JP7277093B2 - Method for producing nonwoven fabric for sound absorbing or heat insulating material, and nonwoven fabric for sound absorbing or heat insulating material - Google Patents

Method for producing nonwoven fabric for sound absorbing or heat insulating material, and nonwoven fabric for sound absorbing or heat insulating material Download PDF

Info

Publication number
JP7277093B2
JP7277093B2 JP2018162139A JP2018162139A JP7277093B2 JP 7277093 B2 JP7277093 B2 JP 7277093B2 JP 2018162139 A JP2018162139 A JP 2018162139A JP 2018162139 A JP2018162139 A JP 2018162139A JP 7277093 B2 JP7277093 B2 JP 7277093B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
heat insulating
sound absorbing
fibers
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018162139A
Other languages
Japanese (ja)
Other versions
JP2020033675A (en
Inventor
真史 下田
直樹 高木
万充 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Cloth Co Ltd
Kureha Ltd
Original Assignee
Toyo Cloth Co Ltd
Kureha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Cloth Co Ltd, Kureha Ltd filed Critical Toyo Cloth Co Ltd
Priority to JP2018162139A priority Critical patent/JP7277093B2/en
Publication of JP2020033675A publication Critical patent/JP2020033675A/en
Application granted granted Critical
Publication of JP7277093B2 publication Critical patent/JP7277093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

本発明は、嵩密度が小さく、且つ優れた吸音特性又は断熱特性を有し、熱膨張性微粒子の不織布からの脱落(粉落ち)が生じない吸音材用又は断熱材用不織布の製造方法、及び吸音材用又は断熱材用不織布に関するものである。 The present invention provides a method for producing a nonwoven fabric for a sound absorbing material or a heat insulating material, which has a low bulk density, excellent sound absorbing properties or heat insulating properties, and does not allow heat-expandable fine particles to fall off (powder falling off) from the nonwoven fabric, and The present invention relates to a nonwoven fabric for sound absorbing material or heat insulating material.

吸音特性を有する不織布は吸音材として、自動車の内外装、AV機器、床材や壁材、天井材といった建築材等、様々な場所で使用されている。そして、吸音材を機器等に内在させる場合には特に、「軽量化」が求められる。 Nonwoven fabrics having sound absorbing properties are used as sound absorbing materials in various places such as the interior and exterior of automobiles, audiovisual equipment, building materials such as floor materials, wall materials, and ceiling materials. In addition, especially when the sound absorbing material is incorporated in equipment, etc., "lightening" is required.

従来の不織布から成る吸音材としては、通気度制御のために繊維径2μm程のマイクロファイバーと、厚さ制御のために繊維径20~30μmのステープルファイバーを組み合わせたものが知られている。しかし、該吸音材は、嵩密度が大きく、「軽量化」の要望に充分に応えられるものではなかった。 Conventional sound absorbing materials made of non-woven fabric are known in which microfibers with a fiber diameter of about 2 μm are combined to control air permeability and staple fibers with a fiber diameter of 20 to 30 μm are combined to control thickness. However, the sound absorbing material has a high bulk density and cannot sufficiently meet the demand for "lightening".

嵩密度が小さい、つまり嵩高でかつ軽量な不織布としては、例えば、特許文献1には長繊維ウエブ(スパンボンドウエブ)をニードルパンチして得られる不織布に、熱膨張性ガスが内包されたマイクロカプセルを含む樹脂が充填されたものが開示されている。また特許文献2には、繊維基材の表面に熱膨張性マイクロカプセルが混合された合成樹脂発泡層を形成してなる複合吸音材料が開示されている。 As a nonwoven fabric having a low bulk density, that is, a bulky and lightweight nonwoven fabric, for example, Patent Document 1 describes microcapsules in which a nonwoven fabric obtained by needle punching a long fiber web (spunbond web) contains a thermally expandable gas. is disclosed which is filled with a resin containing Further, Patent Document 2 discloses a composite sound absorbing material in which a synthetic resin foam layer in which thermally expandable microcapsules are mixed is formed on the surface of a fiber base material.

特開平04-281054号公報JP-A-04-281054 特開2016-045450号公報JP 2016-045450 A

しかし、特許文献1の不織布は、熱膨張性ガスが内包されたマイクロカプセルを多量に使用しなければ発泡による嵩高な不織布を得られず、膨張後のマイクロカプセルが不織布から脱落する(粉落ち)恐れがあった。逆に粉落ちを回避するためにマイクロカプセルを少なくすると、膨張が不十分となって吸音性が低下する恐れがあり、粉落ちの防止と吸音特性の両立が困難であった。 However, in the nonwoven fabric of Patent Document 1, unless a large amount of microcapsules containing a thermally expandable gas are used, a bulky nonwoven fabric cannot be obtained by foaming, and the microcapsules after expansion fall off from the nonwoven fabric (powdering). I was afraid. Conversely, if the number of microcapsules is reduced in order to avoid powder falling off, there is a risk that the expansion will be insufficient and the sound absorption will decrease, making it difficult to achieve both prevention of powder falling off and sound absorption properties.

特許文献2の複合吸音材は、高密度な繊維基材の表面に、高増粘した合成樹脂エマルジョンを塗布しているため、嵩密度や目付が大きくなりやすく、軽量化の点で劣るものであった。 The composite sound absorbing material of Patent Document 2 is coated with a highly viscous synthetic resin emulsion on the surface of a high-density fiber base material. there were.

この様な状況下、本発明は、軽量化が容易であり、優れた吸音特性と粉落ち防止とを両立し得る吸音材用又は断熱材用不織布、及びそれらの製造方法を提供することを課題として掲げた。 Under such circumstances, an object of the present invention is to provide a nonwoven fabric for sound absorbing or heat insulating material, which is easy to reduce weight, and can achieve both excellent sound absorbing properties and prevention of falling powder, and a method for producing the same. listed as.

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、不織布基材繊維と、前記不織布基材繊維よりも融点の低い繊維とを混綿して熱接着した不織布基材を用い、前記不織布基材の厚さを5mm以上にする一方、前記熱膨張性微粒子の膨張後の含有量を20g/m2以下とすることにより、軽量化、優れた吸音特性、優れた断熱特性、少ない粉落ちを達成できる吸音材用又は断熱材用不織布の製造ができることを見出し、本発明を完成した。 As a result of extensive research to solve the above problems, the inventors of the present invention used a nonwoven fabric substrate obtained by mixing and thermally bonding a nonwoven fabric substrate fiber and a fiber having a lower melting point than the nonwoven fabric substrate fiber. , while the thickness of the non-woven fabric substrate is 5 mm or more, the content of the thermally expandable fine particles after expansion is 20 g/m 2 or less, thereby reducing weight, excellent sound absorption properties, and excellent heat insulation properties; The inventors have found that it is possible to produce a nonwoven fabric for sound absorbing material or heat insulating material that can achieve less powder falling off, and have completed the present invention.

すなわち、本発明に係る吸音材用又は断熱材用不織布の製造方法は、以下の点に要旨を有する。
[1] 不織布基材繊維と、前記不織布基材繊維よりも融点の低い繊維とを混綿して熱接着した不織布基材に、熱膨張性微粒子を含む塗布液を含浸し、前記熱膨張性微粒子を膨張させて前記不織布基材の厚さを5mm以上にする一方、前記熱膨張性微粒子の膨張後の含有量を20g/m2以下とすることを特徴とする吸音材用又は断熱材用不織布の製造方法。
[2] 前記熱膨張性微粒子の膨張により、吸音材用又は断熱材用不織布の嵩密度を0.001~0.050g/cm3とする[1]に記載の吸音材用又は断熱材用不織布の製造方法。
[3] 前記不織布基材繊維が、繊度0.8~30dtexの不連続繊維である[1]又は[2]に記載の吸音材用又は断熱材用不織布の製造方法。
[4] 前記不織布基材繊維よりも融点の低い繊維の繊度が、1.0~20dtexである[1]~[3]のいずれかに記載の吸音材用又は断熱材用不織布の製造方法。
[5] 前記熱膨張性微粒子のメジアン粒径が、20~70μmである[1]~[4]のいずれかに記載の吸音材用又は断熱材用不織布の製造方法。
[6] 熱接着された不織布基材繊維と、前記不織布基材繊維間に分散した状態で存在する内部中空樹脂カプセルとを含み、厚さが5mm以上、嵩密度が0.001~0.050g/cm3である吸音材用又は断熱材用不織布。
[7] 前記不織布基材繊維が、繊度0.8~30dtexの不連続繊維である[6]に記載の吸音材用又は断熱材用不織布。
[8] 前記内部中空樹脂カプセルの平均メジアン粒径が170~200μmであり、該内部中空樹脂カプセルの含有量が単位面積あたり2000個/cm2以下であり、且つ、通気度が50.0cc/cm2・sec以下である[6]又は[7]に記載の吸音材用又は断熱材用不織布。
[9] 前記サーマルボンド不織布の1600~5000Hzにおける垂直入射吸音率が、0.300以上である[6]~[8]のいずれかに記載の吸音材用又は断熱材用不織布。
That is, the method for producing a nonwoven fabric for a sound absorbing material or a heat insulating material according to the present invention has the following points.
[1] A nonwoven fabric substrate obtained by mixing and thermally bonding nonwoven fabric substrate fibers and fibers having a lower melting point than the nonwoven fabric substrate fibers is impregnated with a coating liquid containing thermally expandable fine particles to obtain the thermally expandable fine particles. is expanded to make the thickness of the nonwoven fabric substrate 5 mm or more, and the content of the thermally expandable fine particles after expansion is 20 g/m 2 or less. manufacturing method.
[2] The nonwoven fabric for sound absorbing or heat insulating material according to [1], wherein the nonwoven fabric for sound absorbing or heat insulating material has a bulk density of 0.001 to 0.050 g/cm 3 due to the expansion of the thermally expandable fine particles. manufacturing method.
[3] The method for producing a nonwoven fabric for sound absorbing material or heat insulating material according to [1] or [2], wherein the nonwoven fabric substrate fibers are discontinuous fibers having a fineness of 0.8 to 30 dtex.
[4] The method for producing a nonwoven fabric for sound absorbing or heat insulating material according to any one of [1] to [3], wherein the fibers having a lower melting point than the nonwoven fabric base fibers have a fineness of 1.0 to 20 dtex.
[5] The method for producing a nonwoven fabric for sound absorbing material or heat insulating material according to any one of [1] to [4], wherein the thermally expandable fine particles have a median particle size of 20 to 70 μm.
[6] Comprising thermally bonded nonwoven fabric substrate fibers and internal hollow resin capsules present in a dispersed state between the nonwoven fabric substrate fibers, having a thickness of 5 mm or more and a bulk density of 0.001 to 0.050 g. /cm 3 for sound absorbing or heat insulating non-woven fabrics.
[7] The nonwoven fabric for sound absorbing or heat insulating material according to [6], wherein the nonwoven fabric substrate fibers are discontinuous fibers having a fineness of 0.8 to 30 dtex.
[8] The inner hollow resin capsules have an average median particle diameter of 170 to 200 μm, a content of the inner hollow resin capsules per unit area of 2000/cm 2 or less, and an air permeability of 50.0 cc/cm. The nonwoven fabric for sound absorbing or heat insulating material according to [6] or [7], which is cm 2 ·sec or less.
[9] The nonwoven fabric for sound absorbing or heat insulating material according to any one of [6] to [8], wherein the thermal bond nonwoven fabric has a normal incident sound absorption coefficient at 1600 to 5000 Hz of 0.300 or more.

本発明によれば、不織布基材繊維と、前記不織布基材繊維よりも融点の低い繊維とを混綿して熱接着した不織布基材に、熱膨張性微粒子を含む塗布液を含浸し、前記熱膨張性微粒子を膨張させ、前記不織布基材の厚さを5mm以上にする一方、前記熱膨張性微粒子の膨張後の含有量を20g/m2以下とすることにより、軽量化が容易であり、優れた吸音特性又は断熱特性と、粉落ち防止とを両立し得る吸音材用又は断熱材用不織布を製造することが可能となる。 According to the present invention, a nonwoven fabric substrate obtained by mixing and thermally bonding nonwoven fabric substrate fibers and fibers having a lower melting point than the nonwoven fabric substrate fibers is impregnated with a coating liquid containing thermally expandable fine particles, and the heat By expanding the expandable fine particles to make the thickness of the non-woven fabric base material 5 mm or more, and by setting the content of the thermally expandable fine particles after expansion to 20 g/m 2 or less, weight reduction is facilitated, It is possible to produce a nonwoven fabric for a sound absorbing material or a heat insulating material that can achieve both excellent sound absorbing properties or heat insulating properties and prevention of falling powder.

図1は、実施例1~3及び比較例1~4で得られた吸音材用又は断熱材用不織布の垂直入射吸音率測定結果を示すグラフである。FIG. 1 is a graph showing the normal incident sound absorption coefficient measurement results of nonwoven fabrics for sound absorbing or heat insulating materials obtained in Examples 1 to 3 and Comparative Examples 1 to 4. FIG. 図2は、実施例4で得られた吸音材用又は断熱材用不織布表面の実体顕微鏡写真である。FIG. 2 is a stereomicrograph of the surface of the nonwoven fabric for sound absorbing material or heat insulating material obtained in Example 4. FIG. 図3は、実施例4で得られた吸音材用又は断熱材用不織布断面の実体顕微鏡写真である。FIG. 3 is a stereomicrograph of the cross section of the nonwoven fabric for sound absorbing material or heat insulating material obtained in Example 4. FIG. 図4は、比較例5で得られた吸音材用又は断熱材用不織布表面の実体顕微鏡写真である。4 is a stereoscopic micrograph of the surface of the nonwoven fabric for sound absorbing material or heat insulating material obtained in Comparative Example 5. FIG. 図5は、比較例5で得られた吸音材用又は断熱材用不織布断面の実体顕微鏡写真である。FIG. 5 is a stereomicrograph of the cross section of the nonwoven fabric for sound absorbing material or heat insulating material obtained in Comparative Example 5. As shown in FIG. 図6は、比較例6で得られた吸音材用又は断熱材用不織布表面の実体顕微鏡写真である。FIG. 6 is a stereomicrograph of the surface of the nonwoven fabric for sound absorbing material or heat insulating material obtained in Comparative Example 6. FIG. 図7は、比較例6で得られた吸音材用又は断熱材用不織布断面の実体顕微鏡写真である。7 is a stereomicrograph of a cross section of the nonwoven fabric for sound absorbing or heat insulating material obtained in Comparative Example 6. FIG. 図8は、実施例5及び比較例7で得られた吸音材用又は断熱材用不織布の断熱性能の測定結果を示すグラフである。FIG. 8 is a graph showing the measurement results of the heat insulation performance of the sound absorbing or heat insulating nonwoven fabrics obtained in Example 5 and Comparative Example 7. FIG.

本願発明の吸音材用又は断熱材用不織布の製造方法は、不織布基材繊維と前記不織布基材繊維よりも融点の低い繊維(以下、「低融点繊維」と称する)を含む不織布基材に、熱膨張性微粒子を含む塗布液を含浸させ加熱処理し、前記熱膨張性微粒子を膨張させ、前記不織布基材の厚さを5mm以上にする一方、前記熱膨張性微粒子の膨張後の含有量を20g/m2以下とすることを特徴としている。以下、本発明について詳述する。 The method for producing a nonwoven fabric for a sound absorbing material or a heat insulating material according to the present invention includes: A coating liquid containing thermally expandable fine particles is impregnated and heat-treated to expand the thermally expandable fine particles to make the thickness of the nonwoven fabric base material 5 mm or more, while the content of the thermally expandable fine particles after expansion is reduced to It is characterized by being 20 g/m 2 or less. The present invention will be described in detail below.

<<不織布基材>>
本発明の吸音材用又は断熱材用不織布を構成する不織布基材は、不織布基材繊維と低融点繊維を含む。該不織布基材を加熱加工すれば、不織布基材に含まれる低融点繊維の一部又は全部が熱溶融され、不織布基材に含まれる繊維の交点をサーマルボンドによって接着(融着)・結合することができる。
<<Nonwoven base material>>
The nonwoven fabric substrate constituting the nonwoven fabric for sound absorbing material or heat insulating material of the present invention contains nonwoven fabric substrate fibers and low-melting-point fibers. When the nonwoven fabric substrate is heat-processed, part or all of the low melting point fibers contained in the nonwoven fabric substrate are thermally melted, and the intersections of the fibers contained in the nonwoven substrate are bonded (fused) and bonded by thermal bonding. be able to.

<不織布基材繊維>
不織布基材繊維としては、例えば、天然繊維、再生繊維、合成繊維などが挙げられる。具体的には、例えば、綿、麻、毛、絹等の天然繊維;レーヨン、ポリノジック、キュプラ、レヨセル等の再生繊維;アセテート繊維、トリアセテート繊維等の半合成繊維;ナイロン6、ナイロン66等のポリアミド繊維;ポリエチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ポリ乳酸繊維、ポリアリレート繊維等のポリエステル繊維;ポリアクリロニトリル繊維、ポリアクリロニトリル-塩化ビニル共重合体繊維等のアクリル繊維;ポリエチレン繊維、ポリプロピレン繊維等のポリオレフィン繊維;ビニロン繊維、ポリビニルアルコール繊維等のポリビニルアルコール系繊維;ポリ塩化ビニル繊維、ビニリデン繊維、ポリクラール繊維等のポリ塩化ビニル系繊維;ポリウレタン繊維等の合成繊維;ポリエチレンオキサイド繊維、ポリプロピレンオキサイド繊維等のポリエーテル系繊維等が例示できる。
<Nonwoven fabric base fiber>
Non-woven fabric substrate fibers include, for example, natural fibers, regenerated fibers, and synthetic fibers. Specifically, for example, natural fibers such as cotton, hemp, wool, and silk; regenerated fibers such as rayon, polynosic, cupra, and leyocell; semi-synthetic fibers such as acetate fibers and triacetate fibers; polyamides such as nylon 6 and nylon 66. Fiber; polyester fiber such as polyethylene terephthalate fiber, polybutylene terephthalate fiber, polylactic acid fiber, polyarylate fiber; acrylic fiber such as polyacrylonitrile fiber, polyacrylonitrile-vinyl chloride copolymer fiber; polyolefin fiber such as polyethylene fiber and polypropylene fiber polyvinyl alcohol fibers such as vinylon fibers and polyvinyl alcohol fibers; polyvinyl chloride fibers such as polyvinyl chloride fibers, vinylidene fibers and polychloral fibers; synthetic fibers such as polyurethane fibers; polyethers such as polyethylene oxide fibers and polypropylene oxide fibers A system fiber etc. can be illustrated.

不織布基材繊維の融点は、後述する低融点繊維の融点よりも、例えば、30℃以上高いことが好ましく、より好ましくは50℃以上高いことが望ましい。融点差が小さくなると、低融点繊維を溶融すべく熱処理を施した際に、加熱条件によっては、不織布基材繊維及び低融点繊維の両方が溶融又は軟化して不織布基材全体が固化したり、或いは、不織布基材繊維及び低融点繊維の両方が溶融又は軟化せず、不織布基材中の繊維の結合力が弱まる虞があるため好ましくない。 The melting point of the non-woven fabric substrate fiber is preferably higher than the melting point of the low-melting-point fiber described later by, for example, 30° C. or more, and more preferably 50° C. or more. If the melting point difference becomes small, depending on the heating conditions, both the nonwoven fabric substrate fibers and the low melting point fibers may melt or soften and the entire nonwoven fabric substrate may solidify when heat treatment is performed to melt the low melting point fibers. Alternatively, neither the non-woven fabric substrate fibers nor the low-melting-point fibers are melted or softened, and there is a possibility that the bonding strength of the fibers in the non-woven fabric substrate may be weakened, which is not preferable.

不織布基材繊維は、繊維の動きの自由度が高い点で不連続繊維(いわゆる短繊維)であることが好ましい。不織布基材繊維が不連続繊維であれば、熱膨張性微粒子の熱膨張を阻害しないため好ましい。不織布基材繊維の繊維長は、好ましくは200mm以下、より好ましくは100mm以下であり、好ましくは10mm以上、より好ましくは30mm以上である。 Non-woven fabric substrate fibers are preferably discontinuous fibers (so-called short fibers) because they have a high degree of freedom of movement. If the non-woven fabric substrate fibers are discontinuous fibers, they are preferable because they do not hinder the thermal expansion of the thermally expandable fine particles. The fiber length of the nonwoven fabric substrate fibers is preferably 200 mm or less, more preferably 100 mm or less, and preferably 10 mm or more, more preferably 30 mm or more.

不織布基材繊維の繊度は、0.8dtex以上が好ましく、より好ましくは1.0dtex以上であり、更に好ましくは1.1dtex以上であり、30dtex以下が好ましく、より好ましくは22dtex以下であり、更に好ましくは15dtex以下であり、より更に好ましくは10dtex以下であり、特に好ましくは6dtex以下である。不織布基材繊維の繊度が前記下限値以上であれば、不織布基材としての充分な強度が得られるため好ましい。不織布基材繊維の繊度が前記上限値以下であれば、不織布基材が低通気性となるため、吸音性又は断熱性の点で好ましい。さらには、不織布基材繊維の繊度が前記上限値以下であれば、不織布基材中の繊維本数が適度に多くなるため、熱膨張性微粒子を不織布基材中に均一に分布させやすく、熱膨張性微粒子が熱膨張する際には繊維が柔軟に移動することができるため、膨張を阻害しにくいため好ましい。 The fineness of the nonwoven fabric substrate fiber is preferably 0.8 dtex or more, more preferably 1.0 dtex or more, still more preferably 1.1 dtex or more, preferably 30 dtex or less, more preferably 22 dtex or less, and still more preferably. is 15 dtex or less, more preferably 10 dtex or less, and particularly preferably 6 dtex or less. It is preferable that the fineness of the nonwoven fabric substrate fiber is equal to or higher than the above-mentioned lower limit, since sufficient strength as a nonwoven fabric substrate can be obtained. If the fiber fineness of the nonwoven fabric base material is equal to or less than the above upper limit, the nonwoven fabric base material has low air permeability, which is preferable in terms of sound absorption or heat insulation. Furthermore, if the fiber fineness of the nonwoven fabric base material is equal to or less than the above upper limit, the number of fibers in the nonwoven fabric base material is appropriately increased, so that the thermally expandable fine particles are easily distributed uniformly in the nonwoven base material, and the thermal expansion is reduced. When the fine particles are thermally expanded, the fibers can move flexibly, so that expansion is less likely to be inhibited, which is preferable.

なお、不織布基材繊維としては、1種類の不織布基材繊維又は複数種の不織布基材繊維を組み合せて使用することができる。 As the nonwoven fabric substrate fiber, one type of nonwoven fabric substrate fiber or a combination of multiple types of nonwoven fabric substrate fibers can be used.

<低融点繊維>
前記低融点繊維について説明する。本明細書において低融点繊維とは、融点が80℃以上200℃以下の熱溶融性繊維をいい、例えば、融点が80℃以上、より好ましくは95℃以上、更に好ましくは110℃以上、より更に好ましくは120℃以上であり、200℃以下、より好ましくは190℃以下、更に好ましくは180℃以下の繊維をいう。
<Low melting point fiber>
The low-melting-point fiber will be described. In the present specification, the low-melting-point fiber refers to a heat-fusible fiber having a melting point of 80° C. or higher and 200° C. or lower, for example, a melting point of 80° C. or higher, more preferably 95° C. or higher, further preferably 110° C. or higher. Fibers having a temperature of preferably 120° C. or higher and 200° C. or lower, more preferably 190° C. or lower, and still more preferably 180° C. or lower.

低融点繊維の融点は、後述する熱膨張性微粒子の最大膨張温度よりも低い温度であることが好ましい。低融点繊維の融点が、熱膨張性微粒子の最大膨張温度よりも低ければ、加熱により熱膨張性微粒子が膨張する際に、繊維ウエブを熱接着している低融点繊維が先に溶融するため、熱膨張性微粒子が繊維に阻まれることなく膨張することができる。 The melting point of the low-melting-point fiber is preferably lower than the maximum expansion temperature of the thermally expandable fine particles, which will be described later. If the melting point of the low-melting-point fibers is lower than the maximum expansion temperature of the thermally expandable fine particles, the low-melting-point fibers thermally bonding the fiber web will melt first when the thermally expandable fine particles expand due to heating. The thermally expandable fine particles can expand without being blocked by the fibers.

低融点繊維としては、不織布の製造に通常使用されるものであればよく、融点の異なる複数の樹脂を組み合わせた芯鞘構造、偏心構造、あるいはサイドバイサイド構造を有する複合繊維;変性ポリエステル繊維;変性ポリアミド繊維;変性ポリプロピレン繊維等の変性ポリオレフィン繊維等が使用できる。前記複合繊維に使用される樹脂の組み合わせには、ポリエチレン-ポリプロピレン、ポリプロピレン-変性ポリプロピレン等のポリオレフィン系の組み合わせの他、ポリエチレン-ポリエステル、ポリエステル-変性ポリエステル、ナイロン-変性ナイロン等が挙げられる。なお、複数の樹脂を組み合わせた複合繊維の場合には、複数の樹脂のうちの少なくとも1つが前記低融点繊維の融点の範囲内であればよい。また融点によっては、単一の樹脂からなる低融点繊維も使用できる。中でも、生産性がよく入手が容易であることから、芯鞘構造を有する複合繊維が好ましいが、単一の樹脂からなる低融点繊維であっても問題はない。 The low-melting-point fibers may be those normally used in the production of non-woven fabrics, and composite fibers having a core-sheath structure, an eccentric structure, or a side-by-side structure in which a plurality of resins having different melting points are combined; modified polyester fibers; modified polyamides. Fiber: Modified polyolefin fiber such as modified polypropylene fiber can be used. Combinations of resins used for the conjugate fibers include polyolefin-based combinations such as polyethylene-polypropylene and polypropylene-modified polypropylene, as well as polyethylene-polyester, polyester-modified polyester, nylon-modified nylon and the like. In addition, in the case of a composite fiber obtained by combining a plurality of resins, at least one of the plurality of resins may have a melting point within the range of the low melting point fiber. Also, depending on the melting point, a low-melting-point fiber made of a single resin can be used. Among them, conjugate fibers having a core-sheath structure are preferable because of their high productivity and easy availability, but low-melting-point fibers made of a single resin are also acceptable.

低融点繊維の繊度は、1.0dtex以上が好ましく、より好ましくは1.1dtex以上であり、更に好ましくは1.2dtex以上であり、20dtex以下が好ましく、より好ましくは17dtex以下であり、更に好ましくは5dtex以下である。なお繊度の異なる複数の低融点繊維を含む時には、各繊度の低融点繊維の割合(質量基準)を考慮した加重平均によって、低融点繊維の繊度を求める。低融点繊維の繊度が前記下限値以上であれば、不織布基材としての充分な強度が得られ、且つ繊維間のサーマルボンドによる接着・結合も強固とすることができるため好ましい。低融点繊維の繊度が前記上限値以下であれば、不織布基材が低通気性となるため、吸音性又は断熱性の点で好ましい。さらには、低融点繊維の繊度が前記上限値以下であれば、不織布基材中の繊維本数が適度に多くなるため、熱膨張性微粒子を不織布基材中に均一に分布させやすく、熱膨張性微粒子が膨張する際には繊維が柔軟に移動することができるため、熱膨張を阻害しにくいため好ましい。これらの利点により、本発明の吸音材用又は断熱材用不織布は、熱膨張性微粒子含有量が少量でありながらも嵩高く、さらには通常は相反する低嵩密度と低通気性を両立することができる。 The fineness of the low melting point fiber is preferably 1.0 dtex or more, more preferably 1.1 dtex or more, still more preferably 1.2 dtex or more, preferably 20 dtex or less, more preferably 17 dtex or less, and still more preferably 5 dtex or less. When a plurality of low-melting-point fibers having different finenesses are included, the fineness of the low-melting-point fibers is obtained by a weighted average considering the ratio (mass basis) of the low-melting-point fibers of each fineness. If the fineness of the low-melting-point fiber is at least the above lower limit, it is preferable because sufficient strength as a nonwoven fabric base material can be obtained and adhesion and bonding between fibers can be strengthened by thermal bonding. If the fineness of the low-melting-point fiber is equal to or less than the above upper limit, the nonwoven fabric substrate will have low air permeability, which is preferable in terms of sound absorption or heat insulation. Furthermore, if the fineness of the low-melting-point fiber is equal to or less than the above upper limit, the number of fibers in the nonwoven fabric substrate will be appropriately increased, so that the thermally expandable fine particles can be easily distributed uniformly in the nonwoven fabric substrate. Since the fibers can move flexibly when the fine particles expand, the thermal expansion is less likely to be inhibited, which is preferable. Due to these advantages, the nonwoven fabric for sound absorbing material or heat insulating material of the present invention is bulky even though the content of thermally expandable fine particles is small, and furthermore, it is possible to achieve both low bulk density and low air permeability, which are normally contradictory. can be done.

低融点繊維の配合比率は、不織布基材100重量%中、5重量%以上が好ましく、より好ましくは10重量%以上であり、更に好ましくは15重量%以上である。上限は例えば、95重量%以下が好ましく、より好ましくは80重量%以下であり、更に好ましくは60重量%以下である。低融点繊維の配合比率が前記下限値を下回ると、繊維間を強固に接着・結合できないため好ましくない。また、低融点繊維の配合比率が前記上限値を超えると、熱膨張性微粒子による膨張時、不織布基材が不安定となり、厚さの制御が困難となるため好ましくない。 The blending ratio of the low-melting-point fiber is preferably 5% by weight or more, more preferably 10% by weight or more, and still more preferably 15% by weight or more, based on 100% by weight of the nonwoven fabric substrate. The upper limit is, for example, preferably 95% by weight or less, more preferably 80% by weight or less, and even more preferably 60% by weight or less. If the blending ratio of the low-melting-point fiber is less than the above lower limit, it is not preferable because the fibers cannot be firmly adhered or bonded. On the other hand, if the blending ratio of the low-melting-point fiber exceeds the above upper limit, the nonwoven fabric substrate becomes unstable when expanded by the thermally expandable fine particles, making it difficult to control the thickness, which is not preferable.

低融点繊維の繊維長は、好ましくは200mm以下、より好ましくは100mm以下であり、好ましくは20mm以上、より好ましくは40mm以上である。 The fiber length of the low melting point fiber is preferably 200 mm or less, more preferably 100 mm or less, and preferably 20 mm or more, more preferably 40 mm or more.

なお、低融点繊維としては、1種類の低融点繊維又は複数種の低融点繊維を組み合せて使用することができる。 As the low-melting-point fiber, one type of low-melting-point fiber or a combination of multiple types of low-melting-point fibers can be used.

<不織布基材の製造方法>
不織布基材の製造方法は、繊維ウエブ形成と繊維ウエブの結合の2工程による。繊維ウエブ形成工程の、不織布基材繊維及び低融点繊維の計量、混綿、積層する工程は、一般的な製造方法を用いればよく、不織布基材繊維として不連続繊維を用いる場合には、短繊維ウエブの製造方法を使用できる。短繊維ウエブの製造方法によれば、繊維の動きの自由度を高めることができ、熱膨張性微粒子による不織布の膨張性を高めることができる。短繊維ウエブの形成方法としては、例えば、使用する繊維を計量した後混綿し、その後、カード機を用いてカーディングした後、クロスラッパーによりラッピングするとよい。得られた短繊維ウエブは、前記低融点繊維を利用して、サーマルボンド法による熱接着を行う。
<Method for producing nonwoven fabric substrate>
The manufacturing method of the nonwoven fabric base material is based on two steps of forming a fibrous web and bonding the fibrous web. The steps of weighing, blending, and laminating the nonwoven fabric substrate fibers and the low-melting-point fibers in the fiber web forming step may be performed using a general manufacturing method. Any method of manufacturing a web can be used. According to the method for producing a short fiber web, the degree of freedom of movement of the fibers can be increased, and the expansibility of the nonwoven fabric due to the thermally expandable fine particles can be increased. As a method for forming the short fiber web, for example, the fibers to be used are weighed and blended, then carded using a carding machine, and then wrapped with a cross wrapper. The obtained short fiber web is thermally bonded by a thermal bonding method using the low-melting-point fibers.

低融点繊維による熱接着(サーマルボンド)の熱処理温度、時間等の条件は、必要とされる不織布基材の強度により適宜選定すればよく、熱処理温度は低融点繊維の融点以上であり、不織布基材繊維の融点未満であればよい。熱処理時間は、例えば、20秒間~3分間が好ましく、より好ましくは30秒間~2分間である。熱処理温度は150~210℃が好ましく、より好ましくは170~200℃である。 Conditions such as heat treatment temperature and time for thermal bonding (thermal bonding) using low-melting-point fibers may be appropriately selected according to the required strength of the non-woven fabric base material. It may be less than the melting point of the material fiber. The heat treatment time is, for example, preferably 20 seconds to 3 minutes, more preferably 30 seconds to 2 minutes. The heat treatment temperature is preferably 150 to 210°C, more preferably 170 to 200°C.

繊維ウエブの結合としては、上記低融点繊維による繊維間接着により、不織布基材として必要な強度が充分得られるが、不織布基材により強度を持たせるために、熱接着前に、機械的交絡工程(ニードルパンチ法、ウォーターパンチ法等)を設けてもよい。特に好ましくは、ニードルパンチ法及びサーマルボンド法を併用することで繊維を絡合・接着する態様である。 As for the bonding of the fiber web, the strength necessary for the nonwoven fabric base material can be sufficiently obtained by bonding between the fibers using the low-melting-point fibers. (needle punch method, water punch method, etc.) may be provided. Particularly preferably, the needle punching method and the thermal bonding method are used in combination to entangle and bond the fibers.

ニードルパンチ法による交絡を行う場合、ニードルパンチ加工における単位面積当たりの打ち込み本数は、例えば、5本/cm2以上が好ましく、より好ましくは10本/cm2以上、更に好ましくは20本/cm2以上であり、100本/cm2以下が好ましく、より好ましくは70本/cm2以下、更に好ましくは50本/cm2以下である。打ち込み本数が前記範囲内であれば、熱膨張性微粒子を含む樹脂を不織布基材に適量含有させることができ、且つ熱膨張性微粒子の膨張を阻害しないため好ましい。 When the entangling is performed by the needle punching method, the number of needles punched per unit area in the needle punching process is, for example, preferably 5 needles/cm 2 or more, more preferably 10 needles/cm 2 or more, and still more preferably 20 needles/cm 2 . 100 lines/cm 2 or less, more preferably 70 lines/cm 2 or less, and even more preferably 50 lines/cm 2 or less. It is preferable that the number of impregnations is within the above range, because an appropriate amount of the resin containing the thermally expandable fine particles can be contained in the nonwoven fabric substrate and expansion of the thermally expandable fine particles is not hindered.

ニードルパンチ法による交絡を行う場合、ニードルパンチ加工における針深さは、0mm以上が好ましく、より好ましくは3mm以上、更に好ましくは5mm以上であり、20mm以下、より好ましくは15mm以下、更に好ましくは12mm以下である。 When performing entangling by a needle punching method, the needle depth in the needle punching process is preferably 0 mm or more, more preferably 3 mm or more, still more preferably 5 mm or more, and 20 mm or less, more preferably 15 mm or less, still more preferably 12 mm. It is below.

<不織布基材の特徴>
不織布基材の厚さは特に限定されないものの、例えば、2.5mm以上が好ましく、より好ましくは3.0mm以上、更に好ましくは3.2mm以上である。
<Characteristics of nonwoven fabric substrate>
Although the thickness of the nonwoven fabric substrate is not particularly limited, it is preferably 2.5 mm or more, more preferably 3.0 mm or more, and still more preferably 3.2 mm or more.

不織布基材の目付は、50g/m2以上が好ましく、より好ましくは80g/m2以上であり、更に好ましくは100g/m2以上であり、400g/m2以下が好ましく、より好ましくは350g/m2以下であり、更に好ましくは300g/m2以下である。不織布基材の目付が前記範囲内であれば、熱膨張性微粒子の含有量が少なくとも、熱膨張性微粒子の膨張により、嵩密度が小さく、且つ通気度が小さい、吸音特性又は断熱特性を有する吸音材用又は断熱材用不織布を得ることができるため好ましい。 The basis weight of the nonwoven fabric substrate is preferably 50 g/m 2 or more, more preferably 80 g/m 2 or more, still more preferably 100 g/m 2 or more, and preferably 400 g/m 2 or less, more preferably 350 g/m 2 or more. m 2 or less, more preferably 300 g/m 2 or less. If the fabric weight of the non-woven fabric substrate is within the above range, the content of the thermally expandable fine particles is at least, and due to the expansion of the thermally expandable fine particles, the bulk density is small, the air permeability is small, and the sound absorption has sound absorption properties or heat insulation properties. It is preferable because it is possible to obtain a nonwoven fabric for a material or a heat insulating material.

不織布基材の嵩密度は、0.020g/cm3以上が好ましく、より好ましくは0.025g/cm3以上であり、0.070g/cm3以下が好ましく、より好ましくは0.065g/cm3以下である。 The bulk density of the nonwoven fabric substrate is preferably 0.020 g/cm 3 or more, more preferably 0.025 g/cm 3 or more, and preferably 0.070 g/cm 3 or less, more preferably 0.065 g/cm 3 . It is below.

<<塗布液>>
次に不織布基材に含浸させる塗布液について説明する。塗布液とは、熱膨張性微粒子とその分散媒体とを含むものであり、熱可塑性樹脂等の接着性成分をさらに含むことが好ましい。塗布液を不織布基材に含浸することにより、不織布繊維に熱膨張性微粒子を付着(好ましくは接着)できる。
<<Coating liquid>>
Next, the coating liquid with which the nonwoven fabric substrate is impregnated will be described. The coating liquid contains thermally expandable fine particles and their dispersion medium, and preferably further contains an adhesive component such as a thermoplastic resin. By impregnating the nonwoven fabric base material with the coating liquid, the thermally expandable fine particles can be attached (preferably adhered) to the nonwoven fabric fibers.

<熱膨張性微粒子>
熱膨張性微粒子とは、気化性液体を、熱可塑性高分子で内包した構成のマイクロカプセルのことである。熱膨張性微粒子は、加熱により外殻を構成する熱可塑性高分子が軟化し、同時に内包されている気化性液体がガス化して内圧が上がり、膨張した状態となる。該状態を、内部中空樹脂カプセルと称する場合がある。本発明の吸音材用又は断熱材用不織布では、この熱膨張性微粒子の膨張により、不織布の繊維間が広げられ嵩高さが得られる。
<Thermal expandable particles>
Thermally expandable fine particles are microcapsules in which a vaporizable liquid is encapsulated in a thermoplastic polymer. When heated, the thermoplastic polymer forming the outer shell of the thermally expandable fine particles is softened, and at the same time, the evaporative liquid contained therein is gasified, increasing the internal pressure and expanding the thermally expandable fine particles. This state is sometimes referred to as an internal hollow resin capsule. In the nonwoven fabric for sound absorbing material or heat insulating material of the present invention, the expansion of the thermally expandable fine particles widens the spaces between the fibers of the nonwoven fabric to obtain bulkiness.

気化性液体としては、常温で液体であり、膨張開始温度で気化する液体を適宜使用でき、炭化水素が好ましい。 As the vaporizable liquid, a liquid that is liquid at room temperature and vaporizes at the expansion start temperature can be appropriately used, and hydrocarbons are preferable.

熱膨張性微粒子の熱膨張倍率は、膨張前の直径D1に対する膨張後の直径D2の比(D2/D1)で表すと、2以上が好ましく、より好ましくは3以上であり、更に好ましくは3.5以上であり、5.5以下が好ましく、より好ましくは5以下であり、更に好ましくは4.5以下である。熱膨張倍率を前記範囲内に調整することにより、通常は相反する嵩高さと低通気性を両立した吸音材用又は断熱材用不織布ができる。 The coefficient of thermal expansion of the thermally expandable fine particles is preferably 2 or more, more preferably 3 or more when expressed as the ratio of the diameter D2 after expansion to the diameter D1 before expansion ( D2 / D1 ). It is preferably 3.5 or more, preferably 5.5 or less, more preferably 5 or less, and still more preferably 4.5 or less. By adjusting the coefficient of thermal expansion within the above range, it is possible to obtain a nonwoven fabric for a sound absorbing material or a heat insulating material that achieves both high bulkiness and low air permeability, which normally contradict each other.

熱膨張性微粒子の未膨張状態における平均メジアン粒径は、20μm以上であり、より好ましくは25μm以上、更に好ましくは30μm以上であり、70μm以下であり、より好ましくは65μm以下、更に好ましくは60μm以下である。熱膨張性微粒子の平均メジアン粒径が上限値を上回ると、熱膨張性微粒子を不織布基材に均一に付着又は接着できない虞や、熱膨張性微粒子が吸音材用又は断熱材用不織布から脱落しやすくなる虞がある。また熱膨張性微粒子の平均粒子径が下限値を下回ると、熱膨張性微粒子を付着又は接着した不織布の膨張率が小さくなるため、充分に嵩密度が小さい不織布とできない虞がある。 The average median particle size of the thermally expandable fine particles in an unexpanded state is 20 µm or more, more preferably 25 µm or more, still more preferably 30 µm or more, and 70 µm or less, more preferably 65 µm or less, and still more preferably 60 µm or less. is. If the average median particle size of the thermally expandable fine particles exceeds the upper limit, there is a risk that the thermally expandable fine particles will not be able to uniformly attach or adhere to the nonwoven fabric base material, or that the thermally expandable fine particles will fall off from the nonwoven fabric for sound absorbing or heat insulating materials. It's likely to get easier. If the average particle size of the heat-expandable fine particles is below the lower limit, the coefficient of expansion of the nonwoven fabric to which the heat-expandable fine particles are adhered or adhered will be small, so there is a risk that the nonwoven fabric will not have a sufficiently low bulk density.

熱膨張性微粒子の平均メジアン粒径は、例えば、レーザー回折式粒子径分布測定装置((株)島津製作所製「SALD-2300」)により測定することが可能である。 The average median particle size of the thermally expandable fine particles can be measured, for example, with a laser diffraction particle size distribution analyzer (“SALD-2300” manufactured by Shimadzu Corporation).

熱膨張性微粒子の膨張開始温度は、70℃以上が好ましく、より好ましくは90℃以上であり、さらに好ましくは100℃以上である。また、熱膨張性微粒子の最大膨張温度は、200℃以下が好ましく、より好ましくは180℃以下であり、更に好ましくは165℃以下である。熱膨張性微粒子の熱膨張開始温度が前記下限値を下回ると、断熱材として本発明の不織布を使用する際、熱の影響で該熱膨張性微粒子が更に膨張したり、過剰な膨張により外殻が薄くなり内部の気化性液体が透過拡散し、内圧よりも外殻を構成する熱可塑性高分子の張力と外圧が勝り縮小したりして、不織布の厚さが変化する虞がある。 The expansion start temperature of the thermally expandable fine particles is preferably 70° C. or higher, more preferably 90° C. or higher, and still more preferably 100° C. or higher. Also, the maximum expansion temperature of the thermally expandable fine particles is preferably 200° C. or lower, more preferably 180° C. or lower, and still more preferably 165° C. or lower. If the thermal expansion starting temperature of the thermally expandable fine particles is lower than the above lower limit, the thermally expandable fine particles may further expand under the influence of heat when the nonwoven fabric of the present invention is used as a heat insulating material, or the outer shell may collapse due to excessive expansion. becomes thinner, the vaporizable liquid inside permeates and diffuses, and the tension and external pressure of the thermoplastic polymer forming the outer shell overcome the internal pressure, causing the nonwoven fabric to shrink, and the thickness of the nonwoven fabric may change.

熱膨張性微粒子を分散させる溶媒としては、例えば、有機溶剤系でもよく、水性媒体でもよく、好ましくは水性媒体である。なお、水性媒体とは、少なくとも水を含む媒体であり、水だけでもよく、水と、メタノール、エタノール、イソプロパノール等のアルコール類;アセトン等のケトン類;テトラヒドロフラン等のエーテル類などの水溶性溶媒との混合溶媒であってもよい。 The solvent for dispersing the thermally expandable fine particles may be, for example, an organic solvent system or an aqueous medium, preferably an aqueous medium. The aqueous medium is a medium containing at least water, and may be water only. Water and alcohols such as methanol, ethanol, and isopropanol; ketones such as acetone; may be a mixed solvent of

塗布液に含有させる熱膨張性微粒子の濃度は、使用する不織布基材の目付に応じて適宜選択すればよいが、例えば、3g/L以上が好ましく、より好ましくは5g/L以上であり、更に好ましくは7g/L以上であり、35g/L以下が好ましく、より好ましくは30g/L以下であり、更に好ましくは27g/L以下である。本発明の吸音材用又は断熱材用不織布は、サーマルボンド製法による不織布基材を用いるため膨張が阻害されず、塗布液含浸層中の熱膨張性微粒子含有量が少量でも嵩高くできるので、塗布液に含有させる熱膨張性粒子の濃度を、前記範囲のように薄くすることができる。 The concentration of the thermally expandable fine particles to be contained in the coating liquid may be appropriately selected according to the basis weight of the nonwoven fabric substrate to be used. It is preferably 7 g/L or more, preferably 35 g/L or less, more preferably 30 g/L or less, and still more preferably 27 g/L or less. Since the nonwoven fabric for sound absorbing or heat insulating material of the present invention uses a nonwoven fabric base material produced by the thermal bonding method, expansion is not hindered, and even if the content of thermally expandable fine particles in the coating liquid impregnated layer is small, the bulk can be increased. The concentration of the thermally expandable particles contained in the liquid can be reduced to the above range.

<接着性成分>
塗布液中の接着性成分としては、熱可塑性樹脂が挙げられる。
<Adhesive component>
Adhesive components in the coating liquid include thermoplastic resins.

熱可塑性樹脂の種類は汎用のものでよく、例えば、(メタ)アクリル酸及び/又は(メタ)アクリル酸エステルに由来する構成単位を含むアクリル系樹脂;酢酸ビニルに由来する構成単位を含む酢酸ビニル系樹脂;塩化ビニルに由来する構成単位を含む塩化ビニル系樹脂;ブタジエン-スチレン系、ブタジエン-アクリロニトリル系、クロロプレン系等の合成ゴム系樹脂;ポリエステル系樹脂;ウレタン系樹脂;等が好ましい。これらの樹脂は1種のみでも2種以上を組み合わせても使用することができる。中でも、酢酸ビニルに由来する構成単位とエチレンに由来する構成単位とを有する共重合体(3元以上の多元共重合体も含む)の酢酸ビニル系樹脂が溶着性及び柔軟性の点で好ましく、アクリル系樹脂が接着性及び入手容易性の点で好ましい。 The type of thermoplastic resin may be a general-purpose one, for example, acrylic resin containing structural units derived from (meth)acrylic acid and/or (meth)acrylic acid ester; vinyl acetate containing structural units derived from vinyl acetate vinyl chloride resins containing structural units derived from vinyl chloride; synthetic rubber resins such as butadiene-styrene, butadiene-acrylonitrile, and chloroprene resins; polyester resins; urethane resins; These resins can be used alone or in combination of two or more. Among them, vinyl acetate-based resins of copolymers (including tertiary or higher multi-component copolymers) having structural units derived from vinyl acetate and structural units derived from ethylene are preferable from the viewpoint of weldability and flexibility. Acrylic resins are preferred in terms of adhesiveness and availability.

塗布液中の接着性成分として用いる熱可塑性樹脂のガラス転移温度は、-30~50℃が好ましく、より好ましくは-20~40℃である。 The glass transition temperature of the thermoplastic resin used as the adhesive component in the coating liquid is preferably -30 to 50°C, more preferably -20 to 40°C.

熱可塑性樹脂は、エマルジョンとして塗布液に含有させればよい。 The thermoplastic resin may be contained in the coating liquid as an emulsion.

熱可塑性樹脂エマルジョンは、有機溶剤系でも構わないが、水性媒体のエマルジョンであることが好ましい。複数の(共)重合体から樹脂が構成されている場合でも、エマルジョン同士を混合して撹拌すれば、均一な樹脂エマルジョンが簡単に得ることができる。また、水性媒体のエマルジョンであれば、得られる樹脂エマルジョンの粘度も低く抑えることができ、さらに環境にも優しい。なお、熱膨張性微粒子を分散させる溶媒と同じものでもよい。 The thermoplastic resin emulsion may be an organic solvent-based emulsion, but is preferably an aqueous medium emulsion. Even when the resin is composed of a plurality of (co)polymers, a uniform resin emulsion can be easily obtained by mixing and stirring the emulsions. In addition, if the emulsion is an aqueous medium, the resulting resin emulsion can have a low viscosity and is environmentally friendly. In addition, the same solvent as the solvent for dispersing the thermally expandable fine particles may be used.

熱可塑性樹脂の含有量は、塗布液100質量%中、2~10質量%が好ましく、より好ましくは3~9質量%であり、更に好ましくは4~7質量%である。 The content of the thermoplastic resin is preferably 2 to 10% by mass, more preferably 3 to 9% by mass, still more preferably 4 to 7% by mass, based on 100% by mass of the coating liquid.

<塗布液の調製方法>
本発明の塗布液の調製方法としては特に限定されず、上記熱膨張性微粒子溶液及び熱可塑性樹脂エマルジョンを、前述する割合となるように撹拌機等により撹拌する等の一般的な方法を用いて混合することにより調製することができる。また、水等の溶媒を適宜混合してもよい。
<Method for preparing coating solution>
The method for preparing the coating liquid of the present invention is not particularly limited, and a general method such as stirring the thermally expandable fine particle solution and the thermoplastic resin emulsion with a stirrer or the like so as to achieve the above-mentioned ratio can be used. It can be prepared by mixing. Moreover, a solvent such as water may be appropriately mixed.

<<吸音材用又は断熱材用不織布>>
本発明の吸音材用又は断熱材用不織布は、軽量化が容易であり、優れた吸音特性又は断熱特性と粉落ち防止とを両立し得るという特性を有する。
<<Nonwoven fabric for sound absorbing material or heat insulating material>>
The nonwoven fabric for sound absorbing material or heat insulating material of the present invention can be easily reduced in weight, and has properties of achieving both excellent sound absorbing property or heat insulating property and prevention of falling powder.

<吸音材用又は断熱材用不織布の製造方法>
本発明の吸音材用又は断熱材用不織布は、上記熱接着した不織布基材に上記熱膨張性微粒子を含む塗布液を含浸させたサーマルボンド不織布を作製し、サーマルボンド不織布中の前記熱膨張性微粒子を膨張させることにより製造できる。
<Method for producing nonwoven fabric for sound absorbing material or heat insulating material>
The nonwoven fabric for sound absorbing material or heat insulating material of the present invention is prepared by impregnating the thermally bonded nonwoven fabric substrate with a coating liquid containing the thermally expandable fine particles to prepare a thermally bonded nonwoven fabric, and the thermally expandable nonwoven fabric in the thermally bonded nonwoven fabric. It can be manufactured by expanding microparticles.

不織布基材への塗布液の含浸は、上記塗布液の入った容器中に上記不織布基材を浸す、いわゆるディッピング法等の一般的な方法で行えばよい。そして、塗布液含浸後は、余剰に含浸された塗布液を、マングルロールを使用して適度な圧力で絞る等の方法で除去を行った後、乾燥させる。乾燥方法としては、風乾や熱処理等の一般的方法が挙げられ、前記熱処理の条件としては、塗布液を乾燥できる条件であれば特に限定されないが、乾燥と塗布液中の熱膨張性微粒子の膨張を同時に行う場合には、熱膨張性微粒子の膨張により不織布基材が所定の厚さとなる条件を適宜選択すればよい。乾燥と塗布液中の熱膨張性微粒子の膨張を別のタイミングで行う場合には、塗布液が乾燥し、且つ熱膨張性微粒子の膨張開始温度以下の条件を適宜選択すればよい。 The impregnation of the nonwoven fabric substrate with the coating liquid may be carried out by a general method such as a so-called dipping method in which the nonwoven fabric substrate is immersed in a container containing the coating liquid. After impregnation with the coating liquid, excess impregnated coating liquid is removed by a method such as squeezing with a moderate pressure using a mangle roll, and then dried. Examples of the drying method include general methods such as air drying and heat treatment, and the conditions for the heat treatment are not particularly limited as long as the conditions are such that the coating liquid can be dried. are carried out at the same time, conditions may be appropriately selected so that the nonwoven fabric base material has a predetermined thickness due to the expansion of the thermally expandable fine particles. When the drying and the expansion of the thermally expandable fine particles in the coating liquid are performed at different timings, the conditions under which the coating liquid is dried and the temperature at which the thermally expandable fine particles begin to expand may be appropriately selected.

乾燥温度としては、例えば、80℃以上が好ましく、より好ましくは90℃以上であり、更に好ましくは120℃以上であり、220℃以下が好ましく、より好ましくは210℃以下であり、更に好ましくは200℃以下である。乾燥時間としては、例えば、30秒以上が好ましく、より好ましくは1分以上であり、更に好ましくは2分以上であり、5分以下が好ましく、より好ましくは4.5分以下であり、更に好ましくは4分以下である。 The drying temperature is, for example, preferably 80° C. or higher, more preferably 90° C. or higher, still more preferably 120° C. or higher, and preferably 220° C. or lower, more preferably 210° C. or lower, and still more preferably 200° C. ℃ or less. The drying time is, for example, preferably 30 seconds or longer, more preferably 1 minute or longer, still more preferably 2 minutes or longer, preferably 5 minutes or shorter, more preferably 4.5 minutes or shorter, and still more preferably. is less than 4 minutes.

前記熱膨張性微粒子の熱処理による膨張は、上記の様に塗布液の乾燥と同時に行ってもよく、別のタイミングで行ってもよい。なお、乾燥と塗布液中の熱膨張性微粒子の膨張を別のタイミングで行う場合での、膨張工程での熱処理条件としては、熱膨張性微粒子の膨張開始温度以上であり、且つ、不織布基材繊維の融点以下の温度で、不織布基材が所定の厚さとなる処理時間を適宜選択すればよい。 The expansion of the thermally expandable fine particles by heat treatment may be performed simultaneously with the drying of the coating liquid as described above, or may be performed at a different timing. When the drying and the expansion of the thermally expandable fine particles in the coating liquid are performed at different timings, the heat treatment conditions in the expansion step are equal to or higher than the expansion start temperature of the thermally expandable fine particles, and The treatment time may be appropriately selected so that the nonwoven fabric substrate has a predetermined thickness at a temperature below the melting point of the fiber.

不織布膨張工程での膨張温度としては、例えば、低融点繊維の融点よりも20℃以上高いことが好ましく、より好ましくは30℃以上高い温度であり、熱膨張性微粒子の膨張開始温度よりも30℃以上高いことが好ましく、より好ましくは40℃以上高い温度であり、不織布基材繊維の融点よりも30℃以上低いことが好ましく、より好ましくは40℃以上低い温度である。 The expansion temperature in the nonwoven fabric expansion step is, for example, preferably 20° C. or more higher than the melting point of the low melting point fiber, more preferably 30° C. or more higher than the melting point, and 30° C. higher than the expansion start temperature of the thermally expandable fine particles. It is preferably 40° C. or higher, more preferably 40° C. or higher, and preferably 30° C. or higher, more preferably 40° C. or higher than the melting point of the nonwoven fabric base fiber.

塗布液の吸音材用又は断熱材用不織布に対する固定量(樹脂目付)としては、固形分で、20g/m2以上が好ましく、より好ましく30g/m2は以上であり、更に好ましくは40g/m2以上であり、120g/m2以下が好ましく、より好ましくは100g/m2以下であり、更に好ましくは90g/m2以下である。樹脂目付が前記範囲内であれば、熱膨張性微粒子の粉落ちもなく、熱膨張性微粒子の膨張を阻害しない。 The fixed amount (resin basis weight) of the coating liquid to the nonwoven fabric for sound absorbing material or heat insulating material is preferably 20 g/m 2 or more, more preferably 30 g/m 2 or more, and still more preferably 40 g/m 2 in terms of solid content. 2 or more, preferably 120 g/m 2 or less, more preferably 100 g/m 2 or less, and still more preferably 90 g/m 2 or less. When the resin basis weight is within the above range, the thermally expandable fine particles do not fall off and the expansion of the thermally expandable fine particles is not hindered.

吸音材用又は断熱材用不織布に固着する熱可塑性樹脂(固形分)と熱膨張性微粒子の質量比(熱可塑性樹脂(固形分)/熱膨張性微粒子)は、1.0以上が好ましく、より好ましくは1.5以上であり、更に好ましくは2.0以上であり、より更に好ましくは2.3以上であり、上限は特に限定されないが、10.0以下が好ましく、より好ましくは9.5以下であり、更に好ましくは9.0以下であり、より更に好ましくは8.5以下である。熱膨張性微粒子の配合比率が高過ぎると、樹脂で充分に不織布基材に熱膨張性微粒子を固定できず、熱膨張性微粒子が基材から脱落する虞がある。一方、熱膨張性微粒子の配合比率が低すぎると、不織布基材の膨張が不充分となり、所定の厚さの吸音材用又は断熱材用不織布が得られない虞がある。 The mass ratio of the thermoplastic resin (solid content) to the thermally expandable fine particles (thermoplastic resin (solid content)/thermally expandable fine particles) fixed to the nonwoven fabric for sound absorbing material or heat insulating material is preferably 1.0 or more, and more It is preferably 1.5 or more, more preferably 2.0 or more, still more preferably 2.3 or more, and although the upper limit is not particularly limited, it is preferably 10.0 or less, more preferably 9.5 or less, more preferably 9.0 or less, and even more preferably 8.5 or less. If the blending ratio of the thermally expandable fine particles is too high, the resin cannot sufficiently fix the thermally expandable fine particles to the nonwoven fabric base material, and the heat expandable fine particles may drop off from the base material. On the other hand, if the blending ratio of the heat-expandable fine particles is too low, the expansion of the nonwoven fabric substrate will be insufficient, and there is a risk that a sound absorbing or heat insulating nonwoven fabric having a predetermined thickness will not be obtained.

<吸音材用又は断熱材用不織布の特徴>
吸音材用又は断熱材用不織布の厚さは、5mm以上が好ましく、より好ましくは8mm以上であり、更に好ましくは10mm以上であり、より更に好ましくは12mm以上である。厚さを前記下限値以上とすることにより、低嵩密度の不織布とすることができる。
<Characteristics of Nonwoven Fabric for Sound Absorbing Material or Heat Insulating Material>
The thickness of the nonwoven fabric for sound absorbing material or heat insulating material is preferably 5 mm or more, more preferably 8 mm or more, still more preferably 10 mm or more, and even more preferably 12 mm or more. A nonwoven fabric having a low bulk density can be obtained by setting the thickness to the above lower limit or more.

吸音材用又は断熱材用不織布の総目付は、110g/m2以上が好ましく、より好ましくは120g/m2以上であり、更に好ましくは125g/m2以上であり、500g/m2以下が好ましく、より好ましくは400g/m2以下であり、更に好ましくは350g/m2以下である。総目付が前記下限値を下回ると、所望の厚さを保持することが難しくなる。総目付が前記上限値を上回ると、不織布の軽量化という点で好ましくない。 The total basis weight of the nonwoven fabric for sound absorbing material or heat insulating material is preferably 110 g/m 2 or more, more preferably 120 g/m 2 or more, still more preferably 125 g/m 2 or more, and preferably 500 g/m 2 or less. , more preferably 400 g/m 2 or less, still more preferably 350 g/m 2 or less. If the total basis weight is below the lower limit, it becomes difficult to maintain the desired thickness. If the total basis weight exceeds the above upper limit, it is not preferable in terms of reducing the weight of the nonwoven fabric.

吸音材用又は断熱材用不織布の嵩密度は、0.001g/cm3以上が好ましく、より好ましくは0.003g/cm3以上であり、更に好ましくは0.005g/cm3以上であり、より更に好ましくは0.010g/cm3以上であり、0.050g/cm3以下が好ましく、より好ましくは0.045g/cm3以下であり、更に好ましくは0.035g/cm3以下であり、より更に好ましくは0.030g/cm3以下である。嵩密度が前記範囲内であれば、軽量な不織布であるため、吸音材又は断熱材として機器等に内在させる際に有利である。 The bulk density of the nonwoven fabric for sound absorbing material or heat insulating material is preferably 0.001 g/cm 3 or more, more preferably 0.003 g/cm 3 or more, still more preferably 0.005 g/cm 3 or more. It is more preferably 0.010 g/cm 3 or more, preferably 0.050 g/cm 3 or less, more preferably 0.045 g/cm 3 or less, still more preferably 0.035 g/cm 3 or less. More preferably, it is 0.030 g/cm 3 or less. If the bulk density is within the above range, the nonwoven fabric is lightweight, and is therefore advantageous when incorporated in equipment or the like as a sound absorbing material or heat insulating material.

吸音材用又は断熱材用不織布中の、膨張後の熱膨張性微粒子すなわち内部中空樹脂カプセルの含有量は、20g/m2以下であり、より好ましくは18g/m2以下であり、更に好ましくは17g/m2以下であり、0.5g/m2以上が好ましく、より好ましく1.0g/m2は以上であり、更に好ましくは1.5g/m2以上である。本発明の吸音材用又は断熱材用不織布は、サーマルボンド製法による不織布基材を用いるため膨張が阻害されないので、膨張後の熱膨張性微粒子すなわち内部中空樹脂カプセルの含有量が前記範囲内であれば、通常は相反する低通気性(つまり高吸音性又は高断熱性)と、嵩高さを両立できるので好ましい。また、熱膨張性微粒子の膨張後の含有量が前記範囲の様に少ないため、粉落ちが生じないので好ましい。 The content of the thermally expandable fine particles after expansion, that is, the content of the internal hollow resin capsules in the nonwoven fabric for sound absorbing material or heat insulating material is 20 g/m 2 or less, more preferably 18 g/m 2 or less, and still more preferably 18 g/m 2 or less. It is 17 g/m 2 or less, preferably 0.5 g/m 2 or more, more preferably 1.0 g/m 2 or more, still more preferably 1.5 g/m 2 or more. Since the nonwoven fabric for sound absorbing or heat insulating material of the present invention uses a nonwoven fabric base material produced by the thermal bonding method, the expansion is not inhibited. It is preferable because it is possible to achieve both low air permeability (that is, high sound absorption or high heat insulation) and bulkiness, which are normally contradictory. In addition, since the content of the thermally expandable fine particles after expansion is as small as in the above range, powder drop does not occur, which is preferable.

吸音材用又は断熱材用不織布に含まれる内部中空樹脂カプセルの平均メジアン粒径は、170μm以上であり、より好ましくは173μm以上、更に好ましくは175μm以上であり、200μm以下であり、より好ましくは198μm以下、更に好ましくは195μm以下である。吸音材用又は断熱材用不織布に含まれる内部中空樹脂カプセルの平均メジアン粒径を前記範囲内に調整することにより、通常は相反する嵩高さと低通気性を両立した吸音材用又は断熱材用不織布ができる。 The average median particle diameter of the internal hollow resin capsules contained in the nonwoven fabric for sound absorbing material or heat insulating material is 170 μm or more, more preferably 173 μm or more, still more preferably 175 μm or more, and 200 μm or less, more preferably 198 μm. 195 μm or less, more preferably 195 μm or less. By adjusting the average median particle size of the inner hollow resin capsules contained in the nonwoven fabric for sound absorbing or heat insulating materials within the above range, a nonwoven fabric for sound absorbing or heat insulating materials that achieves both high bulkiness and low air permeability, which are usually contradictory. can be done.

吸音材用又は断熱材用不織布に含まれる内部中空樹脂カプセルの含有量は、単位面積あたり1000個/cm2以上が好ましく、より好ましくは1100個/cm2以上であり、更に好ましくは1200個/cm2以上であり、より更に好ましくは1300個/cm2以上であり、2000個/cm2以下、より好ましくは1950個/cm2以下であり、更に好ましくは1900個/cm2以下であり、より更に好ましくは1800個/cm2以下である。吸音材用又は断熱材用不織布に含まれる内部中空樹脂カプセルの含有量が前記範囲内であれば、通常は相反する嵩高さと低通気性を両立した吸音材用又は断熱材用不織布ができる。 The content of internal hollow resin capsules contained in the nonwoven fabric for sound absorbing material or heat insulating material is preferably 1000/cm 2 or more, more preferably 1100/cm 2 or more, and still more preferably 1200/cm 2 or more per unit area. cm 2 or more, more preferably 1300/cm 2 or more, 2000/cm 2 or less, more preferably 1950/cm 2 or less, still more preferably 1900/cm 2 or less, More preferably, it is 1800/cm 2 or less. If the content of the internal hollow resin capsules contained in the nonwoven fabric for sound absorbing or heat insulating material is within the above range, a nonwoven fabric for sound absorbing or heat insulating material that achieves both high bulkiness and low air permeability, which normally contradict each other, can be obtained.

吸音材用又は断熱材用不織布の通気度は、1.0cc/cm2・sec以上が好ましく、より好ましくは1.5cc/cm2・sec以上であり、更に好ましくは2.0cc/cm2・sec以上であり、より更に好ましく2.5cc/cm2・sec以上であり、50.0cc/cm2・sec以下が好ましく、より好ましくは30.0cc/cm2・sec以下であり、更に好ましくは10.0cc/cm2・sec以下であり、より更に好ましくは8.0cc/cm2・sec以下である。通気度が前述の範囲であれば、高い吸音性能又は断熱性能を得ることができる。 The air permeability of the nonwoven fabric for sound absorbing material or heat insulating material is preferably 1.0 cc/cm 2 ·sec or more, more preferably 1.5 cc/cm 2 ·sec or more, still more preferably 2.0 cc/cm 2 ·sec. sec or more, more preferably 2.5 cc/cm 2 ·sec or more, preferably 50.0 cc/cm 2 ·sec or less, more preferably 30.0 cc/cm 2 ·sec or less, still more preferably It is 10.0 cc/cm 2 ·sec or less, and more preferably 8.0 cc/cm 2 ·sec or less. If the air permeability is within the above range, high sound absorption performance or heat insulation performance can be obtained.

本発明の吸音材用又は断熱材用不織布は、1600~5000Hzにおける垂直入射吸音率が、0.300以上という優れた吸音性能を発揮する。また、本発明の吸音材用又は断熱材用不織布は、優れた断熱性能を発揮する。
[吸音性能]JIS A1405-2(垂直入射吸音率)に準ず。
The nonwoven fabric for sound absorbing material or heat insulating material of the present invention exhibits excellent sound absorbing performance with a normal incident sound absorption coefficient of 0.300 or more at 1600 to 5000 Hz. In addition, the nonwoven fabric for sound absorbing material or heat insulating material of the present invention exhibits excellent heat insulating performance.
[Sound Absorption Performance] Complies with JIS A1405-2 (vertical incident sound absorption coefficient).

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples, and can be modified appropriately within the scope that can conform to the gist of the above and later descriptions. It is of course possible to implement them, and all of them are included in the technical scope of the present invention.

実施例及び比較例で採用した評価は以下の通りである。
1.目付:JIS L1913 6.2に準ず。
2.厚さ:ノギスを用いて測定する。
3.嵩密度:目付/厚さを単位換算する。
4.通気度:カトーテック株式会社製通気性試験機(形式:KES-F8)により測定する。
5.吸音性能:JIS A1405-2(垂直入射吸音率)に準ず。
6.断熱性能:外寸法が90×130×全高110mm、内寸法が60×100×深さ95mmである底壁と側壁を備えた発泡スチロール製の上部が開放された箱に、上部開放部を全て覆うようにサンプル不織布を載せる。そして、125Wの赤外線電球を熱光源とし、サンプル不織布から20cm垂直上から光量1万ルクスで照射を行い、経時による箱内部の温度変化を測定する。ただし、測定は、温度25℃、相対湿度65%RHの雰囲気中で行う。
Evaluations adopted in Examples and Comparative Examples are as follows.
1. Metsuke: Conforms to JIS L1913 6.2.
2. Thickness: Measured with vernier calipers.
3. Bulk Density: Convert basis weight/thickness into units.
4. Air permeability: Measured with a Kato Tech Co., Ltd. air permeability tester (type: KES-F8).
5. Sound absorption performance: conforms to JIS A1405-2 (vertical incident sound absorption coefficient).
6. Insulation performance: A box with an open top made of polystyrene foam with bottom and side walls with outer dimensions of 90 x 130 x total height of 110 mm and inner dimensions of 60 x 100 x depth of 95 mm, so as to cover the entire top opening Place the sample nonwoven fabric on the Then, a 125 W infrared light bulb is used as a heat source, and a light intensity of 10,000 lux is applied from 20 cm vertically above the sample nonwoven fabric, and the temperature change over time inside the box is measured. However, the measurement is performed in an atmosphere with a temperature of 25° C. and a relative humidity of 65% RH.

実施例1
繊度1.3dtex、繊維長38mm、融点255℃のポリエステル繊維70重量%と、繊度2.2dtex、繊維長51mm、芯鞘構造を有する芯部融点255℃、鞘部融点130℃のポリエステル系低融点繊維(芯:PET、鞘:変性PET)30重量%をそれぞれ計量、混綿、カーディング、クロス積層した繊維ウエブを、打ち込み本数40本/cm2、針深さ6mmでニードルパンチ加工を施した後、設定温度170℃の熱処理機で30秒間加熱して、目付245g/m2の吸音材用又は断熱材用不織布用サーマルボンド不織布基材を得た。
水70質量部に、熱膨張開始温度が100℃、最大膨張温度が160℃の熱膨張性微粒子(メジアン粒径50μm;松本油脂製)を1質量部と、50重量%のエチレン-酢酸ビニル共重合体エマルジョン(住化ケムテックス製)を6質量部、及び50重量%のアクリルエマルジョン(DIC製)を4質量部分散させた塗布液を調製した。前記塗布液中に、前記吸音材用又は断熱材用不織布用サーマルボンド不織布基材(目付245g/m2)を含浸させ、次いでマングルロールの圧力3kg/cm2にて絞り、乾燥機内温度160℃の雰囲気下で3分間熱風乾燥を行い、目付334g/m2、厚さ15mm、膨張後嵩密度0.022g/cm3の吸音材用又は断熱材用不織布を作製した。作製された吸音材用又は断熱材用不織布の特性を表1~2、及び図1に示す。
Example 1
70% by weight of polyester fiber with a fineness of 1.3 dtex, a fiber length of 38 mm, and a melting point of 255°C, and a low melting point polyester with a fineness of 2.2 dtex, a fiber length of 51 mm, and a core-sheath structure with a core melting point of 255°C and a sheath melting point of 130°C. After weighing 30% by weight of fibers (core: PET, sheath: denatured PET), the fiber web obtained by blending, carding, and cross-laminating was needle-punched with a needle punching number of 40/cm 2 and a needle depth of 6 mm. , and heated for 30 seconds in a heat treatment machine with a set temperature of 170°C to obtain a thermal bond nonwoven fabric base material for nonwoven fabric for sound absorbing material or heat insulating material having a basis weight of 245 g/m 2 .
To 70 parts by mass of water, 1 part by mass of thermally expandable fine particles (median particle diameter 50 μm; manufactured by Matsumoto Yushi) having a thermal expansion start temperature of 100° C. and a maximum expansion temperature of 160° C., and 50% by weight of ethylene-vinyl acetate A coating liquid was prepared by dispersing 6 parts by weight of a polymer emulsion (manufactured by Sumika Chemtex) and 4 parts by weight of a 50% by weight acrylic emulsion (manufactured by DIC). The thermal bond nonwoven fabric substrate (basis weight: 245 g/m 2 ) for sound absorbing or heat insulating nonwoven fabric was impregnated in the coating liquid, then squeezed with a mangle roll pressure of 3 kg/cm 2 , and the temperature inside the dryer was 160°C. A nonwoven fabric for sound absorbing or heat insulating material having a basis weight of 334 g/m 2 , a thickness of 15 mm and a bulk density after expansion of 0.022 g/cm 3 was produced by drying with hot air for 3 minutes in an atmosphere of . Tables 1 and 2 and FIG. 1 show the properties of the produced nonwoven fabric for sound absorbing material or heat insulating material.

実施例2
吸音材用又は断熱材用不織布用サーマルボンド不織布基材の目付を表1に示すように変更したこと以外は、実施例1と同様にして吸音材用又は断熱材用不織布を作製した。作製された吸音材用又は断熱材用不織布の特性を表1~2、及び図1に示す。
Example 2
A nonwoven fabric for sound absorbing or heat insulating material was produced in the same manner as in Example 1, except that the basis weight of the thermal bond nonwoven fabric substrate for nonwoven fabric for sound absorbing or heat insulating material was changed as shown in Table 1. Tables 1 and 2 and FIG. 1 show the properties of the produced nonwoven fabric for sound absorbing material or heat insulating material.

実施例3
吸音材用又は断熱材用不織布用サーマルボンド不織布基材の目付を表1に示すように変更し、塗布液調製時の熱膨張性微粒子を2質量部に変更したこと以外は、実施例1と同様にして吸音材用又は断熱材用不織布を作製した。作製された吸音材用又は断熱材用不織布の特性を表1~2、及び図1に示す。
Example 3
Example 1 except that the basis weight of the thermal bond nonwoven fabric substrate for nonwoven fabric for sound absorbing material or heat insulating material was changed as shown in Table 1, and the thermally expandable fine particles were changed to 2 parts by mass when preparing the coating solution. A nonwoven fabric for sound absorbing material or heat insulating material was produced in the same manner. Tables 1 and 2 and FIG. 1 show the properties of the produced nonwoven fabric for sound absorbing material or heat insulating material.

比較例1
吸音材用又は断熱材用不織布用サーマルボンド不織布基材の代わりに、ニードルパンチスパンボンド長繊維不織布(東洋紡社製「ボランス4101N」;目付100g/m2、厚さ1.4mm)を基材として使用したこと以外は、実施例1と同様にして吸音材用又は断熱材用不織布を作製した。作製された吸音材用又は断熱材用不織布の特性を表1~2、及び図1に示す。
Comparative example 1
A needle-punch spunbond long-fiber nonwoven fabric (“Bolance 4101N” manufactured by Toyobo Co., Ltd.; weight per unit area: 100 g/m 2 , thickness: 1.4 mm) was used as the base material instead of the thermal bonded nonwoven fabric base material for nonwoven fabrics for sound absorbing or heat insulating materials. A nonwoven fabric for a sound absorbing material or a heat insulating material was produced in the same manner as in Example 1, except that it was used. Tables 1 and 2 and FIG. 1 show the properties of the produced nonwoven fabric for sound absorbing material or heat insulating material.

比較例2
繊度1.8dtex、繊維長51mmのポリエステル繊維70重量%と、繊度3.3dtex、繊維長51mmのポリエステル繊維30重量%をそれぞれ計量、混綿、積層した繊維ウエブを、打ち込み本数250本/cm2、針深さ8mmでニードルパンチ加工を施し、目付100g/m2の吸音材用又は断熱材用不織布用ニードルパンチ不織布基材を得た。
吸音材用又は断熱材用不織布用サーマルボンド不織布基材の代わりに、前記吸音材用又は断熱材用不織布用ニードルパンチ不織布基材(目付100g/m2)を使用したこと以外は、実施例1と同様にして吸音材用又は断熱材用不織布を作製した。作製された吸音材用又は断熱材用不織布の特性を表1~2、及び図1に示す。
Comparative example 2
70% by weight of polyester fiber with a fineness of 1.8 dtex and a fiber length of 51 mm and 30% by weight of a polyester fiber with a fineness of 3.3 dtex and a fiber length of 51 mm were weighed, blended, and laminated to produce a fiber web with a number of yarns of 250/cm 2 . Needle-punched with a needle depth of 8 mm to obtain a needle-punched nonwoven fabric base material for sound absorbing or heat insulating nonwoven fabric having a basis weight of 100 g/m 2 .
Example 1, except that the needle-punched nonwoven fabric substrate (basis weight: 100 g/m 2 ) for sound absorbing or heat insulating nonwoven fabric was used instead of the thermal bond nonwoven fabric substrate for sound absorbing or heat insulating nonwoven fabric. A nonwoven fabric for a sound absorbing material or a heat insulating material was produced in the same manner as above. Tables 1 and 2 and FIG. 1 show the properties of the produced nonwoven fabric for sound absorbing material or heat insulating material.

比較例3
塗布液調製時の熱膨張性微粒子を10質量部に変更したこと以外は、比較例1と同様にして吸音材用又は断熱材用不織布を作製した。作製された吸音材用又は断熱材用不織布の特性を表1~2、及び図1に示す。
Comparative example 3
A nonwoven fabric for a sound absorbing material or a heat insulating material was produced in the same manner as in Comparative Example 1, except that the amount of thermally expandable fine particles during preparation of the coating liquid was changed to 10 parts by mass. Tables 1 and 2 and FIG. 1 show the properties of the produced nonwoven fabric for sound absorbing material or heat insulating material.

比較例4
塗布液調製時の熱膨張性微粒子を10質量部に変更したこと以外は、比較例2と同様にして吸音材用又は断熱材用不織布を作製した。作製された吸音材用又は断熱材用不織布の特性を表1~2、及び図1に示す。
Comparative example 4
A nonwoven fabric for a sound absorbing material or a heat insulating material was produced in the same manner as in Comparative Example 2, except that the amount of thermally expandable fine particles during preparation of the coating liquid was changed to 10 parts by mass. Tables 1 and 2 and FIG. 1 show the properties of the produced nonwoven fabric for sound absorbing material or heat insulating material.

Figure 0007277093000001
Figure 0007277093000001

Figure 0007277093000002
Figure 0007277093000002

実施例1~3の吸音材用又は断熱材用不織布は、いずれも、膨張後の熱膨張性微粒子すなわち内部中空樹脂カプセルの含有量が少ないながらも、厚さ膨張が大きく、嵩密度が小さい不織布が形成出来ており、1600~5000Hzにおける吸音率が0.300以上と高く、良好な吸音性能を兼ね備えている。一方、比較例1~2の吸音材用又は断熱材用不織布では、不織布基材がサーマルボンド製法によるものではないため、熱膨張性微粒子の濃度が同じ塗布液を使用した実施例1~2の吸音材用又は断熱材用不織布と比べて、厚さ膨張が少なく、嵩密度が大きいうえに、吸音性能も劣っている。比較例3~4の吸音材用又は断熱材用不織布では、比較例1~2と比べて使用する塗布液中の熱膨張性微粒子の濃度を約9.2倍とすることにより、比較例1~2よりは若干改善しているが、実施例1~3よりも厚さ膨張が少なく、嵩密度が大きいうえに、吸音性能も劣っている。 The nonwoven fabrics for sound absorbing material or heat insulating material of Examples 1 to 3 all have a small content of thermally expandable fine particles after expansion, ie, internal hollow resin capsules, but have a large thickness expansion and a small bulk density. can be formed, and the sound absorption coefficient at 1600 to 5000 Hz is as high as 0.300 or more, and it also has good sound absorption performance. On the other hand, in the nonwoven fabrics for sound absorbing material or heat insulating material of Comparative Examples 1 and 2, since the nonwoven fabric base material is not produced by the thermal bond manufacturing method, the coating liquids of Examples 1 and 2 having the same concentration of thermally expandable fine particles were used. Compared to nonwoven fabrics for sound absorbing materials or heat insulating materials, the thickness expansion is small, the bulk density is high, and the sound absorbing performance is inferior. In the nonwoven fabrics for sound absorbing material or heat insulating material of Comparative Examples 3 and 4, the concentration of the thermally expandable fine particles in the coating liquid used is about 9.2 times that of Comparative Examples 1 and 2. Although it is slightly better than 1 to 2, it has less thickness expansion than Examples 1 to 3, has a higher bulk density, and is inferior in sound absorption performance.

実施例4
コード化実体顕微鏡(Leica製「M125C」)を用いて、実施例3にて作製した吸音材用又は断熱材用不織布の表面及び断面の拡大写真を撮影した。撮影した写真画像を図2~3に示す。また、前記吸音材用又は断熱材用不織布の表面写真に基づいて、吸音材用又は断熱材用不織布における単位面積あたりの内部中空樹脂カプセル含有量を測定した。測定結果を表3に示す。
Example 4
Enlarged photographs of the surface and cross section of the nonwoven fabric for sound absorbing material or heat insulating material produced in Example 3 were taken using a coded stereomicroscope ("M125C" manufactured by Leica). Photographed images are shown in FIGS. In addition, based on the photograph of the surface of the nonwoven fabric for sound absorbing material or heat insulating material, the internal hollow resin capsule content per unit area in the nonwoven fabric for sound absorbing material or heat insulating material was measured. Table 3 shows the measurement results.

比較例5、6
比較例1、3の吸音材用又は断熱材用不織布について、実施例4と同様に表面及び断面の写真撮影と、内部中空樹脂カプセル含有量の測定を行った。写真画像を図4~7に、測定結果を表3に示す。
Comparative Examples 5 and 6
As in Example 4, photographs of the surfaces and cross sections of the nonwoven fabrics for sound absorbing or heat insulating materials of Comparative Examples 1 and 3 were taken, and the internal hollow resin capsule content was measured. Photographic images are shown in FIGS. 4 to 7, and measurement results are shown in Table 3.

Figure 0007277093000003
Figure 0007277093000003

図2~3に示すように、実施例4の吸音材用又は断熱材用不織布は、内部中空樹脂カプセルが不織布全体に均一に分散している。これに対し、比較例5(図4~5)の吸音材用又は断熱材用不織布では、不織布の交絡に沿って内部中空樹脂カプセルが点在しており、空隙が多い。つまり、比較例5の吸音材用又は断熱材用不織布は、空隙が多いため通気性が高く、吸音性能又は断熱性能が劣るものである。また、比較例6(図6~7)の吸音材用又は断熱材用不織布では、熱膨張性微粒子の濃度が濃い塗布液に含浸して作製しているため、繊維が覆われ見えないほどに内部中空樹脂カプセルが密集している。つまり、比較例6の吸音材用又は断熱材用不織布は、粉落ちの虞がある。 As shown in FIGS. 2 and 3, in the nonwoven fabric for sound absorbing material or heat insulating material of Example 4, internal hollow resin capsules are uniformly dispersed throughout the nonwoven fabric. On the other hand, in the sound absorbing or heat insulating nonwoven fabric of Comparative Example 5 (FIGS. 4 and 5), internal hollow resin capsules are scattered along the entanglement of the nonwoven fabric, and there are many voids. In other words, the sound absorbing or heat insulating nonwoven fabric of Comparative Example 5 has a large number of voids, so it has high air permeability and is inferior in sound absorbing performance or heat insulating performance. In addition, since the nonwoven fabric for sound absorbing material or heat insulating material of Comparative Example 6 (FIGS. 6 and 7) is produced by being impregnated with a coating liquid having a high concentration of thermally expandable fine particles, the fibers are covered so that they cannot be seen. The inner hollow resin capsules are dense. In other words, the nonwoven fabric for sound absorbing material or heat insulating material of Comparative Example 6 may fall off as powder.

実施例5
実施例3にて作製した吸音材用又は断熱材用不織布を用いて、断熱性能の測定を行った。結果を表4、及び図8に示す。
Example 5
Using the nonwoven fabric for sound absorbing material or heat insulating material produced in Example 3, the heat insulating performance was measured. The results are shown in Table 4 and FIG.

比較例7
実施例3の吸音材用又は断熱材用不織布用サーマルボンド不織布基材を用いて、実施例5と同様にして断熱性能の測定を行った。結果を表4、及び図8に示す。
Comparative example 7
The heat insulating performance was measured in the same manner as in Example 5 using the thermal bond nonwoven fabric base material for the sound absorbing or heat insulating nonwoven fabric of Example 3. The results are shown in Table 4 and FIG.

Figure 0007277093000004
Figure 0007277093000004

実施例5の吸音材用又は断熱材用不織布は、比較例7の熱膨張性微粒子の含浸、及び前記熱膨張性微粒子の膨張をしていない吸音材用又は断熱材用不織布用サーマルボンド不織布基材よりも、光照射15分経過後の温度上昇が、34%抑制されており、断熱性能が良好であるといえる。 The nonwoven fabric for sound absorbing material or heat insulating material of Example 5 is impregnated with the thermally expandable fine particles of Comparative Example 7 and thermally bonded nonwoven fabric base for sound absorbing or heat insulating nonwoven fabric without expansion of the thermally expandable fine particles. The temperature rise after 15 minutes of light irradiation is suppressed by 34% compared to the material, and it can be said that the heat insulation performance is good.

Claims (9)

不織布基材繊維(ただし、ガラス繊維を除く)と、前記不織布基材繊維よりも融点の低い繊維とを混綿して熱接着した不織布基材に、気化性液体を熱可塑性高分子で内包したマイクロカプセルである熱膨張性微粒子及び樹脂を含む塗布液を含浸し、前記熱膨張性微粒子を膨張させて前記不織布基材の厚さを5mm以上にする一方、前記熱膨張性微粒子の膨張後の含有量を20g/m2以下とし、且つ総目付を400g/m2以下とすることを特徴とする吸音材用又は断熱材用不織布の製造方法。 Non-woven fabric base fibers (excluding glass fibers) and fibers having a lower melting point than the non-woven fabric base fibers are mixed and thermally bonded to each other, and a volatile liquid is encapsulated in a thermoplastic polymer to form a microfiber. Thermally expandable fine particles that are capsules and a coating liquid containing a resin are impregnated, and the thermally expandable fine particles are expanded to make the thickness of the nonwoven fabric substrate 5 mm or more. A method for producing a nonwoven fabric for sound absorbing or heat insulating material, characterized in that the content is 20 g/m 2 or less and the total basis weight is 400 g/m 2 or less. 前記熱膨張性微粒子の膨張により、吸音材用又は断熱材用不織布の嵩密度を0.001~0.050g/cm3とする請求項1に記載の吸音材用又は断熱材用不織布の製造方法。 2. The method for producing a nonwoven fabric for a sound absorbing material or a heat insulating material according to claim 1, wherein the nonwoven fabric for a sound absorbing material or a heat insulating material has a bulk density of 0.001 to 0.050 g/cm 3 by expansion of the thermally expandable fine particles. . 前記不織布基材繊維が、繊度0.8~30dtexの不連続繊維である請求項1又は2に記載の吸音材用又は断熱材用不織布の製造方法。 3. The method for producing a sound absorbing or heat insulating nonwoven fabric according to claim 1 or 2, wherein the nonwoven fabric substrate fibers are discontinuous fibers having a fineness of 0.8 to 30 dtex. 前記不織布基材繊維よりも融点の低い繊維の繊度が、1.0~20dtexである請求項1~3のいずれかに記載の吸音材用又は断熱材用不織布の製造方法。 4. The method for producing a nonwoven fabric for sound absorbing or heat insulating material according to any one of claims 1 to 3, wherein the fibers having a lower melting point than the nonwoven fabric base fibers have a fineness of 1.0 to 20 dtex. 前記熱膨張性微粒子のメジアン粒径が、20~70μmである請求項1~4のいずれかに記載の吸音材用又は断熱材用不織布の製造方法。 5. The method for producing a nonwoven fabric for sound absorbing or heat insulating material according to claim 1, wherein the thermally expandable fine particles have a median particle diameter of 20 to 70 μm. 熱接着された不織布基材繊維(ただし、ガラス繊維を除く)と、前記不織布基材繊維間に分散した状態で存在する内部中空樹脂カプセルと、樹脂とを含み、厚さが5mm以上、総目付が400g/m2以下、嵩密度が0.001~0.050g/cm3である吸音材用又は断熱材用不織布。 It contains thermally bonded nonwoven fabric substrate fibers (excluding glass fibers), internal hollow resin capsules dispersed among the nonwoven fabric substrate fibers, and a resin, and has a thickness of 5 mm or more and a total basis weight. 400 g/m 2 or less, and a bulk density of 0.001 to 0.050 g/cm 3 for sound absorbing or heat insulating nonwoven fabric. 前記不織布基材繊維が、繊度0.8~30dtexの不連続繊維である請求項6に記載の吸音材用又は断熱材用不織布。 7. The nonwoven fabric for sound absorbing or heat insulating material according to claim 6, wherein said nonwoven fabric substrate fibers are discontinuous fibers having a fineness of 0.8 to 30 dtex. 前記内部中空樹脂カプセルの平均メジアン粒径が170~200μmであり、該内部中空樹脂カプセルの含有量が単位面積あたり2000個/cm2以下であり、且つ、通気度が50.0cc/cm2・sec以下である請求項6又は7に記載の吸音材用又は断熱材用不織布。 The inner hollow resin capsules have an average median particle size of 170 to 200 μm, a content of the inner hollow resin capsules per unit area of 2000/cm 2 or less, and an air permeability of 50.0 cc/cm 2 ·. 8. The nonwoven fabric for sound absorbing material or heat insulating material according to claim 6 or 7, which has a thickness of sec or less. 前記吸音材用又は断熱材用不織布の1600~5000Hzにおける垂直入射吸音率が、0.300以上である請求項6~8のいずれかに記載の吸音材用又は断熱材用不織布。 The nonwoven fabric for sound absorbing or heat insulating material according to any one of claims 6 to 8, wherein the nonwoven fabric for sound absorbing or heat insulating material has a normal incident sound absorption coefficient at 1600 to 5000 Hz of 0.300 or more.
JP2018162139A 2018-08-30 2018-08-30 Method for producing nonwoven fabric for sound absorbing or heat insulating material, and nonwoven fabric for sound absorbing or heat insulating material Active JP7277093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018162139A JP7277093B2 (en) 2018-08-30 2018-08-30 Method for producing nonwoven fabric for sound absorbing or heat insulating material, and nonwoven fabric for sound absorbing or heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018162139A JP7277093B2 (en) 2018-08-30 2018-08-30 Method for producing nonwoven fabric for sound absorbing or heat insulating material, and nonwoven fabric for sound absorbing or heat insulating material

Publications (2)

Publication Number Publication Date
JP2020033675A JP2020033675A (en) 2020-03-05
JP7277093B2 true JP7277093B2 (en) 2023-05-18

Family

ID=69667309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018162139A Active JP7277093B2 (en) 2018-08-30 2018-08-30 Method for producing nonwoven fabric for sound absorbing or heat insulating material, and nonwoven fabric for sound absorbing or heat insulating material

Country Status (1)

Country Link
JP (1) JP7277093B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112144175B (en) * 2020-09-25 2021-10-29 杭州卓涛实业有限公司 Preparation method of antibacterial and anti-mite fabric
CN117107934B (en) * 2023-10-24 2024-01-23 中国建筑西南设计研究院有限公司 Double-pore sound absorption reinforced composite material and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253036A (en) 2002-02-28 2003-09-10 Oji Paper Co Ltd Cellular sheety structure
JP2005023470A (en) 2003-07-02 2005-01-27 Nagoya Oil Chem Co Ltd Fiber sheet and formed material thereof
WO2010126113A1 (en) 2009-04-30 2010-11-04 旭化成せんい株式会社 Composite film substrate and composite film using same
JP2012107350A (en) 2010-11-16 2012-06-07 Mitsubishi Paper Mills Ltd Heat-expandable nonwoven fabric
JP2012211400A (en) 2011-03-30 2012-11-01 Kuraray Co Ltd Heat expandable nonwoven fabric, and method for manufacturing bulky nonwoven fabric using the same
JP2014048572A (en) 2012-09-03 2014-03-17 Teijin Ltd Sound absorption material
JP2016132231A (en) 2015-01-22 2016-07-25 大王製紙株式会社 Sheet for heat-insulating container and heat-insulating container

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054291A (en) * 1991-06-27 1993-01-14 Teijin Ltd Manufacture of foamable-thermally-expandable web
JPH11200218A (en) * 1998-01-14 1999-07-27 Oji Paper Co Ltd Heat-resistant nonwoven fabric

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253036A (en) 2002-02-28 2003-09-10 Oji Paper Co Ltd Cellular sheety structure
JP2005023470A (en) 2003-07-02 2005-01-27 Nagoya Oil Chem Co Ltd Fiber sheet and formed material thereof
WO2010126113A1 (en) 2009-04-30 2010-11-04 旭化成せんい株式会社 Composite film substrate and composite film using same
JP2012107350A (en) 2010-11-16 2012-06-07 Mitsubishi Paper Mills Ltd Heat-expandable nonwoven fabric
JP2012211400A (en) 2011-03-30 2012-11-01 Kuraray Co Ltd Heat expandable nonwoven fabric, and method for manufacturing bulky nonwoven fabric using the same
JP2014048572A (en) 2012-09-03 2014-03-17 Teijin Ltd Sound absorption material
JP2016132231A (en) 2015-01-22 2016-07-25 大王製紙株式会社 Sheet for heat-insulating container and heat-insulating container

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
川端季雄,繊維機械学会誌,1987年,40(6),pp.41-49,https://www.jstage.jst.go.jp/article/transjtmsj1972/40/6/40_6_T59/_pdf/-char/ja
河井元京,繊維学会誌,1962年,18(9),pp.775-780,https://www.jstage.jst.go.jp/article/fiber1944/18/9/18_9_775/_pdf/-char/ja
軍司敏博,繊維製品消費科学(繊消誌),1991年,32(6),pp.239-247,https://www.jstage.jst.go.jp/article/senshoshi1960/32/6/32_6_239/_pdf/-char/ja

Also Published As

Publication number Publication date
JP2020033675A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
US7888275B2 (en) Porous composite materials comprising a plurality of bonded fiber component structures
US3676288A (en) Low-density bonded nonwoven fabrics and process therefor
JP7277093B2 (en) Method for producing nonwoven fabric for sound absorbing or heat insulating material, and nonwoven fabric for sound absorbing or heat insulating material
JP6329405B2 (en) Composite nonwoven fabric for sound absorbing material
JP4574262B2 (en) SOUND ABSORBING LAMINATE AND METHOD FOR PRODUCING THE SAME
CN105926165A (en) Heat-storage and temperature-adjustment sound absorption cotton
WO2019124186A1 (en) Multilayer sound absorbing material
JP2012107350A (en) Heat-expandable nonwoven fabric
JP6498454B2 (en) Sheet for multilayer molding and sheet molded body
JP2019045636A (en) Composite sound absorbing material
JP6906989B2 (en) Interior surface material and its manufacturing method
JP3993456B2 (en) Soundproof material suitable mainly for automobiles
JP2019086551A (en) Sound absorption material
JP6235773B2 (en) Composite nonwoven fabric for sound absorbing material
JP4546602B2 (en) Heat-insulating layer-forming coating composition, molded product, and method for producing molded product
JP2019043014A (en) Composite sound absorbing material
JP3494332B2 (en) Soundproofing material
JP2010196220A (en) Low density nonwoven fabric
JP4180433B2 (en) Interior material for automobile and manufacturing method thereof
JP2002069823A (en) Sound absorbing material containing melt-blown nonwoven fabric
JP2004308938A (en) Water absorption filter material for humidifier
JP6266579B2 (en) Ventilation adjusting adhesive sheet, method for producing the same, and laminated sound absorbing material
JP2010188894A (en) Base material for automobile interior materials and automobile interior materials
JP2005179843A (en) Fiber sheet
JP4301398B2 (en) Stacked and integrated food absorbent mat

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20180920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180920

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R150 Certificate of patent or registration of utility model

Ref document number: 7277093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150