WO2005000532A1 - Hydraulic hammering device - Google Patents

Hydraulic hammering device Download PDF

Info

Publication number
WO2005000532A1
WO2005000532A1 PCT/JP2004/008667 JP2004008667W WO2005000532A1 WO 2005000532 A1 WO2005000532 A1 WO 2005000532A1 JP 2004008667 W JP2004008667 W JP 2004008667W WO 2005000532 A1 WO2005000532 A1 WO 2005000532A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil passage
stroke
pressure
chamber
circuit
Prior art date
Application number
PCT/JP2004/008667
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Hori
Atsushi Fujimoto
Original Assignee
Konan Construction Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konan Construction Machinery Co., Ltd. filed Critical Konan Construction Machinery Co., Ltd.
Priority to DE112004001161T priority Critical patent/DE112004001161T5/en
Publication of WO2005000532A1 publication Critical patent/WO2005000532A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/14Control devices for the reciprocating piston
    • B25D9/26Control devices for adjusting the stroke of the piston or the force or frequency of impact thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2222/00Materials of the tool or the workpiece
    • B25D2222/72Stone, rock or concrete
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/221Sensors

Definitions

  • the present invention relates to a hydraulic striking device for striking a chisel by reciprocating a striking piston, and more particularly to a technique for automatically changing the stroke of a striking piston according to the hardness of an object to be struck.
  • a striking device that automatically changes the stroke of a striking biston according to the hardness of a striking object
  • a striking device disclosed in Japanese Patent Publication No. 5-8531'1 is provided.
  • the instantaneous pressure fluctuation in the chamber above or below the striking piston, which occurs at the moment of the impact of the impact piston, is compared with the reference pressure, and the control flow generated according to the pressure difference is determined by the operating means.
  • the stroke of the striking piston is changed by changing the position of the stroke selection slide valve by changing the position of the spool that controls the discharge passage to change the operating pressure, or by changing the position of the stroke selection slide valve by a control flow rate corresponding to the pressure difference or the pressure.
  • the number of hits or the number of hits is adjusted.
  • the present invention provides a hydraulic hitting device that automatically changes the next hitting stroke in accordance with the state of the main hitting and performs stroke control efficiently and accurately. With the goal. Disclosure of the invention
  • a hydraulic striking device is directed to a hydraulic striking device for striking a chisel by reciprocating a striking piston, wherein the striking biston exceeds a regular striking position.
  • a stroke control valve for issuing a signal and a holding mechanism for holding the stroke control pulp at the switching position for a predetermined time.
  • a supply mechanism that supplies a working fluid to the brake chamber so that the striking piston escapes from the brake chamber when the striking piston is in the brake chamber at the time of starting striking.
  • FIG. 1 is a diagram showing the overall configuration of a hydraulic impact device of the present invention.
  • FIG. 2 is an enlarged view showing a circuit configuration of the hydraulic driving apparatus according to the present invention.
  • FIG. 3 is a diagram for explaining a stroke by a striking piston.
  • FIG. 4 is an enlarged view showing another circuit configuration in the hydraulic driving apparatus of the present invention.
  • FIG. 5 is an enlarged view showing still another circuit configuration in the hydraulic impact device of the present invention. -Best mode for carrying out the invention
  • embodiments of the present invention will be described with reference to the drawings.
  • FIG. 1 shows the overall configuration of a hydraulic impact device of the present invention.
  • the impact device 1 is generally mounted as an attachment on construction equipment such as a hydraulic excavator, and uses a working fluid supplied from a hydraulic source to crush concrete or rock at a crushed stone pit in a civil engineering site. It is used at the time.
  • the striking biston 2 has two pressure receiving surfaces PS 1 and PS 2 (PS 1> PS 2) having different areas, and the pressure receiving surface PS 2 having a small area has a hydraulic pressure source.
  • a high pressure always acts through the hydraulic circuit, and a high pressure and a low pressure alternately act on the pressure receiving surface PS 1 having a large area from the hydraulic source through the hydraulic circuit.
  • a low pressure is acting on the pressure receiving surface PS1
  • the gas is compressed against the gas pressure acting on the pressure receiving surface PS0 at the uppermost part of the impact piston 2 due to the high pressure acting on the pressure receiving surface PS2.
  • the impact piston 2 performs a return stroke and a high pressure is acting on the pressure receiving surface PS1
  • the impact stroke is performed by the high pressure and the gas pressure acting on the pressure receiving surface PS1.
  • the striking piston 2 is further lowered by a certain distance in the striking direction from a theoretically determined regular striking position, a brake chamber 13 is formed which is sealed by the striking piston 2.
  • C is a casing.
  • the casing C is provided with a cylinder chamber C1 in which a striking piston 2 is slidably reciprocated in the axial direction, and is connected to one end (lower end) of the cylinder chamber C1.
  • a gas chamber C 3 connected to the other end (upper end side) of the cylinder chamber C 1 and filled with a gas such as nitrogen, for example.
  • the end surface of the upper shaft portion 2c connected to the large diameter portion 2a is the gas chamber C3.
  • the end surface of the lower shaft portion 2d connected to the large diameter portion 2b is arranged facing the chisel chamber C2.
  • the upper and lower shaft portions 2c and 2d have a smaller diameter in the upper shaft portion 2c than in the lower shaft portion 2d.
  • the pressure receiving surface PS1 of the large diameter portion 2a is smaller.
  • the pressure receiving surface of the large diameter portion 2b is larger than PS2 (PS1> PS2).
  • a plurality of grooves 4 to 8 are formed annularly in the axial direction. These grooves 4 to 8 are formed sequentially from the upper end (left end) to the lower end of the cylinder chamber C1.
  • the groove 4 is formed facing the storage chamber 9 formed between the upper shaft portion 2c and the cylinder chamber C1
  • the groove 8 is formed between the lower shaft portion 2d and the cylinder chamber C1. It is formed facing the accommodation room 10 to be formed.
  • Grooves 5 and 6 are formed on the shaft portion 2e between the large-diameter portions 2a and 2b of the striking piston 2 when the striking piston 2 is located at the theoretical striking position L as shown in Fig. 1.
  • the groove 5 is in communication with the tank T through the oil passage 12 and has a low pressure.
  • a brake chamber 13 is formed in the cylinder chamber C1, which is the lower end side of the groove 8, and as shown in FIG. 1, when the impact piston 2 is arranged at the theoretical impact position L, the large-diameter section 2 is formed.
  • the pressure receiving surface PS 2 of b is arranged without entering the brake chamber 13.
  • the grooves 4 to 8 and the brake chamber 13 are communicated with respective oil passages incorporated in a hydraulic circuit described later.
  • the chisel chamber C2 is a portion for accommodating the chisel 3, and the chisel 3 is disposed with its tip protruding a predetermined length, and the striking piston 2 moves to the theoretical striking position L.
  • the striking piston 2 and the base end thereof are arranged so as to come into contact with each other.
  • the gas chamber C3 urges the impact piston 2 in the impact direction by the gas pressure sealed therein. That is, the end face of the upper shaft portion 2c facing the inside of the gas chamber C3 is formed as a pressure receiving surface PS0 that receives the gas pressure.
  • the discharge side of the hydraulic pump P is connected to a control valve 21 through an oil passage 20.
  • An oil passage 22 and an oil passage 23 are branched from the oil passage 20.
  • the oil passage 22 is communicated with one drive chamber CV2 of the control valve 21 and the oil passage 23 is connected to the groove. It is connected to 8.
  • the control valve 21 is a two-position switching type valve.
  • the other drive chamber CV 1 is communicated with the groove 6 through an oil passage 24, and hydraulic pressure acting on the drive chamber CV 1 and the drive chamber CV 2
  • the signal switches between the upper position (circuit A) and the lower position (circuit B) in Figs. 1 and 2.
  • the control valve 21 cuts off the communication between the oil passage 20 and the oil passage 25 connected to the groove 4, and is connected to the oil passage 25 and the tank T.
  • the oil passages 26 and are communicated. Therefore, when the control pulp 21 is disposed in the A circuit, the pressure in the storage chamber 9 is low because the groove 4 is communicated with the tank T.
  • the oil passage 20 and the oil passage 25 are communicated with each other, whereby the working fluid from the hydraulic pump P is introduced into the storage chamber 9 through the groove 4.
  • the storage chamber 9 is set to a high pressure.
  • the high pressure and the low pressure alternately act on the pressure receiving surface PS1 of the large diameter portion 2a by switching the control valve 21.
  • oil passages 27 and 28 are branched, and the oil passage 27 is connected to the stroke control pulp 29, and the oil passage 28 is connected to the opening / closing valve 30. ing.
  • the stroke control valve 29 is a 2-position switching type pulp, and the drive chambers S V 1 and S
  • the position is switched between the upper position (B circuit) and the lower position (A circuit) in FIGS. 1 and 2 by the action of the hydraulic signal communicating with V 2 and S V 3 and the action of the spring S 1.
  • V 2 is communicated through an oil passage 31 and the drive chamber V 2 of the on-off valve 30 is connected to the oil passage.
  • 32 is connected to the oil passage 2.6 through the oil passage 33 and communicates with the tank T.
  • the oil passage 34 branched from the oil passage 25 is connected to the drive chamber SV 2 through the oil passage 31 and to the brake chamber 13.
  • the oil passage 35 communicates with the drive chamber V 2 of the open / close pulp 30 through the oil passage 32.
  • an oil passage 38 further branched from the oil passage 28 branched from the oil passage 23 is connected to the drive chamber SVI of the stroke control valve 29.
  • an oil passage 40 branched from the oil passage 35 is connected to the drive chamber SV 3 of the stroke control pulp 29.
  • the opening / closing valve 30 is a two-position switching type valve.
  • the opening / closing valve 30 is moved to the left position (B circuit) in FIGS. Switch to the right position (A circuit).
  • the on-off valve 30 connects the oil passage 28 to the oil passage 41 and also connects the oil passage 42 to the oil passage 43.
  • the drive chamber VI of the opening and closing pulp 30 communicates with the high-pressure oil passage 23 through an oil passage 45 branched from the oil passage 28.
  • a throttle valve 46 is provided in the oil passage 28, and a check valve 47 is provided in the oil passage 41.
  • each valve immediately after the working fluid is introduced from the hydraulic pump P into the percussion device 1 is arranged in the following state.
  • the drive room CV 1 is moved from the oil passage 24, groove 6, groove 5
  • the pressure is low due to communication with the tank T, and the driving room CV 2 is at a high pressure through the oil passage 22, so that the circuit A is in a state.
  • the stroke control pulp 29 has an A circuit by a spring S1 before the impact is started.
  • the oil passage 34 on the low pressure side communicates with the drive room SV 2 through the oil passage 31 so that the drive room SV 2 has a low pressure, and the drive rooms SV 1 and SV 3 is high pressure, and the relationship between the pressure receiving areas of these drive chambers SV1 and SV3 is preset to SV3> SVI, so that the stroke control pulp 29 holds the state of the A circuit.
  • the open / close valve 30 is always at a high pressure because the drive chamber V1 is supplied with the working fluid through the oil passages 28 and 45, and the drive chamber V2 is driven by the switching state of the stroke control valve 29. Changes to high and low pressure.
  • the stroke control valve 29 is disposed in the A circuit as described above, the high pressure of the brake chamber 13 is guided to the drive chamber V2 through the oil passages 35 and 32 to become high. ing. Accordingly, although the driving chambers VI and V 2 are both at a high pressure, the relationship between the pressure receiving areas of the driving chambers VI and V 2 is set in advance to V 2> V 1, so that the on-off valve 30 is It is arranged in the state of the A circuit.
  • the oil passage 24 communicated with the oil passage 42 is in a closed state because the groove 6 is closed by the ⁇ peripheral surface of the large diameter portion 2b of the impact piston 2. , Drive Since the relationship between the pressure receiving areas of the chambers CVl and CV2 is preset to CVl> CV2, the control pulp 21 switches to the state of the B circuit.
  • the working fluid from the hydraulic pump P is introduced into the storage chamber 10 from the groove 8 through the oil passage 23, and is also introduced into the storage chamber 9 from the groove 4 through the oil passage 25.
  • the pressure receiving surface has a relationship of P S1> P S2
  • the impact process switches to the impact process in which the impact piston 2 moves to the right in FIG.
  • the oil passage 34 branched from the oil passage 25 also becomes high pressure, so that the high pressure also acts on the drive chamber SV 2 of the stroke control valve 29 arranged in the A circuit.
  • the stroke control valve 29 is switched to the B circuit because the SV 1 + SV 2> SV 3 + panel S 1 force is preset.
  • the drive chamber V 2 of the on-off valve 30 is opened to a low pressure.
  • the opening / closing valve 30 is switched to the B circuit by the fluid pressure acting on the driving chamber V1.
  • the grooves 6 and 5 communicate with each other through the annular groove 11 formed between the large-diameter portion 2 a and the large-diameter portion 2 b. It is. As a result, the oil passage 24 is opened to a low pressure through the oil passage 12, so that the drive chamber CV 1 of the control valve 21 connected to the oil passage 24 changes from high pressure to low pressure, and acts on the drive chamber CV 2. High pressure causes control valve 21 to begin switching to circuit A.
  • the impact piston 2 is sufficiently accelerated in the impact direction, and impacts the chisel 3 before the control valve 21 switches to the A circuit.
  • the chisel 3 does not cut into the hitting target.
  • the impact biston 2 does not further displace in the hitting direction of the chisel 3, and the theoretical strike position (normal strike position) L as shown in FIG. State.
  • the drive chamber SV 3 of the stroke control pulp 29 does not apply a high pressure higher than the normal operating high pressure, and the stroke control pulp 29 maintains the state of the B circuit without switching from that position. .
  • the working piston supplied from the hydraulic pump P to the storage chamber 10 through the oil passages 20, 23 and the groove 8 causes the impact piston 2 to start a return stroke.
  • the on-off valve 30 remains in the state of the B circuit in the oil state. Since the passage 43 is blocked, high pressure does not act on the drive chamber CV 1 of the control valve 21 through the oil passage 43 and the oil passage 42, whereby the impact piston 2 continues the return stroke. I do.
  • the impact piston 2 further retreats and the pressure receiving surface PS 2 of the large diameter portion 2 b reaches the groove 6 and communicates with the groove 8, the working fluid introduced from the groove 8 flows from the groove 6 through the oil passage 24.
  • the stroke control valve 29 is in the state of the B circuit, and the stroke control valve 29 is used to establish communication with the oil passage 31. There is no effect due to blocking. As a result, the striking piston 2 strikes the chisel 3 in the same manner as described above, and if the chisel 3 does not bite into the object to be struck, a high pressure equal to or higher than the normal operating high pressure is applied in the brake chamber 13 as described above. Does not occur. Therefore, the B circuit is maintained without switching the stroke control pulp 29 and the opening / closing valve 30, and the return stroke returns to the pressure receiving surface PS 2 of the large diameter portion 2 b to the groove 6 in the same manner as described above.
  • the chisel 3 bites into the hitting object when hitting the chisel 3 with the hitting piston 2. Operation is performed.
  • the striking piston 2 When the chisel 3 bites into the object to be struck, the striking piston 2 is also displaced in the striking direction, so that the end face (pressure receiving surface PS 2) of the large diameter portion 2 b of the striking piston 2 exceeds the groove 8.
  • the brake room 13 enters the brake room 13 and becomes a closed room. In other words, this is the case where the striking piston 2 has moved to the brake chamber 13 by the stroke S (—constant distance) shown in FIG.
  • the working fluid confined in the brake chamber 13 absorbs the kinetic energy of the impact piston 2 and its pressure increases, and this pressure acts on the drive chamber SV 3 of the stroke control pulp 29 through the oil passage 40. . Therefore, when the working fluid pressure that has risen in the brake chamber 13 exceeds the specified value and rises, and when SV3 + panel S1 force> SV1 + SV2, the stroke control valve 29 switches from circuit B to circuit A. Switch to.
  • an oil passage 34 branched from the oil passage 25 is connected to the drive chamber SV 2 of the stroke control valve 29 via the oil passage 31.
  • the drive chamber SV 2 of the stroke control valve 29 is also at a low pressure. Has become. Therefore, the stroke control valve 29 holds the state of the circuit A because SV 3> SVI.
  • the driving room SV 2 of the stroke control valve 29 is High pressure is acting as well. Therefore, the pressure from the brake chamber 13 acting on the drive chamber SV 3 is sufficiently higher than the normal operating pressure, so that the relationship SV 3 + spring S 1 force> SV 1 + SV 2 remains unchanged.
  • the stroke control valve 29 holds the state of the circuit A.
  • the stroke control valve 29 holds the state of the A circuit regardless of the switching state of the control valve 21.
  • the switching of the open / close valve 30 to the A circuit causes the high-pressure working fluid from the hydraulic pump P to flow into the brake chamber 13 through the oil passages 23, 28, and 41. Since the pressure in the chamber 13 is higher than the pressure of the working fluid, the working fluid does not flow into the brake chamber 13.
  • a mechanism (stroke control valve of the present invention is operated for a predetermined time at its switching position) comprising a stroke control valve 29 provided in the hydraulic circuit and an oil passage directly connected to the stroke control valve 29.
  • the striking piston 2 is stroke-controlled by switching the control valve 21 through the open / close pulp 30 while holding the switching position of the stroke control vanoleb 29 by the holding mechanism that holds the stroke.
  • the stroke control can be performed efficiently and accurately.
  • the striking biston 2 is lowered to the lowest position by gas pressure before the striking starts, and the large diameter portion 2 b is in the brake chamber 13. There are cases. This often occurs, for example, when performing shaving operations.
  • the striking device 1 is returned to the normal striking operation as follows.
  • the working fluid is guided to the brake chamber 13 through the oil passage 28 branched from the oil passage 23, the open / close pulp 30 and the oil passages 41, 35.
  • receiving b Acts on the pressure surface PS2, causing the impact piston 2 to escape from the brake chamber 13 and start the return stroke.
  • the mechanism including the on-off valve 30 and the oil passages 23, 28, 35, 41 here is a supply mechanism for supplying the working fluid to the brake chamber 13. In other words, even in such a case, by supplying the working fluid to the brake chamber 13 by the supply mechanism provided in the hydraulic circuit, the striking piston 2 is surely escaped from the brake chamber 13 to start the return stroke. be able to.
  • this working fluid is used to drive the drive chamber SV 1 of the stroke control valve 29 through the oil passage 28, which is branched from the oil passage 23, and the opening / closing valve 30 through the oil passage 45.
  • Chamber VI drive room SV 3 for stroke control valve 29 via oil passage 28, open / close pulp 30, check valve 47 for oil passage 41, oil passage 40, and this drive room SV 3
  • an oil passage 41, an oil passage 35, a stroke control pulp 29, and an oil passage 32 lead to a drive chamber V 2 of an on-off valve 30.
  • the panel S 2 of the opening / closing valve 30 determines the gas pressure when the striking piston 2 moves from the stop position before starting the striking until the gas is compressed and communicates with the brake chamber 13 and the groove 8.
  • the force that substantially matches the driving force when the hydraulic pressure acts on the drive chamber V1 of the opening / closing valve 30 is considered. It is set so as to be urged in the direction facing the driving force. For this reason, the opening / closing valve 30 is maintained in the state of the A circuit until the impact biston 2 performs the return stroke and opens the groove 8.
  • the stroke control valve 29 since the pressure acting on the driving chamber SVI of the stroke control pulp 29 is set to be substantially the same as the pressure acting on the driving chamber SV 3, the stroke control valve 29 also has a relationship with the pressure receiving area and the panel. The state of the A circuit is held by S1.
  • the return stroke at this time is a so-called short stroke S1, which shifts to a striking stroke when the pressure receiving surface PS2 of the large diameter portion 2b reaches the groove 7.
  • FIG. 4 shows another circuit configuration of the hydraulic impact device of the present invention.
  • the configurations of the casing, the impact biston, the chisel, etc., except for the hydraulic circuit described below, are the same as the configurations shown in the first embodiment, and will be described using the reference numerals described in the first embodiment.
  • This hydraulic circuit has a pulp configuration in which the stroke control valve and the opening and closing pulp of the hydraulic circuit described in the first embodiment are combined, and will be specifically described below.
  • the discharge side of the hydraulic pump P is connected to a control valve 21 through an oil passage 20.
  • An oil passage 22 and an oil passage 23 are branched from the oil passage 20.
  • the oil passage 22 is connected to one drive chamber CV2 of the control pulp 21 and the oil passage 23 is connected to the groove. It is connected to 8.
  • the control valve 21 is a two-position switching type valve.
  • the other drive chamber CV 1 is communicated with the groove 6 through an oil passage 24, and hydraulic pressure acting on the drive chamber CV 1 and the drive chamber CV 2
  • the signal switches between the upper position (A circuit) and the lower position (B circuit) in Fig. 4.
  • the communication between the oil passage 20 and the oil passage 25 connected to the groove 4 is cut off, and the oil passage connected to the oil passage 25 and the tank T is shut off. Communicate with 26. Accordingly, when the control valve 21 is disposed in the A circuit, the groove of the storage chamber 9 is communicated with the tank T and the pressure is low.
  • the control valve 21 when the control valve 21 is in the B circuit, the oil passage 20 and the oil passage 25 are communicated, whereby the working fluid from the hydraulic pump P is introduced into the storage chamber 9 through the groove 4.
  • the storage chamber 9 is set to a high pressure.
  • the pressure receiving surface PS 1 of the large-diameter portion 2 a is alternately changed by switching the control pulp 21. High and low pressures act on
  • an oil passage 50 branches off from the oil passage 23, and the oil passage 50 communicates with the stroke control pulp 51.
  • the stroke control pulp 51 is a two-position switching type pulp.
  • the upper position (circuit B) and the lower position in FIG. 4 are controlled by the hydraulic signals communicating with the drive chambers SV1, SV2 and SV3, and the action of the panel S3. Switch to position (A circuit).
  • the oil passage 50 is connected to the drive chamber SVI through the oil passage 52, and the oil passage 53 branched from the oil passage 50 is connected to the drive chamber. It is connected to SV 2 through oil line 55.
  • the oil passage 50 communicates with the drive chamber SV 1 through the oil passage-52, and the oil passage 56 branched from the oil passage 53 drives the brake chamber 13.
  • the oil passage 57 communicated with the oil passage 57 communicated with the chamber SV 3 through the oil passage 59 provided with the check valve 58 is connected to the oil passage 60 branched from the oil passage 25.
  • the oil passage 61 communicated through the oil passage 5 and further communicated with the groove 7 is communicated with the oil passage 24 through the oil passage 62.
  • an oil passage 52 provided with a check valve 63 is branched from an oil passage 52 connected to the drive chamber SV 1 of the stroke control valve 51, and is connected to the oil passage 23. I have.
  • each valve immediately after the high-pressure working fluid is introduced from the hydraulic pump P into the striking device 1 is arranged in the following state.
  • the driving room CV 1 is connected to the tank T from the oil passage 24, the groove 6, and the groove 5 through the oil passage 12 to a low pressure, and the driving room CV 2 has a high pressure through the oil passage 22. It is in the state of the A circuit because it is.
  • the stroke control pulp 51 is in the A circuit by the panel S3 before the impact is started.
  • the oil passage 60 on the low-pressure side The driving room SV2 is connected to the driving room SV2 through 55 and the driving room SV2 is at a low pressure, the driving rooms SV1 and SV3 are at a high pressure, and the relationship between the pressure receiving areas of these driving rooms SVI and SV3 is SV3> Since the stroke control valve 51 is set in advance to SV1, the stroke control valve 51 maintains the state of the A circuit.
  • the oil passage 24 communicated with the oil passage 62 is closed because the groove 6 is closed by the peripheral surface of the large-diameter portion 2b of the impact piston 2, and the drive chamber CV 1 Since the relationship between the pressure receiving area and CV 2 is set in advance to CV 1> CV 2, the control valve 21 switches to the state of the B circuit.
  • the working fluid from the hydraulic pump P is introduced from the groove 8 into the storage chamber 10 through the oil passage 23, and is also introduced into the storage chamber 9 from the groove 4 through the oil passage 25.
  • the pressure receiving surface has a relationship of P S 1> P S 2, the impact piston 2 is switched to the impact stroke.
  • the oil passage 60 branched from the oil passage 25 also has a high pressure, so that the high pressure also acts on the drive chamber SV 2 of the stroke control pulp 51 arranged in the A circuit. Since 3 ⁇ 1 + 3 " ⁇ 2> 3 ⁇ 3 + Spring 31 force is preset, the stroke control valve 51 switches to the B circuit.
  • the grooves 6 and 5 are communicated with each other through the annular groove 11 formed between the large-diameter portion 2a and the large-diameter portion 2b. It is. As a result, the oil passage 24 is opened to a low pressure through the oil passage 12, so that the drive chamber CV 1 of the control valve 21 connected to the oil passage 24 changes from high pressure to low pressure, and acts on the drive chamber CV 2. High pressure causes control pulp 21 to begin switching to circuit A.
  • the striking piston 2 is sufficiently accelerated in the striking direction, and strikes the chisel 3 before the control lever 21 switches to the A circuit.
  • the chisel 3 does not cut into the hitting target.
  • the impact biston 2 does not further displace in the hitting direction of the chisel 3, and the theoretical striking position (regular striking position) L as shown in FIG. State.
  • the pressure receiving surface PS 2 of the large diameter portion 2 b of the impact piston 2 does not enter the brake chamber 13 to seal the brake chamber 13, so that the brake chamber 13 has a pressure higher than the normal operating high pressure. No high pressure is generated.
  • the drive chamber SV3 of the stroke control valve 51 is not subjected to a high pressure equal to or higher than the normal operating high pressure, and the stroke control valve 51 maintains the state of the B circuit without switching from that position.
  • the striking piston 2 starts a return stroke again by the working fluid supplied from the hydraulic pump P to the storage chamber 10 through the oil passages 20, 23, and the groove 8.
  • the control valve 21 is switched to the regeneration B circuit, and the working fluid is introduced into the storage chamber 9 through the oil passage 25 and the groove 4. Accordingly, a high pressure is applied to the pressure receiving surface PS1 of the large diameter portion 2a, and as a result, the impact piston 2 shifts to an impact stroke.
  • the striking piston 2 strikes the chisel 3 in the same manner as described above, and if the chisel 3 does not bite into the object to be struck, a high pressure equal to or higher than the normal operating high pressure is applied in the brake chamber 13 as described above. Does not occur. Accordingly, the stroke control pulp 51 also maintains the B circuit without switching, and the return stroke returns to the groove 6 with the pressure receiving surface PS 2 of the large-diameter portion 2b returning to the groove 6 in the same manner as described above. . That is, when the hitting object is hard and the chisel 3 does not bite into the hitting object, the so-called long stroke S 2 (FIG. 3) in which the pressure receiving surface PS 2 of the large diameter portion 2 b returns to the groove 6 and shifts to the hitting stroke. (Refer to the above).
  • the chisel 3 digs into the hitting target when hitting the chisel 3 with the hitting piston 2. Operation is performed.
  • the striking piston 2 is similarly displaced in the striking direction as the chisel 3 bites into the striking object, whereby the pressure receiving surface PS 2 of the large diameter portion 2b passes through the groove 8 and enters the brake chamber 13 to cause the striking.
  • the brake room 13 becomes a closed room.
  • the working fluid confined in the brake chamber 13 absorbs the kinetic energy of the striking biston 2 and its pressure increases, and this pressure acts on the drive chamber SV 3 of the stroke control pulp 51 through the oil passage 57. I do. Therefore, the pressure of the working fluid that has risen in the brake chamber 13 exceeds a predetermined value and increases, and the SV 3 + panel S 3 force> SV 1 + SV 2 When this happens, the stroke control pulp 51 switches from circuit B to circuit A.
  • the drive chamber SV 2 of the stroke control valve 51 is provided with a drive chamber. High pressure works like SVI. Therefore, the pressure from the brake chamber 13 acting on the drive chamber SV 3 is sufficiently higher than the normal operating pressure, so that the relationship SV 3 + panel S 3 force> SV 1 + SV 2 remains unchanged.
  • the stroke control valve 51 holds the state of the circuit A.
  • the stroke control valve 51 maintains the state of the A circuit regardless of the switching state of the control pulp 21.
  • the switching of the stroke control pulp 51 to the circuit A causes the high-pressure working fluid from the hydraulic pump P to flow into the brake chamber 13 through the oil passages 23, 50, 56, 59, 57.
  • the working fluid does not flow into the brake chamber 13 because the pressure in the brake chamber 13 is higher than the pressure of the working fluid.
  • next stroke is automatically changed to either the short stroke S1 or the long stroke S2 based on the displacement of the chisel 3 when the chisel 3 is hit with the striking biston 2.
  • the large-diameter portion 2b of the impact piston 2 moves a certain distance to seal the brake chamber 13 and automatically change the next impact stroke depending on whether or not high pressure is generated in the brake chamber 13.
  • a mechanism comprising a stroke control valve 51 provided in the hydraulic circuit and an oil passage directly connected to the stroke control valve 51 (the stroke control valve according to the present invention is moved for a predetermined time at its switching position).
  • the stroke control of the striking piston 2 is performed by switching the control pulp 21 by holding the switching position of the stroke control valve 51 by the holding mechanism that holds the stroke, thereby performing the stroke control efficiently and accurately. be able to.
  • the striking biston 2 descends to the lowest position due to the gas pressure, and the large diameter portion 2 b enters the brake chamber 13. May be. This often occurs, for example, when performing shaving operations.
  • the striking device 1 is returned to the normal striking operation as follows.
  • the stroke control pulp 51 is in the state of the circuit A by the panel S3.
  • the working fluid is guided to the groove 8 through the oil passage 23 through the oil passage 50, the oil passage 56, the stroke control pulp 51, and the oil passages 59, 57 branched from the oil passage 23.
  • the working fluid acts on the pressure receiving surface PS2 of the large-diameter portion 2b, thereby causing the percussion biston 2 to escape from the brake chamber 13 and start the return stroke.
  • the mechanism including the stroke control valve 51 and the oil passages 50, 56, 57, 59 is a supply mechanism for supplying the working fluid to the brake chamber 13.
  • the driving piston 2 can be surely escaped from the brake chamber 13 to start the return stroke.
  • the working fluid is supplied to the drive chamber SV 1 of the stroke control valve 51 through the oil passage 50 and the oil passage 52 branched from the oil passage 23, and to the oil passages 50, 56, and the stroke control. It is led to the drive chamber SV 3 of the stroke control valve 51 via the valve 51 and the oil passages 59 and 57. Since the force acting on the drive room SV1 of the stroke control pulp 51 is set to be smaller than the force acting on the drive room SV3, the stroke control pulp 51 It is held in the state of the A circuit in combination with the force.
  • the return stroke at this time is a so-called short stroke S1, which shifts to an impact stroke when the pressure receiving surface PS2 of the large diameter portion 2b reaches the groove 7.
  • the chisel 3 is forcibly pressed to brake the large-diameter portion 2b of the impact piston 2. It is possible to quickly start the impact without having to retreat from the room 13 one by one.
  • FIG. 5 shows another circuit configuration of the hydraulic impact device of the present invention.
  • This circuit configuration is a slightly simplified version of the circuit configuration shown in FIG. 2, and unless the first shot of the impact biston 2 is a short stroke as described in FIG. 2, this circuit configuration is also used.
  • the operation of the percussion biston 2 can be controlled in the same manner as described above. Specifically, the oil passage 38 shown in FIG. 2 is eliminated, and an oil passage 36 branched from the oil passage 23 communicates with the drive chamber SV 1 of the stroke control valve 29. Also, Panel S 1 has also been abolished.
  • the first stroke of the striking piston 2 does not always have a short stroke as in the circuit configuration shown in FIG. 2, but may have a longer stroke due to the stop position of the stroke control valve 29 before the striking starts.
  • the next hit will be a shot stroke, and if it does not enter the brake chamber 13, the next hit will be a long stroke
  • this circuit configuration is only slightly simplified from the circuit configuration shown in FIG. 2, and therefore, the same reference numerals are used for valves and oil passages having the same configuration as the circuit configuration described in FIG. The detailed description is omitted.
  • the next striking stroke is either a short stroke or a long stroke based on the displacement of the chisel when striking chizenore with the striking biston. Can be changed automatically. Further, by controlling the stroke of the striking biston while holding the switching position of the stroke control valve by the holding mechanism provided in the hydraulic circuit, the stroke control can be performed efficiently and accurately.
  • the striking operation can be quickly started without having to forcibly press the chisel to retract the striking biston from the braking chamber. Can be done.
  • the hydraulic impact device according to the present invention is generally applicable to machines in fields such as construction and civil engineering.

Abstract

A hydraulic hammering device for hammering a chisel by reciprocatively moving a hammering piston has a brake chamber, a stroke-regulating valve, and a holding mechanism. The brake chamber is turned to be a sealed-up chamber by the hammering piston when the piston moves in the hammering direction of the chisel by a predetermined distance beyond a regular hammering position. The stroke-regulating valve sends out a signal when a pressure in the brake chamber exceeds a predetermined value, which is done to shorten a stroke for a reduced hammering force. The holding mechanism holds the stroke-regulating valve at its switching position for predetermined time. The hydraulic hammering device also has a supplying mechanism. When the hammering piston is in the braking chamber at the time when hammering starts, the supplying mechanism supplies an operation fluid into the brake chamber to make the piston escape from the brake chamber.

Description

明細書 液圧式打撃装置 技術分野  Description Hydraulic impact device Technical field
本発明は、打擊ピストンを往復運動させてチゼルを打撃する液圧式打撃装置に関 し、特に打撃対象物の硬度に応じて打撃ピストンのストロークを自動的に変更する 技術に関するものである。 背景技術  The present invention relates to a hydraulic striking device for striking a chisel by reciprocating a striking piston, and more particularly to a technique for automatically changing the stroke of a striking piston according to the hardness of an object to be struck. Background art
従来、打撃対象物の硬度に応じて打撃ビストンのストロークを自動的に変更する 打撃装置としては、例えば特公平 5— 8 5 3 1' 1号公報に見られるものが提供され ている。  Conventionally, as a striking device that automatically changes the stroke of a striking biston according to the hardness of a striking object, for example, a striking device disclosed in Japanese Patent Publication No. 5-8531'1 is provided.
具体的には、 打撃ビストンの打撃の瞬間に生じる当該打擊ピストン上部の部屋、 あるいは下部の部屋の瞬間的な圧力変動を基準圧力と比較し、その圧力差に応じて 発生する制御流量を操作手段として利用している。  Specifically, the instantaneous pressure fluctuation in the chamber above or below the striking piston, which occurs at the moment of the impact of the impact piston, is compared with the reference pressure, and the control flow generated according to the pressure difference is determined by the operating means. We use as.
例えば、排出通路を制御するスプールの位置を変化させて作動圧力を変化させる 力 又は圧力差に応じた制御流量によりストローク選択スライド弁の位置を変化さ せることで、打撃ピストンの行程を変化させてその打擊カあるいは打撃回数を調整 している。  For example, the stroke of the striking piston is changed by changing the position of the stroke selection slide valve by changing the position of the spool that controls the discharge passage to change the operating pressure, or by changing the position of the stroke selection slide valve by a control flow rate corresponding to the pressure difference or the pressure. The number of hits or the number of hits is adjusted.
し力 しな力 ら、上記従来のものでは、スプールゃストローク選択スライド弁の位 置を保持するとともにその解除に係わる機能が付加されていなレ、。従って、計測さ れた圧力差に見合った流量を取り込みそれを排出しながら必要な時までスプール ゃストローク選択スライド弁を必要な位置に保持するためにはかなり冗長性を見 込んでおく必要があり、効率的ではなかった。 また、 油のように温度により粘性が 変化する流体の場合には、流体温度の影響も大きく作用するため、上述したような ストローク制御が的確に行えない。 Therefore, in the above-described conventional apparatus, the function of holding the position of the spool / stroke selection slide valve and not releasing the position is added. Therefore, it is necessary to allow for considerable redundancy in order to capture the flow rate corresponding to the measured pressure difference and discharge it while holding the spool ゃ stroke selection slide valve in the required position until necessary. Was not efficient. In the case of a fluid whose viscosity changes with temperature, such as oil, the effect of the fluid temperature also has a large effect. Stroke control cannot be performed accurately.
そこで、上記課題を解決するために、本発明は、 当該本打撃の状況に応じて次回 の打擊ストロークを自動的に変更するとともに、ストローク制御を効率よく的確に 行う液圧式打撃装置を提供することを目的とする。 発明の開示  Therefore, in order to solve the above problems, the present invention provides a hydraulic hitting device that automatically changes the next hitting stroke in accordance with the state of the main hitting and performs stroke control efficiently and accurately. With the goal. Disclosure of the invention
上記の目的を達成するため、本発明に係る液圧式打撃装置は、打擊ピストンを往 復運動させてチゼルを打撃する液圧式打撃装置において、前記打撃ビストンが正規 の打撃位置を超えて前記チゼルの打擊方向に一定距離移動した際に、当該打撃ビス トンにより密閉された部屋となるブレーキ室と、上記プレーキ室の圧力が所定の値 を超えた場合にストロークを短くして打撃力を減ずるように信号を発するストロ ーク制御バルブと、ストローク制御パルプをその切換位置で所定時間保持する保持 機構とを備えたものである。  In order to achieve the above object, a hydraulic striking device according to the present invention is directed to a hydraulic striking device for striking a chisel by reciprocating a striking piston, wherein the striking biston exceeds a regular striking position. When moving a certain distance in the striking direction, reduce the striking force by shortening the stroke when the pressure in the brake chamber exceeds a predetermined value and the brake chamber, which is a room sealed by the striking biston. It is provided with a stroke control valve for issuing a signal and a holding mechanism for holding the stroke control pulp at the switching position for a predetermined time.
また、前記構成において、打撃始動時において前記打撃ピストンが前記ブレーキ 室に入っている場合に、打撃ピストンをブレーキ室から脱出させるように当該ブレ ーキ室に作動流体を供給する供給機構を備えたものである。 図面の簡単な説明  Further, in the above configuration, a supply mechanism that supplies a working fluid to the brake chamber so that the striking piston escapes from the brake chamber when the striking piston is in the brake chamber at the time of starting striking. Things. Brief Description of Drawings
図 1は、 本発明の液圧式打撃装置の全体構成を示す図である。  FIG. 1 is a diagram showing the overall configuration of a hydraulic impact device of the present invention.
図 2は、 本発明の液圧式打擊装置の回路構成を示す拡大図である。  FIG. 2 is an enlarged view showing a circuit configuration of the hydraulic driving apparatus according to the present invention.
図 3は、 打撃ピストンによるストロークを説明するための図である。  FIG. 3 is a diagram for explaining a stroke by a striking piston.
図 4は、 本発明の液圧式打擊装置における他の回路構成を示す拡大図である。 図 5は、本発明の液圧式打撃装置におけるさらに他の回路構成を示す拡大図であ る。 ― 発明を実施するための最良の形態 以下、 本発明の実施の形態を図面を参照して説明する。 FIG. 4 is an enlarged view showing another circuit configuration in the hydraulic driving apparatus of the present invention. FIG. 5 is an enlarged view showing still another circuit configuration in the hydraulic impact device of the present invention. -Best mode for carrying out the invention Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[第 1実施形態] '  [First Embodiment] ''
図 1は、 本発明の液圧式打撃装置の全体構成を示している。  FIG. 1 shows the overall configuration of a hydraulic impact device of the present invention.
この打撃装置 1は、一般に油圧ショベルなどの建設機械にァタツチメントとして 装着され、油圧源から供給される作動流体を利用し土木現場ある 1ヽは碎石場などに おいてコンクリートや岩などを破碎する際に利用されるものである。  The impact device 1 is generally mounted as an attachment on construction equipment such as a hydraulic excavator, and uses a working fluid supplied from a hydraulic source to crush concrete or rock at a crushed stone pit in a civil engineering site. It is used at the time.
まず、打撃装置 1の概要について説明すると、面積の異なる 2つの受圧面 P S 1 と P S 2 ( P S 1 > P S 2 ) を有する打撃ビストン 2を備え、面積の小さい受圧面 P S 2には油圧源から油圧回路を通じて常に高圧が作用し、面積の大きい受圧面 P S 1には油圧源から油圧回路を通じて交番的に高圧と低圧が作用するようになさ れている。 そして、受圧面 P S 1に低圧が作用している時には、受圧面 P S 2に作 用する高圧により打撃ビストン 2の最上部の受圧面 P S 0に作用するガス圧に抗 して当該ガスを圧縮しながら打撃ビストン 2が戻り行程を行い、受圧面 P S 1に高 圧が作用している時には、当該受圧面 P S 1に作用する高圧とガス圧により打撃行 程を行うように構成されている。 また、打擊ピストン 2が理論上定められた正規の 打撃位置よりもさらに打撃方向に一定距離下降した場合に、該打撃ピストン 2によ り密閉されるブレーキ室 1 3が形成されている。  First, the outline of the striking device 1 will be described. The striking biston 2 has two pressure receiving surfaces PS 1 and PS 2 (PS 1> PS 2) having different areas, and the pressure receiving surface PS 2 having a small area has a hydraulic pressure source. A high pressure always acts through the hydraulic circuit, and a high pressure and a low pressure alternately act on the pressure receiving surface PS 1 having a large area from the hydraulic source through the hydraulic circuit. When a low pressure is acting on the pressure receiving surface PS1, the gas is compressed against the gas pressure acting on the pressure receiving surface PS0 at the uppermost part of the impact piston 2 due to the high pressure acting on the pressure receiving surface PS2. However, when the impact piston 2 performs a return stroke and a high pressure is acting on the pressure receiving surface PS1, the impact stroke is performed by the high pressure and the gas pressure acting on the pressure receiving surface PS1. Further, when the striking piston 2 is further lowered by a certain distance in the striking direction from a theoretically determined regular striking position, a brake chamber 13 is formed which is sealed by the striking piston 2.
以下、 打撃装置 1の具体的な構成について説明する。  Hereinafter, a specific configuration of the impact device 1 will be described.
図 1において、 Cはケーシングであって、 このケーシング Cは打撃ピストン 2を 軸方向に往復摺動自在に収容したシリンダ室 C 1と、シリンダ室 C 1の一端(下端 側) に連設されチゼル 3を収容したチゼル室 C 2と、 シリンダ室 C 1の他端(上端 側)に連設され例えば窒素などのガスが封入されたガス室 C 3とで構成されている 打撃ビストン 2は、途中部に所定距離を隔てて形成された 2つの大径部 2 a、 2 bを有し、 これら 2つの大径部 2 a、 2 bの周面がシリンダ室 C 1内に摺動自在に 配置されている。そして、大径部 2 aに連結された上軸部 2 cの端面がガス室 C 3 内に臨んで配置されるとともに、大径部 2 bに連結された下軸部 2 dの端面がチゼ ル室 C 2に臨んで配置されている。 In FIG. 1, C is a casing. The casing C is provided with a cylinder chamber C1 in which a striking piston 2 is slidably reciprocated in the axial direction, and is connected to one end (lower end) of the cylinder chamber C1. And a gas chamber C 3 connected to the other end (upper end side) of the cylinder chamber C 1 and filled with a gas such as nitrogen, for example. Has two large-diameter portions 2a and 2b formed at a predetermined distance from each other, and the peripheral surfaces of these two large-diameter portions 2a and 2b are slidably disposed in the cylinder chamber C1. Have been. The end surface of the upper shaft portion 2c connected to the large diameter portion 2a is the gas chamber C3. The end surface of the lower shaft portion 2d connected to the large diameter portion 2b is arranged facing the chisel chamber C2.
また、 上、 下軸部 2 c、 2 dは、 上軸部 2 cの方が下軸部 2 dよりも小径になさ れており、 この結果、大径部 2 aの受圧面 P S 1が大径部 2 bの受圧面 P S 2より も大きく (P S 1 > P S 2 ) なっている。  The upper and lower shaft portions 2c and 2d have a smaller diameter in the upper shaft portion 2c than in the lower shaft portion 2d. As a result, the pressure receiving surface PS1 of the large diameter portion 2a is smaller. The pressure receiving surface of the large diameter portion 2b is larger than PS2 (PS1> PS2).
さらに、 シリンダ室 C 1には、その軸方向に複数の溝 4乃至 8が環状に形成され ている。 これら'溝 4乃至 8は、 シリンダ室 C 1の上端側 (左端側) から下端側にか けて順次形成されている。溝 4は前記上軸部 2 cとシリンダ室 C 1との間に形成さ れる収容室 9に臨んで形成されるとともに、溝 8は前記下軸部 2 dとシリンダ室 C 1との間に形成される収容室 1 0に臨んで形成されている。 また、 溝 5と溝 6は、 図 1に示すように打撃ビストン 2が理論的打撃位置 Lに配置された状態では打撃 ピストン 2の大径部 2 a、 2 b間の軸部 2 eに形成された環状溝 1 1を介して連通 されており、 溝 5が油路 1 2を通じてタンク Tに連通されて低圧になっている。 一方、溝 8の下端側となるシリンダ室 C 1にはブレーキ室 1 3が形成されており 、図 1に示すように打撃ビストン 2が理論的打撃位置 Lに配置された状態では大径 部 2 bの受圧面 P S 2がブレーキ室 1 3内に突入することなく配置されるように なされている。  Further, in the cylinder chamber C1, a plurality of grooves 4 to 8 are formed annularly in the axial direction. These grooves 4 to 8 are formed sequentially from the upper end (left end) to the lower end of the cylinder chamber C1. The groove 4 is formed facing the storage chamber 9 formed between the upper shaft portion 2c and the cylinder chamber C1, and the groove 8 is formed between the lower shaft portion 2d and the cylinder chamber C1. It is formed facing the accommodation room 10 to be formed. Grooves 5 and 6 are formed on the shaft portion 2e between the large-diameter portions 2a and 2b of the striking piston 2 when the striking piston 2 is located at the theoretical striking position L as shown in Fig. 1. The groove 5 is in communication with the tank T through the oil passage 12 and has a low pressure. On the other hand, a brake chamber 13 is formed in the cylinder chamber C1, which is the lower end side of the groove 8, and as shown in FIG. 1, when the impact piston 2 is arranged at the theoretical impact position L, the large-diameter section 2 is formed. The pressure receiving surface PS 2 of b is arranged without entering the brake chamber 13.
これら溝 4乃至 8、並びにブレーキ室 1 3は後述する油圧回路に組み込まれた各 油路に連通されている。  The grooves 4 to 8 and the brake chamber 13 are communicated with respective oil passages incorporated in a hydraulic circuit described later.
前記チゼル室 C 2は、前述したようにチゼル 3を収容する部位であり、 当該チゼ ル 3はその先端が所定長さ突出した状態で配置され、打撃ピストン 2が理論的打撃 位置 Lまで移動した際に当該打撃ピストン 2とその基端が当接するように配置さ れている。  As described above, the chisel chamber C2 is a portion for accommodating the chisel 3, and the chisel 3 is disposed with its tip protruding a predetermined length, and the striking piston 2 moves to the theoretical striking position L. The striking piston 2 and the base end thereof are arranged so as to come into contact with each other.
前記ガス室 C 3は、その内部に封入したガス圧により打撃ビストン 2を打撃方向 に付勢している。つまり、 このガス室 C 3内に臨んで配置された上軸部 2 cの端面 がガス圧を受ける受圧面 P S 0になされている。 次に油圧回路の具体的な構成について図 2を参照しながら説明する。 The gas chamber C3 urges the impact piston 2 in the impact direction by the gas pressure sealed therein. That is, the end face of the upper shaft portion 2c facing the inside of the gas chamber C3 is formed as a pressure receiving surface PS0 that receives the gas pressure. Next, a specific configuration of the hydraulic circuit will be described with reference to FIG.
油圧ポンプ Pの吐出側は、 油路 2 0を通じて制御バルブ 2 1に連通されている。 油路 2 0からは油路 2 2と油路 2 3が分岐されており、油路 2 2が制御バルブ 2 1 の一方の駆動室 C V 2に連通されるとともに、油路 2 3が前記溝 8に連通されてい る。  The discharge side of the hydraulic pump P is connected to a control valve 21 through an oil passage 20. An oil passage 22 and an oil passage 23 are branched from the oil passage 20. The oil passage 22 is communicated with one drive chamber CV2 of the control valve 21 and the oil passage 23 is connected to the groove. It is connected to 8.
制御バルブ 2 1は、 2位置切換式のバルブであり、他方の駆動室 C V 1が油路 2 4を通じて前記溝 6に連通されており、駆動室 C V 1と駆動室 C V 2とに作用する 油圧信号により図 1及び図 2における上位置 (A回路) と下位置 (B回路) とに切 換えられる。 - 具体的には、制御バルブ 2 1が A回路では、油路 2 0と前記溝 4に連通された油 路 2 5との連通を遮断するとともに、油路 2 5とタンク Tに連通された油路 2 6と を連通させる。従って、制御パルプ 2 1が A回路に配置されている際には、収容室 9は溝 4がタンク Tに連通されて低圧になっている。  The control valve 21 is a two-position switching type valve. The other drive chamber CV 1 is communicated with the groove 6 through an oil passage 24, and hydraulic pressure acting on the drive chamber CV 1 and the drive chamber CV 2 The signal switches between the upper position (circuit A) and the lower position (circuit B) in Figs. 1 and 2. -Specifically, in the A circuit, the control valve 21 cuts off the communication between the oil passage 20 and the oil passage 25 connected to the groove 4, and is connected to the oil passage 25 and the tank T. The oil passages 26 and are communicated. Therefore, when the control pulp 21 is disposed in the A circuit, the pressure in the storage chamber 9 is low because the groove 4 is communicated with the tank T.
また、制御パルプ 2 1が B回路では、油路 2 0と油路 2 5が連通されることにな り、これによつて油圧ポンプ Pからの作動流体が溝 4を通じて収容室 9に導入され 、 当該収容室 9を高圧にする。  When the control pulp 21 is in the B circuit, the oil passage 20 and the oil passage 25 are communicated with each other, whereby the working fluid from the hydraulic pump P is introduced into the storage chamber 9 through the groove 4. The storage chamber 9 is set to a high pressure.
つまり、大径部 2 aの受圧面 P S 1には、制御バルブ 2 1の切換えにより交番的 に高圧と低圧が作用するようになっている。  In other words, the high pressure and the low pressure alternately act on the pressure receiving surface PS1 of the large diameter portion 2a by switching the control valve 21.
—方、 前記油路 2 3からは、 油路 2 7、 2 8が分岐され、 油路 2 7がストローク 制御パルプ 2 9に連通されるとともに、油路 2 8が開閉バルブ 3 0に連通されてい る。  On the other hand, from the oil passage 23, oil passages 27 and 28 are branched, and the oil passage 27 is connected to the stroke control pulp 29, and the oil passage 28 is connected to the opening / closing valve 30. ing.
ストローク制御バルブ 2 9は、 2位置切換式のパルプであり、駆動室 S V 1、 S The stroke control valve 29 is a 2-position switching type pulp, and the drive chambers S V 1 and S
V 2及ぴ S V 3に連通する油圧信号、並びにバネ S 1の作用により図 1及び図 2に おける上位置 (B回路) と下位置 (A回路) とに切換えられる。 The position is switched between the upper position (B circuit) and the lower position (A circuit) in FIGS. 1 and 2 by the action of the hydraulic signal communicating with V 2 and S V 3 and the action of the spring S 1.
具体的には、ストローク制御バルブ 2 9が B回路では、前記油路 2 7が駆動室 S Specifically, when the stroke control valve 29 is in the B circuit, the oil passage 27 is in the drive chamber S
V 2に油路 3 1を通じて連通されるとともに、開閉バルブ 3 0の駆動室 V 2が油路 3 2、 油路 3 3を通じて前記油路 2. 6に接続されてタンク Tに連通される。 V 2 is communicated through an oil passage 31 and the drive chamber V 2 of the on-off valve 30 is connected to the oil passage. 32, is connected to the oil passage 2.6 through the oil passage 33 and communicates with the tank T.
また、ストローク制御バルブ 2 9が Α回路では、前記油路 2 5から分岐された油 路 3 4が上記油路 3 1を通じて駆動室 S V 2に連通されるとともに、前記ブレーキ 室 1 3に連通された油路 3 5が油路 3 2を通じて開閉パルプ 3 0の駆動室 V 2に 連通される。  When the stroke control valve 29 is a negative circuit, the oil passage 34 branched from the oil passage 25 is connected to the drive chamber SV 2 through the oil passage 31 and to the brake chamber 13. The oil passage 35 communicates with the drive chamber V 2 of the open / close pulp 30 through the oil passage 32.
また、ストローク制御バルブ 2 9の駆動室 S V Iには、油路 2 3から分岐された 前記油路 2 8からさらに分岐された油路 3 8が連通されている。  In addition, an oil passage 38 further branched from the oil passage 28 branched from the oil passage 23 is connected to the drive chamber SVI of the stroke control valve 29.
さらに、ストローク制御パルプ 2 9の駆動室 S V 3には、前記油路 3 5から分岐 された油路 4 0が連通されている。  Further, an oil passage 40 branched from the oil passage 35 is connected to the drive chamber SV 3 of the stroke control pulp 29.
前記開閉バルブ 3 0は、 2位置切換式のバルブであり、駆動室 V 1 、 V 2に連通 する油圧信号、並びにパネ S 2の作用により図 1及ぴ図 2における左位置(B回路 ) と右位置 (A回路) とに切換えられる。  The opening / closing valve 30 is a two-position switching type valve. The opening / closing valve 30 is moved to the left position (B circuit) in FIGS. Switch to the right position (A circuit).
具体的には、開閉パルプ 3 0が B回路では、前記油路 2 8と前記油路 3 5に連通 された油路 4 1との連通を遮断するとと.もに、溝 7からの油路 4 3と制御パルプ 2 1の駆動室 C V I へ連通する油路 4 2との連通を遮断する。  Specifically, when the opening and closing pulp 30 is in the B circuit, the communication between the oil passage 28 and the oil passage 41 connected to the oil passage 35 is cut off, and the oil passage from the groove 7 is also cut off. The communication between 4 3 and the oil passage 4 2 communicating with the drive room CVI of the control pulp 21 is cut off.
また、開閉バルブ 3 0が A回路では、前記油路 2 8と油路 4 1とを連通するとと もに、 前記油路 4 2と油路 4 3とを連通する。  In the A circuit, the on-off valve 30 connects the oil passage 28 to the oil passage 41 and also connects the oil passage 42 to the oil passage 43.
開閉パルプ 3 0の駆動室 V Iは、前記油路 2 8から分岐された油路 4 5を通じて 高圧油路 2 3に連通されている。  The drive chamber VI of the opening and closing pulp 30 communicates with the high-pressure oil passage 23 through an oil passage 45 branched from the oil passage 28.
さらに、前記油路 2 8には絞り 4 6力 前記油路 4 1には逆止弁 4 7が介装され ている。  Further, a throttle valve 46 is provided in the oil passage 28, and a check valve 47 is provided in the oil passage 41.
なお、各油圧信号に基づく各パルプの切換え動作などの詳細については、以下に 説明する打撃装置 1の動作とともに説明する。  The details of the switching operation of each pulp based on each hydraulic signal will be described together with the operation of the hitting device 1 described below.
まず、打撃装置 1に油圧ポンプ Pから作動流体が導入された直後の各バルブは次 のような状態に配置されている。  First, each valve immediately after the working fluid is introduced from the hydraulic pump P into the percussion device 1 is arranged in the following state.
制御パルプ 2 1は、駆動室 C V 1が油路 2 4、溝 6、溝 5力 ら油路 1 2を通じて タンク Tに連通されて低圧になっており、駆動室 C V 2が油路 2 2を通じて高圧に なっていることから A回路の状態になっている。 In the control pulp 21, the drive room CV 1 is moved from the oil passage 24, groove 6, groove 5 The pressure is low due to communication with the tank T, and the driving room CV 2 is at a high pressure through the oil passage 22, so that the circuit A is in a state.
ストローク制御パルプ 2 9は、打撃始動前はバネ S 1により A回路になっている 。そして、作動流体が導入された直後においては低圧側の油路 3 4が油路 3 1を通 じて駆動室 S V 2に連通して当該駆動室 S V 2が低圧に、駆動室 S V 1と S V 3が 高圧になっており、これら駆動室 S V 1と S V 3との受圧面積の関係が S V 3〉 S V Iに予め設定されているため、ストローク制御パルプ 2 9は A回路の状態を保持 する。  The stroke control pulp 29 has an A circuit by a spring S1 before the impact is started. Immediately after the working fluid is introduced, the oil passage 34 on the low pressure side communicates with the drive room SV 2 through the oil passage 31 so that the drive room SV 2 has a low pressure, and the drive rooms SV 1 and SV 3 is high pressure, and the relationship between the pressure receiving areas of these drive chambers SV1 and SV3 is preset to SV3> SVI, so that the stroke control pulp 29 holds the state of the A circuit.
開閉バルブ 3 0は、駆動室 V 1が油路 2 8、 4 5により作動流体が供給されるこ とから常時高圧であり、駆動室 V 2がストローク制御バルブ 2 9の切換状態によつ て高圧と低圧に変化する。今、ストローク制御バルブ 2 9は上述したように A回路 に配置されていることから、当該駆動室 V 2にはブレーキ室 1 3の高圧が油路 3 5 、 3 2を通じて導かれて高圧になっている。 従って、駆動室 V I、 V 2は共に高圧 になっているものの、 これら駆動室 V Iと V 2との受圧面積の関係は、 V 2 > V 1 に予め設定されているため、 開閉バルブ 3 0は A回路の状態に配置されている。 このように各バルブが配置された状態において、油圧ポンプ Pから作動流体を導 入すると、圧油は油路 2 0、 2 3を通じて溝 8から収容室 1 0に導入される。 これ により大径部 2 bの受圧面 P S 2に高圧が作用して打擊ピストン 2がガス室 C 3 に封入されたガスを圧縮しながら図 1において左側に移動する戻り行程を行う。 そして、戻り行程を行って溝 8が溝 7と連通する位置まで大径部 2 bの受圧面 P S 2が後退すると、油路 2 3から溝 8に導入される作動流体が溝 7から油路 4 3を 通じて開閉バルブ 3 0に導かれる。 この時、開閉バルブ 3 0は A回路に保持されて いるため、作動流体が開閉バルブ 3 0を通過して油路 4 2を通じて制御パルプ 2 1 の駆動室 C V 1に導入される。  The open / close valve 30 is always at a high pressure because the drive chamber V1 is supplied with the working fluid through the oil passages 28 and 45, and the drive chamber V2 is driven by the switching state of the stroke control valve 29. Changes to high and low pressure. Now, since the stroke control valve 29 is disposed in the A circuit as described above, the high pressure of the brake chamber 13 is guided to the drive chamber V2 through the oil passages 35 and 32 to become high. ing. Accordingly, although the driving chambers VI and V 2 are both at a high pressure, the relationship between the pressure receiving areas of the driving chambers VI and V 2 is set in advance to V 2> V 1, so that the on-off valve 30 is It is arranged in the state of the A circuit. When the working fluid is introduced from the hydraulic pump P in a state where the respective valves are arranged as described above, the pressure oil is introduced into the storage chamber 10 from the groove 8 through the oil passages 20 and 23. As a result, a high pressure acts on the pressure receiving surface PS2 of the large diameter portion 2b, and the return piston 2 moves to the left in FIG. 1 while compressing the gas sealed in the gas chamber C3. When the pressure receiving surface PS 2 of the large-diameter portion 2 b retreats to the position where the groove 8 communicates with the groove 7 by performing the return stroke, the working fluid introduced into the groove 8 from the oil passage 23 flows from the oil passage 23 to the oil passage. It is led to the on-off valve 30 through 43. At this time, since the open / close valve 30 is held in the A circuit, the working fluid passes through the open / close valve 30 and is introduced into the drive chamber C V 1 of the control pulp 21 through the oil passage 42.
この際、上記油路 4 2に連通された油路 2 4は、打撃ピストン 2の大径部 2 bの '周面によつて溝 6が閉塞されていることから閉鎖された状態であるとともに、駆動 室 C V lと C V 2との受圧面積の関係が、 C V l〉C V 2に予め設定されているた め、 制御パルプ 2 1は B回路の状態に切換わる。 At this time, the oil passage 24 communicated with the oil passage 42 is in a closed state because the groove 6 is closed by the 周 peripheral surface of the large diameter portion 2b of the impact piston 2. , Drive Since the relationship between the pressure receiving areas of the chambers CVl and CV2 is preset to CVl> CV2, the control pulp 21 switches to the state of the B circuit.
従って、油圧ポンプ Pからの作動流体は油路 2 3を通じて溝 8から収容室 1 0に 導入されるとともに、油路 2 5を通じて溝 4から収容室 9にも導入される。 この結 果、受圧面が P S 1 > P S 2の関係にあることから打撃ビストン 2が図 1において 右側に移動する打撃行程に切換わる。  Therefore, the working fluid from the hydraulic pump P is introduced into the storage chamber 10 from the groove 8 through the oil passage 23, and is also introduced into the storage chamber 9 from the groove 4 through the oil passage 25. As a result, since the pressure receiving surface has a relationship of P S1> P S2, the impact process switches to the impact process in which the impact piston 2 moves to the right in FIG.
一方、 これとともに油路 2 5から分岐した油路 3 4も高圧になるため、 A回路に 配置されているス トローク制御バルブ 2 9の駆動室 S V 2にも高圧が作用するこ とになり、これによつて S V 1 + S V 2〉S V 3 +パネ S 1力に予め設定されてい るために、 ストローク制御バルブ 2 9が B回路に切換わる。  On the other hand, along with this, the oil passage 34 branched from the oil passage 25 also becomes high pressure, so that the high pressure also acts on the drive chamber SV 2 of the stroke control valve 29 arranged in the A circuit. As a result, the stroke control valve 29 is switched to the B circuit because the SV 1 + SV 2> SV 3 + panel S 1 force is preset.
また、ストローク制御パルプ 2 9が B回路に切換わる事により、開閉バルブ 3 0 の駆動室 V 2は低圧に開放される。駆動室 V 2が低圧になることで、駆動室 V 1に 作用する流体圧で開閉バルブ 3 0が B回路に切換わる。  When the stroke control pulp 29 is switched to the B circuit, the drive chamber V 2 of the on-off valve 30 is opened to a low pressure. When the driving chamber V2 has a low pressure, the opening / closing valve 30 is switched to the B circuit by the fluid pressure acting on the driving chamber V1.
そして、打撃行程を行っている打撃ビストン 2がチゼル 3を打撃する直前に溝 6 と溝 5が大径部 2 aと大径部 2 bとの間に形成された環状溝 1 1を通じて連通さ れる。 これにより油路 2 4が油路 1 2を通じて低圧に開放されるため、 当該油路 2 4で連通した制御バルブ 2 1の駆動室 C V 1が高圧から低圧になり、駆動室 C V 2 に作用する高圧によって制御バルブ 2 1が A回路に切換わり始める。  Immediately before the hitting piston 2 hits the chisel 3, the grooves 6 and 5 communicate with each other through the annular groove 11 formed between the large-diameter portion 2 a and the large-diameter portion 2 b. It is. As a result, the oil passage 24 is opened to a low pressure through the oil passage 12, so that the drive chamber CV 1 of the control valve 21 connected to the oil passage 24 changes from high pressure to low pressure, and acts on the drive chamber CV 2. High pressure causes control valve 21 to begin switching to circuit A.
し力 し、 この時には打撃ビストン 2は打撃方向に十分に加速されており、上記制 御バルブ 2 1が A回路に切換わる前にチゼル 3を打撃する。  At this time, the impact piston 2 is sufficiently accelerated in the impact direction, and impacts the chisel 3 before the control valve 21 switches to the A circuit.
この時、打撃対象物が硬いとチゼル 3が当該打撃対象物に食込まない。 このよう にチゼル 3の変位がない場合には、打撃ビストン 2もチゼル 3の打撃方向にこれ以 上変位することがなく、 図 1に示すような理論的打撃位置(正規の打撃位置) Lの 状態になる。  At this time, if the hitting target is hard, the chisel 3 does not cut into the hitting target. When the chisel 3 is not displaced in this way, the impact biston 2 does not further displace in the hitting direction of the chisel 3, and the theoretical strike position (normal strike position) L as shown in FIG. State.
従って、打撃ビストン 2の大径部 2 bの受圧面 P S 2がブレーキ室 1 3に入り込 んで当該ブレーキ室 1 3を密閉する事がなく、このためプレーキ室 1 3では通常の 作動高圧以上の高い圧力が発生することがない。 Therefore, the pressure receiving surface PS 2 of the large diameter portion 2 b of the impact piston 2 does not enter the brake chamber 13 to seal the brake chamber 13. No high pressure higher than the operating high pressure is generated.
これにより.ストローク制御パルプ 2 9の駆動室 S V 3には通常の作動高圧以上 の高い圧力が作用することなく、当該ストローク制御パルプ 2 9はその位置から切 換わらずに B回路の状態を保持する。  As a result, the drive chamber SV 3 of the stroke control pulp 29 does not apply a high pressure higher than the normal operating high pressure, and the stroke control pulp 29 maintains the state of the B circuit without switching from that position. .
また、ストローク制御バルブ 2 9が B回路を保持することから開閉パルプ 3 0の 駆動室 V 2にも高圧が作用することがなく、当該開閉バルブ 3 0もその位置から切 換わらずに B回路の状態を保持することになる。  Further, since the stroke control valve 29 holds the B circuit, high pressure does not act on the drive chamber V2 of the open / close pulp 30 as well, and the open / close valve 30 does not switch from that position and the B circuit is not operated. The state will be maintained.
このようにして打擊ピストン 2がチゼル 3を打撃した後には、制御パルプ 2 1が A回路に切換わっていることから、打撃ビストン 2の大径部 2 aの受圧面 P S 1に 作用していた高圧が溝 4、油路 2 5、制御パルプ 2 1、 油路 2 6を通じてタンク T に戻され、 これにより収容室 9が低圧になる。  After the striking piston 2 hits the chisel 3 in this way, since the control pulp 21 was switched to the A circuit, it was acting on the pressure receiving surface PS 1 of the large diameter portion 2a of the striking biston 2. The high pressure is returned to tank T through groove 4, oil passage 25, control pulp 21 and oil passage 26, which lowers the pressure in storage chamber 9.
従って、油圧ポンプ Pから油路 2 0、 2 3、溝 8を通じて収容室 1 0に供給され る作動流体により打撃ピストン 2は再ぴ戻り行程を始める。  Accordingly, the working piston supplied from the hydraulic pump P to the storage chamber 10 through the oil passages 20, 23 and the groove 8 causes the impact piston 2 to start a return stroke.
このように打擊ピストン 2が後退して大径部 2 bの受圧面 P S 2が'溝 7に達し て溝 8と溝 7とが連通しても、開閉バルブ 3 0が B回路の状態で油路 4 3が遮断さ れているため、この油路 4 3と油路 4 2を通じて制御バルブ 2 1の駆動室 C V 1に 高圧が作用することがなく、 これにより打撃ビストン 2は戻り行程を続行する。 そして、打撃ビス トン 2がさらに後退して大径部 2 bの受圧面 P S 2が溝 6に達 して溝 8と連通すると、溝 8から導入された作動流体が溝 6から油路 2 4を通じて 制御バルブ 2 1の駆動室 C V 1に作用する。これにより制御パルプ 2 1が再び B回 路に切換わって作動流体を油路 2 5、 溝 4を通じて収容室 9に導入する。 従って、 大径部 2 aの受圧面 P S 1には高圧が作用する状態となり、この結果打撃ビストン 2は打撃行程に移行する。  Even if the striking piston 2 retreats and the pressure receiving surface PS 2 of the large-diameter portion 2 b reaches the groove 7 and the grooves 8 and 7 communicate with each other, the on-off valve 30 remains in the state of the B circuit in the oil state. Since the passage 43 is blocked, high pressure does not act on the drive chamber CV 1 of the control valve 21 through the oil passage 43 and the oil passage 42, whereby the impact piston 2 continues the return stroke. I do. When the impact piston 2 further retreats and the pressure receiving surface PS 2 of the large diameter portion 2 b reaches the groove 6 and communicates with the groove 8, the working fluid introduced from the groove 8 flows from the groove 6 through the oil passage 24. Acts on the drive chamber CV 1 of the control valve 21 through As a result, the control pulp 21 is switched to the B circuit again, and the working fluid is introduced into the storage chamber 9 through the oil passage 25 and the groove 4. Accordingly, a high pressure is applied to the pressure receiving surface P S 1 of the large diameter portion 2a, and as a result, the impact piston 2 shifts to the impact stroke.
この際、油路 2 5から分岐している油路 3 4も高圧になる力 ストローク制御バ ルブ 2 9が B回路の状態であり、当該ストローク制御バルブ 2 9により油路 3 1と の連通を遮断しているため影響はない。 これにより打撃ピストン 2は前述と同様にしてチゼル 3を打撃し、当該チゼル 3 が打撃対象物に食込まない場合には、前述と同様にブレーキ室 1 3では通常の作動 高圧以上の高い圧力が発生することがない。従って、ストローク制御パルプ 2 9及 び開閉バルブ 3 0も切換わることなく B回路を維持することになり、戻り行程が前 述と同様に大径部 2 bの受圧面 P S 2が溝 6まで戻って再び打撃行程に移行する。 つまり、打撃対象物が硬くてチゼル 3が当該打撃対象物に食い込まない場合には大 径部 2 bの受圧面 P S 2が溝 6まで戻って打撃行程に移行する所謂ロングスト口 ーク S 2 (図 3参照) 動作を繰り返すことになる。 At this time, the force at which the oil passage 34 branched from the oil passage 25 also increases the pressure. The stroke control valve 29 is in the state of the B circuit, and the stroke control valve 29 is used to establish communication with the oil passage 31. There is no effect due to blocking. As a result, the striking piston 2 strikes the chisel 3 in the same manner as described above, and if the chisel 3 does not bite into the object to be struck, a high pressure equal to or higher than the normal operating high pressure is applied in the brake chamber 13 as described above. Does not occur. Therefore, the B circuit is maintained without switching the stroke control pulp 29 and the opening / closing valve 30, and the return stroke returns to the pressure receiving surface PS 2 of the large diameter portion 2 b to the groove 6 in the same manner as described above. Then, it shifts to the striking process again. In other words, when the hitting object is hard and the chisel 3 does not bite into the hitting object, the so-called long-stroke opening S 2 (the pressure receiving surface PS 2 of the large diameter portion 2 b returns to the groove 6 and shifts to the hitting stroke. (Refer to Fig. 3) The operation is repeated.
一方、打撃対象物が柔らかかかったり、 もしくは硬い打擊対象物でも破石 される ことにより、打撃ピストン 2によりチゼル 3を打撃した際に、チゼル 3が打撃対象 物に食い込んだ場合には次のような動作が行われる。  On the other hand, if the hitting object is soft or hard and the target is broken, the chisel 3 bites into the hitting object when hitting the chisel 3 with the hitting piston 2. Operation is performed.
チゼル 3が打撃対象物に食い込むことによって打撃ピストン 2も同様に打撃方 向に変位し、 これによつて打撃ピストン 2の大径部 2 bの端面(受圧面 P S 2 ) が 溝 8を超えてブレーキ室 1 3に入り込み当該ブレーキ室 1 3が密閉された部屋に なる。 つまり、 打擊ピストン 2が図 3に示すストローク S (—定距離) ぶんブレー キ室 1 3側に移動した場合である。  When the chisel 3 bites into the object to be struck, the striking piston 2 is also displaced in the striking direction, so that the end face (pressure receiving surface PS 2) of the large diameter portion 2 b of the striking piston 2 exceeds the groove 8. The brake room 13 enters the brake room 13 and becomes a closed room. In other words, this is the case where the striking piston 2 has moved to the brake chamber 13 by the stroke S (—constant distance) shown in FIG.
これによりブレーキ室 1 3に閉じ込められた作動流体は打撃ビストン 2の運動 エネルギーを吸収してその圧力が上昇し、この圧力が油路 4 0を通じてストローク 制御パルプ 2 9の駆動室 S V 3に作用する。従って、ブレーキ室 1 3で上昇した作 動流体の圧力が所定の値を超えて高くなり、 S V 3 +パネ S 1力〉 S V 1 + S V 2 になるとストローク制御バルブ 2 9が B回路から A回路に切換わる。  As a result, the working fluid confined in the brake chamber 13 absorbs the kinetic energy of the impact piston 2 and its pressure increases, and this pressure acts on the drive chamber SV 3 of the stroke control pulp 29 through the oil passage 40. . Therefore, when the working fluid pressure that has risen in the brake chamber 13 exceeds the specified value and rises, and when SV3 + panel S1 force> SV1 + SV2, the stroke control valve 29 switches from circuit B to circuit A. Switch to.
これによりストローク制御バルブ 2 9の駆動室 S V 2には油路 2 5から分岐し た油路 3 4が油路 3 1を介して連通される。 この時、制御パルプ 2 1の B回路から A回路への切換えが終了していれば、油路 2 5が低圧になっていることからストロ ーク制御バルブ 2 9の駆動室 S V 2も低圧になっている。従って、ストローク制御 バルブ 2 9は、 S V 3 > S V Iに設定されているので A回路の状態を保持する。 一方、制御パルプ 2 1の B回路から A回路への切換えが終了していない場合には 、油路 2 5がいまだ高圧であるため、ストローク制御バルブ 2 9の駆動室 S V 2に は駆動室 S V Iと同様に高圧が作用している。 し力 し、駆動室 S V 3に作用してい るブレーキ室 1 3からの圧力は通常の作動圧力より十分に高いため S V 3 +バネ S 1力〉 S V 1 + S V 2の関係が変わることなく、ストローク制御バルブ 2 9は A 回路の状態を保持する。 As a result, an oil passage 34 branched from the oil passage 25 is connected to the drive chamber SV 2 of the stroke control valve 29 via the oil passage 31. At this time, if the switching of the control pulp 21 from the circuit B to the circuit A has been completed, since the oil passage 25 is at a low pressure, the drive chamber SV 2 of the stroke control valve 29 is also at a low pressure. Has become. Therefore, the stroke control valve 29 holds the state of the circuit A because SV 3> SVI. On the other hand, when the switching of the control pulp 21 from the circuit B to the circuit A has not been completed, since the oil passage 25 is still at a high pressure, the driving room SV 2 of the stroke control valve 29 is High pressure is acting as well. Therefore, the pressure from the brake chamber 13 acting on the drive chamber SV 3 is sufficiently higher than the normal operating pressure, so that the relationship SV 3 + spring S 1 force> SV 1 + SV 2 remains unchanged. The stroke control valve 29 holds the state of the circuit A.
つまり、この状況では制御バルブ 2 1の切換わり状態に関わらずストローク制御 バルブ 2 9は A回路の状態を保持することになる。  In other words, in this situation, the stroke control valve 29 holds the state of the A circuit regardless of the switching state of the control valve 21.
このようにストローク制御パルプ 2 9が A回路の状態にあることから、開閉パル ブ 3 0の駆動室 V 2にはプレーキ室 1 3からの高圧が油路 3 5、ストローク制御バ ルブ 2 9、 油路 3 2を通じて作用することなる。 従って、 開閉パルプ 3 0は、 駆動 室が V 2 > V 1の関係になり B回路から A回路に切換わる。  As described above, since the stroke control pulp 29 is in the state of the circuit A, the high pressure from the brake chamber 13 is applied to the drive room V 2 of the opening / closing valve 30 by the oil passage 35, the stroke control valve 29, It will work through oil line 32. Accordingly, the open / close pulp 30 is switched from the circuit B to the circuit A in the drive chamber in the relation of V 2> V 1.
この開閉バルブ 3 0の A回路への切換わりにより、油圧ポンプ Pからの高圧の作 動流体が油路 2 3、 2 8、 4 1を通じてブレーキ室 1 3側に流入しょうとするもの の、ブレーキ室 1 3の圧力がこの作動流体の圧力よりも高いため、当該作動流体が ブレーキ室 1 3に流入することはない。  The switching of the open / close valve 30 to the A circuit causes the high-pressure working fluid from the hydraulic pump P to flow into the brake chamber 13 through the oil passages 23, 28, and 41. Since the pressure in the chamber 13 is higher than the pressure of the working fluid, the working fluid does not flow into the brake chamber 13.
そして、制御パルプ 2 1が A回路に切換わると、油路 2 5を通じて収容室 9が低 圧になって打撃ビス トン 2の大径部 2 aの受圧面 P S 1に作用する圧力が低下す るため、 ブレーキ室 1 3の圧力も低下する。 従って、 ブレーキ室 1 3の圧力が油圧 ポンプ Pから供給される作動流体の圧力よりも低下すると、当該作動流体が逆止弁 4 7を介して油路 4 1、 3 5を通じてブレーキ室 1 3に流入する。 これによつて打 撃ビストン 2の大径部 2 bの受圧面 P S 2がブレーキ室 1 3から速やかに出て前 述した戻り行程を行うことになる。  Then, when the control pulp 21 is switched to the A circuit, the pressure in the storage chamber 9 becomes low through the oil passage 25, and the pressure acting on the pressure receiving surface PS 1 of the large diameter portion 2a of the impact biston 2 decreases. Therefore, the pressure in the brake chamber 13 also decreases. Therefore, when the pressure in the brake chamber 13 becomes lower than the pressure of the working fluid supplied from the hydraulic pump P, the working fluid flows into the brake chamber 13 through the oil passages 41 and 35 via the check valve 47. Inflow. As a result, the pressure receiving surface PS2 of the large-diameter portion 2b of the impact piston 2 quickly comes out of the brake chamber 13 to perform the return stroke described above.
但し、この戻り行程ではストローク制御パルプ 2 9と開閉パルプ 3 0とが共に A 回路の状態にあるため、大径部 2 bの受圧面 P S 2が溝 7に達した時に打撃行程に 移行する、 所謂ショートストローク S 1 (図 3参照) になる。 このように打撃ビストン 2でチゼル 3を打撃した際の当該チゼル 3の変位に基 づいて、次回の打擊ストロークをショートスドローク S 1とロングストロ^-ク S 2 とのいずれかに自動的に変更することができる。つまり、打撃ビストン 2の大径部 2 bが一定距離移動してブレーキ室 1 3を密閉し、このブレーキ室 1 3で高圧を発 生させるか否かにより次回の打撃ストロークを自動的に変更することができる。 また、油圧回路に備えられたストローク制御バルブ 2 9とこのストローク制御バ ルプ 2 9に直接連通される油路とから構成される機構(本発明でいうストローク制 御バルブをその切換位置で所定時間保持する保持機構)によりス トローク制御バノレ ブ 2 9の切換位置を保持して開閉パルプ 3 0を通じて制御バルブ 2 1の切換を行 うことで、打撃ピス トン 2をス トローク制御しているため、 当該ス トローク制御を 効率よく的確に行うことができる。 However, in this return stroke, since both the stroke control pulp 29 and the opening and closing pulp 30 are in the state of the A circuit, when the pressure receiving surface PS 2 of the large diameter portion 2b reaches the groove 7, the process shifts to the impact stroke. This is the so-called short stroke S 1 (see FIG. 3). Based on the displacement of the chisel 3 when hitting the chisel 3 with the impact biston 2, the next stroke is automatically switched to either the short stroke S1 or the long stroke S2. Can be changed to In other words, the large-diameter portion 2b of the impact piston 2 moves a fixed distance to seal the brake chamber 13 and automatically changes the next impact stroke depending on whether high pressure is generated in the brake chamber 13. be able to. In addition, a mechanism (stroke control valve of the present invention is operated for a predetermined time at its switching position) comprising a stroke control valve 29 provided in the hydraulic circuit and an oil passage directly connected to the stroke control valve 29. The striking piston 2 is stroke-controlled by switching the control valve 21 through the open / close pulp 30 while holding the switching position of the stroke control vanoleb 29 by the holding mechanism that holds the stroke. The stroke control can be performed efficiently and accurately.
ところで、以上説明したように作動する打撃装置 1では、打撃始動前において打 撃ビストン 2がガス圧によって最下方まで下降して大径部 2 bがブレーキ室 1 3 に食い込んだ状態になっている場合がある。 これは、例えばハツリ整形作業等を行 う時にしばしば発生する。  By the way, in the striking device 1 which operates as described above, the striking biston 2 is lowered to the lowest position by gas pressure before the striking starts, and the large diameter portion 2 b is in the brake chamber 13. There are cases. This often occurs, for example, when performing shaving operations.
この場合には次のようにして打撃装置 1を通常の打撃動作に復帰させる。  In this case, the striking device 1 is returned to the normal striking operation as follows.
打擊始動前においてストローク制御パルプ 2 9と開閉バルブ 3 0とはバネ S 1、 S 2により共に A回路の状態になっている。  Before the start of the driving, the stroke control pulp 29 and the opening / closing valve 30 are both in the A circuit state by the springs S1 and S2.
この状態で打撃装置 1に油圧ポンプ Pから高圧の作動流体を導入すると、制御パ ルブ 2 1が駆動室 C V 2に導かれた高圧により A回路の状態になり、大径部 2 aの 受圧面 P S 1に作用する圧力が低圧になる。  In this state, when a high-pressure working fluid is introduced from the hydraulic pump P into the striking device 1, the control valve 21 is brought into the state of the A circuit by the high pressure guided to the driving room CV2, and the pressure receiving surface of the large-diameter portion 2a is formed. The pressure acting on PS 1 becomes lower.
一方、作動流体は油路 2 3を通じて溝 8に導かれるものの、当該溝 8が大径部 2 bにより閉鎖された状態にあるため、この溝 8を通じて作動流体を大径部 2 bの受 圧面 P S 2に直接作用させるのは困難な状態になっている。  On the other hand, although the working fluid is guided to the groove 8 through the oil passage 23, since the groove 8 is closed by the large-diameter portion 2b, the working fluid is supplied through the groove 8 to the pressure receiving surface of the large-diameter portion 2b. It is difficult to make it act directly on PS 2.
し力 し、作動流体は油路 2 3から分岐された油路 2 8、 開閉パルプ 3 0、油路 4 1、 3 5を通じてブレーキ室 1 3に導かれるため、 この作動流体が大径部 2 bの受 圧面 P S 2に作用し、これにより打撃ピストン 2をブレーキ室 1 3から脱出させて 戻り行程を開始する。 ここでいう開閉バルブ 3 0、 油路 2 3、 2 8、 3 5、 4 1か らなる機構を、 ブレーキ室 1 3に作動流体を供給する供給機構とする。 つまり、 こ のような場合でも油圧回路に備えられた供給機構によりブレーキ室 1 3に作動流 体を供給することによって、打撃ピストン 2をブレーキ室 1 3から確実に脱出させ て戻り行程を開始させることができる。 Therefore, the working fluid is guided to the brake chamber 13 through the oil passage 28 branched from the oil passage 23, the open / close pulp 30 and the oil passages 41, 35. receiving b Acts on the pressure surface PS2, causing the impact piston 2 to escape from the brake chamber 13 and start the return stroke. The mechanism including the on-off valve 30 and the oil passages 23, 28, 35, 41 here is a supply mechanism for supplying the working fluid to the brake chamber 13. In other words, even in such a case, by supplying the working fluid to the brake chamber 13 by the supply mechanism provided in the hydraulic circuit, the striking piston 2 is surely escaped from the brake chamber 13 to start the return stroke. be able to.
また、 この作動流体は、油路 2 3から分岐された油路 2 8、 油路 3 8を通じてス トローク制御バルブ 2 9の駆動室 S V 1と、油路 4 5を通じて開閉バルブ 3 0の駆 動室 V Iと、 油路 2 8、 開閉パルプ 3 0、 油路 4 1の逆止弁 4 7、 油路 4 0を経由 してストローク制御バルブ 2 9の駆動室 S V 3と、この駆動室 S V 3の他に油路 4 1、 油路 3 5、 ストローク制御パルプ 2 9、油路 3 2を通じて開閉バルブ 3 0の駆 動室 V 2と、 に導かれている。  Also, this working fluid is used to drive the drive chamber SV 1 of the stroke control valve 29 through the oil passage 28, which is branched from the oil passage 23, and the opening / closing valve 30 through the oil passage 45. Chamber VI, drive room SV 3 for stroke control valve 29 via oil passage 28, open / close pulp 30, check valve 47 for oil passage 41, oil passage 40, and this drive room SV 3 In addition to the above, an oil passage 41, an oil passage 35, a stroke control pulp 29, and an oil passage 32 lead to a drive chamber V 2 of an on-off valve 30.
この際、開閉バルブ 3 0のパネ S 2は、打擊ピストン 2が打撃始動前の停止位置 からガスを圧縮してブレーキ室 1 3と溝 8とを連通するまで移動した時のガス圧 と、打撃ビストン 2の受圧面 P S 0に対する受圧面 P S 2に発生する油圧のパラン スを考慮し、その油圧が開閉バルブ 3 0の駆動室 V 1に作用した時の駆動力と略一 致する力を当該駆動力と対向する方向に付勢するように設定している。 このため、 打撃ビス トン 2が戻り行程を行い溝 8を開放するまで開閉バルブ 3 0は A回路の 状態に保持される。  At this time, the panel S 2 of the opening / closing valve 30 determines the gas pressure when the striking piston 2 moves from the stop position before starting the striking until the gas is compressed and communicates with the brake chamber 13 and the groove 8. Considering the balance of the hydraulic pressure generated on the pressure receiving surface PS2 with respect to the pressure receiving surface PS0 of Biston 2, the force that substantially matches the driving force when the hydraulic pressure acts on the drive chamber V1 of the opening / closing valve 30 is considered. It is set so as to be urged in the direction facing the driving force. For this reason, the opening / closing valve 30 is maintained in the state of the A circuit until the impact biston 2 performs the return stroke and opens the groove 8.
—方、ストローク制御パルプ 2 9の駆動室 S V Iに作用する圧力は駆動室 S V 3 に作用する圧力と略同じになるように設定されているため、ストローク制御バルブ 2 9も受圧面積の関係及びパネ S 1により A回路の状態に保持される。  On the other hand, since the pressure acting on the driving chamber SVI of the stroke control pulp 29 is set to be substantially the same as the pressure acting on the driving chamber SV 3, the stroke control valve 29 also has a relationship with the pressure receiving area and the panel. The state of the A circuit is held by S1.
従って、 この時の戻り行程は、大径部 2 bの受圧面 P S 2が溝 7に達した時に打 擊行程に移行する、 所謂ショートストローク S 1になる。  Therefore, the return stroke at this time is a so-called short stroke S1, which shifts to a striking stroke when the pressure receiving surface PS2 of the large diameter portion 2b reaches the groove 7.
これにより打撃始動前において打撃ピストン 2の大径部 2 bがブレーキ室 1 3 に食い込んだ状態になっている場合でも、チゼル 3を強制に押し付けて打撃ビスト ン 2の大径部 2 bをブレーキ室 1 3から退避させる作業をいちいち行うことなく、 速やかに打撃始動させることができる。 Thus, even if the large-diameter portion 2b of the striking piston 2 is biting into the brake chamber 13 before the striking starts, the chisel 3 is forcibly pressed and the striking piston It is possible to quickly start the impact without having to retreat the large diameter portion 2b of the motor 2 from the brake chamber 13 one by one.
[第 2実施形態]  [Second Embodiment]
図 4は、本発明の液圧式打撃装置における他の回路構成を示している。 なお、 以 下に説明する油圧回路を除くケーシング、打撃ビストン、チゼルなどの構成は前記 第 1実施形態で示した構成と同様であり、当該第 1実施形態で説明した符号を用い て説明する。  FIG. 4 shows another circuit configuration of the hydraulic impact device of the present invention. The configurations of the casing, the impact biston, the chisel, etc., except for the hydraulic circuit described below, are the same as the configurations shown in the first embodiment, and will be described using the reference numerals described in the first embodiment.
この油圧回路は、前記第 1実施形態で説明した油圧回路のストローク制御バルブ と開閉パルプとを組み合わせたパルプ構成にしたものであり、以下具体的に説明す る。  This hydraulic circuit has a pulp configuration in which the stroke control valve and the opening and closing pulp of the hydraulic circuit described in the first embodiment are combined, and will be specifically described below.
油圧ポンプ Pの吐出側は、 油路 2 0を通じて制御バルブ 2 1に連通されている。 油路 2 0からは油路 2 2と油路 2 3が分岐されており、油路 2 2が制御パルプ 2 1 の一方の駆動室 C V 2に連通されるとともに、油路 2 3が前記溝 8に連通されてい る。  The discharge side of the hydraulic pump P is connected to a control valve 21 through an oil passage 20. An oil passage 22 and an oil passage 23 are branched from the oil passage 20.The oil passage 22 is connected to one drive chamber CV2 of the control pulp 21 and the oil passage 23 is connected to the groove. It is connected to 8.
制御バルブ 2 1は、 2位置切換式のバルブであり、他方の駆動室 C V 1が油路 2 4を通じて前記溝 6に連通されており、駆動室 C V 1と駆動室 C V 2とに作用する 油圧信号により図 4における上位置 (A回路) と下位置 (B回路) とに切換えられ る。  The control valve 21 is a two-position switching type valve. The other drive chamber CV 1 is communicated with the groove 6 through an oil passage 24, and hydraulic pressure acting on the drive chamber CV 1 and the drive chamber CV 2 The signal switches between the upper position (A circuit) and the lower position (B circuit) in Fig. 4.
具体的には、制御パルプ 2 1が A回路では、油路 2 0と溝 4に連通された油路 2 5との連通を遮断するとともに、油路 2 5とタンク Tに連通された油路 2 6とを連 通させる。従って、制御バルブ 2 1が A回路に配置されている際には、収容室 9は 溝 4がタンク Tに連通されて低圧になっている。  Specifically, in the control pulp 21 in the A circuit, the communication between the oil passage 20 and the oil passage 25 connected to the groove 4 is cut off, and the oil passage connected to the oil passage 25 and the tank T is shut off. Communicate with 26. Accordingly, when the control valve 21 is disposed in the A circuit, the groove of the storage chamber 9 is communicated with the tank T and the pressure is low.
また、制御バルブ 2 1が B回路では、油路 2 0と油路 2 5が連通されることにな り、これによつて油圧ポンプ Pからの作動流体が溝 4を通じて収容室 9に導入され 、 当該収容室 9を高圧にする。  Further, when the control valve 21 is in the B circuit, the oil passage 20 and the oil passage 25 are communicated, whereby the working fluid from the hydraulic pump P is introduced into the storage chamber 9 through the groove 4. The storage chamber 9 is set to a high pressure.
つまり、大径部 2 aの受圧面 P S 1には、制御パルプ 2 1の切換えにより交番的 に高圧と低圧が作用するようになっている。 In other words, the pressure receiving surface PS 1 of the large-diameter portion 2 a is alternately changed by switching the control pulp 21. High and low pressures act on
—方、前記油路 2 3からは油路 5 0が分岐され、当該油路 5 0がストローク制御 パルプ 5 1に連通されている。  On the other hand, an oil passage 50 branches off from the oil passage 23, and the oil passage 50 communicates with the stroke control pulp 51.
ストローク制御パルプ 5 1は、 2位置切換式のパルプであり、駆動室 S V 1、 S V 2及び S V 3に連通する油圧信号、並びにパネ S 3の作用により図 4における上 位置 (B回路) と下位置 (A回路) とに切換えられる。  The stroke control pulp 51 is a two-position switching type pulp. The upper position (circuit B) and the lower position in FIG. 4 are controlled by the hydraulic signals communicating with the drive chambers SV1, SV2 and SV3, and the action of the panel S3. Switch to position (A circuit).
具体的には、ストローク制御バルブ 5 1が B回路では、前記油路 5 0が駆動室 S V Iに油路 5 2を通じて連通されるとともに、油路 5 0から分岐された油路 5 3が 駆動室 S V 2に油路 5 5を通じて連通される。  Specifically, when the stroke control valve 51 is in the B circuit, the oil passage 50 is connected to the drive chamber SVI through the oil passage 52, and the oil passage 53 branched from the oil passage 50 is connected to the drive chamber. It is connected to SV 2 through oil line 55.
また、ストローク制御バルブ 5 1が A回路では、油路 5 0が駆動室 S V 1に油路 ― 5 2を通じて連通され、油路 5 3から分岐された油路 5 6がブレーキ室 1 3と駆動 室 S V 3に連通された油路 5 7に逆止弁 5 8を備えた油路 5 9を通じて連通され、 前記油路 2 5から分岐された油路 6 0が駆動室 S V 2に油路 5 5を通じて連通さ れ、さらに溝 7に連通された油路 6 1が油路 6 2を通じて前記油路 2 4に連通され る。  When the stroke control valve 51 is in the A circuit, the oil passage 50 communicates with the drive chamber SV 1 through the oil passage-52, and the oil passage 56 branched from the oil passage 53 drives the brake chamber 13. The oil passage 57 communicated with the oil passage 57 communicated with the chamber SV 3 through the oil passage 59 provided with the check valve 58 is connected to the oil passage 60 branched from the oil passage 25. The oil passage 61 communicated through the oil passage 5 and further communicated with the groove 7 is communicated with the oil passage 24 through the oil passage 62.
また、ス トローク制御バルブ 5 1の駆動室 S V 1に連通された油路 5 2カゝらは逆 止弁 6 3を備えた油路 6 4が分岐されて前記油路 2 3に連通されている。  In addition, an oil passage 52 provided with a check valve 63 is branched from an oil passage 52 connected to the drive chamber SV 1 of the stroke control valve 51, and is connected to the oil passage 23. I have.
なお、各油圧信号に基づく各バルブの切換え動作などの詳細については、以下に 説明する打撃装置 1の動作とともに説明する。  The details of the switching operation of each valve based on each hydraulic signal will be described together with the operation of the striking device 1 described below.
まず、打撃装置 1に油圧ポンプ Pから高圧の作動流体が導入された直後の各バル ブは次のような状態に配置されている。  First, each valve immediately after the high-pressure working fluid is introduced from the hydraulic pump P into the striking device 1 is arranged in the following state.
制御パルプ 2 1は、駆動室 C V 1が油路 2 4、溝 6、溝 5から油路 1 2を通じて タンク Tに連通されて低圧になっており、駆動室 C V 2が油路 2 2を通じて高圧に なっていることから A回路の状態になっている。  In the control pulp 21, the driving room CV 1 is connected to the tank T from the oil passage 24, the groove 6, and the groove 5 through the oil passage 12 to a low pressure, and the driving room CV 2 has a high pressure through the oil passage 22. It is in the state of the A circuit because it is.
ストローク制御パルプ 5 1は、打撃始動前はパネ S 3により A回路になっている. 。 そして、 高圧の作動流体が導入された直後においては、低圧側の油路 6 0が油路 55を通じて駆動室 S V 2に連通して当該駆動室 S V 2が低圧に、駆動室 S V 1と SV 3が高圧になっており、これら駆動室 S VIと SV3との受圧面積の関係が S V3 >S V 1に予め設定されているため、ストローク制御バルブ 51は A回路の状 態を保持する。 The stroke control pulp 51 is in the A circuit by the panel S3 before the impact is started. Immediately after the high-pressure working fluid is introduced, the oil passage 60 on the low-pressure side The driving room SV2 is connected to the driving room SV2 through 55 and the driving room SV2 is at a low pressure, the driving rooms SV1 and SV3 are at a high pressure, and the relationship between the pressure receiving areas of these driving rooms SVI and SV3 is SV3> Since the stroke control valve 51 is set in advance to SV1, the stroke control valve 51 maintains the state of the A circuit.
このように各バルブが配置された状態において、油圧ポンプ Pから作動流体を導 入すると、圧油は油路 20、 23を通じて溝 8から収容室 10に導入される。 これ により大径部 2 bの受圧面 P S 2に高圧が作用して打撃ビストン 2がガス室 C 3 に封入されたガスを圧縮しながら移動する戻り行程を行う。  When the working fluid is introduced from the hydraulic pump P in a state where the respective valves are arranged as described above, the pressure oil is introduced into the storage chamber 10 from the groove 8 through the oil passages 20 and 23. As a result, a high pressure acts on the pressure receiving surface PS2 of the large diameter portion 2b to perform a return stroke in which the impact piston 2 moves while compressing the gas sealed in the gas chamber C3.
そして、戻り行程を行つて溝 8が溝 7と連通する位置まで大径部 2 bの受圧面 P S 2が後退すると、 油路 23から溝 8に導入される作動流体が溝 7から油路 61、 ストローク制御バルブ 51、油路 62、 24を通じて制御パルプ 21の駆動室 C V 1に導入される。 ' '  When the pressure receiving surface PS2 of the large-diameter portion 2b retreats to the position where the groove 8 communicates with the groove 7 by performing the return stroke, the working fluid introduced into the groove 8 from the oil passage 23 The control pulp 21 is introduced into the drive chamber CV 1 through the stroke control valve 51 and the oil passages 62 and 24. ''
この際、上記油路 62に連通された油路 24は、打撃ビストン 2の大径部 2 bの 周面によって溝 6が閉塞されていることから閉鎖された状態であるとともに、駆動 室 CV 1と CV 2との受圧面積の関係が、 CV 1 >CV 2に予め設定されているた め、 制御バルブ 21は B回路の状態に切換わる。  At this time, the oil passage 24 communicated with the oil passage 62 is closed because the groove 6 is closed by the peripheral surface of the large-diameter portion 2b of the impact piston 2, and the drive chamber CV 1 Since the relationship between the pressure receiving area and CV 2 is set in advance to CV 1> CV 2, the control valve 21 switches to the state of the B circuit.
従って、油圧ポンプ Pからの作動流体は油路 23を通じて溝 8から収容室 10に 導入されるとともに、油路 25を通じて溝 4から収容室 9にも導入される。 この結 果、受圧面が P S 1〉 P S 2の関係にあることから打撃ピストン 2が打撃行程に切 換わる。  Accordingly, the working fluid from the hydraulic pump P is introduced from the groove 8 into the storage chamber 10 through the oil passage 23, and is also introduced into the storage chamber 9 from the groove 4 through the oil passage 25. As a result, since the pressure receiving surface has a relationship of P S 1> P S 2, the impact piston 2 is switched to the impact stroke.
一方、 これとともに油路 25から分岐した油路 60も高圧になるため、 A回路に 配置されているストローク制御パルプ 51の駆動室 SV 2にも高圧が作用するこ とになり、これにょって3¥1+ 3"^2>3¥3+バネ31力に予め設定されてい るために、 ストローク制御バルブ 51が B回路に切換わる。  On the other hand, along with this, the oil passage 60 branched from the oil passage 25 also has a high pressure, so that the high pressure also acts on the drive chamber SV 2 of the stroke control pulp 51 arranged in the A circuit. Since 3 ¥ 1 + 3 "^ 2> 3 ¥ 3 + Spring 31 force is preset, the stroke control valve 51 switches to the B circuit.
そして、打擊行程を行っている打撃ピストン 2がチゼル 3を打撃する直前に溝 6 と溝 5が大径部 2 aと大径部 2 bとの間に形成された環状溝 1 1を通じて連通さ れる。 これにより油路 2 4が油路 1 2を通じて低圧に開放されるため、 当該油路 2 4で連通した制御バルブ 2 1の駆動室 C V 1が高圧から低圧になり、駆動室 C V 2 に作用する高圧によって制御パルプ 2 1が A回路に切換わり始める。 Immediately before the striking piston 2 performing the striking stroke hits the chisel 3, the grooves 6 and 5 are communicated with each other through the annular groove 11 formed between the large-diameter portion 2a and the large-diameter portion 2b. It is. As a result, the oil passage 24 is opened to a low pressure through the oil passage 12, so that the drive chamber CV 1 of the control valve 21 connected to the oil passage 24 changes from high pressure to low pressure, and acts on the drive chamber CV 2. High pressure causes control pulp 21 to begin switching to circuit A.
し力、し、 この時には打撃ピストン 2は打撃方向に十分に加速されており、上記制 御ノ,ルブ 2 1が A回路に切換わる前にチゼル 3を打撃する。  At this time, the striking piston 2 is sufficiently accelerated in the striking direction, and strikes the chisel 3 before the control lever 21 switches to the A circuit.
この時、打撃対象物が硬いとチゼル 3が当該打撃対象物に食込まない。 このよう にチゼル 3の変位がない場合には、打撃ビストン 2もチゼル 3の打擊方向にこれ以 上変位することがなく、 図 1に示す'ような理論的打撃位置(正規の打撃位置) Lの 状態になる。  At this time, if the hitting target is hard, the chisel 3 does not cut into the hitting target. When the chisel 3 is not displaced in this manner, the impact biston 2 does not further displace in the hitting direction of the chisel 3, and the theoretical striking position (regular striking position) L as shown in FIG. State.
従って、打撃ビストン 2の大径部 2 bの受圧面 P S 2がブレーキ室 1 3に入り込 んで当該ブレーキ室 1 3を密閉する事がなく、このためブレーキ室 1 3では通常の 作動高圧以上の高い圧力が発生することがない。  Therefore, the pressure receiving surface PS 2 of the large diameter portion 2 b of the impact piston 2 does not enter the brake chamber 13 to seal the brake chamber 13, so that the brake chamber 13 has a pressure higher than the normal operating high pressure. No high pressure is generated.
これによりストローク制御バルブ 5 1の駆動室 S V 3には通常の作動高圧以上 の高い圧力が作用することなく、当該ストローク制御バルブ 5 1はその位置から切 換わらずに B回路の状態を保持する。  As a result, the drive chamber SV3 of the stroke control valve 51 is not subjected to a high pressure equal to or higher than the normal operating high pressure, and the stroke control valve 51 maintains the state of the B circuit without switching from that position.
このようにして打撃ピストン 2がチゼル 3を打撃した後には、制御バルブ 2 1が A回路に切換わっていることから、打撃ビストン 2の大径部 2 aの受圧面 P S 1に 作用していた高圧が溝 4、油路 2 5、制御バルブ 2 1、 油路 2 6を通じてタンク T に戻され、 これにより収容室 9が低圧になる。 ,  After the striking piston 2 hits the chisel 3 in this manner, the control valve 21 was switched to the A circuit, and thus acted on the pressure-receiving surface PS 1 of the large-diameter portion 2a of the striking piston 2. The high pressure is returned to the tank T through the groove 4, the oil passage 25, the control valve 21 and the oil passage 26, whereby the pressure in the storage chamber 9 becomes low. ,
従って、油圧ポンプ Pから油路 2 0、 2 3、溝 8を通じて収容室 1 0に供給され る作動流体により打撃ピストン 2は再び戻り行程を始める。  Accordingly, the striking piston 2 starts a return stroke again by the working fluid supplied from the hydraulic pump P to the storage chamber 10 through the oil passages 20, 23, and the groove 8.
このように打撃ビストン 2が後退して大径部 2 bの受圧面 P S 2が溝 7に達し て溝 8と溝 7とが連通しても、ストローク制御バルブ 5 1が B回路の状態で油路 6 1が遮断されているため、 この油路 6 1と油路 6 2、 2 4を通じて制御パルプ 2 1 の駆動室 C V 1に高圧が作用することがなく、これにより打撃ピストン 2は戻り行 程を続行する。 そして、打撃ピストン 2がさらに後退して大径部 2 bの受圧面 P S 2が溝 6に達 して溝 8と連通すると、溝 8から導入された作動流体が溝 6から油路 2 4を通じて 制御バルブ 2 1の駆動室 C V 1に作用する。これにより制御バルブ 2 1が再ぴ B回 路に切換わって作動流体を油路 2 5、 溝 4を通じて収容室 9に導入する。 従って、 大径部 2 aの受圧面 P S 1には高圧が作用する状態となり、この結果打撃ビストン 2は打撃行程に移行する。 Even if the impact piston 2 recedes and the pressure receiving surface PS2 of the large diameter portion 2b reaches the groove 7 and the grooves 8 and 7 communicate with each other, the stroke control valve 51 remains in the state of the B circuit in the oil state. Since the passage 61 is shut off, no high pressure acts on the drive chamber CV 1 of the control pulp 21 through the oil passage 61 and the oil passages 62, 24, whereby the striking piston 2 returns. Continue the process. When the impact piston 2 further retreats and the pressure receiving surface PS 2 of the large diameter portion 2 b reaches the groove 6 and communicates with the groove 8, the working fluid introduced from the groove 8 flows from the groove 6 through the oil passage 24. Acts on drive chamber CV 1 of control valve 21. As a result, the control valve 21 is switched to the regeneration B circuit, and the working fluid is introduced into the storage chamber 9 through the oil passage 25 and the groove 4. Accordingly, a high pressure is applied to the pressure receiving surface PS1 of the large diameter portion 2a, and as a result, the impact piston 2 shifts to an impact stroke.
これにより打撃ピストン 2は前述と同様にしてチゼル 3を打撃し、当該チゼル 3 が打撃対象物に食込まない場合には、前述と同様にブレーキ室 1 3では通常の作動 高圧以上の高い圧力が発生することがない。従って、ストローク制御パルプ 5 1も 切換わることなく B回路を維持することになり、戻り行程が前述と同様に大径部 2 bの受圧面 P S 2が溝 6まで戻って再び打撃行程に移行する。つまり、打撃対象物 が硬くてチゼル 3が当該打撃対象物に食い込まない場合には大径部 2 bの受圧面 P S 2が溝 6まで戻つて打擊行程に移行する所謂ロングストローク S 2 (図 3参照 ) 動作を繰り返すことになる。  As a result, the striking piston 2 strikes the chisel 3 in the same manner as described above, and if the chisel 3 does not bite into the object to be struck, a high pressure equal to or higher than the normal operating high pressure is applied in the brake chamber 13 as described above. Does not occur. Accordingly, the stroke control pulp 51 also maintains the B circuit without switching, and the return stroke returns to the groove 6 with the pressure receiving surface PS 2 of the large-diameter portion 2b returning to the groove 6 in the same manner as described above. . That is, when the hitting object is hard and the chisel 3 does not bite into the hitting object, the so-called long stroke S 2 (FIG. 3) in which the pressure receiving surface PS 2 of the large diameter portion 2 b returns to the groove 6 and shifts to the hitting stroke. (Refer to the above).
一方、打撃対象物が柔らかかったり、 もしくは硬い打擊対象物でも破碎されるこ とにより、打撃ピス トン 2によりチゼル 3を打撃した際に、チゼル 3が打擊対象物 に食い込んだ場合には次のような動作が行われる。  On the other hand, when the hitting target is soft or hard and the target is broken, the chisel 3 digs into the hitting target when hitting the chisel 3 with the hitting piston 2. Operation is performed.
チゼル 3が打撃対象物に食い込むことによって打擊ピストン 2も同様に打撃方 向に変位し、これによつて大径部 2 bの受圧面 P S 2が溝 8を超えてブレーキ室 1 3に入り込み当該ブレーキ室 1 3が密閉された部屋になる。つまり、打撃ビストン 2が図 3に示すストローク S (—定距離)ぶんブレーキ室 1 3側に変位した場合で ある。  The striking piston 2 is similarly displaced in the striking direction as the chisel 3 bites into the striking object, whereby the pressure receiving surface PS 2 of the large diameter portion 2b passes through the groove 8 and enters the brake chamber 13 to cause the striking. The brake room 13 becomes a closed room. In other words, the case where the impact biston 2 is displaced toward the brake chamber 13 by the stroke S (—constant distance) shown in FIG.
これによりブレーキ室 1 3に閉じ込められた作動流体は打撃ビス トン 2の運動 エネルギーを吸収してその圧力が上昇し、この圧力が油路 5 7を通じてストローク 制御パルプ 5 1の駆動室 S V 3に作用する。従って、ブレーキ室 1 3で上昇した作 動流体の圧力が所定の値を超えて高くなり、 S V 3 +パネ S 3力 > S V 1 + S V 2 になるとストローク制御パルプ 5 1が B回路から A回路に切換わる。 As a result, the working fluid confined in the brake chamber 13 absorbs the kinetic energy of the striking biston 2 and its pressure increases, and this pressure acts on the drive chamber SV 3 of the stroke control pulp 51 through the oil passage 57. I do. Therefore, the pressure of the working fluid that has risen in the brake chamber 13 exceeds a predetermined value and increases, and the SV 3 + panel S 3 force> SV 1 + SV 2 When this happens, the stroke control pulp 51 switches from circuit B to circuit A.
これによりストローク制御パルプ 5 1の駆動室 S V 2には油路 2 5から分岐し た油路 6 0が油路 5 5を介して連通される。 この時、制御バルブ 2 1の B回路から A回路への切換えが終了していれば、油路 2 5が低圧になっていることからストロ ーク制御バルブ 5 1の駆動室 S V 2も低圧になっている。従って、ストローク制御 バルブ 5 1は、 S V 3〉S V Iに設定されているので A回路の状態を保持する。 As a result, an oil passage 60 branched from the oil passage 25 is connected to the drive chamber SV2 of the stroke control pulp 51 via the oil passage 55. At this time, if the switching of the control valve 21 from the circuit B to the circuit A has been completed, since the oil passage 25 is at a low pressure, the drive chamber SV 2 of the stroke control valve 51 is also at a low pressure. Has become. Therefore, the stroke control valve 51 holds the state of the circuit A because S V 3> S VI is set.
—方、制御パルプ 2 1の B回路から A回路への切換えが終了していない場合には 、油路 2 5がいまだ高圧であるため、ストローク制御バルブ 5 1の駆動室 S V 2に は駆動室 S V Iと同様に高圧が作用している。 し力 し、駆動室 S V 3に作用してい るブレーキ室 1 3からの圧力は通常の作動圧力より十分に高いため S V 3 +パネ S 3力〉 S V 1 + S V 2の関係が変わることなく、ストローク制御バルブ 5 1は A 回路の状態を保持する。 On the other hand, if the switching of the control pulp 21 from the circuit B to the circuit A has not been completed, since the oil passage 25 is still at a high pressure, the drive chamber SV 2 of the stroke control valve 51 is provided with a drive chamber. High pressure works like SVI. Therefore, the pressure from the brake chamber 13 acting on the drive chamber SV 3 is sufficiently higher than the normal operating pressure, so that the relationship SV 3 + panel S 3 force> SV 1 + SV 2 remains unchanged. The stroke control valve 51 holds the state of the circuit A.
つまり、この状況では制御パルプ 2 1の切換わり状態に関わらずストローク制御 バルブ 5 1は A回路の状態を保持することになる。  That is, in this situation, the stroke control valve 51 maintains the state of the A circuit regardless of the switching state of the control pulp 21.
なお、 このストローク制御パルプ 5 1の A回路への切換わりにより、油圧ポンプ Pからの高圧の作動流体が油路 2 3、 5 0、 5 6、 5 9、 5 7を通じてブレーキ室 1 3側に流入しょうとするものの、ブレーキ室 1 3の圧力がこの作動流体の圧力よ りも高いため、 当該作動流体がブレーキ室 1 3に流入することはない。  The switching of the stroke control pulp 51 to the circuit A causes the high-pressure working fluid from the hydraulic pump P to flow into the brake chamber 13 through the oil passages 23, 50, 56, 59, 57. The working fluid does not flow into the brake chamber 13 because the pressure in the brake chamber 13 is higher than the pressure of the working fluid.
そして、制御パルプ 2 1が A回路に切換わると、油路 2 5を通じて収容室 9が低 圧になって打撃ピストン 2の大径部 2 aの受圧面 P S 1に作用する圧力が低下す るため、 ブレーキ室 1 3の圧力も低下する。従って、 ブレーキ室 1 3の圧力が油圧 ポンプ Pから供給される作動流体の圧力よりも低下すると、当該作動流体が逆止弁 5 8を介して油路 5 9、 5 7を通じてブレーキ室 1 3に流入する。 これによつて打 撃ビストン 2の大径部 2 bの受圧面 P S 2がブレーキ室 1 3から速やかに出て前 述した戻り行程を行うことになる。  Then, when the control pulp 21 is switched to the A circuit, the pressure in the accommodation chamber 9 becomes low through the oil passage 25, and the pressure acting on the pressure receiving surface PS 1 of the large diameter portion 2a of the impact piston 2 decreases. Therefore, the pressure in the brake chamber 13 also decreases. Therefore, when the pressure in the brake chamber 13 drops below the pressure of the working fluid supplied from the hydraulic pump P, the working fluid flows into the brake chamber 13 through the check valves 58 and the oil passages 59 and 57. Inflow. As a result, the pressure receiving surface PS2 of the large-diameter portion 2b of the impact piston 2 quickly comes out of the brake chamber 13 to perform the return stroke described above.
但し、 この戻り行程ではストローク制御バルブ 5 1が A回路の状態にあるため、 大径部 2 bの受圧面 P S 2が溝 7に達した時に打撃行程に移行する、所謂ショート ストローク S 1 (図 3参照) になる。 However, in this return stroke, since the stroke control valve 51 is in the state of the A circuit, When the pressure receiving surface PS2 of the large-diameter portion 2b reaches the groove 7, a so-called short stroke S1 (see FIG. 3) is made, which shifts to the impact stroke.
このように打撃ビス トン 2でチゼル 3を打撃した際の当該チゼル 3の変位に基 づいて、次回の打擊ストロークをショートストローク S 1とロングストローク S 2 とのいずれかに自動的に変更することができる。つまり、打撃ピストン 2の大径部 2 bが一定距離移動してブレーキ室 1 3を密閉し、ブレーキ室 1 3で高圧を発生さ せるか否かにより次回の打撃ストロークを自動的に変更することができる。  In this manner, the next stroke is automatically changed to either the short stroke S1 or the long stroke S2 based on the displacement of the chisel 3 when the chisel 3 is hit with the striking biston 2. Can be. In other words, the large-diameter portion 2b of the impact piston 2 moves a certain distance to seal the brake chamber 13 and automatically change the next impact stroke depending on whether or not high pressure is generated in the brake chamber 13. Can be.
また、油圧回路に備えられたストローク制御バルブ 5 1とこのストローク制御バ ルブ 5 1に直接連通される油路とから構成される機構(本発明でいうストローク制 御バルブをその切換位置で所定時間保持する保持機構)によりストローク制御バル ブ 5 1の切換位置を保持して制御パルプ 2 1の切換を行うことで、打撃ピストン 2 をストローク制御しているため、当該ストローク制御を効率よく的確に行うことが できる。  Also, a mechanism comprising a stroke control valve 51 provided in the hydraulic circuit and an oil passage directly connected to the stroke control valve 51 (the stroke control valve according to the present invention is moved for a predetermined time at its switching position). The stroke control of the striking piston 2 is performed by switching the control pulp 21 by holding the switching position of the stroke control valve 51 by the holding mechanism that holds the stroke, thereby performing the stroke control efficiently and accurately. be able to.
ところで、以上説明したように作動する打撃装置 1では、その打撃始動前におい て打撃ビストン 2がガス圧によって最下方まで下降して大径部 2 bがブレーキ室 1 3に食い込んだ状態になっている場合がある。 これは、例えばハツリ整形作業等 を行う時にしばしば発生する。  By the way, in the striking device 1 that operates as described above, before the striking starts, the striking biston 2 descends to the lowest position due to the gas pressure, and the large diameter portion 2 b enters the brake chamber 13. May be. This often occurs, for example, when performing shaving operations.
この場合には次のようにして打撃装置 1を通常の打撃動作に復帰させる。  In this case, the striking device 1 is returned to the normal striking operation as follows.
打撃始動前においてストローク制御パルプ 5 1はパネ S 3により A回路の状態 になっている。  Before starting the impact, the stroke control pulp 51 is in the state of the circuit A by the panel S3.
この状態で打撃装置 1に油圧ポンプ Pから高圧の作動流体を導入すると、制御バ ルブ 2 1が駆動室 C V 2に導かれた高圧により A回路の状態になり、大径部 2 aの 受圧面 P S 1に作用する圧力が低圧になる。  In this state, when a high-pressure working fluid is introduced from the hydraulic pump P to the striking device 1, the control valve 21 is brought into the state of the A circuit by the high pressure guided to the drive room CV2, and the pressure receiving surface of the large-diameter portion 2a is formed. The pressure acting on PS 1 becomes lower.
—方、作動流体は油路 2 3を通じて溝 8に導力れるものの、当該溝 8が大径部 2 により閉鎖された状態にあるため、この溝 8を通じて作動流体を大径部 2 bの受 圧面 P S 2に直接作用させるのは困難な状態になっている。 し力 し、 作動流体は油路 2 3から分岐された油路 5 0、 油路 5 6、 ストローク制 御パルプ 5 1、油路 5 9、 5 7を通じてブレーキ室 1 3に導かれるため、 この作動 流体が大径部 2 bの受圧面 P S 2に作用し、これにより打撃ビストン 2をブレーキ 室 1 3から脱出させて戻り行程を開始する。 なお、 ここでいうストローク制御バル ブ 5 1、 油路 5 0、 5 6、 5 7、 5 9からなる機構を、 ブレーキ室 1 3に作動流体 を供給する供給機構とする。つまり、 このような場合でも油圧回路に備えられた供 給機構によりブレーキ室 1 3に作動流体を供給することによって、打擊ピストン 2 をブレーキ室 1 3から確実に脱出させて戻り行程を開始させることができる。 また、 この作動流体は、油路 2 3から分岐された油路 5 0、 油路 5 2を通じてス トローク制御バルブ 5 1の駆動室 S V 1と、油路 5 0、 5 6、 ストロ一ク制御バル ブ 5 1、油路 5 9、 5 7を経由してストローク制御バルブ 5 1の駆動室 S V 3とに 導かれている。 し力、し、ストローク制御パルプ 5 1の駆動室 S V 1に作用する力は 駆動室 S V 3に作用する力よりも小さくなるように設定されているため、ストロー ク制御パルプ 5 1はパネ S 3力と相まって A回路の状態に保持される。 On the other hand, although the working fluid is guided to the groove 8 through the oil passage 23, the working fluid is received by the large diameter portion 2b through the groove 8 because the groove 8 is closed by the large diameter portion 2. It is difficult to make it act directly on the pressure surface PS2. The hydraulic fluid is guided to the brake chamber 13 through the oil passage 50, the oil passage 56, the stroke control pulp 51, and the oil passages 59, 57 branched from the oil passage 23. The working fluid acts on the pressure receiving surface PS2 of the large-diameter portion 2b, thereby causing the percussion biston 2 to escape from the brake chamber 13 and start the return stroke. The mechanism including the stroke control valve 51 and the oil passages 50, 56, 57, 59 is a supply mechanism for supplying the working fluid to the brake chamber 13. That is, even in such a case, by supplying the working fluid to the brake chamber 13 by the supply mechanism provided in the hydraulic circuit, the driving piston 2 can be surely escaped from the brake chamber 13 to start the return stroke. Can be. The working fluid is supplied to the drive chamber SV 1 of the stroke control valve 51 through the oil passage 50 and the oil passage 52 branched from the oil passage 23, and to the oil passages 50, 56, and the stroke control. It is led to the drive chamber SV 3 of the stroke control valve 51 via the valve 51 and the oil passages 59 and 57. Since the force acting on the drive room SV1 of the stroke control pulp 51 is set to be smaller than the force acting on the drive room SV3, the stroke control pulp 51 It is held in the state of the A circuit in combination with the force.
従って、 この時の戻り行程は、大径部 2 bの受圧面 P S 2が溝 7に達した時に打 撃行程に移行する、 所謂ショートストローク S 1になる。  Therefore, the return stroke at this time is a so-called short stroke S1, which shifts to an impact stroke when the pressure receiving surface PS2 of the large diameter portion 2b reaches the groove 7.
これにより打撃始動前において打撃ビストン 2の大径部 2 bがブレーキ室 1 3 に食い込んだ状態になっている場合でも、チゼル 3を強制に押し付けて打撃ビスト ン 2の大径部 2 bをブレーキ室 1 3から退避させる作業をいちいち行うことなく、 速やかに打撃始動させることができる。  As a result, even if the large-diameter portion 2b of the impact piston 2 is biting into the brake chamber 13 before the impact starts, the chisel 3 is forcibly pressed to brake the large-diameter portion 2b of the impact piston 2. It is possible to quickly start the impact without having to retreat from the room 13 one by one.
図 5は、 本発明の液圧式打撃装置における他の回路構成を示している。  FIG. 5 shows another circuit configuration of the hydraulic impact device of the present invention.
この回路構成は、図 2に示す回路構成を若干簡略したもので、図 2で説明したよ うに打撃ビストン 2の第 1撃目がショートストロークになることに拘らなければ、 このような回路構成によっても打撃ビストン 2を前述と同様に作動制御すること ができる。 具体的には、 図 2に示す油路 3 8を廃止して、油路 2 3から分岐した油 路 3 6がストローク制御バルブ 2 9の駆動室 S V 1に連通している。 また、パネ S 1も廃止されている。 This circuit configuration is a slightly simplified version of the circuit configuration shown in FIG. 2, and unless the first shot of the impact biston 2 is a short stroke as described in FIG. 2, this circuit configuration is also used. The operation of the percussion biston 2 can be controlled in the same manner as described above. Specifically, the oil passage 38 shown in FIG. 2 is eliminated, and an oil passage 36 branched from the oil passage 23 communicates with the drive chamber SV 1 of the stroke control valve 29. Also, Panel S 1 has also been abolished.
これにより、打撃ピストン 2の第 1擊目は、図 2に示す回路構成のように常にシ ユートストロークにならず、ストローク制御バルブ 2 9の打撃始動前の停止位置に よりロングストロークになる可能性はある力 第 2撃目以降は、前の打撃により打 撃ビストン 2がブレーキ室 1 3に入れば、 次の打撃がシュートストロークになり、 プレーキ室 1 3に入らなければ、次の打撃がロングストロークになるように図 2 'に 示す回路構成と同様な制御を行うことができる。  As a result, the first stroke of the striking piston 2 does not always have a short stroke as in the circuit configuration shown in FIG. 2, but may have a longer stroke due to the stop position of the stroke control valve 29 before the striking starts. After the second shot, if the previous hit hits Biston 2 into the brake chamber 13, the next hit will be a shot stroke, and if it does not enter the brake chamber 13, the next hit will be a long stroke Thus, the same control as the circuit configuration shown in FIG. 2 'can be performed.
なお、上述したようにこの回路構成は、図 2に示す回路構成を若干簡略しただけ であることから、図 2で説明した回路構成と同様な構成のバルブゃ油路などについ ては同符号を付して詳細な説明は省略する。  Note that, as described above, this circuit configuration is only slightly simplified from the circuit configuration shown in FIG. 2, and therefore, the same reference numerals are used for valves and oil passages having the same configuration as the circuit configuration described in FIG. The detailed description is omitted.
以上述べたように、本努明の液圧式打撃装置によれば、打撃ビストンでチゼノレを 打擊した際の当該チゼルの変位に基づいて、次回の打擊ストロークをショートスト ロークとロングストロークとのいずれかに自動的に変更することができる。 また、 油圧回路に備えられた保持機構によりストローク制御バルブの切換位置を保持し て打撃ビストンをストローク制御することで、当該ストローク制御を効率よく的確 に行うことができる。  As described above, according to the hydraulic striking device of the present invention, the next striking stroke is either a short stroke or a long stroke based on the displacement of the chisel when striking chizenore with the striking biston. Can be changed automatically. Further, by controlling the stroke of the striking biston while holding the switching position of the stroke control valve by the holding mechanism provided in the hydraulic circuit, the stroke control can be performed efficiently and accurately.
また、供給機構によりブレーキ室に作動流体を供給することによって、打撃ビス トンをブレーキ室から確実に脱出させて戻り行程を開始させることができる。これ により打撃始動前において打撃ピストンがブレーキ室に入り込んだ状態になって レ、る場合でも、チゼルを強制に押し付けて打撃ビストンをブレーキ室から退避させ る作業をいちいち行うことなく、 速やかに打撃始動させることができる。  Further, by supplying the working fluid to the brake chamber by the supply mechanism, it is possible to reliably cause the impact biston to escape from the brake chamber and start the return stroke. As a result, even if the striking piston enters the brake chamber before starting the striking operation, the striking operation can be quickly started without having to forcibly press the chisel to retract the striking biston from the braking chamber. Can be done.
なお、本発明は、 その精神または主要な特徴から逸脱することなく、他のいろい ろな形で実施することができる。そのため、上述の実施の形態はあらゆる点で単な る例示にすぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲によつ て示すものであって、 明細書本文には、 なんら拘束されない。 さらに、請求の範囲 の均等範囲に属する変形や変更は、 全て本発明の範囲内のものである。 また、 この出願は、 2 0 0 3年 6月 2 5日に日本で出願された特顋 2 0 0 3— 1 8 0 7 2 6号に基づく優先権 ¾請求する。 これに言及することにより、その全ての 内容は本出願に組み込まれるものである。 産業上の利用可能性 It should be noted that the present invention can be implemented in other various forms without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in every aspect, and should not be construed as limiting. The scope of the present invention is defined by the appended claims, and is not restricted by the specification. Furthermore, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention. In addition, this application claims priority based on Japanese Patent Application No. 2003-18080726 filed in Japan on June 25, 2003. By reference to this, the entire contents are incorporated into the present application. Industrial applicability
本発明に係る液圧式打撃装置は、一般に建設 ·土木などの分野の機械に利用可能 である。  The hydraulic impact device according to the present invention is generally applicable to machines in fields such as construction and civil engineering.

Claims

請求の範囲 The scope of the claims
1 . 打撃ビストンを往復運動させてチゼルを打撃する液圧式打撃装置において、 前記打撃ビストンが正規の打撃位置を超えて前記チゼルの打撃方向に一定距離 移動した際に、 当該打撃ピストンにより密閉された部屋となるブレーキ室と、 上記ブレーキ室の圧力が所定の値を超えた場合にストロークを短くして打撃力 を減ずるように信号を発するストローク制御バルブと、 1. In a hydraulic hitting device that hits a chisel by reciprocating the hitting piston, when the hitting piston moves beyond a regular hitting position in the hitting direction of the chisel by a certain distance, the hitting piston is sealed. A brake chamber serving as a room, a stroke control valve for issuing a signal to shorten the stroke and reduce the striking force when the pressure in the brake chamber exceeds a predetermined value,
ストローク制御バルブをその切換位置で所定時間保持する保持機構とを備えた ことを特徵とする液圧式打撃装置。  And a holding mechanism for holding the stroke control valve at the switching position for a predetermined time.
2 . 打擊始動時において前記打撃ピストンが前記ブレーキ室に入っている場合に 、打撃ビストンをブレーキ室から脱出させるように当該ブレーキ室に作動流体を供 給する供給機構を備えたことを特徴とする請求の範囲第 1項に記載の液圧式打撃 装置。 2. A supply mechanism for supplying a working fluid to the brake chamber so that the striking piston can escape from the brake chamber when the striking piston is in the brake chamber at the time of starting striking. The hydraulic hitting device according to claim 1.
PCT/JP2004/008667 2003-06-25 2004-06-14 Hydraulic hammering device WO2005000532A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112004001161T DE112004001161T5 (en) 2003-06-25 2004-06-14 Hydraulic impact device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003180726A JP4488694B2 (en) 2003-06-25 2003-06-25 Hydraulic striking device
JP2003-180726 2003-06-25

Publications (1)

Publication Number Publication Date
WO2005000532A1 true WO2005000532A1 (en) 2005-01-06

Family

ID=33549510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008667 WO2005000532A1 (en) 2003-06-25 2004-06-14 Hydraulic hammering device

Country Status (3)

Country Link
JP (1) JP4488694B2 (en)
DE (1) DE112004001161T5 (en)
WO (1) WO2005000532A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2902684A1 (en) * 2006-06-27 2007-12-28 Montabert Soc Par Actions Simp METHOD FOR SWITCHING THE STROKE STROKE OF A MU-PERCUSSION APPARATUS BY AN INCOMPRESSIBLE FLUID UNDER PRESSURE, AND APPARATUS FOR CARRYING OUT SAID METHOD
CN102071714A (en) * 2010-12-09 2011-05-25 三一重机有限公司 Method and device for controlling expansion of hydraulic circuit of excavator
CN102650139A (en) * 2012-03-19 2012-08-29 上海三一重机有限公司 Monitoring system and monitoring method used for breaking hummer of excavator
CN105916633A (en) * 2014-01-31 2016-08-31 古河凿岩机械有限公司 Hydraulic hammering device
CN109641347A (en) * 2016-08-31 2019-04-16 古河凿岩机械有限公司 Fluid pressure type percussion mechanism

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384752B1 (en) * 2012-11-16 2014-04-14 이일재 Hydraulic hammer
KR101805038B1 (en) 2016-06-21 2017-12-06 주식회사 수산중공업 Hydraulic percussion apparatus
KR101919708B1 (en) 2017-09-01 2019-02-11 대모 엔지니어링 주식회사 Hydraulic percussion device and construction equiqment having the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09174461A (en) * 1995-12-07 1997-07-08 Krupp Bautechnik Gmbh Control method for operating characteristics of fluid drive shock machine with shock piston, and shock machine for carrying out this method
JP2003159667A (en) * 2001-11-20 2003-06-03 Furukawa Co Ltd Hydraulic striker stroke adjusting mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09174461A (en) * 1995-12-07 1997-07-08 Krupp Bautechnik Gmbh Control method for operating characteristics of fluid drive shock machine with shock piston, and shock machine for carrying out this method
JP2003159667A (en) * 2001-11-20 2003-06-03 Furukawa Co Ltd Hydraulic striker stroke adjusting mechanism

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2902684A1 (en) * 2006-06-27 2007-12-28 Montabert Soc Par Actions Simp METHOD FOR SWITCHING THE STROKE STROKE OF A MU-PERCUSSION APPARATUS BY AN INCOMPRESSIBLE FLUID UNDER PRESSURE, AND APPARATUS FOR CARRYING OUT SAID METHOD
WO2008000958A2 (en) * 2006-06-27 2008-01-03 Montabert Percussion equipment driven by a pressurized incompressible fluid
WO2008000958A3 (en) * 2006-06-27 2008-02-21 Montabert Roger Percussion equipment driven by a pressurized incompressible fluid
CN101500761B (en) * 2006-06-27 2012-01-25 蒙塔贝特公司 Percussion equipment driven by a pressurized incompressible fluid
US8151900B2 (en) 2006-06-27 2012-04-10 Montabert Percussion equipment driven by a pressurized incompressible fluid
CN102071714A (en) * 2010-12-09 2011-05-25 三一重机有限公司 Method and device for controlling expansion of hydraulic circuit of excavator
CN102071714B (en) * 2010-12-09 2012-10-31 三一重机有限公司 Method and device for controlling expansion of hydraulic circuit of excavator
CN102650139A (en) * 2012-03-19 2012-08-29 上海三一重机有限公司 Monitoring system and monitoring method used for breaking hummer of excavator
CN105916633A (en) * 2014-01-31 2016-08-31 古河凿岩机械有限公司 Hydraulic hammering device
US10493610B2 (en) 2014-01-31 2019-12-03 Furukawa Rock Drill Co., Ltd. Hydraulic hammering device
CN109641347A (en) * 2016-08-31 2019-04-16 古河凿岩机械有限公司 Fluid pressure type percussion mechanism
CN109641347B (en) * 2016-08-31 2021-08-31 古河凿岩机械有限公司 Hydraulic impact device

Also Published As

Publication number Publication date
DE112004001161T5 (en) 2007-02-15
JP4488694B2 (en) 2010-06-23
JP2005014134A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
US5944120A (en) Hydraulic hammer assembly having low vibration characteristics
KR101138987B1 (en) Hydraulic breaker with function for changing piston stroke automatic
EP2948275B1 (en) Hammer assembly with variable volume accumulator
JPH0678717B2 (en) Hybrid pneumatic impact rock drill
CN108869433B (en) Reversing valve for increasing hitting force of hydraulic breaking hammer
WO2005000532A1 (en) Hydraulic hammering device
EP1802426B1 (en) Percussion device
CA1151679A (en) Device for breaking a hard material
AU2012240638B2 (en) Device and method for rock- and concrete machining
JP2005177899A (en) Hydraulic hammering device
EP1089854A1 (en) Hammer device
RU2529133C2 (en) Percussive mechanism for hammering device and method to open outlet hole
KR100510966B1 (en) Idle blow preventing device in hydraulic breaker
US4142447A (en) Hydraulic actuator
CN105710845B (en) Hydraulic hammer with variable stroke control
CN114893454A (en) Hydraulic breaking hammer and engineering machinery
JP5342778B2 (en) Impact device
KR100524671B1 (en) Breaker
KR100569198B1 (en) Hydraulic percussion device
US6152013A (en) Hydraulically actuated breaker with lost-motion prevention device
JP2004358619A (en) Hydraulic impacter device
JPH08276374A (en) Nailing machine equipped with single/continuous drive switch-over mechanism
CN217301064U (en) Hydraulic breaking hammer and engineering machinery
JPH0763940B2 (en) Impact tool
US4192219A (en) Hydraulic actuator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
RET De translation (de og part 6b)

Ref document number: 112004001161

Country of ref document: DE

Date of ref document: 20070215

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112004001161

Country of ref document: DE