WO2005001976A1 - Traitement de dechets biologiques visant a produire de l'energie - Google Patents

Traitement de dechets biologiques visant a produire de l'energie Download PDF

Info

Publication number
WO2005001976A1
WO2005001976A1 PCT/GB2004/002491 GB2004002491W WO2005001976A1 WO 2005001976 A1 WO2005001976 A1 WO 2005001976A1 GB 2004002491 W GB2004002491 W GB 2004002491W WO 2005001976 A1 WO2005001976 A1 WO 2005001976A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste materials
biogas
rich
synthesis gas
water
Prior art date
Application number
PCT/GB2004/002491
Other languages
English (en)
Inventor
Michael Joseph Bowe
Original Assignee
Accentus Plc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Accentus Plc filed Critical Accentus Plc
Priority to CA002526300A priority Critical patent/CA2526300A1/fr
Priority to US10/557,987 priority patent/US20070029264A1/en
Priority to EP04736840A priority patent/EP1636869A1/fr
Publication of WO2005001976A1 publication Critical patent/WO2005001976A1/fr
Priority to NO20056062A priority patent/NO20056062L/no

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • C12M43/08Bioreactors or fermenters combined with devices or plants for production of electricity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Definitions

  • the present invention relates to a process and an apparatus for processing biological waste materials, which may be based on plant or animal waste products, to provide energy in useful forms such as electricity or hydrocarbon fuel .
  • JP 2002-336898 A (Ebara) describes a process for treating sludge from a waste water treatment, in which the sludge is treated with ultrasound and then subjected to methane fermentation, so that cells are broken down, and the decomposition rate in the fermentation stage is increased.
  • DE 196 15 551 A (Ingan GmbH) describes a multistage anaerobic treatment for a wide range of waste biomass materials, using ultrasound to disrupt cells, and digestion to generate methane; this may also entail warming the waste material and adjusting its pH.
  • the present invention involves the appreciation that biogas may be used as a flexible feedstock so that energy may be provided in a variety of ways.
  • a process for treating biological waste materials comprising the steps of: a) combining the waste materials with water, unless the waste materials already include significant quantities of water; b) subjecting the waste materials and water to intense ultrasonic irradiation; c) feeding the irradiated waste materials into an anaerobic digester, so that a biogas is generated containing methane; characterised by d) feeding the biogas to a catalytic reformer unit to form a synthesis gas; and e) adjusting the proportion of steam to methane in the gas mixture in the reformer unit, such that the synthesis gas may be rich in hydrogen or alternatively rich in carbon monoxide.
  • Adjusting the proportion of steam to methane enables the output of the process to be adjusted according to market conditions.
  • the process preferably includes at least one of the additional steps : f) if the synthesis gas is rich in hydrogen, supplying it to a fuel cell to generate electricity; or g) if the synthesis gas is rich in carbon monoxide, supplying it to a Fischer-Tropsch synthesis reactor to generate liquid hydrocarbons.
  • the biogas may contain sulphurous compounds, and it may therefore be desirable to subject the biogas to desulphurisation before it is fed to the catalytic reformer unit.
  • FIG. 1 shows a diagrammatic view of a plant for performing the overall processes of the invention
  • a plant 10 is shown for treating biomass waste to generate energy.
  • the treated wet waste stream is fed into an anaerobic digester 16.
  • the non-digestible solid materials emerge as a compost, while the bulk of the biodegradable waste material generates a biogas stream 18.
  • This typically comprises between 55 and 60% methane and between 30 and 45% carbon dioxide, with a proportion of water vapour.
  • the ultrasonic transducers 14 are attached to the wall of the tube 12 in an array extending both circumferentially and longitudinally, each transducer being connected to a signal generator so that each transducer radiates no more than 3 W/cm 2 , the transducers being sufficiently close together and the number of transducers being sufficiently high that the power dissipation within the vessel is between 25 and 150 W/litre.
  • the values of power given here are those of the electrical power delivered to the transducers, as this is relatively easy to determine.
  • Such an irradiation vessel is described in WO 00/35579. It is desirable to ensure no focusing of the ultrasound occurs, and this may be achieved by energising groups of adjacent transducers in succession. Where the vessel is cylindrical it is particularly preferable to avoid energising diametrically opposite transducers at the same time.
  • the non-focusing can also be achieved by energising adjacent transducers, or adjacent groups of transducers, at different frequencies; and in particular to vary the frequency at which each transducer or group of transducers is energized over a limited range, for example between 19.5 kHz and 20.5 kHz.
  • the biogas is fed to a compact catalytic reformer 20 in which it flows through a reaction channel 21 kept at an elevated temperature that may for example be 800 °C.
  • the first stage involves steam reforming, in which methane reacts with water vapour, that is to say the reaction: H 2 0 + CH 4 -» CO + 3 H 2
  • This reaction is endothermic, and may be catalysed by a rhodium or platinum/rhodium catalyst in the reaction channel 21.
  • the heat required to cause this reaction may be provided by combustion in an adjacent channel 22 of an inflammable gas such as methane or hydrogen, which is exothermic and may be catalysed by a palladium/platinum catalyst.
  • the catalyst is preferably on a stabilised-alumina support which forms a coating typically less than 100 microns thick on a metal substrate. Both these reactions may take place at atmospheric pressure, although alternatively the reforming reaction might take place at an elevated pressure.
  • the heat generated by the combustion would be conducted through the metal sheet separating the adjacent channels.
  • the steam reforming reaction can be encouraged by adding steam to the biogas stream before it is supplied to the reaction channel 21. If no steam is added the biogas will undergo the dry reforming reaction: C0 2 + CH 4 -> 2 CO + 2 H 2
  • the proportion of methane that undergoes dry reforming can be enhanced by cooling the biogas stream 18 to condense and remove water vapour.
  • the ratio of hydrogen to carbon monoxide in the resulting synthesis gas stream 24 can be adjusted between about 2:1 to 1:1.
  • One option is then to supply the synthesis gas 24 to a fuel cell 26 in which the hydrogen gas reacts indirectly with oxygen from the air to generate electricity and to produce water.
  • reformer 20 should be operated to maximise the proportion of hydrogen in the synthesis gas stream 24.
  • fuel cell 26 for example a solid oxide cell
  • the hydrogen/carbon monoxide mixture may be supplied directly to the fuel cell.
  • the hydrogen gas may be separated from the other gases using a membrane separation unit 28, for example using a platinum or palladium membrane, or a palladium/copper membrane, so as to generate pure hydrogen gas for use in the fuel cell
  • the fuel cell may be a proton exchange membrane cell.
  • the resulting tail gas consisting primarily of carbon monoxide, is preferably supplied to the combustion channel 22.
  • the other option is to subject the synthesis gas 24 to a Fischer-Tropsch synthesis to generate a longer chain hydrocarbon, that is to say a reaction of the type: n CO + 2n H 2 - (CH 2 ) n + n H 2 0
  • the heat given out by this synthesis reaction may be used to provide at least part of the heat required by the steam/methane reforming reaction, for example a heat transfer fluid may be used to transfer the heat from the reactor 32 and used to preheat at least one of the streams supplied to the reforming reactor 20.
  • the preferred catalyst for the Fischer-Tropsch synthesis comprises a coating of lanthanum-stabilised gamma-alumina with about 10-40% cobalt (by weight compared to the alumina) , and with a ruthenium/platinum promoter which is less than 10% the weight of the cobalt, and with a basicity promoter such as gadolinium oxide which may be less than 5% the weight of the cobalt.
  • the gas stream emerging from 30 Fischer-Tropsch reactor 32 will contain hydrocarbons of a range of different molecular weights, and also water vapour. These may be condensed to provide the desired high molecular weight hydrocarbons as an output stream 36.
  • the low molecular weight tail gases (consisting primarily of hydrogen, methane and ethane) are supplied to the combustion channel 22 of the reforming reactor 20.
  • the water that also condenses may be separated from the hydrocarbons and may be returned to the digester 16.
  • the biogas stream 18 contains any sulphur- containing compounds it is preferably desulphurised before reaching the reforming reactor 20.
  • This may involve a liquid scrubbing absorption, for example using an aqueous solution of a chelated ferric salt. This converts the ferric salt to the ferrous form; the solution can be recirculated through an air scrubber to regenerate the ferric salt and to form a precipitate of sulphur.
  • it may use a desulphurisation technique that requires elevated temperatures, for example a solid state absorption process.
  • a benefit of subjecting the waste stream 11 to intense ultrasound is that the bio-availability of plant cellulose is increased by disrupting lignin layers, so that the rate of digestion in the digester 16 is increased and that the waste stream may contain significant proportions of woody material containing lignin.
  • the process is particularly suited to treating wet organic materials, as no drying is required and indeed in some cases no water will need to be added.
  • the ultrasound enhances the rate of digestion so that the retention time in the digester 16 is reduced and consequently a smaller digester 16 can be used to treat a given quantity of waste material .
  • both the fuel cell 26 and the digester 16 also generate heat. This heat may itself be useful, for example for community heating.
  • the plant 10 shown in figure 1 might for example be used to treat 20 tonnes of organic waste of approximately 15% by weight of solids, and to produce about seven barrels per day of synthetic high-quality hydrocarbon that may be converted to automotive fuel use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Selon l'invention, des déchets biologiques sont mélangés à de l'eau et soumis à un rayonnement ultrasonique intense (14) avant d'être acheminés vers un digesteur anaérobie (16) de manière à produire un gaz biologique contenant du méthane. Ledit gaz biologique est fourni à une unité de reformage catalytique (20) afin de former un gaz de synthèse. De la vapeur peut également être fournie, et le rapport entre la vapeur et le méthane peut être réglé de telle manière que le gaz de synthèse peut être riche en hydrogène ou riche en monoxyde de carbone. Le réglage du rapport entre la vapeur et le gaz biologique permet de régler le produit du processus en fonction des conditions du marché. Si le gaz de synthèse est riche en hydrogène, il peut être fourni à une pile à combustible (26) afin de produire de l'électricité, tandis que si ledit gaz est riche en monoxyde de carbone, il peut être employé pour produire des hydrocarbures liquides dans un réacteur de synthèse de Fischer-Tropsch (32).
PCT/GB2004/002491 2003-06-25 2004-06-15 Traitement de dechets biologiques visant a produire de l'energie WO2005001976A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002526300A CA2526300A1 (fr) 2003-06-25 2004-06-15 Traitement de dechets biologiques visant a produire de l'energie
US10/557,987 US20070029264A1 (en) 2004-06-15 2004-06-15 Processing biological waste materials to provide energy
EP04736840A EP1636869A1 (fr) 2003-06-25 2004-06-15 Traitement de dechets biologiques visant a produire de l'energie
NO20056062A NO20056062L (no) 2003-06-25 2005-12-20 Bearbeiding av biologisk avfallsmateriale for a fremstille energi

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0314806.1 2003-06-25
GBGB0314806.1A GB0314806D0 (en) 2003-06-25 2003-06-25 Processing biological waste materials to provide energy

Publications (1)

Publication Number Publication Date
WO2005001976A1 true WO2005001976A1 (fr) 2005-01-06

Family

ID=27637318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2004/002491 WO2005001976A1 (fr) 2003-06-25 2004-06-15 Traitement de dechets biologiques visant a produire de l'energie

Country Status (5)

Country Link
EP (1) EP1636869A1 (fr)
CA (1) CA2526300A1 (fr)
GB (1) GB0314806D0 (fr)
NO (1) NO20056062L (fr)
WO (1) WO2005001976A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2094821A2 (fr) * 2006-11-21 2009-09-02 The Trustees of Columbia University in the City of New York Procédés et systèmes pour accélérer la génération de méthane à partir d'une biomasse
RU2535967C1 (ru) * 2013-09-02 2014-12-20 Общество с ограниченной ответственностью "Научная интеграция" Способ подготовки сырья для анаэробной переработки органических отходов и установка для его осуществления
WO2018210960A1 (fr) * 2017-05-16 2018-11-22 Yannco Dispositif de transformation de matières organiques en mélanges de méthane (ch4) et/ou d'hydrogène (h2) et/ou de dixoyde de carbone (co2), par couplage de procédés thermochimiques et biologiques
RU186729U1 (ru) * 2018-05-24 2019-01-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Уральский государственный аграрный университет" (ФГБОУ ВО Южно-Уральский ГАУ) Установка для выработки биогаза и обеззараживания эффлюента
CN113460963A (zh) * 2021-08-03 2021-10-01 乔治洛德方法研究和开发液化空气有限公司 由生物气制备氢气的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3122840A1 (fr) * 2021-05-12 2022-11-18 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation et Procédé de production de gaz de synthèse présentant un moyen de limiter les émissions de CO2 au moyen de vapeur
WO2023242358A1 (fr) * 2022-06-17 2023-12-21 Topsoe A/S Combinaison d'une section de synthèse et d'une unité de production de biogaz

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19615551A1 (de) * 1996-04-19 1996-12-05 Ingan Gmbh Ingenieurbetrieb Fu Verfahren zur mehrstufigen anaeroben Behandlung von Biomassen zur Erzeugung von Biogas sowie Vorrichtung zur Durchführung des Verfahrens
JPH11126629A (ja) * 1997-10-23 1999-05-11 Toshiba Corp 燃料電池発電設備
WO2000035579A1 (fr) * 1998-12-12 2000-06-22 Aea Technology Plc Procede et appareil d'irradiation de fluides
WO2000061707A1 (fr) * 1999-03-31 2000-10-19 Syntroleum Corporation Piles a combustible, procedes, et systemes
JP2001023677A (ja) * 1999-07-13 2001-01-26 Ebara Corp 燃料電池発電方法及び燃料電池発電システム
US6187465B1 (en) * 1997-11-07 2001-02-13 Terry R. Galloway Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions
WO2001065621A1 (fr) * 2000-03-02 2001-09-07 Ebara Corporation Systeme et procede de generation d'energie de pile a combustible

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19615551A1 (de) * 1996-04-19 1996-12-05 Ingan Gmbh Ingenieurbetrieb Fu Verfahren zur mehrstufigen anaeroben Behandlung von Biomassen zur Erzeugung von Biogas sowie Vorrichtung zur Durchführung des Verfahrens
JPH11126629A (ja) * 1997-10-23 1999-05-11 Toshiba Corp 燃料電池発電設備
US6187465B1 (en) * 1997-11-07 2001-02-13 Terry R. Galloway Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions
WO2000035579A1 (fr) * 1998-12-12 2000-06-22 Aea Technology Plc Procede et appareil d'irradiation de fluides
WO2000061707A1 (fr) * 1999-03-31 2000-10-19 Syntroleum Corporation Piles a combustible, procedes, et systemes
JP2001023677A (ja) * 1999-07-13 2001-01-26 Ebara Corp 燃料電池発電方法及び燃料電池発電システム
WO2001065621A1 (fr) * 2000-03-02 2001-09-07 Ebara Corporation Systeme et procede de generation d'energie de pile a combustible

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 10 31 August 1999 (1999-08-31) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 16 8 May 2001 (2001-05-08) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2094821A2 (fr) * 2006-11-21 2009-09-02 The Trustees of Columbia University in the City of New York Procédés et systèmes pour accélérer la génération de méthane à partir d'une biomasse
EP2094821A4 (fr) * 2006-11-21 2012-06-13 Univ Columbia Procédés et systèmes pour accélérer la génération de méthane à partir d'une biomasse
RU2535967C1 (ru) * 2013-09-02 2014-12-20 Общество с ограниченной ответственностью "Научная интеграция" Способ подготовки сырья для анаэробной переработки органических отходов и установка для его осуществления
WO2015030624A1 (fr) * 2013-09-02 2015-03-05 Общество С Ограниченной Ответственностью "Биоэнергия" Procédé de préparation de matières premières pour la transformation anaérobie de déchets organiques et installation pour sa mise en œuvre
US10597629B2 (en) 2013-09-02 2020-03-24 “Bioenergy” Limited Liability Company Method and system for preparation of substrate for use in anaerobic digestion of organic waste
WO2018210960A1 (fr) * 2017-05-16 2018-11-22 Yannco Dispositif de transformation de matières organiques en mélanges de méthane (ch4) et/ou d'hydrogène (h2) et/ou de dixoyde de carbone (co2), par couplage de procédés thermochimiques et biologiques
FR3066502A1 (fr) * 2017-05-16 2018-11-23 Yannco Dispositif de transformation de matieres organiques en melanges de methane (ch4) et/ou d'hydrogene (h2) et/ou de dixoyde de carbone (co2), par couplage de procedes thermochimiques et biologiques
RU186729U1 (ru) * 2018-05-24 2019-01-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Уральский государственный аграрный университет" (ФГБОУ ВО Южно-Уральский ГАУ) Установка для выработки биогаза и обеззараживания эффлюента
CN113460963A (zh) * 2021-08-03 2021-10-01 乔治洛德方法研究和开发液化空气有限公司 由生物气制备氢气的方法

Also Published As

Publication number Publication date
GB0314806D0 (en) 2003-07-30
EP1636869A1 (fr) 2006-03-22
CA2526300A1 (fr) 2005-01-06
NO20056062L (no) 2005-12-20

Similar Documents

Publication Publication Date Title
US20070029264A1 (en) Processing biological waste materials to provide energy
Budzianowski Negative net CO2 emissions from oxy-decarbonization of biogas to H2
CA3032787C (fr) Procede et dispositif pour la valorisation de biogaz et la production d'hydrogene a partir de la fermentation anaerobie de matiere biologique
CA2444029A1 (fr) Dispositif de traitement de combustible integre, empilement de piles a combustible, et dispositif d'oxydation de gaz residuaires avec elimination du dioxyde de carbone
KR20060127197A (ko) 천연가스의 장쇄 탄화수소로의 변이방법
KR20060126604A (ko) 장쇄 탄화수소를 형성하기 위한 천연가스 처리방법
JP2006169095A (ja) マイクロ波を用いたco2の固定化方法
US20080237090A1 (en) Process and system for redcuing the olefin content of a hydrocarbon feed gas and production of a hydrogen-enriched gas therefrom
JP2006274013A (ja) バイオマスガス化システム
CA3052504A1 (fr) Production d'hydrocarbures liquides, de biocarburants et de co2 non contamine a partir d'une charge d'alimentation gazeuse
Deheri et al. Purified biohythane (biohydrogen+ biomethane) production from food waste using CaO2+ CaCO3 and NaOH as additives
EP1636869A1 (fr) Traitement de dechets biologiques visant a produire de l'energie
RU2006114573A (ru) Высокотемпературный реформинг
JP4113951B2 (ja) バイオマスによるメタノール製造方法
WO2017027330A1 (fr) Conversion de gaz à effet de serre en gaz de synthèse par reformage à sec
RU2006122358A (ru) Способ переработки органических отходов (варианты)
WO2021261417A1 (fr) Système de génération d'hydrocarbures
JP2016108382A (ja) バイオガス製造システム
CN111548251B (zh) 沼气全组分低温等离子体催化制备甲醇的方法
CN117677686A (zh) 在不排放二氧化碳的情况下生产合成燃料的设备和方法
CN102530864B (zh) 一种用于固液有机废弃物处理及燃料气体生产的方法
US20220323927A1 (en) Process and apparatus for providing a feedstock
JPH1135503A (ja) 消化ガスからのメタノ−ル製造装置
WO2023242360A1 (fr) Combinaison de boucle de methanol et d'unite de production de biogaz
Madhania et al. Biogas quality upgrading by carbon mineralization with calcium hydroxide solution in continuous bubble column reactor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004736840

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2526300

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007029264

Country of ref document: US

Ref document number: 10557987

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004736840

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10557987

Country of ref document: US