JP2009186936A - Condensing optical system and optical processing device - Google Patents

Condensing optical system and optical processing device Download PDF

Info

Publication number
JP2009186936A
JP2009186936A JP2008029704A JP2008029704A JP2009186936A JP 2009186936 A JP2009186936 A JP 2009186936A JP 2008029704 A JP2008029704 A JP 2008029704A JP 2008029704 A JP2008029704 A JP 2008029704A JP 2009186936 A JP2009186936 A JP 2009186936A
Authority
JP
Japan
Prior art keywords
light beam
light
lens group
optical
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008029704A
Other languages
Japanese (ja)
Other versions
JP4991588B2 (en
Inventor
Takayuki Ishigame
貴幸 石亀
Mitsuhiro Kudo
光洋 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Optical Industries Co Ltd
Original Assignee
Ricoh Optical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Optical Industries Co Ltd filed Critical Ricoh Optical Industries Co Ltd
Priority to JP2008029704A priority Critical patent/JP4991588B2/en
Publication of JP2009186936A publication Critical patent/JP2009186936A/en
Application granted granted Critical
Publication of JP4991588B2 publication Critical patent/JP4991588B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a new optical processing device and a condensing optical system used for the optical processing device. <P>SOLUTION: The condensing optical system for condensing diverged luminous flux emitted from a minute light emission part into two or more dots and/or one or more lines includes: a lens group 12 having a function for condensing the diverged luminous flux emitted from the minute light emission part 01; a luminous flux converting optical element 10 arranged between the minute light emission part 01 and the lens group 12 to convert the diverged luminance light from the minute light emission part 01 into one or more luminance fluxes intersecting the optical axis of the lens group 12; and a luminous flux bending means 14 arranged between the lens group 12 and a luminous flux condensing position condensed by the lens group 12 to bend one or more luminous fluxes condensed by the lens group 12. At least either one of the lens group 12 and the luminous flux bending means 14 and the luminance flux converting optical element 10 can be mutually independently displaced in the optical axis direction of the lens group 12 so as to vary the direction of condensed luminous flux emitted from the luminance flux bending means 14. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は集光光学系および光加工装置に関する。   The present invention relates to a condensing optical system and an optical processing apparatus.

光エネルギを利用する加工(光加工)を行う光加工装置は従来から種々のものが知られている(特許文献1等)。これらのうちで、レーザ光源からの光を光ファイバにより導光し、光ファイバの射出端から射出するレーザ光を、集光光学系と2枚のウェッジプリズムとにより2光路に分割して各々を光スポットとして加工部に集光し、2枚のウェッジプリズムを「あおり機構」により光束光軸に対して傾かせ、この傾きである「あおり角」の調整により「2つの光スポットの間隔」を調整するものが特許文献1に記載されている。   Various types of optical processing apparatuses that perform processing using optical energy (optical processing) have been known (Patent Document 1, etc.). Among these, the light from the laser light source is guided by an optical fiber, and the laser light emitted from the exit end of the optical fiber is divided into two optical paths by a condensing optical system and two wedge prisms. The two wedge prisms are tilted with respect to the light beam optical axis by the “tilting mechanism” as a light spot, and the “tilting angle”, which is the tilt, adjusts the “distance between two light spots”. What is adjusted is described in Patent Document 1.

このようにすることにより、被加工物の2点で同時に光加工することができ、加工する2点の間隔を調整することが可能であるところから被加工物の種類に対する自由度が大きい。しかしながら、特許文献1記載の光加工装置では「あおり機構」が複雑になり易く、また、同時に光加工できるのは2点に限られてしまう。   By doing so, optical processing can be performed simultaneously at two points on the workpiece, and the interval between the two points to be processed can be adjusted, so that the degree of freedom with respect to the type of workpiece is great. However, in the optical processing apparatus described in Patent Document 1, the “tilting mechanism” is likely to be complicated, and only two points can be optically processed at the same time.

また、2点以上で同時に光加工を行うのに際して、被加工物に対して光加工装置を傾けることなく、加工部に集光する集光光束の照射角を調整できるようにすると、光加工の対象となる被加工物の種類を多くすることができ、また、加工作業も容易となり、作業効率も向上できる。従来、2点以上あるいは「1以上の線状領域」で同時に光加工を行い、被加工物に対して光加工装置を傾けたりすることなく、加工部に集光する集光光束の照射角を調整可能とした光加工装置は知られていない。   In addition, when performing optical processing simultaneously with two or more points, it is possible to adjust the irradiation angle of the condensed light beam focused on the processing portion without tilting the optical processing device with respect to the workpiece. The number of types of workpieces to be processed can be increased, the machining work can be facilitated, and the work efficiency can be improved. Conventionally, optical processing is performed simultaneously at two or more points or “one or more linear regions”, and the angle of irradiation of the condensed light beam that is focused on the processing portion without tilting the optical processing device with respect to the workpiece. There is no known optical processing device that can be adjusted.

特許第3317290号公報Japanese Patent No. 3317290

この発明は、光加工するための集光部が、2以上の点状もしくは1以上の線状に設定され、2以上の「点状の集光部」の間隔や、線状の集光部の大きさも調整可能であり、なおかつ、2点以上あるいは1以上の線状領域で同時に光加工を行い、被加工物に対して光加工装置を傾けることなく、加工部に集光する集光光束の照射角を調整可能とした光加工装置と、この光加工装置に用いられる集光光学系の実現を課題とする。   In the present invention, the light collecting part for optical processing is set to two or more dots or one or more lines, and the interval between two or more “dot-like light collecting parts” or a linear light collecting part. Can be adjusted, and at the same time, optical processing is performed at two or more or one or more linear regions, and the condensed light beam is focused on the processing portion without tilting the optical processing device with respect to the workpiece An object of the present invention is to realize an optical processing apparatus that can adjust the irradiation angle of the light beam and a condensing optical system used in the optical processing apparatus.

この発明の集光光学系は「微小な光放射部から放射される発散光束を、2以上の点状および/または1以上の線状に集光させる集光光学系」であって、レンズ群と、光束変換光学素子と、光束屈曲手段とを有する。
「レンズ群」は、微小な光放射部からの発散光束を集光させる機能をもつレンズ系である。レンズ群は1以上のレンズ、好ましくは複数のレンズにより構成される。
レンズ群が「微小な光放射部からの発散光束を集光させる機能を持つ。」とは、上記光束変換素子、光束屈曲手段を用いない状態において、レンズ群が、微小な光放射部を物点として、集光機能により上記物点の像を結像する機能を持つことを意味する。
「微小な光放射部」は、レンズ群を構成する複数のレンズの共通の光軸上、もしくはその近傍に位置するように、レンズ群との位置関係が設定されるのが基本であるが、微小な光放射部を「レンズ群の光軸に直交する方向に位置調整可能」および/または「レンズ群の光軸に対する傾き方向にチルト可能」とすることにより、例えば上記2以上の点状の集光部への光エネルギの分配を調整するようにもできる。
The condensing optical system of the present invention is a “condensing optical system that condenses a divergent light beam emitted from a minute light emitting portion into two or more points and / or one or more lines”, and includes a lens group. And a light beam converting optical element and a light beam bending means.
The “lens group” is a lens system having a function of collecting a divergent light beam from a minute light emitting portion. The lens group is composed of one or more lenses, preferably a plurality of lenses.
The lens group “has a function of converging a divergent light beam from a minute light emitting part” means that the lens group is a minute light emitting part in a state where the light beam conversion element and the light beam bending means are not used. As a point, it means having a function of forming an image of the object point by a condensing function.
Basically, the “microscopic light emitting portion” is set in a positional relationship with the lens group so as to be positioned on or near the common optical axis of a plurality of lenses constituting the lens group. By making the minute light emitting portion “adjustable in the direction orthogonal to the optical axis of the lens group” and / or “tilt in the tilt direction with respect to the optical axis of the lens group”, for example, the above two or more point-like It is also possible to adjust the distribution of light energy to the condensing unit.

「光束変換光学素子」は、位置的には、微小な光放射部とレンズ群との間に配設され、機能的には、微小な光放射部からの発散光束を、レンズ群の光軸に交わる1以上の光束とする。
「光束屈曲手段」は、位置的には「レンズ群と、このレンズ群による光束の集光位置との間」に配設され、機能的には「レンズ群により集光する1以上の光束を屈曲」させる。
The “light flux converting optical element” is disposed between the minute light emitting portion and the lens group in terms of position, and functionally, the divergent light beam from the minute light emitting portion is used as the optical axis of the lens group. One or more luminous fluxes intersecting with each other.
The “light beam bending means” is positioned “between the lens group and the light collecting position of the light beam by the lens group”, and functionally “one or more light beams condensed by the lens group. Bend ".

「レンズ群と光束屈曲手段のうちの少なくとも一方」と光束変換光学素子とは、レンズ群の光軸方向に相互に独立して変位可能であり、光束屈曲手段から射出する集光光束の向きが可変である。   “At least one of the lens group and the light beam bending means” and the light beam converting optical element can be displaced independently of each other in the optical axis direction of the lens group, and the direction of the condensed light beam emitted from the light beam bending means is It is variable.

請求項1記載の集光光学系における「光束変換光学素子」は、レンズ群の光軸に直交する面に対して傾く2以上の平面状光学面を、物体側および/または像側に有し、光放射部からの発散光束をレンズ群の光軸に交わる2以上の光束とする透明体であることができる(請求項2)が、この場合、光束屈曲手段は「レンズ群により集光する光束を屈折および/または反射して屈曲させる1以上の光学面を有する光束屈曲部材」を有することができる(請求項3)。この請求項3記載の集光光学系における「光束屈曲部材」は、単体構造であることもできるし(請求項4)、「レンズ群により集光する光束を屈折および/または反射して屈曲させる1以上の光学面を有する光束屈曲素子」を2個以上有するように構成することもできる(請求項5)。   The “light beam converting optical element” in the condensing optical system according to claim 1 has two or more planar optical surfaces on the object side and / or image side that are inclined with respect to a surface orthogonal to the optical axis of the lens group. In this case, the light beam bending means may be “condensed by the lens group”, wherein the divergent light beam from the light emitting portion may be two or more light beams intersecting the optical axis of the lens group. A light beam bending member having one or more optical surfaces that refract and / or reflect and bend the light beam. The “light beam bending member” in the condensing optical system according to claim 3 may be a single structure (claim 4), or “the light beam collected by the lens group is bent by being refracted and / or reflected. It may be configured to have two or more light beam bending elements having one or more optical surfaces.

請求項3記載の集光光学系はまた、請求項4記載の単体構造の光束屈曲部材および/または請求項5記載の2個以上の光束屈曲素子による光束屈曲部材を複数組合せた構成の光束屈曲手段を有することができる(請求項6)。   A condensing optical system according to a third aspect of the present invention also includes a light beam bending member configured by combining a plurality of light beam bending members having a single structure according to the fourth aspect and / or two or more light beam bending elements according to the fifth aspect. Means may be included (claim 6).

請求項2〜6の任意の1に記載の集光光学系では、微小な光放射部から放射される発散光束は、光束変換光学素子により2以上の光束に分割される。分割された2以上の光束はレンズ群の光軸に交わるように進行してレンズ群に入射する。このことは「微小な光放射部」が、レンズ群に対して2以上の物点(光源)に分離することを意味する。このようにレンズ群に対する物点が2以上となることにより、レンズ群の集光機能は、これら物点に対して個別に作用し、集光光束を2以上の点状に集光させる。   In the condensing optical system according to any one of claims 2 to 6, the divergent light beam emitted from the minute light emitting portion is divided into two or more light beams by the light beam converting optical element. The two or more divided light beams travel so as to cross the optical axis of the lens group and enter the lens group. This means that the “minute light emitting portion” is separated into two or more object points (light sources) with respect to the lens group. As described above, when the object point with respect to the lens group becomes 2 or more, the condensing function of the lens group acts individually on these object points to condense the condensed light flux into two or more points.

請求項1記載の集光光学系における「光束変換光学素子」は、円錐面状光学面を、物体側および/または像側に有する透明体であることができる(請求項7)。この場合、円錐状光学面の円錐軸は「レンズ群の光軸」と実質的に一致させられる。この場合は「微小な光放射部」は光束変換光学素子により、レンズ群に対する「リング状の物体(光源)」に変換されることになる。   The “light beam converting optical element” in the condensing optical system according to claim 1 can be a transparent body having a conical optical surface on the object side and / or the image side (claim 7). In this case, the conical axis of the conical optical surface is substantially matched with the “optical axis of the lens group”. In this case, the “minute light emitting portion” is converted into a “ring-shaped object (light source)” for the lens group by the light beam conversion optical element.

請求項7記載の集光光学系における「光束屈曲手段」は、レンズ群により集光する光束を屈折および/または反射して屈曲させる1以上の光学面を有する光束屈曲部材を有することができるが(請求項8)、この請求項8記載の光束屈曲部材を複数組合せた構成の光束屈曲手段を有する構成とすることもできる(請求項9)。
請求項7〜9記載の集光光学系では「微小な光放射部」は光束変換光学素子により、レンズ群に対する「リング状の物体」に変換されるので、集光光学系により集光される像は基本的にはリング状であるが、光束屈曲手段の形態によっては、リング状の集光部はリングが分割された「2以上の線状の集光部」となることもある。
The “light beam bending means” in the condensing optical system according to claim 7 may include a light beam bending member having one or more optical surfaces that refract and / or reflect the light beam condensed by the lens group. (Claim 8) A light beam bending means having a structure in which a plurality of light beam bending members according to claim 8 are combined may be provided (claim 9).
In the condensing optical system according to any one of claims 7 to 9, since the “micro light emitting portion” is converted into a “ring-shaped object” for the lens group by the light beam converting optical element, it is condensed by the condensing optical system. The image is basically ring-shaped, but depending on the form of the light beam bending means, the ring-shaped light condensing part may be a “two or more linear light condensing part” in which the ring is divided.

この発明の集光光学系では「レンズ群と光束屈曲手段のうちの少なくとも一方」と光束変換光学素子とが、レンズ群の光軸の方向に相互に独立して変位可能であるが、光束変換光学素子をレンズ群の光軸方向へ移動させることにより「レンズ群に対して分離した2以上の物点(光源)の光軸からの距離」や「リング状の物体(光源)の半径」を変化させうるので「2以上の点状の集光部」の光軸からの距離や、リング状の集光部の大きさを調整できる。   In the condensing optical system of the present invention, “at least one of the lens group and the light beam bending means” and the light beam conversion optical element can be displaced independently of each other in the direction of the optical axis of the lens group. By moving the optical element in the optical axis direction of the lens group, the “distance from the optical axis of two or more object points (light source) separated from the lens group” and the “radius of the ring-shaped object (light source)” Since it can be changed, the distance from the optical axis of the “two or more point-shaped condensing portions” and the size of the ring-shaped condensing portion can be adjusted.

請求項2、8における「レンズ群により集光する光束を屈折および/または反射して屈曲させる1以上の光学面を有する光束屈曲部材」は、例えば、1以上のレンズにより構成することもできる。光束屈曲部材を1以上のレンズにより構成する場合には「レンズ群と光束屈曲部材とが結像系を構成する」ことになるので、光束変換光学素子により変換された光束の物体(前述のリング状の物体等)と集光による像を、結像関係(共役関係)にする必要がある。   The “light beam bending member having one or more optical surfaces that refract and / or reflect and bend the light beam condensed by the lens group” according to claims 2 and 8 may be constituted by, for example, one or more lenses. When the light beam bending member is composed of one or more lenses, the “lens group and the light beam bending member constitute an imaging system”, so that the object of the light beam converted by the light beam conversion optical element (the aforementioned ring). The object formed with the light beam and the image obtained by the light collection must be in an imaging relationship (conjugate relationship).

従って、この場合、光束屈曲手段および/またはレンズ群を光軸方向へ変位させて、共役関係を実現する。このとき必要に応じ、微小な光放射部と光束を集光させる面(上記物点・物体に対する共役面)との間隔を調整する。この調整により、上記結像関係における結像倍率を変化させることができる。   Therefore, in this case, the light beam bending means and / or the lens group is displaced in the optical axis direction to realize the conjugate relationship. At this time, the distance between the minute light emitting portion and the surface for condensing the light beam (the object point / conjugate surface for the object) is adjusted as necessary. By this adjustment, the imaging magnification in the imaging relationship can be changed.

また、「光束屈曲手段および/またはレンズ群を光軸方向へ変位させて共役関係を調整する」ことにより、光束屈曲手段から射出する集光光束の向き(照射角)を調整できる。   Further, the direction (irradiation angle) of the condensed light beam emitted from the light beam bending means can be adjusted by “adjusting the conjugate relationship by displacing the light beam bending means and / or the lens group in the optical axis direction”.

光束屈曲部材における「レンズ群により集光する光束を屈折および/または反射して屈曲させる1以上の光学面」の面形状は、光軸方向座標をz、光軸に直交する方向の座標をr(>0)、Z軸方向のデプスをh、Rを曲率半径をR、円錐係数をk、係数をr、A〜Anとして表される周知の非球面形状:
h=(1/R)(r−r)/[1+√{1−(1+k)(1/R)(r−r)}]
+A(r−r)+A(r−r)+A(r−r)+・・+A(r−r)
とすることができ、レンズ群中におけるレンズ面にも適宜に非球面を用いて良い。
このように非球面を用いて、集光光学系の光学機能を最適化することにより「2以上の点状および/または1以上の線状の集光状態」を極めて良好にできる。
The surface shape of the “one or more optical surfaces that refract and / or reflect and reflect the light beam condensed by the lens group” in the light beam bending member is z in the optical axis direction coordinate and r in the direction orthogonal to the optical axis. (> 0), a well-known aspherical shape represented by a depth in the Z-axis direction as h, R as a radius of curvature, R as a conical coefficient, k as a coefficient, r 0 and A 1 to An:
h = (1 / R) (r−r 0 ) 2 / [1 + √ {1− (1 + k) (1 / R) 2 (r−r 0 ) 2 }]
+ A 1 (r−r 0 ) + A 2 (r−r 0 ) 2 + A 3 (r−r 0 ) 3 + ·· + An (r−r 0 ) n
Aspherical surfaces may be used as appropriate for the lens surfaces in the lens group.
Thus, by using the aspherical surface and optimizing the optical function of the condensing optical system, the “two or more point-like and / or one or more linear condensing states” can be made extremely good.

この発明の光加工装置は「微小な光放射部から発散光束を放射し、集光光学系により、所望の被加工面上に2以上の点状および/または1以上の線状に集光させて光加工を行う光加工装置」であって、集光光学系として上記請求項1〜9の任意の1に記載の集光光学系を用いることを特徴とする。
「発散光束を放射する微小な光放射部」は、「LDやLED等、微小な発光部を持つ実体的な光源」でもよいし、適宜の光源から光束を放射させ、この光束を集光光学系により集光させた後に集光部から発散する光束とし、上記集光部を微小な光放射部とするものでも良い。
The optical processing apparatus according to the present invention “radiates a divergent light beam from a minute light radiating portion, and condenses it into two or more dots and / or one or more lines on a desired processing surface by a condensing optical system. An optical processing apparatus that performs optical processing ”, wherein the condensing optical system according to any one of claims 1 to 9 is used as the condensing optical system.
"A minute light emitting part that emits a divergent light beam" may be a "substantial light source having a minute light emitting part such as an LD or LED", or a light beam is emitted from an appropriate light source, and this light beam is condensed optically. It is also possible to use a light beam that diverges from the condensing part after being condensed by the system, and the condensing part is a minute light emitting part.

即ち、請求項10記載の光加工装置における「微小な光放射部」は、導光路の端部であって「レーザ光源から導光路により導光した加工用光を上記端部から放射するもの」でもよいし(請求項11)、LDやLED等の発光素子の発光部でもよい(請求項12)。
上記「導光路」としては、光ファイバを好適に用いることができるが、それ以外にもインテグレータや導波管、導波路などを用いることができ、これらの導光路の微小な射出端を光放射部とすることができるものである。
That is, in the optical processing device according to claim 10, the “micro light emitting portion” is an end portion of the light guide path, and “emits processing light guided from the laser light source through the light guide path from the end portion”. Alternatively, it may be a light emitting part of a light emitting element such as an LD or an LED (claim 12).
As the “light guide”, an optical fiber can be preferably used, but in addition to that, an integrator, a waveguide, a waveguide, or the like can be used. Can be a part.

請求項10〜12の任意の1に記載の光加工装置は「光加工として、樹脂構成物間の光溶接を行うもの」であり、一方の樹脂構成物に対して他方の樹脂構成物を押圧するとともに、溶着光としての集束光束を溶着部へ向けて導光する導光機能を有する押さえ手段を有するものであることができ(請求項13)、この場合、押さえ手段と、これに最も近い単体構造の光束屈曲部材を一体化した構成とすることができる(請求項14)。   The optical processing device according to any one of claims 10 to 12, wherein "optical processing is performed for optical welding between resin components", and the other resin component is pressed against one resin component. And a pressing means having a light guiding function for guiding a focused light beam as welding light toward the welding portion (claim 13). In this case, the pressing means is closest to the pressing means. The light beam bending member having a single structure can be integrated (claim 14).

請求項10〜13の任意の1に記載の光加工装置は、微小な光放射部と光束変換光学素子との間に、透明な平行平板を「光軸を含み互いに直交する3軸のうち2軸の回りに揺動可能に」に設けた構成とすることもできる。
上記光加工装置により相互に光溶着する樹脂構成物は例えば、後述する「樹脂製のレンズと樹脂製の鏡筒」などである。光加工装置による光加工としては、溶着や半田溶融、溶接・切断加工や、固着、密閉等の加工が可能である。
The optical processing device according to any one of claims 10 to 13, wherein a transparent parallel plate is provided between a minute light emitting portion and a light beam converting optical element, "2 of three axes including the optical axis and orthogonal to each other. It is also possible to adopt a configuration in which it is swingable around the axis.
Examples of the resin components that are optically welded to each other by the optical processing apparatus include a “resin lens and a resin barrel” described later. As optical processing by the optical processing apparatus, welding, solder melting, welding / cutting processing, fixing, sealing, and the like are possible.

以上に説明したように、この発明による光加工装置は、この発明の集光光学系を用いることにより、光加工を行うための集光部を2以上の点状や1以上の線状に設定でき、点状の集光部相互の間隔や、線状の集光部の大きさも調整可能で、集光光束の「照射角の大きさ」を調整できる。   As described above, the optical processing apparatus according to the present invention uses the condensing optical system of the present invention to set the condensing unit for performing optical processing to two or more dots or one or more lines. It is also possible to adjust the distance between the dot-shaped light collecting portions and the size of the linear light collecting portions, and the “irradiation angle size” of the condensed light flux can be adjusted.

以下、発明の実施の形態を説明する。
図1は、集光光学系の実施の1形態を説明図的に示す図である。
図1(a)において、符号0は導光路である「光ファイバ」、符号10は光束変換光学素子、符号12はレンズ群、符号14は光束屈曲手段、符号16は変位手段をそれぞれ示している。
Embodiments of the invention will be described below.
FIG. 1 is an explanatory diagram showing one embodiment of a condensing optical system.
In FIG. 1A, reference numeral 0 denotes an “optical fiber” that is a light guide, reference numeral 10 denotes a light beam converting optical element, reference numeral 12 denotes a lens group, reference numeral 14 denotes light beam bending means, and reference numeral 16 denotes a displacement means. .

光ファイバ10は、図示されないレーザ光源からのレーザ光を「加工用光」として導光し、微小な端面01から発散光束として放射させる。即ち、微小な端面01は「微小な光放射部」であり、以下「微小な光放射部01もしくは光放射部01」と称する。   The optical fiber 10 guides laser light from a laser light source (not shown) as “processing light” and radiates it as a divergent light beam from the minute end face 01. That is, the minute end face 01 is a “minute light emitting portion”, and is hereinafter referred to as “a minute light emitting portion 01 or a light emitting portion 01”.

光束変換光学素子10は、この実施の形態においては、入射側の面が平面で、射出側の面は、2つの平面状の光学面101、102を屋根型に組合せた形状を有し、光学面101、102の交差する稜線部は図面に直交する方向で入射側の平面と平行である。平面101、102の形成する稜角(交差角)は120度〜240度の範囲が好適である。
レンズ群12はこの実施の形態においては、光軸回転対称な2枚の正レンズ121、122を「光軸を共通化して配置」してなり、上記光軸は、上記微小な光放射部01から放射される発散光束の主光線に合致するように光放射部01に対する相対的な位置を定められている。
In this embodiment, the light beam conversion optical element 10 has a shape in which the incident-side surface is a flat surface, and the exit-side surface is a combination of two planar optical surfaces 101 and 102 in a roof shape. The ridge lines where the surfaces 101 and 102 intersect are parallel to the plane on the incident side in a direction perpendicular to the drawing. The ridge angle (intersection angle) formed by the planes 101 and 102 is preferably in the range of 120 to 240 degrees.
In this embodiment, the lens group 12 includes two positive lenses 121 and 122 that are rotationally symmetric with respect to the optical axis, and “the optical axes are arranged in common”. The relative position with respect to the light emitting portion 01 is determined so as to match the principal ray of the divergent light beam emitted from the light beam.

光束屈曲手段をなす光屈曲部材14は、この実施の形態において「正のパワーを持つ光軸回転対称なレンズ(入射側を平レンズ面とした平凸レンズ)」であり、その光軸をレンズ群12の光軸に合致させて配設されている。即ち、レンズ群12の光軸と、光束屈曲部材14の光軸とは合致し、かつ光束変換光学素子10における平面101、102の稜線は上記光軸上に位置している。
光束変換光学素子10、レンズ群12、光束屈曲部材14は、変位手段16によりレンズ群12の光軸方向に独立して変位可能となっている。
The light bending member 14 constituting the light beam bending means is a “optical axis rotationally symmetric lens having a positive power (a plano-convex lens with the incident side as a flat lens surface)” in this embodiment, and the optical axis is a lens group. It is arranged so as to match the 12 optical axes. That is, the optical axis of the lens group 12 and the optical axis of the light beam bending member 14 match, and the ridgelines of the planes 101 and 102 in the light beam converting optical element 10 are located on the optical axis.
The light beam conversion optical element 10, the lens group 12, and the light beam bending member 14 can be displaced independently in the optical axis direction of the lens group 12 by the displacement means 16.

微小な光放射部01から放射された発散光束は光束変換光学素子10に入射し、光束変換光学素子10によりレンズ群12の光軸に交わる2光束LF1、LF2に変換される。これら2光束LF1、LF2はレンズ群12を透過し、さらに光束屈曲部材14を透過して、結像面S上にそれぞれが点状の集光点PI1、PI2として集光する。   The divergent light beam radiated from the minute light emitting unit 01 enters the light beam conversion optical element 10 and is converted by the light beam conversion optical element 10 into two light beams LF1 and LF2 that intersect the optical axis of the lens group 12. These two light beams LF1 and LF2 are transmitted through the lens group 12, and further transmitted through the light beam bending member 14, and are condensed on the imaging surface S as point-shaped condensing points PI1 and PI2, respectively.

レンズ群12から見ると、光束LF1は見かけ上「物点LS1からの発散光束」であり、この発散光束はレンズ群12と光束屈曲部材14の結像作用により、結像面S上に集光点PI1として結像する。また、光束LF2はレンズ群12からみて見かけ上「物点LS2からの発散光束」であり、この発散光束はレンズ群12と光束屈曲部材14の結像作用により、結像面S上に集光点PI2として結像する。すなわち、見かけ上の物点LS1と集光点PI1、物点LS2と集光点PI2とはそれぞれ、レンズ群12と光束屈曲部材14とによる結像系により「共役関係」で結ばれている。   When viewed from the lens group 12, the light beam LF 1 is apparently “a divergent light beam from the object point LS 1”, and this divergent light beam is condensed on the imaging surface S by the image forming action of the lens group 12 and the light beam bending member 14. An image is formed as a point PI1. The light beam LF2 is apparently a “divergent light beam from the object point LS2” when viewed from the lens group 12, and this divergent light beam is condensed on the imaging surface S by the image forming action of the lens group 12 and the light beam bending member 14. An image is formed as a point PI2. That is, the apparent object point LS1 and the condensing point PI1, and the object point LS2 and the condensing point PI2 are connected in a “conjugate relationship” by the imaging system including the lens group 12 and the light beam bending member 14, respectively.

上記の如く、光束変換光学素子10、レンズ群12、光束屈曲部材14は、変位手段16によりレンズ群12の光軸の方向に独立して変位可能である。
ここで、図1(a)の状態で、光束変換光学素子10のみをレンズ群12の光軸方向へ変位させた場合を考えると、光束変換光学素子10は結像機能をもたないので、これを上記光軸の方向に変位させても、2光束LF1、LF2の光束の性質は変化しない。
As described above, the light beam conversion optical element 10, the lens group 12, and the light beam bending member 14 can be independently displaced in the direction of the optical axis of the lens group 12 by the displacing means 16.
Here, in the state shown in FIG. 1A, when only the light beam conversion optical element 10 is displaced in the optical axis direction of the lens group 12, the light beam conversion optical element 10 does not have an imaging function. Even if this is displaced in the direction of the optical axis, the properties of the two light beams LF1 and LF2 do not change.

光束変換光学素子10のみを上記光軸方向へ変位させると2光束LF1、LF2の見かけ上の物点LS1、LS2の間隔が変化する。即ち、光束変換光学素子10が図1(a)において下方(または上方)へ変位すると、上記物点LS1、LS2の間隔は大きく(または小さく)なる。この場合、光束変換光学素子10のみが変位され、レンズ系12、光束屈曲手段14は変位せず、物点LS1、LS2を共有する平面(物体面)の位置も変位しないから、物点LS1、LS2の間隔が大きく(または小さく)なると、その像点である集光点PI1、PI2の間隔:DPも大きく(または小さく)なる。   When only the light beam converting optical element 10 is displaced in the optical axis direction, the apparent distance between the object points LS1 and LS2 of the two light beams LF1 and LF2 changes. That is, when the light beam conversion optical element 10 is displaced downward (or upward) in FIG. 1A, the interval between the object points LS1 and LS2 becomes large (or small). In this case, only the light beam conversion optical element 10 is displaced, the lens system 12 and the light beam bending means 14 are not displaced, and the position of the plane (object plane) sharing the object points LS1 and LS2 is not displaced. When the interval of LS2 is increased (or decreased), the interval DP between the focal points PI1 and PI2, which are the image points, is also increased (or decreased).

即ち、光束変換光学素子10のみをレンズ系12の光軸方向へ変位させることにより、集光点PI1、PI2の間隔を調整できる。
図1(a)に示す角:βは前述の「照射角」であり、集光点PI1、PI2へ向かって集光する集束光束LF1、LF2の主光線と、結像面Sに立てた垂線とのなす角である。
That is, the distance between the condensing points PI1 and PI2 can be adjusted by displacing only the light beam conversion optical element 10 in the optical axis direction of the lens system 12.
The angle β shown in FIG. 1A is the above-mentioned “irradiation angle”, and the principal rays of the converged light beams LF1 and LF2 that are condensed toward the condensing points PI1 and PI2, and a perpendicular line that stands on the imaging surface S. Is the angle between

ここで、仮に光束屈曲部材14が無く「見かけの物点LS1、LS2と集光点PI1、PI2とがレンズ群12のみにより共役関係になる場合」を考えると、結像面Sの位置は一般には図1(a)の位置とは異なる位置になり、レンズ群12による結像光束LF1、LF2は「光束屈曲部材14により光路を屈曲されることなく」進んで図1(a)におけるよりも「大きな照射角」で結像面Sに集光する。   Here, assuming that there is no light beam bending member 14 and “the apparent object points LS1 and LS2 and the condensing points PI1 and PI2 are conjugated only by the lens group 12”, the position of the imaging plane S is generally Is different from the position in FIG. 1 (a), and the imaging light beams LF1 and LF2 by the lens group 12 proceed “without being bent by the light beam bending member 14” than in FIG. 1 (a). The light is condensed on the imaging surface S at a “large irradiation angle”.

この場合と対比すれば明らかなように、図1(a)の実施の形態では、結像光束LF1、LF2は光束屈曲部材14により光路を屈曲され、照射角:βも上記間隔:DPも小さくなっている。光束屈曲部材14の位置をレンズ群12の光軸上で調整することにより、照射角:βを調整でき、たとえば、照射角:β=0として、結像光束LF1、LF2が結像面Sに直交して入射するようにできるし、あるいは、図1(b)に示すように、結像光束LF1、LF2の照射角を大きくして、互いに角をなして交わる結像面S1、S2に直交入射するようにもできる。   As apparent from comparison with this case, in the embodiment of FIG. 1A, the imaging light beams LF1 and LF2 are bent in the optical path by the light beam bending member 14, and the irradiation angle β and the interval DP are small. It has become. By adjusting the position of the light beam bending member 14 on the optical axis of the lens group 12, the irradiation angle: β can be adjusted. For example, when the irradiation angle: β = 0, the imaging light beams LF1, LF2 are applied to the imaging surface S. It can be made to enter perpendicularly, or as shown in FIG. 1B, the irradiation angle of the imaging light beams LF1 and LF2 is increased and orthogonal to the imaging surfaces S1 and S2 that intersect at an angle. It can also be made incident.

図1の実施の形態では、上記の如く、見かけの物点LS1、LS2と集光点PI1、PI2とは、レンズ系12と光束屈曲手段14とにより共役関係とされており、従って、光束屈曲部材14のみを変位させれば、集光点PI1、PI2の集光する結像面の位置も変位する。このとき、光束屈曲部材14とともにレンズ群12も光軸方向に変位させ、結像面Sの位置を不変に保つことも可能である。ただしこの場合、レンズ群12と光束屈曲部材14とによる結像の共役関係を保つという制限が加わるので、照射角:βの調整には、レンズ群12の変位も影響する。
レンズ群12を光軸方向へ変位させると、共役関係における結像倍率が変化するので、集光点PI1、PI2における「集光像の大きさ」を調整することが可能である。
In the embodiment of FIG. 1, as described above, the apparent object points LS1 and LS2 and the condensing points PI1 and PI2 are in a conjugate relationship by the lens system 12 and the light beam bending means 14, and therefore the light beam bending is performed. If only the member 14 is displaced, the positions of the image forming planes on which the condensing points PI1 and PI2 are condensed are also displaced. At this time, the lens group 12 as well as the light beam bending member 14 can be displaced in the optical axis direction, and the position of the image plane S can be kept unchanged. However, in this case, since the restriction of maintaining the conjugate relationship of the image formation between the lens group 12 and the light beam bending member 14 is added, the adjustment of the irradiation angle: β is also affected by the displacement of the lens group 12.
When the lens group 12 is displaced in the optical axis direction, the imaging magnification in the conjugate relationship changes, so that the “magnified image size” at the condensing points PI1 and PI2 can be adjusted.

図1に実施の形態を示した集光光学系は、微小な光放射部01から放射される発散光束を、2つの点状に集光させる集光光学系であって、微小な光放射部01からの発散光束を集光させる機能をもつレンズ群12と、微小な光放射部01とレンズ群12との間に配設され、微小な光放射部01からの発散光束を、レンズ群12の光軸に交わる2つの光束LF1、LF2とする光束変換光学素子10と、レンズ群12と、このレンズ群による光束の集光位置との間に配設され、レンズ群12により集光する2つの光束LF1、LF2を屈曲させる光束屈曲手段14とを有し、レンズ群12と光束屈曲手段14と光束変換光学素子10とが、レンズ群12の光軸の方向に相互に独立して変位可能で、光束屈曲手段14から射出する集光光束LF1、LF2の向きを可変としたもの(請求項1)である。   The condensing optical system shown in FIG. 1 is a condensing optical system that condenses the divergent light beam emitted from the minute light emitting unit 01 into two points, and is a minute light emitting unit. The lens group 12 having a function of converging the divergent light beam from 01 and the minute light emitting unit 01 and the lens group 12, and the divergent light beam from the minute light emitting unit 01 is converted into the lens group 12. 2 is arranged between the light beam converting optical element 10 which makes two light beams LF1 and LF2 intersecting the optical axis of the lens, the lens group 12, and the light collecting position of the light beam by the lens group, and is condensed by the lens group 12. A light beam bending means 14 that bends the two light beams LF1 and LF2, and the lens group 12, the light beam bending means 14, and the light beam converting optical element 10 can be displaced independently of each other in the direction of the optical axis of the lens group 12. Thus, the condensed light beam LF1 emitted from the light beam bending means 14 LF2 the orientation of which is obtained by a variable (claim 1).

また、光束変換光学素子10は、光軸に直交する面に対して傾く2以上の平面状光学面101、102を物体側に有し、光放射部01からの発散光束をレンズ群12の光軸に交わる2つの光束LF1、LF2とする透明体である(請求項2)。   The light beam conversion optical element 10 has two or more planar optical surfaces 101 and 102 that are inclined with respect to a surface orthogonal to the optical axis on the object side, and the divergent light beam from the light emitting unit 01 is converted into the light of the lens group 12. A transparent body having two light beams LF1 and LF2 intersecting with the axes.

光束屈曲手段14は、レンズ群12により集光する光束LF1、LF2を屈折して屈曲させる1以上の光学面(入射面・射出面)を有する光束屈曲部材であり(請求項3)、単体構造である(請求項4)。   The light beam bending means 14 is a light beam bending member having at least one optical surface (incident surface / exit surface) that refracts and bends the light beams LF1 and LF2 collected by the lens group 12 (Claim 3). (Claim 4).

図2は、光加工装置の実施の1形態を説明図的に示している。繁雑を避けるため、混同の虞がないと思われるものについては、図1におけると同一の符号を付してある。従って、図1におけると同一の符号を付したものに付いては図1に関する説明を援用する。
図2に示す光加工装置は「光加工」として、樹脂製のレンズLNと樹脂製の鏡筒400との光溶着を行う装置である。
レンズLNは図2(a)に示すように鏡筒400の「受け部」に落とし込まれ、レンズ周辺の平面状部分と鏡筒400の「受け部の底面部」とが密接して溶着面401(図1における結像面S)となる。
FIG. 2 is an explanatory view showing one embodiment of the optical processing apparatus. In order to avoid complications, the same symbols as in FIG. Therefore, the explanation about FIG. 1 is used for the same reference numerals as those in FIG.
The optical processing apparatus shown in FIG. 2 is an apparatus that performs optical welding between the resin lens LN and the resin lens barrel 400 as “optical processing”.
As shown in FIG. 2A, the lens LN is dropped into the “receiving portion” of the lens barrel 400, and the planar portion around the lens and the “bottom portion of the receiving portion” of the lens barrel 400 are in close contact with each other. 401 (imaging plane S in FIG. 1).

図2(b)は、図2(a)の、鏡筒400とレンズLNとの係合状態を、レンズLNの光軸方向から見た状態であり、最内部の「破線の円」はレンズ面LN1(図2(a)における下方のレンズ面)の輪郭、その外側の円はレンズ面LN2(図2(a)における上方のレンズ面)の輪郭であり、符号401は「溶着面」を示す。
図2(b)における符号P11〜P14は「溶着部(溶着スポット)」を示している。即ち、レンズLNは4つの溶着部P11〜P14において鏡筒400に光溶着される。レンズLNは勿論、加工用のレーザ光を透過させるが、鏡筒400は「レーザ光を吸収する樹脂」で構成されている。このような「加工用のレーザ光を吸収する樹脂」は、黒色等の有色樹脂や「黒色等に着色された樹脂」であることができるが、加工用のレーザ光を吸収しやすい色の塗料を「レーザ光の波長の光を透過させる樹脂の表面に塗布した構成」としてもよい。
FIG. 2B shows the state of engagement between the lens barrel 400 and the lens LN in FIG. 2A viewed from the optical axis direction of the lens LN. The innermost “dashed circle” is the lens. The contour of the surface LN1 (lower lens surface in FIG. 2 (a)), the outer circle is the contour of the lens surface LN2 (upper lens surface in FIG. 2 (a)), and reference numeral 401 designates the “welded surface”. Show.
Symbols P11 to P14 in FIG. 2B indicate “welding portions (welding spots)”. That is, the lens LN is optically welded to the lens barrel 400 at the four welded portions P11 to P14. The lens LN, of course, transmits laser light for processing, but the lens barrel 400 is made of “resin that absorbs laser light”. Such a “resin that absorbs laser light for processing” can be a colored resin such as black or “resin colored in black”, but a color paint that easily absorbs laser light for processing. May be “a configuration in which the surface of a resin that transmits light of the wavelength of the laser beam is applied”.

溶着用のレーザ光を溶着部P11〜P14に集光すると、集光したレーザ光の光エネルギが樹脂製の鏡筒400の溶着部に吸収され、鏡筒400を局部的に発熱させて溶解させる。発熱した熱はまた、樹脂製のレンズLNも溶解させ、溶解した鏡筒部分とレンズ部分とが相融して相互に強固に溶着する。   When the welding laser beam is condensed on the welding parts P11 to P14, the optical energy of the collected laser beam is absorbed by the welding part of the resin barrel 400, and the barrel 400 is locally heated to be melted. . The generated heat also melts the resin lens LN, and the melted lens barrel portion and the lens portion are fused together and firmly bonded to each other.

図2(a)において、符号10Aにより光束変換光学素子を示す。
図1の集光光学系における光束変換光学素子10Aは「入射側の面が平面状、射出側の面は2つの平面状の光学面101、102を屋根型に組合せた形状を有し、平面上の光学面101、102の交差する稜線部は図面に直交する方向であって入射側の平面と平行である光束変換光学素子」であり、結像面S上に集光する点状の集光点は2個(PI1、PI2)であるから、図2における光加工装置に「図1の集光光学系」を用いて、上記溶着ポイントP11〜P14を溶着するのであれば、2つの集光点PI1、PI2の集光点間隔:DPが溶着点P11、P12の間隔に等しくなるように、光束変換光学素子10の位置を調整して、図2(b)の「2つの溶着点P11、P12」に光を集光させて溶着を行い、その後、鏡筒400と光加工装置の位置関係を光軸の回りに相対的に90度回転させ、2つの集光点が「溶着点P13、P14」に合致するようにして溶着を行えば良い。
In FIG. 2A, a light beam conversion optical element is indicated by reference numeral 10A.
The light beam converting optical element 10A in the condensing optical system of FIG. 1 has a shape in which the plane on the incident side is planar and the plane on the exit side is a combination of two planar optical surfaces 101 and 102 in a roof shape. The intersecting ridges of the upper optical surfaces 101 and 102 are light beam converting optical elements that are orthogonal to the drawing and parallel to the plane on the incident side. Since there are two light spots (PI1, PI2), if the welding points P11 to P14 are welded to the optical processing apparatus in FIG. The converging point interval between the light spots PI1 and PI2: The position of the light beam conversion optical element 10 is adjusted so that DP is equal to the interval between the welding points P11 and P12, and the “two welding points P11 in FIG. , P12 "to collect the light and perform welding, and then, the lens barrel 400 and the light The positional relationship of the apparatus is rotated around a relatively 90 degrees to the optical axis, two converging point may be performed welding so as to conform to the "welding point P13, P14".

4つの溶着点P11〜P14を順次に溶着する場合だと4回の溶着工程を必要とするが、2点ずつの溶着を行うことにより2回の溶着工程ですみ、溶着の作業効率が向上する。   When four welding points P11 to P14 are sequentially welded, four welding processes are required. However, by performing welding at two points, only two welding processes are required, and the work efficiency of welding is improved. .

なお、鏡筒400の「筒長が大きく」なり、レンズLNが鏡筒400の「深い部分」に溶着される場合には、集束点間隔:DPを保ったまま、照射角:βを小さくして、鏡筒による光束の「蹴られ」をなくすことによりレンズLNを鏡筒400に良好に溶着できる。   In the case where the “tube length is large” of the lens barrel 400 and the lens LN is welded to the “deep portion” of the lens barrel 400, the irradiation angle: β is decreased while maintaining the focusing point interval: DP. Thus, the lens LN can be favorably welded to the lens barrel 400 by eliminating the “kicking” of the light beam by the lens barrel.

図2に示す光加工装置において「4つの溶着点P11〜P14を同時に溶着する」ようにするには、光束変換光学素子10Aとして、微小な光放射部01から放射される発散光束を「レンズ群12の光軸に交わる4つの光束」に分離すれば良い。図3に、このような光束変換光学素子の例を3例示す。
図3(a)に示す光束変換光学素子10A1は、光軸方向の両側(物体側と像側)ともに「2つの平面上の光学面を屋根型に組合せたもの」であり、光軸方向の一方の側で稜角(θ1とする。)、他方の側で稜角(θ2とする。)である。これら稜角:θ1、θ2も120度〜240度の範囲が好適である。
このような光束変換光学素子10A1を用いることにより、稜角:θ1、θ2を調整することにより、4個の集光点P11〜P14を図2(b)の如くに設定できる。この場合、光束変換光学素子10A1を光軸方向に変位させると、集光点P11〜P14は「配列パターンを保った状態で相似的に変位」する。また、光束屈曲部材14あるいは「光束屈曲部材14とレンズ群12と」を変位させて照射角を変化させたり、集光点の大きさを調整したりできる。
In order to “welve four welding points P11 to P14 simultaneously” in the optical processing apparatus shown in FIG. 2, a divergent light beam emitted from the minute light emitting unit 01 is used as a “lens group” as the light beam conversion optical element 10A. What is necessary is just to isolate | separate into four light fluxes which cross | intersect 12 optical axes. FIG. 3 shows three examples of such a light beam conversion optical element.
The light beam converting optical element 10A1 shown in FIG. 3A is “a combination of optical surfaces on two planes in a roof shape” on both sides (object side and image side) in the optical axis direction. The ridge angle (referred to as θ1) on one side and the ridge angle (referred to as θ2) on the other side. These ridge angles: θ1 and θ2 are also preferably in the range of 120 degrees to 240 degrees.
By using such a light beam conversion optical element 10A1, the four condensing points P11 to P14 can be set as shown in FIG. 2B by adjusting the ridge angles θ1 and θ2. In this case, when the light beam conversion optical element 10A1 is displaced in the optical axis direction, the condensing points P11 to P14 are “similarly displaced while maintaining the arrangement pattern”. Further, the light beam bending member 14 or “the light beam bending member 14 and the lens group 12” can be displaced to change the irradiation angle, or to adjust the size of the focal point.

図3(b)に示す光束変換光学素子10A2は、入射側を単一の平面とし、射出側は4つの平面上の光学面を「正4角錐状」に組合せたものであり、微小な光放射部からの発散光束をレンズ群12の光軸方向に交わる4つの光束に分割でき、これを用いることにより図2(b)に示すような「同一円周上にある4つ集光点P11〜P14」に集光できる。正4角錐面をなす光学面の「光軸に対する傾き角」は60°〜120°の範囲が好ましい。   The light beam converting optical element 10A2 shown in FIG. 3B has a single plane on the incident side and a combination of optical surfaces on the four planes in a “regular quadrangular pyramid” on the exit side. The divergent light beam from the radiating section can be divided into four light beams intersecting in the optical axis direction of the lens group 12, and by using this, as shown in FIG. 2B, “four condensing points P11 on the same circumference”. To P14 ". The “inclination angle with respect to the optical axis” of the optical surface forming a regular quadrangular pyramid surface is preferably in the range of 60 ° to 120 °.

図3(c)に示す光束変換光学素子10A3は、光源側または集光側の面が平面で、他方の側は、光路分割面として4つの光学面に形成され、これら4つの光学面が、上記平面に対して等しく傾き(傾き角は±30度の範囲が好適である。)、傾きの方向が均等になるように組合せた形状であり、これを用いることにより、微小な光放射部からの発散光束をレンズ群12の光軸方向に交わる4つの光束に分割し、図2(b)に示す「同一円周上にある4つ集光点P11〜P14」に集光するようにできる。   In the light beam conversion optical element 10A3 shown in FIG. 3C, the light source side or the light condensing side surface is a flat surface, and the other side is formed on four optical surfaces as optical path dividing surfaces. It is a shape that is equally inclined with respect to the plane (the inclination angle is preferably within a range of ± 30 degrees) and the direction of the inclination is equalized. Can be divided into four light beams intersecting in the optical axis direction of the lens group 12 and condensed on “four condensing points P11 to P14 on the same circumference” shown in FIG. .

図3には、微小な光放射部からの発散光束をレンズ系の光軸に対して傾く4つの光束に分割する光束変換光学素子の例を示したが、例えば、図3(b)における角錐面の面数を3面としたり5面以上として、あるいは図3(c)における光路分割面数を3としたり5以上として、入射光束を3つあるいは5以上の光束に分割することにより、3点もしくは5点以上の同時溶着が可能となる。   FIG. 3 shows an example of a light beam conversion optical element that divides a divergent light beam from a minute light emitting portion into four light beams inclined with respect to the optical axis of the lens system. For example, a pyramid in FIG. By dividing the incident light beam into three or five or more light beams by setting the number of surfaces to three or five or more, or setting the number of optical path dividing surfaces in FIG. It becomes possible to perform simultaneous welding of 5 points or more.

上に図1、図2に即して説明した実施の形態において、光束屈曲手段を成す光束屈曲部材14は平凸レンズであり、レンズ群12により集光する光束を屈折させて光束を屈曲させる光学面(射出側の凸レンズ面)を有するものであるが、光束屈曲手段は、反射により光束の光路を屈曲させるものであることもできる。   In the embodiment described above with reference to FIGS. 1 and 2, the light beam bending member 14 constituting the light beam bending means is a plano-convex lens, and optically refracts the light beam collected by the lens group 12 to bend the light beam. Although it has a surface (convex lens surface on the exit side), the light beam bending means may be one that bends the optical path of the light beam by reflection.

1例を図4に示す。図4に示す光束屈曲部材14Aは、入射側を4角錐形状としたものであり、4面の角錐面(光学面)は「反射面」として構成される。この光束屈曲部材14Aは「単体の光束屈曲手段」として図5に示すように用いることができる。図5において、図1におけると同一の符号のものは図1におけると同様のものであり、これらに対する説明は、図1に関する説明を援用する。
図5における光束変換光学素子10A2は図3(b)に示す如きものであり、微小な光放射部01から放射される発散光束を、レンズ群12の光軸に対して傾く4つの光束に分割する。分割された4つの光束はレンズ群12により4つの集光光束に変換される。
An example is shown in FIG. The light beam bending member 14A shown in FIG. 4 has a four-sided pyramid shape on the incident side, and the four pyramid surfaces (optical surfaces) are configured as “reflecting surfaces”. This light beam bending member 14A can be used as a “single light beam bending means” as shown in FIG. 5, the same reference numerals as those in FIG. 1 are the same as those in FIG. 1, and the description of FIG.
The light beam conversion optical element 10A2 in FIG. 5 is as shown in FIG. 3B, and divides the divergent light beam emitted from the minute light emitting unit 01 into four light beams inclined with respect to the optical axis of the lens group 12. To do. The divided four light beams are converted into four condensed light beams by the lens group 12.

光束屈曲手段をなす単体の光束屈曲部材14Aは、4角錐面をなす4つの反射面(光学面)をレンズ群12の側へ向け、反射面の成す4角錐の軸をレンズ群12の光軸と合致させて設けられ、且つ、反射面相互の稜線が、光束変換光学素子10A2の4つの角錐面の稜線と対応するように位置を調整されている。   The single light beam bending member 14A that forms the light beam bending means has four reflecting surfaces (optical surfaces) forming a quadrangular pyramid surface directed toward the lens group 12, and the axis of the quadrangular pyramid formed by the reflecting surface is the optical axis of the lens group 12. And the positions of the ridgelines of the reflecting surfaces are adjusted so as to correspond to the ridgelines of the four pyramid surfaces of the light beam conversion optical element 10A2.

従って、レンズ群12により集光する4つの光束は、光束屈曲部材14Aの各反射面により、それぞれ反射されて光路を屈曲される。図5に示されている状態では、光路を屈曲された各集光光束は「レンズ群12の光軸に対して略直交する」ように光路を屈曲されて集光している。この実施の形態の場合、光束屈曲部材14Aは反射により光束の光路を屈曲させるものであり、従って、図5の状態で、光束屈曲部材14Aのみをレンズ群14Aの光軸方向へ変位させても光路屈曲の角度は不変であり、光路を屈曲された集光光束の位置が図の上下方向へ変化し、各集光光束の集光点の上記光軸からの距離が変化する。   Accordingly, the four light beams collected by the lens group 12 are reflected and bent by the respective reflecting surfaces of the light beam bending member 14A. In the state shown in FIG. 5, each condensed light beam bent along the optical path is condensed by bending the optical path so as to be “substantially orthogonal to the optical axis of the lens group 12”. In this embodiment, the light beam bending member 14A bends the optical path of the light beam by reflection. Therefore, even if only the light beam bending member 14A is displaced in the optical axis direction of the lens group 14A in the state of FIG. The angle of the optical path bending is unchanged, the position of the condensed light beam bent along the optical path changes in the vertical direction in the figure, and the distance from the optical axis of the condensing point of each condensed light beam changes.

また、光束変換光学素子10A2および/またはレンズ群12を光軸方向へ変位させることにより、レンズ群12により集光される各集光光束の「光軸に対する傾き」が変化し、光束屈曲部材14Aの反射面への入射角が変化するので、これにより「照射角」を変化させ、調整することができる。   Further, by displacing the light beam conversion optical element 10A2 and / or the lens group 12 in the optical axis direction, the “tilt with respect to the optical axis” of each condensed light beam collected by the lens group 12 changes, and the light beam bending member 14A. Since the incident angle to the reflecting surface of the light beam changes, the “irradiation angle” can be changed and adjusted accordingly.

図6に示す光束屈曲部材14Bは、4角柱状の透明体の1つ面を截頭4角推状の光学面に形成し、この截頭4角錐面と対向する平面を入射面とした単体の光束屈曲手段である。この光束屈曲部材を、例えば図7に示すように「図5における光束屈曲手段14Aの代わり」に用い、上記入射面から4つの集光光束を入射させ、截頭4角錐の各反射面で「内部反射」させることにより光束の光路を屈曲させ「斜めの光照射」を実現できる。この場合も、光束変換光学素子10A2および/またはレンズ群12を光軸方向へ変位させることにより照射角の調整を行うことができ、光束屈曲部材14Bを光軸方向に変位させることで、集光点の位置を変化させることができる。   The light beam bending member 14B shown in FIG. 6 is a single unit in which one surface of a quadrangular prism-shaped transparent body is formed on an optical surface having a quadrangular quadruple-like shape, and a plane that faces the truncated quadrangular pyramid surface is an incident surface. The light beam bending means. For example, as shown in FIG. 7, this light beam bending member is used in place of the light beam bending means 14 </ b> A in FIG. 5, so that four condensed light beams are incident from the incident surface, and each reflecting surface of the truncated quadrangular pyramid is “ By “internal reflection”, the optical path of the light beam can be bent to realize “oblique light irradiation”. Also in this case, the irradiation angle can be adjusted by displacing the light beam conversion optical element 10A2 and / or the lens group 12 in the optical axis direction, and the light beam bending member 14B can be condensed by displacing the light beam bending member 14B in the optical axis direction. The position of the point can be changed.

図4に示した光束屈曲部材14Aは、4つの反射面(光学面)を4角錐形状に組合せて単一部材として構成しているが、同様の光束屈曲効果は、図8に示すような4つのピース14A1〜14A4を用いて、各ピースの反射面で1つの集光光束の光路を屈曲させるようにしても実施できる。4つのピース14A1〜14A4は「光束屈曲部材を構成する光束屈曲素子」である(請求項5)。   The light beam bending member 14A shown in FIG. 4 is configured as a single member by combining four reflecting surfaces (optical surfaces) into a quadrangular pyramid shape, but the same light beam bending effect is as shown in FIG. It can also be implemented by using one piece 14A1 to 14A4 to bend the optical path of one condensed light beam on the reflection surface of each piece. The four pieces 14A1 to 14A4 are “light beam bending elements constituting a light beam bending member” (Claim 5).

あるいは、図8に示すような「4つのピース14A1〜14A4の組合せによる光束屈曲部材」の場合、これらのピースを透明体で構成し、図9に示すように配置して内部全反射による光路屈曲を行うようにしても良い。図9に図示されないピース14A2、14A4は図面に直交する方向に配置されている。   Alternatively, in the case of “light beam bending member by a combination of four pieces 14A1 to 14A4” as shown in FIG. 8, these pieces are made of a transparent body and arranged as shown in FIG. 9 to bend the optical path by total internal reflection. May be performed. The pieces 14A2 and 14A4 not shown in FIG. 9 are arranged in a direction orthogonal to the drawing.

また、図10に示すように、図4に示した光束屈曲部材14Aと図8に示した4つのピース14A1〜14A4(図にはピース14A1、14A3のみが示されている。)を組合せて光束屈曲手段を構成し、各反射面の傾斜角度を適宜定めることにより「照射角や照射間隔を調整可能として光照射が可能になる。この場合、光束屈曲部材14Aは、図8に示した4つのピース(光束屈曲素子)14A1〜14A4とともに全体として光束屈曲手段を構成する(請求項6)。   As shown in FIG. 10, the light beam bending member 14A shown in FIG. 4 and the four pieces 14A1 to 14A4 shown in FIG. 8 (only the pieces 14A1 and 14A3 are shown in the drawing) are combined. By configuring the bending means and appropriately determining the inclination angle of each reflecting surface, “light irradiation can be performed by adjusting the irradiation angle and the irradiation interval. In this case, the light beam bending member 14A includes the four light beam bending members 14A shown in FIG. Together with the pieces (light beam bending elements) 14A1 to 14A4, a light beam bending means is configured as a whole (Claim 6).

光束屈曲部材として「光路屈曲を反射により行う」ものを用いる場合、反射面の形態は平面に限られない。例えば、図10に示した実施の形態において、ピース14A1〜14A4の反射面を曲面としてパワーを持たせることができる。図11は、その1例であり、4つのピースの1つであるピース14A11を示している。このピース14A11はその反射面S14が凹球面である。   When a member that “bends the optical path by reflection” is used as the light beam bending member, the shape of the reflecting surface is not limited to a flat surface. For example, in the embodiment shown in FIG. 10, it is possible to give power by using the reflecting surfaces of the pieces 14A1 to 14A4 as curved surfaces. FIG. 11 shows an example, and shows a piece 14A11 that is one of four pieces. This piece 14A11 has a reflective spherical surface S14.

ピース14A11と同様の4個のピース14A11〜14A14を、図12に示すように光束屈曲部材14Aと組合せることにより(図にはピース14A11、14A13のみが示されている。)集光光束をコントロールし、図10の場合よりも倍率を小さくでき「より小さな集光点」を実現できる。勿論、反射面S14は非球面とすることもできる。   By combining four pieces 14A11 to 14A14 similar to the piece 14A11 with a light beam bending member 14A as shown in FIG. 12 (only the pieces 14A11 and 14A13 are shown in the figure), the collected light flux is controlled. In addition, the magnification can be made smaller than in the case of FIG. 10, and a “smaller focal point” can be realized. Of course, the reflecting surface S14 may be an aspherical surface.

上には、光束変換光学素子として、微小な光放射部からの発散光束を「レンズ群の光軸に交わる複数の光束(例では2光束もしくは4光束)に変換する」ものを説明したが、光束変換光学素子は、機能として「微小な光放射部からの発散光束を、レンズ群の光軸に交わる1以上の光束とする」ものであり、変換された光束が「単一の光束」であることもできる。このような単一の光束に変換するための光束変換光学素子は種々のものが可能であるが、例えば、1例として図13に示す光束変換光学素子10Bは「透明体で、入射側の光学面が平面、射出側の光学面が円錐面」であり、円錐軸をレンズ群の光軸に合致して配置される。   As described above, as the light beam conversion optical element, the divergent light beam from the minute light emitting portion is described as “a plurality of light beams intersecting the optical axis of the lens group (in the example, two light beams or four light beams)”. The light beam conversion optical element has a function of “a divergent light beam from a minute light emitting portion is set to one or more light beams intersecting the optical axis of the lens group”, and the converted light beam is a “single light beam”. There can also be. Various light beam conversion optical elements for converting into such a single light beam can be used. For example, the light beam conversion optical element 10B shown in FIG. The surface is a flat surface and the optical surface on the exit side is a conical surface. The conical axis is arranged so as to coincide with the optical axis of the lens group.

このような光束変換光学素子10Bを、図2に示す実施の形態において、光束変換光学素子10Aの代わりに用いれば、変換された光束はレンズ群12と光束屈曲部材14とにより集光面に「リング状の集光部」として集光することが容易に理解されるであろう。従って、この場合、図2(b)に示す溶着部P11〜P14を「同一円周上に有するリング状の集光部」を同時に溶着できる。   When such a light beam conversion optical element 10B is used in place of the light beam conversion optical element 10A in the embodiment shown in FIG. 2, the converted light beam is formed on the condensing surface by the lens group 12 and the light beam bending member 14. It will be easily understood that the light is collected as a “ring-shaped light collecting portion”. Therefore, in this case, it is possible to simultaneously weld the “ring-shaped condensing part having the welding parts P11 to P14 shown in FIG. 2B on the same circumference”.

即ち、図13に示す光束変換光学素子10Bは「円錐面状光学面を像側(射出側)に有する透明体」であり、これを図2の光束変換光学素子10Aの代わりに用いたものは、請求項7の集光光学系の実施の1形態をなす。   That is, the light beam conversion optical element 10B shown in FIG. 13 is “a transparent body having a conical optical surface on the image side (exit side)”, and this is used in place of the light beam conversion optical element 10A in FIG. An embodiment of the condensing optical system according to claim 7 is formed.

図5の実施の形態において、光束変換光学素子10A2に代えて図13に示す「円錐面を反射面として光路屈曲を行う光束変換光学素子10B」を用い、光束屈曲部材14Aに代えて、図14に示すような「円錐面状の反射面を持つ単体の光束屈曲部材14D」を用いることにより、レンズ群12の光軸に対して略直交する方向にリング状の集光光束を屈曲させて「リング状の集光部」の照射が可能になる。   In the embodiment of FIG. 5, instead of the light beam conversion optical element 10A2, a “light beam conversion optical element 10B that performs optical path bending with a conical surface as a reflection surface” shown in FIG. 13 is used, and instead of the light beam bending member 14A, FIG. By using a “single light beam bending member 14D having a conical reflecting surface” as shown in FIG. 4, the ring-shaped condensed light beam is bent in a direction substantially perpendicular to the optical axis of the lens group 12. Irradiation of a “ring-shaped condensing part” becomes possible.

図15に示す光束屈曲部材14Eは、透明な円柱の一端を平面の入射面とし、他端を截頭円錐状に形成したものである。図7の実施の形態における光束変換光学素子10A2に代えて、図13の光束変換光学素子10Bを用い、光束屈曲部材14Bに代えて光束屈曲部材14Eを用い、光束屈曲部材14Eの円錐状の部分での内部全反射により光路屈曲を行うことにより、照射角度を調整し、斜め方向からリング状の集光部を照射可能である。   A light beam bending member 14E shown in FIG. 15 is formed by forming one end of a transparent cylinder as a plane incident surface and the other end in a truncated cone shape. In place of the light beam conversion optical element 10A2 in the embodiment of FIG. 7, the light beam conversion optical element 10B of FIG. 13 is used, the light beam bending member 14E is used instead of the light beam bending member 14B, and the conical portion of the light beam bending member 14E. By bending the optical path by total internal reflection at, it is possible to adjust the irradiation angle and irradiate the ring-shaped condensing part from an oblique direction.

図16は光束屈曲部材14D2を示している。光束屈曲部材14D2は「中空のシリンダ状」であり、その内周面がテーパを付けられて接頭円錐状の反射面となっている。図16に示す光束屈曲部材14Dに対し、図14の光束屈曲部材14Dを「円錐軸を共有」させて組合せ、これら光束屈曲部材14D、14D2により「光束屈曲手段」を構成し、例えば、レンズ群の光軸を含む断面が図10のようになるように組合せ、図13の光束変換光学素子10Bと組合せ、各々の円錐面の頂角を適宜定めることにより、照射角や照射間隔を適宜に調整してリング状の集光部を照射できる。   FIG. 16 shows the light beam bending member 14D2. The light beam bending member 14D2 has a “hollow cylinder shape”, and an inner peripheral surface thereof is tapered to form a prefix conical reflection surface. The light beam bending member 14D shown in FIG. 16 is combined with the light beam bending member 14D of FIG. 14 by “sharing the conical axis”, and the light beam bending members 14D and 14D2 constitute “light beam bending means”. The cross section including the optical axis is combined as shown in FIG. 10, combined with the light beam conversion optical element 10B of FIG. 13, and the apex angle of each conical surface is appropriately determined to adjust the irradiation angle and the irradiation interval appropriately. Then, the ring-shaped condensing part can be irradiated.

光束屈曲部材の屈折面や反射面を、円錐面でなく「球面や非球面」とすることにより、光束変換光学素子やレンズ群により発生する収差の補正が可能になる。また「レンズ群による全系の倍率」を適宜設定することにより、集光光束をコントロールし、正確な溶着が可能になる。   By making the refracting or reflecting surface of the light beam bending member a “spherical or aspherical surface” instead of a conical surface, it is possible to correct aberrations generated by the light beam converting optical element or the lens group. Further, by appropriately setting “magnification of the entire system by the lens group”, it is possible to control the condensed light flux and perform accurate welding.

例えば、図16の光路屈曲部材14D2における光学面(反射面)を「凹の非球面」とすることにより図12の実施の形態と同様の光路が可能となり、反射面が円錐面である場合に比して倍率を小さくすることができ、より細いリング状集光部を実現できる。
非球面の形状は、前述の非球面式の各パラメータを最適化して集光光束の収差を除去できるようにする。
For example, when the optical surface (reflecting surface) of the optical path bending member 14D2 in FIG. 16 is a “concave aspheric surface”, an optical path similar to that of the embodiment in FIG. 12 is possible, and the reflecting surface is a conical surface. In comparison, the magnification can be reduced, and a thinner ring-shaped condensing part can be realized.
The aspherical shape optimizes each parameter of the aspherical expression described above so that the aberration of the condensed light beam can be removed.

図2には光加工装置の実施の形態を基本的な形態として示したが、図17以下により具体化した実施の形態を示す。   Although the embodiment of the optical processing apparatus is shown as a basic form in FIG. 2, the embodiment embodied as shown in FIG.

溶着の対象は、レンズLNと鏡筒400であり共に樹脂製である。鏡筒400は、図4におけるよりも簡略化して描いている。   The objects of welding are the lens LN and the lens barrel 400, both of which are made of resin. The lens barrel 400 is drawn more simply than in FIG.

集光光学系としては、図17に示すように、光ファイバ0の射出端を微小な光放射部01とし、光束変換光学素子としては、図13に示す如き光束変換光学素子10Bを用い、光束屈曲手段としては、図2に示すレンズによる光束屈曲部材14を用いている。従って、集光部の形状はリング状で、レンズLNと鏡筒400は「リング状の溶着部」を溶着される。なお、図17において、符号Hは集光光学系や変位手段を収納する「ハウジング」を示す。   As the condensing optical system, as shown in FIG. 17, the exit end of the optical fiber 0 is a minute light emitting unit 01, and the light beam converting optical element is a light beam converting optical element 10B as shown in FIG. As the bending means, a light beam bending member 14 using a lens shown in FIG. 2 is used. Therefore, the condensing part is ring-shaped, and the lens LN and the lens barrel 400 are welded with a “ring-shaped welding part”. In FIG. 17, symbol H denotes a “housing” that houses the condensing optical system and the displacement means.

図17の実施の形態は、ハウジングHと「レンズLNと鏡筒400による被溶着体」とが離れた状態で溶着を行う状態を示しているが、レンズLNと鏡筒400を溶着する際に「溶着面を適当な力で加圧接触」させて溶着すれば溶着加工がより容易になる。上記加圧接触は「レンズLNをエアーで吸引して固定」する方法もあるが、図18に示すように、溶着対象であるレンズLNを透明な押さえ手段200で押さえることにより、装置による加重または加圧が可能になり溶着をより効率よく行うことができる。   The embodiment of FIG. 17 shows a state in which welding is performed in a state in which the housing H and the “lens LN and the object to be welded by the lens barrel 400” are separated from each other, but when the lens LN and the lens barrel 400 are welded. If welding is performed by “pressing and contacting the welding surface with an appropriate force”, the welding process becomes easier. The pressure contact may be a method of “suctioning and fixing the lens LN with air”, but as shown in FIG. 18, the lens LN to be welded is pressed by a transparent pressing means 200, so Pressurization becomes possible and welding can be performed more efficiently.

押さえ手段200は、図19に示すように、レンズLNを鏡筒400に押圧するとき、レンズLNに「うまく嵌まり合う形状」になる押圧面形状とすることにより、溶着光である集光光束を「レンズLNと鏡筒400を溶着する溶着面へ正確に導光」する光ガイドの機能を併せ持たせることができる(請求項13)。   As shown in FIG. 19, when the lens LN is pressed against the lens barrel 400, the holding means 200 has a pressing surface shape that is a “shape that fits well” with the lens LN, thereby collecting light flux that is welding light. Can be provided with the function of a light guide that “guides light accurately to the welding surface where the lens LN and the lens barrel 400 are welded” (claim 13).

さらに、図20に示すように、押さえ手段を「これに最も近い単体構造の光束屈曲部材である光束屈曲部材」と一体化する(一体化したものを符号140で示す。)ことにより光加工装置の部品点数を有効に減らすことができる(請求項14)。   Further, as shown in FIG. 20, the pressing means is integrated with “a light beam bending member which is a light beam bending member having a unit structure closest to this” (the integrated light beam is indicated by reference numeral 140). The number of parts can be effectively reduced (claim 14).

図19に示す光加工装置は、溶着加工の光照射条件を設定することで「レンズの溶着加工を繰り返し行う」ことが可能である。光照射条件は「リング状の集光部の照射径、リング状集光部の光量バランス、照射位置」を適切に設定する条件でありこの設定を可能とする調整機能を有する。リング状の集光部の「照射径の調整」は、光束変換光学素子10Dの光軸方向変位により、リング状の集光部の「光量バランスの調整」は、光束変換光学素子10Dの光軸直交方向への2次元的変位により、「リング状の集光位置の調整」は、押さえ手段200を光軸方向および光軸直交方向へ3次元的に独立して変位させることにより行うようになっている。なお、光束屈曲を反射により行う場合、前述のように全反射を利用しても良いが、反射膜を光学面に形成して良いことは言うまでも無い。   The optical processing apparatus shown in FIG. 19 can “repeatedly perform lens welding” by setting light irradiation conditions for welding. The light irradiation condition is a condition for appropriately setting “the irradiation diameter of the ring-shaped condensing part, the light amount balance of the ring-shaped condensing part, and the irradiation position”, and has an adjustment function that enables this setting. “Adjusting the irradiation diameter” of the ring-shaped condensing part is based on displacement in the optical axis direction of the light beam converting optical element 10D, and “Adjusting the light quantity balance” of the ring-shaped condensing part is the optical axis of the light beam converting optical element 10D. Due to the two-dimensional displacement in the orthogonal direction, “adjustment of the ring-shaped condensing position” is performed by displacing the pressing means 200 independently in three dimensions in the optical axis direction and the optical axis orthogonal direction. ing. When the light beam is bent by reflection, total reflection may be used as described above, but it goes without saying that a reflection film may be formed on the optical surface.

集光光学系の実施の1形態を説明するための図である。It is a figure for demonstrating one Embodiment of a condensing optical system. 光加工装置の実施の1例を説明するための図である。It is a figure for demonstrating one example of implementation of an optical processing apparatus. 光束変換光学素子の形態例を3例示す図である。It is a figure which shows three examples of the form of a light beam conversion optical element. 光束屈曲部材の1形態を示す図である。It is a figure which shows 1 form of a light beam bending member. 集光光学系の実施の別の形態例を説明するための図である。It is a figure for demonstrating another example of implementation of a condensing optical system. 光束屈曲部材の1形態を示す図である。It is a figure which shows 1 form of a light beam bending member. 図6の光束屈曲部材を用いた集光光学系の例を説明するための図である。It is a figure for demonstrating the example of the condensing optical system using the light beam bending | flexion member of FIG. 光束屈曲手段を構成する光束屈曲素子の例を説明するための図である。It is a figure for demonstrating the example of the light beam bending element which comprises a light beam bending means. 図8の光束屈曲素子を用いる集光光学系の例を説明するための図である。It is a figure for demonstrating the example of the condensing optical system using the light beam bending element of FIG. 集光光学系の別の例を説明するための図である。It is a figure for demonstrating another example of a condensing optical system. 光束屈曲素子を説明するための図である。It is a figure for demonstrating a light beam bending element. 図11の光束屈曲素子を用いた集光光学系の例を説明するための図である。It is a figure for demonstrating the example of the condensing optical system using the light beam bending element of FIG. 光束変換光学素子の別の形態を説明するための図である。It is a figure for demonstrating another form of a light beam conversion optical element. 光束屈曲部材の1例を説明するための図である。It is a figure for demonstrating an example of a light beam bending member. 光束屈曲部材の別の例を説明するための図である。It is a figure for demonstrating another example of a light beam bending member. 光束屈曲部材の1例を説明するための図である。It is a figure for demonstrating an example of a light beam bending member. 光加工装置の1例を説明するための図である。It is a figure for demonstrating one example of an optical processing apparatus. 光加工装置の変形例を説明するための図である。It is a figure for demonstrating the modification of an optical processing apparatus. 図18の光加工装置の光溶着時における状態を示す図である。It is a figure which shows the state at the time of the light welding of the optical processing apparatus of FIG. 光加工装置の別の形態を説明するための図である。It is a figure for demonstrating another form of an optical processing apparatus.

符号の説明Explanation of symbols

01 光ファイバの射出端(微小な光放射部)
10 光束変換光学素子
12 レンズ群
14 光束屈曲手段
S 結像面
PI1、PI2 集光点
β 照射角
01 Optical fiber exit end (small light emitting part)
10 Light beam conversion optical element
12 Lens groups
14 Light beam bending means
S Image plane
PI1, PI2 Focusing point β Irradiation angle

Claims (14)

微小な光放射部から放射される発散光束を、2以上の点状および/または1以上の線状に集光させる集光光学系であって、
微小な光放射部からの発散光束を集光させる機能をもつレンズ群と、
上記微小な光放射部と上記レンズ群との間に配設され、上記微小な光放射部からの発散光束を、上記レンズ群の光軸に交わる1以上の光束とする光束変換光学素子と、
上記レンズ群と、このレンズ群による光束の集光位置との間に配設され、上記レンズ群により集光する1以上の光束を屈曲させる光束屈曲手段とを有し、
上記レンズ群と光束屈曲手段のうちの少なくとも一方と上記光束変換光学素子とが、上記レンズ群の光軸の方向に相互に独立して変位可能であり、上記光束屈曲手段から射出する集光光束の向きを可変としたことを特徴とする集光光学系。
A condensing optical system that condenses a divergent light beam emitted from a minute light emitting portion into two or more points and / or one or more lines,
A lens group having a function of collecting a divergent light beam from a minute light emitting unit;
A light beam converting optical element that is disposed between the minute light emitting portion and the lens group, and converts a divergent light beam from the minute light emitting portion into one or more light beams intersecting an optical axis of the lens group;
A light beam bending means disposed between the lens group and a light collecting position of the light beam by the lens group and bending one or more light beams condensed by the lens group;
At least one of the lens group and the light beam bending means and the light beam converting optical element can be displaced independently from each other in the direction of the optical axis of the lens group, and the condensed light beam emitted from the light beam bending means A condensing optical system characterized in that the orientation of the lens is variable.
請求項1記載の集光光学系において、
光束変換光学素子が、光軸に直交する面に対して傾く2以上の平面状光学面を、物体側および/または像側に有し、光放射部からの発散光束をレンズ群の光軸に交わる2以上の光束とする透明体であることを特徴とする集光光学系。
In the condensing optical system according to claim 1,
The light beam converting optical element has two or more planar optical surfaces that are inclined with respect to a surface orthogonal to the optical axis on the object side and / or the image side, and the divergent light beam from the light emitting unit is used as the optical axis of the lens group. A condensing optical system, characterized in that the condensing optical system is a transparent body having two or more intersecting light beams.
請求項2記載の集光光学系において、
光束屈曲手段が、レンズ群により集光する光束を屈折および/または反射して屈曲させる1以上の光学面を有する光束屈曲部材を有することを特徴とする集光光学系。
In the condensing optical system according to claim 2,
A condensing optical system characterized in that the light beam bending means has a light beam bending member having one or more optical surfaces that refract and / or reflect the light beam condensed by the lens group.
請求項3記載の集光光学系において、
光束屈曲部材が、単体構造であることを特徴とする集光光学系。
In the condensing optical system according to claim 3,
A condensing optical system, wherein the light beam bending member has a single structure.
請求項3記載の集光光学系において、
光束屈曲部材が、レンズ群により集光する光束を屈折および/または反射して屈曲させる1以上の光学面を有する光束屈曲素子を2個以上有することを特徴とする集光光学系。
In the condensing optical system according to claim 3,
A condensing optical system, wherein the light beam bending member has two or more light beam bending elements having one or more optical surfaces that refract and / or reflect the light beam condensed by the lens group.
請求項3記載の集光光学系において、
請求項4記載の単体構造の光束屈曲部材および/または請求項5記載の2個以上の光束屈曲素子による光束屈曲部材を複数組合せた構成の光束屈曲手段を有することを特徴とする集光光学系。
In the condensing optical system according to claim 3,
5. A condensing optical system comprising: a light beam bending member having a single structure according to claim 4 and / or a light beam bending means having a combination of a plurality of light beam bending members by two or more light beam bending elements according to claim 5. .
請求項1記載の集光光学系において、
光束変換光学素子が、円錐面状光学面を、物体側および/または像側に有する透明体であることを特徴とする集光光学系。
In the condensing optical system according to claim 1,
A condensing optical system, wherein the light beam conversion optical element is a transparent body having a conical optical surface on the object side and / or the image side.
請求項7記載の集光光学系において、
光束屈曲手段が、レンズ群により集光する光束を屈折および/または反射して屈曲させる1以上の光学面を有する光束屈曲部材を有することを特徴とする集光光学系。
In the condensing optical system according to claim 7,
A condensing optical system characterized in that the light beam bending means has a light beam bending member having one or more optical surfaces that refract and / or reflect the light beam condensed by the lens group.
請求項7記載の集光光学系において、
請求項8記載の光束屈曲部材を複数組合せた構成の光束屈曲手段を有することを特徴とする集光光学系。
In the condensing optical system according to claim 7,
9. A condensing optical system comprising light beam bending means having a configuration in which a plurality of light beam bending members according to claim 8 are combined.
微小な光放射部から発散光束を放射し、集光光学系により、所望の被加工面上に2以上の点状および/または1以上の線状に集光させて光加工を行う光加工装置であって、
集光光学系として、請求項1〜9の任意の1に記載の集光光学系を用いることを特徴とする光加工装置。
An optical processing apparatus that radiates a divergent light beam from a minute light emitting unit and collects the light into two or more points and / or one or more lines on a desired processing surface by a condensing optical system to perform optical processing Because
An optical processing apparatus using the condensing optical system according to any one of claims 1 to 9 as the condensing optical system.
請求項10記載の光加工装置において、
微小な光放射部が導光路の端部であって、レーザ光源から上記導光路により導光した加工用光を上記端部から放射することを特徴とする光加工装置。
The optical processing apparatus according to claim 10,
An optical processing apparatus, wherein a minute light emitting portion is an end portion of a light guide path, and processing light guided by the light guide path from a laser light source is emitted from the end portion.
請求項10記載の光加工装置において、
微小な光放射部がLDやLED等の発光素子の発光部であることを特徴とする光加工装置。
The optical processing apparatus according to claim 10,
An optical processing apparatus, wherein the minute light emitting portion is a light emitting portion of a light emitting element such as an LD or an LED.
請求項10〜12の任意の1に記載の光加工装置において、
光加工として、樹脂構成物間の光溶接を行うものであり、一方の樹脂構成物に対して他方の樹脂構成物を押圧するとともに、溶着光としての集束光束を溶着部へ向けて導光する導光機能を有する押さえ手段を有することを特徴とする光加工装置。
The optical processing apparatus according to any one of claims 10 to 12,
As optical processing, optical welding is performed between resin components, the other resin component is pressed against one resin component, and a focused light beam as welding light is guided toward the welded portion. An optical processing apparatus comprising a pressing means having a light guiding function.
請求項13記載の光加工装置において、
押さえ手段と、これに最も近い単体構造の光束屈曲部材を一体化したことを特徴とする光加工装置。
The optical processing apparatus according to claim 13.
An optical processing apparatus comprising a pressing unit and a light beam bending member having a unit structure closest to the pressing unit.
JP2008029704A 2008-02-08 2008-02-08 Condensing optical system and optical processing apparatus Expired - Fee Related JP4991588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008029704A JP4991588B2 (en) 2008-02-08 2008-02-08 Condensing optical system and optical processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008029704A JP4991588B2 (en) 2008-02-08 2008-02-08 Condensing optical system and optical processing apparatus

Publications (2)

Publication Number Publication Date
JP2009186936A true JP2009186936A (en) 2009-08-20
JP4991588B2 JP4991588B2 (en) 2012-08-01

Family

ID=41070208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008029704A Expired - Fee Related JP4991588B2 (en) 2008-02-08 2008-02-08 Condensing optical system and optical processing apparatus

Country Status (1)

Country Link
JP (1) JP4991588B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121107A (en) * 2009-12-14 2011-06-23 Koike Sanso Kogyo Co Ltd Laser cutting device
WO2017115406A1 (en) 2015-12-28 2017-07-06 Dmg森精機株式会社 Head for additive processing, processing machine, and processing method
US11135772B2 (en) 2017-05-16 2021-10-05 Dmg Mori Co., Ltd. Additive-manufacturing head and manufacturing machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222919A (en) * 1989-02-23 1990-09-05 Fuji Photo Film Co Ltd Beam shape converting device
JPH02299791A (en) * 1989-05-15 1990-12-12 Nippon Steel Corp Workpiece irradiating method with laser beam
JPH05251308A (en) * 1992-03-05 1993-09-28 Nikon Corp Lighting optical device
JP2000263261A (en) * 1999-03-16 2000-09-26 Matsushita Electric Ind Co Ltd Laser beam machining device and method of laser beam machining using same device
JP2000271775A (en) * 1999-03-29 2000-10-03 Sumitomo Heavy Ind Ltd Laser beam emission optical system
JP2001334578A (en) * 2000-05-26 2001-12-04 Matsushita Electric Works Ltd Method for welding resin by laser
JP2007035700A (en) * 2005-07-22 2007-02-08 Canon Inc Irradiation apparatus and irradiation application device
JP2007185707A (en) * 2006-01-16 2007-07-26 Ricoh Opt Ind Co Ltd Optical unit for optical weld joining and optical weld joining device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222919A (en) * 1989-02-23 1990-09-05 Fuji Photo Film Co Ltd Beam shape converting device
JPH02299791A (en) * 1989-05-15 1990-12-12 Nippon Steel Corp Workpiece irradiating method with laser beam
JPH05251308A (en) * 1992-03-05 1993-09-28 Nikon Corp Lighting optical device
JP2000263261A (en) * 1999-03-16 2000-09-26 Matsushita Electric Ind Co Ltd Laser beam machining device and method of laser beam machining using same device
JP2000271775A (en) * 1999-03-29 2000-10-03 Sumitomo Heavy Ind Ltd Laser beam emission optical system
JP2001334578A (en) * 2000-05-26 2001-12-04 Matsushita Electric Works Ltd Method for welding resin by laser
JP2007035700A (en) * 2005-07-22 2007-02-08 Canon Inc Irradiation apparatus and irradiation application device
JP2007185707A (en) * 2006-01-16 2007-07-26 Ricoh Opt Ind Co Ltd Optical unit for optical weld joining and optical weld joining device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121107A (en) * 2009-12-14 2011-06-23 Koike Sanso Kogyo Co Ltd Laser cutting device
WO2017115406A1 (en) 2015-12-28 2017-07-06 Dmg森精機株式会社 Head for additive processing, processing machine, and processing method
US11173662B2 (en) 2015-12-28 2021-11-16 Dmg Mori Co., Ltd. Additive-manufacturing head, manufacturing machine, and manufacturing method
US11135772B2 (en) 2017-05-16 2021-10-05 Dmg Mori Co., Ltd. Additive-manufacturing head and manufacturing machine

Also Published As

Publication number Publication date
JP4991588B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
US9656349B2 (en) Laser processing apparatus capable of increasing focused beam diameter
US6356395B1 (en) Light intensity distribution converting device and optical data storage apparatus
EP2716397B1 (en) Optical system for laser working device, laser working head with such optical system, laser working device with such head, laser focusing method, and laser working method using such method
CN100578286C (en) Optical system and optical microscope
CN110167755B (en) Additive laser processing system and method
WO2009107538A1 (en) Laser processing device and laser processing method
JP5184775B2 (en) Optical processing equipment
US11635604B2 (en) Luminous flux collector for directing light into a light-diffusing fiber
JP4991588B2 (en) Condensing optical system and optical processing apparatus
CN112548324A (en) Laser welding method and apparatus for laser welding
JP2007185707A (en) Optical unit for optical weld joining and optical weld joining device
JP5149496B2 (en) Lens welding method
JP2003255256A (en) Light scanning device
WO2021145205A1 (en) Laser device, and laser processing device in which same is used
JP2001009580A (en) Laser light condensing device
CN110116267A (en) A kind of laser scanning device and laser scanning optical system
CN114460741B (en) Annular facula optical system of free-form surface mirror
JP2007245194A (en) Optical unit for optical fusion, optical fusing apparatus and method
KR102657008B1 (en) Laser processing device and laser processing method using a curved beam
US20210041677A1 (en) Irradiation optical system, light irradiation device, and three-dimensional fabricating apparatus
JP2007035700A (en) Irradiation apparatus and irradiation application device
JP4544513B2 (en) Illumination device and imaging device
JP3675777B2 (en) Light intensity conversion element and optical storage device
JP3876268B2 (en) Processing method using synchrotron radiation
CN117917955A (en) Beam shaping lens, beam shaping element, light source device for endoscope, and endoscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

R150 Certificate of patent or registration of utility model

Ref document number: 4991588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees