WO2004113013A1 - Solder member, solder material, soldering method, method of manufacturing solder material, and solder connecting member - Google Patents

Solder member, solder material, soldering method, method of manufacturing solder material, and solder connecting member Download PDF

Info

Publication number
WO2004113013A1
WO2004113013A1 PCT/JP2004/008888 JP2004008888W WO2004113013A1 WO 2004113013 A1 WO2004113013 A1 WO 2004113013A1 JP 2004008888 W JP2004008888 W JP 2004008888W WO 2004113013 A1 WO2004113013 A1 WO 2004113013A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
alloy
weight
phase
powder
Prior art date
Application number
PCT/JP2004/008888
Other languages
French (fr)
Japanese (ja)
Inventor
Than Trong Long
Yuuji Hisazato
Junji Kajiwara
Takayuki Naba
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003179997A external-priority patent/JP4363915B2/en
Priority claimed from JP2003185845A external-priority patent/JP2005014076A/en
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Publication of WO2004113013A1 publication Critical patent/WO2004113013A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3485Applying solder paste, slurry or powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0224Conductive particles having an insulating coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10992Using different connection materials, e.g. different solders, for the same connection

Definitions

  • solder member solder material, soldering method, solder material manufacturing method, and solder joint member
  • the present invention relates to a solder member, a solder material, a soldering method, a method of manufacturing a solder material, and a solder joint member having excellent heat conduction characteristics and mechanical properties.
  • solder is used for power control computer boards, home appliances, personal computers, etc., and harmful heavy metals such as lead may flow out of the solder. For example, when lead spills out, it acts on acid rain and produces an aqueous solution containing lead, which may enter groundwater.
  • Solder plays an important role in mechanically and electrically connecting a plurality of component parts used in an environment under severe conditions involving thermal cycling, mechanical shock, mechanical vibration, and the like. Free soldering also requires mechanical and physical properties equivalent to those of Sn-Pb solders that have been used in the past.
  • the Cu base deforms significantly after soldering due to the difference in the thermal expansion coefficient between the ceramic and the metal.
  • mechanical properties such as heat conduction characteristics and fatigue strength are significantly reduced, and required characteristics cannot be secured.
  • the eutectic composition Sn-0.7% by weight ⁇ 1 or the Cu content is 0.7%.
  • a Sn alloy near 7 is used.
  • Cu concentrates in front of the solidification of (Sn) dendrites, in which the amount of solid solution of Cu in Sn is about 0.006% by weight, and (Sn):
  • a eutectic structure of 5 6 n43.5-5-45.5 atomic%) or a eutectic structure of primary crystals ⁇ , ( ⁇ Sn) and ⁇ is formed. These eutectic structures may have cracks when cooled due to low mechanical strength (for example, see Non-Patent Document 2).
  • Non-Patent Document 1 Proposal for a Directive of the European Parliament and of tne Council on Waste Electrical and Electronic Equipment, Commission of the European Communities, Brussels, 13.6.2000
  • Non-Patent Document 2 "Sn-Pb Solder Wettability Analysis of Cu and Cu-Sn Compounds", R & D Review, Central Research Institute of Toyota, Vol. 31, No. 4 (December 1996)
  • the present invention provides a solder member, a solder material, a soldering method, a method for manufacturing a solder material, and a solder member capable of suppressing a decrease in heat conduction characteristics and mechanical properties and improving solder strength and reliability.
  • An object is to provide a solder joint member.
  • a solder member according to the present invention is a solder member for joining a first member and a second member made of a material having a different characteristic from the first member, wherein the first member includes a first solder phase and the first solder phase.
  • a second solder phase having a melting point lower than that of the first solder phase and having a property of solidification and expansion; and a boundary between the first solder phase and the second solder phase.
  • a boundary layer having a higher melting point than the first solder phase.
  • the solder material of the present invention is a solder material for joining a first member and a second member made of a material having different properties from the first member, wherein the first solder material and the first solder material And a second solder material having a melting point lower than that of the first solder material and having solidification and expansion properties.
  • the first member and the first member may be made of a material having different characteristics.
  • a soldering method for joining two members wherein a boundary film is formed on the surface, and the material has a second melting point lower than the first melting point of the material forming the boundary film.
  • the method for producing a solder material according to the present invention includes a second solder comprising at least one of Bi and Sb, a Sn-based alloy containing 50% by weight or more of Bi, a Sn-based alloy containing 6% by weight or more of Sb.
  • the method for producing a solder material of the present invention is characterized in that a Sn-based alloy containing 50% by weight or more of Bi, a Sn-based alloy containing 6% by weight or more of Sb, and at least one of Bi and Sb.
  • the solder material of the present invention is characterized by comprising a Sn-based alloy containing 0.002 to 2.0% by weight of Co and containing Sn or Pb.
  • the solder material of the present invention is characterized in that it contains 0.0-2.0% by weight of Co and 0.02-7.5% by weight of Cu, and the balance consists of Sn and inevitable impurities.
  • the solder material of the present invention contains 0.012% by weight of a first auxiliary component composed of at least one kind of metal selected from Cu, Ag, Au, Co and Ni, and contains Mn, It contains 0.02 to 1.2% by weight of a second auxiliary component composed of at least one metal selected from Pd and Pt, with the balance being Sn and unavoidable impurities.
  • the solder material of the present invention contains a Sn-based alloy containing 0.0-2.0% by weight of Co, Sn or Pb, or 0.0-2.0% by weight of Co, 0.02-7.5% by weight, with the balance comprising a first solder consisting of Sn and unavoidable impurities, and a second solder consisting of an Sn-based alloy containing no Sn or Pb. .
  • the solder joint member of the present invention is a Sn-based alloy containing 0.0-2.0% by weight of Co, Sn or Pb, or 0.02-2.0% by weight of Co,
  • the first member and the second member are joined by using a solder material containing 0.02-7.5% by weight and a balance of Sn and unavoidable impurities.
  • a solder member of the present invention is a solder member for joining a first member and a second member, and is a Sn-based alloy containing 0.02 to 2.0% by weight of Co and containing no Sn or Pb.
  • a first solder phase consisting of: Bi, Sb dispersed in the first solder phase so as to have a plurality of regions, having a lower melting point than the first solder phase, and having the property of solidification expansion; , Ga, Ge, Bi alloy, Sb alloy, Ga alloy, Ge alloy and a second solder phase made of one kind of material selected from the group consisting of Ge alloy.
  • the solder material of the present invention comprises a Sn-based alloy containing 0.05 to 2.0% by weight of Co, not containing Sn or Pb, or 0.02 to 2.0% by weight of Co, and 02—7.5 contains 5% by weight A first solder consisting of Sn and inevitable impurities, and a Bi, Sb, Ga, Ge, Bi alloy, Sb alloy, Ga alloy having a melting point lower than that of the first solder and having a solidification expansion property And a second solder made of one material selected from the group consisting of Ge alloys.
  • FIG. 1A is a sectional view schematically showing a solder member and a solder material according to a first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view schematically showing a solder member and a solder material according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing characteristics of a first solder and a second solder during solidification.
  • FIG. 3A is a sectional view schematically showing a solder member and a solder material according to the first embodiment of the present invention.
  • FIG. 3B is a cross-sectional view schematically showing a solder member and a solder material according to the first embodiment of the present invention.
  • FIG. 4A is a sectional view schematically showing a solder member and a solder material according to the first embodiment of the present invention.
  • FIG. 4B is a cross-sectional view schematically showing a solder member and a solder material according to the first embodiment of the present invention.
  • FIG. 5A is a sectional view schematically showing one example of a solder material according to the first embodiment of the present invention.
  • FIG. 5B is a cross-sectional view schematically showing one example of a solder material according to the first embodiment of the present invention.
  • FIG. 5C is a cross-sectional view schematically showing one example of a solder material according to the first embodiment of the present invention.
  • FIG. 6A is a cross-sectional view of a Cu base showing a deformation amount of the Cu base.
  • FIG. 6B is a cross-sectional view of the Cu base showing the amount of deformation of the Cu base.
  • FIG. 7 is a sectional view schematically showing a solder material according to a second embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view after soldering using a solder material according to a second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing one example of a soldering structure using a solder material according to a second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view schematically showing a cross section after soldering using the solder material according to the second embodiment of the present invention.
  • FIG. 11 is a cross-sectional view schematically showing a cross section after soldering using a conventional solder material.
  • FIG. 12 is a cross-sectional view schematically showing one example of a soldering structure using the solder material according to the second embodiment of the present invention.
  • FIG. 13 is a cross-sectional view schematically showing a cross section after soldering using the solder material according to the second embodiment of the present invention.
  • FIG. 14 is a cross-sectional view schematically showing a cross section after soldering using a conventional solder material.
  • FIG. 15 is a perspective view showing the appearance of a film-like solder material.
  • FIG. 16 is a perspective view showing the appearance of a wire-shaped solder material.
  • FIG. 17 is a perspective view of a lead-free solder formed in a film shape according to a third embodiment of the present invention.
  • FIG. 18 is a sectional view of a lead-free solder formed in a paste according to a third embodiment of the present invention.
  • FIG. 19 is a perspective view of a lead-free solder formed in a wire shape according to a third embodiment of the present invention.
  • FIG. 20 is a perspective view of a lead-free solder formed in a rod shape according to a third embodiment of the present invention.
  • FIG. 21 is a cross-sectional view of a first element member and a second element member joined by lead-free solder.
  • FIG. 22 is a cross-sectional view of a first element member and a second element member joined by two types of lead-free solder.
  • FIG. 23 is a sectional view of a solder joint.
  • FIG. 24 is a diagram showing an outline of measurement of surface tension by a dropping method.
  • FIG. 25A is a view showing a result of elemental analysis.
  • FIG. 25B is a view showing a result of elemental analysis.
  • FIG. 26 is a view showing a result of elemental analysis.
  • FIG. 27A is a view showing a soldering step according to a fourth embodiment of the present invention.
  • FIG. 27B is a view showing a soldering step according to a fourth embodiment of the present invention.
  • FIG. 27C is a view showing a soldering step according to a fourth embodiment of the present invention.
  • FIG. 27D is a diagram showing a soldering step according to the fourth embodiment of the present invention.
  • FIG. 27E is a view showing a soldering step according to the fourth embodiment of the present invention.
  • FIG. 28 is a cross-sectional view of a first element member on which oxidation-resistant solder is installed.
  • 1A and 1B show an example of a soldering structure according to the first embodiment.
  • the first member 10 and the second member 11 made of a material having a different characteristic from the first member 10 are connected to the first member 10 made of a low melting point metal element or a low melting point alloy. It is joined by a solder member 14 made of a solder 12 and a second solder 13 made of a metal element or alloy having the property of solidification expansion. The surface of the second solder 13 is covered with a reaction prevention film 15 functioning as a boundary layer or a boundary coating.
  • the heterogeneous material refers to a material having different properties such as mechanical properties and physical properties irrespective of the same or different composition.
  • the metal used for the first solder 12 is a low-melting-point metal element or a low-melting-point alloy, such as an elemental metal such as Sn, In, or Zn, or a Sn alloy, an In alloy, or a Zn alloy. Is done.
  • Sn alloys the content of Sn in the alloy is appropriately set depending on the mechanical properties, melting point, and the like required for the alloy.
  • the Sn alloy may contain elemental metals such as In and Zn.
  • the In alloy and the Zn alloy may contain other elemental metals.
  • the metal used for the second solder 13 is composed of an elemental metal such as Bi, Sb, Ga, or Ge having the property of expanding when solidified, or a Bi alloy, Sb alloy, Ga alloy, Ge alloy, or the like. .
  • the metal used for the second solder 13 is an alloy, Sn or the like is contained.
  • the content of Bi in the Bi alloy may be 50% by weight or more, and more preferably 58% by weight or more. If the Bi content is less than 50% by weight, the effect of relieving the thermal shrinkage of the first solder 12 due to expansion of the Bi alloy is small.
  • the content of Sb, Ga alloy and Ge alloy is preferably at least 22% by weight, more preferably at least 6% by weight, and further preferably at least 50% by weight.
  • the content of Sb in the Sb alloy is less than 6% by weight, the effect of reducing the thermal shrinkage of the first solder 12 due to the expansion of the Sb alloy is hardly obtained.
  • the second solder 13 may be formed by combining element metals such as Bi, Sb, Ga, and Ge described above. Further, for example, the Bi alloy may contain an elemental metal such as Sb, Ga, and Ge. Similarly, Sb alloys, Ga alloys, and Ge alloys may contain other elemental metals.
  • the content of the second solder 13 in the first solder 12 depends on the amount of strain in the solder phase calculated from the difference between the coefficients of thermal expansion of the first member 10 and the second member 11 by 5-50 volume. It is set appropriately within the range of%. If the content of the second solder 13 is less than 5% by volume, a sufficient solidification and expansion effect cannot be obtained, and if it exceeds 50% by volume, the ductility of the composite solder phase is reduced, and sufficient mechanical properties are secured. This is because it may not be possible.
  • the second solder 13 a metal or an alloy having a melting point lower than the melting point of the first solder 12 is used, and the metal used for the first solder 12 and the second solder 13 is adjusted to meet the conditions. Selection and combination of a group element, an alloy type, an alloy composition, and the like are appropriately performed. Thereby, the effect of alleviating the internal stress in the solder member due to the difference in the thermal expansion coefficient between the first member 10 and the second member 11 can be maximized.
  • the reaction prevention film 15 formed on the surface of the second solder 13 is formed of a metal, a ceramic, or a resin having a melting point higher than the melting point of the material forming the first solder 12.
  • the metal may be, for example, Cu, Ni, Cr, Al, Zn, Au, Ag, Cu alloy, Ni alloy, Cr alloy, Al alloy, Zn alloy, Au alloy. Alloy and Ag It is appropriately selected from at least one of the alloys.
  • the reaction prevention film 15 made of metal is formed on the surface of the second solder 13 by an electrolytic plating method, an electroless plating method, or the like.
  • the reaction prevention film 15 is formed of ceramics
  • examples of the ceramics include, but are not limited to, Al 2 O 3, SiO, A1N, SiN, SiC, TiC, and TiO.
  • reaction prevention film 15 made of ceramics is formed by, for example, a sol-gel method, and this forming method is extremely easy and economical.
  • reaction prevention film 15 is formed of a resin
  • a thermoplastic resin is used as the resin
  • the reaction prevention film 15 is formed by a method of coating a molten resin or a method of adhering fine particles through a binder. And so on.
  • the thickness of the reaction prevention film 15 is appropriately set within a range of 10 nm and 10 ⁇ m according to the required characteristics of the solder member. If the thickness of the reaction preventive film 15 is 10 nm or more, the effect of preventing the reaction between the first solder 12 and the second solder 13 is exhibited.If the thickness exceeds 10 zm, the formation time of the reaction preventive film 15 becomes longer, which is uneconomical. is there. A more preferable range of the thickness of the reaction prevention film 15 is 0.1 ⁇ m to 5 ⁇ m.
  • the soldering conditions such as the soldering temperature and the holding time are controlled to suppress the diffusion or alloying reaction, and the respective mechanical and physical properties of the first solder 12 and the second solder 13 are controlled. If this can be maintained, the reaction prevention film 15 may not be provided.
  • Heating for a minimum holding time required to perform the heating for example, 10 seconds.
  • an alloy reaction layer with a thickness of several ⁇ m is formed at the boundary layer between the first solder 12 and the second solder 13, but the first solder 12 and the second solder 13 are completed.
  • the inherent physical and mechanical properties of the first solder 12 and the second solder 13 that cannot be completely alloyed can be maintained.
  • solder member shown in FIG. 1B, FIG. 3B and FIG. 4B is manufactured, for example, as follows.
  • a material for forming the reaction preventive film 15 of the second solder 13 is selected. If the selected material is a metal, an electrolytic plating method, an electroless plating method, or the like is used. In this case, the reaction preventing film 15 is formed on the surface of the second solder 13 by a sol-gel method or the like, and further when the selected material is a resin by a coating method or the like.
  • a predetermined amount of the second solder 13 coated with the reaction prevention film 15 thus obtained is uniformly arranged on the surface of the first member 10.
  • a predetermined amount of the first solder 12 is uniformly arranged on the second solder 13.
  • the second member 11 is placed on the first solder 12 to obtain a laminated member as shown in FIGS. 1A, 3A and 4A.
  • the laminated member is heated to a temperature equal to or higher than the liquidus temperature of the first solder 12 in the atmosphere or an inert gas atmosphere.
  • the first solder 12 melted by heating is impregnated into the gap between the second solders 13.
  • the first solder 12 solidifies while surrounding the second solder 13 which has a lower melting point than the first solder 12 and is still molten.
  • the second solder 13 solidifies when passing through the melting point of the second solder 13.
  • the second solder 13 solidifies, it expands in volume and exerts the effect of alleviating the strain in the solder phase due to the difference in the coefficient of thermal expansion between the first member 10 and the second member 11, and as shown in FIGS. 1B, 3B and 4B.
  • a solder member that does not undergo deformation due to the difference in thermal expansion coefficient as shown is obtained.
  • 5A, 5B, and 5C a solder member in which the second solder 13 is unevenly distributed in the first solder 12 in advance may be used.
  • the first solder 12 is formed in a plate shape, and the second solder 13 is formed in a spherical or irregular particle shape.
  • the first solder 12 may be formed in a spherical or irregular shape particle shape, similarly to the second solder 13.
  • the first solder 12 may be formed in a plate shape, and the second solder 13 may be formed in a plate shape having a through hole.
  • the shapes of the first solder 12 and the second solder 13 are not limited to the shapes and combinations shown in FIG. 1A, FIG. 3A and FIG. If the first solder 12 impregnates the voids between the second solders 13, it is sufficient.
  • the solder member 14 due to the difference in thermal expansion coefficient between the first member 10 and the second member 11 is determined.
  • Generation of internal stress in the inside is suppressed, and as a result, deformation of the first member 10 and the second member 11 can be reduced.
  • the generation of internal stress in the solder member 14 due to the difference in the thermal expansion coefficient between the first member 10 and the second member 11 can be effectively reduced. Can be suppressed.
  • the second solder 13 is covered with the reaction prevention film 15, no diffusion or alloying reaction occurs between the first solder 12 and the second solder 13. Second, 13 cannot be alloyed. As a result, the unique properties such as the mechanical properties of the first solder 12 and the solidification and expansion properties of the second solder 13 are maintained, and the performance of the solder member 14 can be maximized. .
  • a composite solder material was manufactured by mixing a first solder made of Sn-0.7% by weight Cu powder having an average particle size of about 20 ⁇ ⁇ ⁇ ⁇ ⁇ so that the content of the second solder was 15% by volume.
  • a creamy composite solder was prepared by adding an appropriate amount of flux and a resin binder to facilitate removal of the oxide film on the surface of the bonding material, screen printing, and application. .
  • a composite solder having a thickness of about 100 zm was screen-printed on the surface of the first oxygen-free Cu-based member having a thickness of 3 mm, a width of 100 mm, and a length of 200 mm. Then, a second member of a 0.3 mm thick, 80 mm wide, 180 mm long SiN substrate lined with 100 zm thick pure Cu on both sides is placed on the screen printed composite solder. Thus, a laminated joining member was formed. Subsequently, this laminated joint member was placed in an N gas atmosphere at a temperature of 250 ° C. for 3 minutes.
  • the shear strength of the solder phase at the soldered portions of the soldered first member and second member As a result of measuring and evaluating the degree, the shear strength was 30 MPa.
  • the deformation of the Cu base of the first member was 75 ⁇ m.
  • FIGS. 6A and 6B show a cross section in the longitudinal direction at the center of the width of a Cu base having a thickness of 3 mm, a width of 100 mm, and a length of 200 mm, which constitutes the first member 10.
  • FIG. 6A shows a cross section of the first member 10 before deformation
  • FIG. 6B shows a cross section of the first member 10 after deformation.
  • the deformation amount of the Cu base indicates the maximum deformation distance L between the reference surface 20 and the contact surface 21 of the first member 10 that was in contact with the reference surface 20 in a direction perpendicular to the longitudinal direction of the first member 10. It is.
  • An A1 ⁇ film having a thickness of about 50 nm was formed on the surface of Sn—57 wt% 81 powder having an average particle size of about 20 ⁇ m by a sol-gel method, and a second solder was manufactured. Subsequently, thickness 100 / im, width
  • An 80mm, 180mm long Sn-0.7% by weight Cu sheet is placed on one side of a first solder, and a second solder is placed so that the content of the second solder is 15% by volume and press-molded.
  • a composite solder sheet was manufactured.
  • the shear strength was 32 MPa.
  • the deformation of the Cu base of the first member was 80 ⁇ m.
  • a suitable amount of flux and resin binder were added to the composite solder to prepare a creamy composite solder.
  • a composite solder having a thickness of about 100 zm was screen-printed on the surface of the first member based on oxygen-free Cu having a thickness of 3 mm, a width of 100 mm, and a length of 200 mm. Then, a second member of a 0.3 mm thick, 80 mm wide, 180 mm long SiN substrate lined with 100 zm thick pure Cu on both sides is placed on the screen printed composite solder. Thus, a laminated joining member was formed. Subsequently, the laminated joining member is placed in an N gas atmosphere at a temperature of 300 ° C for 3 minutes.
  • the shear strength was 50 MPa.
  • the deformation of the Cu base of the first member was 125 / im.
  • Example 2 Using the composite solder sheet of Sn—0.7% by weight ⁇ 11 used in Example 2, the first member and the second member were soldered under exactly the same conditions as in Example 2.
  • the shear strength was 35 MPa, which was almost the same value as that of Example 2.
  • the deformation amount of the Cu base of the first member is 500 / m, which is 6 times or more as compared with the deformation amount of Example 2.
  • Example 2 From the results and the result of Example 2, it is possible to obtain the solidification and expansion effect of the second solder by including the second solder composed of Sn—57% by weight Bi, and to obtain the Cu base of the first member. It can be seen that the deformation of can be suppressed.
  • the solder was installed so that the content of the second solder was 15% by volume, and pressed to produce a composite solder sheet. Subsequently, the first member and the second member were soldered under exactly the same conditions as in Example 2.
  • the shear strength was 25 MPa, which was lower than the shear strength of Example 2.
  • the deformation amount of the Cu base of the first member is 350 ⁇ m, which is four times or more as compared with the deformation amount of the second embodiment.
  • Example 2 by forming a boundary layer on the surface of the Sn—57% by weight81 powder of the second solder to prevent alloying of the first solder and the second solder, It can be seen that the mechanical properties of the first solder and the solidification and expansion properties of the second solder can be maintained.
  • FIG. 7 shows an example of the solder material according to the second embodiment.
  • the solder material 100 contains a first solder powder 101 made of Sn or an Sn alloy constituting a mother phase, and a second solder powder 102 made of a Bi alloy or an Sb alloy constituting a second phase.
  • the surface of the second solder powder 102 is covered with a reaction control boundary film 103.
  • the solder material 100 shown in FIG. 7 is a paste-like solder material in which a flux and a binder are mixed in a mixture in which the first solder powder 101 and the second solder powder 102 are uniformly mixed.
  • the cross section after soldering using this solder material is composed of a mother phase 104 formed by melting and solidifying the first solder powder 101 and a second solder powder 102. Melts And a second phase 105 that is solidified.
  • the first solder powder 101 is composed of Sn or a Sn alloy.
  • the Sn content in the alloy is appropriately set according to the mechanical properties, melting point, and the like required for the alloy.
  • the average particle size of the first solder powder 101 is preferably in the range of 100 to 100 x m. If the average particle size of the first solder powder 101 is less than l x m, it is difficult to handle and the cost is high. On the other hand, if the average particle size of the first solder powder 101 exceeds lOO xm, it is difficult to uniformly disperse the second solder powder 102, and the effect of reducing the thermal shrinkage of the matrix 104 may not be sufficiently exhibited. is there. In addition, by using the first solder as a powder, the mixing ratio with the second solder powder 102 can be easily adjusted.
  • the second solder powder 102 is made of, for example, a Sn alloy containing B or Sb, which has the property of expanding when solidified, as described in the first embodiment. Also, the second solder powder 102 may be composed of B or Sb alone.
  • the content of Bi in the Sn alloy is preferably 50% by weight or more, more preferably 58% by weight or more. If the Bi content is less than 50% by weight, the effect of relieving the thermal shrinkage of the matrix 14 is small because the solidification expansion of the Bi alloy is small.
  • the content of Sb in the Sn alloy is preferably at least 6% by weight, more preferably at least 22% by weight. If the Sb content is less than 6% by weight, the effect of relieving the thermal contraction of the parent phase 14 is small because the solidification expansion of the Sb alloy is small.
  • the second solder powder 102 may be configured by combining Bi and Sb. When a Sn alloy containing Bi is used for the second solder powder 12, Sb may be contained in the Sn alloy. Further, when using a Sn alloy containing Sb in the second solder powder 12, Bi may be contained in the Sn alloy.
  • the average particle size of the second solder powder 102 is preferably in the range of 1 to 100 ⁇ m. If the average particle size of the second solder powder 102 is less than lxm, it is difficult to handle and the cost becomes higher.If the average particle size exceeds ⁇ ⁇ ⁇ m, it is difficult to disperse uniformly in the matrix 104, The effect of alleviating shrinkage may not be fully exhibited.
  • the content of the second solder powder 102 in the solder material containing the flux and the binder is calculated based on the thermal shrinkage of the component to be soldered, which is calculated based on the coefficient of thermal expansion, and the amount of the solder. It is set appropriately according to the amount of solidification shrinkage of the solder material calculated from the size of the recesses and holes of the component parts to be supplied and the properties of the alloy of the solder base material.
  • the content of the second solder powder 102 in the solder material is preferably in the range of 5 to 50% by volume. If the content of the second solder powder 102 is less than 5% by volume, the effect of alleviating the thermal shrinkage of the mother phase 104 is small, and it can be applied even if it exceeds 50% by volume, but further improvement of the effect cannot be expected.
  • the second solder powder 102 is made of a metal or an alloy having a melting point lower than the melting point of the first solder powder 101.
  • the type, composition, and the like of the metal of the second solder powder 102 are appropriately selected so as to correspond to the first solder powder 101 and have a lower melting point than the first solder powder 101. Thereby, the effect of alleviating the solidification contraction of the matrix 104 can be maximized.
  • the reaction control boundary film 103 formed on the surface of the second solder powder 102 is formed of a metal having a melting point higher than the melting point of the material forming the second solder powder 12.
  • This reaction control boundary film 103 is formed of the same material as the reaction prevention film 15 shown in the first embodiment.
  • the soldering conditions such as the soldering temperature and the holding time are controlled to suppress diffusion or alloying reaction, so that the first solder powder 101 and the second solder powder are controlled. If the mechanical properties, physical properties, and the like of 102 can be maintained, the reaction control boundary film 103 may not be provided.
  • the reaction control boundary film 103 is formed on the surface of the second solder powder 102 by an electroless plating method or the like. Further, the reaction control boundary film 103 may be formed by a sol-gel method. In the sol-gel method, for example, a metal film can be formed on the surface of the second solder powder 102 by immersing the second solder powder 102 in an alumina sol using a metal alkoxide as a raw material and subsequently drying the powder.
  • the method of forming the reaction control boundary film 103 is not limited to these, but the reaction control boundary film 103 can be economically formed by using the electroless plating method or the sol-gel method.
  • the thickness of the reaction control boundary film 103 is appropriately set in the range of 10 nm x 10 xm according to the required characteristics of the solder material. If the thickness of the reaction control boundary film 103 is 10 nm or more, diffusion or alloying reaction between the parent phase 104 and the second phase 105 can be prevented, and Exceeding the time limit makes the formation time of the reaction control boundary film 103 long, which is uneconomical.
  • the flux mixed into the mixture of the first solder powder 101 and the second solder powder 102 removes an oxide film between the soldered material and the member joined by the solder material, and reheats during heating. It is to prevent oxidation.
  • a commonly used activator such as an amine halide or an organic acid is used.
  • the content of the flux in the solder material including the flux and the binder can be appropriately set in the range of 5 to 10% by weight. When the flux content is less than 5% by weight, the effect of removing the oxide film between the solder material and the member joined with the solder material and preventing the oxidation again during heating is small, and exceeds 10% by weight. Within the range, the effect cannot be improved.
  • the binder mixed with the first solder powder 101 and the second solder powder 102 is composed of a polymer material and alcohol.
  • the content of the binder in the solder material including the flux and the binder can be appropriately set in the range of 520% by weight. If the binder content is less than 3 ⁇ 4% by weight, the adhesion of the solder material applied or printed on the surface of the component parts will be insufficient, and if it exceeds 20% by weight, the binder will flow out of the solder member and work efficiency will be reduced. May be reduced.
  • the second solder powder 102 having the property of expanding at the time of solidification is included in the first solder powder 101, so that the heat of the mother phase 104 in which the first solder powder 101 is melted during the solidification is obtained. Shrinkage can be mitigated by expansion during solidification of the second phase 105 in which the second solder powder 102 has melted. As a result, the occurrence of internal stress in the solder member is suppressed, and the occurrence of void defects can be prevented.
  • the second phase 105 is covered with the reaction control boundary film 103, there is no diffusion or alloying reaction between the mother phase 104 and the second phase 105. Physical properties such as wettability of each can be maintained.
  • a paste-like solder material can be manufactured, and the manufactured solder material can be used to join a joint where solid solder material is difficult to dispose or to form a complex shape. It is suitable for use in joining members.
  • this solder material can be accurately injected even at a joint having a complicated shape, the reliability of soldering can be improved.
  • reaction control boundary film 103 of the second solder powder 102 is selected, and the reaction control boundary film 103 is formed on the surface of the second solder powder 102 by an electroless plating method or the like. .
  • a predetermined amount of the second solder powder 102 coated with the reaction control boundary film 103 and a predetermined amount of the first solder powder 101 are uniformly mixed to form a mixture. Subsequently, a predetermined amount of a flux and a binder are mixed into the mixture, and the mixture is uniformly stirred to obtain a solder material 100.
  • a force S for manufacturing a film-like or wire-like solder material can be obtained.
  • this manufacturing method it is possible to provide a solder material in an optimal form according to the application.
  • FIG. 9 shows that the solder material 100 obtained by the above-described method is applied between a first element member 111 formed of a flat plate and a second element member 112 formed of a flat plate having a concave portion on a joint surface.
  • the joint member 110 is shown in a state of being disposed at the position shown in FIG.
  • the joining member 110 is heated to a temperature equal to or higher than the melting point of the first solder powder 101 in, for example, the air or an inert gas atmosphere.
  • the first solder powder 101 and the second solder powder 102 melted by the calorie heat undergo a cooling step to become a solder joint 120 having a cross-sectional shape as shown in FIG.
  • the cross-sectional shape of the solder joint 120 shown in FIG. 10 shows the area indicated by A in FIG. 9 in detail.
  • the second phase 105 in which the second solder powder 102 is melted and solidified is substantially uniformly dispersed in the mother phase 104 in which the first solder powder 101 is melted and solidified. .
  • the surface of the second phase 105 is covered with the reaction control boundary film 103.
  • the physical properties such as the wettability of the first solder powder 101 constituting the mother phase 104 are maintained, so that the bonding surface of the first element member 111 and the second element member 112 is The bonding with the phase 104 can be performed optimally. Further, at the solder joint, the mechanical properties of the first solder powder 101 constituting the mother phase 104 are substantially reduced. The ability to maintain the swell.
  • the first solder powder 101 contains the second solder powder 102 having the property of expanding during solidification, thereby solidifying the mother phase 104 in which the first solder powder 101 is melted.
  • the thermal shrinkage at the time can be alleviated by the expansion at the time of solidification of the second phase 105 in which the second solder powder 102 is melted.
  • the occurrence of internal stress in the solder member is suppressed, and the occurrence of void defects can be prevented.
  • the second phase 105 is covered with the reaction control boundary film, there is no diffusion or alloying reaction between the mother phase 104 and the second phase 105. And the physical properties such as wettability of the second phase 105 can be maintained. Thereby, the joining surface between the first element member 111 and the second element member 112 and the solder material can be optimally performed.
  • the solder material 100 obtained by the above-described method is injected into the concave portion of the first element member 131 composed of a flat plate having a concave portion, and a bar-like shape is formed in the depth direction of the groove of the concave portion.
  • 9 shows the joining member 130 with the second element member 132 inserted.
  • the joining member 130 is heated to a temperature equal to or higher than the melting point of the first solder powder 101 in, for example, the air or an inert gas atmosphere.
  • the first solder powder 101 and the second solder powder 102 that have been melted by heating are subjected to a cooling step to become a solder joint 140 having a cross-sectional shape as shown in FIG.
  • the second phase 105 in which the second solder powder 102 has melted and solidified is substantially uniformly dispersed in the mother phase 104 in which the first solder powder 101 has melted and solidified. .
  • the surface of the second phase 105 is covered with the reaction control boundary film 103.
  • the second phase 105 solidifies and expands when the mother phase 104 undergoes thermal contraction in the solidification and subsequent cooling process, thereby suppressing the generation of internal stress in the solder joint 140.
  • the mother phase 104 forming the solder joint 140 maintains physical properties such as wettability of the first solder powder 101 forming the mother phase 104, the surface of the concave portion of the first element member 131 is maintained.
  • the mother phase 104 contains a second phase 105 having a property of expanding when solidified. As it heat shrinks during solidification and subsequent cooling, the second phase 105 expands as it cools to the solidification temperature.
  • the solidification shrinkage of the mother phase 104 can be reduced, and the generation of internal stress in the solder member is suppressed, and as a result, the occurrence of void defects such as shrinkage cavities 122 and peeled portions 151 is prevented. can do.
  • the second phase 105 is covered with the reaction control boundary film 103, there is no gap between the mother phase 104 and the second phase 105, and no diffusion or alloying reaction occurs.
  • the mother phase 104 and the second phase 105 do not dissolve and form a eutectic alloy, for example. Therefore, in the mother phase 104, the physical properties of the first solder powder 101 forming the mother phase 104 are maintained, and in the second phase 105, the physical properties of the second solder powder 102 forming the second phase 105 are maintained. You. Further, at the solder joint, the mechanical properties of the first solder powder 101 constituting the mother phase 104 can be substantially maintained. In addition, the bonding surface between the first element member 111 and the second element member 112 and the solder material can be optimally performed.
  • solder material is made into a paste
  • the solder material can be easily used for joining at a joint where it is difficult to dispose a solid solder material or joining members having complicated shapes.
  • this solder material can be injected accurately even at a joint having a complicated shape, the reliability of soldering can be improved.
  • the force S indicating a paste-like configuration in which the first solder powder 101, the second solder powder 102, the flux and the binder are mixed, and the solder material which is not limited to this configuration,
  • a film configuration as shown in FIG. 15 and a wire configuration as shown in FIG. 16 may be used.
  • solder materials 160 and 170 shown in FIG. 15 or FIG. 16 are manufactured, for example, as follows.
  • reaction control boundary film 103 of the second solder powder 102 is selected, and the reaction control boundary film 103 is formed on the surface of the second solder powder 102 by an electroless plating method or the like. .
  • the predetermined amount of the second solder powder 102 coated with the reaction control boundary film 103 and the predetermined amount of the first solder The powder 101 is uniformly mixed with, for example, stirring to form a mixture. Subsequently, the mixture is filled in a mold, and the first solder powder 101 and the second solder powder 102 are fused together by pressing and heating to obtain a composite material.
  • a film-like solder material 160 as shown in FIG. 15 a composite material in which the first solder powder 101 and the second solder powder 102 are integrated, for example, Rolled to form a film-like solder material.
  • a composite material in which the first solder powder 101 and the second solder powder 102 are integrated is, for example, pulled out.
  • a wire-like solder material is formed.
  • a flux 171 can be mixed along the central axis of the wire-shaped solder material 170.
  • solder material is not limited to the paste-like configuration, but may be a solid configuration such as a film-like or wire-like configuration. Can be used.
  • a first element member 131 composed of a flat plate having a concave portion and a rod-shaped second element member 132 in the depth direction of the groove of the concave portion are provided.
  • the following shows the case of joining in the inserted state.
  • An electroless Ni plating film having a thickness of about 3 ⁇ m was formed on the surface of Sn—57% by weight81 powder having an average particle diameter of about 20 ⁇ m, and a second solder was manufactured. Subsequently, the second solder and the first solder having an average particle size of about 20 / im (Sn-0.7% by weight Cu powder) were mixed so that the content of the second solder was 15% by volume. In order to facilitate the removal and application of the oxide film on the surfaces of the first and second members and the formation of solder layers such as screen printing, an appropriate amount of flux was added to the composite solder. The adhesive was added to prepare a creamy composite solder.
  • a composite solder was filled into a concave portion having a diameter of 5 mm and a depth of 1 Omm formed on the surface of the first member made of oxygen-free Cu base.
  • a rod-shaped second member having an outer diameter of 3 mm and made of an oxygen-free Cu base was inserted into the recess filled with the composite solder to a depth of about 7 mm. And In a state in which the second member is inserted into the concave portion of the first member,
  • soldered first member and second member were fixed to a check of an Instron tensile tester, and the solder strength was measured and evaluated at a tensile speed of 0. ImmZs. As a result, the solder strength was 45 MPa. there were.
  • accidental void defects due to impurities and others are 1% or less in terms of volume ratio, and void defects due to solidification shrinkage are reduced. Not detected at all.
  • a second solder was manufactured by forming a 0.1 ⁇ m (7) Al 2 O 3 film on the surface of Sn—57 wt% 81 powder having an average particle diameter of about 20 ⁇ m by a sol-gel method. Then, this second solder
  • the first solder consisting of Sn-0.7% by weight Cu powder with an average particle size of about 20 xm is mixed with the second solder so that the content of the second solder is 15% by volume to produce a composite solder material. did. Then, to facilitate the removal and application of the oxide film on the surfaces of the first and second members and the formation of a solder layer such as screen printing, an appropriate amount of flux and thickener are added to the composite solder, and a creamy A composite solder was prepared.
  • a composite solder was filled in a concave portion having a diameter of 5 mm and a depth of 1 Omm formed on the surface of the first member made of oxygen-free Cu base.
  • a rod-shaped second member having an outer diameter of 3 mm and made of an oxygen-free Cu base was inserted into the recess filled with the composite solder to a depth of about 7 mm. Then, in a state where the second member is inserted into the concave portion of the first member, in the N gas atmosphere,
  • soldered first member and second member were fixed to the check of an Instron tensile tester, and the solder strength was measured and evaluated at a tensile speed of 0. ImmZs. As a result, the solder strength was 28MPa. there were.
  • the solder strength was 28MPa. there were.
  • accidental void defects due to impurities and others are 1% or less in terms of volume ratio, and void defects due to solidification shrinkage are reduced. Not detected at all.
  • the first solder consisting of Sn—2% by weight Cu—0.2% by weight Ag powder with an average particle size of about 20 ⁇ m is mixed so that the content of the second solder is 25% by volume.
  • a composite solder material was manufactured.
  • add an appropriate amount of flux and thickener to the composite solder was prepared.
  • a concave portion having a diameter of 5 mm and a depth of 1 Omm formed on the surface of the first member made of the oxygen-free Cu base was filled with a composite solder.
  • a rod-shaped second member having an outer diameter of 3 mm and made of an oxygen-free Cu base was inserted into the recess filled with the composite solder to a depth of about 7 mm. Then, in a state in which the second member is inserted into the concave portion of the first member, 350
  • soldered first member and second member were fixed to a check of an Instron tensile tester, and the solder strength was measured and evaluated at a tensile speed of 0.1 mmS. As a result, the solder strength was 40 MPa. there were.
  • the solder strength was 40 MPa. there were.
  • accidental void defects due to impurities and others are 2% or less in terms of volume ratio, and void defects due to solidification shrinkage are reduced. Not detected at all.
  • a creamy composite solder was prepared by mixing Sn-3.5% by weight powder with an average particle size of about 20 ⁇ , an appropriate amount of flux and a thickener.
  • a concave portion having a diameter of 5 mm and a depth of 1 Omm formed on the surface of the first member made of oxygen-free Cu base was filled with a composite solder.
  • a rod-shaped second member having an outer diameter of 3 mm and made of an oxygen-free Cu base was inserted into the recess filled with the composite solder to a depth of about 7 mm. Then, in a state in which the second member is inserted into the concave portion of the first member, 350
  • soldered first member and second member were fixed to a check of an Instron tensile tester, and the solder strength was measured and evaluated at a tensile speed of 0.1 mm. As a result, the solder strength was 20 MPa. there were.
  • shrinkage cavities were generated at the intermediate position between the first and second members, which are the final solidified parts, and multiple coarse void defects were found. Was detected. The detected void defect is the volume fraction In conversion, it reached 12%.
  • a second solder composed of 81% Sn—57% by weight powder having an average particle diameter of about 20 ⁇ m and a first solder composed of Cu powder having an average particle diameter of 20 zm (7) Sn-0.7% by weight Mixing was performed so that the solder content was 15% by volume to produce a composite solder material. Then, an appropriate amount of flux and a thickener were added to this composite solder to prepare a creamy composite solder.
  • a concave portion having a diameter of 5 mm and a depth of 1 Omm formed on the surface of the first member made of the oxygen-free Cu base was filled with a composite solder.
  • a rod-shaped second member having an outer diameter of 3 mm and made of an oxygen-free Cu base was inserted into the recess filled with the composite solder to a depth of about 7 mm. Then, in a state where the second member is inserted into the concave portion of the first member, in the N gas atmosphere,
  • each of the soldered first member and second member was fixed to a check of an Instron tensile tester, and the solder strength was measured and evaluated at a tensile speed of 0.1 mm / s. It was 20 MPa.
  • shrinkage cavities were generated at the intermediate position between the first and second members, which are the final solidified parts, and multiple coarse void defects were found. Was detected. The number of detected void defects reached 10% by volume ratio.
  • Example 5 From these results, as shown in Example 5, by having a film on the surface of the second solder, it is possible to obtain a solder material having a high solder strength and having a very low void defect generation rate. I understood. In addition, by having a film on the surface of the second solder, the alloying reaction between the first solder and the second solder is prevented, and the solidification and expansion properties characteristic of the second solder are maintained. It turned out that the effect can be fully exhibited. Furthermore, it became clear that void defects were the cause of the decrease in the solder strength of the first and second members.
  • the third embodiment will be described in the order of the composition of the lead-free solder, the shape of the lead-free solder, and the method of soldering the lead-free solder.
  • the lead-free solder according to the third embodiment is composed of Sn-containing alloy containing Sn or Pb containing 0.02-2.0% by weight of Co.
  • the content of Co contained in Sn or Sn-based alloy is appropriately set in the range of 0.02 to 2.0% by weight depending on the obtained mechanical properties and melting point.
  • the content of Co is less than 0.02% by weight, sufficient mechanical properties may not be ensured. Temperature limits may be exceeded.
  • the solidus of the lead-free solder contained is 229 ° C, and the liquidus is 229 ° C-500 ° C.
  • the Sn-based alloy is at least one of Ag, Al, Au, Bi, Co, Cr, Cu, Fe, Ge, In, Mg, Mn, Pd, Si, Sr, Te, and Zn , The balance consisting of Sn and unavoidable impurities, and a low melting point Sn alloy with a melting point in the range of 117-350 ° C.
  • a low-melting Sn-based alloy 111: 52% by weight, balance: Sn and Sn alloy (melting point 117 ° C) composed of unavoidable impurities, 857% by weight, balance: Sn and unavoidable Sn alloy composed of impurities (melting point: 139 ° C), ⁇ ! 1: 9% by weight, balance: Sn and Sn alloy composed of unavoidable impurities (melting point: 198 ° C), Cu: 4.5% by weight, balance: Examples include Sn and Sn alloys consisting of unavoidable impurities (solidus 227 ° C, liquidus 350 ° C).
  • the Sn or Sn-based alloy a Co 0. 02-2. 0 wt 0/0
  • Sn or reduces the surface tension of the Sn-based alloy improving the wettability Can be done.
  • the aggregation of molten solder is suppressed and the wettability is improved.
  • Power S can.
  • the lead-free solder may contain 0.0-2.0% by weight of Co and 0.02-7.5% by weight of Cu, with the balance being Sn and unavoidable impurities. .
  • Co and Cu contained in the lead-free solder are appropriately set within the range of the above content depending on the required mechanical properties, melting point, and the like.
  • the content of Co is less than 0.02% by weight, sufficient mechanical properties may not be secured.
  • the Cu content is less than 0.02% by weight, sufficient mechanical properties may not be ensured.
  • the Cu content is more than 7.5% by weight, the melting point becomes high, and element components Temperature limits may be exceeded.
  • the more preferable range of the Co content in Sn is 0.1-0.5% by weight, and the more preferable range of the Cu content is 0.5-1.0% by weight / 0 . It is 0 .
  • Sn since the Co 0. 02-2. 0 wt 0/0 and Cu of 0.02 7.5 wt% of lead-free solder liquidus containing in the range is 229- 500 ° C, An appropriate liquidus can be obtained by a combination of alloy compositions.
  • solder strength can be further improved in addition to the effect of the lead-free solder containing no Cu described above.
  • the lead-free solder contains 0.02-2.0% by weight of Co, Sn or Pb-free alloy, Sn-based alloy, or 0.02-2.0% by weight of Co, Cu 0.02-7. Even if it is composed of a first solder containing 5% by weight, the balance being Sn and unavoidable impurities, and a second solder consisting of a Sn-based alloy containing no Sn or Pb.
  • the first solder is a Sn-based alloy that contains 0.0 to 2.0% by weight of the above-mentioned Co, does not contain Sn or Pb, is a lead-free solder, or contains 0.02% of Co. 2.0% by weight, Cu
  • the second solder is made of a Sn-based alloy containing no Sn or Pb, and may contain unavoidable impurities.
  • first solder and the second solder can be formed, for example, into spherical or irregular shaped powder, finolem, or the like. Further, the first solder and the second solder having a powder shape can be used in the form of a paste mixed with, for example, a flux or a binder.
  • the mixing ratio can be appropriately set according to the required mechanical properties, melting point, and the like. For example, by adjusting the content of Co contained in the first solder within the range of 0.02-2. 0% by weight, the wettability is improved by containing Co, and the growth of intermetallic compounds at the joint interface is suppressed.
  • the mixing ratio between the first solder and the second solder is set so as to maintain the ratio. Also, the first solder and the second solder can be laminated and used without being mixed in advance.
  • the configuration of Sn or Sn-based alloy, a first solder the 0. 02-2. 0 wt 0/0 containing Co, a lead-free solder in the second solder consisting of Sn or Sn-based alloy By doing so, the surface tension of Sn or Sn-based alloy can be reduced, and the wettability can be improved. Furthermore, by suppressing the reaction between the covered member and Sn or Sn-based alloy, and by suppressing the growth of intermetallic compounds at the joint interface, the aggregation of molten solder is suppressed and the wettability is improved. Power S can. Further, the Co 0. 02-2. 0 weight 0/0 containing Sn, by containing 0.5 02-7. 5 by weight% of Cu, in addition to the effect of the lead-free solder containing no Cu described above , Further In addition, the solder strength can be improved.
  • FIG. 17 is a perspective view of a lead-free solder formed in a film shape
  • FIG. 18 is a cross-sectional view of a lead-free solder formed in a cost shape
  • FIG. 19 is a perspective view of a lead-free solder formed in a wire shape
  • FIG. 20 is a perspective view of a lead-free solder formed in a rod shape.
  • the film-shaped lead-free solder 200 is formed by rolling a plate-shaped lead-free solder into a film by, for example, rolling.
  • the thickness of the film-shaped lead-free solder 200 is preferably in the range of 20 200 / m. If the thickness force is less than 20 / m, it is difficult to obtain sufficient bonding strength. If it is more than 200 / m, the thermal conductivity and electrical conductivity decrease.
  • the plate-shaped lead-free solder can also be formed by filling lead-free solder having a powder shape into a mold having a predetermined shape, and applying pressure and heat. Further, it can be formed by rolling directly from powder.
  • the above-mentioned first solder comprising Sn-Pb and not containing Sn or Pb containing 0.02-2.0% by weight of Co, and the first solder comprising Sn or Sn-based alloy force 2
  • the film-shaped lead-free solder 200 to be formed can also be formed.
  • the first solder contains 0.0-2.0% by weight of Co and 0.02-7.5% by weight of Cu, with the balance being Sn and unavoidable impurities. May be used.
  • the first solder and the second solder to be stacked have a shape such as a film or a powder. Can be taken.
  • the average particle diameter of the powder is preferably in the range of 25 to 50 xm. If the average particle size is less than 25 ⁇ , the yield is poor and it is uneconomical. If the average particle size is more than 50 / m, it is difficult to control the solder thickness.
  • This paste-like lead-free solder 210 is formed by mixing a lead-free solder 220 having a spherical or irregular powder shape with a flux 221 and a binder 222.
  • the flux 221 removes an oxide film between the solder and a member joined with the solder, and prevents the solder from being oxidized again during heating.
  • a commonly used activator such as an amine halide salt or an organic acid is used, but is not limited to these, and any commonly used activator can be used.
  • the content of the flux 221 in the paste-like lead-free solder 210 can be set appropriately in the range of 10 15 weight 0/0. When the content of the flux 221 is less than 10% by weight, the effect of removing the oxide film between the solder and the member joined with the solder material is small, and the effect of preventing the re-oxidation during the heat of caro is small. If the content is more than 15% by weight, the effect cannot be expected to be improved, and the residue increases.
  • the content of the solid content in the flux 221 can be appropriately set within a range of 30 to 60% by weight. If the solid content is less than 30% by weight, the adhesion of the solder material applied or printed on the surface of the component parts will be insufficient. This is because a void defect is likely to occur at the joint.
  • the average particle size of the lead-free solder 220 having a spherical or irregular powder shape is 25-50.
  • the range / im is preferred. When the average particle size is less than 25 / im, the yield is poor and uneconomical, and when the average particle size is more than 50 x m, it is difficult to control the thickness of the solder, which is difficult.
  • the wire-shaped lead-free solder 230 is formed by, for example, drawing out a member made of lead-free solder. Further, the wire-shaped lead-free solder 230 can also be formed by filling a lead-free solder having a powder shape into a mold having a predetermined shape, and applying pressure and heat. Further, The wire-shaped lead-free solder 230 can also be formed by pouring molten lead-free solder into a mold having a predetermined shape and then cooling it.
  • the rod-shaped lead-free solder 240 formed in a rod shape shown in Fig. 20 is formed by filling a lead-free solder having a powder shape into a mold having a predetermined shape, and pressing and heating. . Further, the rod-shaped lead-free solder 240 can also be formed by pouring a molten lead-free solder into a mold having a predetermined shape and then cooling it.
  • the lead-free solder can take a shape such as a film shape, a paste shape, a wire shape, and a rod shape, and the lead-free solder having an optimal form should be used according to the application in which the lead-free solder is used. Can be.
  • the shape of the lead-free solder is not limited to the above-mentioned shape, and can be formed by appropriately changing the shape according to the application.
  • Fine atomization by atomizing method using inert gas such as gas, Ar gas, N / Ar mixed gas, etc.
  • Granulate and solidify In the atomization method, a molten mixture is injected from a nozzle at a subsonic or supersonic speed together with an inert gas, and the molten mixture is atomized by a jet stream of the inert gas. Then, from the atomized lead-free solder powder, a powder having an average particle diameter in a predetermined range is selected using, for example, a sieve.
  • the atomized and solidified lead-free solder powder has a smaller average particle diameter when the jet flow rate of the inert gas injected from the nozzle is higher.
  • the jet stream reaches a supersonic state of about 23 times the sound velocity, for example, the effect of atomization by the shock wave is added, and the average particle diameter of the powder can be further reduced.
  • the inert gas is used as the jet stream, oxidation on the surface of the powder can be suppressed. Air or water can be used in place of the inert gas.However, when air or water is used, the effect of suppressing the oxidation of the powder surface is small. It is preferable to use an inert gas for the jet stream because the body shape is unlikely to be spherical.
  • FIG. 21 shows a sectional view of first element member 250 and second element member 251 joined by lead-free solder 220.
  • FIG. 22 is a cross-sectional view of the first element member 250 and the second element member 251 joined by the two types of lead-free solders 252 and 253.
  • lead-free solder 220 is arranged between first element member 250 and second element member 251. Then, this is heated to a temperature equal to or higher than the melting point of the lead-free solder 220, for example, in the air or in an inert gas atmosphere. The lead-free solder 220 melted by heating is subjected to a cooling process to become a solder joint having a sectional shape as shown in FIG.
  • a lead-free solder having a shape such as a film, a paste, a wire, and a powder described above can be used.
  • the first solder 252 comprising Sn described above containing 0.0 to 2.0% by weight of Co and containing no Sn or Pb, and A second solder 253 made of Sn or Sn-based alloy is laminated, and the laminated solder is arranged between the first element member 250 and the second element member 251. Then, this is heated to a temperature equal to or higher than the melting point of the lead-free solder, for example, in the air or in an inert gas atmosphere.
  • the first solder 252 and the second solder 253 that have been melted by heating are subjected to a cooling process to become solder joints having a cross-sectional shape as shown in FIG.
  • the first solder 252 contains 0.02-2.0% by weight of Co and 0.02-7.5% by weight of Cu, with the balance being Sn and unavoidable impurities. Use solder.
  • the first element member 250 is joined with the first solder 252, and the second element member 251 is shown with a structure in which the second solder 253 is joined.
  • the order in which the second solder 252 and the second solder 252 are stacked is set as appropriate.
  • the use of the lead-free solder is not limited, but, for example, bonding of an electronic component to a substrate that requires thermal conductivity, wettability, mechanical strength, and the like, and bonding of the electronic components to each other. It is preferably used for bonding or the like.
  • the first element member 250 is, for example, a substrate of an electronic component.
  • the second element member 251 can be formed of, for example, an electronic component such as a chip component. Then, these substrates and electronic members can be joined with the first solder 252 and the second solder 253, the lead-free solder 220, and the like. Further, the first solder 252, the second solder 253, and the lead-free solder 220 can be used for a wire bond and the like in addition to such a die bond.
  • the first and second solders 252 and 253 and the lead-free solder 220 containing Co in an amount of 0.02-2.0% by weight were used for joining the first element member 250 and the second element member 251.
  • the surface tension of Sn or a Sn-based alloy can be reduced, and the wettability can be improved.
  • the aggregation of the molten solder is suppressed.
  • the wettability can be improved. As a result, generation of void defects is suppressed, and a solder joint having excellent thermal conductivity, mechanical strength, and the like can be obtained.
  • Lead-free solder consisting of 0 was melted to produce an ingot having a thickness of 30 mm, a width of 100 mm and a length of 200 mm.
  • the ingot was rolled to produce a film-shaped solder having a thickness of 0.1 lm and a width of 100 mm.
  • a film-like solder 262 having a thickness of 0.1 mm, a width of 50 mm and a length of 50 mm was placed between two copper plates 260 and 261 having a thickness of 3 mm, a width of 50 mm and a length of 100 mm. installed.
  • heating was performed at a temperature of 300 ° C. for 5 minutes to perform soldering.
  • the surface tension is measured by taking advantage of the property that the weight of the droplet dropped from the mouth of the shape drops overcoming the surface tension.
  • the lead-free solder 265 composed of molten Sn—0.7% by weight ⁇ 11 ⁇ 0.2% by weight ⁇ 0 is supplied to the nose 266 having an inner diameter of 0.3 mm. And the tip of Noznore 266 A droplet of the lead-free solder 265 was formed on the substrate and dropped when the droplet reached a predetermined weight.
  • the neck diameter (L) of the lead-free solder 265 immediately before falling from the nozzle 266 and the weight (mg) of the dropped droplet were measured.
  • the surface tension ( ⁇ ) of the lead-free solder 110 is calculated by substituting the constriction diameter (U and the weight (mg) of the dropped droplet) of the lead-free solder 110 immediately before falling into the equation (1). Result
  • the surface tension ( ⁇ ) was 0.36 NZm.
  • FIGS. 25A and 25B show the results on one copper plate 260.
  • the solder layer 271 bonded to the copper plate 260 via the bonding surface 270 is the first layer formed on the portion of the solder layer 271 facing the bonding surface 270.
  • the second solder layer 271b is formed mainly from the solder layer 271a and the second solder layer 271b formed on the side opposite to the joint surface 270 side of the first solder layer 271a.
  • the first solder layer 271a is formed relatively flat along the joint surface 270 without causing significant undulations on the second solder layer 271b side.
  • the concentration of Sn contained in the first solder layer 271a was lower than the concentration of Sn contained in the second solder layer 271b.
  • the concentration of Cu contained in the first solder layer 271a was higher than the concentration of Cu contained in the second solder layer 271b.
  • elemental analysis of Co is performed on this cross section, as shown in FIG. 25B, a region 272 where the Co concentration is high along the bonding surface 270 is particularly formed on the first solder layer 271a, particularly on the bonding surface 270 side. Were present. [0170] From the above results, the first solder layer 271a has a higher ⁇ (Sn Cu: Sn43.5—45.5 atomic%)
  • the eutectic structure was mainly formed of an intermetallic compound layer composed of Sn-Cu-Co that contained more Co than the second solder layer of 27 lb.
  • a region 272 having a high Co concentration was unevenly distributed along the bonding surface 270 on the bonding surface 270 side of the intermetallic compound layer.
  • the second solder layer 271b was mainly formed of the lead-free solder used.
  • a lead-free solder consisting of Sn-0.7 wt% ⁇ 11-2 wt% ⁇ 0 was melted to produce an ingot having a thickness of 30 mm, a width of 10 Omm and a length of 200 mm.
  • the ingot was rolled to produce a film-like solder having a thickness of 0.1 mm and a width of 100 mm.
  • a film-like solder 262 having a thickness of 0.1 mm, a width of 50 mm, and a length of 50 mm was placed between two copper plates 260, 261 having a thickness of 3 mm, a width of 50 mm, and a length of 100 mm. installed.
  • heating was performed at a temperature of 300 ° C. for 5 minutes to perform soldering.
  • the surface tension ( ⁇ ) was 0.35 N / m.
  • an X-ray microanalyzer (EPMA; Electron Probe Micro-Analysis) was used to perform an elemental analysis on the cross sections of the copper plates 260 and 261 joined with the film-like solder 262.
  • the solder layer 271 joined to the copper plate 260 via the joint surface 270 is formed at a portion of the solder layer 271 facing the joint surface 270.
  • the first solder layer 271a and the second solder layer 271b formed on the side opposite to the joint surface 270 side of the first solder layer 271a were found to be mainly formed.
  • the first solder layer 271a was formed relatively flat along the joint surface 270 without causing significant undulation on the second solder layer 271b side.
  • a lead-free solder consisting of Sn-0.7% by weight ⁇ 11-0.02% by weight ⁇ 0 was melted to produce an ingot having a thickness of 30 mm, a width of 100 mm and a length of 200 mm.
  • the ingot was rolled to produce a film solder having a thickness of 0.1 mm and a width of 100 mm.
  • a film with a thickness of 0.1 mm, a width of 50 mm, and a length of 50 mm is placed between two identical plates 260, 261 with a thickness of 3 mm, a width of 50 mm and a length of 100 mm.
  • Solder 262 was installed. Subsequently, in a nitrogen gas atmosphere, heating was performed at a temperature of 300 ° C. for 5 minutes to perform soldering.
  • the soldered joint was subjected to a shear test at a tensile speed of 0.1 mm / min, and as a result, the shear strength was 32 MPa.
  • an X-ray microanalyzer (EPMA; Electron Probe Micro-Analysis) was used to perform elemental analysis on the cross sections of the copper plates 260 and 261 joined by the film solder 262.
  • the solder layer 271 joined to the copper plate 260 via the joint surface 270 is formed at a portion of the solder layer 271 facing the joint surface 270.
  • the first solder layer 271a and the second solder layer 271b formed on the side opposite to the joint surface 270 side of the first solder layer 271a were found to be mainly formed.
  • the first solder layer 271a was formed relatively flat along the joint surface 270 without causing significant undulation on the second solder layer 271b side.
  • a lead-free solder consisting of Sn-0.7% by weight of about 11 was melted to produce an ingot having a thickness of 30 mm, a width of 100 mm and a length of 200 mm.
  • the ingot was rolled to produce a film solder having a thickness of 0.1 mm and a width of 100 mm.
  • a film-like solder 262 having a thickness of 0.1 mm, a width of 50 mm, and a length of 50 mm is placed between two copper plates 260, 261 having a thickness of 3 mm, a width of 50 mm, and a length of 100 mm. installed.
  • soldering was performed in a nitrogen gas atmosphere at a temperature of 300 ° C for 5 minutes.
  • the surface tension ( ⁇ ) of the lead-free solder consisting of -0.7% by weight ⁇ 11 was calculated.
  • an X-ray microanalyzer (EPMA; Electron Probe Micro-Analysis) was used to perform elemental analysis on the cross sections of the copper plates 260 and 261 joined by the film solder 262.
  • FIG. 26 shows the result of the elemental analysis.
  • FIG. 26 shows the result on one copper plate 260.
  • the solder layer 281 bonded to the copper plate 260 via the bonding surface 280 was formed at the portion of the solder layer 281 facing the bonding surface 280. It can be seen that the first solder layer 281a and the second solder layer 281b formed on the side opposite to the bonding surface 280 of the first solder layer 281a are mainly formed. Also, the first solder layer 28 la vigorously undulates on the second solder layer 281b side. Also, the height of the first solder layer 281a protruding toward the second solder layer 281b is equal to that of the first solder layer 271a shown in the seventh embodiment. In many cases, it is about 2-3 times larger.
  • Example 7 Although not shown in the other examples, the same results as in Example 7 were obtained in the other examples, so that the height of the first solder layer 281a protruding toward the second solder layer 281b was reduced. It can be said that there are many parts that are about 23 times as large as those of the first solder layers of Examples 8 and 9.
  • the first solder layer 281a has a thickness of ⁇ (Sn Cu: Sn43.5—45.5 at%).
  • Example 7-9 Comparing the measurement result of Comparative Example 5 with the measurement result of Example 7-9, the lead-free solder containing Co at a predetermined content in Example 7-9 does not contain Co. It was found that the surface tension in the molten state was smaller and the wettability was superior to that of a lead-free solder consisting of Sn-0.7% by weight ⁇ 11.
  • the lead-free solder containing Co in Example 7-9 at a predetermined content rate showed a higher shear strength than the lead-free solder consisting of Sn-0.7 wt% 01 without Co. The strength was found to be high.
  • Oxidation-resistant solder forms at least one metal selected from the group consisting of Cu, Ag, Au or VIII, an iron-group metal of Co and Ni, which forms a eutectic alloy with Sn as the main component. Containing 0.02 to 12% by weight of the first subcomponent consisting of Mn, Pd, and Pt, which form a solid solution alloy with the first subcomponent of the parentheses and do not form a solid solution alloy with the main component Sn. It contains 0.02.1.2% by weight of the selected second secondary component consisting of at least one metal, and the balance consists of Sn and unavoidable impurities.
  • the content of the first auxiliary component with respect to the whole oxidation-resistant solder may be the eutectic composition of Sn as the main component and the metal as the first auxiliary component or near the eutectic composition. It is set appropriately according to the mechanical properties and melting point required for the product.
  • each first auxiliary component is Cu:. 0. 02-1 2 wt 0/0, Ag : 3. 0-4 0 weight 0/0, Au:. 9. 0- 12. 0 wt 0 / o, Co: 0. 0 2- 1. 0 wt%, Ni:. 0. 02-0 6 weight %.
  • the content of the first subcomponent in the whole oxidation-resistant solder is preferably set appropriately within a range of 0.02 to 12% by weight. . If the content of the first subcomponent is less than the above-mentioned predetermined range, sufficient mechanical properties cannot be secured, and if it is too large, the melting point may exceed the allowable temperature limit of the component.
  • the content of the second auxiliary component in the entire oxidation-resistant solder is appropriately set according to the mechanical properties and melting point required for the oxidation-resistant solder.
  • each of the second subcomponents contains Mn: 0.02-1.2% by weight, Pd: 0.02-0. 6% by weight, Pt: contained in the range of 0.02 to 0.6% by weight.
  • the content of the second subcomponent in the entire oxidation-resistant solder is appropriately set within a range of 0.02 to 1.2% by weight. Is preferred.
  • the content of the second auxiliary component is less than the above-mentioned predetermined range, a sufficient effect of suppressing the formation of oxides in the intermetallic compound cannot be obtained, and if it is too large, the melting point is high and the material cost increases.
  • the oxidation-resistant solder is preferably a spherical or irregular-shaped powder, and the average particle diameter thereof is preferably in the range of 110 ⁇ m. If the average particle size of the oxidation-resistant solder is less than 1 ⁇ m, an oxidation-resistant solder having a uniform structure with a fast cooling rate can be obtained.However, in the soldering process, a solder layer with a predetermined thickness is formed. It takes a long time to complete the process. If the average particle size of the oxidation-resistant solder exceeds 100 zm, it may be difficult to appropriately adjust the thickness of the solder layer.
  • this oxidation-resistant solder by forming a solid solution with the second subcomponent, the metal of the first subcomponent is trapped in the second subcomponent, and the free first component bonded to Sn of the main component is formed.
  • the minor metal content is reduced.
  • it has an electrochemically lower reduction potential and suppresses the formation of oxides in the intermetallic compound, thereby improving the heat conduction characteristics and further improving the solder strength, especially the heat resistance. Fatigue strength can be significantly improved.
  • the generation of oxides in the intermetallic compound can be suppressed, so that the wettability can be improved.
  • a mixture of the first subcomponent metal, the second subcomponent metal, and Sn mixed at a predetermined ratio is heated and dissolved. Subsequently, the melted mixture is poured into a mold, cooled and solidified.
  • the cooling rate of the mixture in this cooling step is about 10 ° C./sec.
  • a mold having a water cooling function may be used as the mold.
  • the cooling rate of the mixture is about 100 ° C.Z seconds, and an oxidation-resistant solder having a more uniform composition can be obtained. Further, the oxidation-resistant solder can be formed as a foil by rolling or the like.
  • the melted liquid phase mixture is rapidly solidified at a cooling rate of 10 ° C / sec or more, so that the oxidation-resistant solder having a uniform composition without solidification segregation occurs. Solder can be obtained.
  • the oxidation-resistant solder can also be manufactured by the following manufacturing method.
  • the first auxiliary component metal, the second auxiliary component metal, and the Sn The resulting mixture is heated and dissolved. Subsequently, an oxidation-resistant solder powder may be produced by the atomizing method described in the third embodiment.
  • the atomized powder is cooled at a cooling rate on the order of 103 to 105 ° C / sec, so that solidification segregation occurs. Oxidation-resistant solder having a uniform composition can be obtained without causing cracks.
  • FIGS. 27A, 27B, 27C, 27D, and 27E show a process of soldering the first element member 300 and the second element member 301 formed of flat plates with the oxidation-resistant solder 302. I have.
  • oxide film 303 formed on the soldering surfaces of first element member 300 and second element member 301 is removed (see FIGS. 27A and 27B).
  • the oxide film 303 is formed, for example, by shot blasting or air blasting on the first element member 300 and the second element member 301 at a speed of several m / s to several tens m / s together with air or an inert gas. It can be removed by colliding with the soldering surface.
  • abrasives such as steel, SiC, Al O
  • the particles are spherical particles.
  • the average particle size of the abrasive is appropriately selected according to the required surface roughness. Generally, the range of ⁇ ⁇ ⁇ —50 ⁇ — ⁇ is preferable.
  • the oxide film 303 can also be chemically removed by immersing the soldering surfaces of the first element member 300 and the second element member 301 in an etchant.
  • the powder of the oxidation-resistant solder 302 is uniformly placed on the soldering surface of the first element member 300 from which the oxide film 303 has been removed (see FIG. 27C).
  • the second element member 301 is stacked on the first element member 300 on which the powder of the oxidation-resistant solder 302 is installed, with the soldering surface of the second element member 301 facing down (see FIG. 27D).
  • the laminated member thus laminated is heated to a temperature equal to or higher than the melting point of the oxidation-resistant solder 302, for example, in the air or in an inert gas atmosphere.
  • the powder of the oxidation-resistant solder 302 melted by heating becomes a solder joint 304 having a cross-sectional shape as shown in Fig. 27 ⁇ through a cooling process.
  • the second soldering method has an electrochemically lower reduction potential and an intermetallic compound.
  • the powder of the oxidation-resistant solder 302 is made to collide with the air or an inert gas at high speed in the air at room temperature or in an inert gas atmosphere to the soldering surface of the first element member 300,
  • the oxidation-resistant solder is laminated on the soldering surface of the first element member 300.
  • the powder of the oxidation-resistant solder 302 may be laminated on the soldering surface of the second element member 301 in the same manner.
  • the collision velocity of the powder of the oxidation-resistant solder 302 that collides with the soldering surface of the first element member 300 or the second element member 301 together with air or an inert gas is 100 m / sec or more. Preferably, there is. If the collision speed is higher than this, as shown in Fig. 28, the powder of the oxidation-resistant solder 302 is sufficiently plastically deformed and laminated on the soldered surfaces of the first element member 300 and the second element member 301. can do.
  • the oxidation-resistant solder 302 may be installed in the air and using air as a medium for transporting the oxidation-resistant solder 302. However, the oxidation-resistant solder 302 may be attached to the first element member. In order to prevent oxidation due to heat generated when it collides with the soldering surface of the component 300 or the second element member 301, it is performed in an inert gas atmosphere and using an inert gas as a carrier medium for the oxidation-resistant solder 302. Preferably. Note that lamination of the oxidation-resistant solder 302 on the first element member 300 and the second element member 301 on the soldering surface can be performed by shot blast or air blast.
  • the solder joint 304 In this soldering method, since the oxidation-resistant solder 302 having a lower electrochemical reduction potential and capable of suppressing the formation of oxides in the intermetallic compound is used, the solder joint 304 In this case, the heat conduction characteristics can be improved, and the solder strength, particularly, the thermal fatigue strength can be significantly improved. In addition, the oxidation-resistant solder 302 Since generation of oxides in the compound can be suppressed, wettability can be improved, and generation of void defects in the solder joint 304 can be suppressed.
  • the oxidation-resistant solder 302 is laminated on the soldering surfaces of the first element member 300 and the second element member 301 from which the oxide film 303 has been removed.
  • the flux used to remove the oxide film 303 and apply the oxidation-resistant solder 302. Therefore, since the thickener contained in the flux does not remain as a residue in the solder joint 304, heat transfer characteristics, solder strength, thermal fatigue strength, and the like can be improved.
  • Oxidation-resistant solder powder was produced by dissolving Sn-0.7% by weight ⁇ 11_0.1% by weight 01 and atomizing using Ar gas at a pressure of 20 kgfZcm 2 . The obtained oxidation-resistant solder powder was sieved through a sieve to obtain an oxidation-resistant solder powder having an average particle size in the range of 5 ⁇ m to 35 ⁇ m.
  • the collected oxidation-resistant solder powder was mixed with N gas at a collision speed of about 150.
  • the copper plate struck the soldering surface of the Ni-plated Cu plate and laminated to form a solder layer with a thickness of about 100 ⁇ m.
  • Soldering was performed at 260 ° C for 3 minutes in a 2 gas atmosphere.
  • the occupation ratio of the void defect was 6% by volume.
  • the shear strength of the cross section of the soldered joint of the soldered laminated member was measured and evaluated.
  • the shear strength was 32 MPa.
  • a thermal fatigue test was performed under the conditions of a load shear stress of 15 MPa and a temperature of 140 ° C to 100 ° C. As a result, no cracks were observed even after 1000 cycles.
  • the collected oxidation-resistant solder powder was mixed with N gas at a collision speed of about 150.
  • the copper plate collided with the soldering surface of the Ni-plated Cu plate and laminated to form a solder layer with a thickness of about 100 ⁇ m.
  • Soldering was performed at 260 ° C for 3 minutes in a 2 gas atmosphere.
  • the void defect was occupied by 7.5% by volume as a result of measuring and evaluating void defects in the soldered laminated member by an ultrasonic flaw detection test method.
  • the shear strength of the section of the soldered joint of the soldered laminated member was measured and evaluated.
  • the shear strength was 46 MPa.
  • a thermal fatigue test was performed under the conditions of a load shear stress of 15 MPa and a temperature of 140 ° C to 100 ° C. As a result, no cracks were observed even after 1000 cycles.
  • Oxidation-resistant solder powder was produced by the atomization method using Sn-0.7 wt% 01-0.2 wt% Mn dissolved and Ar gas at a pressure of 20 kgf / cm 2 .
  • the resulting Chikarake sieved oxidation resistance solder Dano powder was collected an average particle diameter of 5 beta m-35 beta oxidation resistance solder powder powder in the range of m.
  • Soldering was performed at 260 ° C for 3 minutes in a 2 gas atmosphere.
  • the void defect was occupied by 7% by volume as a result of measuring and evaluating the void defect of the soldered laminated member by an ultrasonic inspection method.
  • the shear strength of the cross section of the soldered joint of the soldered laminated member was measured and evaluated.
  • the shear strength was 35 MPa.
  • no cracks were observed even after 1000 cycles. won.
  • Soldering was performed at 260 ° C for 3 minutes in a 2 gas atmosphere.
  • Oxidation-resistant solder powder was manufactured by an atomizing method using Ar gas at a pressure of 20 kgf / cm 2 by dissolving Sn-0.75 wt% # 11 solder.
  • Sieved powder powder obtained oxidation resistance solder was collected adopted oxidation resistance solder powder ranges average particle size of 5 ⁇ m- 35 ⁇ m.
  • Soldering was performed at 260 ° C for 3 minutes in a 2 gas atmosphere.
  • a void defect was measured and evaluated for the soldered laminated member by an ultrasonic testing method.
  • the occupation ratio of the void defect was 15% by volume, and this occupation ratio was 2.5 times the occupation ratio of the void defect in Example 10.
  • the shear strength was 13 MPa, and this shear strength was about 2Z5 times the shear strength in Example 10.
  • a thermal fatigue test performed under the conditions of a load shear stress of 15 MPa and a temperature of ⁇ 40 ° C. and 100 ° C., cracks were observed even after 1000 cycles.
  • Oxidation-resistant solder powder was produced by an atomizing method using Sn-3.5 wt% octasol solder and Ar gas at a pressure of 20 kgf / cm 2 .
  • the obtained oxidation-resistant solder powder was sieved to collect an oxidation-resistant solder powder having an average particle size in a range of 5 ⁇ m to 35 ⁇ m.
  • Soldering was performed at 260 ° C for 3 minutes in a 2 gas atmosphere.
  • the void defect was occupied by 17% by volume as a result of measuring and evaluating the void defect of the soldered laminated member by the ultrasonic flaw detection test method. More than twice the rate. Further, as a result of measuring and evaluating the shear strength at the cross section of the solder joint of the soldered laminated member, the shear strength was 18 MPa, and this shear strength was about 2Z5 times the shear strength in Example 11. Furthermore, as a result of a thermal fatigue test performed under the conditions of a load shear stress of 15 MPa and a temperature of ⁇ 40 ° C. and 100 ° C., cracks were observed even after 1000 cycles.
  • the inclusion of the second auxiliary component allows the void defect to be occupied. Power S can be reduced, and the shear strength at the cross section of the solder joint can be improved. Further, by containing the second auxiliary component, it is possible to exhibit excellent characteristics with respect to thermal fatigue.
  • Table 3 shows the compositions and measurement results of the solders of the above-mentioned Examples and Comparative Examples.
  • solder material of the fifth embodiment is the same as the solder described in the first embodiment, except that the first solder is the lead-free solder described in the third embodiment.
  • the first solder is a Sn-based alloy containing 0.02-2.0% by weight of Co, not containing Sn or Pb, or 0.02-2.0% by weight of Co and 0% by weight of Cu. 02—7.5% by weight, with the balance being a Sn-based alloy consisting of Sn and unavoidable impurities.
  • the second solder is the same as that described in the first embodiment, and has the property of expanding when solidified, such as Bi, Sb, Ga, or Ge, or a Bi alloy, an Sb alloy, or a Ga alloy. , Ge alloy and the like. Further, the contents of Bi, Sb, Ga, and Ge contained in the Bi alloy, the Sb alloy, the Ga alloy, and the Ge alloy, respectively, are as described in the first embodiment.
  • the content of the second solder in the first solder is the same as that in the first embodiment, and the amount of strain in the solder phase calculated from the difference in the thermal expansion coefficients of the members to be joined. Therefore, it is appropriately set in the range of 5-50% by volume.
  • the reaction prevention film formed on the surface of the second solder is formed of a metal, ceramic, or resin having a melting point higher than the melting point of the material forming the first solder.
  • the metal, ceramics, or resin forming the reaction prevention film is the same as the reaction prevention film described in the first embodiment. Further, the thickness of the reaction prevention film is also the same as that of the reaction prevention film described in the first embodiment.
  • the soldering conditions such as the soldering temperature and the holding time are controlled to suppress the diffusion or alloying reaction, the mechanical properties and physical properties of the first solder and the second solder can be maintained. Need not be provided with a reaction prevention film.
  • the oxidation-resistant solder of the fourth embodiment may be used as the first solder.
  • the second solder powder 102 of the second embodiment may be used as the second solder.
  • the second solder is unevenly distributed in the first solder beforehand. It can be configured with Further, the first solder and the second solder may be configured separately, and as shown in FIGS. 1A, 3A, and 4A, each may be stacked and arranged, and then soldered.
  • both effects obtained in the first embodiment and the third embodiment can be obtained.
  • join Generation of internal stress in the solder member due to a difference in thermal expansion coefficient between the two members is suppressed, and as a result, deformation of the joining member can be reduced.
  • the second solder is covered with the reaction preventing film, there is no diffusion or alloying reaction between the first solder and the second solder, so that the first solder and the second solder are alloyed to form the first solder. It does not lose its inherent properties such as the mechanical properties of the solder and the solidification and expansion properties of the second solder. As a result, it is possible to maintain the unique characteristics of each of the first solder and the second solder, and to exert the maximum performance of the solder member.
  • the surface tension of the Sn or Sn-based alloy can be reduced and the wettability can be improved.
  • the surface tension of the Sn or Sn-based alloy can be reduced and the wettability can be improved.
  • the reaction between the joining member and Sn or Sn-based alloy and suppressing the growth of intermetallic compounds at the joining interface it is possible to suppress aggregation of molten solder and improve wettability. .
  • generation of void defects is suppressed, and a solder joint having excellent thermal conductivity, mechanical strength, and the like can be obtained.
  • the first solder consisting of powder and the second solder content will be 20% by volume
  • an appropriate amount of flux and a resin binder were added to the composite solder to prepare a creamy composite solder.
  • a composite solder was screen-printed at a thickness of about 150 zm on the surface of the first oxygen-free Cu-based member having a thickness of 3 mm, a width of 100 mm, and a length of 200 mm. Then, a second member of a 0.3 mm thick, 80 mm wide, 180 mm long SiN substrate lined with 100 zm thick pure Cu on both sides is placed on the screen printed composite solder. Thus, a laminated joining member was formed. Subsequently, the laminated joining member was placed in an N gas atmosphere at a temperature of 240 ° C. for 3 minutes.
  • soldering was performed. [0257] In the same manner as in the example of the first embodiment, the shear strength of the solder phase at the soldered portion of the first and second members joined by soldering was measured and evaluated. Met. Further, as a result of measuring the amount of deformation of the Cu base in the same manner as in the example of the first embodiment, the amount of deformation of the Cu base of the first member was 85 ⁇ m. Further, the composite solder material composed of the first solder and the second solder was melted by the same method as in the example of the third embodiment, and the surface tension ( ⁇ ) was measured. As a result, the surface tension ( ⁇
  • solder member, the solder material, the soldering method, the method for producing the solder material, and the solder joint member according to the present invention can be used for joining electronic products and the like. Therefore, it has industrial applicability.

Abstract

A first member (10) and a second member (11) formed of a material with different characteristics from those of the material of the first member (10) are welded to each other with a solder member (14) formed of a first solder (12) made of a low melting point metal element or a low melting point alloy and a second solder (13) made of a metal element or an alloy with solidifying and expanding properties. The surface of the second solder (13) is covered by a reaction prevention film (15) functioning as a boundary layer or a boundary film. Thus, the performance of the solder member (14) can be maximized by maintaining the specific characteristics to the first solder (12) and the second solder (13).

Description

明 細 書  Specification
はんだ部材、はんだ材料、はんだ付け方法、はんだ材料の製造方法およ びはんだ接合部材  Solder member, solder material, soldering method, solder material manufacturing method, and solder joint member
技術分野  Technical field
[0001] 本発明は、熱伝導特性や機械的性質などに優れたはんだ部材、はんだ材料、はん だ付け方法、はんだ材料の製造方法およびはんだ接合部材に関する。  The present invention relates to a solder member, a solder material, a soldering method, a method of manufacturing a solder material, and a solder joint member having excellent heat conduction characteristics and mechanical properties.
背景技術  Background art
[0002] 近年、地球環境保護の観点から環境問題に対する関心が高まりつつある中、産業 廃棄物の廃棄量の増大が深刻な問題となっている。産業廃棄物に含まれる、例えば [0002] In recent years, with an increasing interest in environmental issues from the viewpoint of global environmental protection, an increase in the amount of industrial waste disposal has become a serious problem. Included in industrial waste, for example
、電力制御計算機の基板、家電製品、パソコンなどには、はんだが使用されており、 このはんだから鉛などの有害な重金属が流出することがある。例えば、鉛が流出する と、酸性雨などに作用して鉛を含んだ水溶液を生成し、その水溶液が地下水に侵入 することがある。 In addition, solder is used for power control computer boards, home appliances, personal computers, etc., and harmful heavy metals such as lead may flow out of the solder. For example, when lead spills out, it acts on acid rain and produces an aqueous solution containing lead, which may enter groundwater.
[0003] 国内では、 1998年に家電リサイクル法が成立し、 2001年には家電製品について 使用済み製品の回収が義務づけられている。欧州では、電気'電子製品廃棄物 EU 指令により、 2004年から鉛を含む特定物質の使用禁止が義務づけられている。この ように、鉛の使用に関する法的規制が強化され、鉛フリーはんだの開発が急がれて いる (例えば、非特許文献 1参照。)。  [0003] In Japan, the Home Appliance Recycling Law was enacted in 1998, and in 2001 it is obliged to collect used home appliances. In Europe, the EU's Directive on Waste Electrical and Electronic Products has banned the use of certain substances, including lead, since 2004. As described above, legislation on the use of lead has been strengthened, and the development of lead-free solder has been rushed (for example, see Non-Patent Document 1).
[0004] はんだは、熱サイクル、機械的衝撃、機械的振動などを伴う厳しレ、環境下で使用さ れる複数の要素部品を機械的かつ電気的に接続する重要な役割を担っており、鉛フ リーはんだにおいても、従来用いられてきた Sn— Pbはんだと同等の機械的性質や物 理的性質が要求されてレ、る。  [0004] Solder plays an important role in mechanically and electrically connecting a plurality of component parts used in an environment under severe conditions involving thermal cycling, mechanical shock, mechanical vibration, and the like. Free soldering also requires mechanical and physical properties equivalent to those of Sn-Pb solders that have been used in the past.
[0005] しかし、従来のはんだを用いたエレクトロニクス製品の接合では、例えば、電子部品 、基板、ベースなどのそれぞれ異なる熱膨張係数により、はんだ接合部に大きな歪み が生じ、これらの要素部品の変形や応力集中による疲労破壊などを生じて、最終的 に製品寿命に至ることがあった。また、ベースなどの変形により、それらと接続される 放熱フィンなどと全面接触することができなくなり、放熱効率が著しく低下することがあ つた。例えば、セラミックス基板とセラミックス基板を支持する Cuベースのはんだ付け において、 Sn— Cu系の鉛フリーはんだを使用した場合、セラミックスと金属の熱膨張 係数の差によりはんだ付け後、 Cuベースが大きく変形し、熱伝導特性や疲労強度な どの機械的性質が著しく低下し、要求特性が確保できないという問題があった。 [0005] However, in the conventional joining of electronic products using solder, for example, due to different thermal expansion coefficients of an electronic component, a substrate, a base, and the like, a large distortion is generated in a soldered joint, and deformation and deformation of these component components are caused. In some cases, fatigue breakdown due to stress concentration occurred, eventually leading to product life. In addition, due to deformation of the base and the like, it becomes impossible to make full contact with the radiation fins and the like connected to them, and the radiation efficiency may be significantly reduced. I got it. For example, when using a Sn-Cu-based lead-free solder for soldering a ceramic substrate and a Cu base that supports the ceramic substrate, the Cu base deforms significantly after soldering due to the difference in the thermal expansion coefficient between the ceramic and the metal. In addition, mechanical properties such as heat conduction characteristics and fatigue strength are significantly reduced, and required characteristics cannot be secured.
[0006] また、従来の鉛フリーはんだを用いたエレクトロニクス製品の接合では、ぬれ性不足 によりボイド欠陥が多数発生し、十分なはんだ強度を備えることができず、接合部の 十分なはんだ強度や熱伝導性が得られないことがあった。このような接合部を有する 状態では、熱疲労破壊などを生じて、最終的に製品寿命に至ることがあった。  [0006] In addition, in joining electronic products using conventional lead-free solder, a large number of void defects are generated due to insufficient wettability, and sufficient solder strength cannot be provided. In some cases, conductivity could not be obtained. In a state having such a joint, thermal fatigue failure or the like may occur, and eventually the product life may be reached.
[0007] 例えば、 Sn— Cu合金において、はんだ強度、熱疲労強度などの機械的性質を確 保するため、共晶組成 Sn— 0. 7重量%〇1、または、 Cuの含有率が 0. 7近傍の Sn 合金が用いられている。このような Sn— Cu合金では、 Sn中の Cu固溶量が 0. 006重 量%程度の( Sn)デンドライトの凝固前方に Cuが濃縮し、( Sn)と (Sn Cu : S  [0007] For example, in a Sn-Cu alloy, in order to secure mechanical properties such as solder strength and thermal fatigue strength, the eutectic composition Sn-0.7% by weight〇1 or the Cu content is 0.7%. A Sn alloy near 7 is used. In such an Sn—Cu alloy, Cu concentrates in front of the solidification of (Sn) dendrites, in which the amount of solid solution of Cu in Sn is about 0.006% by weight, and (Sn):
5 6 n43. 5— 45. 5原子%)の共晶組織、または、初晶 η、( β Sn)および ηの共晶組織 が形成される。これらの共晶組織は、機械的強度が低ぐ冷却するとクラックを生じる ことがあった (例えば、非特許文献 2参照。)。  A eutectic structure of 5 6 n43.5-5-45.5 atomic%) or a eutectic structure of primary crystals η, (β Sn) and η is formed. These eutectic structures may have cracks when cooled due to low mechanical strength (for example, see Non-Patent Document 2).
非特許文献 1: Proposal for a Directive of the European Parliament and of tne Council on Waste Electrical and Electronic Equipment, Commission of the European Communities, Brussels, 13.6.2000  Non-Patent Document 1: Proposal for a Directive of the European Parliament and of tne Council on Waste Electrical and Electronic Equipment, Commission of the European Communities, Brussels, 13.6.2000
非特許文献 2 :「Cuおよび Cu— Sn系化合物の Sn— Pbはんだぬれ性解析」、豊田中 央研究所 R&Dレビュー、 Vol. 31 , No. 4 ( 1996年 12月)  Non-Patent Document 2: "Sn-Pb Solder Wettability Analysis of Cu and Cu-Sn Compounds", R & D Review, Central Research Institute of Toyota, Vol. 31, No. 4 (December 1996)
発明の開示  Disclosure of the invention
[0008] 本発明は、熱伝導特性や機械的性質などの低下を抑制し、はんだ強度と信頼性の 向上を図ることができるはんだ部材、はんだ材料、はんだ付け方法、はんだ材料の製 造方法およびはんだ接合部材を提供すること目的とする。  [0008] The present invention provides a solder member, a solder material, a soldering method, a method for manufacturing a solder material, and a solder member capable of suppressing a decrease in heat conduction characteristics and mechanical properties and improving solder strength and reliability. An object is to provide a solder joint member.
[0009] 本発明のはんだ部材は、第 1部材とこの第 1部材とは異種特性材料からなる第 2部 材とを接合するはんだ部材であって、第 1はんだ相と、前記第 1はんだ相中に複数の 領域を持つよう分散され、前記第 1はんだ相より低い融点を有し、かつ凝固膨張の性 質を有する第 2はんだ相と、前記第 1はんだ相と前記第 2はんだ相の境界に存在し、 前記第 1はんだ相よりも高い融点を有する境界層とを具備することを特徴とする。 [0009] A solder member according to the present invention is a solder member for joining a first member and a second member made of a material having a different characteristic from the first member, wherein the first member includes a first solder phase and the first solder phase. A second solder phase having a melting point lower than that of the first solder phase and having a property of solidification and expansion; and a boundary between the first solder phase and the second solder phase. Exists in A boundary layer having a higher melting point than the first solder phase.
[0010] 本発明のはんだ材料は、第 1部材とこの第 1部材とは異種特性材料からなる第 2部 材とを接合するはんだ材料であって、第 1はんだ材料と、前記第 1はんだ材料よりも 高い融点を有する境界被膜が表面に形成され、前記第 1のはんだ材料より低い融点 を有し、かつ凝固膨張の性質を有する第 2はんだ材料とを具備することを特徴とする [0010] The solder material of the present invention is a solder material for joining a first member and a second member made of a material having different properties from the first member, wherein the first solder material and the first solder material And a second solder material having a melting point lower than that of the first solder material and having solidification and expansion properties.
[0011] 本発明のはんだ付け方法は、第 1部材とこの第 1部材とは異種特性材料からなる第 [0011] In the soldering method of the present invention, the first member and the first member may be made of a material having different characteristics.
2部材とを接合するはんだ付け方法であって、表面に境界被膜が形成されるとともに 、この境界被膜を形成する材料の第 1の融点よりも低い第 2の融点を有し、凝固膨張 の性質を有する第 2はんだ材料を前記第 1部材の表面に配置する第 2はんだ材料配 置工程と、前記第 2はんだ材料の上に、前記第 1の融点よりも低くかつ前記第 2の融 点よりも高い第 3の融点を有する第 1はんだ材料を配置する第 1はんだ材料配置ェ 程と、前記第 1はんだ材料の上に、前記第 2部材を設置する第 2部材設置工程と、前 記第 2部材設置工程を経て、積層された積層部材を、大気中または不活性ガス雰囲 気中において、前記第 2の融点よりも高くかつ前記第 1の融点よりも低い温度で加熱 する加熱工程とを具備することを特徴とする。  A soldering method for joining two members, wherein a boundary film is formed on the surface, and the material has a second melting point lower than the first melting point of the material forming the boundary film. A second solder material disposing step of disposing a second solder material having the following on the surface of the first member: and a step of disposing a second solder material having a lower melting point than the first melting point and a lower melting point on the second solder material. A first solder material arranging step of arranging a first solder material having a third melting point that is higher than the first solder material; a second member arranging step of arranging the second member on the first solder material; A heating step of heating the laminated member laminated through the two-member installation step at a temperature higher than the second melting point and lower than the first melting point in the atmosphere or in an inert gas atmosphere; It is characterized by having.
[0012] 本発明のはんだ材料の製造方法は、 Biを 50重量%以上含有する Sn基合金、 Sb を 6重量%以上含有する Sn基合金、 Biおよび Sbのいずれか少なくとも一種からなる 第 2はんだ相の粉末の表面に反応抑制境界膜を形成する境界膜形成工程と、前記 第 2はんだ相の粉末と平均直径が 1一 100 /i mで Snまたは Sn基合金からなる第 1は んだ相の粉末とが所定の比率で均一に混合された混合物を作製する混合物作製ェ 程と、前記混合物に、フラックスおよびバインダを所定の比率で混合し攪拌して、ぺ 一スト状の混合物を作製するペースト状混合物作製工程とを具備することを特徴とす る。  [0012] The method for producing a solder material according to the present invention includes a second solder comprising at least one of Bi and Sb, a Sn-based alloy containing 50% by weight or more of Bi, a Sn-based alloy containing 6% by weight or more of Sb. A boundary film forming step of forming a reaction suppression boundary film on the surface of the phase powder; and forming a first solder phase composed of Sn or a Sn-based alloy having an average diameter of 110 / im with the powder of the second solder phase. A mixture preparing step of preparing a mixture in which powder and a powder are uniformly mixed at a predetermined ratio; and a paste for mixing a flux and a binder at a predetermined ratio with the mixture and stirring to form a first mixture. And a step of preparing a mixture of particles.
[0013] また、本発明のはんだ材料の製造方法は、 Biを 50重量%以上含有する Sn基合金 、 Sbを 6重量%以上含有する Sn基合金、 Biおよび Sbのいずれか少なくとも一種から なる第 2はんだ相の粉末の表面に反応抑制境界膜を形成する境界膜形成工程と、 前記第 2はんだ相の粉末と平均直径が 1一 100 μ mで Snまたは Sn基合金からなる 第 1はんだ相とが所定の比率で均一に混合された混合物を作製する混合物作製ェ 程と、前記混合物を加圧および加熱して複合化する複合化工程と、前記複合化され た混合物をフィルム状またはワイヤ状に成形する成形工程とを具備することを特徴と するはんだ材料。 [0013] Further, the method for producing a solder material of the present invention is characterized in that a Sn-based alloy containing 50% by weight or more of Bi, a Sn-based alloy containing 6% by weight or more of Sb, and at least one of Bi and Sb. (2) a boundary film forming step of forming a reaction suppression boundary film on the surface of the solder phase powder, and comprising Sn or a Sn-based alloy having an average diameter of 100 μm with the second solder phase powder. A mixture preparing step of preparing a mixture in which the first solder phase is uniformly mixed at a predetermined ratio, a compounding step of pressing and heating the mixture to form a composite, and a film forming the composite mixture. A molding process for molding into a shape of a wire or a wire.
[0014] 本発明のはんだ材料は、 Coを 0. 02-2. 0重量%含有する、 Snまたは Pbを含ま なレヽ Sn基合金からなることを特徴とする。  [0014] The solder material of the present invention is characterized by comprising a Sn-based alloy containing 0.002 to 2.0% by weight of Co and containing Sn or Pb.
[0015] また、本発明のはんだ材料は、 Coを 0. 02-2. 0重量%、 Cuを 0. 02—7. 5重量 %を含有し、残部が Snと不可避不純物からなることを特徴とする。  [0015] Further, the solder material of the present invention is characterized in that it contains 0.0-2.0% by weight of Co and 0.02-7.5% by weight of Cu, and the balance consists of Sn and inevitable impurities. And
[0016] さらに、本発明のはんだ材料は、 Cu、 Ag、 Au、 Coおよび Niから選ばれた少なくと も一種の金属からなる第 1従成分を 0. 02 12重量%含有し、かつ Mn、 Pdおよび P tから選ばれた少なくとも一種の金属からなる第 2従成分を 0. 02-1. 2重量%含有 し、残部が Snと不可避不純物からなることを特徴とする。  [0016] Furthermore, the solder material of the present invention contains 0.012% by weight of a first auxiliary component composed of at least one kind of metal selected from Cu, Ag, Au, Co and Ni, and contains Mn, It contains 0.02 to 1.2% by weight of a second auxiliary component composed of at least one metal selected from Pd and Pt, with the balance being Sn and unavoidable impurities.
[0017] また、本発明のはんだ材料は、 Coを 0. 02-2. 0重量%含有する、 Snまたは Pbを 含まない Sn基合金、または Coを 0. 02-2. 0重量%、 Cuを 0. 02-7. 5重量%を 含有し、残部が Snと不可避不純物からなる第 1はんだと、 Snまたは Pbを含まない Sn 基合金力 なる第 2はんだとを具備することを特徴とする。  [0017] The solder material of the present invention contains a Sn-based alloy containing 0.0-2.0% by weight of Co, Sn or Pb, or 0.0-2.0% by weight of Co, 0.02-7.5% by weight, with the balance comprising a first solder consisting of Sn and unavoidable impurities, and a second solder consisting of an Sn-based alloy containing no Sn or Pb. .
[0018] 本発明のはんだ接合部材は、 Coを 0. 02-2. 0重量%含有する、 Snまたは Pbを 含まない Sn基合金、または Coを 0. 02-2. 0重量%、 Cuを 0. 02-7. 5重量%を 含有し、残部が Snと不可避不純物からなるはんだ材料を用いて、第 1部材と第 2部 材とを接合して構成したことを特徴とする。  [0018] The solder joint member of the present invention is a Sn-based alloy containing 0.0-2.0% by weight of Co, Sn or Pb, or 0.02-2.0% by weight of Co, The first member and the second member are joined by using a solder material containing 0.02-7.5% by weight and a balance of Sn and unavoidable impurities.
[0019] 本発明のはんだ部材は、第 1部材と第 2部材とを接合するはんだ部材であって、 Co を 0. 02-2. 0重量%含有する、 Snまたは Pbを含まない Sn基合金からなる第 1はん だ相と、前記第 1はんだ相中に複数の領域を持つよう分散され、前記第 1はんだ相よ り低い融点を有し、かつ凝固膨張の性質を有する、 Bi、 Sb、 Ga、 Ge、 Bi合金、 Sb合 金、 Ga合金、 Ge合金からなる群から選ばれた 1種の材料からなる第 2はんだ相とを 具備することを特徴とする。  [0019] A solder member of the present invention is a solder member for joining a first member and a second member, and is a Sn-based alloy containing 0.02 to 2.0% by weight of Co and containing no Sn or Pb. A first solder phase consisting of: Bi, Sb dispersed in the first solder phase so as to have a plurality of regions, having a lower melting point than the first solder phase, and having the property of solidification expansion; , Ga, Ge, Bi alloy, Sb alloy, Ga alloy, Ge alloy and a second solder phase made of one kind of material selected from the group consisting of Ge alloy.
[0020] 本発明のはんだ材料は、 Coを 0. 02-2. 0重量%含有する、 Snまたは Pbを含ま ない Sn基合金、または Coを 0. 02-2. 0重量%、 Cuを 0. 02—7. 5重量%を含有 し、残部が Snと不可避不純物からなる第 1はんだと、前記第 1はんだより低い融点を 有し、かつ凝固膨張の性質を有する、 Bi、 Sb、 Ga、 Ge、 Bi合金、 Sb合金、 Ga合金、 Ge合金からなる群から選ばれた 1種の材料からなる第 2はんだとを具備することを特 徴とする。 [0020] The solder material of the present invention comprises a Sn-based alloy containing 0.05 to 2.0% by weight of Co, not containing Sn or Pb, or 0.02 to 2.0% by weight of Co, and 02—7.5 contains 5% by weight A first solder consisting of Sn and inevitable impurities, and a Bi, Sb, Ga, Ge, Bi alloy, Sb alloy, Ga alloy having a melting point lower than that of the first solder and having a solidification expansion property And a second solder made of one material selected from the group consisting of Ge alloys.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
[図 1A]本発明の第 1の実施の形態のはんだ部材およびはんだ材料を模式的に示す 断面図である。 FIG. 1A is a sectional view schematically showing a solder member and a solder material according to a first embodiment of the present invention.
[図 1B]本発明の第 1の実施の形態のはんだ部材およびはんだ材料を模式的に示す 断面図である。  FIG. 1B is a cross-sectional view schematically showing a solder member and a solder material according to the first embodiment of the present invention.
[図 2]第 1のはんだおよび第 2のはんだの凝固時の特性を示す図である。  FIG. 2 is a diagram showing characteristics of a first solder and a second solder during solidification.
[図 3A]本発明の第 1の実施の形態のはんだ部材およびはんだ材料を模式的に示す 断面図である。  FIG. 3A is a sectional view schematically showing a solder member and a solder material according to the first embodiment of the present invention.
[図 3B]本発明の第 1の実施の形態のはんだ部材およびはんだ材料を模式的に示す 断面図である。  FIG. 3B is a cross-sectional view schematically showing a solder member and a solder material according to the first embodiment of the present invention.
[図 4A]本発明の第 1の実施の形態のはんだ部材およびはんだ材料を模式的に示す 断面図である。  FIG. 4A is a sectional view schematically showing a solder member and a solder material according to the first embodiment of the present invention.
[図 4B]本発明の第 1の実施の形態のはんだ部材およびはんだ材料を模式的に示す 断面図である。  FIG. 4B is a cross-sectional view schematically showing a solder member and a solder material according to the first embodiment of the present invention.
[図 5A]本発明の第 1の実施の形態のはんだ材料の一例を模式的に示す断面図であ る。  FIG. 5A is a sectional view schematically showing one example of a solder material according to the first embodiment of the present invention.
[図 5B]本発明の第 1の実施の形態のはんだ材料の一例を模式的に示す断面図であ る。  FIG. 5B is a cross-sectional view schematically showing one example of a solder material according to the first embodiment of the present invention.
[図 5C]本発明の第 1の実施の形態のはんだ材料の一例を模式的に示す断面図であ る。  FIG. 5C is a cross-sectional view schematically showing one example of a solder material according to the first embodiment of the present invention.
[図 6A]Cuベースの変形量を示す Cuベースの断面図である。  FIG. 6A is a cross-sectional view of a Cu base showing a deformation amount of the Cu base.
[図 6B]Cuベースの変形量を示す Cuベースの断面図である。  FIG. 6B is a cross-sectional view of the Cu base showing the amount of deformation of the Cu base.
[図 7]本発明の第 2の実施の形態のはんだ材料を模式的に示す断面図である。  FIG. 7 is a sectional view schematically showing a solder material according to a second embodiment of the present invention.
[図 8]本発明の第 2の実施の形態のはんだ材料を用レ、たはんだ付け後の断面を模式 的に示す断面図である。 FIG. 8 is a schematic cross-sectional view after soldering using a solder material according to a second embodiment of the present invention. FIG.
[図 9]本発明の第 2の実施の形態のはんだ材料を用いたはんだ付け構造の一例を模 式的に示す断面図である。  FIG. 9 is a cross-sectional view schematically showing one example of a soldering structure using a solder material according to a second embodiment of the present invention.
[図 10]本発明の第 2の実施の形態のはんだ材料を用いたはんだ付け後の断面を模 式的に示す断面図である。  FIG. 10 is a cross-sectional view schematically showing a cross section after soldering using the solder material according to the second embodiment of the present invention.
[図 11]従来のはんだ材料を用いたはんだ付け後の断面を模式的に示す断面図であ る。  FIG. 11 is a cross-sectional view schematically showing a cross section after soldering using a conventional solder material.
[図 12]本発明の第 2の実施の形態のはんだ材料を用いたはんだ付け構造の一例を 模式的に示す断面図である。  FIG. 12 is a cross-sectional view schematically showing one example of a soldering structure using the solder material according to the second embodiment of the present invention.
[図 13]本発明の第 2の実施の形態のはんだ材料を用レ、たはんだ付け後の断面を模 式的に示す断面図である。  FIG. 13 is a cross-sectional view schematically showing a cross section after soldering using the solder material according to the second embodiment of the present invention.
[図 14]従来のはんだ材料を用いたはんだ付け後の断面を模式的に示す断面図であ る。  FIG. 14 is a cross-sectional view schematically showing a cross section after soldering using a conventional solder material.
[図 15]フィルム状のはんだ材料の外観を示す斜視図である。  FIG. 15 is a perspective view showing the appearance of a film-like solder material.
[図 16]ワイヤ状のはんだ材料の外観を示す斜視図である。 FIG. 16 is a perspective view showing the appearance of a wire-shaped solder material.
[図 17]本発明の第 3の実施の形態のフィルム状に形成された無鉛はんだの斜視図で める。  FIG. 17 is a perspective view of a lead-free solder formed in a film shape according to a third embodiment of the present invention.
[図 18]本発明の第 3の実施の形態のペースト状に形成された無鉛はんだの断面図で める。  FIG. 18 is a sectional view of a lead-free solder formed in a paste according to a third embodiment of the present invention.
[図 19]本発明の第 3の実施の形態のワイヤー状に形成された無鉛はんだの斜視図で める。  FIG. 19 is a perspective view of a lead-free solder formed in a wire shape according to a third embodiment of the present invention.
[図 20]本発明の第 3の実施の形態のロッド状に形成された無鉛はんだの斜視図であ る。  FIG. 20 is a perspective view of a lead-free solder formed in a rod shape according to a third embodiment of the present invention.
[図 21]無鉛はんだによって接合された第 1要素部材および第 2要素部材の断面図で める。  FIG. 21 is a cross-sectional view of a first element member and a second element member joined by lead-free solder.
[図 22]2種類の無鉛はんだによって接合された第 1要素部材および第 2要素部材の 断面図である。  FIG. 22 is a cross-sectional view of a first element member and a second element member joined by two types of lead-free solder.
[図 23]はんだ接合部の断面図である。 [図 24]滴下法による表面張力の測定の概要を示す図である。 FIG. 23 is a sectional view of a solder joint. FIG. 24 is a diagram showing an outline of measurement of surface tension by a dropping method.
[図 25A]元素分析の結果を示す図である。  FIG. 25A is a view showing a result of elemental analysis.
[図 25B]元素分析の結果を示す図である。  FIG. 25B is a view showing a result of elemental analysis.
[図 26]元素分析の結果を示す図である。  FIG. 26 is a view showing a result of elemental analysis.
[図 27A]本発明の第 4の実施の形態のはんだ付け工程を示す図である。  FIG. 27A is a view showing a soldering step according to a fourth embodiment of the present invention.
[図 27B]本発明の第 4の実施の形態のはんだ付け工程を示す図である。  FIG. 27B is a view showing a soldering step according to a fourth embodiment of the present invention.
[図 27C]本発明の第 4の実施の形態のはんだ付け工程を示す図である。  FIG. 27C is a view showing a soldering step according to a fourth embodiment of the present invention.
[図 27D]本発明の第 4の実施の形態のはんだ付け工程を示す図である。  FIG. 27D is a diagram showing a soldering step according to the fourth embodiment of the present invention.
[図 27E]本発明の第 4の実施の形態のはんだ付け工程を示す図である。  FIG. 27E is a view showing a soldering step according to the fourth embodiment of the present invention.
[図 28]耐酸化性はんだが設置された第 1要素部材の断面図である。  FIG. 28 is a cross-sectional view of a first element member on which oxidation-resistant solder is installed.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明の一実施の形態について図面を参照して説明する。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0023] (第 1の実施の形態)  (First Embodiment)
図 1Aおよび図 1Bに、第 1の実施の形態のはんだ付け構造の一例を示す。  1A and 1B show an example of a soldering structure according to the first embodiment.
[0024] 図 1Bに示されたはんだ付け構造では、第 1部材 10とこの第 1部材 10とは異種特性 材料からなる第 2部材 11とが、低融点金属元素または低融点合金からなる第 1はん だ 12および凝固膨張の性質を有する金属元素または合金からなる第 2はんだ 13か らなるはんだ部材 14によって接合されている。また、第 2はんだ 13の表面は、境界層 または境界被膜として機能する反応防止膜 15で覆われている。ここで、異種特性材 料とは、組成の同一または非同一を問わず、機械的性質や物理的性質などの特性 の異なる材料のことをいう。  In the soldering structure shown in FIG. 1B, the first member 10 and the second member 11 made of a material having a different characteristic from the first member 10 are connected to the first member 10 made of a low melting point metal element or a low melting point alloy. It is joined by a solder member 14 made of a solder 12 and a second solder 13 made of a metal element or alloy having the property of solidification expansion. The surface of the second solder 13 is covered with a reaction prevention film 15 functioning as a boundary layer or a boundary coating. Here, the heterogeneous material refers to a material having different properties such as mechanical properties and physical properties irrespective of the same or different composition.
[0025] 第 1はんだ 12に用いられる金属は、低融点金属元素または低融点合金であり、例 えば、 Sn、 In、 Znなどの元素金属、または、 Sn合金、 In合金、 Zn合金などで構成さ れる。 Sn合金において、合金中の Snの含有率は、合金に求められる機械的特性、 融点などによって適宜に設定される。その他の In合金、 Zn合金を用いた場合も Sn合 金の場合と同様に、含有率は、合金に求められる機械的特性、融点などによって適 宜に設定される。なお、例えば、 Sn合金に、 In、 Znなどの元素金属が含有されてもよ レ、。また、同様に In合金、 Zn合金においても、他の元素金属を含有してもよい。 [0026] 第 2はんだ 13に用いられる金属は、凝固時に膨張する性質を有する Bi、 Sb、 Ga、 Geなどの元素金属、または、 Bi合金、 Sb合金、 Ga合金、 Ge合金などで構成される。 第 2はんだ 13に用いられる金属が合金の場合には、 Snなどが含有されている。第 2 はんだ 13に Bi合金を用いる場合、 Bi合金中の Biの含有率が 50重量%以上であれ ば良いが、 58重量%以上がより好ましい。 Biの含有率が 50重量%未満では、 Bi合 金が膨張することによる第 1はんだ 12の熱収縮を緩和する効果が小さぐ 48重量% 未満では、その効果がほとんど得られなレ、。また、 Sb合金、 Ga合金、 Ge合金におい て、 Sb、 Ga、 Geの含有率は、 6重量%以上であればよぐ 22重量%以上が好ましく 、 50重量%以上であればさらに好ましい。例えば、 Sb合金中の Sbの含有率が 6重量 %未満では、 Sb合金が膨張することによる第 1はんだ 12の熱収縮を緩和する効果が ほとんど得られない。なお、第 2はんだ 13は、上記した Bi、 Sb、 Ga、 Geなどの元素金 属を組み合わせて構成されてもよレ、。また、例えば、 Bi合金には、 Sb、 Ga、 Geなど の元素金属を含有してもよい。また、同様に Sb合金、 Ga合金、 Ge合金においても、 他の元素金属を含有してもよレヽ。 [0025] The metal used for the first solder 12 is a low-melting-point metal element or a low-melting-point alloy, such as an elemental metal such as Sn, In, or Zn, or a Sn alloy, an In alloy, or a Zn alloy. Is done. In Sn alloys, the content of Sn in the alloy is appropriately set depending on the mechanical properties, melting point, and the like required for the alloy. In the case where other In alloys or Zn alloys are used, similarly to the case of Sn alloy, the content is appropriately set according to the mechanical properties, melting point, and the like required for the alloy. Note that, for example, the Sn alloy may contain elemental metals such as In and Zn. Similarly, the In alloy and the Zn alloy may contain other elemental metals. [0026] The metal used for the second solder 13 is composed of an elemental metal such as Bi, Sb, Ga, or Ge having the property of expanding when solidified, or a Bi alloy, Sb alloy, Ga alloy, Ge alloy, or the like. . When the metal used for the second solder 13 is an alloy, Sn or the like is contained. When a Bi alloy is used for the second solder 13, the content of Bi in the Bi alloy may be 50% by weight or more, and more preferably 58% by weight or more. If the Bi content is less than 50% by weight, the effect of relieving the thermal shrinkage of the first solder 12 due to expansion of the Bi alloy is small. If the content is less than 48% by weight, the effect is hardly obtained. In the Sb alloy, Ga alloy and Ge alloy, the content of Sb, Ga and Ge is preferably at least 22% by weight, more preferably at least 6% by weight, and further preferably at least 50% by weight. For example, if the content of Sb in the Sb alloy is less than 6% by weight, the effect of reducing the thermal shrinkage of the first solder 12 due to the expansion of the Sb alloy is hardly obtained. The second solder 13 may be formed by combining element metals such as Bi, Sb, Ga, and Ge described above. Further, for example, the Bi alloy may contain an elemental metal such as Sb, Ga, and Ge. Similarly, Sb alloys, Ga alloys, and Ge alloys may contain other elemental metals.
[0027] また、第 1はんだ 12中の第 2はんだ 13の含有率は、第 1部材 10と第 2部材 11の熱 膨張係数の差により算出したはんだ相内の歪み量によって、 5— 50体積%の範囲で 適宜に設定される。第 2はんだ 13の含有率が、 5体積%未満では、十分な凝固膨張 の効果が得られず、 50体積%を越えると、複合はんだ相の延性が低下し、十分な機 械的性質を確保することができない場合があるためである。  [0027] Further, the content of the second solder 13 in the first solder 12 depends on the amount of strain in the solder phase calculated from the difference between the coefficients of thermal expansion of the first member 10 and the second member 11 by 5-50 volume. It is set appropriately within the range of%. If the content of the second solder 13 is less than 5% by volume, a sufficient solidification and expansion effect cannot be obtained, and if it exceeds 50% by volume, the ductility of the composite solder phase is reduced, and sufficient mechanical properties are secured. This is because it may not be possible.
[0028] また、第 2はんだ 13には、第 1はんだ 12の融点よりも低い融点の金属または合金が 用いられ、その条件に適合するように、第 1はんだ 12および第 2はんだ 13に用いる金 属元素、合金の種類、合金の組成などの選定や組み合わせが適宜行われる。これに よって、第 1部材 10と第 2部材 11の熱膨張係数の差によるはんだ部材内の内部応力 の緩和効果を最大限に発揮することができる。  As the second solder 13, a metal or an alloy having a melting point lower than the melting point of the first solder 12 is used, and the metal used for the first solder 12 and the second solder 13 is adjusted to meet the conditions. Selection and combination of a group element, an alloy type, an alloy composition, and the like are appropriately performed. Thereby, the effect of alleviating the internal stress in the solder member due to the difference in the thermal expansion coefficient between the first member 10 and the second member 11 can be maximized.
[0029] 第 2はんだ 13の表面に形成される反応防止膜 15は、第 1はんだ 12を構成する材 料の融点より高い融点を有する金属、セラミックス、または樹脂から形成される。  The reaction prevention film 15 formed on the surface of the second solder 13 is formed of a metal, a ceramic, or a resin having a melting point higher than the melting point of the material forming the first solder 12.
[0030] 金属によって反応防止膜 15が形成される場合、金属として、例えば、 Cu、 Ni、 Cr、 Al、 Zn、 Au、 Ag、 Cu合金、 Ni合金、 Cr合金、 Al合金、 Zn合金、 Au合金および Ag 合金のいずれか少なくとも一種から適宜に選定される。金属による反応防止膜 15は 、第 2はんだ 13の表面に、電解メツキ法、無電解メツキ法などによって形成される。 When the reaction prevention film 15 is formed of a metal, the metal may be, for example, Cu, Ni, Cr, Al, Zn, Au, Ag, Cu alloy, Ni alloy, Cr alloy, Al alloy, Zn alloy, Au alloy. Alloy and Ag It is appropriately selected from at least one of the alloys. The reaction prevention film 15 made of metal is formed on the surface of the second solder 13 by an electrolytic plating method, an electroless plating method, or the like.
[0031] セラミックスによって反応防止膜 15が形成される場合、セラミックスとして、例えば、 これらに限るものではなレ、が、 Al O 、 SiO、 A1N、 SiN、 SiC、 TiC、 TiOなどのい  When the reaction prevention film 15 is formed of ceramics, examples of the ceramics include, but are not limited to, Al 2 O 3, SiO, A1N, SiN, SiC, TiC, and TiO.
2 3 2 2 ずれか少なくとも一種から適宜に選定される。セラミックスによる反応防止膜 15は、例 えば、ゾル ·ゲル法などで形成され、この形成方法は極めて容易で経済的である。  2 3 2 2 At least one of them is appropriately selected. The reaction prevention film 15 made of ceramics is formed by, for example, a sol-gel method, and this forming method is extremely easy and economical.
[0032] 樹脂によって反応防止膜 15が形成される場合、樹脂として、例えば、熱可塑性樹 脂などが用いられ、反応防止膜 15は、溶融樹脂のコーティング法やバインダを介し て微粒子を付着させる方法などによって形成される。  When the reaction prevention film 15 is formed of a resin, for example, a thermoplastic resin is used as the resin, and the reaction prevention film 15 is formed by a method of coating a molten resin or a method of adhering fine particles through a binder. And so on.
[0033] 反応防止膜 15の厚さは、 10nm 10 μ mの範囲ではんだ部材の要求特性に応じ て適宜に設定されるものである。反応防止膜 15の厚さは、 10nm以上であれば第 1 はんだ 12と第 2はんだ 13との反応防止効果を発揮し、 10 z mを越えると反応防止膜 15の形成時間が長くなり不経済である。反応防止膜 15の厚さのより好ましい範囲は 、 0. 1 μ m— 5 μ mである。  The thickness of the reaction prevention film 15 is appropriately set within a range of 10 nm and 10 μm according to the required characteristics of the solder member. If the thickness of the reaction preventive film 15 is 10 nm or more, the effect of preventing the reaction between the first solder 12 and the second solder 13 is exhibited.If the thickness exceeds 10 zm, the formation time of the reaction preventive film 15 becomes longer, which is uneconomical. is there. A more preferable range of the thickness of the reaction prevention film 15 is 0.1 μm to 5 μm.
[0034] なお、はんだ接合温度や保持時間などのはんだ接合条件を制御し、拡散または合 金反応を抑制して、第 1はんだ 12と第 2はんだ 13におけるそれぞれの機械的性質や 物理的性質などを維持できる場合には、反応防止膜 15は設けなくてもよい。例えば 、第 1はんだ 12として、 Sn— 0. 7重量%Cu— 3. 5重量%八§ (固相線: 217°C、液相 線: 219°C)、第 2はんだ 13として、 Sn— 57重量%Bi (溶融温度: 139°C)を選定し、 はんだ接合温度を第 1はんだ 12の液相線温度より 10— 20°C程度高レ、温度で、第 1 はんだ 12が完全に溶融するのに必要な最短保持時間、例えば、十秒間加熱する。 このはんだ接合条件によって、はんだ接合すると、第 1はんだ 12と第 2はんだ 13の境 界層に厚さ数 μ mの合金反応層が形成されるが、第 1はんだ 12と第 2はんだ 13が完 全に合金化することがなぐ第 1はんだ 12と第 2はんだ 13の固有な物理的性質や機 械的性質を維持することができる。 [0034] The soldering conditions such as the soldering temperature and the holding time are controlled to suppress the diffusion or alloying reaction, and the respective mechanical and physical properties of the first solder 12 and the second solder 13 are controlled. If this can be maintained, the reaction prevention film 15 may not be provided. For example, the first solder 12, Sn- 0. 7 wt% Cu- 3. 5 wt% eight § (solidus: 217 ° C, liquidus: 219 ° C), as the second solder 13, Sn- 57% by weight Bi (melting temperature: 139 ° C) is selected and the soldering temperature is 10-20 ° C higher than the liquidus temperature of the first solder 12, and the first solder 12 is completely melted. Heating for a minimum holding time required to perform the heating, for example, 10 seconds. Under these soldering conditions, when soldering, an alloy reaction layer with a thickness of several μm is formed at the boundary layer between the first solder 12 and the second solder 13, but the first solder 12 and the second solder 13 are completed. The inherent physical and mechanical properties of the first solder 12 and the second solder 13 that cannot be completely alloyed can be maintained.
[0035] ここで、図 1B、図 3Bおよび図 4Bに示すように、第 1部材 10が第 2部材 11の熱膨張 係数より大きい場合、第 2はんだ 13を第 1はんだ 12中の第 1部材 10側に偏在させる ことにより、凝固時における第 1部材 10の歪みを最大限に緩和する効果を得ることが できる。 Here, as shown in FIG. 1B, FIG. 3B and FIG. 4B, when the first member 10 is larger than the thermal expansion coefficient of the second member 11, the second solder 13 is replaced with the first member in the first solder 12. By being unevenly distributed on the 10 side, the effect of maximally relaxing the distortion of the first member 10 during solidification can be obtained. it can.
[0036] 図 1B、図 3Bおよび図 4Bに示されたはんだ部材は、例えば、次のようにして製造さ れる。  [0036] The solder member shown in FIG. 1B, FIG. 3B and FIG. 4B is manufactured, for example, as follows.
[0037] まず、第 2はんだ 13の反応防止膜 15を形成する材料が選択され、選択された材料 が金属の場合には電解メツキ法、無電解メツキ法などにより、また選択された材料が セラミックスの場合にはゾル 'ゲル法などにより、さらに選択された材料が樹脂の場合 にはコーティング法などにより、それぞれ第 2はんだ 13の表面に反応防止膜 15が形 成される。  First, a material for forming the reaction preventive film 15 of the second solder 13 is selected. If the selected material is a metal, an electrolytic plating method, an electroless plating method, or the like is used. In this case, the reaction preventing film 15 is formed on the surface of the second solder 13 by a sol-gel method or the like, and further when the selected material is a resin by a coating method or the like.
[0038] このようにして得られた反応防止膜 15が被覆された所定量の第 2はんだ 13を第 1 部材 10の表面に均一に配置する。続いて、第 2はんだ 13の上に、所定量の第 1はん だ 12を均一に配置する。そして、第 1はんだ 12の上に第 2部材 11を設置し、図 1A、 図 3Aおよび図 4Aに示すような積層部材を得る。続いて、その積層部材を大気中ま たは不活性ガス雰囲気中において、第 1はんだ 12の液相線温度以上の温度に加熱 する。加熱されることによって溶融した第 1はんだ 12は、第 2はんだ 13間の空隙部に 含侵される。冷却工程において、第 1はんだ 12の融点を通過する際、第 1はんだ 12 は、第 1はんだ 12より融点が低ぐまだ溶融している状態の第 2はんだ 13を取り囲み ながら凝固する。さらに冷却すると、第 2はんだ 13の融点を通過する際、第 2はんだ 1 3が凝固する。第 2はんだ 13が凝固する際、体積膨張して、第 1部材 10と第 2部材 11 の熱膨張係数の差によるはんだ相内の歪み緩和効果を発揮し、図 1B、図 3Bおよび 図 4Bに示すような熱膨張係数の差による変形が生じないはんだ部材を得る。なお、 図 5A、図 5Bおよび図 5Cに示すような、予め第 1はんだ 12に第 2はんだ 13を偏在し て構成されたはんだ部材を使用してもよい。  [0038] A predetermined amount of the second solder 13 coated with the reaction prevention film 15 thus obtained is uniformly arranged on the surface of the first member 10. Subsequently, a predetermined amount of the first solder 12 is uniformly arranged on the second solder 13. Then, the second member 11 is placed on the first solder 12 to obtain a laminated member as shown in FIGS. 1A, 3A and 4A. Subsequently, the laminated member is heated to a temperature equal to or higher than the liquidus temperature of the first solder 12 in the atmosphere or an inert gas atmosphere. The first solder 12 melted by heating is impregnated into the gap between the second solders 13. In the cooling step, when passing through the melting point of the first solder 12, the first solder 12 solidifies while surrounding the second solder 13 which has a lower melting point than the first solder 12 and is still molten. When further cooled, the second solder 13 solidifies when passing through the melting point of the second solder 13. When the second solder 13 solidifies, it expands in volume and exerts the effect of alleviating the strain in the solder phase due to the difference in the coefficient of thermal expansion between the first member 10 and the second member 11, and as shown in FIGS. 1B, 3B and 4B. A solder member that does not undergo deformation due to the difference in thermal expansion coefficient as shown is obtained. 5A, 5B, and 5C, a solder member in which the second solder 13 is unevenly distributed in the first solder 12 in advance may be used.
[0039] ここで、図 1Aに示すように、第 1はんだ 12は板形状に、第 2はんだ 13は、球状また は不定形状の粒子形状に形成される。また、図 3Aに示すように、第 1はんだ 12は、 第 2はんだ 13と同様に、球状または不定形状の粒子形状に形成されてもよい。さらに 、図 4Aに示すように、第 1はんだ 12は板形状に、第 2はんだ 13は、貫通孔を有する 板形状に形成されてもよい。なお、第 1はんだ 12および第 2はんだ 13の形状は、図 1 A、図 3Aおよび図 4A示された形状および組み合わせに限るものではなぐ溶融した 第 1はんだ 12が第 2はんだ 13間の空隙部に含侵する構成ならばよレ、。 Here, as shown in FIG. 1A, the first solder 12 is formed in a plate shape, and the second solder 13 is formed in a spherical or irregular particle shape. Further, as shown in FIG. 3A, the first solder 12 may be formed in a spherical or irregular shape particle shape, similarly to the second solder 13. Further, as shown in FIG. 4A, the first solder 12 may be formed in a plate shape, and the second solder 13 may be formed in a plate shape having a through hole. The shapes of the first solder 12 and the second solder 13 are not limited to the shapes and combinations shown in FIG. 1A, FIG. 3A and FIG. If the first solder 12 impregnates the voids between the second solders 13, it is sufficient.
[0040] 第 1の実施の形態におけるはんだ部材、はんだ材料およびはんだ付け方法にぉレヽ て、図 2に示すように、第 1部材 10と第 2部材 11の熱膨張係数の差によるはんだ部材 14内の内部応力の発生が抑制され、その結果、第 1部材 10と第 2部材 11の変形を 減少させることができる。特に、熱膨張係数の大きな部材側に第 2部材 11を偏在させ ることで、第 1部材 10と第 2部材 11の熱膨張係数の差によるはんだ部材 14内の内部 応力の発生を効果的に抑制することができる。  Referring to the solder member, the solder material, and the soldering method in the first embodiment, as shown in FIG. 2, the solder member 14 due to the difference in thermal expansion coefficient between the first member 10 and the second member 11 is determined. Generation of internal stress in the inside is suppressed, and as a result, deformation of the first member 10 and the second member 11 can be reduced. In particular, by unevenly distributing the second member 11 on the side of the member having a large thermal expansion coefficient, the generation of internal stress in the solder member 14 due to the difference in the thermal expansion coefficient between the first member 10 and the second member 11 can be effectively reduced. Can be suppressed.
[0041] また、第 2はんだ 13が反応防止膜 15で覆われているため、第 1はんだ 12と第 2は んだ 13との間において拡散または合金反応を伴わないので、第 1はんだ 12と第 2は んだ 13が合金化することがなレ、。これによつて、第 1はんだ 12の機械的性質や第 2は んだ 13の凝固膨張性質などのそれぞれの固有な特性を維持し、はんだ部材 14の性 能を最大限に発揮することができる。  Further, since the second solder 13 is covered with the reaction prevention film 15, no diffusion or alloying reaction occurs between the first solder 12 and the second solder 13. Second, 13 cannot be alloyed. As a result, the unique properties such as the mechanical properties of the first solder 12 and the solidification and expansion properties of the second solder 13 are maintained, and the performance of the solder member 14 can be maximized. .
[0042] 次に、第 1の実施の形態における具体的な実施例について説明する。  Next, a specific example of the first embodiment will be described.
[0043] (実施例 1)  (Example 1)
平均粒径が約 20 111の311—57重量%81粉末の表面に、ゾル.ゲル法によって、厚 さ約 50nmの A1〇皮膜を形成し、第 2はんだを製作した。続いて、この第 2はんだと 3 1 1-57 wt% 81 powder surface with an average particle size of about 20 111, sol. Gel method, to form a A1_rei film having a thickness of about 50 nm, were fabricated second solder. Then, with this second solder
2 3  twenty three
平均粒径が約 20 μ ΐηの Sn— 0. 7重量%Cu粉末からなる第 1はんだとを、第 2はんだ の含有量が 15体積%となるように混合し、複合はんだ材料を製作した。なお、複合は んだには、接合材の表面の酸化皮膜の除去およびスクリーン印刷、塗布などを容易 するため、適量のフラックスと樹脂バインダーを添カ卩し、クリーム状の複合はんだを調 製した。  A composite solder material was manufactured by mixing a first solder made of Sn-0.7% by weight Cu powder having an average particle size of about 20 μ は ん だ η so that the content of the second solder was 15% by volume. For the composite solder, a creamy composite solder was prepared by adding an appropriate amount of flux and a resin binder to facilitate removal of the oxide film on the surface of the bonding material, screen printing, and application. .
[0044] 続いて、厚さ 3mm、幅 100mm、長さ 200mmの無酸素 Cuベースの第 1部材の表 面に、複合はんだを厚さ約 100 z mでスクリーン印刷した。そして、スクリーン印刷さ れた複合はんだの上に、両面が厚さ 100 z mの純 Cuでラインユングされた厚さ 0. 3 mm、幅 80mm、長さ 180mmの SiN基板の第 2部材を設置し、積層接合部材を構成 した。続いて、この積層接合部材を、 Nガス雰囲気中において、 250°Cの温度で 3分  Subsequently, a composite solder having a thickness of about 100 zm was screen-printed on the surface of the first oxygen-free Cu-based member having a thickness of 3 mm, a width of 100 mm, and a length of 200 mm. Then, a second member of a 0.3 mm thick, 80 mm wide, 180 mm long SiN substrate lined with 100 zm thick pure Cu on both sides is placed on the screen printed composite solder. Thus, a laminated joining member was formed. Subsequently, this laminated joint member was placed in an N gas atmosphere at a temperature of 250 ° C. for 3 minutes.
2  Two
間加熱し、はんだ付けを行った。  During heating, soldering was performed.
[0045] はんだ付けした第 1部材と第 2部材のはんだ付け部におけるはんだ相のせん断強 度を測定評価した結果、せん断強度は 30MPaであった。また、第 1部材の Cuベー スの変形量は 75 μ mであった。 [0045] The shear strength of the solder phase at the soldered portions of the soldered first member and second member As a result of measuring and evaluating the degree, the shear strength was 30 MPa. The deformation of the Cu base of the first member was 75 μm.
[0046] ここで、 Cuベースの変形量について、図 6Aおよび図 6Bを参照して説明する。 Here, the deformation amount of the Cu base will be described with reference to FIGS. 6A and 6B.
[0047] 図 6Aおよび図 6Bは、第 1部材 10を構成する厚さ 3mm、幅 100mm、長さ 200mm の Cuベースの幅の中心で長手方向における断面を示したものである。図 6Aは、変 形前の第 1部材 10の断面を示し、図 6Bは、変形後の第 1部材 10の断面を示してい る。 FIGS. 6A and 6B show a cross section in the longitudinal direction at the center of the width of a Cu base having a thickness of 3 mm, a width of 100 mm, and a length of 200 mm, which constitutes the first member 10. FIG. 6A shows a cross section of the first member 10 before deformation, and FIG. 6B shows a cross section of the first member 10 after deformation.
[0048] Cuベースの変形量は、第 1部材 10の長手方向に垂直な方向における基準面 20と 基準面 20に接していた第 1部材 10の接触面 21との最大変形距離 Lを示すものであ る。  [0048] The deformation amount of the Cu base indicates the maximum deformation distance L between the reference surface 20 and the contact surface 21 of the first member 10 that was in contact with the reference surface 20 in a direction perpendicular to the longitudinal direction of the first member 10. It is.
[0049] (実施例 2)  (Example 2)
平均粒径が約 20 x mの Sn— 57重量%81粉末の表面に、ゾル.ゲル法によって、厚 さ約 50nmの A1〇皮膜を形成し、第 2はんだを製作した。続いて、厚さ 100 /i m、幅  An A1〇 film having a thickness of about 50 nm was formed on the surface of Sn—57 wt% 81 powder having an average particle size of about 20 × m by a sol-gel method, and a second solder was manufactured. Subsequently, thickness 100 / im, width
2 3  twenty three
80mm,長さ 180mmの Sn— 0. 7重量%Cuシートからなる第 1はんだの一方の面に 、第 2はんだを、第 2はんだの含有量が 15体積%となるように設置し、プレス成形して 複合はんだシートを製作した。  An 80mm, 180mm long Sn-0.7% by weight Cu sheet is placed on one side of a first solder, and a second solder is placed so that the content of the second solder is 15% by volume and press-molded. Thus, a composite solder sheet was manufactured.
[0050] 続いて、厚さ 3mm、幅 100mm、長さ 200mmの無酸素 Cuベースの第 1部材の表 面に適量のフラックスを滴下し、複合はんだシートの第 2はんだの層の面が第 1部材 と接するように、第 1部材の表面に複合はんだシートを設置した。そして、複合はんだ シートの上に、両面が厚さ 100 /i mの純 Cuでラインニングされた厚さ 0· 3mm、幅 80 mm、長さ 180mmの SiN基板の第 2部材を設置し、積層接合部材を構成した。続い て、この積層接合部材を、 Nガス雰囲気中において、 250°Cの温度で 3分間加熱し [0050] Subsequently, an appropriate amount of flux was dropped on the surface of the oxygen-free Cu-based first member having a thickness of 3mm, a width of 100mm, and a length of 200mm, and the surface of the second solder layer of the composite solder sheet was moved to the first surface. A composite solder sheet was placed on the surface of the first member so as to be in contact with the member. Then, on the composite solder sheet, a second member of SiN substrate 0.3 mm thick, 80 mm wide and 180 mm long lined with pure Cu with a thickness of 100 / im on both sides The members were configured. Subsequently, the laminated joining member was heated at a temperature of 250 ° C for 3 minutes in an N gas atmosphere.
2  Two
、はんだ付けを行った。  , And soldered.
[0051] はんだ付けした第 1部材と第 2部材のはんだ付け部におけるはんだ相のせん断強 度を測定評価した結果、せん断強度は 32MPaであった。また、第 1部材の Cuベー スの変形量は 80 μ mであった。  As a result of measuring and evaluating the shear strength of the solder phase in the soldered portions of the soldered first member and second member, the shear strength was 32 MPa. The deformation of the Cu base of the first member was 80 μm.
[0052] (実施例 3)  (Example 3)
平均粒径が約 20 μ mの Sn— 10重量%31)粉末の表面に、ゾル.ゲル法によって、 厚さ約 50nmの Si〇皮膜を形成し、第 2はんだを製作した。続いて、この第 2はんだ Sn-10% by weight with an average particle size of about 20 μm 31) A 50 nm thick Si〇 film was formed, and a second solder was fabricated. Then, this second solder
2  Two
と平均粒径が約 20 μ mの Sn— 2重量%〇11一 0. 2重量%八§粉末からなる第 1はんだ とを、第 2はんだの含有量が 25体積%となるように混合し、複合はんだ材料を製作し た。なお、複合はんだには、接合材の表面の酸化皮膜の除去およびスクリーン印刷、 塗布などを容易するため、適量のフラックスと樹脂バインダーを添カ卩し、クリーム状の 複合はんだを調製した。 Average particle size and a first solder consisting of Sn- 2 wt% Rei_11 one 0.2 wt% eight § powder about 20 mu m, the content of the second solder is mixed so that 25% by volume and Manufactured a composite solder material. In order to remove the oxide film on the surface of the bonding material and to facilitate screen printing and coating, a suitable amount of flux and resin binder were added to the composite solder to prepare a creamy composite solder.
[0053] 続いて、厚さ 3mm、幅 100mm、長さ 200mmの無酸素 Cuベースの第 1部材の表 面に、複合はんだを厚さ約 100 z mでスクリーン印刷した。そして、スクリーン印刷さ れた複合はんだの上に、両面が厚さ 100 z mの純 Cuでラインユングされた厚さ 0. 3 mm、幅 80mm、長さ 180mmの SiN基板の第 2部材を設置し、積層接合部材を構成 した。続いて、この積層接合部材を、 Nガス雰囲気中において、 300°Cの温度で 3分 Subsequently, a composite solder having a thickness of about 100 zm was screen-printed on the surface of the first member based on oxygen-free Cu having a thickness of 3 mm, a width of 100 mm, and a length of 200 mm. Then, a second member of a 0.3 mm thick, 80 mm wide, 180 mm long SiN substrate lined with 100 zm thick pure Cu on both sides is placed on the screen printed composite solder. Thus, a laminated joining member was formed. Subsequently, the laminated joining member is placed in an N gas atmosphere at a temperature of 300 ° C for 3 minutes.
2  Two
間加熱し、はんだ付けを行った。  During heating, soldering was performed.
[0054] はんだ付けした第 1部材と第 2部材のはんだ付け部におけるはんだ相のせん断強 度を測定評価した結果、せん断強度は 50MPaであった。また、第 1部材の Cuベー スの変形量は 125 /i mであった。 [0054] As a result of measuring and evaluating the shear strength of the solder phase in the soldered portions of the soldered first member and second member, the shear strength was 50 MPa. The deformation of the Cu base of the first member was 125 / im.
[0055] (比較例 1) (Comparative Example 1)
実施例 2で用いた Sn— 0. 7重量%〇11の複合はんだシートを用い、実施例 2と全く 同一の条件で、第 1部材と第 2部材とのはんだ付けを行った。  Using the composite solder sheet of Sn—0.7% by weight〇11 used in Example 2, the first member and the second member were soldered under exactly the same conditions as in Example 2.
[0056] はんだ付けした第 1部材と第 2部材のはんだ付け部におけるはんだ相のせん断強 度を測定評価した結果、せん断強度は 35MPaであり、実施例 2のせん断強度とほぼ 同じ値を示した。一方、第 1部材の Cuベースの変形量は 500 / mであり、実施例 2の 変形量と比較して 6倍以上である。 [0056] As a result of measuring and evaluating the shear strength of the solder phase at the soldered portions of the soldered first member and second member, the shear strength was 35 MPa, which was almost the same value as that of Example 2. . On the other hand, the deformation amount of the Cu base of the first member is 500 / m, which is 6 times or more as compared with the deformation amount of Example 2.
[0057] この結果と実施例 2の結果から、 Sn— 57重量%Biからなる第 2はんだを含有するこ とで、第 2はんだの凝固膨張効果を得ることができ、第 1部材の Cuベースの変形を抑 制できることがわかる。 From the results and the result of Example 2, it is possible to obtain the solidification and expansion effect of the second solder by including the second solder composed of Sn—57% by weight Bi, and to obtain the Cu base of the first member. It can be seen that the deformation of can be suppressed.
[0058] (比較例 2) (Comparative Example 2)
厚さ 100 μ πι、幅 80mm、長さ 180mmの Sn_0. 7重量0 /0Cuシートからなる第 1は んだの一方の面に、 Al O皮膜を形成しなレ、 Sn— 57重量%81粉末からなる第 2はん Thickness 100 μ πι, width 80 mm, length 180mm Sn_0. 7 weight 0/0 Cu on one surface of the first'm made of sheet, the Al O film formed Shinare, Sn- 57 wt% 81 2nd powder made of powder
2 3 だを、第 2はんだの含有量が 15体積%となるように設置し、プレス成形して複合はん だシートを製作した。続いて、実施例 2と全く同一の条件で第 1部材と第 2部材とのは んだ付けを行った。 twenty three However, the solder was installed so that the content of the second solder was 15% by volume, and pressed to produce a composite solder sheet. Subsequently, the first member and the second member were soldered under exactly the same conditions as in Example 2.
[0059] はんだ付けした第 1部材と第 2部材のはんだ付け部におけるはんだ相のせん断強 度を測定評価した結果、せん断強度は 25MPaであり、実施例 2のせん断強度と比較 して低くかった。また、第 1部材の Cuベースの変形量は 350 x mであり、実施例 2の 変形量と比較して 4倍以上である。  [0059] As a result of measuring and evaluating the shear strength of the solder phase at the soldered portions of the soldered first member and second member, the shear strength was 25 MPa, which was lower than the shear strength of Example 2. . Further, the deformation amount of the Cu base of the first member is 350 × m, which is four times or more as compared with the deformation amount of the second embodiment.
[0060] この結果と実施例 2の結果から、第 2はんだの Sn— 57重量%81粉末の表面に境界 層を形成し、第 1はんだと第 2はんだとの合金化を防止することで、第 1はんだの機械 的性質および第 2はんだの凝固膨張性質を維持できることがわかる。  From this result and the result of Example 2, by forming a boundary layer on the surface of the Sn—57% by weight81 powder of the second solder to prevent alloying of the first solder and the second solder, It can be seen that the mechanical properties of the first solder and the solidification and expansion properties of the second solder can be maintained.
[0061] ここで、上記した実施例および比較例の測定結果を表 1にまとめて示す。  [0061] Here, the measurement results of the above Examples and Comparative Examples are summarized in Table 1.
[表 1]  [table 1]
Figure imgf000016_0001
Figure imgf000016_0001
[0062] (第 2の実施の形態) (Second Embodiment)
図 7には、第 2の実施の形態のはんだ材料の一例を示す。  FIG. 7 shows an example of the solder material according to the second embodiment.
[0063] はんだ材料 100は、母相を構成する Snまたは Sn合金からなる第 1はんだ粉末 101 、第 2相を構成する Bi合金または Sb合金からなる第 2はんだ粉末 102を含有している 。この第 2はんだ粉末 102の表面は、反応制御境界膜 103で覆われている。また、図 7に示したはんだ材料 100は、第 1はんだ粉末 101と第 2はんだ粉末 102とを均一に 混合した混合物に、フラックスおよびバインダが混在されたペースト状のはんだ材料 である。  [0063] The solder material 100 contains a first solder powder 101 made of Sn or an Sn alloy constituting a mother phase, and a second solder powder 102 made of a Bi alloy or an Sb alloy constituting a second phase. The surface of the second solder powder 102 is covered with a reaction control boundary film 103. The solder material 100 shown in FIG. 7 is a paste-like solder material in which a flux and a binder are mixed in a mixture in which the first solder powder 101 and the second solder powder 102 are uniformly mixed.
[0064] このはんだ材料を用いたはんだ付け後の断面は、図 8に示すように、第 1はんだ粉 末 101が融解し、凝固して形成された母相 104と、第 2はんだ粉末 102が融解し、凝 固して形成された第 2相 105とにより構成される。 As shown in FIG. 8, the cross section after soldering using this solder material is composed of a mother phase 104 formed by melting and solidifying the first solder powder 101 and a second solder powder 102. Melts And a second phase 105 that is solidified.
[0065] 第 1はんだ粉末 101は、 Snまたは Sn合金で構成され、 Sn合金の場合、合金中の S nの含有率は、合金に求められる機械的特性、融点などによって、適宜に設定される 。また、第 1はんだ粉末 101の平均粒径は、 1一 100 x mの範囲が好ましレ、。第 1は んだ粉末 101の平均粒径が l x m未満では、取扱いが難しくさらにコストが高くなる。 一方、第 1はんだ粉末 101の平均粒径が l OO x mを越えると、第 2はんだ粉末 102を 均一に分散させることが難しく母相 104の熱収縮を緩和する効果を十分に発揮でき ないことがある。また、第 1はんだを粉末にすることによって、第 2はんだ粉末 102との 混合比などを容易に調製することができる。  [0065] The first solder powder 101 is composed of Sn or a Sn alloy. In the case of a Sn alloy, the Sn content in the alloy is appropriately set according to the mechanical properties, melting point, and the like required for the alloy. . Further, the average particle size of the first solder powder 101 is preferably in the range of 100 to 100 x m. If the average particle size of the first solder powder 101 is less than l x m, it is difficult to handle and the cost is high. On the other hand, if the average particle size of the first solder powder 101 exceeds lOO xm, it is difficult to uniformly disperse the second solder powder 102, and the effect of reducing the thermal shrinkage of the matrix 104 may not be sufficiently exhibited. is there. In addition, by using the first solder as a powder, the mixing ratio with the second solder powder 102 can be easily adjusted.
[0066] 第 2はんだ粉末 102は、第 1の実施の形態で示した、凝固時に膨張する性質を有 する Bほたは Sbを含有する Sn合金などで構成される。また、第 2はんだ粉末 102は、 Bほたは Sb単体で構成されてもよレ、。ここで、第 2はんだ粉末 12に Biを含有する Sn 合金を用いる場合、 Sn合金中の Biの含有率は、 50重量%以上であれば良ぐ 58重 量%以上がより好ましい。 Biの含有率が 50重量%未満では、 Bi合金の凝固膨張が 小さいため母相 14の熱収縮を緩和する効果が小さぐ 48重量%未満では、その効 果がほとんど得られない。また、第 2はんだ粉末 12に Sbを含有する Sn合金を用いる 場合、 Sn合金中の Sbの含有率は、 6重量%以上であれば良ぐ 22重量%以上がよ り好ましい。 Sbの含有率が 6重量%未満では、 Sb合金の凝固膨張が小さいため母相 14の熱収縮を緩和する効果が小さい。なお、第 2はんだ粉末 102は、 Bi、 Sbを組み 合わせて構成されてもよい。また、第 2はんだ粉末 12に Biを含有する Sn合金を用い る場合、 Sn合金中に Sbを含有してもよい。さらに、第 2はんだ粉末 12に Sbを含有す る Sn合金を用レヽる場合、 Sn合金中に Biを含有してもよレヽ。  The second solder powder 102 is made of, for example, a Sn alloy containing B or Sb, which has the property of expanding when solidified, as described in the first embodiment. Also, the second solder powder 102 may be composed of B or Sb alone. Here, when a Sn alloy containing Bi is used for the second solder powder 12, the content of Bi in the Sn alloy is preferably 50% by weight or more, more preferably 58% by weight or more. If the Bi content is less than 50% by weight, the effect of relieving the thermal shrinkage of the matrix 14 is small because the solidification expansion of the Bi alloy is small. When a Sn alloy containing Sb is used for the second solder powder 12, the content of Sb in the Sn alloy is preferably at least 6% by weight, more preferably at least 22% by weight. If the Sb content is less than 6% by weight, the effect of relieving the thermal contraction of the parent phase 14 is small because the solidification expansion of the Sb alloy is small. The second solder powder 102 may be configured by combining Bi and Sb. When a Sn alloy containing Bi is used for the second solder powder 12, Sb may be contained in the Sn alloy. Further, when using a Sn alloy containing Sb in the second solder powder 12, Bi may be contained in the Sn alloy.
[0067] また、第 2はんだ粉末 102の平均粒径は、 1— 100 μ mの範囲が好ましレ、。第 2は んだ粉末 102の平均粒径が l x m未満では、取扱いが難しくさらにコストが高くなり、 Ι ΟΟ μ mを越えると、母相 104内に均一に分散させることが難しく母相 104の熱収縮 を緩和する効果を十分に発揮できないことがある。  The average particle size of the second solder powder 102 is preferably in the range of 1 to 100 μm. If the average particle size of the second solder powder 102 is less than lxm, it is difficult to handle and the cost becomes higher.If the average particle size exceeds ΟΟ ΟΟ μm, it is difficult to disperse uniformly in the matrix 104, The effect of alleviating shrinkage may not be fully exhibited.
[0068] さらに、フラックス、バインダを含むはんだ材料中の第 2はんだ粉末 102の含有率は 、熱膨張係数に基づいて算出したはんだ接合する要素部品の熱収縮量、はんだを 供給する要素部品の凹部ゃ孔部の大きさやはんだ母材の合金の性質から算出した はんだ材料の凝固収縮量によって適宜に設定される。 [0068] Furthermore, the content of the second solder powder 102 in the solder material containing the flux and the binder is calculated based on the thermal shrinkage of the component to be soldered, which is calculated based on the coefficient of thermal expansion, and the amount of the solder. It is set appropriately according to the amount of solidification shrinkage of the solder material calculated from the size of the recesses and holes of the component parts to be supplied and the properties of the alloy of the solder base material.
[0069] また、はんだ材料における第 2はんだ粉末 102の含有率は、 5— 50体積%の範囲 が好ましい。第 2はんだ粉末 102の含有率力 5体積%未満では母相 104の熱収縮 を緩和する効果が小さぐ 50体積%越えても適用できるが、さらなる効果の向上を望 めない。  [0069] The content of the second solder powder 102 in the solder material is preferably in the range of 5 to 50% by volume. If the content of the second solder powder 102 is less than 5% by volume, the effect of alleviating the thermal shrinkage of the mother phase 104 is small, and it can be applied even if it exceeds 50% by volume, but further improvement of the effect cannot be expected.
[0070] また、第 2はんだ粉末 102は、第 1はんだ粉末 101の融点よりも低い融点の金属ま たは合金で構成されている。また、第 2はんだ粉末 102の金属の種類、組成などは、 第 1はんだ粉末 101に対応して、第 1はんだ粉末 101よりも低レ、融点になるように適 宜に選定される。これによつて、母相 104の凝固収縮に対する緩和効果を最大限に 発揮させることができる。  The second solder powder 102 is made of a metal or an alloy having a melting point lower than the melting point of the first solder powder 101. The type, composition, and the like of the metal of the second solder powder 102 are appropriately selected so as to correspond to the first solder powder 101 and have a lower melting point than the first solder powder 101. Thereby, the effect of alleviating the solidification contraction of the matrix 104 can be maximized.
[0071] 第 2はんだ粉末 102の表面に形成される反応制御境界膜 103は、第 2はんだ粉末 12を構成する材料の融点より高い融点を有する金属で形成される。この反応制御境 界膜 103は、第 1の実施の形態で示した反応防止膜 15と同じ材料で形成される。な お、第 1の実施の形態で述べたように、はんだ接合温度や保持時間などのはんだ接 合条件を制御し、拡散または合金反応を抑制して、第 1はんだ粉末 101と第 2はんだ 粉末 102の機械的性質や物理的性質などを維持できる場合には、反応制御境界膜 103は設けなくてもよい。  The reaction control boundary film 103 formed on the surface of the second solder powder 102 is formed of a metal having a melting point higher than the melting point of the material forming the second solder powder 12. This reaction control boundary film 103 is formed of the same material as the reaction prevention film 15 shown in the first embodiment. As described in the first embodiment, the soldering conditions such as the soldering temperature and the holding time are controlled to suppress diffusion or alloying reaction, so that the first solder powder 101 and the second solder powder are controlled. If the mechanical properties, physical properties, and the like of 102 can be maintained, the reaction control boundary film 103 may not be provided.
[0072] 反応制御境界膜 103は、第 2はんだ粉末 102の表面に、無電解メツキ法などによつ て形成される。また、反応制御境界膜 103は、ゾル ·ゲル法によって形成されてもよい 。ゾル'ゲル法では、例えば、金属アルコキシドを原料としたアルミナゾルに第 2はん だ粉末 102を浸漬させ、続いて乾燥させることで金属皮膜を第 2はんだ粉末 102の 表面に形成することができる。反応制御境界膜 103の形成方法はこれらに限られるも のではないが、これらの無電解メツキ法ゃゾル ·ゲル法を用いることによって、経済的 に反応制御境界膜 103を形成することができる。  The reaction control boundary film 103 is formed on the surface of the second solder powder 102 by an electroless plating method or the like. Further, the reaction control boundary film 103 may be formed by a sol-gel method. In the sol-gel method, for example, a metal film can be formed on the surface of the second solder powder 102 by immersing the second solder powder 102 in an alumina sol using a metal alkoxide as a raw material and subsequently drying the powder. The method of forming the reaction control boundary film 103 is not limited to these, but the reaction control boundary film 103 can be economically formed by using the electroless plating method or the sol-gel method.
[0073] 反応制御境界膜 103の厚さは、 10nm 10 x mの範囲ではんだ材料の要求特性 に応じて適宜に設定されるものである。反応制御境界膜 103の厚さは、 10nm以上で あれば母相 104と第 2相 105との拡散または合金反応を防止することができ、 10 x m を越えると反応制御境界膜 103の形成時間が長くなり不経済的である。 [0073] The thickness of the reaction control boundary film 103 is appropriately set in the range of 10 nm x 10 xm according to the required characteristics of the solder material. If the thickness of the reaction control boundary film 103 is 10 nm or more, diffusion or alloying reaction between the parent phase 104 and the second phase 105 can be prevented, and Exceeding the time limit makes the formation time of the reaction control boundary film 103 long, which is uneconomical.
[0074] 第 1はんだ粉末 101と第 2はんだ粉末 102との混合物に混入されるフラックスは、は んだ材料とはんだ材料で接合される部材との間の酸化皮膜を除去し、加熱中に再び 酸化するのを防止するものである。このフラックスとして、一般的に用いられているアミ ンハロゲン塩または有機酸などの活性化剤が用いられる。フラックス、バインダを含む はんだ材料中のフラックスの含有率は、 5— 10重量%の範囲で適宜に設定すること ができる。フラックスの含有率が 5重量%未満では、はんだ材料とはんだ材料で接合 される部材との間の酸化皮膜を除去し、加熱中に再び酸化するのを防止する効果が 小さく、 10重量%を超える範囲では、その効果の向上を望めない。 [0074] The flux mixed into the mixture of the first solder powder 101 and the second solder powder 102 removes an oxide film between the soldered material and the member joined by the solder material, and reheats during heating. It is to prevent oxidation. As the flux, a commonly used activator such as an amine halide or an organic acid is used. The content of the flux in the solder material including the flux and the binder can be appropriately set in the range of 5 to 10% by weight. When the flux content is less than 5% by weight, the effect of removing the oxide film between the solder material and the member joined with the solder material and preventing the oxidation again during heating is small, and exceeds 10% by weight. Within the range, the effect cannot be improved.
[0075] 第 1はんだ粉末 101と第 2はんだ粉末 102と混合されるバインダは、高分子材料と アルコールとから構成される。フラックス、バインダを含むはんだ材料中のバインダの 含有率は、 5 20重量%の範囲で適宜に設定することができる。バインダの含有率 力 ¾重量%未満では、要素部品の表面に塗布または印刷されたはんだ材料の付着 状態が不十分となり、 20重量%を超える範囲では、バインダがはんだ部材から流出 し、作業効率が低下することなどがある。  [0075] The binder mixed with the first solder powder 101 and the second solder powder 102 is composed of a polymer material and alcohol. The content of the binder in the solder material including the flux and the binder can be appropriately set in the range of 520% by weight. If the binder content is less than ¾% by weight, the adhesion of the solder material applied or printed on the surface of the component parts will be insufficient, and if it exceeds 20% by weight, the binder will flow out of the solder member and work efficiency will be reduced. May be reduced.
[0076] このはんだ材料によれば、凝固時に膨張する性質を有する第 2はんだ粉末 102を 第 1はんだ粉末 101に含有させることで、第 1はんだ粉末 101が融解した母相 104の 凝固時における熱収縮を、第 2はんだ粉末 102が融解した第 2相 105の凝固時にお ける膨張によって緩和することができる。これによつて、はんだ部材内の内部応力の 発生が抑制され、ボイド欠陥の発生を防止することができる。また、第 2相 105が反応 制御境界膜 103で覆われているため、母相 104と第 2相 105との間において拡散ま たは合金反応を伴わないので、母相 104と第 2相 105それぞれのぬれ性などの物理 的特性を維持することができる。  According to this solder material, the second solder powder 102 having the property of expanding at the time of solidification is included in the first solder powder 101, so that the heat of the mother phase 104 in which the first solder powder 101 is melted during the solidification is obtained. Shrinkage can be mitigated by expansion during solidification of the second phase 105 in which the second solder powder 102 has melted. As a result, the occurrence of internal stress in the solder member is suppressed, and the occurrence of void defects can be prevented. In addition, since the second phase 105 is covered with the reaction control boundary film 103, there is no diffusion or alloying reaction between the mother phase 104 and the second phase 105. Physical properties such as wettability of each can be maintained.
[0077] このはんだ材料の製造方法によれば、ペースト状のはんだ材料を製造することがで き、製造されたはんだ材料は、固体のはんだ材料を配置し難い接合部の接合や複雑 な形状の部材同士の接合などに用いるのに適している。また、このはんだ材料を、複 雑な形状の接合部でも的確に注入することができるので、はんだ付けの信頼性を向 上させることができる。 [0078] 次に、はんだ材料 100の製造方法の一例を示す。 According to this method of manufacturing a solder material, a paste-like solder material can be manufactured, and the manufactured solder material can be used to join a joint where solid solder material is difficult to dispose or to form a complex shape. It is suitable for use in joining members. In addition, since this solder material can be accurately injected even at a joint having a complicated shape, the reliability of soldering can be improved. Next, an example of a method for manufacturing the solder material 100 will be described.
[0079] まず、第 2はんだ粉末 102の反応制御境界膜 103を形成する材料を選択し、第 2は んだ粉末 102の表面に、無電解メツキ法などによって、反応制御境界膜 103を形成 する。  First, a material for forming the reaction control boundary film 103 of the second solder powder 102 is selected, and the reaction control boundary film 103 is formed on the surface of the second solder powder 102 by an electroless plating method or the like. .
[0080] 反応制御境界膜 103が被覆された所定量の第 2はんだ粉末 102と所定量の第 1は んだ粉末 101とを均一に混合し、混合物を構成する。続いて、その混合物に所定量 のフラックスおよびバインダを混入し、均一に攪拌して、はんだ材料 100を得る。  [0080] A predetermined amount of the second solder powder 102 coated with the reaction control boundary film 103 and a predetermined amount of the first solder powder 101 are uniformly mixed to form a mixture. Subsequently, a predetermined amount of a flux and a binder are mixed into the mixture, and the mixture is uniformly stirred to obtain a solder material 100.
[0081] このはんだ材料の製造方法によれば、フィルム状またはワイヤ状のはんだ材料を製 造すること力 Sできる。この製造方法を用いることで、用途に応じて最適な形態のはん だ材料を提供することができる。  According to this method of manufacturing a solder material, a force S for manufacturing a film-like or wire-like solder material can be obtained. By using this manufacturing method, it is possible to provide a solder material in an optimal form according to the application.
[0082] 図 9には、上述した方法により得られたはんだ材料 100を、平板で構成された第 1 要素部材 111と接合面に凹部を有する平板で構成された第 2要素部材 112との間に 配置した状態の接合部材 110が示されている。この接合部材 110を、例えば、大気 中または不活性ガス雰囲気中において、第 1はんだ粉末 101の融点以上の温度に 加熱する。カロ熱されることによつて融解した第 1はんだ粉末 101および第 2はんだ粉 末 102は、冷却工程を経て、図 10に示すような断面形状のはんだ接合部 120になる 。なお、図 10に示したはんだ接合部 120の断面形状は、図 9の Aで示す領域を詳細 に示したものである。  FIG. 9 shows that the solder material 100 obtained by the above-described method is applied between a first element member 111 formed of a flat plate and a second element member 112 formed of a flat plate having a concave portion on a joint surface. The joint member 110 is shown in a state of being disposed at the position shown in FIG. The joining member 110 is heated to a temperature equal to or higher than the melting point of the first solder powder 101 in, for example, the air or an inert gas atmosphere. The first solder powder 101 and the second solder powder 102 melted by the calorie heat undergo a cooling step to become a solder joint 120 having a cross-sectional shape as shown in FIG. The cross-sectional shape of the solder joint 120 shown in FIG. 10 shows the area indicated by A in FIG. 9 in detail.
[0083] 図 10に示すように、第 2はんだ粉末 102が融解し凝固した第 2相 105は、第 1はん だ粉末 101が融解し凝固した母相 104中にほぼ均一に分散している。また、第 2相 1 05の表面は、反応制御境界膜 103によって覆われている。はんだ材料 100を用いた 接合では、母相 104が凝固およびその後の冷却過程において熱収縮する際に、第 2 相 105が凝固膨張し、はんだ接合部 120における内部応力の発生が抑制される。こ れによって、図 11に示すような従来のはんだ接合部 121に発生してレ、た引け巣 122 の発生を防止することができる。また、母相 104では、母相 104を構成する第 1はん だ粉末 101のぬれ性などの物理的特性が維持されるので、第 1要素部材 111および 第 2要素部材 112の接合面と母相 104との接合を最適に行うことができる。さらに、は んだ接合部においては、母相 104を構成する第 1はんだ粉末 101の機械的特性をほ ぼ維持すること力 Sできる。 [0083] As shown in FIG. 10, the second phase 105 in which the second solder powder 102 is melted and solidified is substantially uniformly dispersed in the mother phase 104 in which the first solder powder 101 is melted and solidified. . The surface of the second phase 105 is covered with the reaction control boundary film 103. In the joining using the solder material 100, when the mother phase 104 solidifies and subsequently contracts in the cooling process, the second phase 105 solidifies and expands, and the generation of internal stress in the solder joint 120 is suppressed. As a result, it is possible to prevent the occurrence of shrinkage cavities 122 occurring in the conventional solder joint 121 as shown in FIG. Further, in the mother phase 104, the physical properties such as the wettability of the first solder powder 101 constituting the mother phase 104 are maintained, so that the bonding surface of the first element member 111 and the second element member 112 is The bonding with the phase 104 can be performed optimally. Further, at the solder joint, the mechanical properties of the first solder powder 101 constituting the mother phase 104 are substantially reduced. The ability to maintain the swell.
[0084] このはんだ付け方法によれば、凝固時に膨張する性質を有する第 2はんだ粉末 10 2を第 1はんだ粉末 101に含有させることで、第 1はんだ粉末 101が融解した母相 10 4の凝固時における熱収縮を、第 2はんだ粉末 102が融解した第 2相 105の凝固時 における膨張によって緩和することができる。これによつて、はんだ部材内の内部応 力の発生が抑制され、ボイド欠陥の発生を防止することができる。また、第 2相 105が 反応制御境界膜で覆われてレ、るため、母相 104と第 2相 105との間におレ、て拡散ま たは合金反応を伴わないので、母相 104と第 2相 105それぞれのぬれ性などの物理 的特性を維持することができる。これによつて、第 1要素部材 111および第 2要素部 材 112の接合面とはんだ材料との接合を最適に行うことができる。  According to this soldering method, the first solder powder 101 contains the second solder powder 102 having the property of expanding during solidification, thereby solidifying the mother phase 104 in which the first solder powder 101 is melted. The thermal shrinkage at the time can be alleviated by the expansion at the time of solidification of the second phase 105 in which the second solder powder 102 is melted. Thereby, the occurrence of internal stress in the solder member is suppressed, and the occurrence of void defects can be prevented. In addition, since the second phase 105 is covered with the reaction control boundary film, there is no diffusion or alloying reaction between the mother phase 104 and the second phase 105. And the physical properties such as wettability of the second phase 105 can be maintained. Thereby, the joining surface between the first element member 111 and the second element member 112 and the solder material can be optimally performed.
[0085] 次に、はんだ材料 100を用いて 2つの部材を接合する他の例を図 12に示す。 Next, another example of joining two members using the solder material 100 is shown in FIG.
[0086] 図 12には、上述した方法により得られたはんだ材料 100を、凹部を有する平板で 構成された第 1要素部材 131の凹部に注入し、その凹部の溝の深さ方向に棒状の第 2要素部材 132を挿入した状態の接合部材 130を示したものである。この接合部材 1 30を、例えば、大気中または不活性ガス雰囲気中において、第 1はんだ粉末 101の 融点以上の温度に加熱する。加熱されることによって融解した第 1はんだ粉末 101お よび第 2はんだ粉末 102は、冷却工程を経て、図 13に示すような断面形状のはんだ 接合部 140になる。 [0086] In FIG. 12, the solder material 100 obtained by the above-described method is injected into the concave portion of the first element member 131 composed of a flat plate having a concave portion, and a bar-like shape is formed in the depth direction of the groove of the concave portion. 9 shows the joining member 130 with the second element member 132 inserted. The joining member 130 is heated to a temperature equal to or higher than the melting point of the first solder powder 101 in, for example, the air or an inert gas atmosphere. The first solder powder 101 and the second solder powder 102 that have been melted by heating are subjected to a cooling step to become a solder joint 140 having a cross-sectional shape as shown in FIG.
[0087] 図 13に示すように、第 2はんだ粉末 102が融解し凝固した第 2相 105は、第 1はん だ粉末 101が融解し凝固した母相 104中にほぼ均一に分散している。また、第 2相 1 05の表面は、反応制御境界膜 103によって覆われている。はんだ材料 100を用いた 接合では、母相 104が凝固およびその後の冷却過程において熱収縮する際に、第 2 相 105が凝固膨張し、はんだ接合部 140における内部応力の発生が抑制される。ま た、はんだ接合部 140を構成する母相 104は、母相 104を構成する第 1はんだ粉末 101のぬれ性などの物理的特性を維持しているため、第 1要素部材 131の凹部の表 面と母相 104との接合が最適に行われる。これによつて、図 14に示すような従来のは んだ接合部 150に発生していた第 1要素部材 131の凹部の表面との剥離部 151など の発生を防止することができる。 [0088] 第 2の実施の形態におけるはんだ材料、はんだ材料の製造方法およびはんだ付け 方法において、母相 104に、凝固時に膨張する性質を有する第 2相 105を含有させ ることによって、母相 104が凝固およびその後の冷却過程において熱収縮する際、 第 2相 105は凝固温度まで冷却されると凝固膨張する。これによつて、母相 104の凝 固収縮を緩和することができ、はんだ部材内の内部応力の発生が抑制され、その結 果、引け巣 122や剥離部 151などのボイド欠陥の発生を防止することができる。 As shown in FIG. 13, the second phase 105 in which the second solder powder 102 has melted and solidified is substantially uniformly dispersed in the mother phase 104 in which the first solder powder 101 has melted and solidified. . The surface of the second phase 105 is covered with the reaction control boundary film 103. In the joining using the solder material 100, the second phase 105 solidifies and expands when the mother phase 104 undergoes thermal contraction in the solidification and subsequent cooling process, thereby suppressing the generation of internal stress in the solder joint 140. In addition, since the mother phase 104 forming the solder joint 140 maintains physical properties such as wettability of the first solder powder 101 forming the mother phase 104, the surface of the concave portion of the first element member 131 is maintained. The surface and the matrix 104 are optimally joined. Thereby, it is possible to prevent the occurrence of the peeling portion 151 from the surface of the concave portion of the first element member 131, which has occurred in the conventional solder joint 150 as shown in FIG. [0088] In the solder material, the method of manufacturing the solder material, and the method of soldering according to the second embodiment, the mother phase 104 contains a second phase 105 having a property of expanding when solidified. As it heat shrinks during solidification and subsequent cooling, the second phase 105 expands as it cools to the solidification temperature. As a result, the solidification shrinkage of the mother phase 104 can be reduced, and the generation of internal stress in the solder member is suppressed, and as a result, the occurrence of void defects such as shrinkage cavities 122 and peeled portions 151 is prevented. can do.
[0089] また、第 2相 105が反応制御境界膜 103で覆われているため、母相 104と第 2相 10 5との間におレ、て拡散または合金反応を伴わなレ、ので、母相 104と第 2相 105とが溶 解して、例えば共晶合金化することはなレ、。そのため、母相 104では母相 104を構成 する第 1はんだ粉末 101の物理的特性が維持され、第 2相 105では第 2相 105を構 成する第 2はんだ粉末 102の物理的特性が維持される。さらに、はんだ接合部にお いては、母相 104を構成する第 1はんだ粉末 101の機械的特性をほぼ維持すること ができる。また、第 1要素部材 1 1 1および第 2要素部材 1 12の接合面とはんだ材料と の接合を最適に行うことができる。  [0089] Further, since the second phase 105 is covered with the reaction control boundary film 103, there is no gap between the mother phase 104 and the second phase 105, and no diffusion or alloying reaction occurs. The mother phase 104 and the second phase 105 do not dissolve and form a eutectic alloy, for example. Therefore, in the mother phase 104, the physical properties of the first solder powder 101 forming the mother phase 104 are maintained, and in the second phase 105, the physical properties of the second solder powder 102 forming the second phase 105 are maintained. You. Further, at the solder joint, the mechanical properties of the first solder powder 101 constituting the mother phase 104 can be substantially maintained. In addition, the bonding surface between the first element member 111 and the second element member 112 and the solder material can be optimally performed.
[0090] また、はんだ材料をペースト状にしたことで、固体のはんだ材料を配置し難い接合 部の接合や複雑な形状の部材同士の接合などにもこのはんだ材料を容易に用いる こと力 Sできる。また、このはんだ材料を、複雑な形状の接合部でも的確に注入すること ができるので、はんだ付けの信頼性を向上させることができる。  [0090] In addition, since the solder material is made into a paste, the solder material can be easily used for joining at a joint where it is difficult to dispose a solid solder material or joining members having complicated shapes. . In addition, since this solder material can be injected accurately even at a joint having a complicated shape, the reliability of soldering can be improved.
[0091] 上述したはんだ材料 100では、第 1はんだ粉末 101、第 2はんだ粉末 102、フラック スおよびバインダを混合したペースト状の構成を示した力 S、この構成に限るものでは なぐはんだ材料は、例えば、図 15に示すようなフィルム状の構成および図 16示すよ うなワイヤ状の構成にしてもよい。  [0091] In the above-described solder material 100, the force S indicating a paste-like configuration in which the first solder powder 101, the second solder powder 102, the flux and the binder are mixed, and the solder material which is not limited to this configuration, For example, a film configuration as shown in FIG. 15 and a wire configuration as shown in FIG. 16 may be used.
[0092] 図 15または図 16に示すはんだ材料 160、 170は、例えば、次のようにして製造され る。  The solder materials 160 and 170 shown in FIG. 15 or FIG. 16 are manufactured, for example, as follows.
[0093] まず、第 2はんだ粉末 102の反応制御境界膜 103を形成する材料を選択し、第 2は んだ粉末 102の表面に、無電解メツキ法などによって、反応制御境界膜 103を形成 する。  First, a material for forming the reaction control boundary film 103 of the second solder powder 102 is selected, and the reaction control boundary film 103 is formed on the surface of the second solder powder 102 by an electroless plating method or the like. .
[0094] 反応制御境界膜 103が被覆された所定量の第 2はんだ粉末 102と所定量の第 1は んだ粉末 101とを、例えば、攪拌などによって均一に混合し、混合物を構成する。続 いて、この混合物を金型に充填し、加圧および加熱して第 1はんだ粉末 101と第 2は んだ粉末 102とを一体に融着させて複合材料を得る。 [0094] The predetermined amount of the second solder powder 102 coated with the reaction control boundary film 103 and the predetermined amount of the first solder The powder 101 is uniformly mixed with, for example, stirring to form a mixture. Subsequently, the mixture is filled in a mold, and the first solder powder 101 and the second solder powder 102 are fused together by pressing and heating to obtain a composite material.
[0095] 次に、図 15に示すようなフィルム状のはんだ材料 160を形成する場合には、第 1は んだ粉末 101と第 2はんだ粉末 102とが一体化された複合材料を、例えば、圧延加 ェしてフィルム状のはんだ材料を形成する。  Next, when a film-like solder material 160 as shown in FIG. 15 is formed, a composite material in which the first solder powder 101 and the second solder powder 102 are integrated, for example, Rolled to form a film-like solder material.
[0096] また、図 16に示すようなワイヤ状のはんだ材料 170を形成する場合には、第 1はん だ粉末 101と第 2はんだ粉末 102とが一体化された複合材料を、例えば、引抜き加 ェしてワイヤ状のはんだ材料を形成する。また、図 16に示すように、ワイヤ状のはん だ材料 170の中心軸に沿つてフラックス 171を混入させることもできる。  When forming a wire-like solder material 170 as shown in FIG. 16, a composite material in which the first solder powder 101 and the second solder powder 102 are integrated is, for example, pulled out. In addition, a wire-like solder material is formed. Further, as shown in FIG. 16, a flux 171 can be mixed along the central axis of the wire-shaped solder material 170.
[0097] このように、はんだ材料は、ペースト状の構成に限らず、フィルム状やワイヤ状など の固体の構成も採ることができ、はんだ材料を使用する用途に応じて最適な形態の はんだ材料を用いることができる。  [0097] As described above, the solder material is not limited to the paste-like configuration, but may be a solid configuration such as a film-like or wire-like configuration. Can be used.
[0098] 次に、第 2の実施の形態における具体的な実施例について説明する。なお、以下 に示す具体的な実施例では、図 12に示すような、凹部を有する平板で構成された第 1要素部材 131とこの凹部の溝の深さ方向に棒状の第 2要素部材 132を挿入した状 態で接合される場合について示す。  Next, a specific example of the second embodiment will be described. In a specific embodiment described below, as shown in FIG. 12, a first element member 131 composed of a flat plate having a concave portion and a rod-shaped second element member 132 in the depth direction of the groove of the concave portion are provided. The following shows the case of joining in the inserted state.
[0099] (実施例 4)  [0099] (Example 4)
平均粒径が約 20 μ mの Sn— 57重量%81粉末の表面に、厚さ約 3 μ mの無電解 Ni めっき皮膜を形成し、第 2はんだを製作した。続いて、この第 2はんだと平均粒径が約 20 /i m( Sn-0. 7重量%Cu粉末からなる第 1はんだとを、第 2はんだの含有量が 15 体積%となるように混合し、複合はんだ材料を製作した。そして、第 1部材と第 2部材 の表面の酸化皮膜の除去と塗布、スクリーン印刷などのはんだ層の形成を容易にす るため、複合はんだに適量のフラックスと増粘剤を添加し、クリーム状の複合はんだを 調製した。  An electroless Ni plating film having a thickness of about 3 μm was formed on the surface of Sn—57% by weight81 powder having an average particle diameter of about 20 μm, and a second solder was manufactured. Subsequently, the second solder and the first solder having an average particle size of about 20 / im (Sn-0.7% by weight Cu powder) were mixed so that the content of the second solder was 15% by volume. In order to facilitate the removal and application of the oxide film on the surfaces of the first and second members and the formation of solder layers such as screen printing, an appropriate amount of flux was added to the composite solder. The adhesive was added to prepare a creamy composite solder.
[0100] 続いて、無酸素 Cuベースからなる第 1部材の表面に形成された直径 5mm、深さ 1 Ommの凹部に、複合はんだを充填した。複合はんだが充填された凹部に、無酸素 C uベースからなる外径 3mmの棒状の第 2部材を約 7mmの深さまで揷入した。そして 、第 1部材の凹部に第 2部材が挿入された状態で、 Nガス雰囲気中において、 260 [0100] Subsequently, a composite solder was filled into a concave portion having a diameter of 5 mm and a depth of 1 Omm formed on the surface of the first member made of oxygen-free Cu base. A rod-shaped second member having an outer diameter of 3 mm and made of an oxygen-free Cu base was inserted into the recess filled with the composite solder to a depth of about 7 mm. And In a state in which the second member is inserted into the concave portion of the first member,
2  Two
°Cの温度で 3分間加熱し、はんだ付けを行った。  It was heated at a temperature of ° C for 3 minutes and soldered.
[0101] はんだ付けされた第 1部材と第 2部材とをそれぞれインストロン引張試験機のチヤッ クに固定し、 0. ImmZsの引張速度ではんだ強度を測定評価した結果、はんだ強 度は 45MPaであった。また、はんだ層の内部ボイド欠陥を超音波探傷試験装置を 用いて検査した結果、不純物やその他に起因する偶発的なボイド欠陥が体積率換 算で 1 %以下であり、凝固収縮によるボイド欠陥が全く検出されなかった。  [0101] Each of the soldered first member and second member was fixed to a check of an Instron tensile tester, and the solder strength was measured and evaluated at a tensile speed of 0. ImmZs. As a result, the solder strength was 45 MPa. there were. In addition, as a result of inspecting the internal void defects of the solder layer using an ultrasonic flaw detector, accidental void defects due to impurities and others are 1% or less in terms of volume ratio, and void defects due to solidification shrinkage are reduced. Not detected at all.
[0102] (実施例 5)  [0102] (Example 5)
平均粒径が約 20 x mの Sn— 57重量%81粉末の表面に、ゾル.ゲル法によって、厚 さ約 0. 1 μ m(7)Al O皮膜を形成し、第 2はんだを製作した。続いて、この第 2はんだ  A second solder was manufactured by forming a 0.1 μm (7) Al 2 O 3 film on the surface of Sn—57 wt% 81 powder having an average particle diameter of about 20 × m by a sol-gel method. Then, this second solder
2 3  twenty three
と平均粒径力約 20 x mの Sn— 0. 7重量%Cu粉末からなる第 1はんだとを、第 2はん だの含有量が 15体積%となるように混合し、複合はんだ材料を製作した。そして、第 1部材と第 2部材の表面の酸化皮膜の除去と塗布、スクリーン印刷などのはんだ層の 形成を容易にするため、複合はんだに適量のフラックスと増粘剤を添加し、クリーム 状の複合はんだを調製した。  The first solder consisting of Sn-0.7% by weight Cu powder with an average particle size of about 20 xm is mixed with the second solder so that the content of the second solder is 15% by volume to produce a composite solder material. did. Then, to facilitate the removal and application of the oxide film on the surfaces of the first and second members and the formation of a solder layer such as screen printing, an appropriate amount of flux and thickener are added to the composite solder, and a creamy A composite solder was prepared.
[0103] 続いて、無酸素 Cuベースからなる第 1部材の表面に形成された直径 5mm、深さ 1 Ommの凹部に、複合はんだを充填した。複合はんだが充填された凹部に、無酸素 C uベースからなる外径 3mmの棒状の第 2部材を約 7mmの深さまで挿入した。そして 、第 1部材の凹部に第 2部材が挿入された状態で、 Nガス雰囲気中において、 260 Subsequently, a composite solder was filled in a concave portion having a diameter of 5 mm and a depth of 1 Omm formed on the surface of the first member made of oxygen-free Cu base. A rod-shaped second member having an outer diameter of 3 mm and made of an oxygen-free Cu base was inserted into the recess filled with the composite solder to a depth of about 7 mm. Then, in a state where the second member is inserted into the concave portion of the first member, in the N gas atmosphere,
2  Two
°Cの温度で 3分間加熱し、はんだ付けを行った。  It was heated at a temperature of ° C for 3 minutes and soldered.
[0104] はんだ付けされた第 1部材と第 2部材とをそれぞれインストロン引張試験機のチヤッ クに固定し、 0. ImmZsの引張速度ではんだ強度を測定評価した結果、はんだ強 度は 28MPaであった。また、はんだ層の内部ボイド欠陥を超音波探傷試験装置を 用いて検査した結果、不純物やその他に起因する偶発的なボイド欠陥が体積率換 算で 1 %以下であり、凝固収縮によるボイド欠陥が全く検出されなかった。  [0104] Each of the soldered first member and second member was fixed to the check of an Instron tensile tester, and the solder strength was measured and evaluated at a tensile speed of 0. ImmZs. As a result, the solder strength was 28MPa. there were. In addition, as a result of inspecting the internal void defects of the solder layer using an ultrasonic flaw detector, accidental void defects due to impurities and others are 1% or less in terms of volume ratio, and void defects due to solidification shrinkage are reduced. Not detected at all.
[0105] (実施例 6)  (Example 6)
平均粒径が約 20 μ mの Sn— 22重量%31)粉末の表面に、ゾル.ゲル法によって、 厚さ約 0. 1 z mの SiO皮膜を形成し、第 2はんだを製作した。続いて、この第 2はん  An about 0.1 μm thick SiO film was formed by the sol-gel method on the surface of Sn-22% by weight 31) powder with an average particle size of about 20 μm, and a second solder was manufactured. Then, this second
2 だと平均粒径が約 20 μ mの Sn— 2重量%Cu— 0. 2重量 %Ag粉末カゝらなる第 1はんだ とを、第 2はんだの含有量が 25体積%となるように混合し、複合はんだ材料を製作し た。そして、第 1部材と第 2部材の表面の酸化皮膜の除去と塗布、スクリーン印刷など のはんだ層の形成を容易にするため、複合はんだに適量のフラックスと増粘剤を添 加し、クリーム状の複合はんだを調製した。 Two Then, the first solder consisting of Sn—2% by weight Cu—0.2% by weight Ag powder with an average particle size of about 20 μm is mixed so that the content of the second solder is 25% by volume. As a result, a composite solder material was manufactured. Then, to facilitate the removal and application of the oxide film on the surfaces of the first and second members and the formation of a solder layer such as screen printing, add an appropriate amount of flux and thickener to the composite solder, Was prepared.
[0106] 続いて、無酸素 Cuベースからなる第 1部材の表面に形成された直径 5mm、深さ 1 Ommの凹部に、複合はんだを充填した。複合はんだが充填された凹部に、無酸素 C uベースからなる外径 3mmの棒状の第 2部材を約 7mmの深さまで揷入した。そして 、第 1部材の凹部に第 2部材が揷入された状態で、 Nガス雰囲気中において、 350 Subsequently, a concave portion having a diameter of 5 mm and a depth of 1 Omm formed on the surface of the first member made of the oxygen-free Cu base was filled with a composite solder. A rod-shaped second member having an outer diameter of 3 mm and made of an oxygen-free Cu base was inserted into the recess filled with the composite solder to a depth of about 7 mm. Then, in a state in which the second member is inserted into the concave portion of the first member, 350
2  Two
°Cの温度で 3分間加熱し、はんだ付けを行った。  It was heated at a temperature of ° C for 3 minutes and soldered.
[0107] はんだ付けされた第 1部材と第 2部材とをそれぞれインストロン引張試験機のチヤッ クに固定し、 0. ImmZsの引張速度ではんだ強度を測定評価した結果、はんだ強 度は 40MPaであった。また、はんだ層の内部ボイド欠陥を超音波探傷試験装置を 用いて検査した結果、不純物やその他に起因する偶発的なボイド欠陥が体積率換 算で 2%以下であり、凝固収縮によるボイド欠陥が全く検出されなかった。  [0107] Each of the soldered first member and second member was fixed to a check of an Instron tensile tester, and the solder strength was measured and evaluated at a tensile speed of 0.1 mmS. As a result, the solder strength was 40 MPa. there were. In addition, as a result of inspecting the internal void defects of the solder layer using an ultrasonic flaw detector, accidental void defects due to impurities and others are 2% or less in terms of volume ratio, and void defects due to solidification shrinkage are reduced. Not detected at all.
[0108] (比較例 3)  (Comparative Example 3)
平均粒径が約 20 μ ΐηの Sn— 3. 5重量%八§粉末、適量のフラックスおよび増粘剤 を混合し、クリーム状の複合はんだを調製した。  A creamy composite solder was prepared by mixing Sn-3.5% by weight powder with an average particle size of about 20 μΐη, an appropriate amount of flux and a thickener.
[0109] 続いて、無酸素 Cuベースからなる第 1部材の表面に形成された直径 5mm、深さ 1 Ommの凹部に、複合はんだを充填した。複合はんだが充填された凹部に、無酸素 C uベースからなる外径 3mmの棒状の第 2部材を約 7mmの深さまで挿入した。そして 、第 1部材の凹部に第 2部材が揷入された状態で、 Nガス雰囲気中において、 350  Subsequently, a concave portion having a diameter of 5 mm and a depth of 1 Omm formed on the surface of the first member made of oxygen-free Cu base was filled with a composite solder. A rod-shaped second member having an outer diameter of 3 mm and made of an oxygen-free Cu base was inserted into the recess filled with the composite solder to a depth of about 7 mm. Then, in a state in which the second member is inserted into the concave portion of the first member, 350
2  Two
°Cの温度で 3分間加熱し、はんだ付けを行った。  It was heated at a temperature of ° C for 3 minutes and soldered.
[0110] はんだ付けされた第 1部材と第 2部材とをそれぞれインストロン引張試験機のチヤッ クに固定し、 0. ImmZsの引張速度ではんだ強度を測定評価した結果、はんだ強 度は 20MPaであった。また、はんだ層の内部ボイド欠陥を超音波探傷試験装置を 用いて検査した結果、最終凝固部となる第 1部材と第 2部材の中間の位置に引け巣 が発生し、複数の粗大なボイド欠陥が検出された。検出されたボイド欠陥は、体積率 換算で 12%に達していた。 [0110] Each of the soldered first member and second member was fixed to a check of an Instron tensile tester, and the solder strength was measured and evaluated at a tensile speed of 0.1 mm. As a result, the solder strength was 20 MPa. there were. In addition, as a result of inspecting the internal void defect of the solder layer using an ultrasonic flaw detector, shrinkage cavities were generated at the intermediate position between the first and second members, which are the final solidified parts, and multiple coarse void defects were found. Was detected. The detected void defect is the volume fraction In conversion, it reached 12%.
[0111] この比較例 3におけるはんだ強度(20MPa)は、実施例 4におけるはんだ強度(45 MPa)の 1/2以下であることが明らかになった。また、この比較例 3におけるボイド欠 陥 (体積率換算 12%)は、実施例 4におけるボイド欠陥(体積率換算 1%)の 12倍程 度であることも明らかになった。  [0111] It was revealed that the solder strength (20MPa) in Comparative Example 3 was 1/2 or less of the solder strength (45 MPa) in Example 4. It was also found that the void defect (volume ratio conversion: 12%) in Comparative Example 3 was about 12 times the void defect (volume ratio conversion: 1%) in Example 4.
[0112] これらの結果から、表面に皮膜を有する Sn— 57重量 %Biからなる第 2はんだを第 1 はんだに含有することで、はんだ強度が高ぐボイド欠陥の発生する割合が非常に少 ないはんだ材料が得らえることがわかった。また、ボイド欠陥は、第 1部材と第 2部材 のはんだ強度を低下させる原因であることが明かになった。  [0112] These results show that the inclusion of the second solder consisting of Sn-57 wt% Bi with a coating on the surface in the first solder increases the solder strength, resulting in a very low rate of void defects. It was found that a solder material could be obtained. In addition, it has been clarified that the void defect is a cause of lowering the solder strength of the first member and the second member.
[0113] (比較例 4)  (Comparative Example 4)
平均粒径が約 20 μ mの Sn— 57重量%81粉末からなる第 2はんだと、平均粒径 20 z m(7)Sn-0. 7重量%Cu粉末からなる第 1はんだとを、第 2はんだの含有量が 15体 積%となるように混合し、複合はんだ材料を製作した。そして、この複合はんだに適 量のフラックスと増粘剤を添加し、クリーム状の複合はんだを調製した。  A second solder composed of 81% Sn—57% by weight powder having an average particle diameter of about 20 μm and a first solder composed of Cu powder having an average particle diameter of 20 zm (7) Sn-0.7% by weight Mixing was performed so that the solder content was 15% by volume to produce a composite solder material. Then, an appropriate amount of flux and a thickener were added to this composite solder to prepare a creamy composite solder.
[0114] 続いて、無酸素 Cuベースからなる第 1部材の表面に形成された直径 5mm、深さ 1 Ommの凹部に、複合はんだを充填した。複合はんだが充填された凹部に、無酸素 C uベースからなる外径 3mmの棒状の第 2部材を約 7mmの深さまで挿入した。そして 、第 1部材の凹部に第 2部材が挿入された状態で、 Nガス雰囲気中において、 260  [0114] Subsequently, a concave portion having a diameter of 5 mm and a depth of 1 Omm formed on the surface of the first member made of the oxygen-free Cu base was filled with a composite solder. A rod-shaped second member having an outer diameter of 3 mm and made of an oxygen-free Cu base was inserted into the recess filled with the composite solder to a depth of about 7 mm. Then, in a state where the second member is inserted into the concave portion of the first member, in the N gas atmosphere,
2  Two
°Cの温度で 3分間加熱し、はんだ付けを行った。  It was heated at a temperature of ° C for 3 minutes and soldered.
[0115] はんだ付けされた第 1部材と第 2部材とをそれぞれインストロン引張試験機のチヤッ クに固定し、 0. lmm/sの引張速度ではんだ強度を測定評価した結果、はんだ強 度は 20MPaであった。また、はんだ層の内部ボイド欠陥を超音波探傷試験装置を 用いて検査した結果、最終凝固部となる第 1部材と第 2部材の中間の位置に引け巣 が発生し、複数の粗大なボイド欠陥が検出された。検出されたボイド欠陥は、体積率 換算で 10%に達していた。  [0115] Each of the soldered first member and second member was fixed to a check of an Instron tensile tester, and the solder strength was measured and evaluated at a tensile speed of 0.1 mm / s. It was 20 MPa. In addition, as a result of inspecting the internal void defect of the solder layer using an ultrasonic flaw detector, shrinkage cavities were generated at the intermediate position between the first and second members, which are the final solidified parts, and multiple coarse void defects were found. Was detected. The number of detected void defects reached 10% by volume ratio.
[0116] この比較例 4におけるはんだ強度(20MPa)は、実施例 5におけるはんだ強度(28 MPa)よりも 30%程度低いことが明らかになった。また、この比較例 4におけるボイド 欠陥 (体積率換算 10%)は、実施例 4におけるボイド欠陥(体積率換算 1%)の 10倍 程度であることも明らかになった。 [0116] It was revealed that the solder strength (20MPa) in Comparative Example 4 was about 30% lower than the solder strength (28 MPa) in Example 5. In addition, the void defect (10% by volume ratio) in Comparative Example 4 is 10 times as large as the void defect (1% by volume ratio) in Example 4. It was also clear that it was.
[0117] これらの結果から、実施例 5に示すように、第 2はんだの表面に皮膜を有することで 、はんだ強度が高ぐボイド欠陥の発生する割合が非常に少ないはんだ材料が得ら えることがわかった。また、第 2はんだの表面に皮膜を有することで、第 1はんだと第 2 はんだの合金化反応が阻止され、第 2はんだの特徴である凝固膨張の性質が維持さ れて、その凝固膨張による効果を十分に発揮できることがわかった。さらに、ボイド欠 陥は、第 1部材と第 2部材のはんだ強度を低下させる原因であることが明かになった  [0117] From these results, as shown in Example 5, by having a film on the surface of the second solder, it is possible to obtain a solder material having a high solder strength and having a very low void defect generation rate. I understood. In addition, by having a film on the surface of the second solder, the alloying reaction between the first solder and the second solder is prevented, and the solidification and expansion properties characteristic of the second solder are maintained. It turned out that the effect can be fully exhibited. Furthermore, it became clear that void defects were the cause of the decrease in the solder strength of the first and second members.
[0118] ここで、上記した実施例および比較例の測定結果を表 2にまとめて示す。 [0118] Here, the measurement results of the above Examples and Comparative Examples are summarized in Table 2.
[表 2]  [Table 2]
Figure imgf000027_0001
Figure imgf000027_0001
[0119] (第 3の実施の形態) (Third Embodiment)
以下、第 3の実施の形態について、無鉛はんだの組成、無鉛はんだの形状、無鉛 はんだのはんだ付け方法の順に説明する。  Hereinafter, the third embodiment will be described in the order of the composition of the lead-free solder, the shape of the lead-free solder, and the method of soldering the lead-free solder.
[0120] (無鉛はんだの組成)  [0120] (Composition of lead-free solder)
第 3の実施の形態における無鉛はんだは、 Coを 0. 02-2. 0重量%含有する、 Sn または Pbを含まなレ、Sn基合金力、ら構成されてレ、る。  The lead-free solder according to the third embodiment is composed of Sn-containing alloy containing Sn or Pb containing 0.02-2.0% by weight of Co.
[0121] Snまたは Sn基合金に含有される Coの含有率は、求められた機械的性質や融点な どによって、 0. 02-2. 0重量%の範囲で適宜に設定される。ここで、 Coの含有率が 0. 02重量%よりも小さい場合には、十分な機械的性質が確保できないことがあり、 2 . 0重量%よりも大きい場合には、融点が高くなり要素部品の許容される温度限界を 越えることがある。また、 Snまたは Sn基合金に含有される Coの含有率のより好ましい 範囲 ίま、 0. 05-1. 0重量0 /0である。また、 Snに Coを 0· 02-2. 0重量0 /0の範囲で 含有した無鉛はんだの固相線が 229°C、液相線が 229°C— 500°Cになる。 [0121] The content of Co contained in Sn or Sn-based alloy is appropriately set in the range of 0.02 to 2.0% by weight depending on the obtained mechanical properties and melting point. Here, if the content of Co is less than 0.02% by weight, sufficient mechanical properties may not be ensured. Temperature limits may be exceeded. Furthermore, more preferable range ί for the content of Co contained in the Sn or Sn-based alloy or a 0. 05-1. 0 wt 0/0. Further, the Co to Sn 0 · 02-2. 0 in a range of weight 0/0 The solidus of the lead-free solder contained is 229 ° C, and the liquidus is 229 ° C-500 ° C.
[0122] ここで、 Sn基合金は、 Ag、 Al、 Au、 Bi、 Co、 Cr、 Cu、 Fe、 Ge、 In、 Mg、 Mn、 Pd 、 Si、 Sr、 Te、 Znのいずれか少なくとも 1種を含有し、残部が Snおよび不可避不純 物からなり、融点が 117 350°Cの範囲である低融点の Sn合金で構成される。 [0122] Here, the Sn-based alloy is at least one of Ag, Al, Au, Bi, Co, Cr, Cu, Fe, Ge, In, Mg, Mn, Pd, Si, Sr, Te, and Zn , The balance consisting of Sn and unavoidable impurities, and a low melting point Sn alloy with a melting point in the range of 117-350 ° C.
[0123] 例えば、このような低融点の Sn基合金として、 111 : 52重量%、残部: Snおよび不可 避不純物からなる Sn合金(融点 117°C)、 8 57重量%、残部: Snおよび不可避不 純物からなる Sn合金(融点 139°C)、∑!1 : 9重量%、残部: Snおよび不可避不純物か らなる Sn合金(融点 198°C)、 Cu : 4. 5重量%、残部: Snおよび不可避不純物からな る Sn合金(固相線 227°C、液相線 350°C)などが挙げられる。 [0123] For example, as such a low-melting Sn-based alloy, 111: 52% by weight, balance: Sn and Sn alloy (melting point 117 ° C) composed of unavoidable impurities, 857% by weight, balance: Sn and unavoidable Sn alloy composed of impurities (melting point: 139 ° C), Δ! 1: 9% by weight, balance: Sn and Sn alloy composed of unavoidable impurities (melting point: 198 ° C), Cu: 4.5% by weight, balance: Examples include Sn and Sn alloys consisting of unavoidable impurities (solidus 227 ° C, liquidus 350 ° C).
[0124] このように、 Snまたは Sn基合金に、 Coを 0. 02-2. 0重量0 /0含有することで、 Snま たは Sn基合金の表面張力を低下させ、ぬれ性を向上させることができる。さらに、被 はんだ部材と、 Snまたは Sn基合金との反応を抑制し、接合界面における金属間化 合物の成長を抑制することによって、溶融はんだの凝集を抑制し、ぬれ性を向上させ ること力 Sできる。 [0124] Thus, the Sn or Sn-based alloy, a Co 0. 02-2. 0 wt 0/0 By containing, Sn or reduces the surface tension of the Sn-based alloy, improving the wettability Can be done. Furthermore, by suppressing the reaction between the member to be soldered and Sn or Sn-based alloy, and suppressing the growth of intermetallic compounds at the bonding interface, the aggregation of molten solder is suppressed and the wettability is improved. Power S can.
[0125] また、無鉛はんだは、 Coを 0. 02-2. 0重量%および Cuを 0. 02-7. 5重量%を 含有し、残部が Snと不可避不純物で構成されてもょレ、。  [0125] The lead-free solder may contain 0.0-2.0% by weight of Co and 0.02-7.5% by weight of Cu, with the balance being Sn and unavoidable impurities. .
[0126] 無鉛はんだに含有される Coおよび Cuは、求められた機械的性質や融点などによ つて、上記含有率の範囲内で適宜に設定される。ここで、 Coの含有率が 0. 02重量 %よりも小さい場合には、十分な機械的性質が確保できないことがあり、 2. 0重量% よりも大きい場合には、融点が高くなり要素部品の許容される温度限界を越えること 力 Sある。また、 Cuの含有率が 0. 02重量%よりも小さい場合には、十分な機械的性質 が確保できないことがあり、 7. 5重量%よりも大きい場合には、融点が高くなり要素部 品の許容される温度限界を越えることがある。また、 Snに含有される Coの含有率のよ り好ましい範囲は、 0. 1-0. 5重量%であり、 Cuの含有率のより好ましい範囲は、 0. 5—1. 0重量0 /0である。また、 Snに、 Coを 0. 02-2. 0重量0 /0および Cuを 0. 02 7 . 5重量%の範囲で含有した無鉛はんだの液相線が 229— 500°Cになるので、合金 組成の組合わせによって適正な液相線を得ることができる。 [0126] Co and Cu contained in the lead-free solder are appropriately set within the range of the above content depending on the required mechanical properties, melting point, and the like. Here, if the content of Co is less than 0.02% by weight, sufficient mechanical properties may not be secured. Exceed the allowable temperature limit of the force S. If the Cu content is less than 0.02% by weight, sufficient mechanical properties may not be ensured. If the Cu content is more than 7.5% by weight, the melting point becomes high, and element components Temperature limits may be exceeded. The more preferable range of the Co content in Sn is 0.1-0.5% by weight, and the more preferable range of the Cu content is 0.5-1.0% by weight / 0 . It is 0 . Also, Sn, since the Co 0. 02-2. 0 wt 0/0 and Cu of 0.02 7.5 wt% of lead-free solder liquidus containing in the range is 229- 500 ° C, An appropriate liquidus can be obtained by a combination of alloy compositions.
[0127] このように、 Coを 0. 02—2. 0重量%含有する Snに、 Cuを 0. 02—7. 5重量%含 有することによって、上記した Cuを含まない無鉛はんだの効果に加えて、さらにはん だ強度を向上させることができる。 [0127] Thus, Sn containing 0.02-2.0% by weight of Co and 0.02-7.5% by weight of Cu are contained. By having this, the solder strength can be further improved in addition to the effect of the lead-free solder containing no Cu described above.
[0128] さらに、無鉛はんだは、 Coを 0. 02-2. 0重量%含有する、 Snまたは Pbを含まな レ、 Sn基合金、または Coを 0. 02-2. 0重量%、 Cuを 0. 02-7. 5重量%を含有し、 残部が Snと不可避不純物からなる第 1はんだと、 Snまたは Pbを含まない Sn基合金 力 なる第 2はんだとから構成されてもレ、。 [0128] Furthermore, the lead-free solder contains 0.02-2.0% by weight of Co, Sn or Pb-free alloy, Sn-based alloy, or 0.02-2.0% by weight of Co, Cu 0.02-7. Even if it is composed of a first solder containing 5% by weight, the balance being Sn and unavoidable impurities, and a second solder consisting of a Sn-based alloy containing no Sn or Pb.
[0129] ここで、第 1はんだは、上記した Coを 0. 02-2. 0重量%含有する、 Snまたは Pbを 含まない Sn基合金力、らなる無鉛はんだ、または Coを 0. 02-2. 0重量%、 Cuを 0.[0129] Here, the first solder is a Sn-based alloy that contains 0.0 to 2.0% by weight of the above-mentioned Co, does not contain Sn or Pb, is a lead-free solder, or contains 0.02% of Co. 2.0% by weight, Cu
02-7. 5重量%を含有し、残部が Snと不可避不純物からなる無鉛はんだと同一で ある。第 2はんだは、 Snまたは Pbを含まない Sn基合金からなり、不可避不純物を含 んだものでもよい。 02-7. It is the same as a lead-free solder containing 5% by weight, with the balance being Sn and unavoidable impurities. The second solder is made of a Sn-based alloy containing no Sn or Pb, and may contain unavoidable impurities.
[0130] また、第 1はんだおよび第 2はんだは、例えば、球状または不定形状の粉体、フィノレ ム状などに形成することができる。また、粉体形状を有する第 1はんだおよび第 2はん だのそれぞれを、例えば、フラックスやバインダと混合したペースト状にして使用する ことちできる。  [0130] Further, the first solder and the second solder can be formed, for example, into spherical or irregular shaped powder, finolem, or the like. Further, the first solder and the second solder having a powder shape can be used in the form of a paste mixed with, for example, a flux or a binder.
[0131] また、第 1はんだと第 2はんだとを予め混合して、使用する場合には、その混合比は 、求められた機械的性質や融点などによって適宜に設定することができる。例えば、 第 1はんだに含有される Coの含有率を 0. 02-2. 0重量%の範囲で調整し、 Coを 含有することによるぬれ性の向上、接合界面における金属間化合物の成長の抑制を 維持するように、第 1はんだと第 2はんだとの混合比を設定する。また、第 1はんだと 第 2はんだとを予め混合せずに、それぞれを積層して使用することもできる。  [0131] When the first solder and the second solder are mixed in advance and used, the mixing ratio can be appropriately set according to the required mechanical properties, melting point, and the like. For example, by adjusting the content of Co contained in the first solder within the range of 0.02-2. 0% by weight, the wettability is improved by containing Co, and the growth of intermetallic compounds at the joint interface is suppressed. The mixing ratio between the first solder and the second solder is set so as to maintain the ratio. Also, the first solder and the second solder can be laminated and used without being mixed in advance.
[0132] このように、 Snまたは Sn基合金に、 Coを 0. 02-2. 0重量0 /0含有する第 1はんだと 、 Snまたは Sn基合金からなる第 2はんだとで無鉛はんだを構成することで、 Snまた は Sn基合金の表面張力を低下させ、ぬれ性を向上させることができる。さらに、被は んだ部材と、 Snまたは Sn基合金との反応を抑制し、接合界面における金属間化合 物の成長を抑制することによって、溶融はんだの凝集を抑制し、ぬれ性を向上させる こと力 Sできる。また、 Coを 0. 02—2. 0重量0 /0含有する Snに、 Cuを 0. 02-7. 5重 量%含有することによって、上記した Cuを含まない無鉛はんだの効果に加えて、さら にはんだ強度を向上させることができる。 [0132] Thus, the configuration of Sn or Sn-based alloy, a first solder the 0. 02-2. 0 wt 0/0 containing Co, a lead-free solder in the second solder consisting of Sn or Sn-based alloy By doing so, the surface tension of Sn or Sn-based alloy can be reduced, and the wettability can be improved. Furthermore, by suppressing the reaction between the covered member and Sn or Sn-based alloy, and by suppressing the growth of intermetallic compounds at the joint interface, the aggregation of molten solder is suppressed and the wettability is improved. Power S can. Further, the Co 0. 02-2. 0 weight 0/0 containing Sn, by containing 0.5 02-7. 5 by weight% of Cu, in addition to the effect of the lead-free solder containing no Cu described above , Further In addition, the solder strength can be improved.
[0133] (無鉛はんだの形状)  [0133] (Shape of lead-free solder)
上記した組成を有する無鉛はんだの形状について図 17— 20を参照して説明する  The shape of the lead-free solder having the above composition will be described with reference to FIGS. 17-20.
[0134] 図 17には、フィルム状に形成された無鉛はんだの斜視図が示され、図 18には、ぺ 一スト状に形成された無鉛はんだの断面図が示されている。また、図 19には、ワイヤ 一状に形成された無鉛はんだの斜視図が示され、図 20には、ロッド状に形成された 無鉛はんだの斜視図が示されている。 FIG. 17 is a perspective view of a lead-free solder formed in a film shape, and FIG. 18 is a cross-sectional view of a lead-free solder formed in a cost shape. FIG. 19 is a perspective view of a lead-free solder formed in a wire shape, and FIG. 20 is a perspective view of a lead-free solder formed in a rod shape.
[0135] まず、図 17に示されたフィルム状に形成されたフィルム状無鉛はんだ 200について 説明する。  [0135] First, the film-shaped lead-free solder 200 formed in the film shape shown in Fig. 17 will be described.
[0136] このフィルム状無鉛はんだ 200は、板状の無鉛はんだを、例えば、圧延加工などに よりフィルム状に圧延して形成される。このフィルム状無鉛はんだ 200の厚さは、 20 200 / mの範囲が好ましい。厚さ力 20 / mより小さい場合には十分な接合強度を 得ることな難しぐ 200 / mより大きい場合には熱伝導性や電気伝導度等が低下する 力 である。なお、板状の無鉛はんだは、粉体形状を有する無鉛はんだを所定の形 状の金型に詰めて、加圧および加熱して形成することもできる。また、粉末から直接 圧延形成することもできる。  [0136] The film-shaped lead-free solder 200 is formed by rolling a plate-shaped lead-free solder into a film by, for example, rolling. The thickness of the film-shaped lead-free solder 200 is preferably in the range of 20 200 / m. If the thickness force is less than 20 / m, it is difficult to obtain sufficient bonding strength. If it is more than 200 / m, the thermal conductivity and electrical conductivity decrease. The plate-shaped lead-free solder can also be formed by filling lead-free solder having a powder shape into a mold having a predetermined shape, and applying pressure and heat. Further, it can be formed by rolling directly from powder.
[0137] また、上記した Coを 0. 02-2. 0重量%含有する、 Snまたは Pbを含まない Sn基合 金力 構成される第 1はんだと、 Snまたは Sn基合金力 構成される第 2はんだとをそ れぞれを積層して、例えば、圧延加工などによりフィルム状に圧延して形成すること で、一方の面側を第 1はんだで、他方の面側を第 2はんだで構成するフィルム状無鉛 はんだ 200を形成することもできる。なお、第 1はんだには、上記した Coを 0. 02-2 . 0重量%および Cuを 0. 02-7. 5重量%を含有し、残部が Snと不可避不純物で構 成された無 はんだを用いてもよい。  [0137] In addition, the above-mentioned first solder comprising Sn-Pb and not containing Sn or Pb containing 0.02-2.0% by weight of Co, and the first solder comprising Sn or Sn-based alloy force 2 By laminating each solder and rolling it into a film by, for example, rolling, etc., one side is composed of the first solder and the other side is composed of the second solder. The film-shaped lead-free solder 200 to be formed can also be formed. The first solder contains 0.0-2.0% by weight of Co and 0.02-7.5% by weight of Cu, with the balance being Sn and unavoidable impurities. May be used.
[0138] このように第 1はんだと第 2はんだを積層してフィルム状無鉛はんだ 200を形成する 場合には、積層される第 1はんだおよび第 2はんだは、フィルム状、粉体などの形状 を採ることができる。ここで、第 1はんだおよび第 2はんだが、球状または不定形状の 粉体で形成される場合、その粉体の平均粒径は、 25— 50 x mの範囲が好ましい。 平均粒径が、 25 μ ΐηより小さい場合には歩留が悪ぐ不経済的であり、 50 / mより大 きレ、場合にははんだ厚さをコントロールすることが難しレ、からである。 [0138] When the first solder and the second solder are stacked to form the film-shaped lead-free solder 200, the first solder and the second solder to be stacked have a shape such as a film or a powder. Can be taken. Here, when the first solder and the second solder are formed of spherical or irregular-shaped powder, the average particle diameter of the powder is preferably in the range of 25 to 50 xm. If the average particle size is less than 25 μΐη, the yield is poor and it is uneconomical. If the average particle size is more than 50 / m, it is difficult to control the solder thickness.
[0139] 続いて、図 18に示されたペースト状に形成されたペースト状無鉛はんだ 210につ いて説明する。 Next, the paste-like lead-free solder 210 shown in FIG. 18 will be described.
[0140] このペースト状無鉛はんだ 210は、球状または不定形状の粉体形状を有する無鉛 はんだ 220を、フラックス 221やバインダ 222と混合して形成される。  [0140] This paste-like lead-free solder 210 is formed by mixing a lead-free solder 220 having a spherical or irregular powder shape with a flux 221 and a binder 222.
[0141] フラックス 221は、はんだと、このはんだで接合される部材との間の酸化皮膜を除去 し、加熱中に再び酸化するのを防止するものである。このフラックス 221として、一般 的に用いられているアミンハロゲン塩または有機酸などの活性化剤が用いられるが、 これらに限られるものではなぐ一般的に使用されているものならば用いることができ る。ペースト状無鉛はんだ 210中のフラックス 221の含有率は、 10 15重量0 /0の範 囲で適宜に設定することができる。フラックス 221の含有率が 10重量%より小さい場 合には、はんだとこのはんだ材料で接合される部材との間の酸化皮膜を除去し、カロ 熱中に再び酸化するのを防止する効果が小さぐ 15重量%より大きい場合には、そ の効果の向上を望めず、残渣が多くなるからである。 [0141] The flux 221 removes an oxide film between the solder and a member joined with the solder, and prevents the solder from being oxidized again during heating. As the flux 221, a commonly used activator such as an amine halide salt or an organic acid is used, but is not limited to these, and any commonly used activator can be used. . The content of the flux 221 in the paste-like lead-free solder 210 can be set appropriately in the range of 10 15 weight 0/0. When the content of the flux 221 is less than 10% by weight, the effect of removing the oxide film between the solder and the member joined with the solder material is small, and the effect of preventing the re-oxidation during the heat of caro is small. If the content is more than 15% by weight, the effect cannot be expected to be improved, and the residue increases.
[0142] また、フラックス 221中の固形分の含有率は、 30— 60重量%の範囲で適宜に設定 すること力 Sできる。固形分含有率が 30重量%より小さい場合には、要素部品の表面 に塗布または印刷されたはんだ材料の付着状態が不十分となり、 60重量%より大き い場合には、残渣が多くなり、はんだ接合部にボイド欠陥が生じ易いからである。  [0142] Further, the content of the solid content in the flux 221 can be appropriately set within a range of 30 to 60% by weight. If the solid content is less than 30% by weight, the adhesion of the solder material applied or printed on the surface of the component parts will be insufficient. This is because a void defect is likely to occur at the joint.
[0143] 球状または不定形状の粉体形状を有する無鉛はんだ 220の平均粒径は、 25— 50  [0143] The average particle size of the lead-free solder 220 having a spherical or irregular powder shape is 25-50.
/i mの範囲が好ましい。平均粒径が、 25 /i mより小さい場合には歩留が悪く不経済 的であり、 50 x mより大きい場合には、はんだの厚さをコントロールすることが難しレヽ からである。  The range / im is preferred. When the average particle size is less than 25 / im, the yield is poor and uneconomical, and when the average particle size is more than 50 x m, it is difficult to control the thickness of the solder, which is difficult.
[0144] 続いて、図 19に示されたワイヤー状に形成されたワイヤー状無鉛はんだ 230につ いて説明する。  [0144] Next, the wire-shaped lead-free solder 230 formed in a wire shape shown in Fig. 19 will be described.
[0145] このワイヤー状無鉛はんだ 230は、無鉛はんだからなる部材を、例えば、引抜き加 ェして形成される。また、ワイヤー状無鉛はんだ 230は、粉体形状を有する無鉛はん だを所定の形状の金型に詰めて、加圧および加熱して形成することもできる。さらに、 ワイヤー状無鉛はんだ 230は、溶融した無鉛はんだを所定の形状の金型に流し込み 、その後冷却して形成することもできる。 [0145] The wire-shaped lead-free solder 230 is formed by, for example, drawing out a member made of lead-free solder. Further, the wire-shaped lead-free solder 230 can also be formed by filling a lead-free solder having a powder shape into a mold having a predetermined shape, and applying pressure and heat. further, The wire-shaped lead-free solder 230 can also be formed by pouring molten lead-free solder into a mold having a predetermined shape and then cooling it.
[0146] 続いて、図 20に示されたロッド状に形成されたロッド状無鉛はんだ 240について説 明する。 [0146] Next, the rod-shaped lead-free solder 240 formed in a rod shape shown in Fig. 20 will be described.
[0147] また、図 20に示されたロッド状に形成されたロッド状無鉛はんだ 240は、粉体形状 を有する無鉛はんだを所定の形状の金型に詰めて、加圧および加熱して形成される 。また、さらに、ロッド状無鉛はんだ 240は、溶融した無鉛はんだを所定の形状の金 型に流し込み、その後冷却して形成することもできる。  [0147] The rod-shaped lead-free solder 240 formed in a rod shape shown in Fig. 20 is formed by filling a lead-free solder having a powder shape into a mold having a predetermined shape, and pressing and heating. . Further, the rod-shaped lead-free solder 240 can also be formed by pouring a molten lead-free solder into a mold having a predetermined shape and then cooling it.
[0148] このように、無鉛はんだは、フィルム状、ペースト状、ワイヤー状、ロッド状などの形 状を採ることができ、無鉛はんだを使用する用途に応じて最適な形態の無鉛はんだ を用いることができる。なお、無鉛はんだの形状は、上記した形状に限られるもので はなぐ適宜に用途に応じて形状を変えて形成することができる。  [0148] As described above, the lead-free solder can take a shape such as a film shape, a paste shape, a wire shape, and a rod shape, and the lead-free solder having an optimal form should be used according to the application in which the lead-free solder is used. Can be. In addition, the shape of the lead-free solder is not limited to the above-mentioned shape, and can be formed by appropriately changing the shape according to the application.
[0149] ここで、無鉛はんだを球状または不定形状の粉体に形成する方法の一例を説明す る。  [0149] Here, an example of a method of forming lead-free solder into a spherical or irregular shaped powder will be described.
[0150] まず、無鉛はんだを加熱し溶融し、この溶融した混合物を、例えば、 Nガス、 Heガ  [0150] First, a lead-free solder is heated and melted.
2 ス、 Arガス、 N /Ar混合ガスなどの不活性ガスを用いたアトマイズ法などによって微  2 Fine atomization by atomizing method using inert gas such as gas, Ar gas, N / Ar mixed gas, etc.
2  Two
粒化し、固化する。このアトマイズ法は、溶融した混合物を不活性ガスとともにノズル から亜音速または超音速で噴射して、不活性ガスのジェット流によって溶融した混合 物を微粒化するものである。そして、微粒化された無鉛はんだの粉体から、例えば、 篩などを用いて所定の範囲の平均粒径を有する粉体が選別される。  Granulate and solidify. In the atomization method, a molten mixture is injected from a nozzle at a subsonic or supersonic speed together with an inert gas, and the molten mixture is atomized by a jet stream of the inert gas. Then, from the atomized lead-free solder powder, a powder having an average particle diameter in a predetermined range is selected using, for example, a sieve.
[0151] 微粒化され固化された無鉛はんだの粉体は、ノズルから噴射される不活性ガスのジ エツト流の速度が大きい方がより平均粒径の小さなものとなる。特に、ジェット流が、例 えば、音速の 2 3倍程度の超音速状態に達すると、衝撃波による微粒化の効果が 加わり、粉体の平均粒径をより小さくすることができる。また、不活性ガスをジェット流 として用いるため、粉体の表面における酸化を抑制することができる。不活性ガスの 代わりに空気や水を用いることもできるが、空気や水を用いた場合には、粉体の表面 の酸化を抑制する効果が小さぐまた、特に水を用いた場合には粉体の形状が球状 になり難いので、ジェット流には不活性ガスを用いるのが好ましい。 [0152] (無 はんだのはんだ付け方法) [0151] The atomized and solidified lead-free solder powder has a smaller average particle diameter when the jet flow rate of the inert gas injected from the nozzle is higher. In particular, when the jet stream reaches a supersonic state of about 23 times the sound velocity, for example, the effect of atomization by the shock wave is added, and the average particle diameter of the powder can be further reduced. Further, since the inert gas is used as the jet stream, oxidation on the surface of the powder can be suppressed. Air or water can be used in place of the inert gas.However, when air or water is used, the effect of suppressing the oxidation of the powder surface is small. It is preferable to use an inert gas for the jet stream because the body shape is unlikely to be spherical. [0152] (Solderless soldering method)
次に、無鉛はんだのはんだ付け方法について、図 21および 22を参照して説明する  Next, the method of soldering lead-free solder will be described with reference to FIGS. 21 and 22.
[0153] 図 21には、無鉛はんだ 220によって接合された第 1要素部材 250および第 2要素 部材 251の断面図が示されている。また、図 22には、 2種類の無鉛はんだ 252、 253 によって接合された第 1要素部材 250および第 2要素部材 251の断面図が示されて いる。 FIG. 21 shows a sectional view of first element member 250 and second element member 251 joined by lead-free solder 220. FIG. 22 is a cross-sectional view of the first element member 250 and the second element member 251 joined by the two types of lead-free solders 252 and 253.
[0154] 図 21に示すはんだ付け方法では、無鉛はんだ 220を第 1要素部材 250と第 2要素 部材 251との間に配置する。そして、これを、例えば、大気中または不活性ガス雰囲 気中において、無鉛はんだ 220の融点以上の温度に加熱する。加熱されることによ つて融解した無鉛はんだ 220は、冷却工程を経て、図 21に示すような断面形状のは んだ接合部になる。ここで使用される無鉛はんだ 220は、上述したフィルム状、ぺー スト状、ワイヤー状、粉体状などの形状を有する無鉛はんだを使用することができる。  In the soldering method shown in FIG. 21, lead-free solder 220 is arranged between first element member 250 and second element member 251. Then, this is heated to a temperature equal to or higher than the melting point of the lead-free solder 220, for example, in the air or in an inert gas atmosphere. The lead-free solder 220 melted by heating is subjected to a cooling process to become a solder joint having a sectional shape as shown in FIG. As the lead-free solder 220 used here, a lead-free solder having a shape such as a film, a paste, a wire, and a powder described above can be used.
[0155] また、図 22に示すはんだ付け方法では、上述した Coを 0. 02-2. 0重量%含有す る、 Snまたは Pbを含まない Sn基合金力 構成される第 1はんだ 252、および Snまた は Sn基合金から構成される第 2はんだ 253を積層し、この積層したはんだを、第 1要 素部材 250と第 2要素部材 251との間に配置する。そして、これを、例えば、大気中 または不活性ガス雰囲気中において、無鉛はんだの融点以上の温度に加熱する。 加熱されることによって融解した第 1はんだ 252および第 2はんだ 253は、冷却工程 を経て、図 22に示すような断面形状のはんだ接合部になる。なお、第 1はんだ 252に は、上記した Coを 0. 02-2. 0重量%および Cuを 0. 02-7. 5重量%を含有し、残 部が Snと不可避不純物で構成された無鉛はんだを用いてもょレ、。  [0155] Further, in the soldering method shown in Fig. 22, the first solder 252 comprising Sn described above containing 0.0 to 2.0% by weight of Co and containing no Sn or Pb, and A second solder 253 made of Sn or Sn-based alloy is laminated, and the laminated solder is arranged between the first element member 250 and the second element member 251. Then, this is heated to a temperature equal to or higher than the melting point of the lead-free solder, for example, in the air or in an inert gas atmosphere. The first solder 252 and the second solder 253 that have been melted by heating are subjected to a cooling process to become solder joints having a cross-sectional shape as shown in FIG. The first solder 252 contains 0.02-2.0% by weight of Co and 0.02-7.5% by weight of Cu, with the balance being Sn and unavoidable impurities. Use solder.
[0156] この結合部では、第 1要素部材 250には、第 1はんだ 252が接合し、第 2要素部材 251には、第 2はんだ 253が接合した構成が示されている力 第 1はんだ 253および 第 2はんだ 252が積層される順は、適宜に設定される。  In this joint, the first element member 250 is joined with the first solder 252, and the second element member 251 is shown with a structure in which the second solder 253 is joined. The order in which the second solder 252 and the second solder 252 are stacked is set as appropriate.
[0157] この無鉛はんだは、使用用途を限定されるものではなレ、が、例えば、熱伝導性、ぬ れ性、機械的強度などが要求される電子部品と基板の接合、電子部品どうしの接合 などに用いることが好ましい。ここで、第 1要素部材 250は、例えば、電子部品の基板 などで構成することができ、第 2要素部材 251は、例えば、チップ部品などの電子部 材などで構成することができる。そして、これらの基板や電子部材を、第 1はんだ 252 および第 2はんだ 253や無鉛はんだ 220などで接合することができる。また、第 1はん だ 252および第 2はんだ 253や無鉛はんだ 220は、このようなダイボンド以外にも、ヮ ィャボンドなどにも使用することができる。 [0157] The use of the lead-free solder is not limited, but, for example, bonding of an electronic component to a substrate that requires thermal conductivity, wettability, mechanical strength, and the like, and bonding of the electronic components to each other. It is preferably used for bonding or the like. Here, the first element member 250 is, for example, a substrate of an electronic component. The second element member 251 can be formed of, for example, an electronic component such as a chip component. Then, these substrates and electronic members can be joined with the first solder 252 and the second solder 253, the lead-free solder 220, and the like. Further, the first solder 252, the second solder 253, and the lead-free solder 220 can be used for a wire bond and the like in addition to such a die bond.
[0158] このように、第 1要素部材 250と第 2要素部材 251との接合に、 Coを 0. 02-2. 0重 量%含有した第 1はんだ 252および第 2はんだ 253や無鉛はんだ 220を用いることで 、 Snまたは Sn基合金の表面張力を低下させ、ぬれ性を向上させることができる。さら に、第 1要素部材 250および第 2要素部材 251と、 Snまたは Sn基合金との反応を抑 制し、接合界面における金属間化合物の成長を抑制することによって、溶融はんだ の凝集を抑制し、ぬれ性を向上させることができる。これによつて、ボイド欠陥の発生 が抑制され、熱伝導性、機械的強度などに優れたはんだ接合部を得ることができる。  [0158] As described above, the first and second solders 252 and 253 and the lead-free solder 220 containing Co in an amount of 0.02-2.0% by weight were used for joining the first element member 250 and the second element member 251. By using, the surface tension of Sn or a Sn-based alloy can be reduced, and the wettability can be improved. Furthermore, by suppressing the reaction between the first element member 250 and the second element member 251 and Sn or a Sn-based alloy, and suppressing the growth of intermetallic compounds at the joint interface, the aggregation of the molten solder is suppressed. , The wettability can be improved. As a result, generation of void defects is suppressed, and a solder joint having excellent thermal conductivity, mechanical strength, and the like can be obtained.
[0159] 次に、第 3の実施の形態における具体的な実施例について説明する。  Next, a specific example of the third embodiment will be described.
[0160] (実施例 7)  [0160] (Example 7)
Sn-0. 7重量%01— 0. 2重量%〇0からなる無鉛はんだを溶融し、厚さ 30mm、幅 100mm,長さ 200mmのインゴットを铸造した。次に、インゴットを圧延し、厚さ 0. lm m、幅 100mmのフィルム状はんだを作製した。次に、図 23に示すように、厚さ 3mm 、幅 50mm、長さ 100mmの 2枚の銅板 260、 261の間に、厚さ 0. lmm、幅 50mm、 長さ 50mmのフィルム状はんだ 262を設置した。続いて、窒素ガス雰囲気中におい て、 300°Cの温度で 5分間加熱し、はんだ付けを行った。  Sn-0.7% by weight 01-0.2% by weight Lead-free solder consisting of 0 was melted to produce an ingot having a thickness of 30 mm, a width of 100 mm and a length of 200 mm. Next, the ingot was rolled to produce a film-shaped solder having a thickness of 0.1 lm and a width of 100 mm. Next, as shown in FIG. 23, a film-like solder 262 having a thickness of 0.1 mm, a width of 50 mm and a length of 50 mm was placed between two copper plates 260 and 261 having a thickness of 3 mm, a width of 50 mm and a length of 100 mm. installed. Subsequently, in a nitrogen gas atmosphere, heating was performed at a temperature of 300 ° C. for 5 minutes to perform soldering.
[0161] はんだ付けされた接合体を 0. lmm/minの引張速度のせん断試験を行なった結 果、せん断強度が 38MPaであった。  [0161] As a result of performing a shear test on the soldered joint at a tensile speed of 0.1 mm / min, the shear strength was 38 MPa.
[0162] また、窒素ガス雰囲気中で加熱し、溶融した Sn— 0. 7重量%〇11一 0. 2重量%〇0 からなる無鉛はんだの表面張力 γ を滴下法を用いて測定した。この敵下法では、円  [0162] Further, the surface tension γ of a lead-free solder composed of Sn-0.7% by weight〇11-0.2% by weight〇0, which was heated and melted in a nitrogen gas atmosphere, was measured by a dropping method. In this enemy law, the circle
L  L
形の管口から滴下される液滴は、その重量が表面張力に打ち勝って落下するという 性質を利用して、表面張力の測定を行う。  The surface tension is measured by taking advantage of the property that the weight of the droplet dropped from the mouth of the shape drops overcoming the surface tension.
[0163] 図 24に示すように、溶融された Sn— 0. 7重量%〇11一 0. 2重量%〇0からなる無鉛 はんだ 265は、内径 0. 3mmのノズノレ 266に供給される。そして、ノズノレ 266の先端 に無鉛はんだ 265の液滴が形成され、液滴が所定の重量になったときに落下した。 ここで、ノズル 266から落下する直前の無鉛はんだ 265のくびれ径 (L)および落下し た液滴の重量 (mg)を測定した。 As shown in FIG. 24, the lead-free solder 265 composed of molten Sn—0.7% by weight〇11−0.2% by weight〇0 is supplied to the nose 266 having an inner diameter of 0.3 mm. And the tip of Noznore 266 A droplet of the lead-free solder 265 was formed on the substrate and dropped when the droplet reached a predetermined weight. Here, the neck diameter (L) of the lead-free solder 265 immediately before falling from the nozzle 266 and the weight (mg) of the dropped droplet were measured.
[0164] ここで、敵下法により、 1つの液滴の質量を mとしたときに液滴を下方に引く力(液滴 の重量)(mg)は、落下する直前の表面張力(γ )に等しいという関係から、次の関係 [0164] Here, according to the sub-enemy method, when the mass of one droplet is m, the force pulling the droplet downward (the weight of the droplet) (mg) is the surface tension (γ) immediately before falling. From the relationship that is equal to
L  L
式が成り立つ。  The formula holds.
7 = mg 2  7 = mg 2
L Z u L …式 (1リ  L Z u L… formula (1
[0165] この式(1)に測定した、落下する直前の無鉛はんだ 110のくびれ径 (Uおよび落下 した液滴の重量 (mg)を代入して、無鉛はんだ 110の表面張力( Ί )を算出した結果 [0165] The surface tension ( Ί ) of the lead-free solder 110 is calculated by substituting the constriction diameter (U and the weight (mg) of the dropped droplet) of the lead-free solder 110 immediately before falling into the equation (1). Result
L  L
、表面張力( γ )は、 0. 36NZmであった。  The surface tension (γ) was 0.36 NZm.
L  L
[0166] なお、表面張力(γ )とぬれ性との関係は、表面張力(γ )が小さいほどぬれ性に  [0166] The relationship between the surface tension (γ) and the wettability is such that the smaller the surface tension (γ), the better the wettability.
L L  L L
優れていることになる。  It will be excellent.
[0167] さらに、 X線マイクロアナライザ(EPMA; Electron Probe Micro-Analysis)を用いて 、フィルム状はんだ 262で接合された銅板 260、 261の断面について、元素分析を 行った。その元素分析を行った結果を図 25Aおよび図 25Bに示す。なお、図 25Aお よび図 25Bには、 1つの銅板 260上の結果が示されている。  [0167] Furthermore, an X-ray microanalyzer (EPMA; Electron Probe Micro-Analysis) was used to perform elemental analysis on the cross sections of the copper plates 260 and 261 joined with the film-like solder 262. The results of the elemental analysis are shown in FIGS. 25A and 25B. 25A and 25B show the results on one copper plate 260.
[0168] この測定結果から、図 25Aに示すように、接合面 270を介して銅板 260に接合され ているはんだ層 271は、はんだ層 271の接合面 270に面した部分に形成された第 1 はんだ層 271 a、および第 1はんだ層 271 aの接合面 270側とは反対側に形成された 第 2はんだ層 271bの 2層から主に形成されていることがわかる。また、第 1はんだ層 2 71aは、第 2はんだ層 271b側に顕著な起伏を生じることなぐ比較的平坦に接合面 2 70に沿って形成されている。  From this measurement result, as shown in FIG. 25A, the solder layer 271 bonded to the copper plate 260 via the bonding surface 270 is the first layer formed on the portion of the solder layer 271 facing the bonding surface 270. It can be seen that the second solder layer 271b is formed mainly from the solder layer 271a and the second solder layer 271b formed on the side opposite to the joint surface 270 side of the first solder layer 271a. The first solder layer 271a is formed relatively flat along the joint surface 270 without causing significant undulations on the second solder layer 271b side.
[0169] 続いて、この断面において、 Snの元素分析を行うと、第 2はんだ層 271bに含まれる Snの濃度に比べて、第 1はんだ層 271aに含まれる Snの濃度は低かった。また、この 断面において、 Cuの元素分析を行うと、第 2はんだ層 271bに含まれる Cuの濃度に 比べて、第 1はんだ層 271aに含まれる Cuの濃度は高力、つた。さらに、この断面にお いて、 Coの元素分析を行うと、図 25Bに示すように、第 1はんだ層 271aの特に接合 面 270側に、接合面 270に沿って Coの濃度が高い領域 272が存在した。 [0170] 以上の結果から、第 1はんだ層 271aは、 η (Sn Cu: Sn43. 5— 45. 5原子%)の Subsequently, when an elemental analysis of Sn was performed on this cross section, the concentration of Sn contained in the first solder layer 271a was lower than the concentration of Sn contained in the second solder layer 271b. In addition, when Cu elemental analysis was performed on this cross section, the concentration of Cu contained in the first solder layer 271a was higher than the concentration of Cu contained in the second solder layer 271b. Further, when elemental analysis of Co is performed on this cross section, as shown in FIG. 25B, a region 272 where the Co concentration is high along the bonding surface 270 is particularly formed on the first solder layer 271a, particularly on the bonding surface 270 side. Were present. [0170] From the above results, the first solder layer 271a has a higher η (Sn Cu: Sn43.5—45.5 atomic%)
5 6  5 6
共晶組織に Coを、第 2はんだ層 27 lbに比べて多く含んだ Sn— Cu— Coからなる金属 間化合物層で主に形成されていることがわかった。特に、この金属間化合物層の接 合面 270側には、接合面 270に沿って Coの濃度の高い領域 272が偏在することが わかった。また、第 2はんだ層 271bは、使用する無鉛はんだで主に形成されているこ とがわかった。  It was found that the eutectic structure was mainly formed of an intermetallic compound layer composed of Sn-Cu-Co that contained more Co than the second solder layer of 27 lb. In particular, it was found that a region 272 having a high Co concentration was unevenly distributed along the bonding surface 270 on the bonding surface 270 side of the intermetallic compound layer. Further, it was found that the second solder layer 271b was mainly formed of the lead-free solder used.
[0171] (実施例 8)  [0171] (Example 8)
Sn-0. 7重量%〇11-2重量%〇0からなる無鉛はんだを溶融し、厚さ 30mm、幅 10 Omm、長さ 200mmのインゴットを錡造した。次に、インゴットを圧延し、厚さ 0. lmm 、幅 100mmのフィルム状はんだを作製した。次に、図 23に示すように、厚さ 3mm、 幅 50mm、長さ 100mmの 2枚の銅板 260、 261の間に、厚さ 0. lmm、幅 50mm、 長さ 50mmのフィルム状はんだ 262を設置した。続いて、窒素ガス雰囲気中におい て、 300°Cの温度で 5分間加熱し、はんだ付けを行った。  A lead-free solder consisting of Sn-0.7 wt% 〇11-2 wt% 〇0 was melted to produce an ingot having a thickness of 30 mm, a width of 10 Omm and a length of 200 mm. Next, the ingot was rolled to produce a film-like solder having a thickness of 0.1 mm and a width of 100 mm. Next, as shown in FIG. 23, a film-like solder 262 having a thickness of 0.1 mm, a width of 50 mm, and a length of 50 mm was placed between two copper plates 260, 261 having a thickness of 3 mm, a width of 50 mm, and a length of 100 mm. installed. Subsequently, in a nitrogen gas atmosphere, heating was performed at a temperature of 300 ° C. for 5 minutes to perform soldering.
[0172] はんだ付けされた接合体を 0. lmm/minの引張速度のせん断試験を行なった結 果、せん断強度が 42MPaであった。  [0172] A shear test at a tensile speed of 0.1 mm / min was performed on the soldered joint to find that the shear strength was 42 MPa.
[0173] また、実施例 7で示した表面張力( γ )の測定方法と同じ測定方法で、溶融した Sn  [0173] Further, the same method as the method for measuring the surface tension (γ) shown in Example 7 was used to measure
L  L
-0. 7重量%〇11一 2重量%〇0からなる無鉛はんだの表面張力(γ )を算出した結果  The result of calculating the surface tension (γ) of the lead-free solder consisting of -0.7% by weight〇11-1% by weight〇0
L  L
、表面張力( γ )は、 0· 35N/mであった。  The surface tension (γ) was 0.35 N / m.
L  L
[0174] さらに、 X線マイクロアナライザ(EPMA; Electron Probe Micro-Analysis)を用いて 、フィルム状はんだ 262で接合された銅板 260、 261の断面について、元素分析を 行った。  Further, an X-ray microanalyzer (EPMA; Electron Probe Micro-Analysis) was used to perform an elemental analysis on the cross sections of the copper plates 260 and 261 joined with the film-like solder 262.
[0175] その結果、図示はしていないが、実施例 7の図 25Aおよび図 25Bに示した結果と同 様な結果を得ることができた。つまり、図 25Aおよび図 25Bに示した符号を用いて説 明すると、接合面 270を介して銅板 260に接合されているはんだ層 271は、はんだ 層 271の接合面 270に面した部分に形成された第 1はんだ層 271a、および第 1はん だ層 271aの接合面 270側とは反対側に形成された第 2はんだ層 271bの 2層から主 に形成されていることがわかった。また、第 1はんだ層 271aは、第 2はんだ層 271b側 に顕著な起伏を生じることなぐ比較的平坦に接合面 270に沿って形成されていた。 [0176] この元素分析結果をまとめると、第 1はんだ層 271aは、 η (Sn Cu : Sn43. 5— 45 As a result, although not shown, a result similar to the result shown in FIGS. 25A and 25B of Example 7 could be obtained. That is, using the reference numerals shown in FIGS. 25A and 25B, the solder layer 271 joined to the copper plate 260 via the joint surface 270 is formed at a portion of the solder layer 271 facing the joint surface 270. The first solder layer 271a and the second solder layer 271b formed on the side opposite to the joint surface 270 side of the first solder layer 271a were found to be mainly formed. Also, the first solder layer 271a was formed relatively flat along the joint surface 270 without causing significant undulation on the second solder layer 271b side. [0176] Summarizing the results of the elemental analysis, the first solder layer 271a shows that η (Sn Cu: Sn 43.5—45
5 6  5 6
. 5原子%)の共晶組織に Coを、第 2はんだ層 271bに比べて多く含んだ Sn— Cu— C oからなる金属間化合物層で主に形成されていることがわかった。特に、この金属間 化合物層の接合面 270側には、接合面 270に沿って Coの濃度の高い領域 272が偏 在することがわ力 た。また、第 2はんだ層 271bは、使用する無鉛はんだで主に形 成されていることがわかった。  (5 atomic%) was found to be mainly formed by an intermetallic compound layer composed of Sn-Cu-Co containing Co in the eutectic structure more than the second solder layer 271b. In particular, it was found that a region 272 having a high Co concentration was unevenly distributed along the bonding surface 270 on the bonding surface 270 side of the intermetallic compound layer. Also, it was found that the second solder layer 271b was mainly formed of the lead-free solder used.
[0177] (実施例 9)  (Example 9)
Sn-0. 7重量%〇11一 0.02重量%〇0からなる無鉛はんだを溶融し、厚さ 30mm、 幅 100mm、長さ 200mmのインゴットを錡造した。次に、インゴットを圧延し、厚さ 0. lmm、幅 100mmのフィルム状はんだを作製した。次に、図 23に示すように、厚さ 3 mm、幅 50mm、長さ 100mmの 2枚の同板 260、 261の間に、厚さ 0. lmm、幅 50 mm、長さ 50mmのフィルム状はんだ 262を設置した。続いて、窒素ガス雰囲気中に おいて、 300°Cの温度で 5分間加熱し、はんだ付けを行った。  A lead-free solder consisting of Sn-0.7% by weight 〇11-0.02% by weight〇0 was melted to produce an ingot having a thickness of 30 mm, a width of 100 mm and a length of 200 mm. Next, the ingot was rolled to produce a film solder having a thickness of 0.1 mm and a width of 100 mm. Next, as shown in Fig. 23, a film with a thickness of 0.1 mm, a width of 50 mm, and a length of 50 mm is placed between two identical plates 260, 261 with a thickness of 3 mm, a width of 50 mm and a length of 100 mm. Solder 262 was installed. Subsequently, in a nitrogen gas atmosphere, heating was performed at a temperature of 300 ° C. for 5 minutes to perform soldering.
[0178] はんだ付けされた接合体を 0. lmm/minの引張速度のせん断試験を行なった結 果、せん断強度が 32MPaであった。  [0178] The soldered joint was subjected to a shear test at a tensile speed of 0.1 mm / min, and as a result, the shear strength was 32 MPa.
[0179] また、実施例 7で示した表面張力( γ )の測定方法と同じ測定方法で、溶融した Sn  [0179] In addition, the same method as the method for measuring the surface tension (γ) shown in Example 7 was used to determine whether the molten Sn
L  L
-0. 7重量%01— 0.02重量%〇0からなる無鉛はんだの表面張力(γ )を算出した  -0.7% by weight 01- 0.02% by weight 〇0 The surface tension (γ) of the lead-free solder was calculated.
L  L
結果、表面張力( γ )は、 0. 38N/mであった。  As a result, the surface tension (γ) was 0.38 N / m.
L  L
[0180] さらに、 X線マイクロアナライザ(EPMA; Electron Probe Micro-Analysis)を用いて 、フィルム状はんだ 262で接合された銅板 260、 261の断面について、元素分析を 行った。  [0180] Further, an X-ray microanalyzer (EPMA; Electron Probe Micro-Analysis) was used to perform elemental analysis on the cross sections of the copper plates 260 and 261 joined by the film solder 262.
[0181] その結果、図示はしていないが、実施例 7の図 25Aおよび図 25Bに示した結果と同 様な結果を得ることができた。つまり、図 25Aおよび図 25Bに示した符号を用いて説 明すると、接合面 270を介して銅板 260に接合されているはんだ層 271は、はんだ 層 271の接合面 270に面した部分に形成された第 1はんだ層 271a、および第 1はん だ層 271aの接合面 270側とは反対側に形成された第 2はんだ層 271bの 2層から主 に形成されていることがわかった。また、第 1はんだ層 271aは、第 2はんだ層 271b側 に顕著な起伏を生じることなぐ比較的平坦に接合面 270に沿って形成されていた。 [0182] この元素分析結果をまとめると、第 1はんだ層 271aは、 η (Sn Cu : Sn43. 5— 45 As a result, although not shown, a result similar to the result shown in FIGS. 25A and 25B of Example 7 could be obtained. That is, using the reference numerals shown in FIGS. 25A and 25B, the solder layer 271 joined to the copper plate 260 via the joint surface 270 is formed at a portion of the solder layer 271 facing the joint surface 270. The first solder layer 271a and the second solder layer 271b formed on the side opposite to the joint surface 270 side of the first solder layer 271a were found to be mainly formed. Also, the first solder layer 271a was formed relatively flat along the joint surface 270 without causing significant undulation on the second solder layer 271b side. [0182] Summarizing the results of the elemental analysis, the first solder layer 271a shows that η (SnCu: Sn43.5—45
5 6  5 6
. 5原子%)の共晶組織に Coを、第 2はんだ層 271bに比べて多く含んだ Sn— Cu— C oからなる金属間化合物層で主に形成されていることがわかった。特に、この金属間 化合物層の接合面 270側には、接合面 270に沿って Coの濃度の高い領域 272が偏 在することがわ力 た。また、第 2はんだ層 271bは、使用する無鉛はんだで主に形 成されていることがわかった。  (5 atomic%) was found to be mainly formed by an intermetallic compound layer composed of Sn-Cu-Co containing Co in the eutectic structure more than the second solder layer 271b. In particular, it was found that a region 272 having a high Co concentration was unevenly distributed along the bonding surface 270 on the bonding surface 270 side of the intermetallic compound layer. Also, it was found that the second solder layer 271b was mainly formed of the lead-free solder used.
[0183] (比較例 5)  [0183] (Comparative Example 5)
Sn-0. 7重量%〇11からなる無鉛はんだを溶融し、厚さ 30mm、幅 100mm、長さ 2 00mmのインゴットを铸造した。次に、インゴットを圧延し、厚さ 0. lmm、幅 100mm のフィルム状はんだを作製した。次に、図 23に示すように、厚さ 3mm、幅 50mm、長 さ 100mmの 2枚の銅板 260、 261の間に、厚さ 0. lmm、幅 50mm、長さ 50mmの フィルム状はんだ 262を設置した。続いて、窒素ガス雰囲気中において、 300°Cの温 度で 5分間加熱し、はんだ付けを行った。  A lead-free solder consisting of Sn-0.7% by weight of about 11 was melted to produce an ingot having a thickness of 30 mm, a width of 100 mm and a length of 200 mm. Next, the ingot was rolled to produce a film solder having a thickness of 0.1 mm and a width of 100 mm. Next, as shown in Fig. 23, a film-like solder 262 having a thickness of 0.1 mm, a width of 50 mm, and a length of 50 mm is placed between two copper plates 260, 261 having a thickness of 3 mm, a width of 50 mm, and a length of 100 mm. installed. Subsequently, soldering was performed in a nitrogen gas atmosphere at a temperature of 300 ° C for 5 minutes.
[0184] はんだ付けされた接合体を 0. lmm/minの引張速度のせん断試験を行なった結 果、せん断強度が 28MPaであった。  [0184] A shear test was performed on the soldered joint at a tensile speed of 0.1 mm / min. As a result, the shear strength was 28 MPa.
[0185] また、実施例 7で示した表面張力( γ )の測定方法と同じ測定方法で、溶融した Sn  [0185] In addition, the same method as the method for measuring the surface tension (γ) shown in Example 7 was used to determine whether the molten Sn
L  L
-0. 7重量%〇11からなる無鉛はんだの表面張力(γ )を算出した結果、表面張力(  The surface tension (γ) of the lead-free solder consisting of -0.7% by weight 〇11 was calculated.
L  L
γ )は、 0· 41N/mであった。  γ) was 0.41 N / m.
L  L
[0186] さらに、 X線マイクロアナライザ(EPMA; Electron Probe Micro-Analysis)を用いて 、フィルム状はんだ 262で接合された銅板 260、 261の断面について、元素分析を 行った。その元素分析を行った結果を図 26に示す。なお、図 26には、 1つの銅板 26 0上の結果が示されている。  [0186] Further, an X-ray microanalyzer (EPMA; Electron Probe Micro-Analysis) was used to perform elemental analysis on the cross sections of the copper plates 260 and 261 joined by the film solder 262. FIG. 26 shows the result of the elemental analysis. FIG. 26 shows the result on one copper plate 260.
[0187] この測定結果から、図 26に示すように、接合面 280を介して銅板 260に接合されて レ、るはんだ層 281は、はんだ層 281の接合面 280に面した部分に形成された第 1は んだ層 281 a、および第 1はんだ層 281 aの接合面 280側とは反対側に形成された第 2はんだ層 281bの 2層から主に形成されていることがわかる。また、第 1はんだ層 28 laは、第 2はんだ層 281b側に激しく起伏している。また、第 1はんだ層 281aの第 2 はんだ層 281b側に突出する高さは、実施例 7で示した第 1はんだ層 271aのそれに 比べて、 2— 3倍程度になっている部分も多くみられる。なお、他の実施例において は図は示していないが、他の実施例においても実施例 7と同様の結果を得たことから 、第 1はんだ層 281aの第 2はんだ層 281b側に突出する高さは、実施例 8および 9の 第 1はんだ層のそれに比べても、 2 3倍程度になっている部分が多いと言える。 [0187] From this measurement result, as shown in FIG. 26, the solder layer 281 bonded to the copper plate 260 via the bonding surface 280 was formed at the portion of the solder layer 281 facing the bonding surface 280. It can be seen that the first solder layer 281a and the second solder layer 281b formed on the side opposite to the bonding surface 280 of the first solder layer 281a are mainly formed. Also, the first solder layer 28 la vigorously undulates on the second solder layer 281b side. Also, the height of the first solder layer 281a protruding toward the second solder layer 281b is equal to that of the first solder layer 271a shown in the seventh embodiment. In many cases, it is about 2-3 times larger. Although not shown in the other examples, the same results as in Example 7 were obtained in the other examples, so that the height of the first solder layer 281a protruding toward the second solder layer 281b was reduced. It can be said that there are many parts that are about 23 times as large as those of the first solder layers of Examples 8 and 9.
[0188] 続いて、この断面において、 Snの元素分析を行うと、第 2はんだ層 281bに含まれる Snの濃度に比べて、第 1はんだ層 281aに含まれる Snの濃度は低かった。また、この 断面において、 Cuの元素分析を行うと、第 2はんだ層 281bに含まれる Cuの濃度に 比べて、第 1はんだ層 281aに含まれる Cuの濃度は高力、つた。  [0188] Subsequently, when the elemental analysis of Sn was performed on this cross section, the concentration of Sn contained in the first solder layer 281a was lower than the concentration of Sn contained in the second solder layer 281b. In addition, when the elemental analysis of Cu was performed on this cross section, the concentration of Cu contained in the first solder layer 281a was higher than the concentration of Cu contained in the second solder layer 281b.
[0189] 以上の結果から、第 1はんだ層 281aは、 η (Sn Cu: Sn43. 5— 45. 5原子%)の  [0189] From the above results, the first solder layer 281a has a thickness of η (Sn Cu: Sn43.5—45.5 at%).
5 6  5 6
共晶組織からなる金属間化合物層で主に形成されていることがわかった。また、第 2 はんだ層 281bは、使用する無鉛はんだで主に形成されていることがわかった。  It was found that it was mainly formed of an intermetallic compound layer having a eutectic structure. Also, it was found that the second solder layer 281b was mainly formed of the lead-free solder used.
[0190] 上記の比較例 5の測定結果と実施例 7— 9の測定結果とを比較し考察すると、実施 例 7— 9の Coを所定の含有率で含有する無鉛はんだは、 Coを含有しない Sn— 0. 7 重量%〇11からなる無鉛はんだよりも溶融状態における表面張力が小さぐぬれ性に 優れていることがわかった。  [0190] Comparing the measurement result of Comparative Example 5 with the measurement result of Example 7-9, the lead-free solder containing Co at a predetermined content in Example 7-9 does not contain Co. It was found that the surface tension in the molten state was smaller and the wettability was superior to that of a lead-free solder consisting of Sn-0.7% by weight〇11.
[0191] また、せん断試験を行なった結果、実施例 7— 9の Coを所定の含有率で含有する 無鉛はんだは、 Coを含有しない Sn— 0. 7重量%01からなる無鉛はんだよりもせん断 強度が高いことがわかった。  [0191] In addition, as a result of a shear test, the lead-free solder containing Co in Example 7-9 at a predetermined content rate showed a higher shear strength than the lead-free solder consisting of Sn-0.7 wt% 01 without Co. The strength was found to be high.
[0192] また、元素分析の結果から、実施例 7— 9の Coを所定の含有率で含有する無鉛は んだでは、接合面 270に沿って形成される金属間化合物層の起伏が少なく平坦であ るのに対し、 Coを含有しない Sn— 0. 7重量%〇11からなる無鉛はんだでは、金属間 化合物層の起伏が激しぐその起伏の高さは、実施例 7— 9の Coを所定の含有率で 含有する無鉛はんだにおける起伏の高さの 2— 3倍程度になっている部分が多くみら れた。  [0192] From the results of elemental analysis, it was found that in the lead-free solder containing Co at a predetermined content in Examples 7-9, the unevenness of the intermetallic compound layer formed along the bonding surface 270 was small and flat. On the other hand, in the case of a lead-free solder containing 0.7% by weight of Sn, which does not contain Co, the undulation of the intermetallic compound layer is severe. In the case of lead-free solder containing a certain amount of, the height of the undulation was about 2-3 times higher.
[0193] さらに、実施例 7 9の Coを所定の含有率で含有する無鉛はんだでは、第 1はんだ 層 271aの接合面 270側には、接合面 270に沿って Coの濃度の高い領域 272が偏 在することがわかった。  [0193] Furthermore, in the lead-free solder containing Co at a predetermined content rate in Example 79, a region 272 having a high Co concentration 272 along the joint surface 270 is formed on the joint surface 270 side of the first solder layer 271a. It was found to be unevenly distributed.
[0194] 以上の比較から、実施例 7 9の Coを所定の含有率で含有する無鉛はんだにおい て、 Coを含有することで、表面張力が抑えられ、ぬれ性を向上させることができ、さら に、 η (Sn Cu : Sn43. 5— 45. 5原子%)の共晶組織からなる金属間化合物層の [0194] From the above comparison, it was found that the lead-free solder containing Co in Example 79 with a predetermined content ratio was found. In addition, by containing Co, the surface tension can be suppressed and the wettability can be improved. In addition, the intermetallic structure having a eutectic structure of η (Sn Cu: Sn43.5—45.5 at%) Compound layer
5 6  5 6
生成および成長を抑制することができることがわかった。これによつて、はんだ接合強 度が向上されることがわかった。  It was found that formation and growth could be suppressed. As a result, it was found that the solder joint strength was improved.
[0195] (第 4の実施の形態)  (Fourth Embodiment)
以下、第 4の実施の形態の耐酸化性はんだについて説明する。  Hereinafter, the oxidation-resistant solder according to the fourth embodiment will be described.
[0196] 耐酸化性はんだは、主成分の Snと共晶合金を形成する lb銅族金属の Cu、 Ag、 A uまたは VIIIの 1鉄族金属の Co、 Niから選ばれた少なくとも一種の金属からなる第 1 従成分を 0. 02— 12重量%含有し、かっこの第 1従成分と固溶体合金を形成し、主 成分である Snとは固溶体合金を形成しない Mn、 Pd、 Ptの金属から選ばれた少なく とも一種の金属からなる第 2従成分を 0. 02- 1. 2重量%含有し、残部が Snと不可 避不純物で構成されてレ、る。  [0196] Oxidation-resistant solder forms at least one metal selected from the group consisting of Cu, Ag, Au or VIII, an iron-group metal of Co and Ni, which forms a eutectic alloy with Sn as the main component. Containing 0.02 to 12% by weight of the first subcomponent consisting of Mn, Pd, and Pt, which form a solid solution alloy with the first subcomponent of the parentheses and do not form a solid solution alloy with the main component Sn. It contains 0.02.1.2% by weight of the selected second secondary component consisting of at least one metal, and the balance consists of Sn and unavoidable impurities.
[0197] 耐酸化性はんだ全体に対する第 1従成分の含有量は、主成分の Snと第 1従成分 の金属との共晶組成またはその共晶組成近傍であれば良いが、耐酸化性はんだに 求められる機械的性質や融点によって適宜に設定される。例えば、第 1従成分である Cu、 Ag、 Au、 Co、 Niがそれぞれ単独で含有される場合には、各第 1従成分は、 Cu : 0. 02—1. 2重量0 /0、Ag : 3. 0—4. 0重量0 /0、Au: 9. 0— 12. 0重量0 /o、Co : 0. 0 2— 1. 0重量%、 Ni : 0. 02-0. 6重量%の範囲で含有される。また、第 1従成分の 複数の成分を組み合わせて含有する場合には、耐酸化性はんだ全体に対する第 1 従成分の含有率が 0. 02— 12重量%の範囲で適宜に設定されことが好ましい。第 1 従成分の含有量が上記した所定の範囲より少ないと十分な機械的性質が確保でき ず、多いと融点が高ぐ要素部品の許容な温度限界を越えることがある。 [0197] The content of the first auxiliary component with respect to the whole oxidation-resistant solder may be the eutectic composition of Sn as the main component and the metal as the first auxiliary component or near the eutectic composition. It is set appropriately according to the mechanical properties and melting point required for the product. For example, in the case where Cu is the first auxiliary component, Ag, Au, Co, Ni are contained each alone, each first auxiliary component is Cu:. 0. 02-1 2 wt 0/0, Ag : 3. 0-4 0 weight 0/0, Au:. 9. 0- 12. 0 wt 0 / o, Co: 0. 0 2- 1. 0 wt%, Ni:. 0. 02-0 6 weight %. When a plurality of components of the first subcomponent are contained in combination, the content of the first subcomponent in the whole oxidation-resistant solder is preferably set appropriately within a range of 0.02 to 12% by weight. . If the content of the first subcomponent is less than the above-mentioned predetermined range, sufficient mechanical properties cannot be secured, and if it is too large, the melting point may exceed the allowable temperature limit of the component.
[0198] 耐酸化性はんだ全体に対する第 2従成分の含有量は、耐酸化性はんだに求めら れる機械的性質や融点によって適宜に設定される。例えば、第 2従成分である Mn、 Pd、 Ptがそれぞれ単独で含有される場合には、各第 2従成分は、 Mn: 0. 02- 1. 2 重量%、 Pd: 0. 02-0. 6重量%、 Pt : 0. 02-0. 6重量%の範囲で含有される。ま た、第 2従成分の複数の成分を組み合わせて含有する場合には、耐酸化性はんだ 全体に対する第 2従成分の含有率が 0. 02-1. 2重量%の範囲で適宜に設定され ことが好ましい。第 2従成分の含有量が上記した所定の範囲より少ないと十分な金属 間化合物における酸化物の生成を抑制する効果が得られず、多いと融点が高ぐ材 料コストが増加する。 [0198] The content of the second auxiliary component in the entire oxidation-resistant solder is appropriately set according to the mechanical properties and melting point required for the oxidation-resistant solder. For example, when each of the second subcomponents, Mn, Pd, and Pt, is contained alone, each of the second subcomponents contains Mn: 0.02-1.2% by weight, Pd: 0.02-0. 6% by weight, Pt: contained in the range of 0.02 to 0.6% by weight. When a plurality of the second subcomponents are contained in combination, the content of the second subcomponent in the entire oxidation-resistant solder is appropriately set within a range of 0.02 to 1.2% by weight. Is preferred. If the content of the second auxiliary component is less than the above-mentioned predetermined range, a sufficient effect of suppressing the formation of oxides in the intermetallic compound cannot be obtained, and if it is too large, the melting point is high and the material cost increases.
[0199] また、耐酸化性はんだは、球状または不定形状の粉末であることが好ましぐその 平均粒径は、 1一 ΙΟΟ μ mの範囲が好ましレ、。耐酸化性はんだの平均粒径が 1 μ m 未満では、冷却速度が速ぐ均一な組織の耐酸化性はんだが得られるが、はんだ付 け工程において、所定の厚さのはんだ層を形成するための所要時間が長くかかるこ と力 Sある。また、耐酸化性はんだの平均粒径が 100 z mを超えると、はんだ層の厚さ を適宜に調整するのが困難になることがある。  [0199] Further, the oxidation-resistant solder is preferably a spherical or irregular-shaped powder, and the average particle diameter thereof is preferably in the range of 110 µm. If the average particle size of the oxidation-resistant solder is less than 1 μm, an oxidation-resistant solder having a uniform structure with a fast cooling rate can be obtained.However, in the soldering process, a solder layer with a predetermined thickness is formed. It takes a long time to complete the process. If the average particle size of the oxidation-resistant solder exceeds 100 zm, it may be difficult to appropriately adjust the thickness of the solder layer.
[0200] この耐酸化性はんだによれば、第 2従成分と固溶体を形成することによって、第 2従 成分に第 1従成分の金属がトラップされ、主成分の Snと結合するフリーな第 1従成分 の金属が減少する。これによつて、電気化学的により低い還元電位を有し、金属間化 合物における酸化物の生成を抑制することができるため、熱伝導特性を向上させ、さ らに、はんだ強度、特に熱疲労強度を著しく向上させることができる。また、この耐酸 化性はんだでは、金属間化合物における酸化物の生成を抑制することができるため 、ぬれ性を向上させることができる。  [0200] According to this oxidation-resistant solder, by forming a solid solution with the second subcomponent, the metal of the first subcomponent is trapped in the second subcomponent, and the free first component bonded to Sn of the main component is formed. The minor metal content is reduced. As a result, it has an electrochemically lower reduction potential and suppresses the formation of oxides in the intermetallic compound, thereby improving the heat conduction characteristics and further improving the solder strength, especially the heat resistance. Fatigue strength can be significantly improved. Further, in the oxidation-resistant solder, the generation of oxides in the intermetallic compound can be suppressed, so that the wettability can be improved.
[0201] 次に、耐酸化性はんだの製造方法の一例を示す。  Next, an example of a method for producing an oxidation-resistant solder will be described.
[0202] まず、所定の割合で混合された第 1従成分の金属、第 2従成分の金属および Snか らなる混合物を加熱し溶解する。続いて、溶解した混合物は、金型に流し込まれ冷却 され固化される。この冷却工程における混合物の冷却速度は、 10°C/秒程度である 。なお、金型として水冷機能を有する金型を用いてもよぐこの場合の混合物の冷却 速度は、 100°CZ秒程度であり、より均一な組成の耐酸化性はんだを得ることができ る。また、耐酸化性はんだは、圧延などにより箔体として形成することもできる。  [0202] First, a mixture of the first subcomponent metal, the second subcomponent metal, and Sn mixed at a predetermined ratio is heated and dissolved. Subsequently, the melted mixture is poured into a mold, cooled and solidified. The cooling rate of the mixture in this cooling step is about 10 ° C./sec. In this case, a mold having a water cooling function may be used as the mold. In this case, the cooling rate of the mixture is about 100 ° C.Z seconds, and an oxidation-resistant solder having a more uniform composition can be obtained. Further, the oxidation-resistant solder can be formed as a foil by rolling or the like.
[0203] この耐酸化性はんだの製造方法によれば、溶解した液相状態の混合物を 10°C/ 秒以上の冷却速度で急冷凝固するため、凝固偏析を生じることなく均一な組成の耐 酸化性はんだを得ることができる。  [0203] According to this method for producing an oxidation-resistant solder, the melted liquid phase mixture is rapidly solidified at a cooling rate of 10 ° C / sec or more, so that the oxidation-resistant solder having a uniform composition without solidification segregation occurs. Solder can be obtained.
[0204] また、耐酸化性はんだは、次の製造方法でも作製することができる。  [0204] The oxidation-resistant solder can also be manufactured by the following manufacturing method.
[0205] まず、所定の割合で混合された第 1従成分の金属、第 2従成分の金属および Snか らなる混合物を加熱し溶解する。続いて、第 3の実施の形態で述べたアトマイズ法に よって、耐酸化性はんだの粉末を作製してもよレ、。 First, the first auxiliary component metal, the second auxiliary component metal, and the Sn The resulting mixture is heated and dissolved. Subsequently, an oxidation-resistant solder powder may be produced by the atomizing method described in the third embodiment.
[0206] この第 3の実施の形態で述べた不活性ガスを用いたアトマイズ法では、微粒化され た粉末は、 103— 105°C/秒のオーダの冷却速度で冷却されるため、凝固偏析を生 じることなく均一な組成の耐酸化性はんだを得ることができる。  [0206] In the atomization method using an inert gas described in the third embodiment, the atomized powder is cooled at a cooling rate on the order of 103 to 105 ° C / sec, so that solidification segregation occurs. Oxidation-resistant solder having a uniform composition can be obtained without causing cracks.
[0207] 次に、上述した耐酸化性はんだの製造方法により得られた耐酸化性はんだを用い たはんだ付け方法について、図 27A、図 27B、図 27C、図 27Dおよび図 27Eを参照 して説明する。図 27A、図 27B、図 27C、図 27Dおよび図 27Eには、平板で構成さ れた第 1要素部材 300と第 2要素部材 301を耐酸化性はんだ 302によってはんだ付 けする工程が示されている。  [0207] Next, a soldering method using the oxidation-resistant solder obtained by the above-described method for producing an oxidation-resistant solder will be described with reference to FIGS. 27A, 27B, 27C, 27D, and 27E. I do. FIGS.27A, 27B, 27C, 27D, and 27E show a process of soldering the first element member 300 and the second element member 301 formed of flat plates with the oxidation-resistant solder 302. I have.
[0208] まず、第 1要素部材 300と第 2要素部材 301のはんだ付け面に形成された酸化皮 膜 303を取り除く(図 27Aおよび図 27B参照)。この酸化皮膜 303は、例えば、ショッ トブラストやエアーブラストなどによって、研削材を空気または不活性ガスとともに数 m /秒一数十 m/秒の速度で第 1要素部材 300と第 2要素部材 301のはんだ付け面 に衝突させることで削り取ることができる。研削材は、例えば、鋼、 SiC、 Al Oなどの  First, oxide film 303 formed on the soldering surfaces of first element member 300 and second element member 301 is removed (see FIGS. 27A and 27B). The oxide film 303 is formed, for example, by shot blasting or air blasting on the first element member 300 and the second element member 301 at a speed of several m / s to several tens m / s together with air or an inert gas. It can be removed by colliding with the soldering surface. For example, abrasives such as steel, SiC, Al O
2 3 球状の粒子であることが好ましい。また、研削材の平均粒径は、要求される表面粗度 によって適宜に選定する力 一般に ΙΟ μ ΐη— 50 μ ΐηの範囲が好ましレ、。また、酸化 皮膜 303は、第 1要素部材 300と第 2要素部材 301のはんだ付け面をエッチング液 に浸けることによって、化学的に除去することもできる。  Preferably, the particles are spherical particles. The average particle size of the abrasive is appropriately selected according to the required surface roughness. Generally, the range of 範 囲 μΐη—50μ—η is preferable. The oxide film 303 can also be chemically removed by immersing the soldering surfaces of the first element member 300 and the second element member 301 in an etchant.
[0209] 続いて、酸化皮膜 303が取り除かれた第 1要素部材 300のはんだ付け面に、耐酸 化性はんだ 302の粉末を均一に設置する(図 27C参照)。そして、耐酸化性はんだ 3 02の粉末が設置された第 1要素部材 300の上に、第 2要素部材 301のはんだ付け 面を下にして第 2要素部材 301を積層する(図 27D参照)。この積層された積層部材 を、例えば、大気中または不活性ガス雰囲気中において、耐酸化性はんだ 302の融 点以上の温度に加熱する。加熱されることによって融解した耐酸化性はんだ 302の 粉末は、冷却工程を経て、図 27Εに示すような断面形状のはんだ接合部 304になる  Subsequently, the powder of the oxidation-resistant solder 302 is uniformly placed on the soldering surface of the first element member 300 from which the oxide film 303 has been removed (see FIG. 27C). Then, the second element member 301 is stacked on the first element member 300 on which the powder of the oxidation-resistant solder 302 is installed, with the soldering surface of the second element member 301 facing down (see FIG. 27D). The laminated member thus laminated is heated to a temperature equal to or higher than the melting point of the oxidation-resistant solder 302, for example, in the air or in an inert gas atmosphere. The powder of the oxidation-resistant solder 302 melted by heating becomes a solder joint 304 having a cross-sectional shape as shown in Fig. 27Ε through a cooling process.
[0210] 二のはんだ付け方法では、電気化学的により低い還元電位を有し、金属間化合物 における酸化物の生成を抑制することができる耐酸化性はんだ 302を用いているた め、はんだ接合部 304における熱伝導特性を向上させ、さらに、はんだ強度、特に熱 疲労強度を著しく向上させることができる。また、耐酸化性はんだ 302では、金属間 化合物における酸化物の生成を抑制することができるため、ぬれ性を向上させること ができ、はんだ接合部 304におけるボイド欠陥の発生を抑制することができる。 [0210] The second soldering method has an electrochemically lower reduction potential and an intermetallic compound. The use of oxidation-resistant solder 302, which can suppress the formation of oxides in the solder, improves the heat conduction characteristics of the solder joint 304 and significantly improves the solder strength, especially thermal fatigue strength. it can. Further, in the oxidation-resistant solder 302, the generation of oxides in the intermetallic compound can be suppressed, so that the wettability can be improved and the generation of void defects in the solder joint 304 can be suppressed.
[0211] また、酸化皮膜 303が取り除かれた第 1要素部材 300のはんだ付け面に、耐酸化 性はんだ 302を均一に設置する他の方法について、図 28を参照して説明する。  [0211] Another method of uniformly installing oxidation-resistant solder 302 on the soldering surface of first element member 300 from which oxide film 303 has been removed will be described with reference to FIG.
[0212] この設置方法は、耐酸化性はんだ 302の粉末を、室温の大気中または不活性ガス 雰囲気中において、空気または不活性ガスとともに第 1要素部材 300のはんだ付け 面に高速で衝突させ、耐酸化性はんだを第 1要素部材 300のはんだ付け面に積層 するものである。なお、同様な方法で、耐酸化性はんだ 302の粉末を第 2要素部材 3 01のはんだ付け面に積層させてもよい。  [0212] In this installation method, the powder of the oxidation-resistant solder 302 is made to collide with the air or an inert gas at high speed in the air at room temperature or in an inert gas atmosphere to the soldering surface of the first element member 300, The oxidation-resistant solder is laminated on the soldering surface of the first element member 300. The powder of the oxidation-resistant solder 302 may be laminated on the soldering surface of the second element member 301 in the same manner.
[0213] ここで、空気または不活性ガスとともに、第 1要素部材 300や第 2要素部材 301のは んだ付け面に衝突する耐酸化性はんだ 302の粉末の衝突速度は、 100m/秒以上 であることが好ましい。この衝突速度以上であれば、図 28に示すように、耐酸化性は んだ 302の粉末が十分に塑性変形し、第 1要素部材 300や第 2要素部材 301のはん だ付け面に積層することができる。  [0213] Here, the collision velocity of the powder of the oxidation-resistant solder 302 that collides with the soldering surface of the first element member 300 or the second element member 301 together with air or an inert gas is 100 m / sec or more. Preferably, there is. If the collision speed is higher than this, as shown in Fig. 28, the powder of the oxidation-resistant solder 302 is sufficiently plastically deformed and laminated on the soldered surfaces of the first element member 300 and the second element member 301. can do.
[0214] また、この耐酸化性はんだ 302の設置は、大気中で、かつ耐酸化性はんだ 302の 搬送媒体に空気を用いて行われてもよいが、耐酸化性はんだ 302が第 1要素部材 3 00や第 2要素部材 301のはんだ付け面に衝突した際に生じる熱による酸化を防止 するため、不活性ガス雰囲気中で、かつ耐酸化性はんだ 302の搬送媒体に不活性 ガスを用いて行われることが好ましい。なお、耐酸化性はんだ 302の第 1要素部材 30 0や第 2要素部材 301のはんだ付け面への積層は、ショットブラストやエアーブラスト によって行うことができる。  [0214] The oxidation-resistant solder 302 may be installed in the air and using air as a medium for transporting the oxidation-resistant solder 302. However, the oxidation-resistant solder 302 may be attached to the first element member. In order to prevent oxidation due to heat generated when it collides with the soldering surface of the component 300 or the second element member 301, it is performed in an inert gas atmosphere and using an inert gas as a carrier medium for the oxidation-resistant solder 302. Preferably. Note that lamination of the oxidation-resistant solder 302 on the first element member 300 and the second element member 301 on the soldering surface can be performed by shot blast or air blast.
[0215] このはんだ付け方法では、電気化学的により低い還元電位を有し、金属間化合物 における酸化物の生成を抑制することができる耐酸化性はんだ 302を用いているた め、はんだ接合部 304における熱伝導特性を向上させ、さらに、はんだ強度、特に熱 疲労強度を著しく向上させることができる。また、耐酸化性はんだ 302では、金属間 化合物における酸化物の生成を抑制することができるため、ぬれ性を向上させること ができ、はんだ接合部 304におけるボイド欠陥の発生を抑制することができる。 [0215] In this soldering method, since the oxidation-resistant solder 302 having a lower electrochemical reduction potential and capable of suppressing the formation of oxides in the intermetallic compound is used, the solder joint 304 In this case, the heat conduction characteristics can be improved, and the solder strength, particularly, the thermal fatigue strength can be significantly improved. In addition, the oxidation-resistant solder 302 Since generation of oxides in the compound can be suppressed, wettability can be improved, and generation of void defects in the solder joint 304 can be suppressed.
[0216] また、このはんだ付け方法では、酸化皮膜 303が取り除かれた第 1要素部材 300と 第 2要素部材 301のはんだ付け面に、耐酸化性はんだ 302が積層されるため、はん だ付けの際に、酸化皮膜 303を取り除くためおよび耐酸化性はんだ 302を塗布する ために用いられるフラックスを用いる必要がなレ、。したがって、フラックス中に含有され る増粘剤が、はんだ接合部 304に残渣として残存することがないため、熱伝達特性、 はんだ強度、熱疲労強度などを向上させることができる。 [0216] In this soldering method, the oxidation-resistant solder 302 is laminated on the soldering surfaces of the first element member 300 and the second element member 301 from which the oxide film 303 has been removed. In this case, it is not necessary to use the flux used to remove the oxide film 303 and apply the oxidation-resistant solder 302. Therefore, since the thickener contained in the flux does not remain as a residue in the solder joint 304, heat transfer characteristics, solder strength, thermal fatigue strength, and the like can be improved.
[0217] 次に、第 4の実施の形態における具体的な実施例について説明する。 Next, a specific example of the fourth embodiment will be described.
[0218] (実施例 10) [0218] (Example 10)
Sn-0. 7重量%〇11_0. 1重量% 01を溶解し、圧力が 20kgfZcm2の Arガスを用 レ、たアトマイズ法により、耐酸化性はんだの粉末を製造した。得られた耐酸化性はん だの粉末を篩いに力け、平均粒径が 5 μ m— 35 μ mの範囲の耐酸化性はんだの粉 末を採取した。 Oxidation-resistant solder powder was produced by dissolving Sn-0.7% by weight〇11_0.1% by weight 01 and atomizing using Ar gas at a pressure of 20 kgfZcm 2 . The obtained oxidation-resistant solder powder was sieved through a sieve to obtain an oxidation-resistant solder powder having an average particle size in the range of 5 μm to 35 μm.
[0219] 次に、この採取された耐酸化性はんだの粉末を、 Nガスとともに、衝突速度約 150  [0219] Next, the collected oxidation-resistant solder powder was mixed with N gas at a collision speed of about 150.
2  Two
m/秒で Niメツキした Cu板のはんだ付け面に衝突させ積層し、厚さ約 100 μ mのは んだ層を成形した。  At a rate of m / s, the copper plate struck the soldering surface of the Ni-plated Cu plate and laminated to form a solder layer with a thickness of about 100 μm.
[0220] 続いて、 Cu板のはんだ付け面に積層されたはんだ層の上に SiN基板を設置し、 N  [0220] Subsequently, a SiN substrate was placed on the solder layer laminated on the soldering surface of the Cu plate, and N
2 ガス雰囲気中において、 260°Cの温度で 3分間加熱し、はんだ付けを行った。  Soldering was performed at 260 ° C for 3 minutes in a 2 gas atmosphere.
[0221] はんだ付けされた積層部材を超音波探傷試験法によりボイド欠陥を測定評価した 結果、ボイド欠陥の占有率は 6体積%であった。また、はんだ付けされた積層部材の はんだ接合部の断面におけるせん断強度を測定評価した結果、せん断強度は 32M Paであった。さらに、負荷せん断応力が 15MPaで、温度が一 40°C 100°Cの条件 で熱疲労試験を行った結果、 1000サイクル経過してもクラックの発生が認められな かった。 [0221] As a result of measuring and evaluating the void defect of the soldered laminated member by an ultrasonic flaw detection method, the occupation ratio of the void defect was 6% by volume. The shear strength of the cross section of the soldered joint of the soldered laminated member was measured and evaluated. The shear strength was 32 MPa. In addition, a thermal fatigue test was performed under the conditions of a load shear stress of 15 MPa and a temperature of 140 ° C to 100 ° C. As a result, no cracks were observed even after 1000 cycles.
[0222] (実施例 11) (Example 11)
Sn-3. 5八§重量%〇11_0. 1重量%?01を溶解し、圧力が 20kgf/cm2の Arガスを 用いたアトマイズ法により、耐酸化性はんだの粉末を製造した。得られた耐酸化性は んだの粉末を篩いに力 4ナ、平均粒径が 5 μ m— 35 μ mの範囲の耐酸化性はんだの 粉末を採取した。 Sn-3. 5 eight § wt% Rei_11_0. 1 was dissolved wt%? 01, the pressure by an atomizing method using Ar gas 20 kgf / cm 2, to produce a oxidation resistant solder powder. The resulting oxidation resistance The solder powder was sieved with a force of 4 mm, and an oxidation resistant solder powder having an average particle size in the range of 5 μm to 35 μm was collected.
[0223] 次に、この採取された耐酸化性はんだの粉末を、 Nガスとともに、衝突速度約 150  [0223] Next, the collected oxidation-resistant solder powder was mixed with N gas at a collision speed of about 150.
2  Two
mZ秒で Niメツキした Cu板のはんだ付け面に衝突させ積層し、厚さ約 100 μ mのは んだ層を成形した。  At a time of mZ seconds, the copper plate collided with the soldering surface of the Ni-plated Cu plate and laminated to form a solder layer with a thickness of about 100 μm.
[0224] 続いて、 Cu板のはんだ付け面に積層されたはんだ層の上に SiN基板を設置し、 N  [0224] Subsequently, a SiN substrate was placed on the solder layer laminated on the soldering surface of the Cu plate, and N
2 ガス雰囲気中において、 260°Cの温度で 3分間加熱し、はんだ付けを行った。  Soldering was performed at 260 ° C for 3 minutes in a 2 gas atmosphere.
[0225] はんだ付けされた積層部材を超音波探傷試験法によりボイド欠陥を測定評価した 結果、ボイド欠陥の占有率は 7. 5体積%であった。また、はんだ付けされた積層部材 のはんだ接合部の断面におけるせん断強度を測定評価した結果、せん断強度は 46 MPaであった。さらに、負荷せん断応力が 15MPaで、温度が一 40°C 100°Cの条 件で熱疲労試験を行った結果、 1000サイクル経過してもクラックの発生が認められ なかった。 [0225] The void defect was occupied by 7.5% by volume as a result of measuring and evaluating void defects in the soldered laminated member by an ultrasonic flaw detection test method. The shear strength of the section of the soldered joint of the soldered laminated member was measured and evaluated. The shear strength was 46 MPa. In addition, a thermal fatigue test was performed under the conditions of a load shear stress of 15 MPa and a temperature of 140 ° C to 100 ° C. As a result, no cracks were observed even after 1000 cycles.
[0226] (実施例 12) (Example 12)
Sn-0. 7重量%01— 0. 2重量%Mnを溶解し、圧力が 20kgf/cm2の Arガスを用 レ、たアトマイズ法により、耐酸化性はんだの粉末を製造した。得られた耐酸化性はん だの粉末を篩いに力け、平均粒径が 5 β m— 35 β mの範囲の耐酸化性はんだの粉 末を採取した。 Oxidation-resistant solder powder was produced by the atomization method using Sn-0.7 wt% 01-0.2 wt% Mn dissolved and Ar gas at a pressure of 20 kgf / cm 2 . The resulting Chikarake sieved oxidation resistance solder Dano powder was collected an average particle diameter of 5 beta m-35 beta oxidation resistance solder powder powder in the range of m.
[0227] 次に、この採取された耐酸化性はんだの粉末に、フラックスを 10重量%添カ卩し、ぺ 一スト状のはんだを調合した。続いて、このペースト状のはんだを Cu板のはんだ付け 面にスクリーン印刷し、厚さ約 100 μ mの印刷皮膜を形成した。  Next, 10% by weight of flux was added to the collected oxidation-resistant solder powder to prepare a paste-like solder. Subsequently, this paste-like solder was screen-printed on the soldering surface of the Cu plate to form a printed film with a thickness of about 100 μm.
[0228] 続いて、 Cu板のはんだ付け面に積層されたはんだ層の上に SiN基板を設置し、 N  [0228] Subsequently, a SiN substrate was placed on the solder layer laminated on the soldering surface of the Cu plate, and N
2 ガス雰囲気中において、 260°Cの温度で 3分間加熱し、はんだ付けを行った。  Soldering was performed at 260 ° C for 3 minutes in a 2 gas atmosphere.
[0229] はんだ付けされた積層部材を超音波探傷試験法によりボイド欠陥を測定評価した 結果、ボイド欠陥の占有率は 7体積%であった。また、はんだ付けされた積層部材の はんだ接合部の断面におけるせん断強度を測定評価した結果、せん断強度は 35M Paであった。さらに、負荷せん断応力が 15MPaで、温度が一 40°C 100°Cの条件 で熱疲労試験を行った結果、 1000サイクル経過してもクラックの発生が認められな かった。 [0229] The void defect was occupied by 7% by volume as a result of measuring and evaluating the void defect of the soldered laminated member by an ultrasonic inspection method. The shear strength of the cross section of the soldered joint of the soldered laminated member was measured and evaluated. The shear strength was 35 MPa. Furthermore, as a result of a thermal fatigue test performed under the conditions of a load shear stress of 15 MPa and a temperature of 140 ° C to 100 ° C, no cracks were observed even after 1000 cycles. won.
[0230] (実施例 13)  (Example 13)
Sn-0. 5重量%01-0. 2重量%Ni-0· 2重量%Mnを溶解し、圧力が 20kgf/c m2の Arガスを用いたアトマイズ法により、耐酸化性はんだの粉末を製造した。得られ た耐酸化性はんだの粉末を篩いに力け、平均粒径が 5 μ m— 35 μ mの範囲の耐酸 化性はんだの粉末を採取した。 Sn-0. 5 wt% 01-0. 2 was dissolved wt% Ni-0 · 2% by weight Mn, the atomizing pressure using Ar gas 20 kgf / cm 2 method, producing the oxidation resistant solder powder did. The obtained oxidation-resistant solder powder was sieved through a sieve to obtain an oxidation-resistant solder powder having an average particle size in a range of 5 μm to 35 μm.
[0231] 次に、この採取された耐酸化性はんだの粉末に、フラックスを 10重量%添カ卩し、ぺ 一スト状のはんだを調合した。続いて、このペースト状のはんだを Cu板のはんだ付け 面にスクリーン印刷し、厚さ約 100 μ mの印刷皮膜を形成した。  Next, 10% by weight of flux was added to the collected oxidation-resistant solder powder, and a paste-like solder was prepared. Subsequently, this paste-like solder was screen-printed on the soldering surface of the Cu plate to form a printed film with a thickness of about 100 μm.
[0232] 続いて、 Cu板のはんだ付け面に積層されたはんだ層の上に SiN基板を設置し、 N  [0232] Subsequently, a SiN substrate was placed on the solder layer laminated on the soldering surface of the Cu plate, and N
2 ガス雰囲気中において、 260°Cの温度で 3分間加熱し、はんだ付けを行った。  Soldering was performed at 260 ° C for 3 minutes in a 2 gas atmosphere.
[0233] はんだ付けされた積層部材を超音波探傷試験法によりボイド欠陥を測定評価した 結果、ボイド欠陥の占有率は 5体積%であった。また、はんだ付けされた積層部材の はんだ接合部の断面におけるせん断強度を測定評価した結果、せん断強度は 40M Paであった。さらに、負荷せん断応力が 15MPaで、温度が一 40°C— 100°Cの条件 で熱疲労試験を行った結果、 1000サイクル経過してもクラックの発生が認められな かった。 [0233] As a result of measuring and evaluating void defects in the soldered laminated member by an ultrasonic flaw detection test method, the occupation ratio of the void defects was 5% by volume. In addition, the shear strength at the cross section of the soldered joint of the soldered laminated member was measured and evaluated. As a result, the shear strength was 40 MPa. In addition, a thermal fatigue test was conducted under the conditions of applied shear stress of 15 MPa and a temperature of 140 ° C to 100 ° C. As a result, no cracks were observed even after 1000 cycles.
[0234] (比較例 6) [0234] (Comparative Example 6)
Sn-0. 75重量%〇11はんだを溶解し、圧力が 20kgf/cm2の Arガスを用いたアト マイズ法により、耐酸化性はんだの粉末を製造した。得られた耐酸化性はんだの粉 末を篩いにかけ、平均粒径が 5 μ m— 35 β mの範囲の耐酸化性はんだの粉末を採 取した。 Oxidation-resistant solder powder was manufactured by an atomizing method using Ar gas at a pressure of 20 kgf / cm 2 by dissolving Sn-0.75 wt% # 11 solder. Sieved powder powder obtained oxidation resistance solder was collected adopted oxidation resistance solder powder ranges average particle size of 5 μ m- 35 β m.
[0235] 次に、この採取された耐酸化性はんだの粉末に、フラックスを 10重量%添カ卩し、ぺ 一スト状のはんだを調合した。続いて、このペースト状のはんだを Cu板のはんだ付け 面にスクリーン印刷し、厚さ約 100 μ mの印刷皮膜を形成した。  Next, 10% by weight of flux was added to the collected oxidation-resistant solder powder to prepare a paste-like solder. Subsequently, this paste-like solder was screen-printed on the soldering surface of the Cu plate to form a printed film with a thickness of about 100 μm.
[0236] 続いて、 Cu板のはんだ付け面に積層されたはんだ層の上に SiN基板を設置し、 N  [0236] Subsequently, a SiN substrate was placed on the solder layer laminated on the soldering surface of the Cu plate, and N
2 ガス雰囲気中において、 260°Cの温度で 3分間加熱し、はんだ付けを行った。  Soldering was performed at 260 ° C for 3 minutes in a 2 gas atmosphere.
[0237] はんだ付けされた積層部材を超音波探傷試験法によりボイド欠陥を測定評価した 結果、ボイド欠陥の占有率は 15体積%であり、この占有率は、実施例 10におけるボ イド欠陥の占有率の 2. 5倍である。また、はんだ付けされた積層部材のはんだ接合 部の断面におけるせん断強度を測定評価した結果、せん断強度は 13MPaであり、 このせん断強度は、実施例 10におけるせん断強度の約 2Z5倍である。さらに、負荷 せん断応力が 15MPaで、温度が— 40°C 100°Cの条件で熱疲労試験を行った結 果、 1000サイクル経過してもクラックの発生が認められた。 [0237] A void defect was measured and evaluated for the soldered laminated member by an ultrasonic testing method. As a result, the occupation ratio of the void defect was 15% by volume, and this occupation ratio was 2.5 times the occupation ratio of the void defect in Example 10. Also, as a result of measuring and evaluating the shear strength at the cross section of the solder joint of the soldered laminated member, the shear strength was 13 MPa, and this shear strength was about 2Z5 times the shear strength in Example 10. Furthermore, as a result of a thermal fatigue test performed under the conditions of a load shear stress of 15 MPa and a temperature of −40 ° C. and 100 ° C., cracks were observed even after 1000 cycles.
[0238] この結果と実施例 10の結果から、第 2従成分を含有することで、ボイド欠陥の占有 率を低減することができ、はんだ接合部の断面におけるせん断強度を向上できること 力 Sわかる。さらに、第 2従成分を含有することで、熱疲労にも優れた特性を示すことが わ力る。  [0238] From these results and the results of Example 10, it can be seen that the inclusion of the second auxiliary component can reduce the occupancy of void defects and improve the shear strength in the cross section of the solder joint. Further, by containing the second auxiliary component, it is possible to exhibit excellent characteristics with respect to thermal fatigue.
[0239] (比較例 7)  [0239] (Comparative Example 7)
Sn-3. 5重量%八§はんだを溶解し、圧力が 20kgf/cm2の Arガスを用いたアトマ ィズ法により、耐酸化性はんだの粉末を製造した。得られた耐酸化性はんだの粉末 を篩いにかけ、平均粒径が 5 μ m— 35 μ mの範囲の耐酸化性はんだの粉末を採取 した。 Oxidation-resistant solder powder was produced by an atomizing method using Sn-3.5 wt% octasol solder and Ar gas at a pressure of 20 kgf / cm 2 . The obtained oxidation-resistant solder powder was sieved to collect an oxidation-resistant solder powder having an average particle size in a range of 5 μm to 35 μm.
[0240] 次に、この採取された耐酸化性はんだの粉末に、フラックスを 10重量%添カ卩し、ぺ 一スト状のはんだを調合した。続いて、このペースト状のはんだを Cu板のはんだ付け 面にスクリーン印刷し、厚さ約 100 μ mの印刷皮膜を形成した。  Next, 10% by weight of flux was added to the collected oxidation-resistant solder powder to prepare a paste-like solder. Subsequently, this paste-like solder was screen-printed on the soldering surface of the Cu plate to form a printed film with a thickness of about 100 μm.
[0241] 続いて、 Cu板のはんだ付け面に積層されたはんだ層の上に SiN基板を設置し、 N  [0241] Next, a SiN substrate was placed on the solder layer laminated on the soldering surface of the Cu plate, and N
2 ガス雰囲気中において、 260°Cの温度で 3分間加熱し、はんだ付けを行った。  Soldering was performed at 260 ° C for 3 minutes in a 2 gas atmosphere.
[0242] はんだ付けされた積層部材を超音波探傷試験法によりボイド欠陥を測定評価した 結果、ボイド欠陥の占有率は 17体積%であり、この占有率は、実施例 11におけるボ イド欠陥の占有率の 2倍以上である。また、はんだ付けされた積層部材のはんだ接合 部の断面におけるせん断強度を測定評価した結果、せん断強度は 18MPaであり、 このせん断強度は、実施例 11におけるせん断強度の約 2Z5倍である。さらに、負荷 せん断応力が 15MPaで、温度が— 40°C 100°Cの条件で熱疲労試験を行った結 果、 1000サイクル経過してもクラックの発生が認められた。 [0242] The void defect was occupied by 17% by volume as a result of measuring and evaluating the void defect of the soldered laminated member by the ultrasonic flaw detection test method. More than twice the rate. Further, as a result of measuring and evaluating the shear strength at the cross section of the solder joint of the soldered laminated member, the shear strength was 18 MPa, and this shear strength was about 2Z5 times the shear strength in Example 11. Furthermore, as a result of a thermal fatigue test performed under the conditions of a load shear stress of 15 MPa and a temperature of −40 ° C. and 100 ° C., cracks were observed even after 1000 cycles.
[0243] この結果と実施例 11の結果から、第 2従成分を含有することで、ボイド欠陥の占有 率を低減することができ、はんだ接合部の断面におけるせん断強度を向上できること 力 Sわかる。さらに、第 2従成分を含有することで、熱疲労にも優れた特性を示すことが わ力る。 [0243] From this result and the result of Example 11, the inclusion of the second auxiliary component allows the void defect to be occupied. Power S can be reduced, and the shear strength at the cross section of the solder joint can be improved. Further, by containing the second auxiliary component, it is possible to exhibit excellent characteristics with respect to thermal fatigue.
ここで、上記した実施例および比較例のはんだの組成および測定結果を表 3にまと めて示す。  Here, Table 3 shows the compositions and measurement results of the solders of the above-mentioned Examples and Comparative Examples.
[表 3] [Table 3]
Figure imgf000049_0001
(第 5の実施の形態)
Figure imgf000049_0001
(Fifth embodiment)
以下、第 5の実施の形態のはんだ材料について説明する。 [0246] 第 5の実施の形態のはんだ材料は、第 1の実施の形態で説明したはんだの第 1は んだを、第 3の実施の形態で説明した無鉛はんだで構成したものである。 Hereinafter, the solder material of the fifth embodiment will be described. [0246] The solder material of the fifth embodiment is the same as the solder described in the first embodiment, except that the first solder is the lead-free solder described in the third embodiment.
[0247] つまり、第 1はんだは、 Coを 0. 02-2. 0重量%含有する、 Snまたは Pbを含まない Sn基合金、または Coを 0. 02—2. 0重量%および Cuを 0. 02—7. 5重量%を含有 し、残部が Snと不可避不純物からなる Sn基合金で構成される。第 2はんだは、第 1の 実施の形態で説明したものと同じであり、凝固時に膨張する性質を有する Bi、 Sb、 G a、 Geなどの元素金属、または、 Bi合金、 Sb合金、 Ga合金、 Ge合金などで構成され る。また、 Bi合金、 Sb合金、 Ga合金、 Ge合金にそれぞれ含有される Bi、 Sb、 Ga、 G eの含有率は、第 1の実施の形態で説明したとおりである。  [0247] In other words, the first solder is a Sn-based alloy containing 0.02-2.0% by weight of Co, not containing Sn or Pb, or 0.02-2.0% by weight of Co and 0% by weight of Cu. 02—7.5% by weight, with the balance being a Sn-based alloy consisting of Sn and unavoidable impurities. The second solder is the same as that described in the first embodiment, and has the property of expanding when solidified, such as Bi, Sb, Ga, or Ge, or a Bi alloy, an Sb alloy, or a Ga alloy. , Ge alloy and the like. Further, the contents of Bi, Sb, Ga, and Ge contained in the Bi alloy, the Sb alloy, the Ga alloy, and the Ge alloy, respectively, are as described in the first embodiment.
[0248] また、第 1はんだ中の第 2はんだの含有率は、第 1の実施の形態における場合と同 様であり、接合する部材の熱膨張係数の差により算出したはんだ相内の歪み量によ つて、 5— 50体積%の範囲で適宜に設定される。  [0248] The content of the second solder in the first solder is the same as that in the first embodiment, and the amount of strain in the solder phase calculated from the difference in the thermal expansion coefficients of the members to be joined. Therefore, it is appropriately set in the range of 5-50% by volume.
[0249] また、第 2はんだの表面に形成される反応防止膜は、第 1はんだを構成する材料の 融点より高い融点を有する金属、セラミックス、または樹脂から形成される。また、反応 防止膜を形成する金属、セラミックス、または樹脂は、第 1の実施の形態で説明した 反応防止膜と同じである。さらに、反応防止膜の厚さも、第 1の実施の形態で説明し た反応防止膜と同じである。  [0249] The reaction prevention film formed on the surface of the second solder is formed of a metal, ceramic, or resin having a melting point higher than the melting point of the material forming the first solder. The metal, ceramics, or resin forming the reaction prevention film is the same as the reaction prevention film described in the first embodiment. Further, the thickness of the reaction prevention film is also the same as that of the reaction prevention film described in the first embodiment.
[0250] なお、はんだ接合温度や保持時間などのはんだ接合条件を制御し、拡散または合 金反応を抑制して、第 1はんだと第 2はんだの機械的性質や物理的性質などを維持 できる場合には、反応防止膜は設けなくてもよい。また、第 1はんだとして、第 4の実 施の形態の耐酸化性はんだを用いてもよい。また、第 2はんだとして、第 2の実施の 形態の第 2はんだ粉末 102を用いてもよい。  [0250] When the soldering conditions such as the soldering temperature and the holding time are controlled to suppress the diffusion or alloying reaction, the mechanical properties and physical properties of the first solder and the second solder can be maintained. Need not be provided with a reaction prevention film. Also, the oxidation-resistant solder of the fourth embodiment may be used as the first solder. Further, the second solder powder 102 of the second embodiment may be used as the second solder.
[0251] また、第 2はんだは、第 1はんだ中に均一に分散される構成以外に、例えば、図 5A 、図 5Bおよび図 5Cに示すような、予め第 1はんだに第 2はんだを偏在させて構成さ せてもよレ、。さらに、第 1はんだと第 2はんだとを別個に構成し、図 1A、図 3Aおよび 図 4Aに示すように、それぞれを積層して配置後はんだ接合してもよい。  [0251] In addition to the configuration in which the second solder is uniformly dispersed in the first solder, for example, as shown in FIGS. 5A, 5B, and 5C, the second solder is unevenly distributed in the first solder beforehand. It can be configured with Further, the first solder and the second solder may be configured separately, and as shown in FIGS. 1A, 3A, and 4A, each may be stacked and arranged, and then soldered.
[0252] 第 5の実施の形態のはんだ材料を用いてはんだ接合することで、第 1の実施の形態 および第 3の実施の形態で得られる双方の効果を得ることができる。つまり、接合する 2つの部材の熱膨張係数の差によるはんだ部材内の内部応力の発生が抑制され、 その結果、接合部材の変形を減少させることができる。また、第 2はんだが反応防止 膜で覆われているため、第 1はんだと第 2はんだとの間において拡散または合金反応 を伴わないので、第 1はんだと第 2はんだが合金化して、第 1はんだの機械的性質や 第 2はんだの凝固膨張性質などの固有な特性を失うことがない。これによつて、第 1は んだと第 2はんだのそれぞれの固有な特性を維持し、はんだ部材の性能を最大限に 発揮すること力 Sできる。 [0252] By performing solder joining using the solder material of the fifth embodiment, both effects obtained in the first embodiment and the third embodiment can be obtained. In other words, join Generation of internal stress in the solder member due to a difference in thermal expansion coefficient between the two members is suppressed, and as a result, deformation of the joining member can be reduced. In addition, since the second solder is covered with the reaction preventing film, there is no diffusion or alloying reaction between the first solder and the second solder, so that the first solder and the second solder are alloyed to form the first solder. It does not lose its inherent properties such as the mechanical properties of the solder and the solidification and expansion properties of the second solder. As a result, it is possible to maintain the unique characteristics of each of the first solder and the second solder, and to exert the maximum performance of the solder member.
[0253] さらに、第 1はんだに、 Coを 0. 02-2. 0重量%含有したはんだを用いることで、 S nまたは Sn基合金の表面張力を低下させ、ぬれ性を向上させることができる。また、 接合部材と、 Snまたは Sn基合金との反応を抑制し、接合界面における金属間化合 物の成長を抑制することによって、溶融はんだの凝集を抑制し、ぬれ性を向上させる こと力 Sできる。これによつて、ボイド欠陥の発生が抑制され、熱伝導性、機械的強度な どに優れたはんだ接合部を得ることができる。  [0253] Furthermore, by using a solder containing 0.02-2.0% by weight of Co as the first solder, the surface tension of the Sn or Sn-based alloy can be reduced and the wettability can be improved. . In addition, by suppressing the reaction between the joining member and Sn or Sn-based alloy and suppressing the growth of intermetallic compounds at the joining interface, it is possible to suppress aggregation of molten solder and improve wettability. . As a result, generation of void defects is suppressed, and a solder joint having excellent thermal conductivity, mechanical strength, and the like can be obtained.
[0254] 次に、第 5の実施の形態における具体的な実施例について説明する。  Next, a specific example of the fifth embodiment will be described.
[0255] (実施例 14)  [0255] (Example 14)
平均粒径が 25— 45 μ mの Sn— 57重量%:¾粉末の表面に、ゾル 'ゲル法によって 、厚さ約 50nmの Al O皮膜を形成し、第 2はんだを製作した。続いて、この第 2はん  Sn—57% by weight with an average particle size of 25-45 μm: (1) An Al O film having a thickness of about 50 nm was formed on the surface of the powder by a sol-gel method, and a second solder was manufactured. Then, this second
2 3  twenty three
だと平均粒径が 25— 45 /i mの Sn— 0. 7重量%〇11一 0. 2重量%〇0粉末からなる第 1はんだとを、第 2はんだの含有量が 20体積%となるように混合し、複合はんだ材料 を製作した。なお、複合はんだには、接合材の表面の酸化皮膜の除去およびスクリ ーン印刷、塗布などを容易するため、適量のフラックスと樹脂バインダーを添加し、ク リーム状の複合はんだを調製した。  If the average particle size is 25-45 / im Sn-0.7% by weight〇11-0.2% by weight〇0 The first solder consisting of powder and the second solder content will be 20% by volume To make a composite solder material. In order to remove the oxide film on the surface of the bonding material and to facilitate screen printing and coating, an appropriate amount of flux and a resin binder were added to the composite solder to prepare a creamy composite solder.
[0256] 続いて、厚さ 3mm、幅 100mm、長さ 200mmの無酸素 Cuベースの第 1部材の表 面に、複合はんだを厚さ約 150 z mでスクリーン印刷した。そして、スクリーン印刷さ れた複合はんだの上に、両面が厚さ 100 z mの純 Cuでラインユングされた厚さ 0. 3 mm、幅 80mm、長さ 180mmの SiN基板の第 2部材を設置し、積層接合部材を構成 した。続いて、この積層接合部材を、 Nガス雰囲気中において、 240°Cの温度で 3分 Subsequently, a composite solder was screen-printed at a thickness of about 150 zm on the surface of the first oxygen-free Cu-based member having a thickness of 3 mm, a width of 100 mm, and a length of 200 mm. Then, a second member of a 0.3 mm thick, 80 mm wide, 180 mm long SiN substrate lined with 100 zm thick pure Cu on both sides is placed on the screen printed composite solder. Thus, a laminated joining member was formed. Subsequently, the laminated joining member was placed in an N gas atmosphere at a temperature of 240 ° C. for 3 minutes.
2  Two
間加熱し、はんだ付けを行った。 [0257] 第 1の実施の形態の実施例と同じ方法で、はんだ接合した第 1部材と第 2部材のは んだ付け部におけるはんだ相のせん断強度を測定評価した結果、せん断強度は 36 MPaであった。また、第 1の実施の形態の実施例と同じ方法で Cuベースの変形量を 測定した結果、第 1部材の Cuベースの変形量は 85 x mであった。さらに、第 3の実 施の形態の実施例と同じ方法で、上記した第 1はんだおよび第 2はんだからなる複合 はんだ材料を溶融させて、表面張力( Ί )の測定を行った。その結果、表面張力( Ί During heating, soldering was performed. [0257] In the same manner as in the example of the first embodiment, the shear strength of the solder phase at the soldered portion of the first and second members joined by soldering was measured and evaluated. Met. Further, as a result of measuring the amount of deformation of the Cu base in the same manner as in the example of the first embodiment, the amount of deformation of the Cu base of the first member was 85 × m. Further, the composite solder material composed of the first solder and the second solder was melted by the same method as in the example of the third embodiment, and the surface tension ( Ί ) was measured. As a result, the surface tension
L  L
)は、 0· 35N/mであった。  ) Was 0.35 N / m.
L  L
[0258] 上記の実施例 14のせん断強度および Cuベースの変形量の測定結果は、実施例 1 一 3におけるせん断強度および Cuベースの変形量の測定結果とほぼ同レベルの測 定結果が得られた。このこと力、ら、第 1はんだの機械的特性を維持できることがわかつ た。さらに、第 2はんだの凝固膨張効果によって、第 1部材の Cuベースの変形を抑制 できることがわかった。  [0258] The measurement results of the shear strength and the deformation amount of the Cu base in Example 14 above were almost the same level as the measurement results of the shear strength and the deformation amount of the Cu base in Examples 13 to 13. Was. This proved that the mechanical properties of the first solder could be maintained. Furthermore, it was found that the solidification and expansion effect of the second solder can suppress the deformation of the Cu base of the first member.
[0259] また、上記の実施例 14の表面張力(γ )の測定結果は、実施例 7— 9における表  [0259] The measurement results of the surface tension (γ) of Example 14 are shown in Tables in Examples 7-9.
L  L
面張力(γ )の測定結果とほぼ同レベルの測定結果が得られた。このこと力ら、ぬれ  The measurement result at almost the same level as the measurement result of the surface tension (γ) was obtained. This power, wet
L  L
性に優れてレ、ることがわかった。  It was found that it had excellent properties.
[0260] 以上、本発明の実施の形態について、例に基づいて説明したが、本発明はこれら の実施の形態に何ら限定されるものではなぐ特許請求の範囲の示された技術的思 想の範囲において変更可能なものである。  As described above, the embodiments of the present invention have been described based on examples. However, the present invention is not limited to these embodiments, but includes the technical ideas described in the claims. It can be changed in the range.
産業上の利用可能性  Industrial applicability
[0261] 本発明に係るはんだ部材、はんだ材料、はんだ付け方法、はんだ材料の製造方法 およびはんだ接合部材は、エレクトロニクス製品の接合などに使用することが可能で ある。したがって、産業上の利用可能性を有する。  [0261] The solder member, the solder material, the soldering method, the method for producing the solder material, and the solder joint member according to the present invention can be used for joining electronic products and the like. Therefore, it has industrial applicability.

Claims

請求の範囲 The scope of the claims
[1] 第 1部材とこの第 1部材とは異種特性材料力 なる第 2部材とを接合するはんだ部 材であって、  [1] A solder member for joining a first member and a second member having a material characteristic different from the first member,
第 1はんだ相と、  The first solder phase,
前記第 1はんだ相中に複数の領域を持つよう分散され、前記第 1はんだ相より低い 融点を有し、かつ凝固膨張の性質を有する第 2はんだ相と、  A second solder phase dispersed in the first solder phase so as to have a plurality of regions, having a lower melting point than the first solder phase, and having solidification and expansion properties;
前記第 1はんだ相と前記第 2はんだ相の境界に存在し、前記第 1はんだ相よりも高 い融点を有する境界層と  A boundary layer present at a boundary between the first solder phase and the second solder phase and having a higher melting point than the first solder phase;
を具備することを特徴とするはんだ部材。  A solder member comprising:
[2] 請求項 1記載のはんだ部材において、  [2] The solder member according to claim 1,
前記第 1はんだ相と、前記第 1はんだ相中に存在する前記第 2はんだ相との間にお レ、て拡散または合金反応を伴わず、前記第 1はんだ相と前記第 2はんだ相のそれぞ れの固有な物理的性質および機械的性質を維持して構成されたことを特徴とするは んだ部材。  Between the first solder phase and the second solder phase without any diffusion or alloying reaction between the first solder phase and the second solder phase present in the first solder phase. A solder member characterized by maintaining its unique physical and mechanical properties.
[3] 請求項 1記載のはんだ部材において、  [3] The solder member according to claim 1,
前記低融点金属が、 Sn、 Bi、 In、 Zn、 Sn合金、 Bi合金、 In合金、 Zn合金からなる 群から選ばれた 1種の材料であり、前記凝固膨張の性質を有する金属が、 Bi、 Sb、 G a、 Ge、 Bi合金、 Sb合金、 Ga合金、 Ge合金からなる群から選ばれた 1種の材料であ ること特徴とするはんだ部材。  The low melting point metal is one material selected from the group consisting of Sn, Bi, In, Zn, Sn alloy, Bi alloy, In alloy, and Zn alloy, and the metal having the property of solidification expansion is Bi. A solder member characterized in that it is a material selected from the group consisting of Sb, Ga, Ge, Bi alloy, Sb alloy, Ga alloy, and Ge alloy.
[4] 請求項 1記載のはんだ部材において、 [4] The solder member according to claim 1,
前記境界層が、金属、セラミックスおよび樹脂からなる群から選ばれた 1種の材料で 形成されていることを特徴とするはんだ部材。  The solder member, wherein the boundary layer is formed of one kind of material selected from the group consisting of a metal, a ceramic, and a resin.
[5] 請求項 1記載のはんだ部材において、 [5] The solder member according to claim 1,
前記第 2はんだ相が、前記第 1はんだ相中に均一に分散して存在または前記第 1 はんだ相の所定の部位に偏在することを特徴とするはんだ部材。  The solder member, wherein the second solder phase exists uniformly dispersed in the first solder phase or is unevenly distributed at a predetermined portion of the first solder phase.
[6] 第 1部材とこの第 1部材とは異種特性材料力 なる第 2部材とを接合するはんだ材 料であって、 [6] A solder material for joining the first member and the second member having a different characteristic material strength,
第 1はんだ材料と、 前記第 1はんだ材料よりも高い融点を有する境界被膜が表面に形成され、前記第 1 のはんだ材料より低い融点を有し、かつ凝固膨張の性質を有する第 2はんだ材料と を具備することを特徴とするはんだ材料。 The first solder material, A boundary coating having a melting point higher than that of the first solder material is formed on the surface, and a second solder material having a melting point lower than that of the first solder material and having a property of solidification expansion. And the solder material.
[7] 請求項 6記載のはんだ材料において、  [7] The solder material according to claim 6, wherein
前記第 1はんだ材料力 Sn、 Bi、 In、 Zn、 Sn合金、 Bi合金、 In合金、 Zn合金から なる群から選ばれた 1種の材料で構成され、前記第 2はんだ材料が、 Bi、 Sb、 Ga、 G e、 Bi合金、 Sb合金、 Ga合金、 Ge合金からなる群から選ばれた 1種の材料で構成さ れたこと特徴とするはんだ材料。  The first solder material is composed of one material selected from the group consisting of Sn, Bi, In, Zn, Sn alloy, Bi alloy, In alloy, and Zn alloy, and the second solder material is Bi, Sb A solder material comprising one material selected from the group consisting of Ga, Ge, Bi alloy, Sb alloy, Ga alloy, and Ge alloy.
[8] 請求項 6記載のはんだ材料において、 [8] The solder material according to claim 6, wherein
前記境界被膜が、金属、セラミックスおよび樹脂からなる群から選ばれた 1種の材料 で形成されていることを特徴とするはんだ材料。  The solder material, wherein the boundary film is formed of one material selected from the group consisting of a metal, a ceramic, and a resin.
[9] 第 1部材とこの第 1部材とは異種特性材料力 なる第 2部材とを接合するはんだ付 け方法であって、 [9] A soldering method for joining a first member and a second member having a material characteristic different from the first member,
表面に境界被膜が形成されるとともに、この境界被膜を形成する材料の第 1の融点 よりも低い第 2の融点を有し、凝固膨張の性質を有する第 2はんだ材料を前記第 1部 材の表面に配置する第 2はんだ材料配置工程と、  A boundary coating is formed on the surface, and a second solder material having a second melting point lower than the first melting point of the material forming the boundary coating and having the property of solidification expansion is used as the first component. A second solder material disposing step for disposing on the surface,
前記第 2はんだ材料の上に、前記第 1の融点よりも低くかつ前記第 2の融点よりも高 い第 3の融点を有する第 1はんだ材料を配置する第 1はんだ材料配置工程と、 前記第 1はんだ材料の上に、前記第 2部材を設置する第 2部材設置工程と、 前記第 2部材設置工程を経て、積層された積層部材を、大気中または不活性ガス 雰囲気中において、前記第 2の融点よりも高くかつ前記第 1の融点よりも低い温度で 加熱する加熱工程と  A first solder material disposing step of disposing a first solder material having a third melting point lower than the first melting point and higher than the second melting point on the second solder material; (1) a second member installation step of installing the second member on the solder material; and a second member installation step, the laminated member is placed in the air or an inert gas atmosphere, A heating step of heating at a temperature higher than the melting point and lower than the first melting point;
を具備することを特徴とするはんだ付け方法。  A soldering method comprising:
[10] Biを 50重量%以上含有する Sn基合金、 Sbを 6重量%以上含有する Sn基合金、 B iおよび Sbのいずれか少なくとも一種からなる第 2はんだ相の粉末の表面に反応抑制 境界膜を形成する境界膜形成工程と、  [10] Sn-based alloy containing 50% by weight or more of Bi, Sn-based alloy containing 6% by weight or more of Sb, and reaction suppression on the surface of second solder phase powder composed of at least one of Bi and Sb A boundary film forming step of forming a film;
前記第 2はんだ相の粉末と平均直径が 1一 100 a mで Snまたは Sn基合金からなる 第 1はんだ相の粉末とが所定の比率で均一に混合された混合物を作製する混合物 作製工程と、 A mixture for producing a mixture in which the powder of the second solder phase and the powder of the first solder phase having an average diameter of 1 to 100 am and made of Sn or a Sn-based alloy are uniformly mixed at a predetermined ratio. Manufacturing process;
前記混合物に、フラックスおよびバインダを所定の比率で混合し攪拌して、ペースト 状の混合物を作製するペースト状混合物作製工程と  A paste-like mixture producing step of producing a paste-like mixture by mixing and stirring a flux and a binder at a predetermined ratio with the mixture;
を具備することを特徴とするはんだ材料の製造方法。  A method for producing a solder material, comprising:
[11] Biを 50重量%以上含有する Sn基合金、 Sbを 6重量%以上含有する Sn基合金、 B iおよび Sbのいずれか少なくとも一種からなる第 2はんだ相の粉末の表面に反応抑制 境界膜を形成する境界膜形成工程と、  [11] Sn-based alloy containing 50% by weight or more of Bi, Sn-based alloy containing 6% by weight or more of Sb, and reaction suppression on the surface of second solder phase powder composed of at least one of Bi and Sb A boundary film forming step of forming a film,
前記第 2はんだ相の粉末と平均直径が 1一 100 a mで Snまたは Sn基合金からなる 第 1はんだ相とが所定の比率で均一に混合された混合物を作製する混合物作製ェ 程と、  A mixture producing step of producing a mixture in which the powder of the second solder phase and the first solder phase composed of Sn or a Sn-based alloy having an average diameter of 1 to 100 am and a predetermined ratio are uniformly mixed,
前記混合物を加圧および加熱して複合化する複合化工程と、  A complexing step of complexing the mixture by pressurizing and heating;
前記複合化された混合物をフィルム状またはワイヤ状に成形する成形工程と を具備することを特徴とするはんだ材料の製造方法。  A forming step of forming the compounded mixture into a film or a wire.
[12] Coを 0. 02-2. 0重量%含有する、 Snまたは Pbを含まない Sn基合金からなること を特徴とするはんだ材料。  [12] A solder material containing a Sn-based alloy containing 0.0 to 2.0% by weight of Co and containing no Sn or Pb.
[13] Coを 0. 02-2. 0重量%、 Cuを 0. 02-7. 5重量%を含有し、残部が Snと不可避 不純物からなることを特徴とするはんだ材料。 [13] A solder material comprising 0.02 to 2.0% by weight of Co and 0.02 to 7.5% by weight of Cu, with the balance being Sn and unavoidable impurities.
[14] Cu、 Ag、 Au、 Coおよび Niから選ばれた少なくとも一種の金属からなる第 1従成分 を 0. 02— 12重量%含有し、かつ Mn、 Pdおよび Ptから選ばれた少なくとも一種の 金属からなる第 2従成分を 0. 02-1. 2重量%含有し、残部が Snと不可避不純物か らなることを特徴とするはんだ材料。 [14] A first auxiliary component composed of at least one metal selected from Cu, Ag, Au, Co and Ni is contained in an amount of 0.02 to 12% by weight, and at least one type selected from Mn, Pd and Pt is contained. A solder material comprising 0.02-1.2% by weight of a second secondary component made of a metal, with the balance being Sn and unavoidable impurities.
[15] Coを 0. 02-2. 0重量%含有する、 Snまたは Pbを含まない Sn基合金、または Co を 0. 02-2. 0重量%、 Cuを 0. 02-7. 5重量%を含有し、残部が Snと不可避不純 物からなる第 1はんだと、 [15] Sn-base alloy containing 0.0-2.0% by weight of Co, not containing Sn or Pb, or 0.02-2.0% by weight of Co and 0.02-7.5% by weight of Cu % Solder, with the balance being Sn and unavoidable impurities,
Snまたは Pbを含まなレ、 Sn基合金からなる第 2はんだと  With Sn or Pb-free solder, and a second solder made of Sn-based alloy
を具備することを特徴とするはんだ材料。  A solder material comprising:
[16] Coを 0. 02-2. 0重量%含有する、 Snまたは Pbを含まない Sn基合金、または Co を 0. 02-2. 0重量%、 Cuを 0. 02-7. 5重量%を含有し、残部が Snと不可避不純 物からなるはんだ材料を用いて、第 1部材と第 2部材とを接合して構成したことを特徴 とするはんだ接合部材。 [16] Sn-based alloy containing 0.0-2.0% by weight of Co, not containing Sn or Pb, or 0.02-2.0% by weight of Co, 0.02-7.5% of Cu %, The balance being Sn and inevitable impurities A solder joint member comprising a first member and a second member joined by using a solder material made of an object.
[17] 第 1部材と第 2部材とを接合するはんだ部材であって、 [17] A solder member for joining the first member and the second member,
Coを 0. 02-2. 0重量%含有する、 Snまたは Pbを含まなレ、 Sn基合金からなる第 1 はんだ相と、  A first solder phase comprising a Sn-based alloy, containing Sn or Pb, containing 0.0-2.0% by weight of Co;
前記第 1はんだ相中に複数の領域を持つよう分散され、前記第 1はんだ相より低い 融点を有し、かつ凝固膨張の性質を有する、 Bi、 Sb、 Ga、 Ge、 Bi合金、 Sb合金、 G a合金、 Ge合金からなる群から選ばれた 1種の材料からなる第 2はんだ相と  Bi, Sb, Ga, Ge, Bi alloy, Sb alloy, dispersed to have a plurality of regions in the first solder phase, having a lower melting point than the first solder phase, and having the property of solidification expansion. A second solder phase made of one material selected from the group consisting of Ga alloy and Ge alloy
を具備することを特徴とするはんだ部材。  A solder member comprising:
[18] Coを 0. 02-2. 0重量%含有する、 Snまたは Pbを含まない Sn基合金、または Co を 0. 02-2. 0重量%、 Cuを 0. 02-7. 5重量%を含有し、残部が Snと不可避不純 物からなる第 1はんだと、  [18] Sn-based alloy containing 0.0-2.0% by weight of Co, Sn or Pb, or 0.02-2.0% by weight of Co, 0.02-7.5% by weight of Cu % Solder, with the balance being Sn and unavoidable impurities,
前記第 1はんだより低い融点を有し、かつ凝固膨張の性質を有する、 Bi、 Sb、 Ga、 Ge、 Bi合金、 Sb合金、 Ga合金、 Ge合金からなる群から選ばれた 1種の材料からなる 第 2はんだと  From a material selected from the group consisting of Bi, Sb, Ga, Ge, Bi alloy, Sb alloy, Ga alloy, Ge alloy, which has a lower melting point than the first solder and has the property of solidification expansion. Becomes the second solder
を具備することを特徴とするはんだ材料。  A solder material comprising:
PCT/JP2004/008888 2003-06-24 2004-06-24 Solder member, solder material, soldering method, method of manufacturing solder material, and solder connecting member WO2004113013A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-179997 2003-06-24
JP2003179997A JP4363915B2 (en) 2003-06-24 2003-06-24 Solder structure, solder material and soldering method
JP2003185845A JP2005014076A (en) 2003-06-27 2003-06-27 Oxidation-resistant solder, method for manufacturing the same, and soldering method
JP2003-185845 2003-06-27
JP2004065858 2004-03-09
JP2004-065858 2004-03-09

Publications (1)

Publication Number Publication Date
WO2004113013A1 true WO2004113013A1 (en) 2004-12-29

Family

ID=33545094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008888 WO2004113013A1 (en) 2003-06-24 2004-06-24 Solder member, solder material, soldering method, method of manufacturing solder material, and solder connecting member

Country Status (1)

Country Link
WO (1) WO2004113013A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1977022A2 (en) * 2005-12-13 2008-10-08 Indium Corporation of America Lead-free solder alloys and solder joints thereof with improved drop impact resistance
US7749336B2 (en) 2005-08-30 2010-07-06 Indium Corporation Of America Technique for increasing the compliance of tin-indium solders
WO2014084080A1 (en) * 2012-11-30 2014-06-05 千住金属工業株式会社 Layered solder material for bonding dissimilar electrodes, and method for bonding dissimilar electrodes to electronic components

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190766A (en) * 1981-05-19 1982-11-24 Asahi Glass Co Ltd Adhering method for metal or ceramic body
JP2003001482A (en) * 2001-06-19 2003-01-08 Tokyo Daiichi Shoko:Kk Lead-free solder alloy
JP2003094195A (en) * 2001-06-28 2003-04-02 Senju Metal Ind Co Ltd Lead-free solder alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190766A (en) * 1981-05-19 1982-11-24 Asahi Glass Co Ltd Adhering method for metal or ceramic body
JP2003001482A (en) * 2001-06-19 2003-01-08 Tokyo Daiichi Shoko:Kk Lead-free solder alloy
JP2003094195A (en) * 2001-06-28 2003-04-02 Senju Metal Ind Co Ltd Lead-free solder alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749336B2 (en) 2005-08-30 2010-07-06 Indium Corporation Of America Technique for increasing the compliance of tin-indium solders
EP1977022A2 (en) * 2005-12-13 2008-10-08 Indium Corporation of America Lead-free solder alloys and solder joints thereof with improved drop impact resistance
EP1977022A4 (en) * 2005-12-13 2008-12-31 Indium Corp America Lead-free solder alloys and solder joints thereof with improved drop impact resistance
US9260768B2 (en) 2005-12-13 2016-02-16 Indium Corporation Lead-free solder alloys and solder joints thereof with improved drop impact resistance
WO2014084080A1 (en) * 2012-11-30 2014-06-05 千住金属工業株式会社 Layered solder material for bonding dissimilar electrodes, and method for bonding dissimilar electrodes to electronic components

Similar Documents

Publication Publication Date Title
JP6912519B2 (en) Solder composition
EP2617515B1 (en) Semiconductor device bonding material
TWI292355B (en)
JP5166261B2 (en) Conductive filler
WO2007125991A1 (en) Foam solder and electronic component
JP5990758B2 (en) Solder material and manufacturing method thereof
WO2008026761A1 (en) Lid for functional part and process for producing the same
WO2015087588A1 (en) Au-sn-ag series solder alloy, electronic component sealed using same au-sn-ag series solder alloy, and electronic component-equipped device
JP5861559B2 (en) Pb-free In solder alloy
JPWO2010098357A1 (en) Metal filler, low-temperature connection lead-free solder, and connection structure
EP1429884B1 (en) Improved compositions, methods and devices for high temperature lead-free solder
JP5962461B2 (en) Au-Ge-Sn solder alloy
Chen et al. Silver sintering and soldering: Bonding process and comparison
JP5188999B2 (en) Metal filler and solder paste
JP2005288544A (en) Unleaded solder, soldering method and electronic component
JP2005014076A (en) Oxidation-resistant solder, method for manufacturing the same, and soldering method
WO2004113013A1 (en) Solder member, solder material, soldering method, method of manufacturing solder material, and solder connecting member
JP4363915B2 (en) Solder structure, solder material and soldering method
JP2011251330A (en) High-temperature lead-free solder paste
JP5724088B2 (en) Metal filler and lead-free solder containing the same
WO2021045131A1 (en) Solder paste and solder bonded body
JP5979083B2 (en) Pb-free Au-Ge-Sn solder alloy
Yan et al. Study on Cu particles-enhanced SnPb composite solder
JP4095495B2 (en) Solder material, solder material manufacturing method and soldering method
Hanim et al. Formation of intermetallic layer with multiwall carbon nanotubes reinforcement in Sn-0.7 Cu solders on bare copper surface finish with laser soldering method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase