 mm) Using a sheet-like web of 100% by mass of fiber, sheeted fiber by needle punching method (basis weight: 500 g / m Thickness: 1 5mm). 95 mass parts of phenol formaldehyde precondensate (45 mass% solid content) 5 mass parts of microcapsules filled with isopentane in polyvinylidene chloride shell (softening point 150 ° C) as thermally expandable granules The impregnating liquid to which the mixture was added and mixed was impregnated into the sheeted fiber so as to have a solid content of 50% by mass, and dried at 100 ° C for 3 minutes while sucking in a drying chamber. The sheet fiber was precured to obtain a fiber sheet. The precured fiber sheet was subjected to hot press molding at 200 ° C. for 60 seconds, and the microcapsules were expanded while controlling the thickness to obtain a molded product having a thickness of 8.pi.
〔比較例 1〕  (Comparative Example 1)
実施例 1において、熱膨張性粒体を除いた他は同様にしてプレス成形し、厚さ 8 mmの成形物を得た。 '  Press molding was performed in the same manner as in Example 1 except that the thermally expandable particles were removed to obtain a molded product having a thickness of 8 mm. '
上記実施例 1および比較例 1の成形物について、曲げ試験と吸音率および通気 抵抗試験を行った。曲げ試験は J I S-K6 9 1 1の 5. 1 7の曲げ強さに準じて 行い、 試験の条件を巾: 2 5mm, 支点間距離: 1 0 Omrnとした。 また吸音率は J I S -A 140 5 「管内法による建築材料の垂直入射吸音率測定法」 に準じた。 通気抵抗はフラジール型通気度試験機に準じ、力トーテック株式会社製通気性試験 機 (KE S— F 8— AP I) を用い、 単位面積当たりの通気量を 4cc/s ' cm 2 とし たときの通気抵抗を測定した。 試験の結果を表 1に示す。 〔表 1〕 The molded articles of Example 1 and Comparative Example 1 were subjected to a bending test, a sound absorption coefficient, and a ventilation resistance test. The bending test was performed according to the bending strength of 5.17 in JI S-K6911, and the test conditions were as follows: width: 25 mm, distance between supporting points: 10 Omrn. The sound absorption coefficient was in accordance with JIS-A1405 "Method of measuring the normal incidence sound absorption coefficient of building materials by the in-pipe method". Ventilation resistance according to the Frazier type air permeability tester, using force Totekku Ltd. breathable tester (KE S- F 8- AP I) , and the airflow rate per unit area and 4 cc / s' cm 2 The ventilation resistance at that time was measured. Table 1 shows the test results. 〔table 1〕
Figure imgf000019_0001
Figure imgf000019_0001
〔実施例 2〕 (Example 2)
ポリエステル中空繊維 (繊度: 5dtex、 中空率: 20%、 繊維長: 56mm) 50質量%と、 ポリエステル繊維 (繊度: 7dtex、 繊維長: 60mm) 35質量% と、 ポリエステル低融点繊維 (繊度: 2. 5dtex、 融点: 120° (:、 繊維長: 65 mm) 15質量%からなる混合繊維のウェブのシートを 180°C、 5分間加熱し、 該ポリエステル低融点繊維を溶融せしめ該溶融物によって繊維相互を結着して、シ ート化繊維 (目付量: 400gm2、 厚さ: 20mm) を得た。 フエノールーアルキ ルレゾルシン一ホルムアルデヒド初期共縮合物水溶液(50質量%固形分) 90質 量部に、 窒素系難燃剤を 2質量部、 フッ素系撥水 '撥油剤 2質量部、 及び熱膨張性 粒体(カプセル型、 マツモトマイクロスフェア一 F—100:松本油脂製薬株式会 社製、 シェル軟化温度 135〜140°C) 6質量部を添加混合した含浸液を、該シ —ト化繊維に固形分として 30質量%の含有量となるように含浸せしめ、乾燥室内 で吸引しながら 100°Cで 3分間乾燥して該シート化繊維をプレキュアして繊維 シ一トを得た。プレキュア後の該繊維シートを 200 °Cで 60秒間熱圧プレス成形 し、 厚みを規制しつつ該粒体を膨張させ厚さ 15mmの成形物を得た。 50% by mass of polyester hollow fiber (fineness: 5dtex, hollow ratio: 20%, fiber length: 56mm), 35% by mass of polyester fiber (fineness: 7dtex, fiber length: 60mm), and polyester low melting point fiber (fineness: 2. 5 dtex, melting point: 120 ° (:, fiber length: 65 mm) A sheet of a mixed fiber web consisting of 15% by mass is heated at 180 ° C for 5 minutes to melt the polyester low melting point fiber, and the fiber melt is caused by the melt. To give sheeted fiber (weight per unit area: 400 gm 2 , thickness: 20 mm) Aqueous solution of phenol-alkyl resorcinol-formaldehyde initial cocondensate (50 mass% solids) 90 parts by mass 2 parts by weight of nitrogen-based flame retardant, 2 parts by weight of fluorine-based water-repellent and oil-repellent, and heat-expandable granules (capsule type, Matsumoto Microsphere I F-100: manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd. (Temperature 135-140 ° C) Add 6 parts by mass and mix The sheeting fiber is impregnated with the sheeting fiber so as to have a solid content of 30% by mass, dried at 100 ° C. for 3 minutes while sucking in a drying chamber, and the sheeting fiber is precured. The precured fiber sheet was hot-pressed at 200 ° C. for 60 seconds to expand the granules while controlling the thickness to obtain a molded product having a thickness of 15 mm.
〔実施例 3〕  (Example 3)
ポリエステル中空繊維 (繊度: 7dtex、 中空率: 30%、 繊維長: 75mm) 45質量%と、 ポリアミド繊維 (繊度: 12dtex、 繊維長: 75mm) 30質量% と、 ケナフ繊維 (繊度: 20〜25dtex、 繊維長: 50mm) 10質量%と、 ポリ エステル低融点繊維 (繊度: 12dtex、 融点: 1 10°C、 繊維長: 65mm) 1 5 質量%からなる混合繊維のシート状のウェブを使用し、二一ドルパンチング法によ りシート化繊維 (目付量: 4 0 0 g m2, 厚さ: 1 8 mm) を製造した。.該シ一ト化 繊維に実施例 2で用いた含浸液を、固形分として 5 0質量%の含有量になるように 含浸せしめ、乾燥室内で吸引しながら 1 0 0 °Cで 4分間乾燥して該シート化繊維を プレキュアして繊維シートを得た。該プレキュアした繊維シ一トを実施例 2と同様 にして熱圧プレス成形し、厚みを規制しつつ該粒体を膨張させ厚さ 1 5 mmの成形 物を得た。 Polyester hollow fiber (fineness: 7dtex, hollow ratio: 30%, fiber length: 75mm) 45% by mass, polyamide fiber (fineness: 12dtex, fiber length: 75mm) 30% by mass, and kenaf fiber (fineness: 20-25dtex, Fiber length: 50mm) 10% by mass, polyester low melting point fiber (fineness: 12dtex, melting point: 110 ° C, fiber length: 65mm) 15 Using a sheet-like web of a mixed fiber consisting of mass%, sheeted fiber (basis weight: 400 gm 2 , thickness: 18 mm) was produced by a 21 dollar punching method. The sheet fiber was impregnated with the impregnating liquid used in Example 2 so as to have a solid content of 50% by mass, and dried at 100 ° C for 4 minutes while sucking in a drying chamber. Then, the sheeted fiber was precured to obtain a fiber sheet. The precured fiber sheet was subjected to hot press molding in the same manner as in Example 2, and the granules were expanded while regulating the thickness to obtain a molded product having a thickness of 15 mm.
〔比較例 2〕  (Comparative Example 2)
火焰法により、 結合材としてレゾール型フエノール樹脂初期縮合物が 2 0質 量%含有された通常のガラスウール (目付量: 6 0 0 g/m2、 厚さ: 5 0 mm) を 2 0 0 °Cで 6 0秒間熱圧プレス成形し、 厚さ 1 5 mmの成形物を得た。 By the fire method, 200 g of ordinary glass wool (basis weight: 600 g / m 2 , thickness: 50 mm) containing 20 mass% of a resol type phenol resin precondensate as a binder was used. Hot press molding was performed at 60 ° C. for 60 seconds to obtain a molded product having a thickness of 15 mm.
上記実施例 2、 3及び比較例 2の成形物について、 曲げ試験、作業性、 P及音率 及び通気抵抗試験を行った。 該試験の結果を表 2に示す。  The molded products of Examples 2 and 3 and Comparative Example 2 were subjected to a bending test, a workability, a P ratio, and a ventilation resistance test. Table 2 shows the results of the test.
〔表 2〕  (Table 2)
Figure imgf000020_0001
Figure imgf000020_0001
*作業性 *Workability
〇:成形作業時等において、 繊維の飛散がなく作業性が良好であった。  〇: During the molding operation, etc., there was no scattering of fibers and the workability was good.
X:成形作業時等において、ガラスに由来する粉塵が飛散し、該粉塵(ガラス) が刺さる等非常に作業性が悪く、 カゝっ人体に悪影響を及ぼすものであった。  X: Dust derived from glass was scattered during molding operation and the like, and the dust (glass) was stabbed, resulting in extremely poor workability and adversely affecting the human body.
表 1の結果より、実施例 1の試料の方が比較例 1の試料に比べ広い周波数にわ たって吸音率が大きくかつ曲げ強度も良いことが判る。これは試料の繊維が熱膨張 性粒体の膨張により圧縮され、通気抵抗の値が大きくなることによって入射した音 波エネルギーが減少することによるものと思われる。このことは通気抵抗の値から みても判る。 From the results in Table 1, it can be seen that the sample of Example 1 has a higher sound absorption coefficient and a higher bending strength over a wider frequency range than the sample of Comparative Example 1. This is because the sample fiber is thermally expanded This is thought to be due to the decrease in the incident sound energy due to the compression due to the expansion of the granular material and the increase in the ventilation resistance. This can be seen from the value of ventilation resistance.
表 2の結果より、実施例 2、実施例 3の試料の方が比較例 2の試料に比べ曲げ 試験、 P及音率とも大巾に向上していることが判る。また実施例 2および実施例 3と 比較例 2との通気抵抗の差があまりないのに吸音率が向上すると云う予期せざる 結果が得られた。  From the results in Table 2, it can be seen that the bending test, the P and the sound rate of the samples of Examples 2 and 3 are greatly improved as compared with the sample of Comparative Example 2. Also, an unexpected result was obtained that the sound absorption coefficient was improved even though there was not much difference in the ventilation resistance between Examples 2 and 3 and Comparative Example 2.
〔実施例 4〕  (Example 4)
ポリエステル中空繊維 (繊度: 4dtex、 中空率: 15%、 繊維長: 55mm) 55質量%と、 ビニロン繊維 (繊度: 7. 5dtex、 繊維長: 60mm) 35質量% と、 レーヨン繊維 (繊度: 6dtex、 繊維長: 55 mm) 10質量%からなる混合繊 維のシート状のウェブを使用し、ニードルパンチング法によって、シート化繊維(目 付量: 60 Og/m2, 厚さ: 15mm) を製造した。 スルホメチル化フエノールー アルキルレゾルシン一ホルムアルデヒド初期共縮合物水溶液 (45質量%固形分)' 90質量部に、 窒素 Z燐含有難燃剤を 5質量部、 シリコン系撥水剤を 1質量部、 お よび熱膨張性粒体(マイクロ力プセル型マイクロスフェア一 F—85) 4質量部を 添加混合した含浸溶液を、該シート化繊維に固形分として 60質量%の含有量とな るように含浸せしめ、乾燥室内で吸引しながら 100°Cで 4分間乾燥して該シート 化繊維をプレキュアして繊維シートを得た。プレキュア後、該繊維シートの片面に ホットメルト接着剤 (ポリアミド樹脂、 融点: 160°C、 粒度: 200メッシュ全 通) が塗布 (塗布量: 8gZm2) されたポリエステル繊維の不織布(スパンボンド 法によって製造、 目付量 30gZm2) を表皮材として積層して、 200°Cで 60秒 間熱圧プレス成形して厚みを規制しつつ該熱膨張性粒体を熱膨張させ、成形物を得 た。該成形物は難燃性、撥水性、剛性に優れ、また吸音性にも優れたものであった。 55% by mass of polyester hollow fiber (fineness: 4dtex, hollow ratio: 15%, fiber length: 55mm), 35% by mass of vinylon fiber (fineness: 7.5dtex, fiber length: 60mm) and rayon fiber (fineness: 6dtex, Using a sheet-like web of a mixed fiber consisting of 10% by mass, a sheeted fiber (basis weight: 60 Og / m 2 , thickness: 15 mm) was produced by needle punching. . Sulfomethylated phenol-alkylresorcin-formaldehyde initial cocondensate aqueous solution (45 mass% solids) '90 mass parts, nitrogen Z phosphorus containing flame retardant 5 mass parts, silicon water repellent 1 mass part, and thermal expansion Impregnated solution containing 4 parts by weight of a granular material (Microforce Puser-type microspheres F-85) was impregnated with the impregnated solution into the sheeted fiber so as to have a solid content of 60% by mass. Drying at 100 ° C. for 4 minutes while sucking with a pressure precured the sheeted fiber to obtain a fiber sheet. After pre-curing, a hot melt adhesive (polyamide resin, melting point: 160 ° C, particle size: all through 200 mesh) is applied to one side of the fiber sheet (application amount: 8 gZm 2 ). Production and a basis weight of 30 gZm 2 ) were laminated as a skin material, and hot-pressed at 200 ° C. for 60 seconds to thermally expand the thermally expandable granules while controlling the thickness to obtain a molded product. The molded product was excellent in flame retardancy, water repellency, rigidity, and sound absorption.
〔実施例 5〕  (Example 5)
ポリエステル中空繊維 (繊度: 7dtex、 中空率: 20%、 繊維長: 75mm) 85質量%と、 難燃ポリエステル繊維 (繊度: 4dteX、 繊維長: 55mm) 15質 量%とからなる混合繊維のシート状のゥェブを使用し、ニードルパンチング法によ りシート化繊維 (目付量: 4 0 0 g/m\ 厚さ: 1 2 mm) を製造した。 スルフィ メチル化フエノール—アルキルレゾルシン—ホルムアルデヒド初期共縮合物水溶 液(5 0 %固形分) 9 5質量部に、 熱膨張性粒体(マイクロカプセル型、 マツモト マイクロスフェアー F _ 1 0 0 ) 5質量部を添加混合した含浸液を、該シート化繊 維に固形分として 5 0質量%の含有量となるように含浸せしめ、乾燥室内で吸引し ながら 1 1 0 で 3分間乾燥して該シート化繊維をプレキュアして繊維シートを 得た。プレキュア後の該繊維シートを 2 1 0 °Cで 4 0秒間熱圧プレス成形し、厚み を規制しつつ該熱膨張性粒体を熱膨張させ、 厚さ 1 O minの成形物を得た。 Polyester hollow fiber (fineness: 7dtex, hollow ratio: 20%, fiber length: 75mm) 85% by mass, flame-retardant polyester fiber (fineness: 4dte X , fiber length: 55mm) 15 quality Using a sheet-shaped web of the mixed fiber having the amount of 100% by weight, a sheeted fiber (basis weight: 400 g / m \ thickness: 12 mm) was produced by a needle punching method. Sulfimethylated phenol-alkylresorcin-formaldehyde initial cocondensate aqueous solution (50% solids) 95 5 parts by mass, thermally expandable granules (microcapsule type, Matsumoto Microsphere F _ 100) 5 parts by mass Is impregnated with the impregnating liquid to which the sheet-forming fiber is added so as to have a solid content of 50% by mass, and dried in a drying chamber at 110 for 3 minutes while sucking in the drying chamber. Was precured to obtain a fiber sheet. The precured fiber sheet was subjected to hot press molding at 210 ° C. for 40 seconds, and the thermally expandable particles were thermally expanded while controlling the thickness to obtain a molded product having a thickness of 1 O min.
〔比較例 3〕  (Comparative Example 3)
実施例 5において、熱膨張粒子を除いた他は同様にして厚さ 1 Ommの成形物 を得た。  A molded article having a thickness of 1 Omm was obtained in the same manner as in Example 5, except that the thermally expanded particles were omitted.
上記実施例 5と比較例 3で得られた試料を用い、燃焼性試験を F MV S S— 3 0 2の水平試験法に順じ行った。 結果を表 3に示す。  Using the samples obtained in Example 5 and Comparative Example 3, a flammability test was performed in accordance with the horizontal test method of FMVSS-302. Table 3 shows the results.
〔表 3〕  (Table 3)
Figure imgf000022_0001
表 3によれば、実施例 5の方が比較例 3に比べ燃焼性が優れていることが判る。 これは膨張性粒体の膨張効果によって試料の繊維の空隙力 S埋められ燃焼時に試料 内の空気量が減少することによるものと思われる。
Figure imgf000022_0001
According to Table 3, it can be seen that Example 5 has better flammability than Comparative Example 3. This is considered to be due to the fact that the void force S of the fiber of the sample is buried due to the expansion effect of the expandable particles, and the amount of air in the sample decreases during combustion.
〔実施例 6〕  (Example 6)
実施例 2のマツモトマイクロスフェアー F— 1 0 0に代えてポリメ夕クリル 酸エステルビーズ粒径 2 0 0〜3 0 0 πύに η—ペンタンを含浸させた発泡性ビ ーズを膨張性粒体として使用し、他は実施例 2と同様にして厚さ 1 5mmの成形物 を得た。 該成形物の曲げ試験は 0. 59MPa、 作業性は〇、 音率 (%) は表 4 の通りであった。 In place of Matsumoto Microsphere F-100 of Example 2, expandable beads obtained by impregnating η-pentane into polymer acrylate beads having a particle diameter of 200 to 300ππ were used as expandable particles. And a molded product with a thickness of 15 mm in the same manner as in Example 2 Got. The bending test of the molded product was 0.59 MPa, the workability was 〇, and the sound rate (%) was as shown in Table 4.
〔表 4〕  (Table 4)
Figure imgf000023_0001
産業上の利用可能性
Figure imgf000023_0001
Industrial applicability
本発明の繊維シートゃ成形物は例えば、自動車や建築物の吸音材や断熱材とし て極めて有用である。  The fiber sheet molded article of the present invention is extremely useful, for example, as a sound absorbing material or a heat insulating material for automobiles and buildings.

Claims

請 求 の 範 囲 The scope of the claims
1 .繊維に熱膨張性粒体を混合してシート化すると共に、厚みを規制しつつ加熱し て該熱膨張性粒体を熱膨張せしめたことを特徴とする繊維シ一ト  1. A fiber sheet characterized in that fibers are mixed with heat-expandable particles to form a sheet, and heated while regulating the thickness to thermally expand the heat-expandable particles.
2.該繊維は中空繊維であるかまたは中空繊維が混合されている請求項 1に記載の 繊維シ一卜  2. The fiber sheet according to claim 1, wherein the fiber is a hollow fiber or is mixed with a hollow fiber.
3 .該繊維には融点 1 8 0 °C以下の低融点繊維が混合されている請求項 1または 2 に記載の繊維シ一ト  3. The fiber sheet according to claim 1, wherein a low melting point fiber having a melting point of 180 ° C. or lower is mixed with the fiber.
4.該繊維は合成樹脂バインダ一によって結着されている請求項 1〜 3に記載の繊 維シート  4. The fiber sheet according to claim 1, wherein the fibers are bound by a synthetic resin binder.
5 .該熱膨張性粒体は低軟化点を有する熱可塑性樹脂シェル中に低沸点溶剤を封入 したマイクロカプセルである請求項 1〜4記載の繊維シ一ト 5. The fiber sheet according to any one of claims 1 to 4, wherein the thermally expandable particles are microcapsules in which a low boiling point solvent is sealed in a thermoplastic resin shell having a low softening point.
6 .該熱膨張性粒体は低軟化点を有する熱可塑性樹脂ビーズに低沸点溶剤を含浸さ せた発泡性ビーズである請求項 1〜4記載の繊維シート  6. The fiber sheet according to any one of claims 1 to 4, wherein the thermally expandable particles are foamable beads obtained by impregnating a thermoplastic resin bead having a low softening point with a low boiling point solvent.
7 . 該熱膨張性粒体は熱膨張性無機粒体である請求項 1〜 4記載の繊維シ一卜 8.請求項 1〜 7記載の繊維シートを所定形状に成形したことを特徴とする成形物  7. The fiber sheet according to any one of claims 1 to 4, wherein the thermally expandable particles are thermally expandable inorganic particles. 8. The fiber sheet according to any one of claims 1 to 7, which is formed into a predetermined shape. Molding
PCT/JP2004/009310 2003-07-02 2004-06-24 Fiber sheet and its molding WO2005003422A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW093119391A TWI295699B (en) 2003-07-02 2004-06-30 Fiber sheet and molded fiber sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-189922 2003-07-02
JP2003189922A JP2005023470A (en) 2003-07-02 2003-07-02 Fiber sheet and formed material thereof

Publications (1)

Publication Number Publication Date
WO2005003422A1 true WO2005003422A1 (en) 2005-01-13

Family

ID=33562310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009310 WO2005003422A1 (en) 2003-07-02 2004-06-24 Fiber sheet and its molding

Country Status (3)

Country Link
JP (1) JP2005023470A (en)
TW (1) TWI295699B (en)
WO (1) WO2005003422A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210201881A1 (en) * 2019-12-26 2021-07-01 Hyundai Motor Company Polyester sound absorption material, method of manufacturing molded product using same, and molded product manufactured thereby
WO2021250891A1 (en) * 2020-06-12 2021-12-16 株式会社アイ・セラミック・テクノロジー Sheet material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040096858A (en) * 2004-09-08 2004-11-17 심온슬 Heat insulating, fire-proofing, water-proofing and warming materials using flower of typhaceae
JP2006241240A (en) * 2005-03-01 2006-09-14 Kosuke Iguchi Porous cushioning material
PT103265B (en) 2005-04-22 2007-02-28 Univ Do Minho MICROCAPSULES WITH FUNCTIONAL REACTIVE GROUPS OF CONNECTION TO TEXTILE FIBERS AND APPLICATION AND FIXATION PROCESS
JP2006336167A (en) * 2005-06-03 2006-12-14 Toyota Motor Corp Fiber-constituted material, soundproof material and method for producing the same
JP5082122B2 (en) * 2008-01-29 2012-11-28 トヨタ紡織株式会社 Manufacturing method of fiber composite
JP5399983B2 (en) * 2009-07-08 2014-01-29 トヨタ紡織株式会社 Method for producing fiber molded body and thermally expandable capsule compound
JP5060613B2 (en) * 2010-04-02 2012-10-31 株式会社ヒロタニ Method for forming vehicle interior member
JP5715869B2 (en) * 2011-04-05 2015-05-13 寺田タカロン株式会社 Auto body undercover and manufacturing method thereof
JP6597067B2 (en) * 2015-08-31 2019-10-30 トヨタ紡織株式会社 Fiber substrate
JP7277093B2 (en) * 2018-08-30 2023-05-18 東洋クロス株式会社 Method for producing nonwoven fabric for sound absorbing or heat insulating material, and nonwoven fabric for sound absorbing or heat insulating material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550523A (en) * 1991-08-26 1993-03-02 Teijin Ltd Manufacture of lightweight composite molding
JPH0671065A (en) * 1992-04-10 1994-03-15 Yoshikazu Yamaguchi Cushion material and manufacture thereof
JPH10259562A (en) * 1997-03-21 1998-09-29 Japan Vilene Co Ltd Nonwoven fabric shaped product
JPH10309765A (en) * 1997-05-13 1998-11-24 Japan Vilene Co Ltd Expanded resin light-screening body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550523A (en) * 1991-08-26 1993-03-02 Teijin Ltd Manufacture of lightweight composite molding
JPH0671065A (en) * 1992-04-10 1994-03-15 Yoshikazu Yamaguchi Cushion material and manufacture thereof
JPH10259562A (en) * 1997-03-21 1998-09-29 Japan Vilene Co Ltd Nonwoven fabric shaped product
JPH10309765A (en) * 1997-05-13 1998-11-24 Japan Vilene Co Ltd Expanded resin light-screening body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210201881A1 (en) * 2019-12-26 2021-07-01 Hyundai Motor Company Polyester sound absorption material, method of manufacturing molded product using same, and molded product manufactured thereby
US11862135B2 (en) * 2019-12-26 2024-01-02 Hyundai Motor Company Polyester sound absorption material, method of manufacturing molded product using same, and molded product manufactured thereby
WO2021250891A1 (en) * 2020-06-12 2021-12-16 株式会社アイ・セラミック・テクノロジー Sheet material

Also Published As

Publication number Publication date
JP2005023470A (en) 2005-01-27
TW200504260A (en) 2005-02-01
TWI295699B (en) 2008-04-11

Similar Documents

Publication Publication Date Title
JP4098227B2 (en) Method for producing flame retardant fiber sheet, molded product and laminate comprising flame retardant fiber sheet obtained thereby, and molded product using the laminate
JP4908084B2 (en) Sound absorbing surface material and molded article using the same
JP4440273B2 (en) Flame-retardant fiber sheet and molded article thereof
JP4425910B2 (en) Flame-retardant fiber sheet molded product, method for producing molded laminate, and automotive flame-retardant sound-absorbing material
JP2008012783A5 (en)
JP4773520B2 (en) Fiber sheet, laminated fiber sheet, and fiber sheet molding
JP4462636B2 (en) Sound-absorbing laminate, sound-absorbing material, and sound-absorbing flooring material
JP2005290363A (en) Liquid chemical for flame retarding processing
US20070009723A1 (en) Flame-retardant sheet and formed article therefrom
JP4440165B2 (en) Formable sheet and interior material
JP2008094925A (en) Flame-retarding treatment liquid, flame-retardant fiber material and interior decoration material comprising the same
WO2005003422A1 (en) Fiber sheet and its molding
JP4925430B2 (en) Manufacturing method for interior materials
JP2004334022A (en) Flame-resistive sound absorber
JPWO2011111182A1 (en) Method for producing flame retardant fiber material
JP2005002539A (en) Fiber sheet and molded product of the same
JP5274190B2 (en) Incombustible fiber sheet
JP2006083505A (en) Flame retardant material
JPH0565358A (en) Prepreg

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase