WO2004112107A1 - Lighting optical device, exposure system and exposure method - Google Patents

Lighting optical device, exposure system and exposure method Download PDF

Info

Publication number
WO2004112107A1
WO2004112107A1 PCT/JP2004/008096 JP2004008096W WO2004112107A1 WO 2004112107 A1 WO2004112107 A1 WO 2004112107A1 JP 2004008096 W JP2004008096 W JP 2004008096W WO 2004112107 A1 WO2004112107 A1 WO 2004112107A1
Authority
WO
WIPO (PCT)
Prior art keywords
illumination
optical element
light source
optical
lens
Prior art date
Application number
PCT/JP2004/008096
Other languages
French (fr)
Japanese (ja)
Inventor
Hisashi Nishinaga
Yuji Kudo
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2005506913A priority Critical patent/JPWO2004112107A1/en
Publication of WO2004112107A1 publication Critical patent/WO2004112107A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70066Size and form of the illuminated area in the mask plane, e.g. reticle masking blades or blinds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70158Diffractive optical elements

Definitions

  • Illumination optical device Illumination optical device, exposure apparatus, and exposure method
  • the present invention relates to an illumination optical device, an exposure device, and an exposure method, and is particularly suitable for an exposure device for manufacturing a micro device such as a semiconductor device, an imaging device, a liquid crystal display device, and a thin-film magnetic head by a lithography process.
  • the present invention relates to an illumination optical device.
  • a light beam emitted from a light source enters a micro fly's eye lens (or a fly's eye lens), and a secondary light source including a large number of light sources is provided on a rear focal plane.
  • the luminous flux from the secondary light source is restricted via an aperture stop arranged near the rear focal plane of the micro fly's eye lens if necessary, and then enters the condenser lens.
  • the light beam condensed by the condenser lens illuminates the mask on which a predetermined pattern is formed in a superimposed manner.
  • the light transmitted through the mask pattern forms an image on the wafer via the projection optical system.
  • the mask pattern is projected and exposed (transferred) on the wafer. Since the pattern formed on the mask is highly integrated, it is essential to obtain a uniform illuminance distribution on the wafer in order to accurately transfer this fine pattern onto the wafer.
  • the secondary light when performing annular illumination based on an annular secondary light source, the secondary light
  • the line width of the pattern transferred onto the wafer differs between the vertical and horizontal directions, that is, the line width of the pattern in two orthogonal directions. Differences may occur.
  • the secondary light source is formed in a desired annular shape, there is a force S that a line width difference of a pattern occurs in two orthogonal directions due to resist characteristics and the like. If the pattern to be transferred has directionality, it may be desirable to actively set the annular secondary light source formed on the illumination pupil to be vertically or horizontally long.
  • the present invention has been made in view of the above-described problems, and provides an illumination optical device that can adjust the aspect ratio of a secondary light source formed on an illumination pupil at any time based on a simple configuration. The purpose is to do. In addition, by using an illumination optical device that can adjust the aspect ratio of a secondary light source formed on the illumination pupil at any time, a high-precision pattern in which a line width difference of a pattern does not substantially occur in two orthogonal directions. An object is to provide an exposure apparatus and an exposure method capable of performing exposure.
  • an illumination optical device that illuminates an irradiation surface based on a light beam from a light source
  • An aspect ratio changing unit for changing an aspect ratio of a light intensity distribution formed on an illumination pupil substantially in a Fourier transform relationship with the irradiated surface
  • the aspect ratio changing means is an optical element group disposed at or near a position substantially in Fourier transform relationship with the illumination pupil and having a function of changing a power ratio in two orthogonal directions.
  • An illumination optical device is provided.
  • the optical element group includes a first optical element group having different powers in two orthogonal directions and a second optical element having different powers in two orthogonal directions. And at least one of the first optical element group and the second optical element group is configured to be rotatable about an optical axis. Further, it is preferable that both the first optical element group and the second optical element group are configured to be rotatable around the optical axis.
  • the optical element group is a lens group.
  • the first optical element group and the second optical element group are It is preferable that a pair of optical elements having rotationally asymmetric power be provided, and it is more preferable that a pair of cylindrical lenses be provided.
  • the above-mentioned rotationally asymmetric power means a power which is rotationally asymmetrical with respect to the optical axis of an optical element having a rotationally asymmetrical power.
  • the optical element group further includes a changing unit that continuously changes a size of a light intensity distribution formed in the illumination pupil.
  • the light source is disposed in an optical path closer to the light source than the changing unit.
  • the changing unit changes the size of the outer shape of the light intensity distribution formed on the illumination pupil, and changes the annular ratio of the light intensity distribution formed on the illumination pupil. It is preferable to include the second changing means.
  • an illumination optical device for illuminating a surface to be illuminated based on a light beam from a light source
  • a light beam conversion element for converting a light beam from the light source into a light beam having a predetermined cross section
  • a forming optical system for forming a predetermined light intensity distribution on an illumination pupil substantially in a Fourier transform relationship with the irradiated surface based on the light beam from the light beam conversion element;
  • Aspect ratio changing means for changing the aspect ratio of the light intensity distribution formed on the illumination pupil by independently changing the degree of divergence of the light beam in two orthogonal directions.
  • the aspect ratio changing means has a first optical element having different degrees of divergence in two orthogonal directions, and a different degree of divergence in two orthogonal directions.
  • a second optical element, and at least one of the first optical element and the second optical element is configured to be rotatable about an axis parallel to a traveling direction of the light beam.
  • both the first optical element and the second optical element are configured to be rotatable around an axis parallel to a traveling direction of the light beam.
  • an axis parallel to the traveling direction of the light beam is an optical axis.
  • the first optical element and the second optical element each include a diffractive optical element having a diverging function only in one direction.
  • the first optical element and the second optical element each have a Fresnel lens having a refraction function only in one direction.
  • each of the first optical element and the second optical element has a microlens array having a refractive function only in one direction.
  • the forming optical system has an optical integrator.
  • an illumination optical device for illuminating an irradiation surface based on a light beam from a light source
  • a light beam conversion element for converting a light beam from the light source into a light beam having a predetermined cross section
  • a forming optical system for forming a predetermined light intensity distribution on an illumination pupil that is substantially in a Fourier transform relationship with the surface to be illuminated based on the light beam from the light beam converting element; the light source and the light beam converting element And an aspect ratio changing means for changing an aspect ratio of a light intensity distribution formed on the illumination pupil by independently changing power in two orthogonal directions.
  • An illumination optical device characterized by comprising:
  • the aspect ratio changing means includes a cylindrical zoom lens rotatable around an optical axis.
  • the aspect ratio changing means includes a first cylindrical zoom lens having a function of changing power in one of the two orthogonal directions, and a power in the other direction of the two orthogonal directions. It is preferable to include a second cylindrical zoom lens having a function of changing the position. It is preferable that the forming optical system has an optical integrator.
  • an exposure apparatus for transferring a pattern of a mask onto a photosensitive substrate
  • the illumination optical apparatus according to the first aspect and the third aspect includes the illumination optical device according to the first aspect and the third aspect.
  • a projection optical system for projecting a mask pattern onto the photosensitive substrate.
  • the illumination optical device in an exposure method for transferring a mask pattern onto a photosensitive substrate, is used to set the pattern on the surface to be irradiated.
  • an exposure method comprising a step of illuminating the mask and a step of projecting and exposing a pattern of the mask onto the photosensitive substrate.
  • the operation of the aspect ratio changing means including the first cylindrical lens pair and the second cylindrical lens pair allows the illumination pupil to be formed based on a simple configuration.
  • the aspect ratio of the formed secondary light source can be adjusted at any time. Therefore, in the exposure apparatus and the exposure method of the present invention, an illumination optical apparatus capable of adjusting the aspect ratio of a secondary light source formed on an illumination pupil at any time is used, and a line of a pattern is formed in two orthogonal directions. High-precision exposure with substantially no width difference can be performed, and a good microdevice can be manufactured by high-precision exposure.
  • FIG. 1 is a view schematically showing a configuration of an exposure apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a view schematically showing a configuration of a conical axicon system arranged in an optical path between a front lens group and a rear lens group of an afocal lens in the first embodiment.
  • FIG. 3 is a view for explaining the action of a cone system on a secondary light source formed in the annular illumination of the first embodiment.
  • FIG. 4 is a diagram showing a shift with respect to a secondary light source formed in the annular illumination of the first embodiment.
  • FIG. 1 A first figure.
  • FIG. 5 is a view schematically showing a configuration of a first cylindrical lens pair and a second cylindrical lens arranged in an optical path between a front lens group and a rear lens group of an afocal lens in the first embodiment. is there.
  • FIG. 6 is a view for explaining the action of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source formed in the annular illumination of the first embodiment.
  • FIG. 7 is a view for explaining the action of a first cylindrical lens pair and a second cylindrical lens pair on a secondary light source formed in the annular illumination of the first embodiment.
  • FIG. 8 is a view for explaining the action of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source formed in the annular illumination of the first embodiment.
  • FIG. 9 is a view schematically showing a configuration of an exposure apparatus according to a second embodiment of the present invention.
  • FIG. 10 is a diagram schematically showing a configuration of an aspect ratio changing unit according to a second embodiment.
  • FIG. 11 is a diagram illustrating the action of a pair of Fresnel lenses on a secondary light source formed in the annular illumination of the second embodiment.
  • FIG. 12 is a view schematically showing a configuration of an exposure apparatus according to a third embodiment of the present invention.
  • FIG. 13 is a diagram schematically showing an internal configuration of an aspect ratio changing unit according to a third embodiment.
  • FIG. 14 is a view for explaining the action of a cylindrical zoom lens on a secondary light source formed in a third embodiment.
  • FIG. 15 is a diagram showing a light intensity distribution obtained at an illumination pupil in a true circular state and an elliptical state of the cylindrical zoom lens.
  • FIG. 16 is a view schematically showing an internal configuration of an aspect ratio changing means according to a modification of the third embodiment.
  • FIG. 17 is a flowchart of a method for obtaining a semiconductor device as a micro device.
  • FIG. 18 is a flowchart of a method for obtaining a liquid crystal display element as a micro device.
  • FIG. 1 is a view schematically showing a configuration of an exposure apparatus according to a first embodiment of the present invention.
  • the Z axis is along the normal direction of the wafer that is a photosensitive substrate
  • the Y axis is in the direction parallel to the plane of FIG. 1 in the plane of the wafer
  • the Y axis is perpendicular to the plane of FIG. 1 in the plane of the wafer.
  • the X axis is set in each direction.
  • the illumination optical device is set to perform annular illumination.
  • the exposure apparatus shown in FIG. 1 uses, for example, a KrF excimer laser light source for supplying light having a wavelength of 3 ⁇ 448 nm or an ArF excimer laser for supplying light having a wavelength of 193 nm as a light source 1 for supplying exposure light (illumination light). It has a light source.
  • a substantially parallel light beam emitted from the light source 1 along the Z direction has a rectangular cross section elongated in the X direction and enters a beam expander 2 including a pair of lenses 2a and 2b.
  • Each lens 2a and 2b Has a negative refractive power and a positive refractive power in the plane of FIG. 1 (in the YZ plane). Therefore, the light beam incident on the beam expander 2 is enlarged in the plane of FIG. 1 and shaped into a light beam having a predetermined rectangular cross section.
  • a substantially parallel light beam passing through a beam expander 2 as a shaping optical system is deflected in the ⁇ direction by a bending mirror 3, and then enters a diffractive optical element (DOE) 4a for annular illumination.
  • DOE diffractive optical element
  • a diffractive optical element is formed by forming a step having a pitch of about the wavelength of exposure light (illumination light) on a glass substrate, and has a function of diffracting an incident beam to a desired angle.
  • the diffractive optical element 4a has a function of forming, for example, a ring-shaped light intensity distribution in the far field (Fraunhofer diffraction region) when a parallel light beam having a rectangular cross section enters, for example. .
  • the orbicular zone illumination diffractive optical element 4a is configured to be freely detachable from the illumination optical path, and is configured to be switchable with, for example, a circular illumination diffractive optical element 4b.
  • the configuration and operation of the diffractive optical element 4b for circular illumination will be described later.
  • switching between the diffraction optical element 4a for annular illumination and the diffractive optical element 4b for circular illumination is performed by a drive system 22 that operates based on a command from the control system 21.
  • Information about various masks to be sequentially exposed according to the step-and-repeat method or the step-and-scan method is input to the control system 21 via the input means 20 such as a keyboard.
  • the light beam passing through the diffractive optical element 4a as a light beam conversion element enters an afocal lens (relay optical system) 5.
  • the afocal lens 5 is set such that the front focal position thereof substantially matches the position of the diffractive optical element 4a, and the rear focal position substantially matches the position of the predetermined surface 6 indicated by a broken line in the figure. It is an afocal system (a non-focus optical system). Therefore, the substantially parallel light beam that has entered the diffractive optical element 4a forms an orbicular light intensity distribution on the pupil plane of the afocal lens 5, and then emerges from the afocal lens 5 as a substantially parallel light beam.
  • a conical axicon as a second changing means is provided in the optical path between the front lens group 5a and the rear lens group 5b of the afocal lens 5, at or near the pupil, in order from the light source side.
  • System 7 the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9
  • the force S its detailed configuration and operation will be described later.
  • the basic configuration and operation of the first embodiment will be described ignoring the operation of the conical axicon system 7, the first pair of cylindrical lenses 8, and the second pair of cylindrical lenses 9. I do.
  • the light beam passing through the afocal lens 5 is incident on a micro flywheel lens 11 as an optical integrator via a zoom lens (variable optical system) 10 for changing a value as a first changing unit.
  • the ⁇ value is the size (diameter) of the secondary light source formed on the pupil (illumination pupil) of the illumination optical system, and the size of the illumination light flux or light source image formed on the pupil of the projection optical system PL.
  • the diameter (diameter) is R2
  • the numerical aperture of the projection optical system PL on the mask M side is NAo
  • the numerical aperture of the illumination optical system that illuminates the mask M NAi
  • the position of the predetermined surface 6 is located near the front focal position of the zoom lens 10, and the entrance surface of the micro fly's eye lens 11 is located near the rear focal position of the zoom lens 10. .
  • the zoom lens 10 arranges the predetermined surface 6 and the entrance surface of the micro fly's eye lens 11 substantially in a Fourier transform relationship, and thus the pupil surface of the afocal lens 5 and the entrance surface of the micro fly's eye lens. Are optically substantially conjugated. Therefore, on the entrance surface of the micro fly's eye lens 11, for example, a ring-shaped illumination field centered on the optical axis AX is formed, similarly to the pupil surface of the afocal lens 5.
  • the overall shape of the ring-shaped illumination field varies similarly depending on the focal length of the zoom lens 10.
  • the change in the focal length of the zoom lens 10 is performed by a drive system 23 that operates based on a command from the control system 21.
  • Each micro lens constituting the micro fly's eye lens 11 has a rectangular cross section similar to the shape of the illumination field to be formed on the mask M (and, consequently, the shape of the exposure area to be formed on the wafer W).
  • the light beam incident on the micro fly's eye lens 11 is two-dimensionally divided by a number of micro lenses, and the illuminated field formed by the light beam incident on the microphone's fly eye lens 11 is provided on the rear focal plane (and thus the illumination pupil).
  • a secondary light source having substantially the same light intensity distribution as that of the above, that is, a secondary light source composed of a substantially annular light source having an annular shape centered on the optical axis AX is formed.
  • variable aperture stop for defining the numerical aperture of the projection optical system PL, and the operation of the variable aperture stop is performed based on a command from the control system 21. This is performed by the driving system 24.
  • each exposure area of the wafer W The pattern of the mask M is sequentially exposed.
  • the mask pattern is collectively exposed to each exposure region of the wafer according to a so-called step-and-repeat method.
  • the shape of the illumination area on the mask M is a rectangular shape close to a square
  • the cross-sectional shape of each lens element of the micro fly's eye lens 11 is also a rectangular shape close to a square.
  • the shape of the illumination area on the mask M is a rectangular shape with a ratio of the short side to the long side of, for example, 1: 3, and the cross-sectional shape of each lens element of the fly-eye lens 11 has the same shape. It has a similar rectangular shape.
  • FIG. 2 is a view schematically showing a configuration of a conical axicon system arranged in an optical path between a front lens group and a rear lens group of an afocal lens in the first embodiment.
  • the conical axicon system 7 includes, in order from the light source side, a first prism member 7a having a flat surface facing the light source side and a concave conical refraction surface facing the mask side, and a convex cone having a flat surface facing the mask side and facing the light source side. And a second prism member 7b having a convex refracting surface.
  • the concave conical refracting surface of the first prism member 7a and the convex conical refracting surface of the second prism member 7b are formed complementarily so as to be able to abut each other. Further, at least one of the first prism member 7a and the second prism member 7b is moved along the optical axis AX. The distance between the concave conical refracting surface of the first prism member 7a and the convex conical refracting surface of the second prism member 7b is variably configured.
  • the change in the interval of the conical axicon system 7 is performed by a drive system 25 that operates based on a command from the control system 21.
  • the conical axicon system 7 functions as a parallel plane plate.
  • the conical axicon system 7 functions as a so-called beam expander. Therefore, the angle of the light beam incident on the predetermined surface 6 changes with the change of the interval of the conical axicon system 7.
  • FIG. 3 is a diagram illustrating the operation of the conical axicon system on the secondary light source formed in the annular illumination of the first embodiment.
  • the smallest distance formed when the interval between the conical axicon systems 7 is zero and the focal length of the zoom lens 10 is set to a minimum value (hereinafter, referred to as a “standard state”).
  • the annular secondary light source 30a expands the interval of the conical axicon system 7 from zero to a predetermined value, thereby reducing the width (1/2 of the difference between the outer diameter and the inner diameter: indicated by an arrow in the figure).
  • the outer light source and inner diameter of the secondary light source 30b are enlarged without changing.
  • both the annular ratio (inner diameter / outer diameter) and the size (outer diameter) change without changing the width of the annular secondary light source.
  • FIG. 4 is a view for explaining the action of the zoom lens on the secondary light source formed in the annular illumination of the first embodiment.
  • the annular secondary light source 30a formed in the standard state has a similar overall shape by expanding the focal length of the zoom lens 10 from a minimum value to a predetermined value. It changes to the secondary light source 30c in the form of an annular zone that has been enlarged in an enlarged manner.
  • both the width and the size (outer diameter) of the ring-shaped secondary light source change without changing the ring ratio.
  • FIG. 5 schematically shows the configuration of a first cylindrical lens pair and a second cylindrical lens pair arranged in the optical path between the front lens group and the rear lens group of the afocal lens in the first embodiment.
  • FIG. In Fig. 5 in order from the light source side, The lens pair 8 and the second cylindrical lens pair 9 are arranged.
  • the first pair of cylindrical lenses 8 has, for example, a first cylindrical negative lens 8a having a negative refractive power in the YZ plane and having no refractive power in the XY plane and a positive refractive power in the YZ plane in the order from the light source side. And a non-refractive first cylindrical positive lens 8b in the XY plane.
  • the second cylindrical lens pair 9 includes, in order from the light source side, for example, a second cylindrical negative lens 9a having a negative refractive power in the XY plane and a non-refractive power in the YZ plane, and the XY plane. And a second cylindrical positive lens 9b having a positive refractive power inside and having no refractive power in the YZ plane.
  • the first cylindrical negative lens 8a and the first cylindrical positive lens 8b are configured to rotate integrally about an optical axis AX by a drive system 26 that operates based on a command from a control system 21. I have.
  • the second cylindrical negative lens 9a and the second cylindrical positive lens 9b are configured to rotate integrally about an optical axis AX by a drive system 27 that operates based on a command from a control system 21. ing.
  • the first pair of cylindrical lenses 8 functions as a beam expander having power in the Z direction
  • the second pair of cylindrical lenses 9 functions as a beam expander having power in the X direction.
  • the power of the first pair of cylindrical lenses 8 and the power of the second pair of cylindrical lenses 9 are set to be equal to each other.
  • FIG. 6 to FIG. 8 are diagrams for explaining the operation of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source formed in the annular illumination of the first embodiment.
  • the power direction of the first cylindrical lens pair 8 forms an angle of +45 degrees around the optical axis AX with respect to the Z axis
  • the power direction of the second cylindrical lens pair 9 changes the optical axis AX with respect to the Z axis. It is set to make an angle of about 45 degrees around it.
  • the power direction of the first pair of cylindrical lenses 8 and the power direction of the second pair of cylindrical lenses 9 are orthogonal to each other, and in the combined system of the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9, Z
  • the power in the direction and the power in the X direction are the same.
  • the perfect circle state shown in Fig. 6 the light beam that passes through the combined system of the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9 undergoes an expanding operation with the same power in the Z and X directions.
  • a secondary light source having a perfect circular ring shape is formed on the illumination pupil.
  • the power direction of the first pair of cylindrical lenses 8 makes an angle of, for example, +80 degrees around the optical axis AX with respect to the Z axis
  • the power direction of the second pair of cylindrical lenses 9 It is set to form an angle of, for example, 180 degrees around the optical axis AX with respect to the axis. Therefore, in the combined system of the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9, the power in the X direction is larger than the power in the Z direction.
  • the light beam passing through the combined system of the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9 expands with a larger power in the X direction than in the Z direction.
  • a secondary light source elongated in the X direction is formed.
  • the power direction of the first pair of cylindrical lenses 8 forms an angle of, for example, +10 degrees around the optical axis AX with respect to the Z axis
  • the power direction of the second pair of cylindrical lenses 9 is The angle is set to, for example, ⁇ 10 degrees around the optical axis AX. Therefore, the power in the Z direction is larger than the power in the following direction.
  • the light flux passing through the combined system of the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9 has a larger power in the Z direction than in the X direction.
  • the illumination pupil is formed with a vertically elongated annular light source elongated in the Z direction.
  • a horizontally elongated annular light source can be formed.
  • various aspect ratios can be obtained.
  • a vertically long annular light source can be formed.
  • the diffractive optical element 4b for circular illumination When a parallel luminous flux having a rectangular cross section is incident, the diffractive optical element 4b for circular illumination generates, for example, a circular light intensity distribution centered on the optical axis AX in the far field (Fraunhofer diffraction region). Has the function of forming. Therefore, the diffractive optical element 4b
  • the transmitted light flux forms a circular light intensity distribution on the pupil plane of the afocal lens 5, and then exits from the afocal lens 5 as a substantially parallel light flux.
  • the light beam passing through the afocal lens 5 passes through the zoom lens 10 onto the entrance surface of the micro fly's eye lens 11, similarly to the pupil plane of the afocal lens 5, and has a circle centered on the optical axis AX.
  • An illumination field of a shape is formed.
  • a circular secondary light source centered on the optical axis AX is also formed on the rear focal plane of the micro fly's eye lens 11.
  • the concave conical bending surface of the first prism member 7a and the convex conical refracting surface of the second prism member 7b are in contact with each other so that the conical axicon system 7 functions as a parallel plane plate.
  • first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9 are set to an arbitrary state between the perfect circle state shown in FIG. 6 and the horizontal ellipse state shown in FIG. It is possible to form a horizontally long circular secondary light source according to the ratio. Further, by setting the first cylindrical lens pair 8 and the second cylindrical lens pair 9 to an arbitrary state between the perfect circle state shown in FIG. 6 and the vertical ellipse state shown in FIG. 8, various aspect ratios can be obtained. A vertically long circular secondary light source can be formed.
  • the first cylindrical lens pair 8 and the second cylindrical force pair lens 9 are optical element groups (lens groups) having different powers in two orthogonal directions. Both optical element groups are configured to be rotatable about the optical axis AX.
  • the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9 are arranged at or near a position substantially in Fourier transform relation with the illumination pupil, and change the power ratio in two orthogonal directions.
  • the secondary light source is formed in a desired annular shape or circular shape, for example, because the annular light source or the circular secondary light source is formed slightly vertically or horizontally long.
  • the action of the aspect ratio changing means including the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9 is used. Accordingly, the aspect ratio of the secondary light source can be adjusted as needed, and the occurrence of a line width difference can be substantially suppressed.
  • the aspect ratio of the secondary light source is adjusted as needed by the action of the aspect ratio changing means (8, 9) to proactively control the annular or circular secondary light source. By setting the length to be long or wide, the occurrence of a line width difference can be substantially suppressed.
  • a simple aspect ratio changing means including the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9 allows the illumination optical device (114) to operate simply. Based on the configuration, the aspect ratio of the secondary light source formed on the illumination pupil can be adjusted at any time. Therefore, in the exposure apparatus of the first embodiment, the line width difference of the pattern in the two orthogonal directions is determined by using an illumination optical apparatus capable of adjusting the aspect ratio of the secondary light source formed on the illumination pupil at any time. High-precision exposure that does not substantially occur can be performed.
  • the first cylindrical lens pair 8 and the second cylindrical lens pair 9 constitute an aspect ratio changing unit.
  • the present invention is not limited to this.
  • the aspect ratio changing means can also be constituted.
  • at least one of the first optical element group and the second optical element group needs to be configured to be rotatable about the optical axis, and both of them are rotatable about the optical axis. It is preferable that it is comprised.
  • the aspect ratio changing means (8, 9) is arranged on the pupil of the afocal lens 5 or in the vicinity thereof.
  • the conical axicon system 7 as the changing means is arranged on the light source side of the aspect ratio changing means (8, 9). If the conical axicon system 7 is arranged on the irradiated surface side of (), the diameter of the aspect ratio changing means (8, 9) can be reduced.
  • the aspect ratio changing means (first cylindrical lens pair 8 and second cylindrical lens pair 9) of the illumination optical device (114) of the first embodiment is, for example, an illumination optical device (114) or
  • the secondary light source is not only corrected to have a slightly vertically or horizontally elongated shape (asymmetric shape).
  • the in-plane luminance distribution of the secondary light source is asymmetric (for example, the luminance distribution shape differs in two orthogonal directions in the secondary light source plane, (Typically a saddle-shaped luminance distribution shape), the secondary light source shape is slightly vertically or horizontally elongated so as to be equivalent to the in-plane luminance distribution of the rotationally symmetric secondary light source. You may do so.
  • a pupil aberration of the projection optical system PL causes a vertical / horizontal difference of the image-side numerical aperture of the projection optical system PL, and a vertical / horizontal difference (V / H difference) of a line width in a mask pattern transfer result.
  • the aspect ratio changing means (the first cylindrical lens pair 8 and the second cylindrical lens pair 9) is appropriately controlled to optimize the shape of the secondary light source, and as a result, to eliminate the difference in the line width aspect ratio. You can also.
  • the aspect ratio changing means when non-uniformity of the aspect ratio of the image-side numerical aperture of the projection optical system PL occurs in the image plane, the aspect ratio changing means (first cylindrical lens pair 8 and second cylindrical lens pair 9) is appropriately controlled (distributed). Adjustment) to optimize the shape of the secondary light source, and consequently reduce the in-plane non-uniformity of the line width difference.
  • the in-plane luminance distribution of the secondary light source becomes asymmetric, and
  • the in-plane luminance distribution of the secondary light source becomes non-uniform at a plurality of positions in the area, the in-plane luminance distribution of the secondary light source at a plurality of positions on the irradiated surface is symmetric and uniform ( The distribution may be adjusted so that it is symmetric and uniform.
  • an illumination system luminance distribution measuring device disclosed in JP-A-2000-19012 is used.
  • the measurement of the shape of the secondary light source and the measurement of the secondary light source for each illumination condition (the shape of the secondary light source (circular, annular, multipole), ⁇ value, degree of polarization, etc.)
  • the in-plane brightness distribution of the light source should be measured in advance, and the amount of correction by the aspect ratio changing means (first cylindrical lens pair 8 and second cylindrical lens pair 9) should be determined for each lighting condition. Is preferred.
  • the aspect ratio changing means first cylindrical lens pair 8 and second cylindrical lens pair 9) is controlled. Then, the shape of the secondary light source can be individually optimized for each lighting condition.
  • the vertical / horizontal ratio changing means first cylindrical lens pair 8 and second cylindrical lens
  • the shape of the secondary light source can be optimized, and as a result, the vertical and horizontal differences in line width can be eliminated.
  • the line width and height difference caused by process conditions such as film thickness distribution and in-plane non-uniformity of exposure dose) are both corrected by actively deforming the shape of the secondary light source. Including. In this case, the correction includes taking into consideration the in-image non-uniformity of the line width difference.
  • the above-described adjustment of the shape of the secondary light source is typically performed when the illumination optical device (114) is manufactured, and thus when the projection exposure apparatus is manufactured.
  • the shape of the secondary light source is adjusted in order to optimize the conditions. You can do it.
  • the shape of the secondary light source or the state of the in-plane luminance distribution of the secondary light source changes due to the temporal change of the illumination optical device (114), and thus the projection exposure apparatus, the shape of the secondary light source may be changed. May be adjusted.
  • the shape of the secondary light source may be readjusted. Also, when setting new illumination conditions in the illumination optical device (1-114), adjust the shape of the secondary light source to optimize the shape of the secondary light source for the new illumination condition. It may be.
  • FIG. 9 is a diagram schematically showing a configuration of an exposure apparatus working according to the second embodiment of the present invention.
  • FIG. 10 is a diagram schematically illustrating a configuration of an aspect ratio changing unit according to the second embodiment.
  • the second embodiment has a configuration similar to that of the first embodiment.
  • the aspect ratio changing means including the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9 is arranged in the optical path of the afocal lens 5, whereas the second embodiment is different from the first embodiment.
  • the aspect ratio changing means (15a, 15b) composed of a pair of Fresnel lenses is arranged in the optical path between the folding mirror 3 and the diffractive optical element (4a, 4b).
  • the second embodiment will be described focusing on the differences from the first embodiment.
  • a pair of Fresnel lenses 15a and 15b is provided, and an aspect ratio changing means 15 is disposed.
  • the Fresnel lenses 15a and 15b are optical elements each having a refraction function only in one direction.
  • the Fresnel lenses 15a and 15b are configured to rotate around the optical axis AX by a drive system 28 that operates based on a command from the control system 21.
  • FIG. 11 is a diagram illustrating the operation of a pair of Fresnel lenses on a secondary light source formed in the annular illumination of the second embodiment.
  • the refraction direction of the first Fresnel lens 15a and the refraction direction of the second Fresnel lens 15b are set so as to coincide with the Z-axis direction. Therefore, in the vertical ellipse state shown in FIG. 11 (a), the luminous flux passing through the aspect ratio changing means 15 including the pair of Fresnel lenses 15a and 15b is not diverged in the X-axis direction, but is not affected in the Z-axis direction. As a result of the diverging effect, a secondary light source in the shape of a vertically elongated annular zone elongated in the Z direction is formed on the illumination pupil.
  • the refraction direction of the first Fresnel lens 15a and the refraction direction of the second Fresnel lens 15b are set so as to coincide with the X-axis direction. Therefore, in the vertical ellipse state shown in FIG. 11A, the light beam passing through the aspect ratio changing means 15 including the pair of Fresnel lenses 15a and 15b is not affected by the divergence in the Z-axis direction, but the X-axis. In the illumination pupil, a secondary light source elongated in the X direction is formed.
  • the refraction direction of the first Fresnel lens 15a is set to match the X-axis direction (or Z-axis direction), and the refraction direction of the second Fresnel lens 15b is set in the Z-axis direction ( Or, it can be set to match.
  • the light flux passing through the aspect ratio changing means 15 composed of the pair of Fresnel lenses 15a and 15b is similarly divergent in the Z-axis direction and the X-axis direction, and the illumination pupil is A secondary light source in the shape of a perfect circular ring is formed.
  • the aspect ratio changing means 15 when the aspect ratio changing means 15 is set to a perfect circle state, a perfect circular secondary light source is formed on the illumination pupil, and the aspect ratio changing means 15 is changed to the state shown in FIG.
  • the vertical elliptically shown state When the vertical elliptically shown state is set, a vertically elongated circular secondary light source is formed in the illumination pupil, and when the aspect ratio changing means 15 is set to the horizontal elliptical state shown in FIG.
  • a shaped secondary light source is formed.
  • any state between the perfect circle state and the vertical ellipse state shown in Fig. 11 (a) or any state between the perfect circle state and the horizontal ellipse state shown in Fig. 11 (b) must be set. Accordingly, it is possible to form a secondary light source having a ring-shaped or circular shape having various aspect ratios.
  • the first Fresnel lens 15a and the second Fresnel lens 15b are optical elements having different degrees of divergence in two directions orthogonal to each other. Each is configured to be rotatable about the optical axis AX.
  • the first Fresnel lens 15a and the second Fresnel lens 15b independently change the degree of divergence of the light beam incident on the diffractive optical element (4a, 4b) as a light beam conversion element in two orthogonal directions.
  • an annular or circular secondary light source is formed slightly vertically or horizontally, or the secondary light source is formed.
  • the first Fresnel lens 15a and the second Fresnel lens The aspect ratio of the secondary light source can be adjusted as needed by the operation of the aspect ratio changing means 15 comprising 15b, so that the occurrence of a line width difference can be substantially suppressed.
  • the aspect ratio changing means 15 acts to change the aspect ratio of the secondary light source.
  • the first and second Fresnel lenses 15a and 15b constitute an aspect ratio changing unit.
  • the present invention is not limited to this.
  • the aspect ratio changing means can be constituted.
  • it is necessary that at least one of the first optical element and the second optical element is configured to be rotatable about an axis parallel to the traveling direction of the light beam, and both of them are centered on the optical axis. It is preferable to be configured to be rotatable.
  • the aspect ratio changing means is constituted by a pair of diffractive optical elements having a diverging function only in one direction
  • the aspect ratio changing means is constituted by a pair of microlens arrays having a refraction function in only one direction. You can also.
  • FIG. 12 is a view schematically showing a configuration of an exposure apparatus according to the third embodiment of the present invention.
  • FIG. 13 is a diagram schematically showing an internal configuration of an aspect ratio changing unit according to the third embodiment.
  • the third embodiment has a configuration similar to that of the second embodiment.
  • the aspect ratio changing means is constituted by a pair of Fresnel lenses 15a and 15b
  • the aspect ratio changing means is constituted by one cylindrical zoom lens. The points are different.
  • the third embodiment will be described focusing on the differences from the second embodiment.
  • the aspect ratio changing means including one cylindrical zoom lens 16 is arranged.
  • the cylindrical zoom lens 16 has a cylindrical negative lens 16a having a negative refractive power in the XY plane and no refractive power in the YZ plane, and a positive refractive power in the XY plane and It is composed of a cylindrical positive lens 16b having no refractive power in a plane.
  • the cylindrical zoom lens 16 is configured such that the distance between the cylindrical negative lens 16a and the cylindrical positive lens 16b along the direction of the optical axis AX can be changed.
  • the cylindrical zoom lens 16 includes a cylindrical negative lens 16a and a cylindrical positive lens 1a. 6b are integrally rotatable about the optical axis AX.
  • the change in the distance between the cylindrical negative lens 16a and the cylindrical positive lens 16b and the integral rotation of the cylindrical negative lens 16a and the cylindrical positive lens 16b around the optical axis AX are performed based on a command from the control system 21. This is performed by the operating drive system 29.
  • FIG. 14 is a diagram illustrating the operation of the cylindrical zoom lens on the secondary light source formed in the third embodiment.
  • FIGS. 14 (a) and (b) show the optical path in the XY plane of the cylindrical zoom lens 16 in the rotational position shown in FIG. 13, and
  • FIGS. 14 (c) and (d) show the optical path shown in FIG. 4 shows an optical path in the YZ plane of the cylindrical zoom lens 16 in a position state.
  • the image point la (virtual image) of the cylindrical negative lens 16a coincides with the front focal point fb of the cylindrical positive lens 16b. Let me. In this case, only the diameter of the parallel light beam incident on the cylindrical zoom lens 16 is changed (enlarged) in the XY plane, and the parallel light beam is incident on the diffractive optical element (4a, 4b) as it is.
  • FIG. 15 is a diagram showing a ring-shaped light intensity distribution obtained from the illumination pupil when the cylindrical zoom lens is in the perfect circle state and the elliptical state.
  • (a) shows the shape of the secondary light source formed on the illumination pupil in the perfect circular state (initial state) of the cylindrical zoom lens 16 shown in FIGS. 14 (a) and (c) (for annular illumination).
  • (B) is a diagram showing the light intensity distribution (vertical axis is light intensity I) of the secondary light source having a perfect circular ring shape in (a) along the X direction.
  • (C) is a diagram showing the light intensity distribution (the vertical axis is light intensity I) of the secondary light source in the shape of a perfect circular ring in (a) along the ⁇ direction.
  • FIG. 14 (D) shows the shape of the secondary light source formed on the illumination pupil in the elliptical state of the cylindrical zoom lens 16 shown in FIGS. 14 (b) and (d) (diffractive optical element for annular illumination).
  • 4e), and (e) is a diagram showing the light intensity distribution (the vertical axis is light intensity I) of the secondary light source having an elliptical annular shape in (d) along the X direction, and (f) is a diagram showing (f).
  • Is a diagram showing the light intensity distribution along the Z direction (light intensity I) of the secondary light source in the shape of an elliptical ring in (d). As shown in Fig.
  • the light intensity distribution along the X direction of the secondary light source in the shape of an elliptical orbicular zone obtained in the elliptical state is applied to the illumination pupil only by the action of the diffractive optical element 4a for orbicular illumination.
  • the light intensity distribution formed is a convolution of the light intensity distribution formed on the illumination pupil by the action of the cylindrical zoom lens 16 alone. Become.
  • a hatched area (shaded area) in the figure is an area Im where the light intensity is maximum, and a light intensity gradient area Is where the light intensity gradually decreases is located around the area Im. are doing.
  • Fig. 15 (d) The elliptical ring-shaped light region shown by the solid line is a force that spreads in the X direction more than the perfect circular ring-shaped light region shown in Fig. 15 (a). See Figs. 15 (e) and (f). When considered in terms of moment, the diameter of the annular zone is smaller in the X direction than in the Z direction.
  • the cylindrical negative lens 16a and the cylindrical positive lens 16b are set in the interval state shown in FIGS. 14A and 14B without depending on the rotational position of the cylindrical zoom lens 16.
  • a secondary light source having a perfect circular ring shape or perfect circular shape is formed on the illumination pupil.
  • the cylindrical lens zoom lens 16 is set to the first rotational position shown in FIG. 13, and the cylindrical negative lens 16a and the cylindrical positive lens 16b are set to the intervals shown in FIGS. 14 (b) and (d). Then, a secondary light source having an elliptical annular shape or an elliptical shape extending in the X direction is formed on the illumination pupil.
  • the cylindrical zoom lens 16 is set to a second rotation position in which the cylindrical zoom lens 16 is rotated 90 degrees around the optical axis AX from the rotation position shown in FIG. 13, and the cylindrical negative lens 16a and the cylindrical positive lens 16b are illustrated. 14
  • a secondary light source having an elliptical annular shape or an elliptical shape extending in the Z direction is formed on the illumination pupil. Furthermore, by setting an arbitrary state between the perfect circular state and the elliptical state in the first rotational position state and an arbitrary state between the perfect circular state and the elliptical state in the second rotational position state, A ring-shaped or circular secondary light source with various aspect ratios can be formed.
  • the cylindrical lens zoom lens 16 that is rotatable about the optical axis AX includes the folding mirror 3 and the diffractive optical elements (4a, 4b) serving as light flux converting elements.
  • the light intensity distribution formed on the illumination pupil by being placed in the optical path between the light sources (and thus between the light source 1 and the diffractive optical element (4a, 4b)) and changing the power independently in two orthogonal directions
  • an aspect ratio changing means for changing the aspect ratio is provided.
  • an annular or circular secondary light source is formed slightly vertically or horizontally, or the secondary light source is formed.
  • the pattern is formed in the desired annular or circular shape, if there is a line width difference of the pattern in two orthogonal directions due to resist characteristics, etc., a cylindrical rotatable about the optical axis AX
  • the aspect ratio of the secondary light source can be adjusted as needed by the operation of the aspect ratio changing means including the zoom lens 16 to substantially suppress the occurrence of a line width difference.
  • the aspect ratio of the secondary light source is adjusted as needed by the operation of the aspect ratio changing means 16 to positively orient the annular or circular secondary light source. By setting it to be horizontally long, the occurrence of a line width difference can be substantially suppressed.
  • the aspect ratio changing means is constituted by one cylindrical zoom lens 16 rotatable around the optical axis AX.
  • the present invention is not limited to this.
  • a first cylindrical zoom lens having a function of changing power in one of two orthogonal directions A modification in which the aspect ratio changing means is constituted by the second cylindrical zoom lens having the function of changing the power in the other direction of the two directions is also possible.
  • the aspect ratio changing means includes, in order from the light source side, a first cylindrical zoom lens 17 having a function of changing the power in the Z direction, and a function of changing the power in the X direction.
  • a second cylindrical zoom lens 18 having The first cylindrical zoom lens 17 has a negative refractive power in the YZ plane and has no refractive power in the XY plane, and has a positive refractive power in the YZ plane and has no refractive power in the XY plane. It is composed of a power cylindrical positive lens 17b.
  • the second cylindrical zoom lens 18 has a negative refractive power in the XY plane and has It comprises a cylindrical negative lens 18a having no refractive power in a plane and a cylindrical positive lens 18b having a positive refractive power in the XY plane and having no refractive power in the plane.
  • the first cylindrical zoom lens 17 is configured so that the distance between the cylindrical negative lens 17a and the cylindrical positive lens 17b along the direction of the optical axis AX can be changed.
  • the second cylindrical zoom lens 18 is configured such that the distance between the cylindrical negative lens 18a and the cylindrical positive lens 18b along the direction of the optical axis AX can be changed.
  • various aspect ratios are obtained based on the same principle as in the third embodiment.
  • a secondary light source having a ring shape or a circular shape can be formed.
  • the reticle (mask) is illuminated by the illumination device (illumination step), and the transfer pattern formed on the mask is exposed on the photosensitive substrate using the projection optical system.
  • a micro device semiconductor element, imaging element, liquid crystal display element, thin film magnetic head, etc.
  • FIG. 17 is a flowchart of an example of a method for obtaining a semiconductor device as a microdevice by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of the present embodiment. It will be described with reference to FIG.
  • a metal film is deposited on one lot of wafers.
  • a photoresist is applied on the metal film on the one lot wafer.
  • the pattern image on the mask is sequentially exposed and transferred to each shot area on the one lot of wafers via the projection optical system.
  • the photoresist on the one lot wafer is developed, and in step 305, the pattern on the mask is etched on the one lot wafer using the resist pattern as a mask. Is formed in each shot area on each wafer.
  • a circuit pattern of a further upper layer is formed, etc. Are manufactured.
  • a semiconductor device manufacturing method a semiconductor device having an extremely fine circuit pattern can be obtained with good throughput.
  • a metal is vapor-deposited on the wafer, a resist is applied on the metal film, and the force of performing each of the steps of exposure, development, and etching is performed on the wafer prior to these steps.
  • a resist may be applied on the silicon oxide film, and the respective steps such as exposure, development, and etching may be performed.
  • a liquid crystal display element as a micro device can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate).
  • a predetermined pattern circuit pattern, electrode pattern, etc.
  • a plate glass substrate
  • FIG. 18 a so-called optical lithography step of transferring and exposing a mask pattern onto a photosensitive substrate (a glass substrate coated with a resist) using the exposure apparatus of the present embodiment is executed.
  • a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate.
  • the exposed substrate undergoes various steps such as a developing step, an etching step, and a resist stripping step, so that a predetermined pattern is formed on the substrate, and the process proceeds to the next color filter forming step 402.
  • a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or R, G,
  • a color filter is formed by arranging a plurality of sets of filters of three stripes B in the horizontal scanning line direction.
  • a cell assembling step 403 is performed.
  • a liquid crystal panel liquid crystal cell
  • a liquid crystal is assembled using the substrate having the predetermined pattern obtained in the pattern forming step 401, the color filter obtained in the color filter forming step 402, and the like.
  • a liquid crystal is injected between the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402, and a liquid crystal panel ( Liquid crystal cell).
  • the assembled liquid crystal panel (liquid crystal cell) Attach various components such as an electric circuit and a backlight for performing the display operation of) to complete the liquid crystal display device.
  • a liquid crystal display device having an extremely fine circuit pattern can be obtained with high throughput.
  • the present invention is described with reference to the annular illumination and the circular illumination as an example.
  • the present invention is not limited to this.
  • the present invention can be applied.
  • the present invention is applied to an illumination optical device having a specific configuration as shown in FIG. 1.
  • the present invention is not limited to this.
  • the present invention can also be applied to the embodiment shown in FIG. 10 of Japanese Patent Application Publication No. JP-A-2003-0038931 and the corresponding embodiment shown in FIG. 1 of the specification and drawing of International Application No.PCTZJP03Z15447. is there.
  • FIG. 10 of JP-A-2003-66867 and the corresponding US Patent Application Publication US2003Z0038931 two pairs of cylindrical lenses are connected between the zoom lens 4 and the fly-eye lens 5.
  • two pairs of cylindrical lenses are provided in the optical path of the afocal lens 5 and between the zoom lens 7 and the fly-eye lens 5. It can be placed in the optical path.
  • the present invention has been described by taking, as an example, an exposure apparatus provided with an illumination optical device.
  • the present invention is applied to a general illumination optical device for illuminating an irradiated surface other than a mask. It is clear that the invention can be applied.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microscoopes, Condenser (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

A lighting optical device capable of appropriately adjusting the aspect ratio of a secondary light source formed in a lighting pupil based on a simple constitution. A lighting optical device for illuminating a surface to be illuminated (M) based on light fluxes from a light source (1). The device is provided with aspect ratio changing means (8, 9) for changing the aspect ratio of a light intensity distribution formed in a lighting pupil which is substantially in Fourier transform relation with a surface to be illuminated. The aspect ratio changing means are provided with optical element groups (8a, 8b, 9a, 9b) disposed in positions or in the vicinities thereof which are substantially in Fourier transform relation with a lighting pupil and having the function of changing a power ratio between two orthogonal directions.

Description

明 細 書  Specification
照明光学装置、露光装置および露光方法  Illumination optical device, exposure apparatus, and exposure method
技術分野  Technical field
[0001] 本発明は、照明光学装置、露光装置および露光方法に関し、特に半導体素子、撮 像素子、液晶表示素子、薄膜磁気ヘッド等のマイクロデバイスをリソグラフィー工程で 製造するための露光装置に好適な照明光学装置に関する。  The present invention relates to an illumination optical device, an exposure device, and an exposure method, and is particularly suitable for an exposure device for manufacturing a micro device such as a semiconductor device, an imaging device, a liquid crystal display device, and a thin-film magnetic head by a lithography process. The present invention relates to an illumination optical device.
^景技術  ^ Scenic technology
[0002] この種の典型的な露光装置においては、光源から射出された光束がマイクロフライ アイレンズ (またはフライアイレンズ)に入射し、その後側焦点面に多数の光源からな る二次光源を形成する。二次光源からの光束は、必要に応じてマイクロフライアイレ ンズの後側焦点面の近傍に配置された開口絞りを介して制限された後、コンデンサ 一レンズに入射する。  [0002] In a typical exposure apparatus of this type, a light beam emitted from a light source enters a micro fly's eye lens (or a fly's eye lens), and a secondary light source including a large number of light sources is provided on a rear focal plane. Form. The luminous flux from the secondary light source is restricted via an aperture stop arranged near the rear focal plane of the micro fly's eye lens if necessary, and then enters the condenser lens.
[0003] コンデンサーレンズにより集光された光束は、所定のパターンが形成されたマスクを 重畳的に照明する。マスクのパターンを透過した光は、投影光学系を介してウェハ上 に結像する。こうして、ウェハ上には、マスクパターンが投影露光(転写)される。なお 、マスクに形成されたパターンは高集積化されており、この微細パターンをウェハ上 に正確に転写するにはウェハ上において均一な照度分布を得ることが不可欠である  [0003] The light beam condensed by the condenser lens illuminates the mask on which a predetermined pattern is formed in a superimposed manner. The light transmitted through the mask pattern forms an image on the wafer via the projection optical system. Thus, the mask pattern is projected and exposed (transferred) on the wafer. Since the pattern formed on the mask is highly integrated, it is essential to obtain a uniform illuminance distribution on the wafer in order to accurately transfer this fine pattern onto the wafer.
[0004] 近年においては、マイクロフライアイレンズを介して照明瞳に形成される二次光源の 大きさを変化させることにより、照明のコヒーレンシィ σ ( σ値 =開口絞り径/投影光 学系の瞳径、あるいは σ値 =照明光学系の射出側開口数 Ζ投影光学系の入射側 開口数)を変化させる技術が注目されている。また、マイクロフライアイレンズを介して 照明瞳に輪帯状や 4極状の二次光源を形成することにより、投影光学系の焦点深度 や解像力を向上させる技術が注目されている。 [0004] In recent years, by changing the size of a secondary light source formed on an illumination pupil through a micro fly's eye lens, coherency σ of illumination (σ value = aperture stop diameter / projection optical system Attention has been focused on a technology that changes the pupil diameter or σ value = exit-side numerical aperture of the illumination optical system 入射 entrance-side numerical aperture of the projection optical system. Also, attention has been focused on a technology that improves the depth of focus and resolution of the projection optical system by forming an annular or quadrupolar secondary light source on the illumination pupil through a micro fly's eye lens.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems the invention is trying to solve
[0005] 従来技術では、たとえば輪帯状の二次光源に基づく輪帯照明を行う場合、二次光 源が僅かに縦長または横長の輪帯状に形成されることにより、ウェハ上に転写される パターンの線幅が縦方向と横方向とで異なる現象、すなわち直交する二方向でパタ 一ンの線幅差が発生することがある。また、二次光源が所望の輪帯状に形成されて レ、ても、レジスト特性などに起因して、直交する二方向でパターンの線幅差が発生す ること力 Sある。また、転写すべきパターンに方向性がある場合には、照明瞳に形成さ れる輪帯状の二次光源を積極的に縦長または横長に設定する方が望ましいこともあ る。 [0005] In the related art, for example, when performing annular illumination based on an annular secondary light source, the secondary light When the source is formed in a slightly vertical or horizontal ring shape, the line width of the pattern transferred onto the wafer differs between the vertical and horizontal directions, that is, the line width of the pattern in two orthogonal directions. Differences may occur. Further, even if the secondary light source is formed in a desired annular shape, there is a force S that a line width difference of a pattern occurs in two orthogonal directions due to resist characteristics and the like. If the pattern to be transferred has directionality, it may be desirable to actively set the annular secondary light source formed on the illumination pupil to be vertically or horizontally long.
[0006] 本発明は、前述の課題に鑑みてなされたものであり、簡易な構成に基づいて、照明 瞳に形成される二次光源の縦横比を随時調整することのできる照明光学装置を提供 することを目的とする。また、照明瞳に形成される二次光源の縦横比を随時調整する ことのできる照明光学装置を用いて、直交する二方向でパターンの線幅差が実質的 に発生することのない高精度な露光を行うことのできる露光装置および露光方法を提 供することを目的とする。  [0006] The present invention has been made in view of the above-described problems, and provides an illumination optical device that can adjust the aspect ratio of a secondary light source formed on an illumination pupil at any time based on a simple configuration. The purpose is to do. In addition, by using an illumination optical device that can adjust the aspect ratio of a secondary light source formed on the illumination pupil at any time, a high-precision pattern in which a line width difference of a pattern does not substantially occur in two orthogonal directions. An object is to provide an exposure apparatus and an exposure method capable of performing exposure.
課題を解決するための手段  Means for solving the problem
[0007] 前記課題を解決するために、本発明の第 1形態では、光源からの光束に基づいて 被照射面を照明する照明光学装置において、  [0007] In order to solve the above-described problems, according to a first embodiment of the present invention, there is provided an illumination optical device that illuminates an irradiation surface based on a light beam from a light source,
前記被照射面と実質的にフーリエ変換の関係にある照明瞳に形成される光強度分 布の縦横比を変化させるための縦横比変化手段を備え、  An aspect ratio changing unit for changing an aspect ratio of a light intensity distribution formed on an illumination pupil substantially in a Fourier transform relationship with the irradiated surface,
前記縦横比変化手段は、前記照明瞳と実質的にフーリエ変換の関係にある位置ま たはその近傍に配置されて、直交する 2つの方向のパワー比を変化させる機能を有 する光学素子群を備えていることを特徴とする照明光学装置を提供する。  The aspect ratio changing means is an optical element group disposed at or near a position substantially in Fourier transform relationship with the illumination pupil and having a function of changing a power ratio in two orthogonal directions. An illumination optical device is provided.
[0008] 第 1形態の好ましい態様によれば、前記光学素子群は、直交する 2つの方向でパヮ 一が互いに異なる第 1光学素子群と、直交する 2つの方向でパワーが互いに異なる 第 2光学素子群とを有し、前記第 1光学素子群および前記第 2光学素子群のうちの 少なくとも一方が光軸を中心として回転可能に構成されている。また、前記第 1光学 素子群および前記第 2光学素子群の双方が前記光軸を中心として回転可能に構成 されていることが好ましい。また、前記光学素子群はレンズ群であることが好ましい。  [0008] According to a preferred mode of the first mode, the optical element group includes a first optical element group having different powers in two orthogonal directions and a second optical element having different powers in two orthogonal directions. And at least one of the first optical element group and the second optical element group is configured to be rotatable about an optical axis. Further, it is preferable that both the first optical element group and the second optical element group are configured to be rotatable around the optical axis. Preferably, the optical element group is a lens group.
[0009] 第 1形態においては、前記第 1光学素子群および前記第 2光学素子群は、それぞ れ一対の回転非対称なパワーを持つ光学素子を備えていることが好ましぐそれぞ れ一対のシリンドリカルレンズを備えていることがさらに好ましい。なお、上記回転非 対称なパワーは、回転非対称なパワーを持つ光学素子の光軸に関して回転非対称 なパワーを意味している。 In the first embodiment, the first optical element group and the second optical element group are It is preferable that a pair of optical elements having rotationally asymmetric power be provided, and it is more preferable that a pair of cylindrical lenses be provided. The above-mentioned rotationally asymmetric power means a power which is rotationally asymmetrical with respect to the optical axis of an optical element having a rotationally asymmetrical power.
[0010] また、第 1形態においては、前記照明瞳に形成される光強度分布の大きさを連続的 に変更する変更手段を更に備えていることが好ましぐこのとき前記光学素子群は、 前記変更手段よりも前記光源側の光路中に配置されることが好ましい。ここで、前記 変更手段は、前記照明瞳に形成される光強度分布の外形の大きさを変更する第 1変 更手段と、前記照明瞳に形成される光強度分布の輪帯比を変更する第 2変更手段と を備えていることが好ましい。  [0010] Further, in the first embodiment, it is preferable that the optical element group further includes a changing unit that continuously changes a size of a light intensity distribution formed in the illumination pupil. It is preferable that the light source is disposed in an optical path closer to the light source than the changing unit. Here, the changing unit changes the size of the outer shape of the light intensity distribution formed on the illumination pupil, and changes the annular ratio of the light intensity distribution formed on the illumination pupil. It is preferable to include the second changing means.
[0011] 本発明の第 2形態では、光源からの光束に基づいて被照射面を照明する照明光学 装置において、 According to a second embodiment of the present invention, there is provided an illumination optical device for illuminating a surface to be illuminated based on a light beam from a light source,
前記光源からの光束を所定の断面を有する光束に変換するための光束変換素子 と、  A light beam conversion element for converting a light beam from the light source into a light beam having a predetermined cross section;
前記光束変換素子からの光束に基づいて、前記被照射面と実質的にフーリエ変換 の関係にある照明瞳に所定の光強度分布を形成するための形成光学系と、 前記光束変換素子に入射する光束の発散の程度を直交する 2つの方向で独立的 に変化させることにより前記照明瞳に形成される光強度分布の縦横比を変化させる ための縦横比変化手段とを備えていることを特徴とする照明光学装置を提供する。  A forming optical system for forming a predetermined light intensity distribution on an illumination pupil substantially in a Fourier transform relationship with the irradiated surface based on the light beam from the light beam conversion element; Aspect ratio changing means for changing the aspect ratio of the light intensity distribution formed on the illumination pupil by independently changing the degree of divergence of the light beam in two orthogonal directions. An illumination optical device is provided.
[0012] 第 2形態の好ましい態様によれば、前記縦横比変化手段は、直交する 2つの方向 で発散の程度が互いに異なる第 1光学素子と、直交する 2つの方向で発散の程度が 互いに異なる第 2光学素子とを有し、前記第 1光学素子および前記第 2光学素子のう ちの少なくとも一方が前記光束の進行方向と平行な軸を中心として回転可能に構成 されている。また、前記第 1光学素子および前記第 2光学素子の双方が前記光束の 進行方向と平行な軸を中心として回転可能に構成されていることが好ましい。なお、 前記光束の進行方向と平行な軸は光軸であることが好ましい。  According to a preferred mode of the second aspect, the aspect ratio changing means has a first optical element having different degrees of divergence in two orthogonal directions, and a different degree of divergence in two orthogonal directions. A second optical element, and at least one of the first optical element and the second optical element is configured to be rotatable about an axis parallel to a traveling direction of the light beam. Further, it is preferable that both the first optical element and the second optical element are configured to be rotatable around an axis parallel to a traveling direction of the light beam. Preferably, an axis parallel to the traveling direction of the light beam is an optical axis.
[0013] 第 2形態の好ましい態様によれば、前記第 1光学素子および前記第 2光学素子は、 一方向にのみ発散機能を有する回折光学素子をそれぞれ有する。あるいは、前記 第 1光学素子および前記第 2光学素子は、一方向にのみ屈折機能を有するフレネル レンズをそれぞれ有することが好ましい。あるいは、前記第 1光学素子および前記第 2光学素子は、一方向にのみ屈折機能を有するマイクロレンズアレイをそれぞれ有す ることが好ましい。また、前記形成光学系は、オプティカルインテグレータを有すること が好ましい。 According to a preferred mode of the second mode, the first optical element and the second optical element each include a diffractive optical element having a diverging function only in one direction. Alternatively, Preferably, the first optical element and the second optical element each have a Fresnel lens having a refraction function only in one direction. Alternatively, it is preferable that each of the first optical element and the second optical element has a microlens array having a refractive function only in one direction. Further, it is preferable that the forming optical system has an optical integrator.
[0014] 本発明の第 3形態では、光源からの光束に基づいて被照射面を照明する照明光学 装置において、  According to a third embodiment of the present invention, there is provided an illumination optical device for illuminating an irradiation surface based on a light beam from a light source,
前記光源からの光束を所定の断面を有する光束に変換するための光束変換素子 と、  A light beam conversion element for converting a light beam from the light source into a light beam having a predetermined cross section;
前記光束変換素子からの光束に基づいて、前記被照射面と実質的にフーリエ変換 の関係にある照明瞳に所定の光強度分布を形成するための形成光学系と、 前記光源と前記光束変換素子との間の光路中に配置されて、直交する 2つの方向 でパワーを独立的に変化させることにより前記照明瞳に形成される光強度分布の縦 横比を変化させるための縦横比変化手段とを備えていることを特徴とする照明光学 装置を提供する。  A forming optical system for forming a predetermined light intensity distribution on an illumination pupil that is substantially in a Fourier transform relationship with the surface to be illuminated based on the light beam from the light beam converting element; the light source and the light beam converting element And an aspect ratio changing means for changing an aspect ratio of a light intensity distribution formed on the illumination pupil by independently changing power in two orthogonal directions. An illumination optical device characterized by comprising:
[0015] 第 3形態の好ましい態様によれば、前記縦横比変化手段は、光軸を中心として回 転可能なシリンドリカルズームレンズを有する。あるいは、前記縦横比変化手段は、 前記直交する 2つの方向のうちの一方の方向にパワーを変化させる機能を有する第 1シリンドリカルズームレンズと、前記直交する 2つの方向のうちの他方の方向にパヮ 一を変化させる機能を有する第 2シリンドリカルズームレンズとを備えていることが好ま しい。また、前記形成光学系は、オプティカルインテグレータを有することが好ましレヽ  [0015] According to a preferred mode of the third mode, the aspect ratio changing means includes a cylindrical zoom lens rotatable around an optical axis. Alternatively, the aspect ratio changing means includes a first cylindrical zoom lens having a function of changing power in one of the two orthogonal directions, and a power in the other direction of the two orthogonal directions. It is preferable to include a second cylindrical zoom lens having a function of changing the position. It is preferable that the forming optical system has an optical integrator.
[0016] 本発明の第 4形態では、マスクのパターンを感光性基板上に転写する露光装置に おいて、第 1形態一第 3形態の照明光学装置と、前記被照射面に設定された前記マ スクのパターンを前記感光性基板上へ投影する投影光学系とを備えていることを特 徴とする露光装置を提供する。 According to a fourth aspect of the present invention, there is provided an exposure apparatus for transferring a pattern of a mask onto a photosensitive substrate, wherein the illumination optical apparatus according to the first aspect and the third aspect includes the illumination optical device according to the first aspect and the third aspect. And a projection optical system for projecting a mask pattern onto the photosensitive substrate.
[0017] 本発明の第 5形態では、マスクのパターンを感光性基板上に転写する露光方法に おいて、第 1形態一第 3形態の照明光学装置を用いて前記被照射面に設定された 前記マスクを照明する工程と、前記マスクのパターンを前記感光性基板上へ投影露 光する工程とを含むことを特徴とする露光方法を提供する。 According to a fifth aspect of the present invention, in an exposure method for transferring a mask pattern onto a photosensitive substrate, the illumination optical device according to the first to third aspects is used to set the pattern on the surface to be irradiated. There is provided an exposure method, comprising a step of illuminating the mask and a step of projecting and exposing a pattern of the mask onto the photosensitive substrate.
発明の効果  The invention's effect
[0018] 本発明の典型的な態様にしたがう照明光学装置では、第 1シリンドリカルレンズ対と 第 2シリンドリカルレンズ対とからなる縦横比変化手段の作用により、簡易な構成に基 づいて、照明瞳に形成される二次光源の縦横比を随時調整することができる。したが つて、本発明の露光装置および露光方法では、照明瞳に形成される二次光源の縦 横比を随時調整することのできる照明光学装置を用いて、直交する二方向でパター ンの線幅差が実質的に発生することのない高精度な露光を行うことができ、ひいては 高精度な露光により良好なマイクロデバイスを製造することができる。  In the illumination optical device according to a typical aspect of the present invention, the operation of the aspect ratio changing means including the first cylindrical lens pair and the second cylindrical lens pair allows the illumination pupil to be formed based on a simple configuration. The aspect ratio of the formed secondary light source can be adjusted at any time. Therefore, in the exposure apparatus and the exposure method of the present invention, an illumination optical apparatus capable of adjusting the aspect ratio of a secondary light source formed on an illumination pupil at any time is used, and a line of a pattern is formed in two orthogonal directions. High-precision exposure with substantially no width difference can be performed, and a good microdevice can be manufactured by high-precision exposure.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
[0019] [図 1]本発明の第 1実施形態に力、かる露光装置の構成を概略的に示す図である。  FIG. 1 is a view schematically showing a configuration of an exposure apparatus according to a first embodiment of the present invention.
[図 2]第 1実施形態においてァフォーカルレンズの前側レンズ群と後側レンズ群との 間の光路中に配置された円錐アキシコン系の構成を概略的に示す図である。  FIG. 2 is a view schematically showing a configuration of a conical axicon system arranged in an optical path between a front lens group and a rear lens group of an afocal lens in the first embodiment.
[図 3]第 1実施形態の輪帯照明において形成される二次光源に対する円錐: ン系の作用を説明する図である。  FIG. 3 is a view for explaining the action of a cone system on a secondary light source formed in the annular illumination of the first embodiment.
[図 4]第 1実施形態の輪帯照明において形成される二次光源に対するズ  FIG. 4 is a diagram showing a shift with respect to a secondary light source formed in the annular illumination of the first embodiment.
の作用を説明する図である。  FIG.
[図 5]第 1実施形態においてァフォーカルレンズの前側レンズ群と後側レンズ群との 間の光路中に配置された第 1シリンドリカルレンズ対および第 2シリンドリカルレンズ の構成を概略的に示す図である。  FIG. 5 is a view schematically showing a configuration of a first cylindrical lens pair and a second cylindrical lens arranged in an optical path between a front lens group and a rear lens group of an afocal lens in the first embodiment. is there.
[図 6]第 1実施形態の輪帯照明において形成される二次光源に対する第 1シリンドリ カルレンズ対および第 2シリンドリカルレンズ対の作用を説明する図である。  FIG. 6 is a view for explaining the action of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source formed in the annular illumination of the first embodiment.
[図 7]第 1実施形態の輪帯照明において形成される二次光源に対する第 1シリンドリ カルレンズ対および第 2シリンドリカルレンズ対の作用を説明する図である。  FIG. 7 is a view for explaining the action of a first cylindrical lens pair and a second cylindrical lens pair on a secondary light source formed in the annular illumination of the first embodiment.
[図 8]第 1実施形態の輪帯照明において形成される二次光源に対する第 1シリンドリ カルレンズ対および第 2シリンドリカルレンズ対の作用を説明する図である。  FIG. 8 is a view for explaining the action of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source formed in the annular illumination of the first embodiment.
[図 9]本発明の第 2実施形態に力、かる露光装置の構成を概略的に示す図である。 [図 10]第 2実施形態における縦横比変化手段の構成を概略的に示す図である。 FIG. 9 is a view schematically showing a configuration of an exposure apparatus according to a second embodiment of the present invention. FIG. 10 is a diagram schematically showing a configuration of an aspect ratio changing unit according to a second embodiment.
[図 11]第 2実施形態の輪帯照明において形成される二次光源に対する一対のフレネ ルレンズの作用を説明する図である。  FIG. 11 is a diagram illustrating the action of a pair of Fresnel lenses on a secondary light source formed in the annular illumination of the second embodiment.
[図 12]本発明の第 3実施形態に力、かる露光装置の構成を概略的に示す図である。  FIG. 12 is a view schematically showing a configuration of an exposure apparatus according to a third embodiment of the present invention.
[図 13]第 3実施形態における縦横比変化手段の内部構成を概略的に示す図である  FIG. 13 is a diagram schematically showing an internal configuration of an aspect ratio changing unit according to a third embodiment.
[図 14]第 3実施形態において形成される二次光源に対するシリンドリカルズームレン ズの作用を説明する図である。 FIG. 14 is a view for explaining the action of a cylindrical zoom lens on a secondary light source formed in a third embodiment.
[図 15]シリンドリカルズームレンズの真円状態および楕円状態におレ、て照明瞳で得ら れる光強度分布を示す図である。  FIG. 15 is a diagram showing a light intensity distribution obtained at an illumination pupil in a true circular state and an elliptical state of the cylindrical zoom lens.
[図 16]第 3実施形態の変形例に力、かる縦横比変化手段の内部構成を概略的に示す 図である。  FIG. 16 is a view schematically showing an internal configuration of an aspect ratio changing means according to a modification of the third embodiment.
[図 17]マイクロデバイスとしての半導体デバイスを得る際の手法のフローチャートであ る。  FIG. 17 is a flowchart of a method for obtaining a semiconductor device as a micro device.
[図 18]マイクロデバイスとしての液晶表示素子を得る際の手法のフローチャートである 発明を実施するための最良の形態  FIG. 18 is a flowchart of a method for obtaining a liquid crystal display element as a micro device. BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 本発明の実施形態を、添付図面に基づいて説明する。 An embodiment of the present invention will be described with reference to the accompanying drawings.
図 1は、本発明の第 1実施形態に力かる露光装置の構成を概略的に示す図である 。図 1において、感光性基板であるウェハの法線方向に沿って Z軸を、ウェハ面内に おいて図 1の紙面に平行な方向に Y軸を、ウェハ面内において図 1の紙面に垂直な 方向に X軸をそれぞれ設定している。なお、図 1では、照明光学装置が輪帯照明を 行うように設定されている。  FIG. 1 is a view schematically showing a configuration of an exposure apparatus according to a first embodiment of the present invention. In FIG. 1, the Z axis is along the normal direction of the wafer that is a photosensitive substrate, the Y axis is in the direction parallel to the plane of FIG. 1 in the plane of the wafer, and the Y axis is perpendicular to the plane of FIG. 1 in the plane of the wafer. The X axis is set in each direction. In FIG. 1, the illumination optical device is set to perform annular illumination.
[0021] 図 1の露光装置は、露光光(照明光)を供給するための光源 1として、たとえば波長 力 ¾48nmの光を供給する KrFエキシマレーザー光源または波長が 193nmの光を 供給する ArFエキシマレーザー光源を備えている。光源 1から Z方向に沿って射出さ れたほぼ平行光束は、 X方向に沿って細長く延びた矩形状の断面を有し、一対のレ ンズ 2aおよび 2bからなるビームエキスパンダー 2に入射する。各レンズ 2aおよび 2b は、図 1の紙面内(YZ平面内)において負の屈折力および正の屈折力をそれぞれ有 する。したがって、ビームエキスパンダー 2に入射した光束は、図 1の紙面内において 拡大され、所定の矩形状の断面を有する光束に整形される。 The exposure apparatus shown in FIG. 1 uses, for example, a KrF excimer laser light source for supplying light having a wavelength of ¾48 nm or an ArF excimer laser for supplying light having a wavelength of 193 nm as a light source 1 for supplying exposure light (illumination light). It has a light source. A substantially parallel light beam emitted from the light source 1 along the Z direction has a rectangular cross section elongated in the X direction and enters a beam expander 2 including a pair of lenses 2a and 2b. Each lens 2a and 2b Has a negative refractive power and a positive refractive power in the plane of FIG. 1 (in the YZ plane). Therefore, the light beam incident on the beam expander 2 is enlarged in the plane of FIG. 1 and shaped into a light beam having a predetermined rectangular cross section.
[0022] 整形光学系としてのビームエキスパンダー 2を介したほぼ平行な光束は、折り曲げミ ラー 3で Υ方向に偏向された後、輪帯照明用の回折光学素子 (DOE) 4aに入射する 。一般に、回折光学素子は、ガラス基板に露光光(照明光)の波長程度のピッチを有 する段差を形成することによって構成され、入射ビームを所望の角度に回折する作 用を有する。回折光学素子 4aは、矩形状の断面を有する平行光束が入射した場合 、そのファーフィールド(フラウンホーファー回折領域)において、たとえば光軸 AXを 中心とした輪帯状の光強度分布を形成する機能を有する。  A substantially parallel light beam passing through a beam expander 2 as a shaping optical system is deflected in the Υ direction by a bending mirror 3, and then enters a diffractive optical element (DOE) 4a for annular illumination. Generally, a diffractive optical element is formed by forming a step having a pitch of about the wavelength of exposure light (illumination light) on a glass substrate, and has a function of diffracting an incident beam to a desired angle. The diffractive optical element 4a has a function of forming, for example, a ring-shaped light intensity distribution in the far field (Fraunhofer diffraction region) when a parallel light beam having a rectangular cross section enters, for example. .
[0023] 輪帯照明用の回折光学素子 4aは、照明光路に対して揷脱自在に構成され、たとえ ば円形照明用の回折光学素子 4bと切り換え可能に構成されている。円形照明用の 回折光学素子 4bの構成および作用については後述する。ここで、輪帯照明用の回 折光学素子 4aと円形照明用の回折光学素子 4bとの間の切り換えは、制御系 21から の指令に基づいて動作する駆動系 22により行われる。制御系 21には、ステップ'ァ ンド 'リピート方式またはステップ ·アンド ·スキャン方式にしたがって順次露光すべき 各種のマスクに関する情報などがキーボードなどの入力手段 20を介して入力される  The orbicular zone illumination diffractive optical element 4a is configured to be freely detachable from the illumination optical path, and is configured to be switchable with, for example, a circular illumination diffractive optical element 4b. The configuration and operation of the diffractive optical element 4b for circular illumination will be described later. Here, switching between the diffraction optical element 4a for annular illumination and the diffractive optical element 4b for circular illumination is performed by a drive system 22 that operates based on a command from the control system 21. Information about various masks to be sequentially exposed according to the step-and-repeat method or the step-and-scan method is input to the control system 21 via the input means 20 such as a keyboard.
[0024] 光束変換素子としての回折光学素子 4aを介した光束は、ァフォーカルレンズ (リレ 一光学系) 5に入射する。ァフォーカルレンズ 5は、その前側焦点位置と回折光学素 子 4aの位置とがほぼ一致し且つその後側焦点位置と図中破線で示す所定面 6の位 置とがほぼ一致するように設定されたァフォーカル系(無焦点光学系)である。したが つて、回折光学素子 4aに入射したほぼ平行光束は、ァフォーカルレンズ 5の瞳面に 輪帯状の光強度分布を形成した後、ほぼ平行光束となってァフォーカルレンズ 5から 射出される。 The light beam passing through the diffractive optical element 4a as a light beam conversion element enters an afocal lens (relay optical system) 5. The afocal lens 5 is set such that the front focal position thereof substantially matches the position of the diffractive optical element 4a, and the rear focal position substantially matches the position of the predetermined surface 6 indicated by a broken line in the figure. It is an afocal system (a non-focus optical system). Therefore, the substantially parallel light beam that has entered the diffractive optical element 4a forms an orbicular light intensity distribution on the pupil plane of the afocal lens 5, and then emerges from the afocal lens 5 as a substantially parallel light beam.
[0025] なお、ァフォーカルレンズ 5の前側レンズ群 5aと後側レンズ群 5bとの間の光路中に おいて瞳またはその近傍には、光源側から順に、第 2変更手段としての円錐アキシコ ン系 7、第 1シリンドリカルレンズ対 8、および第 2シリンドリカルレンズ対 9が配置されて いる力 S、その詳細な構成および作用については後述する。以下、説明を簡単にする ために、円錐アキシコン系 7、第 1シリンドリカルレンズ対 8、および第 2シリンドリカルレ ンズ対 9の作用を無視して、第 1実施形態の基本的な構成および作用を説明する。 [0025] In the optical path between the front lens group 5a and the rear lens group 5b of the afocal lens 5, at or near the pupil, in order from the light source side, a conical axicon as a second changing means is provided. System 7, the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9 The force S, its detailed configuration and operation will be described later. Hereinafter, for the sake of simplicity, the basic configuration and operation of the first embodiment will be described ignoring the operation of the conical axicon system 7, the first pair of cylindrical lenses 8, and the second pair of cylindrical lenses 9. I do.
[0026] ァフォーカルレンズ 5を介した光束は、第 1変更手段としての σ値可変用のズームレ ンズ (変倍光学系) 10を介して、オプティカルインテグレータとしてのマイクロフライア ィレンズ 11に入射する。なお、 σ値は、照明光学系の瞳(照明瞳)に形成される二次 光源の大きさ(直径)を R1とし、投影光学系 PLの瞳に形成される照明光束または光 源像の大きさ(直径)を R2とし、投影光学系 PLのマスク M側の開口数を NAoとし、マ スク Mを照明する照明光学系の開口数を NAiとするとき、 σ =NAi/NAo = R2/R 1として定義される。 The light beam passing through the afocal lens 5 is incident on a micro flywheel lens 11 as an optical integrator via a zoom lens (variable optical system) 10 for changing a value as a first changing unit. Note that the σ value is the size (diameter) of the secondary light source formed on the pupil (illumination pupil) of the illumination optical system, and the size of the illumination light flux or light source image formed on the pupil of the projection optical system PL. When the diameter (diameter) is R2, the numerical aperture of the projection optical system PL on the mask M side is NAo, and the numerical aperture of the illumination optical system that illuminates the mask M is NAi, σ = NAi / NAo = R2 / R Defined as 1.
[0027] なお、所定面 6の位置はズームレンズ 10の前側焦点位置の近傍に配置され、マイ クロフライアイレンズ 11の入射面はズームレンズ 10の後側焦点位置の近傍に配置さ れている。換言すると、ズームレンズ 10は、所定面 6とマイクロフライアイレンズ 11の 入射面とを実質的にフーリエ変換の関係に配置し、ひいてはァフォーカルレンズ 5の 瞳面とマイクロフライアイレンズの入射面とを光学的にほぼ共役に配置している。した がって、マイクロフライアイレンズ 11の入射面上には、ァフォーカルレンズ 5の瞳面と 同様に、たとえば光軸 AXを中心とした輪帯状の照野が形成される。この輪帯状の照 野の全体形状は、ズームレンズ 10の焦点距離に依存して相似的に変化する。ズーム レンズ 10の焦点距離の変化は、制御系 21からの指令に基づいて動作する駆動系 2 3により行われる。  The position of the predetermined surface 6 is located near the front focal position of the zoom lens 10, and the entrance surface of the micro fly's eye lens 11 is located near the rear focal position of the zoom lens 10. . In other words, the zoom lens 10 arranges the predetermined surface 6 and the entrance surface of the micro fly's eye lens 11 substantially in a Fourier transform relationship, and thus the pupil surface of the afocal lens 5 and the entrance surface of the micro fly's eye lens. Are optically substantially conjugated. Therefore, on the entrance surface of the micro fly's eye lens 11, for example, a ring-shaped illumination field centered on the optical axis AX is formed, similarly to the pupil surface of the afocal lens 5. The overall shape of the ring-shaped illumination field varies similarly depending on the focal length of the zoom lens 10. The change in the focal length of the zoom lens 10 is performed by a drive system 23 that operates based on a command from the control system 21.
[0028] マイクロフライアイレンズ 11を構成する各微小レンズは、マスク M上において形成 すべき照野の形状(ひいてはウェハ W上において形成すべき露光領域の形状)と相 似な矩形状の断面を有する。マイクロフライアイレンズ 11に入射した光束は多数の微 小レンズにより二次元的に分割され、その後側焦点面(ひいては照明瞳)にはマイク 口フライアイレンズ 11への入射光束によって形成される照野とほぼ同じ光強度分布を 有する二次光源、すなわち光軸 AXを中心とした輪帯状の実質的な面光源からなる 二次光源が形成される。  Each micro lens constituting the micro fly's eye lens 11 has a rectangular cross section similar to the shape of the illumination field to be formed on the mask M (and, consequently, the shape of the exposure area to be formed on the wafer W). Have. The light beam incident on the micro fly's eye lens 11 is two-dimensionally divided by a number of micro lenses, and the illuminated field formed by the light beam incident on the microphone's fly eye lens 11 is provided on the rear focal plane (and thus the illumination pupil). Thus, a secondary light source having substantially the same light intensity distribution as that of the above, that is, a secondary light source composed of a substantially annular light source having an annular shape centered on the optical axis AX is formed.
[0029] マイクロフライアイレンズ 11の後側焦点面に形成された輪帯状の二次光源からの光 束は、必要に応じて輪帯状の光透過部を有する開口絞りを介して制限され、コ: サー光学系 12の集光作用を受けた後、照明視野絞りとしてのマスクブラインド 13を 重畳的に照明する。マスクブラインド 13の矩形状の開口部(光透過部)を介した光束 は、結像光学系 14の集光作用を受けた後、マスク Mを重畳的に照明する。マスク M のパターンを透過した光束は、投影光学系 PLを介して、ウェハ W上にマスクパターン の像を形成する。投影光学系 PLの入射瞳面には投影光学系 PLの開口数を規定す るための可変開口絞りが設けられ、この可変開口絞りの駆動は制御系 21からの指令 に基づレ、て動作する駆動系 24により行われる。 [0029] Light from an annular secondary light source formed on the rear focal plane of the micro fly's eye lens 11 The bundle is restricted through an aperture stop having a ring-shaped light transmitting portion as required, and after being subjected to the condensing action of the core optical system 12, a mask blind 13 as an illumination field stop is superimposed. Light up. The light beam passing through the rectangular opening (light transmitting portion) of the mask blind 13 illuminates the mask M in a superimposed manner after being subjected to the light condensing action of the imaging optical system 14. The light flux transmitted through the pattern of the mask M forms an image of the mask pattern on the wafer W via the projection optical system PL. On the entrance pupil plane of the projection optical system PL, there is provided a variable aperture stop for defining the numerical aperture of the projection optical system PL, and the operation of the variable aperture stop is performed based on a command from the control system 21. This is performed by the driving system 24.
[0030] こうして、投影光学系 PLの光軸 AXと直交する平面 (XY平面)内においてウェハ W を二次元的に駆動制御しながら一括露光またはスキャン露光を行うことにより、ウェハ Wの各露光領域にはマスク Mのパターンが逐次露光される。なお、一括露光では、 レ、わゆるステップ ·アンド 'リピート方式にしたがって、ウェハの各露光領域に対してマ スクパターンを一括的に露光する。この場合、マスク M上での照明領域の形状は正 方形に近い矩形状であり、マイクロフライアイレンズ 11の各レンズエレメントの断面形 状も正方形に近い矩形状となる。一方、スキャン露光では、いわゆるステップ 'アンド' スキャン方式にしたがって、マスクおよびウェハを投影光学系に対して相対移動させ ながらウェハの各露光領域に対してマスクパターンをスキャン露光する。この場合、マ スク M上での照明領域の形状は短辺と長辺との比がたとえば 1: 3の矩形状であり、マ イク口フライアイレンズ 11の各レンズエレメントの断面形状もこれと相似な矩形状とな る。  [0030] In this manner, by performing batch exposure or scan exposure while driving and controlling the wafer W two-dimensionally in a plane (XY plane) orthogonal to the optical axis AX of the projection optical system PL, each exposure area of the wafer W The pattern of the mask M is sequentially exposed. In the batch exposure, the mask pattern is collectively exposed to each exposure region of the wafer according to a so-called step-and-repeat method. In this case, the shape of the illumination area on the mask M is a rectangular shape close to a square, and the cross-sectional shape of each lens element of the micro fly's eye lens 11 is also a rectangular shape close to a square. On the other hand, in the scan exposure, according to a so-called step 'and' scan method, a mask pattern is scanned and exposed on each exposure region of the wafer while the mask and the wafer are relatively moved with respect to the projection optical system. In this case, the shape of the illumination area on the mask M is a rectangular shape with a ratio of the short side to the long side of, for example, 1: 3, and the cross-sectional shape of each lens element of the fly-eye lens 11 has the same shape. It has a similar rectangular shape.
[0031] 図 2は、第 1実施形態においてァフォーカルレンズの前側レンズ群と後側レンズ群と の間の光路中に配置された円錐アキシコン系の構成を概略的に示す図である。円錐 アキシコン系 7は、光源側から順に、光源側に平面を向け且つマスク側に凹円錐状 の屈折面を向けた第 1プリズム部材 7aと、マスク側に平面を向け且つ光源側に凸円 錐状の屈折面を向けた第 2プリズム部材 7bとから構成されている。  FIG. 2 is a view schematically showing a configuration of a conical axicon system arranged in an optical path between a front lens group and a rear lens group of an afocal lens in the first embodiment. The conical axicon system 7 includes, in order from the light source side, a first prism member 7a having a flat surface facing the light source side and a concave conical refraction surface facing the mask side, and a convex cone having a flat surface facing the mask side and facing the light source side. And a second prism member 7b having a convex refracting surface.
[0032] そして、第 1プリズム部材 7aの凹円錐状の屈折面と第 2プリズム部材 7bの凸円錐状 の屈折面とは、互いに当接可能なように相補的に形成されている。また、第 1プリズム 部材 7aおよび第 2プリズム部材 7bのうち少なくとも一方の部材が光軸 AXに沿って移 動可能に構成され、第 1プリズム部材 7aの凹円錐状の屈折面と第 2プリズム部材 7b の凸円錐状の屈折面との間隔が可変に構成されている。円錐アキシコン系 7の間隔 の変化は、制御系 21からの指令に基づいて動作する駆動系 25により行われる。 [0032] The concave conical refracting surface of the first prism member 7a and the convex conical refracting surface of the second prism member 7b are formed complementarily so as to be able to abut each other. Further, at least one of the first prism member 7a and the second prism member 7b is moved along the optical axis AX. The distance between the concave conical refracting surface of the first prism member 7a and the convex conical refracting surface of the second prism member 7b is variably configured. The change in the interval of the conical axicon system 7 is performed by a drive system 25 that operates based on a command from the control system 21.
[0033] ここで、第 1プリズム部材 7aの凹円錐状屈折面と第 2プリズム部材 7bの凸円錐状屈 折面とが互いに当接している状態では、円錐アキシコン系 7は平行平面板として機能 し、形成される輪帯状の二次光源に及ぼす影響はない。し力 ながら、第 1プリズム 部材 7aの凹円錐状屈折面と第 2プリズム部材 7bの凸円錐状屈折面とを離間させると 、円錐アキシコン系 7は、いわゆるビームエキスパンダーとして機能する。したがって、 円錐アキシコン系 7の間隔の変化に伴って、所定面 6への入射光束の角度は変化す る。 Here, when the concave conical refraction surface of the first prism member 7a and the convex conical refraction surface of the second prism member 7b are in contact with each other, the conical axicon system 7 functions as a parallel plane plate. However, there is no effect on the formed annular secondary light source. When the concave conical refracting surface of the first prism member 7a and the convex conical refracting surface of the second prism member 7b are separated from each other, the conical axicon system 7 functions as a so-called beam expander. Therefore, the angle of the light beam incident on the predetermined surface 6 changes with the change of the interval of the conical axicon system 7.
[0034] 図 3は、第 1実施形態の輪帯照明において形成される二次光源に対する円錐アキ シコン系の作用を説明する図である。第 1実施形態の輪帯照明では、円錐アキシコン 系 7の間隔が零で且つズームレンズ 10の焦点距離が最小値に設定された状態(以 下、「標準状態」という)で形成された最も小さい輪帯状の二次光源 30aが、円錐アキ シコン系 7の間隔を零から所定の値まで拡大させることにより、その幅 (外径と内径と の差の 1/2 :図中矢印で示す)が変化することなぐその外径および内径がともに拡 大された輪帯状の二次光源 30bに変化する。換言すると、円錐アキシコン系 7の作用 により、輪帯状の二次光源の幅が変化することなぐその輪帯比(内径/外径)およ び大きさ(外径)がともに変化する。  FIG. 3 is a diagram illustrating the operation of the conical axicon system on the secondary light source formed in the annular illumination of the first embodiment. In the annular illumination of the first embodiment, the smallest distance formed when the interval between the conical axicon systems 7 is zero and the focal length of the zoom lens 10 is set to a minimum value (hereinafter, referred to as a “standard state”). The annular secondary light source 30a expands the interval of the conical axicon system 7 from zero to a predetermined value, thereby reducing the width (1/2 of the difference between the outer diameter and the inner diameter: indicated by an arrow in the figure). The outer light source and inner diameter of the secondary light source 30b are enlarged without changing. In other words, by the action of the conical axicon system 7, both the annular ratio (inner diameter / outer diameter) and the size (outer diameter) change without changing the width of the annular secondary light source.
[0035] 図 4は、第 1実施形態の輪帯照明において形成される二次光源に対するズームレ ンズの作用を説明する図である。第 1実施形態の輪帯照明では、標準状態で形成さ れた輪帯状の二次光源 30aが、ズームレンズ 10の焦点距離を最小値から所定の値 へ拡大させることにより、その全体形状が相似的に拡大された輪帯状の二次光源 30 cに変化する。換言すると、ズームレンズ 10の作用により、輪帯状の二次光源の輪帯 比が変化することなぐその幅および大きさ(外径)がともに変化する。  FIG. 4 is a view for explaining the action of the zoom lens on the secondary light source formed in the annular illumination of the first embodiment. In the annular illumination of the first embodiment, the annular secondary light source 30a formed in the standard state has a similar overall shape by expanding the focal length of the zoom lens 10 from a minimum value to a predetermined value. It changes to the secondary light source 30c in the form of an annular zone that has been enlarged in an enlarged manner. In other words, by the action of the zoom lens 10, both the width and the size (outer diameter) of the ring-shaped secondary light source change without changing the ring ratio.
[0036] 図 5は、第 1実施形態においてァフォーカルレンズの前側レンズ群と後側レンズ群と の間の光路中に配置された第 1シリンドリカルレンズ対および第 2シリンドリカルレンズ 対の構成を概略的に示す図である。図 5において、光源側から順に、第 1シリンドリカ ルレンズ対 8および第 2シリンドリカルレンズ対 9が配置されている。第 1シリンドリカル レンズ対 8は、光源側から順に、たとえば YZ平面内に負屈折力を有し且つ XY平面 内に無屈折力の第 1シリンドリカル負レンズ 8aと、同じく YZ平面内に正屈折力を有し 且つ XY平面内に無屈折力の第 1シリンドリカル正レンズ 8bとにより構成されている。 FIG. 5 schematically shows the configuration of a first cylindrical lens pair and a second cylindrical lens pair arranged in the optical path between the front lens group and the rear lens group of the afocal lens in the first embodiment. FIG. In Fig. 5, in order from the light source side, The lens pair 8 and the second cylindrical lens pair 9 are arranged. The first pair of cylindrical lenses 8 has, for example, a first cylindrical negative lens 8a having a negative refractive power in the YZ plane and having no refractive power in the XY plane and a positive refractive power in the YZ plane in the order from the light source side. And a non-refractive first cylindrical positive lens 8b in the XY plane.
[0037] 一方、第 2シリンドリカルレンズ対 9は、光源側から順に、たとえば XY平面内に負屈 折力を有し且つ YZ平面内に無屈折力の第 2シリンドリカル負レンズ 9aと、同じく XY 平面内に正屈折力を有し且つ YZ平面内に無屈折力の第 2シリンドリカル正レンズ 9b とにより構成されている。第 1シリンドリカル負レンズ 8aと第 1シリンドリカル正レンズ 8b とは、制御系 21からの指令に基づいて動作する駆動系 26により、光軸 AXを中心と して一体的に回転するように構成されている。同様に、第 2シリンドリカル負レンズ 9a と第 2シリンドリカル正レンズ 9bとは、制御系 21からの指令に基づいて動作する駆動 系 27により、光軸 AXを中心として一体的に回転するように構成されている。  On the other hand, the second cylindrical lens pair 9 includes, in order from the light source side, for example, a second cylindrical negative lens 9a having a negative refractive power in the XY plane and a non-refractive power in the YZ plane, and the XY plane. And a second cylindrical positive lens 9b having a positive refractive power inside and having no refractive power in the YZ plane. The first cylindrical negative lens 8a and the first cylindrical positive lens 8b are configured to rotate integrally about an optical axis AX by a drive system 26 that operates based on a command from a control system 21. I have. Similarly, the second cylindrical negative lens 9a and the second cylindrical positive lens 9b are configured to rotate integrally about an optical axis AX by a drive system 27 that operates based on a command from a control system 21. ing.
[0038] こうして、図 5に示す状態において、第 1シリンドリカルレンズ対 8は Z方向にパワー を有するビームエキスパンダーとして機能し、第 2シリンドリカルレンズ対 9は X方向に パワーを有するビームエキスパンダーとして機能する。第 1実施形態では、第 1シリン ドリカルレンズ対 8のパワーと第 2シリンドリカルレンズ対 9のパワーとが互いに同じに 設定されている。  Thus, in the state shown in FIG. 5, the first pair of cylindrical lenses 8 functions as a beam expander having power in the Z direction, and the second pair of cylindrical lenses 9 functions as a beam expander having power in the X direction. In the first embodiment, the power of the first pair of cylindrical lenses 8 and the power of the second pair of cylindrical lenses 9 are set to be equal to each other.
[0039] 図 6—図 8は、第 1実施形態の輪帯照明において形成される二次光源に対する第 1 シリンドリカルレンズ対および第 2シリンドリカルレンズ対の作用を説明する図である。 図 6では、第 1シリンドリカルレンズ対 8のパワー方向が Z軸に対して光軸 AX廻りに + 45度の角度をなし、第 2シリンドリカルレンズ対 9のパワー方向が Z軸に対して光軸 A X廻りに一 45度の角度をなすように設定されてレ、る。  FIG. 6 to FIG. 8 are diagrams for explaining the operation of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source formed in the annular illumination of the first embodiment. In FIG. 6, the power direction of the first cylindrical lens pair 8 forms an angle of +45 degrees around the optical axis AX with respect to the Z axis, and the power direction of the second cylindrical lens pair 9 changes the optical axis AX with respect to the Z axis. It is set to make an angle of about 45 degrees around it.
[0040] したがって、第 1シリンドリカルレンズ対 8のパワー方向と第 2シリンドリカルレンズ対 9 のパワー方向とが互いに直交し、第 1シリンドリカルレンズ対 8と第 2シリンドリカルレン ズ対 9との合成系において Z方向のパワーと X方向のパワーとが互いに同じになる。 その結果、図 6に示す真円状態では、第 1シリンドリカルレンズ対 8と第 2シリンドリカル レンズ対 9との合成系を通過する光束は、 Z方向および X方向に同じパワーで拡大作 用を受けることになり、照明瞳には真円輪帯状の二次光源が形成されることになる。 [0041] これに対し、図 7では、第 1シリンドリカルレンズ対 8のパワー方向が Z軸に対して光 軸 AX廻りに例えば + 80度の角度をなし、第 2シリンドリカルレンズ対 9のパワー方向 力 軸に対して光軸 AX廻りに例えば一 80度の角度をなすように設定されている。した がって、第 1シリンドリカルレンズ対 8と第 2シリンドリカルレンズ対 9との合成系におい て、 Z方向のパワーよりも X方向のパワーの方が大きくなる。その結果、図 7に示す横 楕円状態では、第 1シリンドリカルレンズ対 8と第 2シリンドリカルレンズ対 9との合成系 を通過する光束は、 Z方向よりも X方向の方が大きなパワーで拡大作用を受けること になり、照明瞳には X方向に細長い横長の輪帯状の二次光源が形成されることにな る。 Accordingly, the power direction of the first pair of cylindrical lenses 8 and the power direction of the second pair of cylindrical lenses 9 are orthogonal to each other, and in the combined system of the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9, Z The power in the direction and the power in the X direction are the same. As a result, in the perfect circle state shown in Fig. 6, the light beam that passes through the combined system of the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9 undergoes an expanding operation with the same power in the Z and X directions. Thus, a secondary light source having a perfect circular ring shape is formed on the illumination pupil. On the other hand, in FIG. 7, the power direction of the first pair of cylindrical lenses 8 makes an angle of, for example, +80 degrees around the optical axis AX with respect to the Z axis, and the power direction of the second pair of cylindrical lenses 9 It is set to form an angle of, for example, 180 degrees around the optical axis AX with respect to the axis. Therefore, in the combined system of the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9, the power in the X direction is larger than the power in the Z direction. As a result, in the horizontal elliptical state shown in FIG. 7, the light beam passing through the combined system of the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9 expands with a larger power in the X direction than in the Z direction. In the illumination pupil, a secondary light source elongated in the X direction is formed.
[0042] 一方、図 8では、第 1シリンドリカルレンズ対 8のパワー方向が Z軸に対して光軸 AX 廻りに例えば + 10度の角度をなし、第 2シリンドリカルレンズ対 9のパワー方向が Z軸 に対して光軸 AX廻りに例えば- 10度の角度をなすように設定されている。したがつ 方向のパワーよりも Z方向のパワーの方が大きくなる。その結果、図 8に示す縦楕円 状態では、第 1シリンドリカルレンズ対 8と第 2シリンドリカルレンズ対 9との合成系を通 過する光束は、 X方向よりも Z方向の方が大きなパワーで拡大作用を受けることになり 、照明瞳には Z方向に細長い縦長の輪帯状の二次光源が形成されることになる。  On the other hand, in FIG. 8, the power direction of the first pair of cylindrical lenses 8 forms an angle of, for example, +10 degrees around the optical axis AX with respect to the Z axis, and the power direction of the second pair of cylindrical lenses 9 is The angle is set to, for example, −10 degrees around the optical axis AX. Therefore, the power in the Z direction is larger than the power in the following direction. As a result, in the state of the vertical ellipse shown in FIG. 8, the light flux passing through the combined system of the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9 has a larger power in the Z direction than in the X direction. As a result, the illumination pupil is formed with a vertically elongated annular light source elongated in the Z direction.
[0043] さらに、第 1シリンドリカルレンズ対 8および第 2シリンドリカルレンズ対 9を図 6に示す 真円状態と図 7に示す横楕円状態との間の任意の状態に設定することにより、様々な 縦横比にしたがう横長の輪帯状の二次光源を形成することができる。また、第 1シリン ドリカルレンズ対 8および第 2シリンドリカルレンズ対 9を図 6に示す真円状態と図 8に 示す縦楕円状態との間の任意の状態に設定することにより、様々な縦横比にしたがう 縦長の輪帯状の二次光源を形成することができる。  Further, by setting the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9 to an arbitrary state between the perfect circle state shown in FIG. 6 and the horizontal ellipse state shown in FIG. According to the ratio, a horizontally elongated annular light source can be formed. Further, by setting the first cylindrical lens pair 8 and the second cylindrical lens pair 9 to an arbitrary state between the perfect circle state shown in FIG. 6 and the vertical ellipse state shown in FIG. 8, various aspect ratios can be obtained. A vertically long annular light source can be formed.
[0044] 次いで、輪帯照明用の回折光学素子 4aに代えて円形照明用の回折光学素子 4b を照明光路中に設定することによって得られる円形照明について説明する。円形照 明用の回折光学素子 4bは、矩形状の断面を有する平行光束が入射した場合、その ファーフィールド(フラウンホーファー回折領域)において、たとえば光軸 AXを中心と した円形状の光強度分布を形成する機能を有する。したがって、回折光学素子 4bを 介した光束は、ァフォーカルレンズ 5の瞳面に円形状の光強度分布を形成した後、ほ ぼ平行光束となってァフォーカルレンズ 5から射出される。 Next, a description will be given of a circular illumination obtained by setting a diffractive optical element 4b for circular illumination in the illumination optical path instead of the diffractive optical element 4a for annular illumination. When a parallel luminous flux having a rectangular cross section is incident, the diffractive optical element 4b for circular illumination generates, for example, a circular light intensity distribution centered on the optical axis AX in the far field (Fraunhofer diffraction region). Has the function of forming. Therefore, the diffractive optical element 4b The transmitted light flux forms a circular light intensity distribution on the pupil plane of the afocal lens 5, and then exits from the afocal lens 5 as a substantially parallel light flux.
[0045] ァフォーカルレンズ 5を介した光束は、ズームレンズ 10を介して、マイクロフライアイ レンズ 11の入射面上に、ァフォーカルレンズ 5の瞳面と同様に、光軸 AXを中心とし た円形状の照野が形成される。その結果、マイクロフライアイレンズ 11の後側焦点面 にも、光軸 AXを中心とした円形状の二次光源が形成される。円形照明では、円錐ァ キシコン系 7が平行平面板として機能するように、第 1プリズム部材 7aの凹円錐状屈 折面と第 2プリズム部材 7bの凸円錐状屈折面とが互いに当接した状態に維持される The light beam passing through the afocal lens 5 passes through the zoom lens 10 onto the entrance surface of the micro fly's eye lens 11, similarly to the pupil plane of the afocal lens 5, and has a circle centered on the optical axis AX. An illumination field of a shape is formed. As a result, a circular secondary light source centered on the optical axis AX is also formed on the rear focal plane of the micro fly's eye lens 11. In circular illumination, the concave conical bending surface of the first prism member 7a and the convex conical refracting surface of the second prism member 7b are in contact with each other so that the conical axicon system 7 functions as a parallel plane plate. Maintained in
[0046] そして、第 1シリンドリカルレンズ対 8と第 2シリンドリカルレンズ対 9との合成系を図 6 に示す真円状態に設定すると、照明瞳には真円形状の二次光源が形成される。また 、第 1シリンドリカルレンズ対 8と第 2シリンドリカルレンズ対 9との合成系を図 7に示す 横楕円状態に設定すると、照明瞳には横長の円形状の二次光源が形成される。また 縦楕円状態に設定すると、照明瞳には縦長の円形状の二次光源が形成される。 When the combined system of the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9 is set in a perfect circular state shown in FIG. 6, a perfect circular secondary light source is formed on the illumination pupil. Further, when the combined system of the first cylindrical lens pair 8 and the second cylindrical lens pair 9 is set to the horizontal elliptical state shown in FIG. 7, a horizontally long circular secondary light source is formed on the illumination pupil. Further, when the vertical elliptically set state is set, a vertically long circular secondary light source is formed on the illumination pupil.
[0047] さらに、第 1シリンドリカルレンズ対 8および第 2シリンドリカルレンズ対 9を図 6に示す 真円状態と図 7に示す横楕円状態との間の任意の状態に設定することにより、様々な 縦横比にしたがう横長の円形状の二次光源を形成することができる。また、第 1シリン ドリカルレンズ対 8および第 2シリンドリカルレンズ対 9を図 6に示す真円状態と図 8に 示す縦楕円状態との間の任意の状態に設定することにより、様々な縦横比にしたがう 縦長の円形状の二次光源を形成することができる。 Further, by setting the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9 to an arbitrary state between the perfect circle state shown in FIG. 6 and the horizontal ellipse state shown in FIG. It is possible to form a horizontally long circular secondary light source according to the ratio. Further, by setting the first cylindrical lens pair 8 and the second cylindrical lens pair 9 to an arbitrary state between the perfect circle state shown in FIG. 6 and the vertical ellipse state shown in FIG. 8, various aspect ratios can be obtained. A vertically long circular secondary light source can be formed.
[0048] 上述のように、第 1実施形態において、第 1シリンドリカルレンズ対 8および第 2シリン ドリ力ノレレンズ対 9は、それぞれ直交する 2つの方向でパワーが互いに異なる光学素 子群(レンズ群)であり、双方の光学素子群が光軸 AXを中心として回転可能に構成 されている。こうして、第 1シリンドリカルレンズ対 8と第 2シリンドリカルレンズ対 9とは、 照明瞳と実質的にフーリエ変換の関係にある位置またはその近傍に配置されて、直 交する 2つの方向のパワー比を変化させる機能を有する光学素子群であって、照明 瞳に形成される光強度分布の縦横比を変化させるための縦横比変化手段を構成し ている。 [0048] As described above, in the first embodiment, the first cylindrical lens pair 8 and the second cylindrical force pair lens 9 are optical element groups (lens groups) having different powers in two orthogonal directions. Both optical element groups are configured to be rotatable about the optical axis AX. Thus, the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9 are arranged at or near a position substantially in Fourier transform relation with the illumination pupil, and change the power ratio in two orthogonal directions. An optical element group having a function to change the aspect ratio of the light intensity distribution formed on the illumination pupil. ing.
[0049] その結果、たとえば輪帯状や円形状の二次光源が僅かに縦長または横長に形成さ れることに起因して、あるいは二次光源が所望の輪帯状や円形状に形成されてレ、て もレジスト特性などに起因して、直交する二方向でパターンの線幅差が発生する場 合には、第 1シリンドリカルレンズ対 8と第 2シリンドリカルレンズ対 9とからなる縦横比 変化手段の作用により二次光源の縦横比を随時調整して、線幅差の発生を実質的 に抑えることができる。また、転写すべきパターンに方向性がある場合には、縦横比 変化手段 (8, 9)の作用により二次光源の縦横比を随時調整して輪帯状や円形状の 二次光源を積極的に縦長または横長に設定することにより、線幅差の発生を実質的 に抑えることができる。  [0049] As a result, for example, the secondary light source is formed in a desired annular shape or circular shape, for example, because the annular light source or the circular secondary light source is formed slightly vertically or horizontally long. In the case where a line width difference of a pattern occurs in two orthogonal directions due to resist characteristics, etc., the action of the aspect ratio changing means including the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9 is used. Accordingly, the aspect ratio of the secondary light source can be adjusted as needed, and the occurrence of a line width difference can be substantially suppressed. When the pattern to be transferred has directionality, the aspect ratio of the secondary light source is adjusted as needed by the action of the aspect ratio changing means (8, 9) to proactively control the annular or circular secondary light source. By setting the length to be long or wide, the occurrence of a line width difference can be substantially suppressed.
[0050] 以上のように、第 1実施形態の照明光学装置(1一 14)では、第 1シリンドリカルレン ズ対 8と第 2シリンドリカルレンズ対 9とからなる縦横比変化手段の作用により、簡易な 構成に基づいて、照明瞳に形成される二次光源の縦横比を随時調整することができ る。したがって、第 1実施形態の露光装置では、照明瞳に形成される二次光源の縦 横比を随時調整することのできる照明光学装置を用いて、直交する二方向でパター ンの線幅差が実質的に発生することのない高精度な露光を行うことができる。  As described above, in the illumination optical device (114) of the first embodiment, a simple aspect ratio changing means including the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9 allows the illumination optical device (114) to operate simply. Based on the configuration, the aspect ratio of the secondary light source formed on the illumination pupil can be adjusted at any time. Therefore, in the exposure apparatus of the first embodiment, the line width difference of the pattern in the two orthogonal directions is determined by using an illumination optical apparatus capable of adjusting the aspect ratio of the secondary light source formed on the illumination pupil at any time. High-precision exposure that does not substantially occur can be performed.
[0051] なお、上述の第 1実施形態では、第 1シリンドリカルレンズ対 8と第 2シリンドリカルレ ンズ対 9とにより縦横比変化手段を構成している。し力 ながら、これに限定されること なぐ一般的には一対の回転非対称なパワーを持つ光学素子からなる第 1光学素子 群と一対の回転非対称なパワーを持つ光学素子からなる第 2光学素子群とにより縦 横比変化手段を構成することもできる。この場合、第 1光学素子群および第 2光学素 子群のうちの少なくとも一方が光軸を中心として回転可能に構成されていることが必 要であり、その双方が光軸を中心として回転可能に構成されていることが好ましい。  In the above-described first embodiment, the first cylindrical lens pair 8 and the second cylindrical lens pair 9 constitute an aspect ratio changing unit. However, the present invention is not limited to this. Generally, a first optical element group including a pair of optical elements having rotationally asymmetric power and a second optical element group including a pair of optical elements having rotationally asymmetric power. Thus, the aspect ratio changing means can also be constituted. In this case, at least one of the first optical element group and the second optical element group needs to be configured to be rotatable about the optical axis, and both of them are rotatable about the optical axis. It is preferable that it is comprised.
[0052] また、上述の第 1実施形態では、縦横比変化手段(8, 9)がァフォーカルレンズ 5の 瞳またはその近傍に配置されている。し力、しながら、これに限定されることなぐたとえ ばマイクロフライアイレンズ 11の入射面近傍のように、一般的には照明瞳と実質的に フーリエ変換の関係にある位置またはその近傍に縦横比変化手段(8, 9)を配置す ることちでさる。 [0053] また、上述の第 1実施形態では、縦横比変化手段 (8, 9)の光源側に変更手段とし ての円錐アキシコン系 7を配置しているが、縦横比変化手段(8, 9)の被照射面側に 円錐アキシコン系 7を配置すれば、縦横比変化手段(8, 9)の小口径化を図ることが できる。 In the first embodiment described above, the aspect ratio changing means (8, 9) is arranged on the pupil of the afocal lens 5 or in the vicinity thereof. However, in general, such as in the vicinity of the entrance surface of the micro fly's eye lens 11, such as in the vicinity of the entrance plane of the micro fly's eye lens 11, a vertical or horizontal position at or near a position substantially in a Fourier transform relationship with the illumination pupil. It is better to arrange ratio changing means (8, 9). Further, in the above-described first embodiment, the conical axicon system 7 as the changing means is arranged on the light source side of the aspect ratio changing means (8, 9). If the conical axicon system 7 is arranged on the irradiated surface side of (), the diameter of the aspect ratio changing means (8, 9) can be reduced.
[0054] 上述の第 1実施形態の照明光学装置(1一 14)の縦横比変化手段(第 1シリンドリカ ルレンズ対 8および第 2シリンドリカルレンズ対 9)は、たとえば照明光学装置(1一 14) や投影光学系 PLが収差を有してレ、る場合に、二次光源が僅かに縦長または横長の 形状 (非対称な形状)になってしまうのを補正するだけではなぐたとえば照明光学装 置(1一 14)や投影光学系 PLが有する透過率分布の特性に起因して、二次光源の 面内輝度分布が非対称 (たとえば二次光源面内において直交する二方向で輝度分 布形状が異なる、典型的には鞍型の輝度分布形状)になった場合に、回転対称な二 次光源の面内輝度分布と等価となるように、二次光源形状を僅かに縦長または横長 の形状に変形させるようにしてもよい。  The aspect ratio changing means (first cylindrical lens pair 8 and second cylindrical lens pair 9) of the illumination optical device (114) of the first embodiment is, for example, an illumination optical device (114) or When the projection optical system PL has an aberration, the secondary light source is not only corrected to have a slightly vertically or horizontally elongated shape (asymmetric shape). For example, the illumination optical device (1) 14) and the characteristics of the transmittance distribution of the projection optical system PL, the in-plane luminance distribution of the secondary light source is asymmetric (for example, the luminance distribution shape differs in two orthogonal directions in the secondary light source plane, (Typically a saddle-shaped luminance distribution shape), the secondary light source shape is slightly vertically or horizontally elongated so as to be equivalent to the in-plane luminance distribution of the rotationally symmetric secondary light source. You may do so.
[0055] また、投影光学系 PLが有する瞳収差に起因して投影光学系 PLの像側開口数の 縦横差が発生し、マスクパターンの転写結果で線幅の縦横差 (V/H差)が生じた際 に、縦横比変化手段 (第 1シリンドリカルレンズ対 8および第 2シリンドリカルレンズ対 9 )を適宜制御して二次光源の形状を最適化し、結果として線幅の縦横差を解消する こともできる。あるいは投影光学系 PLの像側開口数の縦横差の像面内不均一性が 生じた場合に、縦横比変化手段 (第 1シリンドリカルレンズ対 8および第 2シリンドリカ ルレンズ対 9)を適宜制御 (振り分け調整)して二次光源の形状を最適化し、結果とし て線幅の縦横差の面内不均一性を低減させることもできる。  Further, a pupil aberration of the projection optical system PL causes a vertical / horizontal difference of the image-side numerical aperture of the projection optical system PL, and a vertical / horizontal difference (V / H difference) of a line width in a mask pattern transfer result. When the aspect ratio occurs, the aspect ratio changing means (the first cylindrical lens pair 8 and the second cylindrical lens pair 9) is appropriately controlled to optimize the shape of the secondary light source, and as a result, to eliminate the difference in the line width aspect ratio. You can also. Alternatively, when non-uniformity of the aspect ratio of the image-side numerical aperture of the projection optical system PL occurs in the image plane, the aspect ratio changing means (first cylindrical lens pair 8 and second cylindrical lens pair 9) is appropriately controlled (distributed). Adjustment) to optimize the shape of the secondary light source, and consequently reduce the in-plane non-uniformity of the line width difference.
[0056] また、たとえば照明光学装置(1一 14)や投影光学系 PLが有する収差や透過率分 布の特性に起因して、二次光源の面内輝度分布が非対称となり、且つ被照射面内 の複数の位置で二次光源の面内輝度分布が不均一となった場合に、被照射面の複 数の位置での二次光源の面内輝度分布が対称且つ均一になるように(対称且つ均 一に近づくように)振り分け調整を行ってもよい。  Further, for example, due to the aberration and the transmittance distribution characteristics of the illumination optical device (114) and the projection optical system PL, the in-plane luminance distribution of the secondary light source becomes asymmetric, and When the in-plane luminance distribution of the secondary light source becomes non-uniform at a plurality of positions in the area, the in-plane luminance distribution of the secondary light source at a plurality of positions on the irradiated surface is symmetric and uniform ( The distribution may be adjusted so that it is symmetric and uniform.
[0057] なお、上述の二次光源の形状の計測および二次光源の面内輝度分布の計測には 、たとえば特開 2000— 19012号公報に開示される照明系輝度分布計測装置を用い ればよい。ここで、照明光学装置(1一 14)の各照明条件 (二次光源の形状(円形、輪 帯、多極)や σ値、偏光度など)ごとに二次光源の形状の計測や二次光源の面内輝 度分布の計測をあらかじめ行っておき、各照明条件ごとに縦横比変化手段(第 1シリ ンドリカルレンズ対 8および第 2シリンドリカルレンズ対 9)による補正量を求めておくこ とが好ましい。この求められた補正量に基づいて、照明光学装置(1一 14)の照明条 件が変更された際に、縦横比変化手段(第 1シリンドリカルレンズ対 8および第 2シリン ドリカルレンズ対 9)を制御すれば、各々の照明条件に対して個別に二次光源の形状 の最適化を行うことができる。 For the measurement of the shape of the secondary light source and the measurement of the in-plane luminance distribution of the secondary light source, for example, an illumination system luminance distribution measuring device disclosed in JP-A-2000-19012 is used. Just do it. Here, the measurement of the shape of the secondary light source and the measurement of the secondary light source for each illumination condition (the shape of the secondary light source (circular, annular, multipole), σ value, degree of polarization, etc.) The in-plane brightness distribution of the light source should be measured in advance, and the amount of correction by the aspect ratio changing means (first cylindrical lens pair 8 and second cylindrical lens pair 9) should be determined for each lighting condition. Is preferred. When the illumination conditions of the illumination optical device (114) are changed based on the obtained correction amount, the aspect ratio changing means (first cylindrical lens pair 8 and second cylindrical lens pair 9) is controlled. Then, the shape of the secondary light source can be individually optimized for each lighting condition.
[0058] また、上述の第 1実施形態において、マスクパターンの転写結果で線幅の縦横差( VZH差)が発生した際に、縦横比変化手段(第 1シリンドリカルレンズ対 8および第 2 シリンドリカルレンズ対 9)を適宜制御して二次光源の形状を最適化し、結果として線 幅の縦横差を解消することができる。これは、二次光源の形状や二次光源の面内輝 度分布に非対称性があつたときに、二次光源の非対称性を補正する場合と、それと は異なる要因(たとえば感光性材料塗布時の膜厚分布などのプロセス条件や露光量 の面内不均一性など)で発生している線幅の縦横差を、二次光源の形状を積極的に 変形させて補正する場合との双方を含むものである。なお、この場合、線幅の縦横差 の像面内不均一性を考慮して補正することも含まれる。  In the first embodiment described above, when a vertical / horizontal difference (VZH difference) of the line width occurs in the transfer result of the mask pattern, the vertical / horizontal ratio changing means (first cylindrical lens pair 8 and second cylindrical lens) is used. By appropriately controlling the pair 9), the shape of the secondary light source can be optimized, and as a result, the vertical and horizontal differences in line width can be eliminated. This is because the asymmetry of the secondary light source is corrected when there is asymmetry in the shape of the secondary light source or the in-plane brightness distribution of the secondary light source. The line width and height difference caused by process conditions such as film thickness distribution and in-plane non-uniformity of exposure dose) are both corrected by actively deforming the shape of the secondary light source. Including. In this case, the correction includes taking into consideration the in-image non-uniformity of the line width difference.
[0059] また、上述した二次光源の形状の調整は、典型的には照明光学装置(1一 14)の 製造時、ひいては投影露光装置の製造時に実施される。しかしながら、投影露光装 置のユーザが投影露光装置を使用してマスクパターンをウェハに投影露光する際の 条件を設定する際に、その条件を最適化するために二次光源の形状の調整を行つ てもよレ、。また、照明光学装置(1一 14)、ひいては投影露光装置の経時変化に起因 して二次光源の形状や二次光源の面内輝度分布の状態が変化した場合に、二次光 源の形状の調整を行ってもよい。また、照明光学装置(1一 14)、ひいては投影露光 装置の性能向上を目的として、照明光学装置(1一 14)、ひいては投影露光装置の 一部の部品を再調整'交換することが行われた際に、二次光源の形状の再調整を行 つてもよレ、。また、照明光学装置(1一 14)において新たな照明条件を設定する際に 、二次光源の形状を調整して、その新たな照明条件に対して二次光源の形状を最適 化してもよい。 The above-described adjustment of the shape of the secondary light source is typically performed when the illumination optical device (114) is manufactured, and thus when the projection exposure apparatus is manufactured. However, when the user of the projection exposure apparatus sets conditions for projecting and exposing the mask pattern onto the wafer using the projection exposure apparatus, the shape of the secondary light source is adjusted in order to optimize the conditions. You can do it. Also, when the shape of the secondary light source or the state of the in-plane luminance distribution of the secondary light source changes due to the temporal change of the illumination optical device (114), and thus the projection exposure apparatus, the shape of the secondary light source may be changed. May be adjusted. In order to improve the performance of the illumination optical device (114) and, consequently, the performance of the projection exposure apparatus, readjustment and replacement of the illumination optical device (114) and, eventually, some parts of the projection exposure apparatus are performed. At that time, the shape of the secondary light source may be readjusted. Also, when setting new illumination conditions in the illumination optical device (1-114), adjust the shape of the secondary light source to optimize the shape of the secondary light source for the new illumination condition. It may be.
[0060] 図 9は、本発明の第 2実施形態に力かる露光装置の構成を概略的に示す図である 。また、図 10は、第 2実施形態における縦横比変化手段の構成を概略的に示す図で ある。第 2実施形態は、第 1実施形態と類似の構成を有する。し力 ながら、第 1実施 形態では第 1シリンドリカルレンズ対 8と第 2シリンドリカルレンズ対 9とからなる縦横比 変化手段がァフォーカルレンズ 5の光路中に配置されているのに対し、第 2実施形態 では一対のフレネルレンズからなる縦横比変化手段(15a, 15b)が折り曲げミラー 3と 回折光学素子 (4a, 4b)との間の光路中に配置されている点が相違している。以下、 第 1実施形態との相違点に着目して、第 2実施形態を説明する。  FIG. 9 is a diagram schematically showing a configuration of an exposure apparatus working according to the second embodiment of the present invention. FIG. 10 is a diagram schematically illustrating a configuration of an aspect ratio changing unit according to the second embodiment. The second embodiment has a configuration similar to that of the first embodiment. However, in the first embodiment, the aspect ratio changing means including the first pair of cylindrical lenses 8 and the second pair of cylindrical lenses 9 is arranged in the optical path of the afocal lens 5, whereas the second embodiment is different from the first embodiment. The difference is that the aspect ratio changing means (15a, 15b) composed of a pair of Fresnel lenses is arranged in the optical path between the folding mirror 3 and the diffractive optical element (4a, 4b). Hereinafter, the second embodiment will be described focusing on the differences from the first embodiment.
[0061] 図 9および図 10を参照すると、第 2実施形態では、折り曲げミラー 3と回折光学素子  Referring to FIGS. 9 and 10, in the second embodiment, the bending mirror 3 and the diffractive optical element
(4a, 4b)との間の光路中に、一対のフレネルレンズ 15aおよび 15b力、らなる縦横比 変化手段 15が配置されている。フレネルレンズ 15aおよび 15bは、それぞれ一方向 にのみ屈折機能を有する光学素子である。また、フレネルレンズ 15aおよび 15bは、 制御系 21からの指令に基づいて動作する駆動系 28により、光軸 AXを中心としてそ れぞれ回転するように構成されてレヽる。  In the optical path between (4a, 4b), a pair of Fresnel lenses 15a and 15b is provided, and an aspect ratio changing means 15 is disposed. The Fresnel lenses 15a and 15b are optical elements each having a refraction function only in one direction. The Fresnel lenses 15a and 15b are configured to rotate around the optical axis AX by a drive system 28 that operates based on a command from the control system 21.
[0062] 図 11は、第 2実施形態の輪帯照明において形成される二次光源に対する一対の フレネルレンズの作用を説明する図である。図 1 1 (a)では、第 1フレネルレンズ 15aの 屈折方向および第 2フレネルレンズ 15bの屈折方向がともに Z軸方向に一致するよう に設定されている。したがって、図 11 (a)に示す縦楕円状態では、一対のフレネルレ ンズ 15aおよび 15bからなる縦横比変化手段 15を通過する光束は、 X軸方向には発 散作用を受けないが Z軸方向に発散作用を受けることになり、照明瞳には Z方向に細 長い縦長の輪帯状の二次光源が形成される。  FIG. 11 is a diagram illustrating the operation of a pair of Fresnel lenses on a secondary light source formed in the annular illumination of the second embodiment. In FIG. 11A, the refraction direction of the first Fresnel lens 15a and the refraction direction of the second Fresnel lens 15b are set so as to coincide with the Z-axis direction. Therefore, in the vertical ellipse state shown in FIG. 11 (a), the luminous flux passing through the aspect ratio changing means 15 including the pair of Fresnel lenses 15a and 15b is not diverged in the X-axis direction, but is not affected in the Z-axis direction. As a result of the diverging effect, a secondary light source in the shape of a vertically elongated annular zone elongated in the Z direction is formed on the illumination pupil.
[0063] 一方、図 11 (b)では、第 1フレネルレンズ 15aの屈折方向および第 2フレネルレンズ 15bの屈折方向がともに X軸方向に一致するように設定されている。したがって、図 1 1 (a)に示す縦楕円状態では、一対のフレネルレンズ 15aおよび 15bからなる縦横比 変化手段 15を通過する光束は、 Z軸方向には発散作用を受けなレ、が X軸方向に発 散作用を受けることになり、照明瞳には X方向に細長い横長の輪帯状の二次光源が 形成される。 [0064] なお、図示を省略したが、第 1フレネルレンズ 15aの屈折方向が X軸方向(または Z 軸方向)に一致するように設定し、第 2フレネルレンズ 15bの屈折方向が Z軸方向(ま たは X軸方向)に一致するように設定することもできる。この真円状態では、一対のフ レネルレンズ 15aおよび 15bからなる縦横比変化手段 15を通過する光束は、 Z軸方 向および X軸方向に同じように発散作用を受けることになり、照明瞳には真円輪帯状 の二次光源が形成される。 On the other hand, in FIG. 11B, the refraction direction of the first Fresnel lens 15a and the refraction direction of the second Fresnel lens 15b are set so as to coincide with the X-axis direction. Therefore, in the vertical ellipse state shown in FIG. 11A, the light beam passing through the aspect ratio changing means 15 including the pair of Fresnel lenses 15a and 15b is not affected by the divergence in the Z-axis direction, but the X-axis. In the illumination pupil, a secondary light source elongated in the X direction is formed. Although not shown, the refraction direction of the first Fresnel lens 15a is set to match the X-axis direction (or Z-axis direction), and the refraction direction of the second Fresnel lens 15b is set in the Z-axis direction ( Or, it can be set to match. In this perfect circle state, the light flux passing through the aspect ratio changing means 15 composed of the pair of Fresnel lenses 15a and 15b is similarly divergent in the Z-axis direction and the X-axis direction, and the illumination pupil is A secondary light source in the shape of a perfect circular ring is formed.
[0065] 同様に、円形照明においても、縦横比変化手段 15を真円状態に設定すると照明 瞳には真円形状の二次光源が形成され、縦横比変化手段 15を図 11 (a)に示す縦 楕円状態に設定すると照明瞳には縦長の円形状の二次光源が形成され、縦横比変 化手段 15を図 11 (b)に示す横楕円状態に設定すると照明瞳には横長の円形状の 二次光源が形成される。さらに、真円状態と図 11 (a)に示す縦楕円状態との間の任 意の状態や真円状態と図 11 (b)に示す横楕円状態との間の任意の状態に設定する ことにより、様々な縦横比にした力 輪帯状や円形状の二次光源を形成することがで きる。  Similarly, in the circular illumination, when the aspect ratio changing means 15 is set to a perfect circle state, a perfect circular secondary light source is formed on the illumination pupil, and the aspect ratio changing means 15 is changed to the state shown in FIG. When the vertical elliptically shown state is set, a vertically elongated circular secondary light source is formed in the illumination pupil, and when the aspect ratio changing means 15 is set to the horizontal elliptical state shown in FIG. A shaped secondary light source is formed. In addition, any state between the perfect circle state and the vertical ellipse state shown in Fig. 11 (a) or any state between the perfect circle state and the horizontal ellipse state shown in Fig. 11 (b) must be set. Accordingly, it is possible to form a secondary light source having a ring-shaped or circular shape having various aspect ratios.
[0066] 上述のように、第 2実施形態において、第 1フレネルレンズ 15aおよび第 2フレネル レンズ 15bは、それぞれ直交する 2つの方向で発散の程度が互いに異なる光学素子 であり、双方の光学素子が光軸 AXを中心としてそれぞれ回転可能に構成されてい る。こうして、第 1フレネルレンズ 15aと第 2フレネルレンズ 15bとは、光束変換素子とし ての回折光学素子 (4a, 4b)に入射する光束の発散の程度を直交する 2つの方向で 独立的に変化させることにより照明瞳に形成される光強度分布の縦横比を変化させ るための縦横比変化手段を構成している。  [0066] As described above, in the second embodiment, the first Fresnel lens 15a and the second Fresnel lens 15b are optical elements having different degrees of divergence in two directions orthogonal to each other. Each is configured to be rotatable about the optical axis AX. Thus, the first Fresnel lens 15a and the second Fresnel lens 15b independently change the degree of divergence of the light beam incident on the diffractive optical element (4a, 4b) as a light beam conversion element in two orthogonal directions. This constitutes an aspect ratio changing means for changing the aspect ratio of the light intensity distribution formed on the illumination pupil.
[0067] その結果、第 2実施形態においても第 1実施形態と同様に、たとえば輪帯状や円形 状の二次光源が僅かに縦長または横長に形成されることに起因して、あるいは二次 光源が所望の輪帯状や円形状に形成されていてもレジスト特性などに起因して、直 交する二方向でパターンの線幅差が発生する場合には、第 1フレネルレンズ 15aと第 2フレネルレンズ 15bとからなる縦横比変化手段 15の作用により二次光源の縦横比 を随時調整して、線幅差の発生を実質的に抑えることができる。また、転写すべきパ ターンに方向性がある場合には、縦横比変化手段 15の作用により二次光源の縦横 比を随時調整して輪帯状や円形状の二次光源を積極的に縦長または横長に設定す ることにより、線幅差の発生を実質的に抑えることができる。 As a result, in the second embodiment, as in the first embodiment, for example, an annular or circular secondary light source is formed slightly vertically or horizontally, or the secondary light source is formed. If the line width of the pattern is generated in two orthogonal directions due to resist characteristics and the like even if the pattern is formed in a desired annular or circular shape, the first Fresnel lens 15a and the second Fresnel lens The aspect ratio of the secondary light source can be adjusted as needed by the operation of the aspect ratio changing means 15 comprising 15b, so that the occurrence of a line width difference can be substantially suppressed. If the pattern to be transferred has directionality, the aspect ratio changing means 15 acts to change the aspect ratio of the secondary light source. By adjusting the ratio at any time and positively setting the annular or circular secondary light source to be vertically long or horizontally long, it is possible to substantially suppress the occurrence of a line width difference.
[0068] なお、上述の第 2実施形態では、第 1フレネルレンズ 15aと第 2フレネルレンズ 15bと により縦横比変化手段を構成している。し力 ながら、これに限定されることなぐ一 般的には直交する 2つの方向で発散の程度が互いに異なる第 1光学素子と直交する 2つの方向で発散の程度が互いに異なる第 2光学素子とにより縦横比変化手段を構 成することもできる。この場合、第 1光学素子および第 2光学素子のうちの少なくとも 一方が光束の進行方向と平行な軸を中心として回転可能に構成されていることが必 要であり、その双方が光軸を中心として回転可能に構成されていることが好ましい。 具体的には、一方向にのみ発散機能を有する一対の回折光学素子により縦横比変 化手段を構成したり、一方向にのみ屈折機能を有する一対のマイクロレンズアレイに より縦横比変化手段を構成したりすることもできる。  In the second embodiment, the first and second Fresnel lenses 15a and 15b constitute an aspect ratio changing unit. However, the present invention is not limited to this. Generally, a first optical element having different degrees of divergence in two orthogonal directions and a second optical element having different degrees of divergence in two orthogonal directions. Thereby, the aspect ratio changing means can be constituted. In this case, it is necessary that at least one of the first optical element and the second optical element is configured to be rotatable about an axis parallel to the traveling direction of the light beam, and both of them are centered on the optical axis. It is preferable to be configured to be rotatable. Specifically, the aspect ratio changing means is constituted by a pair of diffractive optical elements having a diverging function only in one direction, and the aspect ratio changing means is constituted by a pair of microlens arrays having a refraction function in only one direction. You can also.
[0069] 図 12は、本発明の第 3実施形態にかかる露光装置の構成を概略的に示す図であ る。また、図 13は、第 3実施形態における縦横比変化手段の内部構成を概略的に示 す図である。第 3実施形態は、第 2実施形態と類似の構成を有する。しかしながら、第 2実施形態では縦横比変化手段が一対のフレネルレンズ 15aと 15bとにより構成され ているのに対し、第 3実施形態では縦横比変化手段が 1つのシリンドリカルズームレ ンズにより構成されている点が相違している。以下、第 2実施形態との相違点に着目 して、第 3実施形態を説明する。  FIG. 12 is a view schematically showing a configuration of an exposure apparatus according to the third embodiment of the present invention. FIG. 13 is a diagram schematically showing an internal configuration of an aspect ratio changing unit according to the third embodiment. The third embodiment has a configuration similar to that of the second embodiment. However, in the second embodiment, the aspect ratio changing means is constituted by a pair of Fresnel lenses 15a and 15b, whereas in the third embodiment, the aspect ratio changing means is constituted by one cylindrical zoom lens. The points are different. Hereinafter, the third embodiment will be described focusing on the differences from the second embodiment.
[0070] 第 3実施形態では、図 12に示すように、折り曲げミラー 3と回折光学素子 (4a, 4b) との間の光路中に、 1つのシリンドリカルズームレンズ 16からなる縦横比変化手段が 配置されている。図 13に示す状態において、シリンドリカルズームレンズ 16は、 XY 平面内に負屈折力を有し且つ YZ平面内に無屈折力のシリンドリカル負レンズ 16aと 、XY平面内に正屈折力を有し且つ YZ平面内に無屈折力のシリンドリカル正レンズ 1 6bとにより構成されている。  In the third embodiment, as shown in FIG. 12, in the optical path between the bending mirror 3 and the diffractive optical element (4a, 4b), the aspect ratio changing means including one cylindrical zoom lens 16 is arranged. Have been. In the state shown in FIG. 13, the cylindrical zoom lens 16 has a cylindrical negative lens 16a having a negative refractive power in the XY plane and no refractive power in the YZ plane, and a positive refractive power in the XY plane and It is composed of a cylindrical positive lens 16b having no refractive power in a plane.
[0071] シリンドリカルズームレンズ 16では、シリンドリカル負レンズ 16aとシリンドリカル正レ ンズ 16bとの光軸 AXの方向に沿った間隔が変更可能に構成されている。また、シリ ンドリカルズームレンズ 16では、シリンドリカル負レンズ 16aとシリンドリカル正レンズ 1 6bとが光軸 AXを中心として一体的に回転可能に構成されている。なお、シリンドリカ ル負レンズ 16aとシリンドリカル正レンズ 16bとの間隔の変化およびシリンドリカル負レ ンズ 16aとシリンドリカル正レンズ 16bとの光軸 AX廻りの一体的な回転は、制御系 21 力 の指令に基づいて動作する駆動系 29によって行われる。 [0071] The cylindrical zoom lens 16 is configured such that the distance between the cylindrical negative lens 16a and the cylindrical positive lens 16b along the direction of the optical axis AX can be changed. The cylindrical zoom lens 16 includes a cylindrical negative lens 16a and a cylindrical positive lens 1a. 6b are integrally rotatable about the optical axis AX. The change in the distance between the cylindrical negative lens 16a and the cylindrical positive lens 16b and the integral rotation of the cylindrical negative lens 16a and the cylindrical positive lens 16b around the optical axis AX are performed based on a command from the control system 21. This is performed by the operating drive system 29.
[0072] 図 14は、第 3実施形態において形成される二次光源に対するシリンドリカルズーム レンズの作用を説明する図である。図 14 (a)および (b)には図 13に示す回転位置状 態にあるシリンドリカルズームレンズ 16の XY平面内の光路を示し、図 14 (c)および( d)には図 13に示す回転位置状態にあるシリンドリカルズームレンズ 16の YZ平面内 の光路を示している。図 14 (a)に示すように、真円状態 (すなわち楕円照明を行わな い初期状態)では、シリンドリカル負レンズ 16aによる像点 la (虚像)と、シリンドリカル 正レンズ 16bの前側焦点 fbとを一致させている。この場合、シリンドリカルズームレン ズ 16に入射した平行光束は、 XY平面内においてその径のみが変更(拡大)されて、 平行光束のまま回折光学素子 (4a, 4b)に入射する。  FIG. 14 is a diagram illustrating the operation of the cylindrical zoom lens on the secondary light source formed in the third embodiment. FIGS. 14 (a) and (b) show the optical path in the XY plane of the cylindrical zoom lens 16 in the rotational position shown in FIG. 13, and FIGS. 14 (c) and (d) show the optical path shown in FIG. 4 shows an optical path in the YZ plane of the cylindrical zoom lens 16 in a position state. As shown in Fig. 14 (a), in the perfect circle state (ie, the initial state without elliptical illumination), the image point la (virtual image) of the cylindrical negative lens 16a coincides with the front focal point fb of the cylindrical positive lens 16b. Let me. In this case, only the diameter of the parallel light beam incident on the cylindrical zoom lens 16 is changed (enlarged) in the XY plane, and the parallel light beam is incident on the diffractive optical element (4a, 4b) as it is.
[0073] そして、図 14 (a)に示す真円状態からシリンドリカル負レンズ 16aだけを光軸方向に 沿って光源側へ移動させて間隔を拡げると、図 14 (b)に示すように、シリンドリカル正 レンズ 16bの前側焦点 fbからシリンドリカル負レンズ 16aによる像点 laが光源側へ離 れるため、回折光学素子 (4a, 4b)に入射する光束が XY平面内において収斂光束 に変換される。なお、図 14 (c)および(d)に示すように、 XY平面に直交する YZ平面 内におレ、ては、図 14 (a)に対応する真円状態であっても図 14 (b)に対応する楕円状 態であっても、シリンドリカルズームレンズ 16に入射した平行光束は、平行光束のま ま回折光学素子 (4a, 4b)に入射する。  [0073] Then, when only the cylindrical negative lens 16a is moved to the light source side along the optical axis direction from the perfect circular state shown in Fig. 14 (a) to increase the interval, as shown in Fig. 14 (b), Since the image point la by the cylindrical negative lens 16a is separated from the front focal point fb of the positive lens 16b toward the light source, the light beam incident on the diffractive optical element (4a, 4b) is converted into a convergent light beam in the XY plane. As shown in FIGS. 14 (c) and (d), even in a perfectly circular state corresponding to FIG. 14 (a) in the YZ plane orthogonal to the XY plane, FIG. ), The parallel light beam incident on the cylindrical zoom lens 16 is incident on the diffractive optical elements (4a, 4b) as a parallel light beam.
[0074] 図 15は、シリンドリカルズームレンズの真円状態および楕円状態におレ、て照明瞳で 得られる輪帯状の光強度分布を示す図である。図 15において、(a)は図 14 (a)およ び (c)に示すシリンドリカルズームレンズ 16の真円状態(初期状態)において照明瞳 に形成される二次光源の形状 (輪帯照明用の回折光学素子 4aを使用)を示す図で あり、(b)は(a)の真円輪帯状の二次光源の X方向に沿った光強度分布(縦軸は光 強度 I)を示す図であり、 (c)は (a)の真円輪帯状の二次光源の Ζ方向に沿った光強 度分布(縦軸は光強度 I)を示す図である。 [0075] また、 (d)は図 14 (b)および(d)に示すシリンドリカルズームレンズ 16の楕円状態に おいて照明瞳に形成される二次光源の形状 (輪帯照明用の回折光学素子 4aを使用 )を示す図であり、(e)は(d)の楕円輪帯状の二次光源の X方向に沿った光強度分布 (縦軸は光強度 I)を示す図であり、(f)は (d)の楕円輪帯状の二次光源の Z方向に沿 つた光強度分布 (縦軸は光強度 I)を示す図である。図 15 (e)に示すように、楕円状 態において得られる楕円輪帯状の二次光源の X方向に沿った光強度分布は、輪帯 照明用の回折光学素子 4aのみの作用により照明瞳に形成される光強度分布と、シリ ンドリカルズームレンズ 16のみの作用により照明瞳に形成される光強度分布とのコン ポリューション (畳み込み)となり、 X方向断面においては 2つの台形状の光強度分布 になる。 FIG. 15 is a diagram showing a ring-shaped light intensity distribution obtained from the illumination pupil when the cylindrical zoom lens is in the perfect circle state and the elliptical state. In FIG. 15, (a) shows the shape of the secondary light source formed on the illumination pupil in the perfect circular state (initial state) of the cylindrical zoom lens 16 shown in FIGS. 14 (a) and (c) (for annular illumination). (B) is a diagram showing the light intensity distribution (vertical axis is light intensity I) of the secondary light source having a perfect circular ring shape in (a) along the X direction. (C) is a diagram showing the light intensity distribution (the vertical axis is light intensity I) of the secondary light source in the shape of a perfect circular ring in (a) along the Ζ direction. (D) shows the shape of the secondary light source formed on the illumination pupil in the elliptical state of the cylindrical zoom lens 16 shown in FIGS. 14 (b) and (d) (diffractive optical element for annular illumination). 4e), and (e) is a diagram showing the light intensity distribution (the vertical axis is light intensity I) of the secondary light source having an elliptical annular shape in (d) along the X direction, and (f) is a diagram showing (f). () Is a diagram showing the light intensity distribution along the Z direction (light intensity I) of the secondary light source in the shape of an elliptical ring in (d). As shown in Fig. 15 (e), the light intensity distribution along the X direction of the secondary light source in the shape of an elliptical orbicular zone obtained in the elliptical state is applied to the illumination pupil only by the action of the diffractive optical element 4a for orbicular illumination. The light intensity distribution formed is a convolution of the light intensity distribution formed on the illumination pupil by the action of the cylindrical zoom lens 16 alone. Become.
[0076] 図 15 (d)において、図中ハッチングを施した領域 (斜線部)は光強度が最大となる 領域 Imであり、その周囲には光強度が漸次減少する光強度傾斜領域 Isが位置して いる。図 15 (d)中実線で示す楕円輪帯状の光領域は図 15 (a)に示す真円輪帯状の 光領域よりも X方向に広がっている力 図 15 (e)および(f)を参照してモーメントで考 えると Z方向よりも X方向の方が輪帯の径が小さくなつている。  In FIG. 15 (d), a hatched area (shaded area) in the figure is an area Im where the light intensity is maximum, and a light intensity gradient area Is where the light intensity gradually decreases is located around the area Im. are doing. Fig. 15 (d) The elliptical ring-shaped light region shown by the solid line is a force that spreads in the X direction more than the perfect circular ring-shaped light region shown in Fig. 15 (a). See Figs. 15 (e) and (f). When considered in terms of moment, the diameter of the annular zone is smaller in the X direction than in the Z direction.
[0077] このように、第 3実施形態では、シリンドリカルズームレンズ 16の回転位置に依存す ることなく、シリンドリカル負レンズ 16aおよびシリンドリカル正レンズ 16bを図 14 (a)お よび )に示す間隔状態に設定すると、照明瞳には真円輪帯状や真円形状の二次 光源が形成される。また、シリンドリカノレズームレンズ 16を図 13に示す第 1回転位置 状態に設定するとともに、シリンドリカル負レンズ 16aおよびシリンドリカル正レンズ 16 bを図 14 (b)および(d)に示す間隔状態に設定すると、照明瞳には X方向に広がつ た楕円輪帯状ゃ楕円形状の二次光源が形成される。  As described above, in the third embodiment, the cylindrical negative lens 16a and the cylindrical positive lens 16b are set in the interval state shown in FIGS. 14A and 14B without depending on the rotational position of the cylindrical zoom lens 16. When set, a secondary light source having a perfect circular ring shape or perfect circular shape is formed on the illumination pupil. In addition, the cylindrical lens zoom lens 16 is set to the first rotational position shown in FIG. 13, and the cylindrical negative lens 16a and the cylindrical positive lens 16b are set to the intervals shown in FIGS. 14 (b) and (d). Then, a secondary light source having an elliptical annular shape or an elliptical shape extending in the X direction is formed on the illumination pupil.
[0078] また、シリンドリカルズームレンズ 16を図 13に示す回転位置から光軸 AX廻りに 90 度回転させた第 2回転位置状態に設定するとともに、シリンドリカル負レンズ 16aおよ びシリンドリカル正レンズ 16bを図 14 (b)および(d)に示す間隔状態に設定すると、 照明瞳には Z方向に広がった楕円輪帯状や楕円形状の二次光源が形成される。さら に、真円状態と第 1回転位置状態における楕円状態との間の任意の状態や真円状 態と第 2回転位置状態における楕円状態との間の任意の状態に設定することにより、 様々な縦横比にした力 輪帯状や円形状の二次光源を形成することができる。 Further, the cylindrical zoom lens 16 is set to a second rotation position in which the cylindrical zoom lens 16 is rotated 90 degrees around the optical axis AX from the rotation position shown in FIG. 13, and the cylindrical negative lens 16a and the cylindrical positive lens 16b are illustrated. 14 When the intervals shown in (b) and (d) are set, a secondary light source having an elliptical annular shape or an elliptical shape extending in the Z direction is formed on the illumination pupil. Furthermore, by setting an arbitrary state between the perfect circular state and the elliptical state in the first rotational position state and an arbitrary state between the perfect circular state and the elliptical state in the second rotational position state, A ring-shaped or circular secondary light source with various aspect ratios can be formed.
[0079] 上述のように、第 3実施形態において、光軸 AXを中心として回転可能なシリンドリカ ノレズームレンズ 16は、折り曲げミラー 3と光束変換素子としての回折光学素子 (4a, 4 b)との間(ひいては光源 1と回折光学素子 (4a, 4b)との間)の光路中に配置されて、 直交する 2つの方向でパワーを独立的に変化させることにより照明瞳に形成される光 強度分布の縦横比を変化させるための縦横比変化手段を構成している。  As described above, in the third embodiment, the cylindrical lens zoom lens 16 that is rotatable about the optical axis AX includes the folding mirror 3 and the diffractive optical elements (4a, 4b) serving as light flux converting elements. The light intensity distribution formed on the illumination pupil by being placed in the optical path between the light sources (and thus between the light source 1 and the diffractive optical element (4a, 4b)) and changing the power independently in two orthogonal directions And an aspect ratio changing means for changing the aspect ratio.
[0080] その結果、第 3実施形態においても第 2実施形態と同様に、たとえば輪帯状や円形 状の二次光源が僅かに縦長または横長に形成されることに起因して、あるいは二次 光源が所望の輪帯状や円形状に形成されていてもレジスト特性などに起因して、直 交する二方向でパターンの線幅差が発生する場合には、光軸 AXを中心として回転 可能なシリンドリカルズームレンズ 16からなる縦横比変化手段の作用により二次光源 の縦横比を随時調整して、線幅差の発生を実質的に抑えることができる。また、転写 すべきパターンに方向性がある場合には、縦横比変化手段 16の作用により二次光 源の縦横比を随時調整して輪帯状や円形状の二次光源を積極的に縦長または横長 に設定することにより、線幅差の発生を実質的に抑えることができる。  As a result, in the third embodiment, as in the second embodiment, for example, an annular or circular secondary light source is formed slightly vertically or horizontally, or the secondary light source is formed. Even if the pattern is formed in the desired annular or circular shape, if there is a line width difference of the pattern in two orthogonal directions due to resist characteristics, etc., a cylindrical rotatable about the optical axis AX The aspect ratio of the secondary light source can be adjusted as needed by the operation of the aspect ratio changing means including the zoom lens 16 to substantially suppress the occurrence of a line width difference. If the pattern to be transferred has directivity, the aspect ratio of the secondary light source is adjusted as needed by the operation of the aspect ratio changing means 16 to positively orient the annular or circular secondary light source. By setting it to be horizontally long, the occurrence of a line width difference can be substantially suppressed.
[0081] なお、上述の第 3実施形態では、光軸 AXを中心として回転可能な 1つのシリンドリ カルズームレンズ 16により縦横比変化手段を構成している。し力 ながら、これに限 定されることなぐたとえば図 16に示すように、直交する 2つの方向のうちの一方の方 向にパワーを変化させる機能を有する第 1シリンドリカルズームレンズと、直交する 2 つの方向のうちの他方の方向にパワーを変化させる機能を有する第 2シリンドリカル ズームレンズとにより縦横比変化手段を構成する変形例も可能である。  In the third embodiment described above, the aspect ratio changing means is constituted by one cylindrical zoom lens 16 rotatable around the optical axis AX. However, the present invention is not limited to this. For example, as shown in FIG. 16, a first cylindrical zoom lens having a function of changing power in one of two orthogonal directions, A modification in which the aspect ratio changing means is constituted by the second cylindrical zoom lens having the function of changing the power in the other direction of the two directions is also possible.
[0082] 図 16の変形例を参照すると、縦横比変化手段は、光源側から順に、 Z方向にパヮ 一を変化させる機能を有する第 1シリンドリカルズームレンズ 17と、 X方向にパワーを 変化させる機能を有する第 2シリンドリカルズームレンズ 18とにより構成されている。 第 1シリンドリカルズームレンズ 17は、 YZ平面内に負屈折力を有し且つ XY平面内に 無屈折力のシリンドリカル負レンズ 17aと、 YZ平面内に正屈折力を有し且つ XY平面 内に無屈折力のシリンドリカル正レンズ 17bとにより構成されている。  Referring to the modification of FIG. 16, the aspect ratio changing means includes, in order from the light source side, a first cylindrical zoom lens 17 having a function of changing the power in the Z direction, and a function of changing the power in the X direction. And a second cylindrical zoom lens 18 having The first cylindrical zoom lens 17 has a negative refractive power in the YZ plane and has no refractive power in the XY plane, and has a positive refractive power in the YZ plane and has no refractive power in the XY plane. It is composed of a power cylindrical positive lens 17b.
[0083] また、第 2シリンドリカルズームレンズ 18は、 XY平面内に負屈折力を有し且つ YZ 平面内に無屈折力のシリンドリカル負レンズ 18aと、 XY平面内に正屈折力を有し且 つ ΥΖ平面内に無屈折力のシリンドリカル正レンズ 18bとにより構成されている。なお 、第 1シリンドリカルズームレンズ 17では、シリンドリカル負レンズ 17aとシリンドリカル 正レンズ 17bとの光軸 AXの方向に沿った間隔が変更可能に構成されている。 Further, the second cylindrical zoom lens 18 has a negative refractive power in the XY plane and has It comprises a cylindrical negative lens 18a having no refractive power in a plane and a cylindrical positive lens 18b having a positive refractive power in the XY plane and having no refractive power in the plane. The first cylindrical zoom lens 17 is configured so that the distance between the cylindrical negative lens 17a and the cylindrical positive lens 17b along the direction of the optical axis AX can be changed.
[0084] 同様に、第 2シリンドリカルズームレンズ 18では、シリンドリカル負レンズ 18aとシリン ドリカル正レンズ 18bとの光軸 AXの方向に沿った間隔が変更可能に構成されている 。図 16の変形例では、第 1シリンドリカルズームレンズ 17の間隔と第 2シリンドリカルズ ームレンズ 18の間隔とをそれぞれ適宜変化させることにより、第 3実施形態と同様の 原理に基づいて様々な縦横比にした力 Sう輪帯状や円形状の二次光源を形成すること ができる。 Similarly, the second cylindrical zoom lens 18 is configured such that the distance between the cylindrical negative lens 18a and the cylindrical positive lens 18b along the direction of the optical axis AX can be changed. In the modified example of FIG. 16, by changing the interval between the first cylindrical zoom lens 17 and the interval between the second cylindrical zoom lenses 18 as appropriate, various aspect ratios are obtained based on the same principle as in the third embodiment. A secondary light source having a ring shape or a circular shape can be formed.
[0085] なお、上述の第 2実施形態および第 3実施形態においても、前述の第 1実施形態の 縦横比変化手段と同様の制御を行ってもよい。  [0085] In the second embodiment and the third embodiment, the same control as the aspect ratio changing means of the first embodiment may be performed.
[0086] 上述の実施形態の露光装置では、照明装置によってレチクル (マスク)を照明し (照 明工程)、投影光学系を用いてマスクに形成された転写用のパターンを感光性基板 に露光する(露光工程)ことにより、マイクロデバイス(半導体素子、撮像素子、液晶表 示素子、薄膜磁気ヘッド等)を製造することができる。以下、本実施形態の露光装置 を用いて感光性基板としてのウェハ等に所定の回路パターンを形成することによって 、マイクロデバイスとしての半導体デバイスを得る際の手法の一例につき図 17のフロ 一チャートを参照して説明する。  [0086] In the exposure apparatus of the above-described embodiment, the reticle (mask) is illuminated by the illumination device (illumination step), and the transfer pattern formed on the mask is exposed on the photosensitive substrate using the projection optical system. By performing the (exposure step), a micro device (semiconductor element, imaging element, liquid crystal display element, thin film magnetic head, etc.) can be manufactured. FIG. 17 is a flowchart of an example of a method for obtaining a semiconductor device as a microdevice by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of the present embodiment. It will be described with reference to FIG.
[0087] 先ず、図 17のステップ 301において、 1ロットのウェハ上に金属膜が蒸着される。次 のステップ 302において、その 1ロットのウェハ上の金属膜上にフォトレジストが塗布さ れる。その後、ステップ 303において、本実施形態の露光装置を用いて、マスク上の パターンの像がその投影光学系を介して、その 1ロットのウェハ上の各ショット領域に 順次露光転写される。その後、ステップ 304において、その 1ロットのウェハ上のフォト レジストの現像が行われた後、ステップ 305において、その 1ロットのウェハ上でレジス トパターンをマスクとしてエッチングを行うことによって、マスク上のパターンに対応す る回路パターンが、各ウェハ上の各ショット領域に形成される。  First, in step 301 of FIG. 17, a metal film is deposited on one lot of wafers. In the next step 302, a photoresist is applied on the metal film on the one lot wafer. Then, in step 303, using the exposure apparatus of this embodiment, the pattern image on the mask is sequentially exposed and transferred to each shot area on the one lot of wafers via the projection optical system. Thereafter, in step 304, the photoresist on the one lot wafer is developed, and in step 305, the pattern on the mask is etched on the one lot wafer using the resist pattern as a mask. Is formed in each shot area on each wafer.
[0088] その後、更に上のレイヤの回路パターンの形成等を行うことによって、半導体素子 等のデバイスが製造される。上述の半導体デバイス製造方法によれば、極めて微細 な回路パターンを有する半導体デバイスをスループット良く得ることができる。なお、 ステップ 301—ステップ 305では、ウェハ上に金属を蒸着し、その金属膜上にレジスト を塗布、そして露光、現像、エッチングの各工程を行っている力 これらの工程に先 立って、ウェハ上にシリコンの酸化膜を形成後、そのシリコンの酸化膜上にレジストを 塗布、そして露光、現像、エッチング等の各工程を行っても良いことはいうまでもない After that, a circuit pattern of a further upper layer is formed, etc. Are manufactured. According to the above-described semiconductor device manufacturing method, a semiconductor device having an extremely fine circuit pattern can be obtained with good throughput. In step 301-step 305, a metal is vapor-deposited on the wafer, a resist is applied on the metal film, and the force of performing each of the steps of exposure, development, and etching is performed on the wafer prior to these steps. After the silicon oxide film is formed on the silicon oxide film, it is needless to say that a resist may be applied on the silicon oxide film, and the respective steps such as exposure, development, and etching may be performed.
[0089] また、本実施形態の露光装置では、プレート(ガラス基板)上に所定のパターン(回 路パターン、電極パターン等)を形成することによって、マイクロデバイスとしての液晶 表示素子を得ることもできる。以下、図 18のフローチャートを参照して、このときの手 法の一例につき説明する。図 18において、パターン形成工程 401では、本実施形態 の露光装置を用いてマスクのパターンを感光性基板(レジストが塗布されたガラス基 板等)に転写露光する、所謂光リソグラフィー工程が実行される。この光リソグラフィー 工程によって、感光性基板上には多数の電極等を含む所定パターンが形成される。 その後、露光された基板は、現像工程、エッチング工程、レジスト剥離工程等の各ェ 程を経ることによって、基板上に所定のパターンが形成され、次のカラーフィルター 形成工程 402へ移行する。 In the exposure apparatus of the present embodiment, a liquid crystal display element as a micro device can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate). . Hereinafter, an example of the method at this time will be described with reference to the flowchart in FIG. In FIG. 18, in a pattern forming step 401, a so-called optical lithography step of transferring and exposing a mask pattern onto a photosensitive substrate (a glass substrate coated with a resist) using the exposure apparatus of the present embodiment is executed. . By this photolithography process, a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate. Thereafter, the exposed substrate undergoes various steps such as a developing step, an etching step, and a resist stripping step, so that a predetermined pattern is formed on the substrate, and the process proceeds to the next color filter forming step 402.
[0090] 次に、カラーフィルター形成工程 402では、 R (Red)、 G (Green)、 B (Blue)に対応し た 3つのドットの組がマトリックス状に多数配列されたり、または R、 G、 Bの 3本のストラ イブのフィルターの組を複数水平走査線方向に配列されたりしたカラーフィルターを 形成する。そして、カラーフィルター形成工程 402の後に、セル組み立て工程 403が 実行される。セル組み立て工程 403では、パターン形成工程 401にて得られた所定 パターンを有する基板、およびカラーフィルター形成工程 402にて得られたカラーフ ィルター等を用いて液晶パネル (液晶セル)を組み立てる。セル組み立て工程 403で は、例えば、パターン形成工程 401にて得られた所定パターンを有する基板とカラー フィルター形成工程 402にて得られたカラーフィルターとの間に液晶を注入して、液 晶パネル (液晶セル)を製造する。  Next, in the color filter forming step 402, a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or R, G, A color filter is formed by arranging a plurality of sets of filters of three stripes B in the horizontal scanning line direction. Then, after the color filter forming step 402, a cell assembling step 403 is performed. In a cell assembling step 403, a liquid crystal panel (liquid crystal cell) is assembled using the substrate having the predetermined pattern obtained in the pattern forming step 401, the color filter obtained in the color filter forming step 402, and the like. In the cell assembling step 403, for example, a liquid crystal is injected between the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402, and a liquid crystal panel ( Liquid crystal cell).
[0091] その後、モジュール組み立て工程 404にて、組み立てられた液晶パネル (液晶セル )の表示動作を行わせる電気回路、バックライト等の各部品を取り付けて液晶表示素 子として完成させる。上述の液晶表示素子の製造方法によれば、極めて微細な回路 パターンを有する液晶表示素子をスループット良く得ることができる。 [0091] Thereafter, in the module assembling step 404, the assembled liquid crystal panel (liquid crystal cell) Attach various components such as an electric circuit and a backlight for performing the display operation of) to complete the liquid crystal display device. According to the above-described method for manufacturing a liquid crystal display device, a liquid crystal display device having an extremely fine circuit pattern can be obtained with high throughput.
[0092] なお、上述の各実施形態では、輪帯照明および円形照明を例にとって本発明を説 明している力 これに限定されることなぐたとえば 4極照明や他の変形照明に対して も本発明を適用することができる。  [0092] In each of the above-described embodiments, the present invention is described with reference to the annular illumination and the circular illumination as an example. The present invention is not limited to this. The present invention can be applied.
[0093] また、上述の各実施形態では、図 1に示すような特定の構成を有する照明光学装 置に本発明を適用している力 これに限定されることなぐたとえば特開 2003— 6860 7号公報およびこれに対応する米国特許出願公開 US2003Z0038931号公報の 図 10の実施例や、国際出願番号 PCTZJP03Z15447号明細書および図面の図 1 の実施例に対しても本発明を適用することが可能である。ここで、特開 2003—6860 7号公報およびこれに対応する米国特許出願公開 US2003Z0038931号公報の 図 10の実施例においては、 2組のシリンドリカルレンズ対をズームレンズ 4とフライアイ レンズ 5との間の光路中に配置することができる。また、国際出願番号 PCT/JP03 /15447号明細書および図面の図 1の実施例では、 2組のシリンドリカルレンズ対を ァフォーカルレンズ 5の光路中やズームレンズ 7とフライアイレンズ 5との間の光路中 に配置することができる。  In each of the above-described embodiments, the present invention is applied to an illumination optical device having a specific configuration as shown in FIG. 1. The present invention is not limited to this. The present invention can also be applied to the embodiment shown in FIG. 10 of Japanese Patent Application Publication No. JP-A-2003-0038931 and the corresponding embodiment shown in FIG. 1 of the specification and drawing of International Application No.PCTZJP03Z15447. is there. Here, in the embodiment of FIG. 10 of JP-A-2003-66867 and the corresponding US Patent Application Publication US2003Z0038931, two pairs of cylindrical lenses are connected between the zoom lens 4 and the fly-eye lens 5. Can be arranged in the optical path. In the embodiment of FIG. 1 of the specification and drawings of International Application No. PCT / JP03 / 15447, two pairs of cylindrical lenses are provided in the optical path of the afocal lens 5 and between the zoom lens 7 and the fly-eye lens 5. It can be placed in the optical path.
[0094] また、上述の各実施形態では、照明光学装置を備えた露光装置を例にとって本発 明を説明したが、マスク以外の被照射面を照明するための一般的な照明光学装置に 本発明を適用することができることは明らかである。  [0094] Further, in each of the above-described embodiments, the present invention has been described by taking, as an example, an exposure apparatus provided with an illumination optical device. However, the present invention is applied to a general illumination optical device for illuminating an irradiated surface other than a mask. It is clear that the invention can be applied.
符号の説明  Explanation of reference numerals
[0095] 1 光源  [0095] 1 light source
4 回折光学素子  4 Diffractive optical element
5 ァフォー力ノレレンズ  5 A force lens
7 円錐アキシコン系  7 Conical axicon system
8, 9  8, 9
10 ズームレンズ  10 Zoom lens
11 12 コンデンサー光学系 11 12 Condenser optics
13 マスクブラインド  13 Mask blind
14 結像光学系  14 Imaging optics
15a, 15b フレネノレレンズ  15a, 15b Fresno lens
16, 17, 18 シリンドリカノレズームレンズ 16, 17, 18 Cylindrical cane zoom lens
M マスク M mask
PL 投影光学系  PL projection optical system
W ウェハ  W wafer
20 入力手段  20 Input means
21 制御系  21 Control system
22—29 駆動系  22-29 drive system

Claims

請求の範囲 The scope of the claims
[1] 光源からの光束に基づいて被照射面を照明する照明光学装置において、  [1] An illumination optical device that illuminates a surface to be irradiated based on a light beam from a light source,
前記被照射面と実質的にフーリエ変換の関係にある照明瞳に形成される光強度分 布の縦横比を変化させるための縦横比変化手段を備え、  An aspect ratio changing unit for changing an aspect ratio of a light intensity distribution formed on an illumination pupil substantially in a Fourier transform relationship with the irradiated surface,
前記縦横比変化手段は、前記照明瞳と実質的にフーリエ変換の関係にある位置ま たはその近傍に配置されて、直交する 2つの方向のパワー比を変化させる機能を有 する光学素子群を備えていることを特徴とする照明光学装置。  The aspect ratio changing means is an optical element group disposed at or near a position substantially in Fourier transform relationship with the illumination pupil and having a function of changing a power ratio in two orthogonal directions. An illumination optical device, comprising:
[2] 前記光学素子群は、直交する 2つの方向でパワーが互いに異なる第 1光学素子群と 、直交する 2つの方向でパワーが互いに異なる第 2光学素子群とを有し、前記第 1光 学素子群および前記第 2光学素子群のうちの少なくとも一方が光軸を中心として回 転可能に構成されていることを特徴とする請求項 1に記載の照明光学装置。  [2] The optical element group includes a first optical element group having different powers in two orthogonal directions, and a second optical element group having different powers in two orthogonal directions. 2. The illumination optical device according to claim 1, wherein at least one of the optical element group and the second optical element group is configured to be rotatable around an optical axis.
[3] 前記第 1光学素子群および前記第 2光学素子群の双方が前記光軸を中心として回 転可能に構成されていることを特徴とする請求項 1または 2に記載の照明光学装置。  3. The illumination optical device according to claim 1, wherein both the first optical element group and the second optical element group are configured to be rotatable around the optical axis.
[4] 前記光学素子群はレンズ群であることを特徴とする請求項 1乃至 3のいずれ力 1項に 記載の照明光学装置。  4. The illumination optical device according to claim 1, wherein the optical element group is a lens group.
[5] 前記照明瞳に形成される光強度分布の大きさを連続的に変更する変更手段を更に 備え、  [5] The apparatus further comprises changing means for continuously changing the size of the light intensity distribution formed on the illumination pupil,
前記光学素子群は、前記変更手段よりも前記光源側の光路中に配置されることを 特徴とする請求項 1乃至 4のいずれ力、 1項に記載の照明光学装置。  The illumination optical device according to any one of claims 1 to 4, wherein the optical element group is disposed in an optical path closer to the light source than the changing unit.
[6] 前記変更手段は、前記照明瞳に形成される光強度分布の外形の大きさを変更する 第 1変更手段と、前記照明瞳に形成される光強度分布の輪帯比を変更する第 2変更 手段とを備えていることを特徴とする請求項 5に記載の照明光学装置。  [6] The changing unit changes a size of an outer shape of a light intensity distribution formed on the illumination pupil, and a second unit changes a ring ratio of a light intensity distribution formed on the illumination pupil. 6. The illumination optical device according to claim 5, comprising: 2 changing means.
[7] 前記照明瞳に形成される光強度分布の外形の大きさを変更する第 1変更手段と、前 記照明瞳に形成される光強度分布の輪帯比を変更する第 2変更手段とを有する変 更手段をさらに備え、  [7] First changing means for changing the size of the outer shape of the light intensity distribution formed on the illumination pupil, and second changing means for changing the annular ratio of the light intensity distribution formed on the illumination pupil. Further comprising a changing means having
前記光学素子群は、前記変更手段よりも前記光源側の光路中に配置されることを 特徴とする請求項 1乃至 4のいずれ力 1項に記載の照明光学装置。  The illumination optical device according to any one of claims 1 to 4, wherein the optical element group is arranged in an optical path closer to the light source than the changing unit.
[8] 光源からの光束に基づいて被照射面を照明する照明光学装置において、 前記光源からの光束を所定の断面を有する光束に変換するための光束変換素子 と、 [8] An illumination optical device that illuminates a surface to be irradiated based on a light beam from a light source, A light beam conversion element for converting a light beam from the light source into a light beam having a predetermined cross section;
前記光束変換素子からの光束に基づいて、前記被照射面と実質的にフーリエ変換 の関係にある照明瞳に所定の光強度分布を形成するための形成光学系と、 前記光束変換素子に入射する光束の発散の程度を直交する 2つの方向で独立的 に変化させることにより前記照明瞳に形成される光強度分布の縦横比を変化させる ための縦横比変化手段とを備えていることを特徴とする照明光学装置。  A forming optical system for forming a predetermined light intensity distribution on an illumination pupil that is substantially in a Fourier transform relationship with the irradiation surface based on the light beam from the light beam conversion element; Aspect ratio changing means for changing the aspect ratio of the light intensity distribution formed on the illumination pupil by independently changing the degree of divergence of the light beam in two orthogonal directions. Lighting optics.
[9] 前記縦横比変化手段は、直交する 2つの方向で発散の程度が互いに異なる第 1光 学素子と、直交する 2つの方向で発散の程度が互いに異なる第 2光学素子とを有し、 前記第 1光学素子および前記第 2光学素子のうちの少なくとも一方が前記光束の進 行方向と平行な軸を中心として回転可能に構成されていることを特徴とする請求項 8 に記載の照明光学装置。  [9] The aspect ratio changing means includes a first optical element having different degrees of divergence in two orthogonal directions, and a second optical element having different degrees of divergence in two orthogonal directions, The illumination optics according to claim 8, wherein at least one of the first optical element and the second optical element is configured to be rotatable around an axis parallel to a traveling direction of the light beam. apparatus.
[10] 前記第 1光学素子および前記第 2光学素子の双方が前記光束の進行方向と平行な 軸を中心として回転可能に構成されていることを特徴とする請求項 8または 9に記載 の照明光学装置。  10. The illumination according to claim 8, wherein both the first optical element and the second optical element are configured to be rotatable around an axis parallel to a traveling direction of the light beam. Optical device.
[11] 前記第 1光学素子および前記第 2光学素子は、一方向にのみ発散機能を有する回 折光学素子をそれぞれ有することを特徴とする請求項 9または 10に記載の照明光学  11. The illumination optical device according to claim 9, wherein the first optical element and the second optical element each include a diffraction optical element having a diverging function only in one direction.
[12] 前記第 1光学素子および前記第 2光学素子は、一方向にのみ屈折機能を有するフレ ネルレンズをそれぞれ有することを特徴とする請求項 9または 10に記載の照明光学 12. The illumination optical device according to claim 9, wherein the first optical element and the second optical element each have a Fresnel lens having a refraction function only in one direction.
[13] 前記第 1光学素子および前記第 2光学素子は、一方向にのみ屈折機能を有するマイ 有することを特徴とする請求項 9または 10に記載の照明 [13] The illumination according to claim 9 or 10, wherein the first optical element and the second optical element have a lens having a refraction function only in one direction.
[14] 前記形成光学系は、オプティカルインテグレータを有することを特徴とする請求項 8 乃至 13のいずれか 1項に記載の照明光学装置。 14. The illumination optical device according to claim 8, wherein the forming optical system has an optical integrator.
[15] 光源からの光束に基づいて被照射面を照明する照明光学装置において、  [15] In an illumination optical device that illuminates a surface to be irradiated based on a light beam from a light source,
前記光源からの光束を所定の断面を有する光束に変換するための光束変換素子 と、 A light beam conversion element for converting a light beam from the light source into a light beam having a predetermined cross section When,
前記光束変換素子からの光束に基づいて、前記被照射面と実質的にフーリエ変換 の関係にある照明瞳に所定の光強度分布を形成するための形成光学系と、 前記光源と前記光束変換素子との間の光路中に配置されて、直交する 2つの方向 でパワーを独立的に変化させることにより前記照明瞳に形成される光強度分布の縦 横比を変化させるための縦横比変化手段とを備えていることを特徴とする照明光学  A forming optical system for forming a predetermined light intensity distribution on an illumination pupil substantially in Fourier transform relation with the surface to be illuminated based on the light beam from the light beam converting element; the light source and the light beam converting element And an aspect ratio changing means for changing an aspect ratio of a light intensity distribution formed on the illumination pupil by independently changing power in two orthogonal directions. Illumination optics comprising:
[16] 前記縦横比変化手段は、光軸を中心として回転可能なシリンドリカルズームレンズを 有することを特徴とする請求項 15に記載の照明光学装置。 16. The illumination optical device according to claim 15, wherein the aspect ratio changing unit includes a cylindrical zoom lens rotatable around an optical axis.
[17] 前記縦横比変化手段は、前記直交する 2つの方向のうちの一方の方向にパワーを変 化させる機能を有する第 1シリンドリカルズームレンズと、前記直交する 2つの方向の うちの他方の方向にパワーを変化させる機能を有する第 2シリンドリカルズームレンズ とを備えていることを特徴とする請求項 15に記載の照明光学装置。  [17] The aspect ratio changing means includes a first cylindrical zoom lens having a function of changing power in one of the two orthogonal directions, and the other of the two orthogonal directions. 16. The illumination optical device according to claim 15, further comprising a second cylindrical zoom lens having a function of changing power.
[18] 前記形成光学系は、オプティカルインテグレータを有することを特徴とする請求項 15 乃至:[ 7のいずれか i項に記載の照明光学装置。 [18] The illumination optical device according to any one of [15] to [ 7 ], wherein the forming optical system includes an optical integrator.
[19] マスクのパターンを感光性基板上に転写する露光装置において、  [19] In an exposure apparatus for transferring a mask pattern onto a photosensitive substrate,
請求項 1乃至 18のいずれか 1項に記載の照明光学装置と、  An illumination optical device according to any one of claims 1 to 18,
前記被照射面に設定された前記マスクのパターンを前記感光性基板上へ投影す る投影光学系とを備えていることを特徴とする露光装置。  An exposure apparatus, comprising: a projection optical system for projecting the mask pattern set on the irradiation surface onto the photosensitive substrate.
[20] マスクのパターンを感光性基板上に転写する露光方法において、  [20] In an exposure method for transferring a pattern of a mask onto a photosensitive substrate,
請求項 1乃至 18のいずれか 1項に記載の照明光学装置を用いて前記被照射面に 設定された前記マスクを照明する工程と、  Illuminating the mask set on the illuminated surface using the illumination optical device according to any one of claims 1 to 18,
前記マスクのパターンを前記感光性基板上へ投影露光する工程とを含むことを特 徴とする露光方法。  Projecting and exposing the pattern of the mask onto the photosensitive substrate.
PCT/JP2004/008096 2003-06-16 2004-06-10 Lighting optical device, exposure system and exposure method WO2004112107A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005506913A JPWO2004112107A1 (en) 2003-06-16 2004-06-10 Illumination optical apparatus, exposure apparatus, and exposure method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-170128 2003-06-16
JP2003170128 2003-06-16
JP2004150366 2004-05-20
JP2004-150366 2004-05-20

Publications (1)

Publication Number Publication Date
WO2004112107A1 true WO2004112107A1 (en) 2004-12-23

Family

ID=33554420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008096 WO2004112107A1 (en) 2003-06-16 2004-06-10 Lighting optical device, exposure system and exposure method

Country Status (3)

Country Link
JP (1) JPWO2004112107A1 (en)
TW (1) TW200508812A (en)
WO (1) WO2004112107A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124139A (en) * 2007-11-09 2009-06-04 Asml Netherlands Bv Device manufacturing method and lithography apparatus, computer program product
CN110214291A (en) * 2016-09-19 2019-09-06 库力&索法利特克有限公司 Beam homogenization device based on lens array
KR20220026132A (en) * 2020-08-25 2022-03-04 세메스 주식회사 Apparatus for treating substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115453766B (en) * 2022-11-11 2023-03-24 南京英田光学工程股份有限公司 High-aspect-ratio beam expanding lens and laser communication terminal comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251308A (en) * 1992-03-05 1993-09-28 Nikon Corp Lighting optical device
JPH11271619A (en) * 1998-03-19 1999-10-08 Nikon Corp Illumination optical device and exposure device provided with illumination optical device
JP2002231619A (en) * 2000-11-29 2002-08-16 Nikon Corp Optical illumination equipment and aligner equipped with the same
JP2003068604A (en) * 2001-08-23 2003-03-07 Nikon Corp Illumination optical equipment and aligner using the illumination optical equipment
JP2003142387A (en) * 2001-11-07 2003-05-16 Nikon Corp Illumination optical apparatus, exposure apparatus, and exposure method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251308A (en) * 1992-03-05 1993-09-28 Nikon Corp Lighting optical device
JPH11271619A (en) * 1998-03-19 1999-10-08 Nikon Corp Illumination optical device and exposure device provided with illumination optical device
JP2002231619A (en) * 2000-11-29 2002-08-16 Nikon Corp Optical illumination equipment and aligner equipped with the same
JP2003068604A (en) * 2001-08-23 2003-03-07 Nikon Corp Illumination optical equipment and aligner using the illumination optical equipment
JP2003142387A (en) * 2001-11-07 2003-05-16 Nikon Corp Illumination optical apparatus, exposure apparatus, and exposure method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124139A (en) * 2007-11-09 2009-06-04 Asml Netherlands Bv Device manufacturing method and lithography apparatus, computer program product
US8218130B2 (en) 2007-11-09 2012-07-10 Asml Netherlands B.V. Device manufacturing method and lithographic apparatus,and computer program product
CN110214291A (en) * 2016-09-19 2019-09-06 库力&索法利特克有限公司 Beam homogenization device based on lens array
KR20220026132A (en) * 2020-08-25 2022-03-04 세메스 주식회사 Apparatus for treating substrate
KR102541300B1 (en) 2020-08-25 2023-06-09 세메스 주식회사 Apparatus for treating substrate

Also Published As

Publication number Publication date
TW200508812A (en) 2005-03-01
JPWO2004112107A1 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP6493325B2 (en) Flux conversion element, illumination optical device, exposure apparatus, and exposure method
US6913373B2 (en) Optical illumination device, exposure device and exposure method
US7095560B2 (en) Diffractive optical device, refractive optical device, illumination optical system, exposure apparatus and exposure method
JP5459571B2 (en) Optical integrator system, illumination optical apparatus, exposure apparatus, and device manufacturing method
KR20030017431A (en) Illuminaire optical apparatus, exposure apparatus, exposure method, and method for fabricating micro device
JP2001135560A (en) Illuminating optical device, exposure, and method of manufacturing micro-device
JP5392454B2 (en) Optical integrator system, illumination optical apparatus, exposure apparatus, and device manufacturing method
WO2007111146A1 (en) Lighting optical system, exposure system, and device production method
JP5035747B2 (en) Optical integrator, illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2003068604A (en) Illumination optical equipment and aligner using the illumination optical equipment
JP2001330964A (en) Exposure apparatus and method for producing micro- device using the same
JP2009071011A (en) Optical integrator, illumination optical system, exposure apparatus and device-manufacturing method
JP2002083759A (en) Illuminating optical equipment, and aligner equipped with the illuminating optical equipment
WO2004112107A1 (en) Lighting optical device, exposure system and exposure method
JP2003178952A (en) Illuminating optical device, exposure system and exposure method
JP2004311742A (en) Method for adjusting optical system, lighting optical device, aligner, and exposure method
JP2003178951A (en) Diffraction optical device, refraction optical device, illuminating optical device, exposure system, and exposure method
JP2007048851A (en) Lighting optical device, exposure apparatus, and process for fabricating device
JP2009071010A (en) Illumination optical system, exposure apparatus and device-manufacturing method
JP2002131690A (en) Illumination optical device and exposure device equipped therewith
JP2004207389A (en) Illumination optical apparatus, aligner, method of exposure, method of adjusting illumination optical apparatus, and method of manufacturing aligner
JP2005195908A (en) Illumination optical device, exposure device, and exposure method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506913

Country of ref document: JP

122 Ep: pct application non-entry in european phase