JPH05251308A - Lighting optical device - Google Patents

Lighting optical device

Info

Publication number
JPH05251308A
JPH05251308A JP4047409A JP4740992A JPH05251308A JP H05251308 A JPH05251308 A JP H05251308A JP 4047409 A JP4047409 A JP 4047409A JP 4740992 A JP4740992 A JP 4740992A JP H05251308 A JPH05251308 A JP H05251308A
Authority
JP
Japan
Prior art keywords
annular
light source
zone
ring
luminous flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4047409A
Other languages
Japanese (ja)
Other versions
JP3295956B2 (en
Inventor
Koji Mori
孝司 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP04740992A priority Critical patent/JP3295956B2/en
Publication of JPH05251308A publication Critical patent/JPH05251308A/en
Application granted granted Critical
Publication of JP3295956B2 publication Critical patent/JP3295956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Abstract

PURPOSE:To enable the title device to uniformly illuminate a reticle as a surface to be irradiated with high illuminance by transforming a parallel luminous flux from a light source into a zone luminous flux by utilizing the refracting action of a conical refracting surface having recessing and projecting sections and forming secondary zone light sources by means of an optical integrator. CONSTITUTION:A nearly parallel luminous flux supplied from a light source section 1 is transformed to a zone-like parallel luminous flux through a first prism member 20. Then a fly-eye lens 3 which acts as an optical integrator forms a plurality of two-dimensional zone light sources from the luminous flux transformed into the zone-like parallel luminous flux having a prescribed zone ratio by means of the member 20. An aperture stopping means 4 is provided at the light emitting position of the lens 3. The luminous fluxes from the two-dimensional zone light sources are condensed by means of a condenser lens 5 after passing through an aperture stop 41 and uniformly illuminate a pattern area on a reticle in an oblique direction so that the luminous fluxes can be superimposed upon another. Namely, the surface to be illuminated can be uniformly illuminated under a high illuminating efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被照射面を均一に照明
する照明光学装置に関するものであり、特に半導体製造
用の露光装置に好適な照明光学装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illumination optical apparatus for uniformly illuminating a surface to be illuminated, and more particularly to an illumination optical apparatus suitable for an exposure apparatus for semiconductor manufacturing.

【0002】[0002]

【従来の技術】従来、LSIや超LSI等の半導体素子
の製造は、レチクル上に形成された回路パターンを投影
レンズを介してウエハ上に縮小投影する投影露光装置に
より行われている。しかしながら、より一層、微細なパ
ターンをウエハ上に転写することが切望されており、こ
れに対応するために多大な努力が続けられている。例え
ば、露光光の短波長化、及び投影レンズの開口数(以下
NAと称する)の増大により、投影レンズの解像力向上
への努力が続けられており、特に最近ではNAが0.5
を越える投影レンズが実現されている。
2. Description of the Related Art Conventionally, a semiconductor device such as an LSI or a VLSI is manufactured by a projection exposure apparatus for reducing and projecting a circuit pattern formed on a reticle onto a wafer through a projection lens. However, there is a strong desire to transfer even finer patterns onto the wafer, and great efforts are being made to address this. For example, efforts have been made to improve the resolution of a projection lens by shortening the wavelength of exposure light and increasing the numerical aperture (hereinafter referred to as NA) of the projection lens.
A projection lens that exceeds the standard has been realized.

【0003】また、これに加えて、露光対象とするパタ
ーンの最小線幅等により照明条件を最適化することで投
影レンズの解像力、焦点深度に対する努力も続けられて
いる。例えば、特開昭59-155843 号公報では、投影レン
ズのNAに対する照明光学系のNAの比率、即ちσ値を
最適化することにより、所定パターンの解像力とコント
ラストとの適切なバランスを得るようにしたものが提案
されている。
In addition to this, efforts are being made to improve the resolution and depth of focus of the projection lens by optimizing the illumination conditions depending on the minimum line width of the pattern to be exposed. For example, in JP-A-59-155843, the ratio of the NA of the illumination optical system to the NA of the projection lens, that is, the σ value is optimized to obtain an appropriate balance between the resolution and the contrast of a predetermined pattern. What you have done is proposed.

【0004】また、近年においては、露光用照明光学装
置内に設けられたフライアイレンズにより形成される2
次的光源の形状を変化させることにより、投影レンズの
解像力、焦点深度をより一層向上させる試みが提案され
ており、例えば、特開昭61-91622号公報にて提案されて
いる。この公報には、2次的光源を形成するフライアイ
レンズの射出側の中央部を絞りにより遮光し、偏心光源
を形成することにより、パターン寸法、焼き付け条件に
より、投影レンズの解像力、焦点深度の大幅なる改善が
図られている。
Further, in recent years, it is formed by a fly-eye lens provided in an exposure illumination optical device.
There has been proposed an attempt to further improve the resolving power and the depth of focus of the projection lens by changing the shape of the secondary light source, and is proposed in, for example, Japanese Patent Laid-Open No. 61-91622. In this publication, a central portion on the exit side of a fly-eye lens that forms a secondary light source is shielded by a diaphragm to form an eccentric light source, so that the resolution of the projection lens and the depth of focus of the projection lens can be changed depending on the pattern size and printing conditions. Significant improvements have been made.

【0005】[0005]

【発明が解決しようとする課題】一般にこの種の露光用
照明光学装置では、微細なパターンをウエハ上に転写す
る際に、スループットの向上のために、被照射面として
のマスク(またはレチクル)上では、より高い照度のも
とでの均一な照明が要求される。ところが、特開昭61-9
1622号公報に提案されている照明装置では、輪帯状の2
次的光源を得るために、フライアイレンズの射出側の中
央部を遮光する絞りを配置している。このため、照射光
の総量が減少して被照射面としてのマスク(以下レチク
ルと称する)上での照度が大幅に低下する。
Generally, in this type of exposure illumination optical apparatus, when a fine pattern is transferred onto a wafer, in order to improve throughput, a mask (or reticle) as an irradiation surface is exposed. Then, uniform illumination under higher illuminance is required. However, JP-A-61-9
The illumination device proposed in Japanese Patent No. 1622 has a ring-shaped 2
In order to obtain a secondary light source, a diaphragm that blocks the central portion on the exit side of the fly-eye lens is arranged. Therefore, the total amount of irradiation light is reduced, and the illuminance on a mask (hereinafter referred to as a reticle) as a surface to be irradiated is significantly reduced.

【0006】この結果、露光時間が長くなって、スルー
プットの低下を免れないという問題があった。本発明は
上記の問題を克服して、輪帯状の2次的光源を何ら遮光
することなく形成し、高い照明効率のもとで被照射面を
均一に照明できる高性能な照明光学装置を提供すること
を目的としている。
As a result, there has been a problem that the exposure time becomes long and the throughput is unavoidable. The present invention overcomes the above problems and provides a high-performance illumination optical device that can form an annular secondary light source without blocking any light and can uniformly illuminate a surface to be illuminated with high illumination efficiency. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】本発明は上記の目的を達
成するために、例えば図1に示す如く、ほぼ平行光束を
供給する光源手段1と、その光源手段2からの平行光束
によって複数の2次的な光源を形成するオプティカルイ
ンテグレータ3と、そのオプティカルインテグレータ3
によって形成された複数の2次的な光源からの光束を集
光して被照射面Rを重畳的に照明するコンデンサーレン
ズ4とを有する照明光学装置において、上記光源手段1
及びオプティカルインテグレータ3との光路間に、ほぼ
平行な光束を輪帯状光束に変換する輪帯状光束変換手段
2を設け、その輪帯状光束変換手段2は、円錐状屈折面
を持つ光学部材を有するようにしたものである。
In order to achieve the above-mentioned object, the present invention uses a light source means 1 for supplying a substantially parallel light flux and a plurality of parallel light fluxes from the light source means 2 as shown in FIG. Optical integrator 3 that forms a secondary light source, and the optical integrator 3
And a condenser lens 4 for converging light fluxes from a plurality of secondary light sources formed by the above to illuminate the illuminated surface R in a superimposed manner.
Further, an annular light flux converting means 2 for converting a substantially parallel light flux into an annular light flux is provided between the optical paths with the optical integrator 3 and the annular light flux converting means 2 has an optical member having a conical refracting surface. It is the one.

【0008】そして、上記の基本構成に基づいて、その
光学部材は、円錐状屈折面を持つ第1及び第2屈折部材
(20,21)を有し、その第1及び第2屈折部材(2
0,21)の内のいずれか一方が前記平行光路内に挿入
可能に設けられることが良い。これにより、高い照明効
率のもとで輪帯状平行光束の外径に対する内径の比率を
変化させることができる。
On the basis of the above-mentioned basic structure, the optical member has first and second refracting members (20, 21) having conical refracting surfaces, and the first and second refracting members (2, 21).
It is preferable that either one of 0, 21) is insertable into the parallel optical path. This makes it possible to change the ratio of the inner diameter to the outer diameter of the annular parallel light flux with high illumination efficiency.

【0009】また、輪帯状光束変換手段2は、図2に示
す如く、少なくとも一面に凸の円錐状屈折面または凹の
円錐状屈折面を有する第1及び第2屈折部材(22,2
3)を有し、その第1及び第2屈折部材(22,23)
は、相対的な間隔が可変に設けられ、その間隔を変化さ
せることにより輪帯状光束径を可変としても良い。これ
により、高い照明効率のもとで輪帯状平行光束の外径に
対する内径の比率を連続的に変化させることができる。
Further, as shown in FIG. 2, the annular light flux converting means 2 has first and second refracting members (22, 2) having a convex conical refracting surface or a concave conical refracting surface on at least one surface.
3) having first and second refraction members (22, 23)
May have a variable relative interval, and the annular light flux diameter may be variable by changing the interval. This makes it possible to continuously change the ratio of the inner diameter to the outer diameter of the annular parallel light flux with high illumination efficiency.

【0010】さらには、図3に示す如く、輪帯状光束変
換手段2とオプティカルインテグレータ3との間に、ア
フォーカル変倍光学系30を設けても良い。このアフォ
ーカル変倍光学系の変倍により輪帯状光束の外径を連続
的に変化させることができる。
Further, as shown in FIG. 3, an afocal variable magnification optical system 30 may be provided between the annular light beam converting means 2 and the optical integrator 3. By changing the magnification of this afocal variable power optical system, the outer diameter of the annular light flux can be continuously changed.

【0011】[0011]

【作 用】本発明の装置では、輪帯状光束変換手段(凸
の円錐状屈折面または凹の円錐状屈折面)の屈折作用に
よって、光源からの平行光束を何ら遮光することなく、
輪帯状光束に変換でき、その結果、オプティカルインテ
グレータによって輪帯状の2次光源が形成できるのでき
る。従って、被照射面としてのレチクルを高照度のもと
での均一に照明できるため、スループットの低下を招く
ことはない。
[Operation] In the device of the present invention, the parallel light flux from the light source is not blocked at all by the refraction effect of the annular light flux conversion means (convex conical refracting surface or concave conical refracting surface).
It can be converted into a ring-shaped light beam, and as a result, a ring-shaped secondary light source can be formed by the optical integrator. Therefore, since the reticle as the surface to be illuminated can be uniformly illuminated under high illuminance, throughput is not reduced.

【0012】また、輪帯状光束変換手段が凸の円錐状屈
折面または凹の円錐状屈折面を持つ複数の部材を持つ構
成とし、この複数の部材を交換可能あるいはこの複数の
部材間の間隔を可変に設けることにより、高い照明効率
のもとで輪帯状平行光束の外径に対する内径の比率、所
謂輪帯比をに変化させることができる。従って、任意の
輪帯比を持つ2次光源を形成できるため、レチクルR上
のパターンを最適な線幅、焦点深度のもとでウエハ上に
転写することができる。
Further, the annular light flux converting means has a plurality of members having a convex conical refracting surface or a concave conical refracting surface, and the plurality of members can be exchanged or the intervals between the plurality of members can be changed. By variably providing, it is possible to change the ratio of the inner diameter to the outer diameter of the annular parallel light flux, that is, the so-called annular ratio, to high illumination efficiency. Therefore, it is possible to form the secondary light source having an arbitrary annular zone ratio, so that the pattern on the reticle R can be transferred onto the wafer under the optimum line width and depth of focus.

【0013】さらに、照明光学系内にアフォーカル変倍
光学系を設ければ、そのアフォーカル変倍光学系の変倍
により輪帯比を一定に維持しながら輪帯状平行光束の径
(外径)を可変にできる。従って、輪帯状光束変換手段
によって輪帯比を変化でき、アフォーカル変倍光学系に
よって輪帯比を変える事なく輪帯状平行光束を変化でき
るため、輪帯比と輪帯状平行光束の径(外径)を独立に
コントロールできる。
Further, if an afocal variable magnification optical system is provided in the illumination optical system, the diameter of the annular parallel light flux (outer diameter) can be maintained while maintaining a constant annular zone ratio by changing the magnification of the afocal variable magnification optical system. ) Can be made variable. Therefore, the annular ratio can be changed by the annular light beam conversion means, and the annular parallel light beam can be changed by the afocal variable-magnification optical system without changing the annular ratio. Diameter) can be controlled independently.

【0014】[0014]

【実施例】図1は、本発明の第1実施例による構成を示
したものであり、図1において(A)は第1の輪帯光束
変換状態、(B)は第2の輪帯光束変換状態を示してい
る。以下、図1を参照しながら第1実施例について詳述
する。図1(A)に示す如く、光源部1からほぼ平行な
光束を供給される。この光源部1は、水銀アーク灯、楕
円鏡及びコリメータレンズを有し、この水銀アーク灯か
らの光(例えば、g線(436nm) 、i線(365nm)等の光)
は、楕円鏡によって集光された後、コリメータレンズに
より平行光束に変換される。また、光源部1は、KrF
のレーザ光源としてのエキシマレーザ光源とビーム径を
整形するビームエキスパンダを有し、エキシマレーザ光
源からの光をビームエキスパンダを介してビーム整形さ
れた平行光束を供給するものでも良い。
FIG. 1 shows a configuration according to a first embodiment of the present invention. In FIG. 1, (A) is a first annular zone luminous flux conversion state, and (B) is a second annular zone luminous flux. The conversion status is shown. Hereinafter, the first embodiment will be described in detail with reference to FIG. As shown in FIG. 1 (A), a substantially parallel light flux is supplied from the light source unit 1. The light source unit 1 has a mercury arc lamp, an elliptical mirror, and a collimator lens, and the light from the mercury arc lamp (for example, g-line (436 nm) and i-line (365 nm) light).
Is condensed by an elliptical mirror and then converted into a parallel light flux by a collimator lens. Further, the light source unit 1 is made of KrF.
It may have an excimer laser light source as a laser light source and a beam expander that shapes the beam diameter, and may supply a parallel light flux that is beam shaped from the light from the excimer laser light source through the beam expander.

【0015】光源部1から供給されるほぼ平行光束は、
斜線で示す如く、第1プリズム部材20を通過し、ここ
で輪帯状平行光束に変換される。この第1プリズム部材
20は、入射側に凹の円錐状屈折面を持つと共に射出側
に凸の円錐状屈折面を持ち、図1(B)に示す如く、第
1交換手段10によって第2プリズム部材21と交換可
能に設けられている。この第2プリズム部材21は、入
射側に凹の円錐状屈折面を持つと共に射出側に凸の円錐
状屈折面を持ち、第1プリズム部材20よりも軸上厚
(頂点間の距離)が薄くなる如く構成されている。
The substantially parallel light flux supplied from the light source unit 1 is
As indicated by the diagonal lines, the light passes through the first prism member 20 and is converted into an annular parallel light beam here. The first prism member 20 has a concave conical refracting surface on the incident side and a convex conical refracting surface on the exit side, and as shown in FIG. It is provided so as to be replaceable with the member 21. The second prism member 21 has a concave conical refracting surface on the incident side and a convex conical refracting surface on the exit side, and has a smaller axial thickness (distance between vertices) than the first prism member 20. It is configured as follows.

【0016】そして、第1プリズム部材20により変換
された図1(A)の輪帯状平行光束は、第1プリズム部
材20により変換された図1(B)の輪帯状平行光束と
比べると、輪帯の幅は一定であるが輪帯状平行光束の外
径が大きく変換される。このため、各プリズム部材(2
0,21)により形成される輪帯状平行光束の内径と外
径をそれぞれをr1 ,r2 とすると、図1(A)に示し
た第1プリズム部材20により変換された輪帯状平行光
束は、図1(B)に示した第2プリズム部材21により
変換された輪帯状平行光束よりも、輪帯比(r1
2 )が小さくなる。従って、各プリズム部材(20,
21)を光路内に挿入することによって、輪帯比が可変
にできることが分かる。なお、本実施例では、第1プリ
ズム部材20と第2プリズム部材21とで輪帯光束変換
部2が構成される。
The annular parallel light flux of FIG. 1 (A) converted by the first prism member 20 is compared with the annular parallel light flux of FIG. 1 (B) converted by the first prism member 20. Although the width of the band is constant, the outer diameter of the annular parallel light flux is largely converted. Therefore, each prism member (2
0, 21), where the inner and outer diameters of the annular parallel light flux are r 1 and r 2 , respectively, the annular parallel light flux converted by the first prism member 20 shown in FIG. The annular zone ratio (r 1 / r) is larger than that of the annular parallel light flux converted by the second prism member 21 shown in FIG.
r 2 ) becomes small. Therefore, each prism member (20,
It can be seen that the annular zone ratio can be made variable by inserting 21) into the optical path. In addition, in the present embodiment, the first prism member 20 and the second prism member 21 constitute the annular light flux conversion unit 2.

【0017】さて、図1(A)に戻って、第1プリズム
部材20によって所定の輪帯比を持つ輪帯状平行光束に
変換された光束は、オプティカルインテグレータとして
のフライアイレンズ3により輪帯状の複数の2次的光源
が形成される。このフライアイレンズ3は、複数の棒状
レンズ素子の集合体で構成され、輪帯状光束がフライア
イレンズ3を通過すると、フライアイレンズ3の射出側
には各棒状レンズ素子によって輪帯状の複数の2次的な
光源像が形成され、ここには、実質的に輪帯状の面光源
が形成される。従って、プリズム部材(20,21)の
交換によってフライアイレンズ3に入射する輪帯平行光
束径並びに輪帯比が変化するため、輪帯状の2次的な光
源像の大きさ及び輪帯比が可変となる。
Now, returning to FIG. 1 (A), the light flux converted into a ring-shaped parallel light beam having a predetermined ring-zone ratio by the first prism member 20 is ring-shaped by the fly-eye lens 3 as an optical integrator. A plurality of secondary light sources are formed. The fly-eye lens 3 is composed of an assembly of a plurality of rod-shaped lens elements, and when a ring-shaped luminous flux passes through the fly-eye lens 3, the fly-eye lens 3 has a plurality of ring-shaped lens elements on the exit side thereof. A secondary light source image is formed, where a substantially annular surface light source is formed. Therefore, since the diameter of the annular parallel light beam incident on the fly-eye lens 3 and the annular ratio are changed by exchanging the prism members (20, 21), the size and annular ratio of the secondary annular light source image are changed. It is variable.

【0018】この輪帯状の2次的な光源像が形成される
フライアイレンズ3の射出側の位置には、輪帯状平行光
束を正確に規定する開口絞り手段4が設けられており、
この開口絞り手段4は、所定の輪帯状の口径を持つ開口
絞り41及び42を有しており、開口絞り41は、第2
プリズム部材21に挿入により連動して、第2交換手段
11によって別の輪帯状の口径並びに輪帯比を有する開
口絞り42と交換可能に設けられている。
At the position on the exit side of the fly-eye lens 3 where this annular secondary light source image is formed, there is provided aperture stop means 4 for accurately defining the annular parallel light flux.
The aperture stop means 4 has aperture stops 41 and 42 having a predetermined ring-shaped aperture, and the aperture stop 41 is a second aperture stop.
It is provided so as to be interchangeable with the prism member 21 by the second exchanging means 11 so as to be exchangeable with the aperture stop 42 having another annular diameter and annular ratio.

【0019】さて、開口絞り41を介した輪帯状の2次
的な光源からの光束は、斜線で示す如く、コンデンサー
レンズ5により集光されて、レチクルR上のパターン領
域を斜め方向から重畳するように均一照明する。する
と、投影レンズ6(投影光学系)によってウエハW上に
は、レチクルR上の回路パターン像が形成される。従っ
て、ウエハW上に塗布されたレジストが感光されて、こ
こにはレチクルRの回路パターン像が転写される。投影
光学系6の瞳(入射瞳)位置には、口径可変な開口絞り
6aが設けられており、この開口絞り6aは、口径可変
手段12によって所定の口径に設定される。なお、開口
絞り6aは、図1の点線で示す如く、フライアイレンズ
3の射出側に設けられた開口絞り6と共役に設けられて
いる。
The light flux from the secondary light source in the form of a ring through the aperture stop 41 is condensed by the condenser lens 5 as shown by the diagonal lines, and the pattern area on the reticle R is superposed obliquely. Uniform illumination. Then, a circuit pattern image on the reticle R is formed on the wafer W by the projection lens 6 (projection optical system). Therefore, the resist applied on the wafer W is exposed to light, and the circuit pattern image of the reticle R is transferred thereto. An aperture stop 6a having a variable aperture is provided at the position of the pupil (incident pupil) of the projection optical system 6, and the aperture stop 6a is set to a predetermined aperture by the aperture changing means 12. The aperture stop 6a is provided so as to be conjugate with the aperture stop 6 provided on the exit side of the fly-eye lens 3 as shown by the dotted line in FIG.

【0020】次に、本実施例による動作について説明す
ると、まずキーボード等の入力手段14を介して順番に
露光される各種のレチクルRに関する情報等が入力され
ると、この入力情報は制御手段13に入力される。この
制御手段13は、各種のレチクルに関する最適な線幅、
焦点深度等の情報を内部のメモリー部に記憶しており、
第1交換手段10、第2交換手段及び口径可変手段12
を制御する。
Next, the operation of this embodiment will be described. First, when information about various reticle R to be sequentially exposed is input through the input means 14 such as a keyboard, the input information is the control means 13. Entered in. This control means 13 has an optimum line width for various reticles,
Information such as depth of focus is stored in the internal memory,
First exchange means 10, second exchange means and caliber varying means 12
To control.

【0021】これらの第1交換手段10、第2交換手段
及び口径可変手段12は、内部に駆動系を含んでおり、
制御手段13からの制御信号に基づいて、最適な線幅、
焦点深度ともとでレチクルRを輪帯照明するために、プ
リズム部材(20,21)及び開口絞り(40,41)
が選択的に設定される共に、開口絞り6の口径が設定さ
れる。
The first exchanging means 10, the second exchanging means and the aperture varying means 12 include a drive system inside,
Based on the control signal from the control means 13, the optimum line width,
A prism member (20, 21) and an aperture stop (40, 41) for annular illumination of the reticle R with the depth of focus.
Is selectively set, and the aperture of the aperture stop 6 is set.

【0022】なお、レチクルRのパターン領域外に最適
な線幅、焦点深度等の情報を含むバーコード等のマーク
を形成し、このマークを検知するマーク検知手段をレチ
クルRが設定される周辺部に設け、この検知情報を直接
的に制御手段13へ入力できるようにしても良い。この
ように、プリズム部材(20、21)を適宜交換して、
フライアイレンズ3の射出側に形成される輪帯状の2次
光源における大きさを及び輪帯比を変化させて、輪帯照
明(あるいは傾斜照明)状態を変えると、レチクルR上
のパターンを最適な線幅、焦点深度のもとでウエハ上に
転写することができる。
A mark such as a bar code containing information such as an optimum line width and depth of focus is formed outside the pattern area of the reticle R, and a mark detecting means for detecting the mark is provided in a peripheral portion where the reticle R is set. Alternatively, the detection information may be directly input to the control means 13. In this way, the prism members (20, 21) are replaced appropriately,
The pattern on the reticle R is optimized by changing the size and ring ratio of the ring-shaped secondary light source formed on the exit side of the fly-eye lens 3 to change the ring-shaped illumination (or tilted illumination) state. It is possible to transfer onto a wafer with a wide line width and depth of focus.

【0023】ここで、以上の構成によって得られる輪帯
照明の効果を十分に引き出すには、フライアイレンズ3
の射出側に形成される輪帯状の2次光源の内径をd1
フライアイレンズ3の射出側に形成される輪帯状の2次
光源の外径をd2 とするとき、 1/3≦d1 /d2 ≦2/3 (1) を満足するように輪帯光束径を設定することが望まし
い。これにより、投影光学系の焦点深度を向上させて実
用的な解像力の向上が達成となる。
Here, in order to fully bring out the effect of the annular illumination obtained by the above configuration, the fly-eye lens 3
D 1 the inner diameter of the secondary light source of the annular shape formed on the exit side of,
When the outer diameter of the ring-shaped secondary light source formed on the exit side of the fly-eye lens 3 is d 2 , the ring-shaped zone should satisfy 1/3 ≦ d 1 / d 2 ≦ 2/3 (1) It is desirable to set the luminous flux diameter. As a result, the depth of focus of the projection optical system is improved and the practical resolution is improved.

【0024】条件(1)の下限値を越えると、輪帯状光
源の内径が小さくなり過ぎ、本発明による輪帯照明の効
果が薄れ、投影光学系の焦点深度と解像度とを向上させ
ることが困難となる。逆に条件(1)の上限を越える
と、レチクル上では同じ線幅のパターンでも周期性の有
無によりウエハ上に転写される線幅が異なり、レチクル
パターンを忠実にウエハ上に転写することができなくな
る。また、露光量変化に対する線幅の変化量が大きくな
るため、所望の線幅のパターンをウエハ上に形成するこ
とが難しくなる。
When the value goes below the lower limit of the condition (1), the inner diameter of the annular light source becomes too small, the effect of the annular illumination according to the present invention is diminished, and it is difficult to improve the depth of focus and the resolution of the projection optical system. Becomes On the contrary, if the upper limit of the condition (1) is exceeded, even if the pattern has the same line width on the reticle, the line width transferred on the wafer varies depending on the presence or absence of periodicity, and the reticle pattern can be faithfully transferred on the wafer. Disappear. Further, since the amount of change in the line width with respect to the change in the exposure amount becomes large, it becomes difficult to form a pattern having a desired line width on the wafer.

【0025】さらに、本発明の輪帯照明による効果を最
大限に得るためには、投影レンズ3のレチクルRの開口
数をNA1 、輪帯状の2次的な光源の外径により決定さ
れる照明光学系の開口数をNA2 とするとき、以下の条
件(2)を満足することが望ましい。 0.45≦NA2 /NA1 ≦0.8 (2) この条件(2)の下限を越えると、輪帯照明によりレチ
クルを傾斜照明する光の入射角度が小さくなり、本発明
による輪帯照明の効果を殆ど得ることができない。この
ため、輪帯照明を行うこと自体無意味となってしまう。
逆に条件(2)の上限を越えると、空間像としての解像
度は向上するものの、焦点深度が低下する。さらには、
ベストフォーカスでのコントラストが大幅に低下するた
め好ましくない。
Further, in order to maximize the effect of the annular illumination of the present invention, the numerical aperture of the reticle R of the projection lens 3 is determined by NA 1 and the outer diameter of the annular secondary light source. When the numerical aperture of the illumination optical system is NA 2 , it is desirable to satisfy the following condition (2). 0.45 ≦ NA 2 / NA 1 ≦ 0.8 (2) If the lower limit of this condition (2) is exceeded, the incident angle of the light that obliquely illuminates the reticle by the annular illumination becomes small, and the annular illumination according to the present invention. Can hardly obtain the effect of. For this reason, it becomes meaningless to perform annular illumination.
On the contrary, when the value exceeds the upper limit of the condition (2), the resolution as an aerial image improves, but the depth of focus decreases. Moreover,
It is not preferable because the contrast at the best focus is significantly reduced.

【0026】以上の如く、図1に示した第1実施例で
は、輪帯状平行光束を形成するために輪帯光束変換部材
として、入射側に凹の円錐状屈折面を有すると共に射出
側に凸の円錐状屈折面を有すると共に軸上厚が異なるプ
リズム部材(20,21)を交換可能に設けたが、図4
に示す如く、入射側及び射出側に凸の円錐状屈折面を有
するプリズム部材20(図4(A)参照)と、これと軸
上厚が異なり入射側及び射出側に凸の円錐状屈折面を有
するプリズム部材21(図4(B)参照)とを互いに交
換可能に設けても良い。さらには、入射側に凹の円錐状
屈折面を有すると共に射出側に凸の円錐状屈折面を有す
るプリズム部材と、入射側及び射出側に凸の円錐状屈折
面を有するプリズム部材とを交換可能に設けても良い。
As described above, in the first embodiment shown in FIG. 1, as the annular light flux converting member for forming the annular parallel light flux, it has a concave conical refracting surface on the incident side and is convex on the exit side. The prism members (20, 21) having different conical refracting surfaces and different axial thicknesses are replaceably provided.
, A prism member 20 having convex conical refracting surfaces on the incident side and the exit side (see FIG. 4A), and a conical refracting surface having an axial thickness different from that of the conical refracting surface. The prism member 21 (see FIG. 4 (B)) may be provided so as to be interchangeable with each other. Furthermore, a prism member having a concave conical refracting surface on the incident side and a convex conical refracting surface on the exit side and a prism member having a convex conical refracting surface on the incident side and the exit side can be exchanged. It may be provided in.

【0027】また、図1に示す本実施例では、2つのプ
リズム部材が互いに交換可能に設けられているが、2以
上のプリズム部材が交換可能に設けられても良く、さら
には、プリズムが光路内に挿入されないようにして、通
常の照明を行えるようにしても良い。次に、本発明によ
る第2実施例について図2を参照しながら説明する。本
実施例において、第1実施例と異なる所は、輪帯状光束
変換部2を間隔可変な2つのプリズム部材で構成して、
輪帯状平行光束の輪帯比を連続的に変化させるようにし
た点である。なお、図2において図1と同一の機能を持
つ部材には同じ符号を付してある。
Further, in the present embodiment shown in FIG. 1, two prism members are provided so as to be exchangeable with each other, but two or more prism members may be provided so as to be exchangeable. Ordinary lighting may be performed without being inserted inside. Next, a second embodiment according to the present invention will be described with reference to FIG. In this embodiment, the difference from the first embodiment is that the annular light flux conversion portion 2 is composed of two prism members with variable spacing,
This is the point that the annular ratio of the annular parallel light flux is continuously changed. In FIG. 2, members having the same functions as those in FIG. 1 are designated by the same reference numerals.

【0028】図2に示す如く、輪帯状光束変換部2は、
入射側に凹の円錐状屈折面を持つと共に射出側に平面を
持つ第1プリズム部材22と、入射側に平面を持つと共
に射出側に凸の円錐状屈折面を持つ第2プリズム部材2
3とを有しており、この2つのプリズムは間隔可変手段
15により移動可能に設けられている。なお、この間隔
可変手段15は、駆動系を含んでおり、図1に示した第
1実施例と同様に、制御手段13により制御される。
As shown in FIG. 2, the annular light flux conversion section 2 is
A first prism member 22 having a concave conical refracting surface on the entrance side and a flat surface on the exit side, and a second prism member 2 having a flat surface on the entrance side and a convex conical refracting surface on the exit side.
3 and the two prisms are movably provided by the distance varying means 15. The interval varying means 15 includes a drive system and is controlled by the control means 13 as in the first embodiment shown in FIG.

【0029】ここで、双方のプリズム部材(22,2
3)の間隔が大きくなると、図2(A)に示す如く、こ
れに入射する光源部1からの平行光束は、輪帯光束の外
径が大きくなって輪帯比の小さい輪帯状平行光束に変換
され、逆に双方のプリズム部材(22,23)の間隔が
狭くなると、図2(B)に示す如く、これに入射する光
源部1からの平行光束は、輪帯光束の外径が小さくなっ
て輪帯比の大きい輪帯状平行光束に変換される。
Here, both prism members (22, 2)
When the interval of 3) becomes large, as shown in FIG. 2A, the parallel luminous flux from the light source unit 1 which is incident on the collimated luminous flux becomes an annular collimated luminous flux having a small annular zone ratio because the outer diameter of the annular zone luminous flux becomes large. When the space between the prism members (22, 23) is converted and narrowed, on the contrary, as shown in FIG. 2B, the parallel light flux from the light source unit 1 incident on the prism member (22, 23) has a small outer diameter of the annular light flux. Then, it is converted into a ring-shaped parallel light beam having a large ring-zone ratio.

【0030】従って、プリズム部材(22,23)の間
隔を適宜変化させることにより、フライアイレンズ3の
射出側に形成される輪帯状の2次光源における大きさ及
び輪帯比を連続的に変化させて、輪帯照明(あるいは傾
斜照明)状態を変えると、レチクルR上のパターンを最
適な線幅、焦点深度のもとでウエハ上に転写することが
できる。なお、本実施例においても、前述の条件(1)
及び条件(2)を満足するような輪帯状光束とすること
が望ましい。
Therefore, by appropriately changing the distance between the prism members (22, 23), the size and the ring ratio of the ring-shaped secondary light source formed on the exit side of the fly-eye lens 3 are continuously changed. Then, by changing the annular illumination (or inclined illumination) state, the pattern on the reticle R can be transferred onto the wafer under the optimum line width and depth of focus. Also in this embodiment, the above condition (1) is satisfied.
Also, it is desirable that the annular light flux satisfy the condition (2).

【0031】なお、図5の(a)に示す如く、本実施例
の輪帯状光束変換部2としての第1プリズム部材22と
第2プリズム部材23との個々の向きを逆に配置し、こ
の2つの部材の間隔を変化させても良い。この場合、図
5の(b)に示す如く、2つのプリズム部材間の間隔が
完全に無くなるまで接近させれば、通常の照明を行うこ
とができる。
As shown in FIG. 5A, the first prism member 22 and the second prism member 23 as the annular light flux converting portion 2 of this embodiment are arranged so that their respective orientations are reversed. The distance between the two members may be changed. In this case, as shown in FIG. 5B, normal illumination can be performed by bringing the two prism members close to each other until the distance between them completely disappears.

【0032】また、第1及び第2プリズム部材の形状は
これに限るものではなく、図6に示す如く、第2プリズ
ム部材は入射側に凸の円錐状屈折面を持つと共に射出側
に平面を持ち、第2プリズム部材は入射側に平面を持つ
と共に射出側に凸の円錐状屈折面を持つように構成して
も良く、さらには、図7に示す如く、この2つのプリズ
ムの個々の向きを逆に配置した構成でも良い。
The shapes of the first and second prism members are not limited to this. As shown in FIG. 6, the second prism member has a convex conical refracting surface on the incident side and a flat surface on the exit side. The second prism member may have a flat surface on the incident side and a convex conical refracting surface on the exit side. Further, as shown in FIG. Alternatively, the configuration may be reversed.

【0033】次に、本発明による第3実施例について図
3を参照しながら説明する。本実施例において、第2実
施例と異なる所は、輪帯状光束変換部2としての2つの
プリズム部材とフライアイレンズ3との間にアフォーカ
ル変倍光学系30を配置して、輪帯状光束の輪帯比を連
続的に変化させるのみならず輪帯光束の径(外径)を連
続的に可変となるようにした点である。なお、図3にお
いて図1と同一の機能を持つ部材には同じ符号を付して
ある。
Next, a third embodiment of the present invention will be described with reference to FIG. The present embodiment is different from the second embodiment in that an afocal variable magnification optical system 30 is arranged between the two prism members as the annular light flux conversion section 2 and the fly-eye lens 3 and the annular light flux is changed. In addition to continuously changing the annular zone ratio, the diameter (outer diameter) of the annular zone light flux is continuously variable. In FIG. 3, members having the same functions as those in FIG. 1 are designated by the same reference numerals.

【0034】図3に示す如く、アフォーカル変倍光学系
30は、光源側から順に、正屈折力の第1群30aと、
負屈折力の第2群30bと、正屈折力の第3群30bと
から構成され、この第2群30bと第3群30bとは、
双方の間隔が変化するように移動可能に設けられてお
り、第2群30bと第3群30bとは、変倍手段31に
より移動する。なお、この変倍手段31は、駆動系を含
んでおり、図1及び図2に示した第1実施例と同様に、
制御手段13により制御される。
As shown in FIG. 3, the afocal variable magnification optical system 30 comprises, in order from the light source side, a first group 30a having a positive refractive power,
It is composed of a second group 30b having negative refractive power and a third group 30b having positive refractive power. The second group 30b and the third group 30b are
The second group 30b and the third group 30b are movably provided so that the distance between the two groups changes, and the second group 30b and the third group 30b are moved by the magnification changing means 31. The variable power unit 31 includes a drive system, and similar to the first embodiment shown in FIGS. 1 and 2,
It is controlled by the control means 13.

【0035】ここで、第2群30bと第3群30bとの
間隔が大きくなると(最大倍率状態)、図3(A)に示
す如く、これに入射する輪帯状平行光束は、輪帯光束の
外径が大きい光束に変換され、逆に第2群30bと第3
群30bとの間隔が狭くなると(最小倍率状態)、図3
(B)に示す如く、これに入射する輪帯状平行光束は、
輪帯光束の外径が狭い光束に変換される。
Here, when the distance between the second group 30b and the third group 30b becomes large (maximum magnification state), as shown in FIG. 3 (A), the ring-shaped parallel light beam incident on this becomes a ring-shaped parallel light beam. It is converted into a light beam with a large outer diameter, and conversely the second group 30b and the third group
When the distance from the group 30b becomes narrow (minimum magnification state), FIG.
As shown in (B), the annular parallel light flux incident on this is
The outer diameter of the annular light flux is converted into a narrow light flux.

【0036】従って、第2群30bと第3群30bとの
間隔、即ちアフォーカル変倍光学系30を適宜変化する
ことによりフライアイレンズ3の射出側に形成される輪
帯状の2次光源の外径を連続的に変化させることができ
ると共に、プリズム部材(22,23)の間隔を適宜変
化することによりフライアイレンズ3の射出側に形成さ
れる輪帯状の2次光源の輪帯比を連続的に変化させるこ
とができる。よって、輪帯状の2次光源の輪帯比及び輪
帯状の2次光源の大きさ(外径)を連続的に独立制御で
きるため、最適な輪帯照明(あるいは傾斜照明)状態の
設定の自由度が向上する。この結果、レチクルR上のパ
ターンをより最適な線幅、焦点深度のもとでウエハ上に
転写することができる。このとき、本実施例において
も、前述の条件(1)及び条件(2)を満足するように
輪帯状光束を変化させることが望ましい。
Therefore, by appropriately changing the distance between the second group 30b and the third group 30b, that is, the afocal variable magnification optical system 30, an annular secondary light source formed on the exit side of the fly-eye lens 3 can be used. The outer diameter can be continuously changed, and the annular zone ratio of the annular secondary light source formed on the exit side of the fly-eye lens 3 can be changed by appropriately changing the distance between the prism members (22, 23). It can be changed continuously. Therefore, since the annular ratio of the annular secondary light source and the size (outer diameter) of the annular secondary light source can be continuously and independently controlled, it is possible to freely set the optimal annular illumination (or inclined illumination) state. The degree improves. As a result, the pattern on the reticle R can be transferred onto the wafer with a more optimal line width and depth of focus. At this time, also in this embodiment, it is desirable to change the annular light flux so as to satisfy the above conditions (1) and (2).

【0037】なお、本実施例のアフォーカル変倍光学系
30は、図1及び図2に示した実施例においても適用で
きることは言うまでもない。ところで、図1〜図3に示
した各実施例のフライアイレンズ3の射出側に設けられ
た開口絞り手段4の具体的な切り換え機構の一例を図8
を参照しながら説明する。
Needless to say, the afocal variable magnification optical system 30 of this embodiment can be applied to the embodiments shown in FIGS. By the way, an example of a concrete switching mechanism of the aperture stop means 4 provided on the exit side of the fly-eye lens 3 of each embodiment shown in FIGS.
Will be described with reference to.

【0038】図8に示す如く、円形の基板400上に
は、斜線で示す透過域を持つ8種類の絞りが円周方向に
沿って設けられており、基板400は、この基板400
内の1つの絞りが照明光路内に位置するようにOを中心
として回転可能に設けられている。この基板400上に
は3種類の異なる輪帯比を持つ輪帯状の絞りが形成され
ており、絞り401はr11/r21の輪帯比を持つ輪帯状
の透過領域を有し、絞り403はr12/r22の輪帯比を
持つ輪帯状の透過領域を有し、絞り405はr13/r21
の輪帯比を持つ輪帯状の透過領域を有している。
As shown in FIG. 8, on the circular substrate 400, eight kinds of diaphragms having a transmission region shown by diagonal lines are provided along the circumferential direction.
One of the diaphragms is rotatably provided around O so as to be located in the illumination optical path. On this substrate 400, a ring-shaped stop having three different ring ratios is formed. The stop 401 has a ring-shaped transmission region having a ring ratio of r 11 / r 21 , and a stop 403. Has a ring-shaped transmission region having a ring ratio of r 12 / r 22 , and the diaphragm 405 has r 13 / r 21
It has a ring-shaped transmission region having a ring ratio of.

【0039】また、この基板400上には3種類の異な
る輪帯比のもとで効率良く4つの偏心光源を形成するた
めの絞りが形成されており、絞り402はr11/r21
輪帯比の輪帯光束内に4つの開口を有し、絞り404は
12/r22の輪帯比の輪帯光束内に4つの開口を有し、
絞り406はr13/r21の輪帯比の輪帯光束内に4つの
開口を有している。
Further, on this substrate 400, diaphragms for efficiently forming four eccentric light sources under three different ring zone ratios are formed, and the diaphragm 402 is a ring of r 11 / r 21 . The aperture 404 has four openings in the annular light flux, and the diaphragm 404 has four apertures in the annular light flux of the annular ratio r 12 / r 22 .
The diaphragm 406 has four openings in the annular light flux having an annular ratio of r 13 / r 21 .

【0040】さらに、この基板400上には2種類の通
常の照明を行うための円形の口径の絞りが形成されてお
り、絞り407は2r22の円形口径を有しており、絞り
408は2r21の円形口径を有している。従って、絞り
401、403及び405の内の一方を選択して照明光
路内へ位置させれば、3種類の異なる輪帯比を持つ輪帯
光束を正確に規定(制限)でき、絞り402、404及
び406の内の一方を選択して照明光路内へ位置させれ
ば、3種類の異なる輪帯比のもとで効率の良く4つの偏
心光源を形成することができるため、この4つの偏心光
源による効率の良い傾斜照明が行える。また、絞り40
7及び408の内の一方を選択して照明光路内へ位置さ
せれば、σ値の異なる通常照明を行うことができる。
Further, a circular aperture having a circular aperture for performing two kinds of normal illumination is formed on the substrate 400, the aperture 407 has a circular aperture of 2r 22 , and the aperture 408 has a diameter of 2r. It has a round diameter of 21 . Therefore, if one of the diaphragms 401, 403, and 405 is selected and positioned in the illumination optical path, it is possible to accurately define (limit) the annular light flux having three different annular zone ratios, and the diaphragms 402, 404. And 406 are selected and positioned in the illumination optical path, four eccentric light sources can be efficiently formed under three different ring zone ratios. It is possible to perform highly efficient inclined illumination. Also, the aperture 40
If one of 7 and 408 is selected and placed in the illumination optical path, normal illumination with different σ values can be performed.

【0041】なお、図8では、円形基板上の円周方向に
沿って複数の絞りを設け、これを任意に選択するターレ
ット式の切り換え機構の一例について説明したが、フラ
イアイレンズ3の射出側に設けられている開口絞り41
を開口絞り42と交換可能とせずに、開口絞り41自体
の口径可変に設けても良い。また、図1乃至図3に示し
た各実施例において2次光源を形成する手段としてフラ
イアイレンズを用いたが、ロッド状の光学部材(ロッド
状オプティカルインテグレータ)を用いても良い。
In FIG. 8, an example of a turret type switching mechanism in which a plurality of diaphragms are provided along the circumferential direction on a circular substrate and the diaphragms are arbitrarily selected has been described, but the exit side of the fly-eye lens 3 is described. Aperture stop 41 provided in
May not be replaceable with the aperture stop 42, but the aperture of the aperture stop 41 itself may be variable. Although the fly-eye lens is used as the means for forming the secondary light source in each of the embodiments shown in FIGS. 1 to 3, a rod-shaped optical member (rod-shaped optical integrator) may be used.

【0042】[0042]

【発明の効果】以上の如く、本発明によれば、輪帯状の
2次的光源を何ら遮光することなく形成し、高い照明効
率のもとで被照射面を均一に照明できる高性能な照明光
学装置を達成できる。しかも、各実施例に示した装置に
よれば、高い照明効率のもとで、輪帯状の2次光源の大
きさ及び輪帯比を可変にできるため、レチクルR上のパ
ターンを最適な線幅、焦点深度のもとでウエハ上に転写
することができる。
As described above, according to the present invention, a high-performance illumination capable of forming a ring-shaped secondary light source without blocking any light and uniformly illuminating a surface to be illuminated with high illumination efficiency. An optical device can be achieved. Moreover, according to the apparatus shown in each of the embodiments, the size and the ring ratio of the ring-shaped secondary light source can be made variable under high illumination efficiency, so that the pattern on the reticle R can have an optimum line width. , Can be transferred onto a wafer under the depth of focus.

【0043】また、第3実施例に示した装置によれば、
輪帯状の2次光源の輪帯比と大きさを独立に可変にでき
るため、最適な輪帯照明(あるいは傾斜照明)状態の設
定の自由度が向上する。この結果、レチクルR上のパタ
ーンをより最適な線幅、焦点深度のもとでウエハ上に転
写することができる。
According to the device shown in the third embodiment,
Since the ring ratio and size of the ring-shaped secondary light source can be independently changed, the degree of freedom in setting the optimum ring illumination (or inclined illumination) state is improved. As a result, the pattern on the reticle R can be transferred onto the wafer with a more optimal line width and depth of focus.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の第1実施例の構成を示す図であ
る。
FIG. 1 is a diagram showing a configuration of a first exemplary embodiment of the present invention.

【図2】図2は本発明の第2実施例の構成を示す図であ
る。
FIG. 2 is a diagram showing a configuration of a second exemplary embodiment of the present invention.

【図3】図3は本発明の第3実施例の構成を示す図であ
る。
FIG. 3 is a diagram showing a configuration of a third exemplary embodiment of the present invention.

【図4】図4は本発明の第1実施例における第1及び第
2プリズム部材の変形例を示す図である。
FIG. 4 is a diagram showing a modification of the first and second prism members in the first embodiment of the present invention.

【図5】図5は本発明の第2実施例における第1及び第
2プリズム部材の第1変形例を示す図である。
FIG. 5 is a diagram showing a first modification of the first and second prism members in the second embodiment of the present invention.

【図6】図5は本発明の第2実施例における第1及び第
2プリズム部材の第2変形例を示す図である。
FIG. 6 is a diagram showing a second modification of the first and second prism members in the second embodiment of the present invention.

【図7】図5は本発明の第2実施例における第1及び第
2プリズム部材の第3変形例を示す図である。
FIG. 7 is a diagram showing a third modification of the first and second prism members in the second embodiment of the present invention.

【図8】図8はフライアイレンズ3の射出側に設けられ
た開口絞りの切り換え機構の一例を示す図である。
FIG. 8 is a diagram showing an example of a switching mechanism of an aperture stop provided on the exit side of the fly-eye lens 3.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1・・・ 光源部 2・・・ 輪帯光束変換部 3・・・ フライアイレンズ 4、6a・・・ 開口絞り 5・・・ コンデンサーレンズ 6・・・ 投影レンズ R・・・ レチクル W・・・ ウエハ 1 ... Light source part 2 ... Orbital light flux conversion part 3 ... Fly-eye lens 4, 6a ... Aperture stop 5 ... Condenser lens 6 ... Projection lens R ... Reticle W ...・ Wafer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ほぼ平行光束を供給する光源手段と、該光
源手段からの平行光束によって複数の2次的な光源を形
成するオプティカルインテグレータと、該オプティカル
インテグレータによって形成された複数の2次的な光源
からの光束を集光して被照射面を重畳的に照明するコン
デンサーレンズとを有する照明光学装置において、 前記光源手段と前記オプティカルインテグレータとの光
路間に、ほぼ平行な光束を輪帯状光束に変換する輪帯状
光束変換手段を設け、 該輪帯状光束変換手段は、円錐状屈折面を持つ光学部材
を有する特徴とする照明光学装置。
1. A light source means for supplying a substantially parallel light flux, an optical integrator for forming a plurality of secondary light sources by the parallel light flux from the light source means, and a plurality of secondary integrators formed by the optical integrator. In an illumination optical device having a condenser lens that collects a light beam from a light source and illuminates a surface to be illuminated in a superimposed manner, a substantially parallel light beam is formed into a ring-shaped light beam between the optical paths of the light source means and the optical integrator. An illumination optical device, characterized in that a ring-shaped light beam conversion means for converting is provided, and the ring-shaped light beam conversion means has an optical member having a conical refracting surface.
【請求項2】前記光学部材は、円錐状屈折面を持つ第1
及び第2屈折部材を有し、 該第1及び第2屈折部材の内のいずれか一方が前記平行
光路内に挿入可能に設けられることを特徴とする請求項
1記載の照明光学装置。
2. The first optical member has a conical refracting surface.
2. The illumination optical device according to claim 1, further comprising: a second refraction member, wherein any one of the first and second refraction members is provided so as to be inserted into the parallel optical path.
【請求項3】前記光学部材は、円錐状屈折面を有する第
1及び第2屈折部材を有し、 該第1及び第2屈折部材は相対的な間隔が可変に設けら
れ、該間隔を変化させることにより、前記輪帯状光束径
を可変とすることを特徴とする請求項1記載の照明光学
装置。
3. The optical member has first and second refraction members having conical refraction surfaces, and the first and second refraction members are provided with a variable relative distance, and the distance is changed. The illumination optical device according to claim 1, wherein the annular light flux diameter is made variable by performing the above.
【請求項4】前記輪帯状光束変換手段と前記オプティカ
ルインテグレータとの間に、アフォーカル変倍光学系を
設け、該アフォーカル変倍光学系の変倍により前記輪帯
状光束の外径を可変とすることを特徴とする請求項1乃
至3記載の照明光学装置。
4. An afocal variable power optical system is provided between the annular light beam converting means and the optical integrator, and the outer diameter of the annular light beam is variable by changing the magnification of the afocal variable power optical system. The illumination optical device according to any one of claims 1 to 3, wherein:
JP04740992A 1992-03-05 1992-03-05 Exposure apparatus and method for manufacturing semiconductor element Expired - Lifetime JP3295956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04740992A JP3295956B2 (en) 1992-03-05 1992-03-05 Exposure apparatus and method for manufacturing semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04740992A JP3295956B2 (en) 1992-03-05 1992-03-05 Exposure apparatus and method for manufacturing semiconductor element

Related Child Applications (5)

Application Number Title Priority Date Filing Date
JP32650099A Division JP3296347B2 (en) 1999-11-17 1999-11-17 Projection exposure apparatus and method, and method for manufacturing semiconductor element
JP32649899A Division JP3296346B2 (en) 1992-03-05 1999-11-17 Exposure apparatus and method for manufacturing semiconductor element
JP11326497A Division JP2000150370A (en) 1999-01-01 1999-11-17 Aligner and manufacture of semiconductor element using the same
JP11326499A Division JP2000150372A (en) 1999-01-01 1999-11-17 Device and method for projection alignment and manufacture of semiconductor element
JP32650199A Division JP3296348B2 (en) 1992-03-05 1999-11-17 Projection exposure apparatus and method, and method for manufacturing semiconductor element

Publications (2)

Publication Number Publication Date
JPH05251308A true JPH05251308A (en) 1993-09-28
JP3295956B2 JP3295956B2 (en) 2002-06-24

Family

ID=12774333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04740992A Expired - Lifetime JP3295956B2 (en) 1992-03-05 1992-03-05 Exposure apparatus and method for manufacturing semiconductor element

Country Status (1)

Country Link
JP (1) JP3295956B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283317A (en) * 1992-03-31 1993-10-29 Canon Inc Illuminator and projection aligner using it
NL9301765A (en) * 1992-10-20 1994-05-16 Samsung Electronics Co Ltd Projection exposure system.
US5675401A (en) * 1994-06-17 1997-10-07 Carl-Zeiss-Stiftung Illuminating arrangement including a zoom objective incorporating two axicons
WO1999025009A1 (en) * 1997-11-10 1999-05-20 Nikon Corporation Exposure apparatus
US6259512B1 (en) 1997-08-04 2001-07-10 Canon Kabushiki Kaisha Illumination system and exposure apparatus having the same
JP2002132986A (en) * 2000-10-18 2002-05-10 Canon Inc Information-providing method and information-providing system
US6392742B1 (en) 1999-06-01 2002-05-21 Canon Kabushiki Kaisha Illumination system and projection exposure apparatus
JP2002217085A (en) * 2001-01-15 2002-08-02 Canon Inc Illumination system and projection aligner using it
FR2831967A1 (en) * 2001-11-05 2003-05-09 Samsung Electronics Co Ltd APPARATUS AND METHOD FOR EXPOSING AN OBJECT TO LIGHT
US6563567B1 (en) 1998-12-17 2003-05-13 Nikon Corporation Method and apparatus for illuminating a surface using a projection imaging apparatus
WO2004112107A1 (en) * 2003-06-16 2004-12-23 Nikon Corporation Lighting optical device, exposure system and exposure method
US6876437B2 (en) 2002-07-31 2005-04-05 Canon Kabushiki Kaisha Illumination optical system, exposure method and apparatus using the same
KR100487921B1 (en) * 2002-10-08 2005-05-06 주식회사 하이닉스반도체 Apparatus for exposing of semiconductor device
KR100554253B1 (en) * 2000-07-05 2006-02-24 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus, device manufacturing method, and device manufactured thereby
JP2008534990A (en) * 2005-01-16 2008-08-28 ベア,ステフェン,シー Single-wavelength stimulated emission controlled microscopy
JP2009186936A (en) * 2008-02-08 2009-08-20 Ricoh Opt Ind Co Ltd Condensing optical system and optical processing device
US7773197B2 (en) 2007-11-22 2010-08-10 Canon Kabushiki Kaisha Illumination optical apparatus, exposure apparatus, and device manufacturing method
CN104122757A (en) * 2013-04-23 2014-10-29 佳能株式会社 Prism optical system, illumination optical system, exposure apparatus, and device manufacturing method
CN114706211A (en) * 2022-04-19 2022-07-05 江苏亮点光电科技有限公司 Light beam transmission direction adjusting device based on wedge-shaped mirror pair

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283317A (en) * 1992-03-31 1993-10-29 Canon Inc Illuminator and projection aligner using it
NL9301765A (en) * 1992-10-20 1994-05-16 Samsung Electronics Co Ltd Projection exposure system.
US5675401A (en) * 1994-06-17 1997-10-07 Carl-Zeiss-Stiftung Illuminating arrangement including a zoom objective incorporating two axicons
EP0687956B2 (en) 1994-06-17 2005-11-23 Carl Zeiss SMT AG Illumination device
US6259512B1 (en) 1997-08-04 2001-07-10 Canon Kabushiki Kaisha Illumination system and exposure apparatus having the same
WO1999025009A1 (en) * 1997-11-10 1999-05-20 Nikon Corporation Exposure apparatus
US6335786B1 (en) 1997-11-10 2002-01-01 Nikon Corporation Exposure apparatus
US6563567B1 (en) 1998-12-17 2003-05-13 Nikon Corporation Method and apparatus for illuminating a surface using a projection imaging apparatus
US6392742B1 (en) 1999-06-01 2002-05-21 Canon Kabushiki Kaisha Illumination system and projection exposure apparatus
KR100554253B1 (en) * 2000-07-05 2006-02-24 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus, device manufacturing method, and device manufactured thereby
US7225041B2 (en) 2000-10-18 2007-05-29 Canon Kabushiki Kaisha Information providing method and system
US6980872B2 (en) 2000-10-18 2005-12-27 Canon Kabushiki Kaisha Information providing method and system
JP2002132986A (en) * 2000-10-18 2002-05-10 Canon Inc Information-providing method and information-providing system
JP4659223B2 (en) * 2001-01-15 2011-03-30 キヤノン株式会社 Illumination apparatus, projection exposure apparatus used therefor, and device manufacturing method
JP2002217085A (en) * 2001-01-15 2002-08-02 Canon Inc Illumination system and projection aligner using it
FR2831967A1 (en) * 2001-11-05 2003-05-09 Samsung Electronics Co Ltd APPARATUS AND METHOD FOR EXPOSING AN OBJECT TO LIGHT
NL1021785C2 (en) * 2001-11-05 2004-10-27 Samsung Electronics Co Ltd Device and method for illuminating an object.
US6876437B2 (en) 2002-07-31 2005-04-05 Canon Kabushiki Kaisha Illumination optical system, exposure method and apparatus using the same
KR100487921B1 (en) * 2002-10-08 2005-05-06 주식회사 하이닉스반도체 Apparatus for exposing of semiconductor device
WO2004112107A1 (en) * 2003-06-16 2004-12-23 Nikon Corporation Lighting optical device, exposure system and exposure method
JP2008534990A (en) * 2005-01-16 2008-08-28 ベア,ステフェン,シー Single-wavelength stimulated emission controlled microscopy
US7773197B2 (en) 2007-11-22 2010-08-10 Canon Kabushiki Kaisha Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2009186936A (en) * 2008-02-08 2009-08-20 Ricoh Opt Ind Co Ltd Condensing optical system and optical processing device
CN104122757A (en) * 2013-04-23 2014-10-29 佳能株式会社 Prism optical system, illumination optical system, exposure apparatus, and device manufacturing method
CN104122757B (en) * 2013-04-23 2017-04-12 佳能株式会社 prism optical system, illumination optical system, exposure apparatus, and device manufacturing method
CN114706211A (en) * 2022-04-19 2022-07-05 江苏亮点光电科技有限公司 Light beam transmission direction adjusting device based on wedge-shaped mirror pair
CN114706211B (en) * 2022-04-19 2023-07-07 江苏亮点光电科技有限公司 Beam transmission direction adjusting device based on wedge-shaped mirror pair

Also Published As

Publication number Publication date
JP3295956B2 (en) 2002-06-24

Similar Documents

Publication Publication Date Title
US5245384A (en) Illuminating optical apparatus and exposure apparatus having the same
JP3295956B2 (en) Exposure apparatus and method for manufacturing semiconductor element
US6934009B2 (en) Illumination apparatus, illumination-controlling method, exposure apparatus, device fabricating method
US7402378B2 (en) Exposure method and apparatus
US7714983B2 (en) Illumination system for a microlithography projection exposure installation
US6259512B1 (en) Illumination system and exposure apparatus having the same
JP3158691B2 (en) Exposure apparatus and method, and illumination optical apparatus
JPH0547639A (en) Illuminator and projection aligner using the same
JPH04225214A (en) Lighting optical apparatus
JPH05217855A (en) Illumination apparatus for exposure
CA2177199A1 (en) Illumination system having spatially separate vertical and horizontal image planes for use in photolithography
US5530518A (en) Projection exposure apparatus
JP2002075835A (en) Illumination optical device and exposure system with the same
JP3997199B2 (en) Exposure method and apparatus
JP3296346B2 (en) Exposure apparatus and method for manufacturing semiconductor element
JP3296348B2 (en) Projection exposure apparatus and method, and method for manufacturing semiconductor element
JP3262074B2 (en) Exposure method and exposure apparatus
JP2001033875A (en) Illuminator and projection aligner using the same
JP3296347B2 (en) Projection exposure apparatus and method, and method for manufacturing semiconductor element
JP2002057081A (en) Illumination optical apparatus, exposure apparatus and exposure method
JP2000150372A (en) Device and method for projection alignment and manufacture of semiconductor element
JP2000150370A (en) Aligner and manufacture of semiconductor element using the same
JP4415223B2 (en) Illumination optical apparatus and exposure apparatus provided with the illumination optical apparatus
USRE39662E1 (en) Projection exposure apparatus
JP2000164500A (en) Aligner, exposure and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120412

Year of fee payment: 10

EXPY Cancellation because of completion of term