WO2004110693A1 - Laser beam machining method and laser beam machining device - Google Patents

Laser beam machining method and laser beam machining device Download PDF

Info

Publication number
WO2004110693A1
WO2004110693A1 PCT/JP2004/008575 JP2004008575W WO2004110693A1 WO 2004110693 A1 WO2004110693 A1 WO 2004110693A1 JP 2004008575 W JP2004008575 W JP 2004008575W WO 2004110693 A1 WO2004110693 A1 WO 2004110693A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
laser
conductive film
film
tin oxide
Prior art date
Application number
PCT/JP2004/008575
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Jibiki
Kazuya Fujino
Hirohiko Iwase
Takuji Goda
Original Assignee
Nippon Sheet Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co., Ltd. filed Critical Nippon Sheet Glass Co., Ltd.
Publication of WO2004110693A1 publication Critical patent/WO2004110693A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0732Shaping the laser spot into a rectangular shape
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam

Definitions

  • the present invention relates to a method and laser processing for removing a part of a thin film coated on a substrate by irradiating a laser beam and patterning it into a thin film electrode having a predetermined shape. Relates to the device.
  • the present invention relates to electrode processing of transparent conductive films such as plasma display panels, solar cells, touch panels and the like in which tin oxide is used as an electrode material.
  • tin oxide film is superior in heat resistance and chemical resistance compared to an IT0 film, and is therefore used as a transparent electrode in a product having a heat treatment process at a high temperature, for example, a plasma display panel.
  • a tin oxide film that has been uniformly coated on a glass substrate in advance it is necessary to remove a part thereof.
  • Such electrode processing is performed by a photolithography etching technique in which a photoresist is transferred and exposed with a mask formed in accordance with the shape of the electrode, and excess portions are removed by etching.
  • a photoresist is applied to a glass substrate in advance, and the resist corresponding to the electrode portion is removed by mask transfer exposure in the same manner as described above, and a tin oxide film is formed on the glass substrate in this state by a CVD film forming method.
  • a so-called lift-off method is known in which adhesion is performed and then the remaining resist is removed.
  • N d A laser beam emitted from a Y AG laser light source is passed through a mask having an aperture hole, the beam cross-sectional shape is shaped into a substantially rectangular shape, and the beam is irradiated while scanning on an oxide film.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 00 0-3-4 8 6 1 1 and Japanese Patent Laid-Open No. 9 1 0 8 8 7 9
  • Patent Document 2> describes processing by irradiating a workpiece with a laser beam.
  • a laser processing apparatus that performs cutting processing by partial melting of an object, which uses two pairs of cylindrical lenses to reverse the energy density distribution of a laser beam with respect to a plane including the beam axis.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 9-108879 The laser beam is applied to a plasma display panel by using a pair of cylindrical lenses. When processing multiple striped tin oxide electrodes by evaporating a part of the tin oxide film, the laser beam is moved in a linear direction.
  • the energy density distribution is the highest at the center of the beam axis and has a so-called Gaussian distribution that decreases as it goes outward, so the laser beam emitted from the laser oscillator is simply irradiated one after another onto the tin oxide film.
  • a large amount of heat of the laser beam is applied to the center part in the width direction of the substrate exposed part (interelectrode insulating part) between the electrodes to be formed.
  • the amount of heat applied to the outer edge of the beam diameter, that is, near the end of the electrode to be formed must be small, so the end of the electrode must be sharp. There was a technical problem that it was not processed or the conductive film was not completely removed at the interelectrode insulating part, and electrical insulation between the electrodes could not be obtained with certainty.
  • Japanese Patent Application Laid-Open No. 9-108879 discloses a laser processing apparatus that can change the energy density distribution in the cross-sectional direction of a laser beam.
  • the cross-sectional shape of the beam obtained by combining a pair of cylindrical lenses is circular, and is intended to prevent dross adhesion.
  • An object of the present invention is to solve the above-mentioned problems and to provide a laser processing method of an electrode for removing a part of a tin oxide film coated on a substrate and a laser processing apparatus capable of suitably performing the same.
  • a conductive film on a substrate is irradiated with a laser beam emitted from a laser oscillator, and the laser beam and the substrate are made relative to each other.
  • the conductive film is laser-processed into an electrode having a predetermined shape by moving the conductive film in an optical lens group.
  • the laser processing method is characterized in that it is shaped into a substantially rectangular shape by optical means.
  • the laser beam applied to the conductive film is formed into a substantially rectangular shape by the optical means including the optical lens group, the cross-sectional circular shape of the beam emitted from the laser oscillator is shaped. Part of the beam is not physically blocked. This makes it possible to maintain high use efficiency of the laser beam energy. Also, since the shape of the laser beam applied to the conductive film is almost rectangular, when the striped electrode is processed by sequentially shifting the beam irradiation point on a straight line, there will be a place where no irradiation (irradiation leakage) occurs. Therefore, electrical insulation between the electrodes can be reliably ensured.
  • a second aspect of the present invention provides the optical means according to the first aspect, wherein the optical means is a set of two lens groups in which a plurality of cylindrical lenses are arranged in a direction orthogonal to each other, and are arranged apart from each other in the beam axis direction of the laser beam. It is characterized by comprising an optical system.
  • the size of the cylindrical lens may be a size that allows the laser beam to pass through without being lost. Since the laser beam is usually a few millimeters in diameter, the cross-sectional shape of the laser beam can be shaped with a small optical system.
  • Claim 3 is characterized in that, in claim 1 or 2, the maximum energy density in the cross-sectional direction of the laser beam to be irradiated is leveled so as not to exceed twice the minimum value. According to claim 3, the energy density is leveled so that the maximum value of energy does not exceed twice the minimum value of energy. The film is also properly removed at the location, and the occurrence of electrical insulation failure due to insufficient local removal of the conductive film is suppressed, so that the electrode can be processed reliably.
  • Claim 4 is according to any one of claims 1 to 3, wherein the wavelength of the laser beam to be irradiated is in the range of 3500 nm to 20:00 nm, and the energy density is distributed within the range of 8 to 16 Jcm2.
  • You It is characterized by being shaped as follows. According to claim 4, by setting the wavelength of the laser to 3500 nm to 200 nm, the surface of the glass plate coated with the conductive film is not deteriorated and deteriorated, but the tin oxide film or the oxide film is used. A film containing tin as a main component (such as a tin oxide film containing indium, a tin oxide film containing antimony, or a tin oxide film containing a halogen element such as fluorine or chlorine) can be removed. In addition, by ensuring that the density distribution of the irradiated laser beam in the energy cross-sectional direction is within the range of 8 to 16 j Z cm2, electrical insulation can be ensured.
  • a fifth aspect of the present invention is characterized in that in any one of the first to fourth aspects, the conductive film is a conductive film in which a tin oxide film is laminated and coated on a silicon dioxide film.
  • a sixth aspect of the present invention is characterized in that, in any one of the first to fourth aspects, the conductive film is a conductive film in which a tin oxide film, a silicon dioxide film, and a tin oxide film are laminated and coated in this order.
  • the tin oxide film is used to increase the adhesion with the glass substrate, or to adjust the color tone of the film, to reduce its electrical resistivity, and to form a silicon dioxide film, or a tin dioxide film and silicon dioxide.
  • Two layers of the film may be coated as a base film, and even a film having such a laminated structure can be processed in the same manner as a film of a single layer of tin oxide. Moreover, even if an insulating protective film such as titanium oxide or zirconium oxide is coated on the tin oxide film, the electrode can be processed in the same manner as the single tin oxide film.
  • a laser processing apparatus comprising optical means including an optical lens group for shaping into a rectangle.
  • the cross-sectional shape of the laser beam is set between the laser oscillator and the workpiece. Since the optical means composed of the optical lens group shaped into a substantially rectangular shape is provided, a part of the laser beam emitted from the laser oscillator is not physically shielded. As a result, laser energy can be used effectively, and a lower-power laser oscillator can be used.
  • Claim 8 is the optical means according to claim 7, wherein two optical lens units are arranged in a direction perpendicular to each other in a direction perpendicular to each other, and two lens groups are arranged apart from each other in the beam axis direction of the laser beam. It is characterized by comprising the above optical system.
  • the optical group is configured by an optical system in which a plurality of cylindrical lenses are arranged in a direction orthogonal to each other and separated in pairs in the axial direction of the laser beam. Therefore, shaping the cross-sectional shape of the beam from a circle to a rectangle can be configured with small optical components.
  • Claim 9 is the oscillation laser according to claim 8, wherein the focal length of the cylindrical lens is f mm, the radius of curvature of the cylindrical lens is r mm, and the distance between one lens group and the other lens group is L mm, When the beam diameter is d mm, the following relationship is satisfied.
  • Claim 10 is the structure according to any one of claims 7 to 9, wherein a beam staging system including a reflecting mirror and an f ⁇ lens is provided between the optical means and the workpiece. It is characterized by that. According to claim 10, since the beam scanning system including the reflection mirror and the f ⁇ lens is provided between the optical means and the workpiece, it can be placed anywhere on the tin oxide film coated on the substrate. It is possible to irradiate a beam with the same shape and size. As a result, it is possible to perform electrode processing with accurate dimensions.
  • FIG. 1 is a diagram for explaining a laser processing apparatus according to the present invention.
  • FIG. 2 is a schematic diagram for explaining an embodiment of the laser beam shaping system 5 according to the present invention.
  • FIG. 3 is a view for explaining irradiation of a conductive film with a laser beam according to the present invention.
  • FIG. 4 is a plan view of an example of a glass substrate with an electrode obtained by the laser processing method of the present invention.
  • FIG. 5 is a diagram showing a cross-sectional shape and an energy density distribution of an example of a laser beam according to the present invention.
  • FIG. 6 is a detailed view of an embodiment of the energy density distribution of the laser beam according to the present invention.
  • FIG. 7 is a detailed view of another embodiment of the energy density distribution of the laser beam according to the present invention.
  • FIG. 8 is a schematic diagram of (a) the leveled energy density distribution of the laser beam and the electrode processed by the laser beam.
  • (B) is the electrode processed by one laser beam emitted from the laser oscillator.
  • FIG. BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
  • FIG. 1 is a diagram for explaining a laser processing apparatus 1 of the present invention.
  • the laser processing apparatus according to the present invention has an optical system 2 and a scanning system 3. Above the worktable 8, an optical system 2 having a laser oscillator 4 that periodically oscillates a laser beam is arranged.
  • the laser beam 'emitted from the laser oscillator 4 is arranged in combination with a cylindrical lens, enters the laser beam shaping system 5, and the beam shaping system 5 shapes the cross-sectional shape of the laser beam into a substantially rectangular shape.
  • the optical system 2 includes at least a laser oscillator 4 and a laser oscillator 4.
  • a laser beam shaping system 5 combined with a cylindrical lens that shapes the cross-sectional shape of the irradiated laser beam into a substantially rectangular shape.
  • the laser oscillator 4 for example, an Nd-YAG laser can be suitably used.
  • the laser beam emitted from the laser oscillator 4 is usually circular in cross section, and the energy density distribution in the laser beam cross section is Gaussian distribution, that is, the highest energy at the center of the beam axis, and the energy decreases toward the outside of the beam. .
  • the laser beam shaping system 5 suitably used in the present invention has two lens groups 5 a and 5 b in which two cylindrical lenses are arranged in a direction perpendicular to each other, and two sets are separated from each other in the laser beam axial direction. Consists of an optical system.
  • the laser beam having a circular cross section emitted from the laser oscillator 4 is shaped into a rectangular cross section by the laser beam shaping system 5 with almost no energy loss.
  • the energy density distribution of the laser beam can be leveled by appropriately selecting and setting the focal length of each cylindrical lens and the separation distance of the lens groups 5a and 5b.
  • a mask having a rectangular aperture for shielding mainly the outer edge of the shaped beam is provided. Also good.
  • the laser beam that has passed through the laser beam shaping system 5 is guided to a scanning system 3 having at least a reflection mirror 15 and a high lens 7.
  • the reflection mirror 15 is for changing the propagation direction of the laser beam, and FIG. 1 shows a state in which a polygonal polygon mirror as the reflection mirror 15 is driven by the galvano scan 6.
  • a flat mirror having a translational movement mechanism may be used instead of the polygon mirror mirror.
  • the laser beam whose direction has been changed in a certain direction by the reflecting mirror 15 can be used to prevent distortion of the beam shape and blurring of the beam end face even if the irradiation position of the laser beam is changed by the f ⁇ lens 7.
  • the beam size is reduced from about 1/5 to about 1/30 with the f0 lens.
  • the worktable 8 is installed so that the surface thereof is horizontal, and is connected to a motor (not shown) via a drive mechanism (not shown) (for example, a mechanism including a screw shaft and screw, or a belt and a pulley).
  • FIG. 2 is a diagram for explaining an embodiment of a laser beam shaping system 5 comprising a combination of cylindrical lenses used in the present invention.
  • the cylindrical lenses 3 and 4 are both arranged with the cylindrical surface facing the direction of travel of the laser beam.
  • the flat surface of the cylindrical lens that faces the cylindrical surface is perpendicular to the laser beam traveling direction, and the vertical direction of the entire cylindrical surface is the X direction in the figure.
  • the cylindrical lens 4 has the same shape and shape as the cylindrical force lens, and the direction of the cylindrical lens 3 is orthogonal.
  • the lens group 5 b is the same as the lens group 5 a and has the same arrangement with respect to the laser beam.
  • the lens groups 5a and 5b are spaced apart by a certain distance L mm.
  • the focal length f mm and the radius of curvature r mm of the cylindrical lens can have the same value.
  • the separation distance L is smaller than the focal distance f, the energy of the laser beam becomes difficult to level, and if L is larger than 2 f, the laser beam diverges without being converged, which is inconvenient.
  • the radius of curvature r is less than 0.5 d, the laser beam will leak from the lens, which is inconvenient. If it is greater than 6 d, the effect of lens aberration will be lost, and the energy of the laser beam will be leveled. Since it disappears, it is not preferable.
  • a more preferable range is 1.2 f ⁇ L and L ⁇ 1.5 f.
  • 0.5 d ⁇ r and r ⁇ 2.5 d is 0.5 d ⁇ r and r ⁇ 2.5 d.
  • an acid-tin film or an acid-tin film containing tin oxide as a main component (subcomponents such as indium oxide, acid antimony, chlorine, fluorine, etc.)
  • a transparent conductive film such as an indium oxide film, an indium oxide film (ITO film), and a zinc oxide film containing aluminum can be listed.
  • a laminate of a plurality of films for example, a silicon dioxide film / tin oxide film, a tin oxide film, a non-silicon oxide film, a tin oxide film
  • the present invention can also be applied to a laminate having such a base film.
  • a glass substrate 9 coated with a tin oxide conductive film 10 as a workpiece is placed on a work table 8 and fixed.
  • the work table 8 is moved in the X direction and a laser beam is irradiated to evaporate and dissipate the conductive film 10 in the X direction to create a region without the conductive film, thereby electrically insulating the conductive film 10. State. Further, moving the work table 8 in the Y direction or operating the reflection mirror 15 shifts the laser beam irradiation position in the Y direction by a certain dimension, and removes the conductive film by the same operation. Thus, one stripe-shaped electrode is formed and processed. By repeating this operation, a large number of strip electrodes in the row direction (or column direction) are processed.
  • the energy density of the laser beam irradiated onto the conductive film is about 8 jZ at the laser beam irradiation point in the case of a tin oxide conductive film with a thickness of about 200 nm, which is usually used as an electrode for a plasma display. c m2 or more is preferable.
  • the laser oscillation (on and off) and the movement of the work table 8 and / or the angle changing operation of the reflecting mirror 6 are controlled synchronously.
  • FIG. 3 is a diagram for explaining in more detail the situation in which the tin oxide film is irradiated with a laser beam and the tin oxide film is patterned into a strip-shaped tin oxide electrode 10 in the present invention.
  • the laser beam irradiated onto the tin oxide film is shaped into a substantially rectangular cross section without losing a large amount of energy by the laser beam shaping system 5 and is irradiated onto the conductive film 10.
  • the irradiated tin oxide film is heated and removed from the glass surface by evaporation.
  • the area from which the film is removed by one irradiation (one shot) 11 is an approximately rectangular shape that is approximately the size of the laser beam.
  • the region 11 is moved downward in FIG. 3 (that is, the longitudinal direction of the stripe electrode to be formed), and the next irradiation is performed.
  • FIG. 4 shows an example of a glass substrate with a patterned electrode of tin oxide obtained by the laser processing method of the present invention.
  • a tin oxide electrode 10 is patterned on one surface of the glass substrate 9, and the tin oxide electrode 10 is in a central rectangular region 14 surrounded by a predetermined region extending along the periphery of the glass substrate 1.
  • Electrodes are arranged in parallel.
  • One electrode has a certain distance from the adjacent electrode and is electrically insulated.
  • a tin oxide conductive film formed by a known sputtering method or CVD method can be used.
  • a glass substrate with a silicon dioxide film of about 20 nm as a base film and a tin oxide film of about 200 nm on it is used, and the electrode width is 2 00 to 400 ⁇ m, between the electrodes
  • Electrodes with a distance of 30 to 100 ⁇ m can be processed.
  • FIG. 5 is a diagram showing a cross-sectional shape and energy density distribution of an irradiation laser beam used for laser processing of the present invention.
  • the circular beam is shaped into a substantially rectangular shape with virtually no energy loss, and the energy density distribution is leveled from the center of the beam axis to the outside.
  • the outer edge of the beam has a slightly higher energy density than the inside.
  • the end face of the patterned electrode is as shown in the lower cross-sectional view of Fig. 8 (a).
  • the electrode ends (edges) have a relatively sharp shape, and electrical insulation between the electrodes can be ensured
  • Fig. 6 shows the cross-sectional rectangular laser beam obtained by the laser beam shaping system 5 according to the present invention. It is a figure which shows an example of energy density distribution.
  • the laser beam is a square with a side length of about 2.4 mm, and it can be seen that the energy density is leveled inside the beam (near the axis center).
  • the outer edge of the beam has a slightly higher energy density than the inner part, the outermost part has the maximum energy density, and the axial center has the minimum energy density.
  • the maximum energy density considered in the cross-sectional direction of the laser beam shown in Fig. 5 is 2.0 times the minimum value.
  • a high-density energy density at the outer edge of the beam can be obtained by installing a square mask of a predetermined size after the laser beam shaping system 5.
  • FIG. 7 is a diagram showing another example of the energy density distribution of a laser beam having a rectangular cross section obtained by the beam shaping system 5 according to the present invention. This is an example when the focal length of the cylindrical lens is 6.35 mm and the separation distance is 7.4 mm.
  • the laser beam is a square with a side length of about 2.4 mm. The outermost side has the maximum energy density, and the energy density is distributed on the parabola inside the beam (at and near the axis). You can see that you have it.
  • the laser beam shaping system 5 of the present invention can be shaped with little energy loss even when used in combination with a physical beam shaping means of shielding the beam.
  • the energy density distribution of the irradiated laser beam is preferably set within the range of 8 to 16 J / cm2 (maximum / minimum ratio is 2.0 times or less). It is preferable to set within the range of ⁇ 16 jZcn ⁇ (the ratio of maximum value Z minimum value is 1.5 times or less), and set within the range of 1 3 to 16 jZcmS (maximum value minimum ratio) Is preferably about 1.3 times or less).
  • the cross-sectional shape of the laser beam shown in FIG. 6 and FIG. 7 is a substantially square shape with a side of about 2.2 mm. This beam is formed by a ⁇ ⁇ lens and has a side of several 10 to several 1 0 0 ⁇ It is narrowed down to.
  • FIG. 6 and FIG. 7 are substantially square shapes with a side of about 2.2 mm. This beam is formed by a ⁇ ⁇ lens and has a side of several 10 to several 1 0 0 ⁇ It is narrowed down to.
  • the cross-sectional energy density of the laser beam emitted from the laser oscillator has a Gaussian distribution.
  • the removal of the conductive film proceeds at the center part between the electrodes 10 and 10, but the film removal ability at the extreme part is small. It is difficult to ensure electrical insulation.
  • the wavelength of the laser beam used is preferably such that the absorption coefficient at the wavelength of the conductive film to be patterned is larger than the absorption coefficient of the glass substrate.
  • the wavelength range of the oscillation laser is 3 5 0 nn!
  • the time is selected in the range of ⁇ 200 nm.
  • the substrate material that can be used in the laser processing of the present invention include glass and ceramics.
  • amorphous glass such as aluminoborosilicate glass, aluminosilicate glass, alkali-free glass, soda lime silicate glass, or crystallized glass can be used.
  • the present invention will be described in detail by way of examples.
  • An Nd_Y AG laser (wavelength: 1064 nm, laser beam diameter: 5 mni) was used as the laser oscillator, and the laser beam emitted from the laser oscillator was guided to the laser single beam shaping system shown in Fig. 2.
  • the two cylindrical lenses constituting one lens group were fixed in close contact with each other, and the separation distance L was set to 24.9 mm.
  • the laser beam emitted from this laser beam shaping system is passed through the reflecting mirror and ⁇ ⁇ lens to the glass substrate (weight composition: Si 026 2.0%, A 12033.2%, ZrO20. 4% , N a202. 1%, K2010.
  • the laser beam position was shifted by about 300 m and the same processing operation was performed to form and process a striped electrode having an electrode width of 300 ⁇ and an interelectrode distance of 50 / m.
  • the energy density distribution of this laser beam has an outer ring-shaped convex shape at the outer edge of the beam, which is leveled near the center, and is measured by a beam profiler.
  • the maximum value was 16 j / cm2, the minimum value was 8 JZCH12, and the ratio was 2.0.
  • the interelectrode insulation When the electrical insulation state of the portion where the tin oxide film was removed by evaporation by laser beam irradiation (interelectrode insulation) was measured with a commercially available resistivity meter as the interelectrode resistance value, the resistance was 10 ⁇ or more. In addition, when the interelectrode insulating part was observed with an optical microscope, no foreign matter that was thought to be the residue of the conductive film was observed.
  • the above insulation resistance value is a value that sufficiently satisfies the insulation resistance value required as a row electrode or a column electrode of a substrate with a transparent electrode used in a plasma display or a liquid crystal display device.
  • Example 2 By changing the separation distance and focal length of the cylindrical lens, the average energy density as shown in Fig.
  • Example 14 As in Example 1, except that a laser beam of j / cm2 (minimum value of 1 3 JZ cm2, maximum value of 16 JZ cm2 and the ratio is 1.2 to 3 times) was irradiated. Electrode processing was performed. When the electrical insulation state of the part where the tin oxide film was removed by evaporation by laser beam irradiation (interelectrode insulating part) was measured with a commercially available resistivity meter as the interelectrode resistance value, the resistance was 1 ⁇ or more. It was.
  • Example 3 By changing the separation distance, focal length, and laser oscillation power of the cylindrical lens, the center of the laser beam as shown in the energy density distribution diagram of Fig. 7 is leveled in a convex shape, and the outer ring-shaped convex shape is formed on the outer edge. As in Example 1, except that an average energy density of 19 jZcm2 (minimum value 1 ⁇ / cm2, maximum value 2 2 j / cm2 and the ratio is 1.3 times) was irradiated. Electrode processing was performed.
  • Electrode processing was performed in the same way as in Example 1 except that a beam of J / cm2 (minimum value 5 j / cm2, maximum value 7 J, cm2 and the ratio was 1.4 times) was irradiated.
  • J / cm2 minimum value 5 j / cm2, maximum value 7 J, cm2 and the ratio was 1.4 times
  • the electrical insulation state of the interelectrode insulating portion was measured with a commercially available tester as the interelectrode resistance value, it was several tens of ⁇ to 10 ⁇ ⁇
  • the conductive film Comparative Example 2 Electrode processing was performed in the same manner as in Example 1 except that the laser beam shaping system of the cylindrical lens was not used.
  • the average energy density was 10 j Z cn ⁇ (the maximum value was 2 3 j Z cm ⁇ and the minimum value was 3 J cm2, the ratio was 7.7 times).
  • the electrode end portion edge portion was not patterned in a straight line. From the above experimental results, it was found that the irradiation energy density of the laser beam and the electrical insulation between the adjacent electrodes after patterning were as follows. In order to eliminate the residual (incomplete removal) of the conductive film and ensure electrical insulation between the electrodes, it is recommended that the irradiated beam has an energy density of 8 J / cm2 or higher.
  • the cross-sectional shape of the irradiated laser beam rectangular and leveling the energy density distribution in the cross-sectional direction of the laser beam, there is no residual of the conductive film over the entire width direction of the interelectrode insulating part, and The end of the electrode can be patterned in a straight line (no jagged irregularities).
  • the laser beam having a circular cross section emitted from the laser oscillator is shaped into a substantially rectangular shape by optical means, a part of the laser beam is not interrupted by shaping. Thereby, the energy of the laser beam can be efficiently irradiated onto the conductive film.
  • Claim 2 is composed of an optical system in which a plurality of cylindrical lenses arranged at positions orthogonal to each other are separated by two in the axial direction of the laser beam. The optical system for shaping the cross-sectional circular beam into a rectangle can be reduced.
  • Claim 3 the energy density distribution in the cross section direction of the laser beam irradiated on the conductive film, the maximum value of the energy was leveled so as not to exceed twice the minimum value of the energy is irradiated in a bi chromatography beam
  • the wavelength of the laser beam irradiated on the conductive film is set to 3500 nm to 200 nm, and the energy density is distributed within the range of 8 to 16 Jcm2.
  • the optical means configured by the optical lens group for converting the cross-sectional shape of the laser beam into a substantially rectangular shape is provided between the laser oscillator and the workpiece, the laser oscillator Part of the emitted laser beam is not physically shielded. For this reason, laser energy can be used effectively, and a laser oscillator with a smaller output can be employed.
  • the deformation of the laser beam is made into a lens group in which a plurality of cylindrical lenses are arranged in a direction orthogonal to each other, and this is arranged in the axial direction of the laser beam. Since it is composed of an optical system separated by one set, the beam can be shaped with a small component configuration.
  • the beam scanning system having the reflection mirror and the f 0 lens since the beam scanning system having the reflection mirror and the f 0 lens is provided in the beam path between the optical means and the workpiece, the beam scanning system has the same location on the workpiece. A beam of the same shape and size can be irradiated.
  • Industrial Applicability While irradiating a conductive film on a substrate with a laser beam emitted from a laser oscillator, the conductive film is turned into a predetermined shape electrode by relatively moving the laser beam and the substrate.
  • the cross-sectional shape of the laser beam applied to the conductive film is shaped into a substantially rectangular shape by an optical means including an optical lens group.
  • the laser beam having a circular cross section emitted from the laser oscillator is shaped into a substantially rectangular shape by optical means, a part of the laser beam is not blocked by the shaping. Thereby, the energy of the laser beam can be efficiently applied to the conductive film.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)

Abstract

When a laser beam is shaped to a rectangle in section by using a mask having a rectangular opening, a laser energy efficiency is low and therefore a large-output laser oscillator is required. When a laser beam is applied onto a tin oxide film (10) spread on a glass substrate (9) to effect electrode patterning, the sectionally circular shape of a beam from a laser oscillator (4) is shaped to an almost rectangle by disposing, as a set of two lenses, cylindrical lenses (5a, 5b) in a mutually orthogonal directions on a laser beam path. The shaped laser beam is applied onto a conductive film using a scanning system as a combination of a refletion mirror (15) and an fθ lens (7).

Description

明 細 書 レーザー加工方法及びレーザー加工装置 技術分野 本発明は、 基板上に被覆された薄膜の一部をレーザービームを照射して除去し、 所定 形状の薄膜状電極にパターン加工する方法及びレーザー加工装置に関する。 とりわけ、 電極材料として酸化錫が用いられるプラズマディスプレイパネル、 太陽電池、 タツチパ ネル等の透明導電膜の電極加工に関する。 背景技術 酸化錫膜は、 IT0膜に比べて耐熱性ゃ耐薬品性に優れているので、高温での加熱処理ェ 程がある製品、 例えばプラズマディスプレイパネルの透明電極として使用されている。 しかしながら、 予めガラス基板に均一に被覆した酸化錫膜を所定形状の電極形状に加ェ するためには、 その一部を除去することが必要である。 このような電極の加工は、 フォ トレジストを電極形状にあわせてつくられたマスクで転写露光し、 余分な部分をエッチ ングで除去するフォトリソエッチング技術で行われる。 また、 予めフォトレジストをガ ラス基板に塗布し、 前記同様にマスク転写露光により、 電極部に相当する部分のレジス トを除去し、 この状態のガラス基板上に C V D成膜法で酸化錫膜を付着させ、 その後残 りのレジストを除去するいわゆるリフトオフ法が知られている。 前記のフォトリソエッチング工程は多数の工程および設備が必要であり、 特にプラズ マディスプレイなどの比較的大寸法のガラス基板に適用する場合、 設備の大型化、 工程 リードタイムが長い、 エッチング液やレジスト使用量の増大に伴う廃液処理に関連する 環境上の問題など、 解決すべき問題がある。 上記の問題を解決するためにレーザー照射により、 余分な部分の膜を蒸発除去する方 法が、特開 2 0 0 0— 3 4 8 6 1 1号公報(特許文献 1 ) に記載されている。すなわち、 N d : Y AGレーザー光源から出射したレーザービームを開口穴を有するマスクを通し てビーム断面形状を略長方形に整形し、 そのビームを酸ィ匕錫膜上に走査しながら照射し て、 酸化錫膜を電極加工する方法である。 特許文献 1 :特開 2 0 0 0— 3 4 8 6 1 1号公報 また特開平 9一 1 0 8 8 7 9号公報 (特許文献 2〉 には、 レーザービームを加工物に 照射して加工物の部分的溶融による切断加工を行うレーザー加工装置が開示されている。 この加工装置は、 2つのシリンドリカルレンズ対を用いてレーザービームのエネルギー 密度分布をビーム軸を含む平面に対して内外逆転させた加工装置である。 すなわち、 ェ ネルギー密度分布がビーム軸中心で最も高く軸から外に向かうに従い低くなるガウス型 分布を有しているレーザービームを、 中心部で低く外側に向かうに従い高くする手段と して、 シリンドリカルレンズ対を用いたものが開示されている。 特許文献 2 :特開平 9— 1 0 8 8 7 9号公報 レーザービームを照射して、 プラズマディスプレイパネルに用いられる複数のストラ ィプ状の酸化錫の電極を酸化錫膜の一部を蒸発させて加工する場合、 レーザービームを 直線方向に移動させながら行う。 レーザー発振器から出射したレーザービームは、 通常 断面円形であり、 そのエネルギー密度分布はビーム軸中心が最も高く、 外に向かうに従 つて低くなる、 いわゆるガウス型分布をしている。 従って、 レーザー発振器から出射したレーザービームを単に酸化錫膜に次々と照射位 置をずらしながら照射することでは、 形成されていく電極と電極の間の基板露出部 (電 極間絶縁部) の巾方向の中央部にレーザービームの熱量が多く加わる。 それに対してレ 一ザ一ビームの径の外縁部、 すなわち形成される電極端部付近に加わる熱量は小さくな らざるを得ない。 このため、 電極の端部はシャープに加工されなかったり、 電極間絶縁 部で導電膜が完全に除去されずに残り、 電極間の電気絶縁性が確実に得られないという 技術的課題があった。 TECHNICAL FIELD The present invention relates to a method and laser processing for removing a part of a thin film coated on a substrate by irradiating a laser beam and patterning it into a thin film electrode having a predetermined shape. Relates to the device. In particular, the present invention relates to electrode processing of transparent conductive films such as plasma display panels, solar cells, touch panels and the like in which tin oxide is used as an electrode material. BACKGROUND ART A tin oxide film is superior in heat resistance and chemical resistance compared to an IT0 film, and is therefore used as a transparent electrode in a product having a heat treatment process at a high temperature, for example, a plasma display panel. However, in order to apply a tin oxide film that has been uniformly coated on a glass substrate in advance to a predetermined electrode shape, it is necessary to remove a part thereof. Such electrode processing is performed by a photolithography etching technique in which a photoresist is transferred and exposed with a mask formed in accordance with the shape of the electrode, and excess portions are removed by etching. In addition, a photoresist is applied to a glass substrate in advance, and the resist corresponding to the electrode portion is removed by mask transfer exposure in the same manner as described above, and a tin oxide film is formed on the glass substrate in this state by a CVD film forming method. A so-called lift-off method is known in which adhesion is performed and then the remaining resist is removed. The photolithographic etching process described above requires a large number of processes and equipment, especially when applied to relatively large glass substrates such as plasma displays, making equipment larger and using process solutions and resists with longer lead times. There are problems to be solved such as environmental problems related to waste liquid treatment due to the increase in volume. In order to solve the above problem, a method of evaporating and removing an excess film by laser irradiation is described in Japanese Patent Laid-Open No. 2 00 0-3 4 8 6 11 (Patent Document 1). . That is, N d: A laser beam emitted from a Y AG laser light source is passed through a mask having an aperture hole, the beam cross-sectional shape is shaped into a substantially rectangular shape, and the beam is irradiated while scanning on an oxide film. This is a method of processing a film with an electrode. Patent Document 1: Japanese Patent Laid-Open No. 2 00 0-3-4 8 6 1 1 and Japanese Patent Laid-Open No. 9 1 0 8 8 7 9 (Patent Document 2> describes processing by irradiating a workpiece with a laser beam. There is disclosed a laser processing apparatus that performs cutting processing by partial melting of an object, which uses two pairs of cylindrical lenses to reverse the energy density distribution of a laser beam with respect to a plane including the beam axis. In other words, a means for increasing the laser beam having a Gaussian distribution whose energy density distribution is highest at the center of the beam axis and decreases toward the outside from the axis, and lower at the center and increases toward the outside. Patent Document 2: Japanese Patent Application Laid-Open No. 9-108879 The laser beam is applied to a plasma display panel by using a pair of cylindrical lenses. When processing multiple striped tin oxide electrodes by evaporating a part of the tin oxide film, the laser beam is moved in a linear direction. The energy density distribution is the highest at the center of the beam axis and has a so-called Gaussian distribution that decreases as it goes outward, so the laser beam emitted from the laser oscillator is simply irradiated one after another onto the tin oxide film. By irradiating while shifting the position, a large amount of heat of the laser beam is applied to the center part in the width direction of the substrate exposed part (interelectrode insulating part) between the electrodes to be formed. The amount of heat applied to the outer edge of the beam diameter, that is, near the end of the electrode to be formed must be small, so the end of the electrode must be sharp. There was a technical problem that it was not processed or the conductive film was not completely removed at the interelectrode insulating part, and electrical insulation between the electrodes could not be obtained with certainty.
2 2
瞬れた用紙鎖 この課題を解決するためにレーザービームの径の外縁部までエネルギー密度を上げる と、 レーザービームの軸中心部において被加工物表面に過度の熱エネルギーが加わり、 溶融、 蒸発などによるダメージがその表面に発生するという課題があった。 このような課題を解決するために、 特開 2 0 0 0— 3 4 8 6 1 1号公報に記載されて いる従来技術では、 レーザー発振器から出射した断面円形のレーザービームを光路中に 設けたマスク板の長方形の開口穴にその一部を通過させ、 ビームの断面形状を長方形に 整形する方法が開示されている。 しかしながら、 この方法では、 出射したレーザービームのかなりの部分がマスク板に より遮蔽され、 レーザービームの軸中心近傍のエネルギーしか電極加工に寄与しないの で、 レーザー発振器のエネルギーの使用効率が低く、 電気絶縁性を確実に確保する電極 加工や短時間で行う電極加工を実現するには、 大きなパワー、 したがって高価なレーザ 一発振器を必要とするという課題があった。 また、 特開平 9— 1 0 8 8 7 9号公報には、 レーザービームの断面方向のエネルギー 密度分布を変えることができるレーザー加工装置が開示されている。 しかしながら、 一 対のシリンドリカルレンズを組み合わせることにより得られるビームの断面形状は円形 であり、 ドロス付着防止を目的とするものである。 本発明は上述の課題を解決し、 基板上に被覆された酸化錫膜の一部を除去する電極の レーザー加工方法とそれを好適に行うことができるレーザー加工装置を提供することを 目 0勺とする。 発明の開示 上記の課題を解決するためになされた本 明の請汆項 1は、 レーザー発振器から出射 させたレーザービームを基板上の導電膜に照射するとともに、 前記レーザービームと前 記基板を相対的に移動させることにより、 前記導電膜を所定形状の電極にレーザ加工す る方法であって、 前記導電膜に照射するレーザービームの断面形状を、 光学レンズ群か らなる光学的手段により略矩形に整形することを特徴とするレーザー加工方法である。 請求項 1によれば、 導電膜に照射されるレーザービームが、 レーザー発振器から出射 したビームの断面円形状を光学レンズ群からなる光学的手段により略矩形に整形されて いるので、 出射されたレーザービームの一部が物理的に遮断されることがない。 これに よりレーザービームのエネルギーの使用効率を高く維持できる。 また、 導電膜に照射されるレーザービームの形状は略矩形であるため、 ビームの照射 点を直線上に逐次ずらせてストライプ状の電極を加工するとき、 照射されない個所 (照 射漏れ)が生ずることがないので、電極間の電気絶縁性を確実に確保することができる。 請求項 2は、 請求項 1において、 光学的手段を、 複数個のシリンドリカルレンズを互 いに直交する方向に配置したレンズ群 2個を 1組として、 前記レーザービームのビーム 軸方向に離間配置した光学系で構成したことを特徴とする。 請求項 2によれば、 シリンドリカルレンズの寸法は、 レーザービームが欠けることな く透過させる寸法で有ればよい。 通常直径が数 mm程度のレーザービームであるので、 小さな光学系でレーザービームの断面形状を整形できる。 請求項 3は、 請求項 1または 2おいて、 照射するレーザービームの断面方向における エネルギー密度の最大値を、 その最小値の 2倍を越えないように平準化したことを特徴 とする。 請求項 3によれば、 エネルギーの最大値がエネルギーの最小値の 2倍を越えないよう にエネルギー密度を平準化しているので、 一定巾の電気絶縁領域をつくるのに、 その巾 方向の何れの場所についても膜の除去が適切に行われ、 導電膜の局所的な除去不足によ る電気絶縁不良の発生が抑制され、 確実に電極加工をおこなうことができる。 請求項 4は、 請求項 1〜 3のいずれかにおいて、 照射するレーザービームの波長を 3 5 0 n m〜2 0 0 0 n mで、そのエネルギー密度を 8 ~ 1 6 J c m2の範囲内に分布す るように整形したことを特徴とする。 請求項 4によれば、 レーザーの波長を 3 5 0 n m~ 2 0 0 0 n mとすることにより、 導電膜が被覆されたガラス板の表面が劣化変質することなく、 酸化錫膜あるいは酸ィ匕錫 を主成分とする膜 (インジウムを含有させた酸化錫膜、 アンチモンを含有させた酸化錫 膜、 フッ素、 塩素などのハロゲン元素を含有させた酸化錫膜など) を除去することがで きる。 また、照射レーザービームのエネルギー断面方向の密度分布を 8 ~ 1 6 j Z c m2の範 囲内に揃えることにより、 電気絶縁性を確実に確保することができる。 請求項 5は、 請求項 1〜4のいずれかにおいて、 導電膜が、 二酸化珪素膜上に酸化錫 膜が積層被覆された導電膜であることを特徴とする。 請求項 6は、請求項 1〜 4のいずれかにおいて、導電膜が、酸化錫膜、二酸化珪素膜、 酸化錫膜がこの順に積層被覆された導電膜であることを特徴とする。 酸化錫膜は、 ガラス基板との密着性を高めるために、 あるいは膜の色調を調整するた めに、 その電気抵抗率を小さくするために、 二酸化珪素膜、 あるいは二酸化錫膜と二酸 化珪素膜の 2層を下地膜として被覆されることがあり、 そのような積層構造の膜であつ ても、 酸化錫単層の膜と同じように電極加工を行うことができる。 また、 酸化錫膜の上 に、 酸化チタニウム、 酸化ジルコニウムなどの絶縁保護膜が被覆されていても、 単独酸 化錫膜と同じように電極加工ができる。 請求項 7は、 レーザ発振器から出射されるレーザービームを被加工物に照射して加工 を行うレーザー加工装置において、 前記レーザ発振器と前記被加工物との間に、 レーザ 一ビームの断面形状を略矩形に整形する光学レンズ群を含む光学的手段を備えることを 特徴とするレーザー加工装置である。 請求項 7によれば、 レーザ発振器と被加工物との間に、 レーザービームの断面形状を 略矩形に整形する光学レンズ群で構成された光学的手段を備えているので、 レーザー発 振器から出射したレーザービームの一部を物理的に遮蔽することがない。 これにより、 レーザーエネルギーを有効利用することができ、 より低パワーのレーザー発振器を用い ることができる。 請求項 8は、 請求項 7において、 光学的手段を、 複数個のシリンドリカルレンズを互 V、に直交する方向に配置したレンズ群を、 前記レーザービームのビーム軸方向に 2個 1 組で離間配置した光学系で構成したことを特徴とする。 請求項 8によれば、 光学的手段を複数個のシリンドリカルレンズを互いに直交する方 向に配置したレンズ群を、 レーザービームの軸方向に 2個 1組で離間させた光学系によ り構成したので、 ビームの断面形状の円形から矩形への整形を、 小型の光学部品で構成 できる。 請求項 9は、 請求項 8において、 シリンドリカルレンズの焦点距離を f mm、 シリン ドリカルレンズの曲率半径を r mm、 一方のレンズ群の他方のレンズ群との離間距離を L mm、 とし、 前記発振レーザビーム径を d mmとしたとき、 次の関係を満足すること を特徴とする。 Blinking paper chain When the energy density is increased to the outer edge of the laser beam diameter to solve this problem, excessive thermal energy is applied to the surface of the workpiece at the center of the laser beam axis, causing damage due to melting, evaporation, etc. There was a problem that occurred. In order to solve such a problem, in the prior art described in Japanese Patent Laid-Open No. 2 00 0-3 4 8 6 11 1, a circular laser beam emitted from a laser oscillator is provided in the optical path. A method is disclosed in which a part of the mask plate is passed through a rectangular opening hole and the beam cross-sectional shape is shaped into a rectangle. However, in this method, a considerable part of the emitted laser beam is shielded by the mask plate, and only the energy near the axis center of the laser beam contributes to the electrode processing. In order to realize electrode processing for ensuring insulation and electrode processing performed in a short time, there is a problem that a large power and therefore an expensive laser oscillator is required. Japanese Patent Application Laid-Open No. 9-108879 discloses a laser processing apparatus that can change the energy density distribution in the cross-sectional direction of a laser beam. However, the cross-sectional shape of the beam obtained by combining a pair of cylindrical lenses is circular, and is intended to prevent dross adhesion. An object of the present invention is to solve the above-mentioned problems and to provide a laser processing method of an electrode for removing a part of a tin oxide film coated on a substrate and a laser processing apparatus capable of suitably performing the same. And DISCLOSURE OF THE INVENTION According to Claim 1 of the present invention made to solve the above-described problems, a conductive film on a substrate is irradiated with a laser beam emitted from a laser oscillator, and the laser beam and the substrate are made relative to each other. The conductive film is laser-processed into an electrode having a predetermined shape by moving the conductive film in an optical lens group. The laser processing method is characterized in that it is shaped into a substantially rectangular shape by optical means. According to claim 1, since the laser beam applied to the conductive film is formed into a substantially rectangular shape by the optical means including the optical lens group, the cross-sectional circular shape of the beam emitted from the laser oscillator is shaped. Part of the beam is not physically blocked. This makes it possible to maintain high use efficiency of the laser beam energy. Also, since the shape of the laser beam applied to the conductive film is almost rectangular, when the striped electrode is processed by sequentially shifting the beam irradiation point on a straight line, there will be a place where no irradiation (irradiation leakage) occurs. Therefore, electrical insulation between the electrodes can be reliably ensured. A second aspect of the present invention provides the optical means according to the first aspect, wherein the optical means is a set of two lens groups in which a plurality of cylindrical lenses are arranged in a direction orthogonal to each other, and are arranged apart from each other in the beam axis direction of the laser beam. It is characterized by comprising an optical system. According to claim 2, the size of the cylindrical lens may be a size that allows the laser beam to pass through without being lost. Since the laser beam is usually a few millimeters in diameter, the cross-sectional shape of the laser beam can be shaped with a small optical system. Claim 3 is characterized in that, in claim 1 or 2, the maximum energy density in the cross-sectional direction of the laser beam to be irradiated is leveled so as not to exceed twice the minimum value. According to claim 3, the energy density is leveled so that the maximum value of energy does not exceed twice the minimum value of energy. The film is also properly removed at the location, and the occurrence of electrical insulation failure due to insufficient local removal of the conductive film is suppressed, so that the electrode can be processed reliably. Claim 4 is according to any one of claims 1 to 3, wherein the wavelength of the laser beam to be irradiated is in the range of 3500 nm to 20:00 nm, and the energy density is distributed within the range of 8 to 16 Jcm2. You It is characterized by being shaped as follows. According to claim 4, by setting the wavelength of the laser to 3500 nm to 200 nm, the surface of the glass plate coated with the conductive film is not deteriorated and deteriorated, but the tin oxide film or the oxide film is used. A film containing tin as a main component (such as a tin oxide film containing indium, a tin oxide film containing antimony, or a tin oxide film containing a halogen element such as fluorine or chlorine) can be removed. In addition, by ensuring that the density distribution of the irradiated laser beam in the energy cross-sectional direction is within the range of 8 to 16 j Z cm2, electrical insulation can be ensured. A fifth aspect of the present invention is characterized in that in any one of the first to fourth aspects, the conductive film is a conductive film in which a tin oxide film is laminated and coated on a silicon dioxide film. A sixth aspect of the present invention is characterized in that, in any one of the first to fourth aspects, the conductive film is a conductive film in which a tin oxide film, a silicon dioxide film, and a tin oxide film are laminated and coated in this order. The tin oxide film is used to increase the adhesion with the glass substrate, or to adjust the color tone of the film, to reduce its electrical resistivity, and to form a silicon dioxide film, or a tin dioxide film and silicon dioxide. Two layers of the film may be coated as a base film, and even a film having such a laminated structure can be processed in the same manner as a film of a single layer of tin oxide. Moreover, even if an insulating protective film such as titanium oxide or zirconium oxide is coated on the tin oxide film, the electrode can be processed in the same manner as the single tin oxide film. The laser processing apparatus according to claim 7, wherein the workpiece is processed by irradiating the workpiece with a laser beam emitted from a laser oscillator, wherein a cross-sectional shape of one laser beam is approximately between the laser oscillator and the workpiece. A laser processing apparatus comprising optical means including an optical lens group for shaping into a rectangle. According to claim 7, the cross-sectional shape of the laser beam is set between the laser oscillator and the workpiece. Since the optical means composed of the optical lens group shaped into a substantially rectangular shape is provided, a part of the laser beam emitted from the laser oscillator is not physically shielded. As a result, laser energy can be used effectively, and a lower-power laser oscillator can be used. Claim 8 is the optical means according to claim 7, wherein two optical lens units are arranged in a direction perpendicular to each other in a direction perpendicular to each other, and two lens groups are arranged apart from each other in the beam axis direction of the laser beam. It is characterized by comprising the above optical system. According to claim 8, the optical group is configured by an optical system in which a plurality of cylindrical lenses are arranged in a direction orthogonal to each other and separated in pairs in the axial direction of the laser beam. Therefore, shaping the cross-sectional shape of the beam from a circle to a rectangle can be configured with small optical components. Claim 9 is the oscillation laser according to claim 8, wherein the focal length of the cylindrical lens is f mm, the radius of curvature of the cylindrical lens is r mm, and the distance between one lens group and the other lens group is L mm, When the beam diameter is d mm, the following relationship is satisfied.
. f < L≤ 2 f  f <L≤ 2 f
0 . 5 d < r≤ 6 d 請求項 1 0は、 請求項 7 ~ 9のいずれかにおいて、 光学的手段と被加工物の間に反射 ミラーと f Θ レンズを含むビーム走查系を設けたことを特徴とする。 請求項 1 0によれば、 光学的手段と被加工物との間に反射ミラーおよび f Θ レンズか らなるビーム走査系を設けたので、基板に被覆された酸化錫膜のどこの場所にも同形状、 同寸法のビームを照射することができる。 これにより寸法形状が正確な電極加工ができ る。 図面の簡単な説明 図 1は、 本発明のレーザー加工装置を説明する図である。 0.5 d <r ≤ 6 d Claim 10 is the structure according to any one of claims 7 to 9, wherein a beam staging system including a reflecting mirror and an fΘ lens is provided between the optical means and the workpiece. It is characterized by that. According to claim 10, since the beam scanning system including the reflection mirror and the f Θ lens is provided between the optical means and the workpiece, it can be placed anywhere on the tin oxide film coated on the substrate. It is possible to irradiate a beam with the same shape and size. As a result, it is possible to perform electrode processing with accurate dimensions. Brief Description of Drawings FIG. 1 is a diagram for explaining a laser processing apparatus according to the present invention.
図 2は、 本発明にかかるレーザービーム整形系 5の一実施態様を説明する概略図であ る。  FIG. 2 is a schematic diagram for explaining an embodiment of the laser beam shaping system 5 according to the present invention.
図 3は、 本発明にかかるレーザービームの導電膜への照射を説明する図である。 図 4は、 本発明のレーザー加工方法で得られる電極付きガラス基板の一例の平面図で ある。  FIG. 3 is a view for explaining irradiation of a conductive film with a laser beam according to the present invention. FIG. 4 is a plan view of an example of a glass substrate with an electrode obtained by the laser processing method of the present invention.
図 5は、 本発明にかかるレーザービームの一例の断面形状とエネルギー密度分布を示 す図である。  FIG. 5 is a diagram showing a cross-sectional shape and an energy density distribution of an example of a laser beam according to the present invention.
囱 6は、 本発明にかかるレーザービームのエネルギー密度分布の一実施例の詳細図で ある。  FIG. 6 is a detailed view of an embodiment of the energy density distribution of the laser beam according to the present invention.
図 7は、 本発明にかかるレーザービームのエネルギー密度分布の他の実施例の詳細図 である。  FIG. 7 is a detailed view of another embodiment of the energy density distribution of the laser beam according to the present invention.
図 8は、 (a ) はレーザービームの平準化されたエネルギー密度分布とそのレーザー ビームにより加工される電極の模式図であり、 (b ) はレーザー発振器から出射した レーザ一ビームにより加工される電極の模式図である。 発明を実施するための最良の形態 以下、 本発明の好適な実施の形態を添付の図面を参照して説明する。 図 1は、 本発明 のレーザー加工装置 1を説明する図である。 本発明のレーザー加工装置は、 光学系 2と 走查系 3とを有する。 ワークテープル 8の上方には、 周期的にレーザービームを発振するレーザー発振器 4 を備えた光学系 2が配置されている。 レーザー発振器 4から出射されたレーザービーム 'は、 シリンドリカルレンズを組み合わせて配置し、 レーザービーム整形系 5に入射し、 ビーム整形系 5により、 レーザービームの断面形状が略矩形に整形され、 走查系 3に導 力 =>れる。 本発明において光学系 2は、 少なくともレーザー発振器 4とレーザー発振器 4から出 射しレーザービームの断面形状を略矩形に整形するシリンドリカルレンズを組み合わせ たレーザービーム整形系 5とを備える。 レーザー発振器 4としては、 例えば N d—Y A Gレーザーを好適に用いることができ る。 レーザー発振器 4から出射したレーザービームは通常断面円形であり、 レーザービ ーム断面内のエネルギー密度分布はガウス型分布、 すなわちビームの軸中心でエネルギ 一が最も高く、 ビームの外側に向かうに従ってエネルギーが低い。 本発明で好適に用い られるレーザービーム整形系 5は、 2枚のシリンドリカルレンズを互いに直交する方向 に配置したレンズ群 5 aと 5 bを、 レーザービームの軸方向に 2個 1組で離間配置した 光学系で構成される。 レーザー発振器 4から出射した断面円形のレーザービームは、 レーザービーム整形系 5により、エネルギー損失をほとんど生じることなく断面矩形に整形される。また、個々 のシリンドリカルレンズの焦点距離およびレンズ群 5 a、 5 bの離間距離を適切に選択 設定することにより、レーザービームのエネルギー密度分布を平準化することができる。 レーザービーム整形系 5により断面略矩形に整形されたビームのエネルギー密度分布 を一層平準化するために、 整形後のビームの主として外縁部を遮蔽するための矩形の開 口穴を有するマスクを設けてもよい。 レーザービーム整形系 5を通過したレーザービームは、 反射ミラー 1 5と ί 0レンズ 7とを少なくとも有する走査系 3に導かれる。 反射ミラー 1 5は、 レーザービームの伝 播方向を変えるためのものであり、 図 1は、 反射ミラー 1 5としての多角形のポリゴン ミラーが、 ガルバノスキャン 6によって駆動される状態を示している。 ポリゴンミラー ミラーに代えて並進移動機構を備えた平板ミラーを用いてもよい。 反射ミラー 1 5で一定方向に方向が変えられたレーザービームは、 f Θ レンズ 7によ り、 レーザービームの照射位置が変わっても、 そのビーム形状に歪みやビーム端面のぼ やけがないようになる。 また、 本発明では、 f 0 レンズでビームサイズは 5分の 1から 3 0分の 1程度に縮小される。 ワークテーブル 8は、その表面が水平になるように設置され、図示しない駆動機構(例 えばねじ軸とねじ、 又はベルトとプーリを含む機構) を介して図示しないモーターに連 結されており、 対応するモーターの駆動によって、 水平方向 X、 または X方向と直角な 水平方向 Yに往復移動できるようになつている。 図 2は、 本発明に用いられるシリンドリカルレンズの組み合わせからなるレーザービ ーム整形系 5の一実施態様を説明する図である。 レーザービームの上流側に設置される 2個 1組のレンズ群 5 aは、 シリンドリカルレンズ 3および 4が共にシリンドリカル面 がレーザービームの進行方向側に向いて配置されている。 シリンドリカルレンズの 3の シリンドリカル面に対向す平坦面はレーザビームの進行方向と垂直方向であり、 シリン ダ一面の縦方向は図中の X方向である。 シリンドリカルレンズ 4はシリンドリ力ノレレン ズと同質同形状であり、 シリンドリカルレンズ 3とその方向が直交している。 レンズ群 5 bは、 レンズ群 5 aと同じであり、 レーザービームに対して同様の配置である。 レン ズ群 5 aおよび 5 bは、 一定距離 L mmだけ離れて配置されている。 シリンドリカルレ ンズ 1〜4について、 シリンドリカルレンズの焦点距離 f mm、 曲率半径 r mmは、 そ れぞれ同じ値を有することができる。 シリンドリカルレンズ 4に入射するレーザビーム径を d mniとしたとき、 次の関係を 満足することが好ましい。 Fig. 8 is a schematic diagram of (a) the leveled energy density distribution of the laser beam and the electrode processed by the laser beam. (B) is the electrode processed by one laser beam emitted from the laser oscillator. FIG. BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram for explaining a laser processing apparatus 1 of the present invention. The laser processing apparatus according to the present invention has an optical system 2 and a scanning system 3. Above the worktable 8, an optical system 2 having a laser oscillator 4 that periodically oscillates a laser beam is arranged. The laser beam 'emitted from the laser oscillator 4 is arranged in combination with a cylindrical lens, enters the laser beam shaping system 5, and the beam shaping system 5 shapes the cross-sectional shape of the laser beam into a substantially rectangular shape. 3 leads =>. In the present invention, the optical system 2 includes at least a laser oscillator 4 and a laser oscillator 4. And a laser beam shaping system 5 combined with a cylindrical lens that shapes the cross-sectional shape of the irradiated laser beam into a substantially rectangular shape. As the laser oscillator 4, for example, an Nd-YAG laser can be suitably used. The laser beam emitted from the laser oscillator 4 is usually circular in cross section, and the energy density distribution in the laser beam cross section is Gaussian distribution, that is, the highest energy at the center of the beam axis, and the energy decreases toward the outside of the beam. . The laser beam shaping system 5 suitably used in the present invention has two lens groups 5 a and 5 b in which two cylindrical lenses are arranged in a direction perpendicular to each other, and two sets are separated from each other in the laser beam axial direction. Consists of an optical system. The laser beam having a circular cross section emitted from the laser oscillator 4 is shaped into a rectangular cross section by the laser beam shaping system 5 with almost no energy loss. In addition, the energy density distribution of the laser beam can be leveled by appropriately selecting and setting the focal length of each cylindrical lens and the separation distance of the lens groups 5a and 5b. In order to further level the energy density distribution of the beam shaped into a substantially rectangular cross section by the laser beam shaping system 5, a mask having a rectangular aperture for shielding mainly the outer edge of the shaped beam is provided. Also good. The laser beam that has passed through the laser beam shaping system 5 is guided to a scanning system 3 having at least a reflection mirror 15 and a high lens 7. The reflection mirror 15 is for changing the propagation direction of the laser beam, and FIG. 1 shows a state in which a polygonal polygon mirror as the reflection mirror 15 is driven by the galvano scan 6. Instead of the polygon mirror mirror, a flat mirror having a translational movement mechanism may be used. The laser beam whose direction has been changed in a certain direction by the reflecting mirror 15 can be used to prevent distortion of the beam shape and blurring of the beam end face even if the irradiation position of the laser beam is changed by the fΘ lens 7. Become. In the present invention, the beam size is reduced from about 1/5 to about 1/30 with the f0 lens. The worktable 8 is installed so that the surface thereof is horizontal, and is connected to a motor (not shown) via a drive mechanism (not shown) (for example, a mechanism including a screw shaft and screw, or a belt and a pulley). The motor can be moved back and forth in the horizontal direction X or in the horizontal direction Y perpendicular to the X direction. FIG. 2 is a diagram for explaining an embodiment of a laser beam shaping system 5 comprising a combination of cylindrical lenses used in the present invention. In a set of two lenses 5a installed upstream of the laser beam, the cylindrical lenses 3 and 4 are both arranged with the cylindrical surface facing the direction of travel of the laser beam. The flat surface of the cylindrical lens that faces the cylindrical surface is perpendicular to the laser beam traveling direction, and the vertical direction of the entire cylindrical surface is the X direction in the figure. The cylindrical lens 4 has the same shape and shape as the cylindrical force lens, and the direction of the cylindrical lens 3 is orthogonal. The lens group 5 b is the same as the lens group 5 a and has the same arrangement with respect to the laser beam. The lens groups 5a and 5b are spaced apart by a certain distance L mm. For cylindrical lenses 1 to 4, the focal length f mm and the radius of curvature r mm of the cylindrical lens can have the same value. When the diameter of the laser beam incident on the cylindrical lens 4 is dmni, the following relationship is preferably satisfied.
f < L≤ 2 f  f <L≤ 2 f
0 . 5 d < r≤ 6 d  0.5 d <r≤ 6 d
その理由は、 離間距離 Lが焦点距離 f より小さいとレーザービームのエネルギーが平準 ィ匕され難くなり、 Lが 2 f より大きいとレーザービームが収束されずに発散するので不 都合である。 また、 曲率半径 rが 0 . 5 dより小さいとレンズからレーザービームが漏 れることとなり不都合であり、 6 dより大きいとレンズの収差の効果がなくなり、 レー ザ一ビームのエネルギーの平準化がされなくなるので好ましくない。 レーザービームをより平準化する上で、 更に好ましい範囲は、 1 . 2 f ≤Lであり、 また L≤ l . 5 f である。 また、 0 . 5 d < rであり、 r≤ 2 . 5 dである。 次に、 本発明のレーザー加工装置 1を用いてガラス基板上に被覆された導電膜を電極 に加工する工程を説明する。 本発明のレーザー加工を好適に適用できる導電膜として、 酸ィ匕錫膜あるいは酸化錫を主成分とする酸ィヒ錫膜 (副成分が、 酸化インジウム、 酸ィ匕ァ ンチモン、 塩素やフッ素などのハロゲンである膜) 、 酸化インジウム膜、 酸化インジゥ ムを主成分とする膜 (I T O膜) 、 アルミニウムを含有する酸化亜鉛膜などの透明導電 膜の他、 金属膜が列挙できる。 これらの膜がガラス基板等の上に単層で被覆された導電 膜はもちろんのこと、 複数の膜の積層体たとえば、 二酸化珪素膜/酸化錫膜、 酸化錫膜 ノニ酸化珪素膜 酸化錫膜のような下地膜がある積層体にも適用できる。 被加工物である酸化錫の導電膜 1 0が被覆されたガラス基板 9は、 ワークテーブル 8 上に載置され固定される。 たとえば X方向にワークテーブル 8を移動させて、 レーザー ビームを照射し、 導電膜 1 0を X方向に導電膜を蒸発逸散させ導電膜がない領域をつく り、 導電膜 1 0を電気的絶縁状態とする。 さらにワークテーブル 8の Y方向の移動また は反射ミラー 1 5の操作により、 レーザービームの照射位置を一定寸法だけ Y方向にず らし、 同様の操作によりに導電膜を除去する。 かくして 1個のストライプ形状の電極が 形成加工される。 この操作を繰り返すことにより多数の行方向 (又は列方向) のストラ ィプ電極が加工される。 導電膜上に照射されるレーザービームのエネルギー密度は、 通常プラズマディスプレ ィ用電極として用いられる厚みが約 2 0 0 n m程度の酸化錫導電膜の場合、 レーザービ ームの照射点で約 8 j Z c m2以上とするのが好ましい。 このとき、 レーザーの発振 (ォ ン、 オフ) とワークテーブル 8の移動または反射ミラー 6の角度変更操作あるいはその 両方を同期制御する。 図 3は、 本発明において酸化錫膜にレーザービームを照射して、 酸化錫膜をストライ プ状の酸化錫電極 1 0にパターン加工する状況をさらに詳細に説明する図である。 酸化 錫膜に照射されるレーザービームは、 レーザービーム整形系 5によりエネルギーを大き く失われることなく断面略矩形に整形されて導電膜 1 0に照射される。 照射された部分 の酸化錫膜は加熱されて、 蒸発によりガラス表面から除去される。 1照射 (ワンショット) で膜が除去される領域 1 1はレーザービームの大きさと同程 度の略矩形である。 領域 1 1を図 3で下方に (すなわち形成するストライプ電極の長手 方向) に移動させ、 次の照射を行う。 順次照射点を下方に移動することにより、 酸化錫 膜がない電気絶縁領域 1 2を縦方向に形成し、 同時に縦方向に長手方向を有するストラ ィプ電極が形成されていく。 図 3で領域 1 2はすでにレーザービームが照射されて導電 膜が除去された領域であり、 領域 1 3は、 これからレーザービームが走査される領域を 示す。 図 4は、 本発明のレーザー加工方法で得られる酸化錫のパターン電極付きガラス基板 の一例を示す。 ガラス基板 9の片面に酸化錫電極 1 0がパターン加工されており、 酸化 錫電極 1 0は、 ガラス基板 1の周縁にそって伸びる所定の領域に囲まれた中央の矩形の 領域 1 4内に、 ストライプ状 (棒状) 電極が多数、 平行に配置されている。 そして一つ の電極は、 隣の電極と一定の間隔を有し、 電気的に絶縁されている。 酸化錫導電膜はた とえば公知のスパッタリング法や C V D法により形成されたものを用いることができる。 たとえば、 約 2 0 n mの二酸化珪素膜を下地膜として、 その上に約 2 0 0 n mの酸化錫 膜を被覆したガラス基板を用い、 電極巾が 2 0 0〜4 0 0 μ m、 電極間距離が 3 0〜1 0 0 μ mの電極加工ができる。 図 5は、 本発明のレーザー加工に使用される照射レーザービームの断面形状とェネル ギー密度分布を示す図である。 レーザービーム整形系により、 円形ビームはエネルギー を実質的にロスすることなく略矩形に整形され、 かつ、 エネルギー密度分布がビーム軸 中心から外部に向かって平準ィ匕されている。 図 5では、 ビームの外縁部が内側より若干 高いエネルギー密度を有している。 このようなレ^"ザ一ビームを導電膜に照射し、 照射 点を順次移動させていくことにより、 パターン加工された電極の端面は、 図 8 ( a ) の 下方の断面図に示すように電極端部 (エッジ) が比較的切り立った形状になり、 電極間 の電気絶縁を確実にすることができる。 図 6は、 本発明にかかるレーザービーム整形系 5により得られる断面矩形のレーザー ビームのエネルギー密度分布の一例を示す図である。 シリンドリカルレンズの焦点距離 を 6· 35 mm、 離間距離を 1 Ommとしたときの例である。 レーザービームは 1辺の 長さが約 2. 4 mmの正方形であって、 ビームの内部 (軸中心おょぴその近傍) でエネ ルギー密度が平準化されていることが分かる。 そして、 ビーム外縁部は内部よりェネル ギー密度がやや高く、 最も外側が最大エネルギー密度を有し、 軸中心が最小エネルギー 密度を有している。 図 5に示すレーザービームの断面方向で考慮されるエネルギ密度の 最大値は、 最小値の 2. 0倍である。 図 6のようなエネルギー密度分布を有しているレーザービームに対して、 レーザービ ーム整形系 5の後段に所定の大きさの正方形のマスクを設置することにより、 ビームの 外縁部の高いエネルギー密度を有する部分をカット (遮蔽) すれば、 エネルギー密度の 最大値をその最小値の約 0. 6 5 + 0. 55 = 1. 2倍まで、 エネルギーロスを大きく 発生させることなく、 平準化できる。 図 7は、 本発明にかかるビーム整形系 5により得られる断面矩形のレーザービームの エネルギー密度分布の他の例を示す図である。 シリンドリカルレンズの焦点距離を 6. 35mm、 離間距離を 7. 4 mmとしたときの例である。 レーザービームは 1辺の長さ が約 2. 4 mmの正方形であって、 最も外側が最大エネルギー密度を有し、 ビームの内 部 (軸中心およびその近傍) でエネルギー密度が放物線上に分布を有していることが分 かる。 このレーザービームは、 最大値/最小値の比が 1. 8倍に平準ィ匕されていること が分かる。 本発明のレーザービーム整形系 5は、 ビームの遮蔽という物理的なビーム整形手段と 併用しても、 エネルギーロスを少なく整形できることが分かる。 本発明においては、 照射するレーザービームのエネルギー密度分布は、 8〜1 6 J/ cm2の範囲内に設定(最大値/最小値の比が 2. 0倍以下) するのが好ましく、 さらに 1 1〜16 jZcn^の範囲内に設定 (最大値 Z最小値の比が 1. 5倍以下) するのが好 ましく、 さらに、 1 3〜 16 jZcmSの範囲内に設定 (最大値 最小値の比が約 1. 3 倍以下) するのが好ましい。 照射するレーザービームのエネルギー密度が 8 j / c m2より小さいと、導電膜をほぼ 完全に残璞なく蒸発除去することが、 とりわけ膜の厚みが厚い低抵抗の電極加工を行う ときに困難になる。 エネルギー密度が 1 6 j Z c m2より大きいと、逸散した導電膜がガラス基板上に再付 着などの現象が認められ、 電極間の電気絶縁性を必ずしも確実に確保できないので好ま しくない。 図 6および図 7に示したレーザービームの断面形状は、 一辺が約約 2 . 2 mmの略正 方形であり、このビームは ί Θ レンズにより、一辺が数 1 0〜数 1 0 0 μ πιに絞られる。 図 8 ( b ) は、 本発明にかかるレーザービーム整形系 5を用いないレーザービームの エネルギー密度分布である。 レーザー発振器から出射したレーザービームの断面エネル ギー密度はガウス型分布をしている。 このレーザービームをそのまま照射すると、 図 8 ( b ) の下方に示すように、 電極 1 0、 1 0間の中央部分は導電膜の除去が進むが、 電 極端部における膜除去能が小さいため、 電気絶縁性を確実に確保するのが困難である。 使用するレーザービームの波長は、 パターユング加工する導電膜のその波長での吸収 係数がガラス基板の吸収係数より大きいことが好ましい。 発振レーザーの波長範囲とし ては、 3 5 0 n n!〜 2 0 0 0 n mの範囲で適時選択される。 本発明のレーザー加工に供することができる基板の材料は、 ガラス、 セラミックスな どを挙げることができる。 ガラスとしては、 アルミノ硼珪酸ガラス、 アルミノ珪酸ガラ ス、 無アルカリガラス、 ソーダライムシリケートガラスなどの非晶質ガラスや結晶化ガ ラスを用いることができる。 以下に実施例により、 本発明を詳しく説明する。 実施例 1 レーザー発振器として Nd_Y AGレーザー (波長 1 064 nm、 レーザービームの 直径 5mni) を使用し、 レーザー発振器から出射したレーザービームを図 2に示すレーザ 一ビーム整形系に導いた。 すなわち、 焦点距離 f = 1 8. 9 5mmのシリンドリカルレ ンズ 2枚を直交配置して 1個のレンズ群とし、 このレンズ群 2組をビーム軸方向に離間 (距離 Lmm) して配置した。 1つのレンズ群を構成する 2枚のシリンドリカルレンズ は密着固定させ、 離間距離 Lを 24. 9mmとなるように配置した。 このレーザービー ム整形系を出射したレーザービームを、 反射ミラーと ί Θ レンズを経由させてガラス基 板 (重量組成: S i 026 2. 0%, A 12033. 2%、 Z r O20. 4%、 N a202. 1 %、 K2010. 1 %、 M g O 6. 8 %、 C a O 3. 4 %、 S r O 1 1. 8 %、 B a O 0. 2%) に CVD法 (化学的気相析出法) により被覆した 200 nmの厚みの酸ィ匕錫 導電膜 (抵抗: 50 Ω/平方) に照射した。 反射ミラーをガルバノで動かすことで、 ガ ラス基板上の酸化錫膜に、一辺が 50 μ mの正方形で平均 1 0 J / c m2のエネルギー密 度を有するレーザービームを、 照射位置を移動させながら電極間の絶縁部となる部分を 形成した。その後レーザービームの位置を約 300 mずらして同様の加工操作を行い、 電極巾 300 μπι、 電極間距離 50 / mのストライプ状電極を形成加工した。 このレー ザ一ビームのエネルギー密度分布は、 図 6に示すように、 ビーム外縁部に外輪山状の凸 形状をし、 中央部付近で平準化されており、 ビームプロファイラ一で測定したところ、 エネルギーの最大値 1 6 j/cm2、最小値 8 JZCH12で、その比率は 2. 0であった。 レーザービームの照射により酸化錫膜が蒸発により除去した部分 (電極間絶縁部) の 電気絶縁状態を電極間抵抗値として市販の抵抗率計で測定したところ、 1 0ΜΩ以上の 抵抗であった。 また、 電極間絶縁部を光学顕微鏡で観察したところ、 導電膜の残璞と考 えられる異物状のものは何も観察されなかった。 上記の絶縁抵抗値は、 プラズマデイス プレイや液晶表示装置などに用いる透明電極付き基板の行電極あるいは列電極として要 求される絶縁抵抗値を十分満足する値である。 実施例 2 シリンドリカルレンズの離間距離と焦点距離とを変えて、 図 7に示すようなエネルギ 一密度が凸状に平準化され、 外縁部に外輪山状の凸形状をもつ平均エネルギー密度 14 j/cm2 (最小値 1 3 J Z c m2、 最大値 1 6 J Z c m2でその比率が 1. 2 3倍) のレ 一ザ一ビームを照射したことを除いて、 実施例 1と同じように電極加工を行った。 レー ザ一ビームの照射により酸化錫膜を蒸発により除去した部分 (電極間絶縁部) の電気絶 縁状態を電極間抵抗値として市販の抵抗率計で測定したところ、 1 ΟΜΩ以上の抵抗で あった。 また、 電極間絶縁部を光学顕微鏡で観察したところ、 導電膜の残璞と考えられ る異物状のものは何も観察されなかった。 実施例 3 シリンドリカルレンズの離間距離と焦点距離とレーザー発振パワーを変えて、 図 7の エネルギー密度分布図に示すようなレーザービーム中央部が凸状に平準化され、 外縁部 に外輪山状の凸形状をもつ平均エネルギー密度 1 9 jZcm2 (最小値 1 Ί /c m2, 最大値 2 2 j/cm2でその比率が 1. 3倍) のビームを照射したことを除いて、 実施例 1と同じように電極加工を行った。 電極間絶縁部の電気絶縁状態を電極間抵抗値として 市販のテスターで測定したところ、 1 Ο ΚΩ前後の抵抗であった。 電極間絶縁部を光学 顕微鏡で観察したところ、 導電膜の残 ¾と考えられる異物状のものが若干認められた。 比較例 1 レ^"ザ一発振パワーを変えて、 図 7のエネルギー密度分布図に示すようなビーム中央 部が凸状に平準化され、 外縁部に外輪山状の凸形状をもつ平均エネルギー密度 6 J/c m2 (最小値 5 j/cm2, 最大値 7 J,cm2でその比率が 1. 4倍) のビームを照射し たことを除いて、 実施例 1と同じように電極加工を行った。 電極間絶縁部の電気絶縁状 態を電極間抵抗値として市販のテスターで測定したところ、数十 Ω〜 1 0 Κ Ωであった。 電極間絶縁部を光学顕微鏡で観察したところ、 導電膜の残璞が島状に認められた。 比較例 2 シリンドリカルレンズのレーザービーム整形系を用いなかった点を除いて、 実施例 1 と同じ方法で電極加工を行った。 照射レーザービームは断面円形のガウス型密度分布を しており、 平均エネルギー密度は 1 0 j Z c n^ (その最大値は 2 3 j Z c m^ 最小値 は 3 J c m2で、 その比率は 7 . 7倍) であった。 電極間絶縁部を光学顕微鏡で観察し たところ、 電極端部 (エッジ部) は一直線状にパターニング加工されていなかった。 上記の実験結果から、 レーザービームの照射エネルギー密度とパターニング加工後の 隣同士の電極間の電気絶縁性は、 次のことが判明した。 導電膜の残差 (除去不完全) を無くし、 電極間の電気絶縁性を確実に確保するには、 照射するビームを 8 J / c m2以上のエネルーギ密度とするのがよいこと。 また、 電気間を確実に絶縁状態 (抵抗値で 1 0 Μ Ω以上) とするには、 レーザービー ムのエネルギー密度分布に上限値があり、 その値は 1 6 j Z c n^であること。 その値を 超えると、 再ぴ 1 Ο Μ Ω以上の抵抗を再現性よく得られにくくなること。 この理由は明 確ではないが、 レーザービームの照射により蒸発除去された酸化錫がガラス面に再付着 することや、 ガラス表面が強いレーザービームの照射により変質、 劣化するためと推測 される。 さらに、 照射するレーザービームの断面形状を矩形にするとともに、 エネルギー密度 分布をレーザービーム断面方向で平準化することにより、 電極間絶縁部の巾方向全域に わたって導電膜の残差が無く、 かつ、 電極の端部を直線状 (ギザギザの凹凸がない) に パターニング加工できること。 本発明の請求項 1によれば、 レーザー発振器から出射した断面円形のレーザービーム は、 光学的手段により略矩形に整形されるので、 レーザービームの一部が整形により遮 断されることがない。 これにより、 レーザービームのエネルギーを効率よく導電膜に照 射することができる。 また、 導電膜に照査されるビーム形状は略矩形であるため、 レーザー照射点を直線上 に逐次ずらせてストライプ状の電極を形成するとき、 ビームが照射領域に漏れが生ずる ことがないので、 電極間の電気絶縁性を確実に確保することができる。 請求項 2は、 複数個のシリンドリカルレンズを互いに直交する位置に配置したレンズ 群をレーザービームの軸方向に 2個離間させた光学系で構成されているので、 請求項 1 の効果に加えて、 断面円形ビームを矩形に整形する光学系を小さくすることができる。 請求項 3は、導電膜に照射されるレーザービームの断面方向のエネルギー密度分布を、 エネルギーの最大値がエネルギーの最小値の 2倍を越えないように平準化したので、 ビ ームで照射された領域のいずれの場所も同程度の加熱が行われるので、 請求項 1または 2の効果に加えて、 導電膜の除去不完全による電気絶縁不良が生じるのが抑制され、 確 実に電極加工をおこなうことができる。 請求項 4は、 導電膜上に照射されるレーザービームの波長を 3 5 0 n m~ 2 0 0 0 n mとし、 かつ、 そのエネルギー密度を 8 ~ 1 6 J c m2の範囲内に分布させたので、 請 求項 1 ~ 3の効果に加えて、 基板としてのガラスの表面を劣化させることなく、 電気絶 縁性を確実に確保することができる。 請求項 7によれば、 レーザ発振器と被加工物との間に、 レーザービームの断面形状を 略矩形に変換する光学レンズ群で構成された光学的手段を備えているので、 レーザー発 振器から出射したレーザービームの一部を物理的に遮蔽することがない。 このため、 レ 一ザ一エネルギーを有効に利用することができ、 より小さい出力のレーザー発振器を採 用することができる。 請求項 8によれば、 請求項 7の効果に加えて、 レーザービームの変形を複数個のシリ ンドリカルレンズを互いに直交する方向に配置したレンズ群として、 それをレーザービ 一ムの軸方向に 2個 1組で離間させた光学系により構成したので、 ビームの整形を小型 の部品構成で行うことができる。 請求項 1 0によれば、 光学的手段と被加工物との間のビーム経路中に反射ミラーおよ び f 0 レンズを有するビーム走査系を設けたので、 被加工物上の異なる場所に同形状、 同寸法のビームを照射することができる。 産業上の利用可能性 レーザー発振器から出射させたレーザービームを基板上の導電膜に照射するとともに、 前記レーザービームと前記基板を相対的に移動させることにより、 前記導電膜を所定形 状の電極にレーザー加工する方法において、 前記導電膜に照射するレーザービームの断 面形状を、 光学レンズ群からなる光学的手段により略矩形に整形する。 レーザー発振器 から出射した断面円形のレーザービームは、光学的手段により略矩形に整形されるので、 レーザービームの一部が整形により遮断されることがない。 これにより、 レーザービー ムのエネルギーを効率よく導電膜に照射することができる。 The reason is that if the separation distance L is smaller than the focal distance f, the energy of the laser beam becomes difficult to level, and if L is larger than 2 f, the laser beam diverges without being converged, which is inconvenient. Also, if the radius of curvature r is less than 0.5 d, the laser beam will leak from the lens, which is inconvenient. If it is greater than 6 d, the effect of lens aberration will be lost, and the energy of the laser beam will be leveled. Since it disappears, it is not preferable. In order to further level the laser beam, a more preferable range is 1.2 f ≤ L and L ≤ 1.5 f. In addition, 0.5 d <r and r≤2.5 d. Next, a process of processing the conductive film coated on the glass substrate into an electrode using the laser processing apparatus 1 of the present invention will be described. As a conductive film to which the laser processing of the present invention can be suitably applied, an acid-tin film or an acid-tin film containing tin oxide as a main component (subcomponents such as indium oxide, acid antimony, chlorine, fluorine, etc.) In addition, a transparent conductive film such as an indium oxide film, an indium oxide film (ITO film), and a zinc oxide film containing aluminum can be listed. In addition to a conductive film in which these films are covered with a single layer on a glass substrate or the like, a laminate of a plurality of films, for example, a silicon dioxide film / tin oxide film, a tin oxide film, a non-silicon oxide film, a tin oxide film The present invention can also be applied to a laminate having such a base film. A glass substrate 9 coated with a tin oxide conductive film 10 as a workpiece is placed on a work table 8 and fixed. For example, the work table 8 is moved in the X direction and a laser beam is irradiated to evaporate and dissipate the conductive film 10 in the X direction to create a region without the conductive film, thereby electrically insulating the conductive film 10. State. Further, moving the work table 8 in the Y direction or operating the reflection mirror 15 shifts the laser beam irradiation position in the Y direction by a certain dimension, and removes the conductive film by the same operation. Thus, one stripe-shaped electrode is formed and processed. By repeating this operation, a large number of strip electrodes in the row direction (or column direction) are processed. The energy density of the laser beam irradiated onto the conductive film is about 8 jZ at the laser beam irradiation point in the case of a tin oxide conductive film with a thickness of about 200 nm, which is usually used as an electrode for a plasma display. c m2 or more is preferable. At this time, the laser oscillation (on and off) and the movement of the work table 8 and / or the angle changing operation of the reflecting mirror 6 are controlled synchronously. FIG. 3 is a diagram for explaining in more detail the situation in which the tin oxide film is irradiated with a laser beam and the tin oxide film is patterned into a strip-shaped tin oxide electrode 10 in the present invention. The laser beam irradiated onto the tin oxide film is shaped into a substantially rectangular cross section without losing a large amount of energy by the laser beam shaping system 5 and is irradiated onto the conductive film 10. The irradiated tin oxide film is heated and removed from the glass surface by evaporation. The area from which the film is removed by one irradiation (one shot) 11 is an approximately rectangular shape that is approximately the size of the laser beam. The region 11 is moved downward in FIG. 3 (that is, the longitudinal direction of the stripe electrode to be formed), and the next irradiation is performed. By sequentially moving the irradiation point downward, an electrically insulating region 12 having no tin oxide film is formed in the vertical direction, and at the same time, a strip electrode having a longitudinal direction in the vertical direction is formed. In FIG. 3, region 12 is a region where the conductive film has already been removed by irradiating the laser beam, and region 13 indicates a region where the laser beam will be scanned. FIG. 4 shows an example of a glass substrate with a patterned electrode of tin oxide obtained by the laser processing method of the present invention. A tin oxide electrode 10 is patterned on one surface of the glass substrate 9, and the tin oxide electrode 10 is in a central rectangular region 14 surrounded by a predetermined region extending along the periphery of the glass substrate 1. Many striped (bar) electrodes are arranged in parallel. One electrode has a certain distance from the adjacent electrode and is electrically insulated. For example, a tin oxide conductive film formed by a known sputtering method or CVD method can be used. For example, a glass substrate with a silicon dioxide film of about 20 nm as a base film and a tin oxide film of about 200 nm on it is used, and the electrode width is 2 00 to 400 μm, between the electrodes Electrodes with a distance of 30 to 100 μm can be processed. FIG. 5 is a diagram showing a cross-sectional shape and energy density distribution of an irradiation laser beam used for laser processing of the present invention. By the laser beam shaping system, the circular beam is shaped into a substantially rectangular shape with virtually no energy loss, and the energy density distribution is leveled from the center of the beam axis to the outside. In Fig. 5, the outer edge of the beam has a slightly higher energy density than the inside. By irradiating the conductive film with such a laser beam and moving the irradiation point sequentially, the end face of the patterned electrode is as shown in the lower cross-sectional view of Fig. 8 (a). The electrode ends (edges) have a relatively sharp shape, and electrical insulation between the electrodes can be ensured Fig. 6 shows the cross-sectional rectangular laser beam obtained by the laser beam shaping system 5 according to the present invention. It is a figure which shows an example of energy density distribution. This is an example when the distance is 6 · 35 mm and the separation distance is 1 Omm. The laser beam is a square with a side length of about 2.4 mm, and it can be seen that the energy density is leveled inside the beam (near the axis center). The outer edge of the beam has a slightly higher energy density than the inner part, the outermost part has the maximum energy density, and the axial center has the minimum energy density. The maximum energy density considered in the cross-sectional direction of the laser beam shown in Fig. 5 is 2.0 times the minimum value. For a laser beam with an energy density distribution as shown in Fig. 6, a high-density energy density at the outer edge of the beam can be obtained by installing a square mask of a predetermined size after the laser beam shaping system 5. By cutting (shielding) the part with, the energy density can be leveled up to about 0.6 5 + 0.55 = 1.2 times the minimum value without generating a large energy loss. FIG. 7 is a diagram showing another example of the energy density distribution of a laser beam having a rectangular cross section obtained by the beam shaping system 5 according to the present invention. This is an example when the focal length of the cylindrical lens is 6.35 mm and the separation distance is 7.4 mm. The laser beam is a square with a side length of about 2.4 mm. The outermost side has the maximum energy density, and the energy density is distributed on the parabola inside the beam (at and near the axis). You can see that you have it. It can be seen that this laser beam is leveled to a maximum / minimum ratio of 1.8 times. It can be seen that the laser beam shaping system 5 of the present invention can be shaped with little energy loss even when used in combination with a physical beam shaping means of shielding the beam. In the present invention, the energy density distribution of the irradiated laser beam is preferably set within the range of 8 to 16 J / cm2 (maximum / minimum ratio is 2.0 times or less). It is preferable to set within the range of ~ 16 jZcn ^ (the ratio of maximum value Z minimum value is 1.5 times or less), and set within the range of 1 3 to 16 jZcmS (maximum value minimum ratio) Is preferably about 1.3 times or less). If the energy density of the irradiated laser beam is less than 8 j / cm2, it is difficult to evaporate and remove the conductive film almost completely without any residue, especially when processing a low-resistance electrode with a thick film. . When the energy density is greater than 16 j Z cm2, it is not preferable because the dissipated conductive film is reattached to the glass substrate, and electrical insulation between the electrodes cannot be ensured. The cross-sectional shape of the laser beam shown in FIG. 6 and FIG. 7 is a substantially square shape with a side of about 2.2 mm. This beam is formed by a ί Θ lens and has a side of several 10 to several 1 0 0 μπι It is narrowed down to. FIG. 8 (b) shows the energy density distribution of the laser beam without using the laser beam shaping system 5 according to the present invention. The cross-sectional energy density of the laser beam emitted from the laser oscillator has a Gaussian distribution. When this laser beam is irradiated as it is, as shown in the lower part of Fig. 8 (b), the removal of the conductive film proceeds at the center part between the electrodes 10 and 10, but the film removal ability at the extreme part is small. It is difficult to ensure electrical insulation. The wavelength of the laser beam used is preferably such that the absorption coefficient at the wavelength of the conductive film to be patterned is larger than the absorption coefficient of the glass substrate. The wavelength range of the oscillation laser is 3 5 0 nn! The time is selected in the range of ~ 200 nm. Examples of the substrate material that can be used in the laser processing of the present invention include glass and ceramics. As the glass, amorphous glass such as aluminoborosilicate glass, aluminosilicate glass, alkali-free glass, soda lime silicate glass, or crystallized glass can be used. Hereinafter, the present invention will be described in detail by way of examples. Example 1 An Nd_Y AG laser (wavelength: 1064 nm, laser beam diameter: 5 mni) was used as the laser oscillator, and the laser beam emitted from the laser oscillator was guided to the laser single beam shaping system shown in Fig. 2. In other words, two cylindrical lenses with a focal length of f = 1.8.9 5 mm were arranged orthogonally to form one lens group, and these two lens groups were spaced apart (distance Lmm) in the beam axis direction. The two cylindrical lenses constituting one lens group were fixed in close contact with each other, and the separation distance L was set to 24.9 mm. The laser beam emitted from this laser beam shaping system is passed through the reflecting mirror and ί Θ lens to the glass substrate (weight composition: Si 026 2.0%, A 12033.2%, ZrO20. 4% , N a202. 1%, K2010. 1%, MgO 6.8%, C a O 3.4%, SrO 1 1.8%, B a O 0.2%) 200 nm thick conductive film (resistance: 50 Ω / square) coated by a chemical vapor deposition method). By moving the reflecting mirror with a galvanometer, a laser beam with an average energy density of 10 J / cm2 with a square of 50 μm on each side is moved on the tin oxide film on the glass substrate while moving the irradiation position. A part to be an insulating part between the electrodes was formed. Thereafter, the laser beam position was shifted by about 300 m and the same processing operation was performed to form and process a striped electrode having an electrode width of 300 μπι and an interelectrode distance of 50 / m. As shown in Fig. 6, the energy density distribution of this laser beam has an outer ring-shaped convex shape at the outer edge of the beam, which is leveled near the center, and is measured by a beam profiler. The maximum value was 16 j / cm2, the minimum value was 8 JZCH12, and the ratio was 2.0. When the electrical insulation state of the portion where the tin oxide film was removed by evaporation by laser beam irradiation (interelectrode insulation) was measured with a commercially available resistivity meter as the interelectrode resistance value, the resistance was 10 Ω or more. In addition, when the interelectrode insulating part was observed with an optical microscope, no foreign matter that was thought to be the residue of the conductive film was observed. The above insulation resistance value is a value that sufficiently satisfies the insulation resistance value required as a row electrode or a column electrode of a substrate with a transparent electrode used in a plasma display or a liquid crystal display device. Example 2 By changing the separation distance and focal length of the cylindrical lens, the average energy density as shown in Fig. 7 is leveled in a convex shape, and the outer edge has an outer ring-shaped convex shape. 14 As in Example 1, except that a laser beam of j / cm2 (minimum value of 1 3 JZ cm2, maximum value of 16 JZ cm2 and the ratio is 1.2 to 3 times) was irradiated. Electrode processing was performed. When the electrical insulation state of the part where the tin oxide film was removed by evaporation by laser beam irradiation (interelectrode insulating part) was measured with a commercially available resistivity meter as the interelectrode resistance value, the resistance was 1 Ω or more. It was. Further, when the interelectrode insulating portion was observed with an optical microscope, no foreign matter that was considered to be the residue of the conductive film was observed. Example 3 By changing the separation distance, focal length, and laser oscillation power of the cylindrical lens, the center of the laser beam as shown in the energy density distribution diagram of Fig. 7 is leveled in a convex shape, and the outer ring-shaped convex shape is formed on the outer edge. As in Example 1, except that an average energy density of 19 jZcm2 (minimum value 1 Ί / cm2, maximum value 2 2 j / cm2 and the ratio is 1.3 times) was irradiated. Electrode processing was performed. When the electrical insulation state of the inter-electrode insulation part was measured with a commercially available tester as the inter-electrode resistance value, the resistance was around 1 ΟΩ. When the interelectrode insulating portion was observed with an optical microscope, some foreign matters considered to be the residual conductive film were observed. Comparative Example 1 Changing the laser oscillation power, the average energy density with the center of the beam leveled in a convex shape as shown in the energy density distribution diagram in Fig. 7 and the outer ring shaped convex shape on the outer edge 6 Electrode processing was performed in the same way as in Example 1 except that a beam of J / cm2 (minimum value 5 j / cm2, maximum value 7 J, cm2 and the ratio was 1.4 times) was irradiated. When the electrical insulation state of the interelectrode insulating portion was measured with a commercially available tester as the interelectrode resistance value, it was several tens of Ω to 10 Ω Ω When the interelectrode insulating portion was observed with an optical microscope, the conductive film Comparative Example 2 Electrode processing was performed in the same manner as in Example 1 except that the laser beam shaping system of the cylindrical lens was not used. Gaussian density distribution The average energy density was 10 j Z cn ^ (the maximum value was 2 3 j Z cm ^ and the minimum value was 3 J cm2, the ratio was 7.7 times). When the interelectrode insulating portion was observed with an optical microscope, the electrode end portion (edge portion) was not patterned in a straight line. From the above experimental results, it was found that the irradiation energy density of the laser beam and the electrical insulation between the adjacent electrodes after patterning were as follows. In order to eliminate the residual (incomplete removal) of the conductive film and ensure electrical insulation between the electrodes, it is recommended that the irradiated beam has an energy density of 8 J / cm2 or higher. Also, in order to ensure electrical insulation (resistance value of 10 Ω or more), there is an upper limit for the energy density distribution of the laser beam, which must be 16 j Z cn ^. If this value is exceeded, it will be difficult to obtain a resistance of 1 Ο Μ Ω or more with good reproducibility. The reason for this is not clear, but it is presumed that tin oxide evaporated and removed by laser beam irradiation reattaches to the glass surface, and that the glass surface is altered and deteriorated by irradiation with a strong laser beam. Furthermore, by making the cross-sectional shape of the irradiated laser beam rectangular and leveling the energy density distribution in the cross-sectional direction of the laser beam, there is no residual of the conductive film over the entire width direction of the interelectrode insulating part, and The end of the electrode can be patterned in a straight line (no jagged irregularities). According to claim 1 of the present invention, since the laser beam having a circular cross section emitted from the laser oscillator is shaped into a substantially rectangular shape by optical means, a part of the laser beam is not interrupted by shaping. Thereby, the energy of the laser beam can be efficiently irradiated onto the conductive film. In addition, since the beam shape to be checked against the conductive film is substantially rectangular, when the striped electrode is formed by sequentially shifting the laser irradiation point on the straight line, the beam does not leak in the irradiation region. It is possible to ensure the electrical insulation between them. Claim 2 is composed of an optical system in which a plurality of cylindrical lenses arranged at positions orthogonal to each other are separated by two in the axial direction of the laser beam. The optical system for shaping the cross-sectional circular beam into a rectangle can be reduced. Claim 3, the energy density distribution in the cross section direction of the laser beam irradiated on the conductive film, the maximum value of the energy was leveled so as not to exceed twice the minimum value of the energy is irradiated in a bi chromatography beam In addition to the effect of claim 1 or 2, the occurrence of electrical insulation failure due to incomplete removal of the conductive film is suppressed, and the electrode is processed reliably. be able to. According to claim 4, the wavelength of the laser beam irradiated on the conductive film is set to 3500 nm to 200 nm, and the energy density is distributed within the range of 8 to 16 Jcm2. In addition to the effects of claims 1 to 3, it is possible to reliably ensure electrical insulation without deteriorating the surface of the glass as the substrate. According to the seventh aspect, since the optical means configured by the optical lens group for converting the cross-sectional shape of the laser beam into a substantially rectangular shape is provided between the laser oscillator and the workpiece, the laser oscillator Part of the emitted laser beam is not physically shielded. For this reason, laser energy can be used effectively, and a laser oscillator with a smaller output can be employed. According to claim 8, in addition to the effect of claim 7, the deformation of the laser beam is made into a lens group in which a plurality of cylindrical lenses are arranged in a direction orthogonal to each other, and this is arranged in the axial direction of the laser beam. Since it is composed of an optical system separated by one set, the beam can be shaped with a small component configuration. According to claim 10, since the beam scanning system having the reflection mirror and the f 0 lens is provided in the beam path between the optical means and the workpiece, the beam scanning system has the same location on the workpiece. A beam of the same shape and size can be irradiated. Industrial Applicability While irradiating a conductive film on a substrate with a laser beam emitted from a laser oscillator, the conductive film is turned into a predetermined shape electrode by relatively moving the laser beam and the substrate. In the laser processing method, the cross-sectional shape of the laser beam applied to the conductive film is shaped into a substantially rectangular shape by an optical means including an optical lens group. Since the laser beam having a circular cross section emitted from the laser oscillator is shaped into a substantially rectangular shape by optical means, a part of the laser beam is not blocked by the shaping. Thereby, the energy of the laser beam can be efficiently applied to the conductive film.

Claims

1 . レーザー発振器から出射させたレーザービームを基板上の導電膜に照射するととも に、 前記レーザービームと前記基板を相対的に移動させることにより、 前記導電膜を所 定形状の電極にレーザー加工する方法において、 前記導電膜に照射するレーザービーム の断面形状を、 光学レンズ群からなる光学的手段により略矩形に整形することを特徴と するレーザー加工方法。 1. A conductive film on a substrate is irradiated with a laser beam emitted from a laser oscillator, and the conductive film is laser-processed into an electrode having a predetermined shape by relatively moving the laser beam and the substrate. In the method, a laser processing method characterized in that a cross-sectional shape of a laser beam applied to the conductive film is shaped into a substantially rectangular shape by an optical means including an optical lens group.
二胄  Second base
2 . 前記光学的手段を、 複数個のシリンドリカルレンズを互いに直交する方向に配置し たレンズ群 2個を 1組として、 前記レーザービームのビーム軸方向に離間配置した光学 系で構成したことを特徴とする請求項 1に記載のレーザー加工方法。  2. The optical means is composed of an optical system in which two lens groups in which a plurality of cylindrical lenses are arranged in a direction orthogonal to each other are set as a set and spaced apart in the beam axis direction of the laser beam. The laser processing method according to claim 1.
 Surrounding
3 . 前記照射するレーザービームの断面方向におけるエネルギー密度の最大値を、 その 最小値の 2倍を越えないように平準化したことを特徴とする請求項 1または 2に記載の レーザー加工方法。  3. The laser processing method according to claim 1 or 2, wherein the maximum value of the energy density in the cross-sectional direction of the laser beam to be irradiated is leveled so as not to exceed twice the minimum value.
4 . 前記照射するレーザービームの波長を 3 5 0 η π!〜 2 0 0 0 n mで、 そのエネルギ 一密度を 8〜1 6 J Z c mSの範囲内に分布するように整形したことを特徴とする請求 項 1〜 3のいずれかに記載のレーザー加工方法。 4. The wavelength of the laser beam to be irradiated is 3 5 0 η π! The laser processing method according to any one of claims 1 to 3, wherein the energy density is shaped so as to be distributed within a range of 8 to 16 J Z cms at ˜20 00 nm.
5 . 前記導電膜が、 二酸化珪素膜上に酸化錫膜が積層被覆された導電膜である請求項 1 〜 4のいずれかに記載のレーザー加工方法。 5. The laser processing method according to any one of claims 1 to 4, wherein the conductive film is a conductive film in which a tin oxide film is laminated and coated on a silicon dioxide film.
6 . 前記導電膜が、 酸化錫膜、 二酸化珪素膜、 酸化錫膜の 3層の導電膜である請求項 1 〜 4のいずれかに記載のレーザー加工方法。 6. The laser processing method according to any one of claims 1 to 4, wherein the conductive film is a three-layer conductive film of a tin oxide film, a silicon dioxide film, and a tin oxide film.
7 . レーザー発振器から出射されるレーザービームを被加工物に照射して加工を行うレ 一ザ一加工装置において、 前記レーザー発振器と前記被加工物との間に、 レーザービー ムの断面形状を略矩形に整形する光学レンズ群を含む光学的手段を備えることを特徴と するレーザー加工装置。 7. In a laser processing apparatus that performs processing by irradiating a workpiece with a laser beam emitted from a laser oscillator, the cross-sectional shape of the laser beam is approximately between the laser oscillator and the workpiece. A laser processing apparatus comprising optical means including an optical lens group for shaping into a rectangle.
8 . 前記光学的手段を、 複数個のシリンドリカルレンズを互いに直交する方向に配置し たレンズ群を前記レーザービームのビーム軸方向に 2個 1組で離間配置した光学系で構 成したことを特徴とする請求項 7に記載のレーザー加工装置。 8. The optical means is composed of an optical system in which a lens group in which a plurality of cylindrical lenses are arranged in a direction orthogonal to each other is arranged in a pair apart from each other in the beam axis direction of the laser beam. The laser processing apparatus according to claim 7.
9 . 前記シリンドリカルレンズの焦点距離を f mm、 シリンドリカルレンズの曲率半径 を r mm、 一方のレンズ群の他方のレンズ群との離間距離を L mmとし、 前記レーザー ビーム径を d mmとしたとき、 次の関係を満足することを特徴とする請求項 8に記載の レーザー加工装置。 9. When the focal length of the cylindrical lens is f mm, the radius of curvature of the cylindrical lens is r mm, the distance between one lens group and the other lens group is L mm, and the laser beam diameter is d mm, 9. The laser processing apparatus according to claim 8, wherein the following relationship is satisfied.
f < L≤ 2 f  f <L≤ 2 f
0 . 5 d < r≤ 6 d  0.5 d <r≤ 6 d
1 0 . 前記光学的手段と被加工物の間に、 反射ミラーおよび f Θ レンズを含むレーザー ビーム走查系を設けたことを特徴とする請求項 7〜 9のいずれかに記載のレーザー加工 装置。 10. The laser processing apparatus according to claim 7, wherein a laser beam staging system including a reflection mirror and an fΘ lens is provided between the optical means and the workpiece. .
PCT/JP2004/008575 2003-06-12 2004-06-11 Laser beam machining method and laser beam machining device WO2004110693A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003167585A JP2005000952A (en) 2003-06-12 2003-06-12 Laser beam machining method and device
JP2003-167585 2003-06-12

Publications (1)

Publication Number Publication Date
WO2004110693A1 true WO2004110693A1 (en) 2004-12-23

Family

ID=33549304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008575 WO2004110693A1 (en) 2003-06-12 2004-06-11 Laser beam machining method and laser beam machining device

Country Status (2)

Country Link
JP (1) JP2005000952A (en)
WO (1) WO2004110693A1 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US9850159B2 (en) 2012-11-20 2017-12-26 Corning Incorporated High speed laser processing of transparent materials
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
CN109507810A (en) * 2017-09-14 2019-03-22 达洛斯创造公司 The new method silver-plated to eyeglass part and the eyeglass obtained by this method
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US10377658B2 (en) 2016-07-29 2019-08-13 Corning Incorporated Apparatuses and methods for laser processing
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
US11433486B2 (en) 2016-11-03 2022-09-06 Semiconductor Energy Laboratory Co., Ltd. Laser processing apparatus, stack processing apparatus, and laser processing method
US11542190B2 (en) 2016-10-24 2023-01-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5091653B2 (en) * 2006-12-26 2012-12-05 株式会社リコー Image processing method and image processing apparatus
JP2009154196A (en) * 2007-12-27 2009-07-16 Keyence Corp Laser beam machining method and laser beam machining apparatus
WO2011027533A1 (en) * 2009-09-04 2011-03-10 株式会社アルバック Method and apparatus for manufacturing a thin-film solar battery
JP5609186B2 (en) 2010-03-18 2014-10-22 株式会社リコー Toner carrier, developing device, and image forming apparatus
CN103468925B (en) * 2013-08-29 2014-11-05 温州大学 Laser shock peening method and device of bottom plane of blade tenon groove of airplane
WO2017043030A1 (en) * 2015-09-07 2017-03-16 凸版印刷株式会社 Laser processing apparatus
JP6079844B1 (en) * 2015-09-07 2017-02-15 凸版印刷株式会社 Laser processing method to film
JP7196718B2 (en) * 2019-03-26 2022-12-27 ウシオ電機株式会社 Manufacturing method and modification apparatus for micro-hole optical element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335014U (en) * 1986-08-25 1988-03-07
JPH10302648A (en) * 1997-04-30 1998-11-13 Asahi Glass Co Ltd Glass substrate for plasma display
JPH11254741A (en) * 1998-03-11 1999-09-21 Fuji Photo Film Co Ltd Laser recorder
JPH11269683A (en) * 1998-03-18 1999-10-05 Armco Inc Method and apparatus for removing oxide from metal surface
JP2000261013A (en) * 1999-03-09 2000-09-22 Nippon Sheet Glass Co Ltd Glass substrate with transparent conducting film
JP2000348611A (en) * 1999-06-03 2000-12-15 Matsushita Electric Ind Co Ltd Manufacture of plasma display panel, and plasma display panel
JP2001071167A (en) * 1999-09-06 2001-03-21 Sumitomo Heavy Ind Ltd Method for laser beam machining and device therefor
JP2001114534A (en) * 1999-10-20 2001-04-24 Nippon Sheet Glass Co Ltd Glass plate with metal oxide film, method for producing the glass plate and multi-layer glass using the glass plate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335014U (en) * 1986-08-25 1988-03-07
JPH10302648A (en) * 1997-04-30 1998-11-13 Asahi Glass Co Ltd Glass substrate for plasma display
JPH11254741A (en) * 1998-03-11 1999-09-21 Fuji Photo Film Co Ltd Laser recorder
JPH11269683A (en) * 1998-03-18 1999-10-05 Armco Inc Method and apparatus for removing oxide from metal surface
JP2000261013A (en) * 1999-03-09 2000-09-22 Nippon Sheet Glass Co Ltd Glass substrate with transparent conducting film
JP2000348611A (en) * 1999-06-03 2000-12-15 Matsushita Electric Ind Co Ltd Manufacture of plasma display panel, and plasma display panel
JP2001071167A (en) * 1999-09-06 2001-03-21 Sumitomo Heavy Ind Ltd Method for laser beam machining and device therefor
JP2001114534A (en) * 1999-10-20 2001-04-24 Nippon Sheet Glass Co Ltd Glass plate with metal oxide film, method for producing the glass plate and multi-layer glass using the glass plate

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850159B2 (en) 2012-11-20 2017-12-26 Corning Incorporated High speed laser processing of transparent materials
US11028003B2 (en) 2013-01-15 2021-06-08 Corning Laser Technologies GmbH Method and device for laser-based machining of flat substrates
US11345625B2 (en) 2013-01-15 2022-05-31 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US11713271B2 (en) 2013-03-21 2023-08-01 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
US10179748B2 (en) 2013-12-17 2019-01-15 Corning Incorporated Laser processing of sapphire substrate and related applications
US10183885B2 (en) 2013-12-17 2019-01-22 Corning Incorporated Laser cut composite glass article and method of cutting
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US10293436B2 (en) 2013-12-17 2019-05-21 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US11148225B2 (en) 2013-12-17 2021-10-19 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10611668B2 (en) 2013-12-17 2020-04-07 Corning Incorporated Laser cut composite glass article and method of cutting
US10392290B2 (en) 2013-12-17 2019-08-27 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US10597321B2 (en) 2013-12-17 2020-03-24 Corning Incorporated Edge chamfering methods
US11697178B2 (en) 2014-07-08 2023-07-11 Corning Incorporated Methods and apparatuses for laser processing materials
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US11014845B2 (en) 2014-12-04 2021-05-25 Corning Incorporated Method of laser cutting glass using non-diffracting laser beams
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US10377658B2 (en) 2016-07-29 2019-08-13 Corning Incorporated Apparatuses and methods for laser processing
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US11130701B2 (en) 2016-09-30 2021-09-28 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US11542190B2 (en) 2016-10-24 2023-01-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US11433486B2 (en) 2016-11-03 2022-09-06 Semiconductor Energy Laboratory Co., Ltd. Laser processing apparatus, stack processing apparatus, and laser processing method
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11972993B2 (en) 2017-05-25 2024-04-30 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
CN109507810A (en) * 2017-09-14 2019-03-22 达洛斯创造公司 The new method silver-plated to eyeglass part and the eyeglass obtained by this method
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness

Also Published As

Publication number Publication date
JP2005000952A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
WO2004110693A1 (en) Laser beam machining method and laser beam machining device
JP6039217B2 (en) Laser processing method
TWI479247B (en) Method for manufacturing electrochromic devices
US9174307B2 (en) Substrate cutting apparatus and method for cutting substrate using the same
EP0324550B1 (en) Thin film pattern structure
CA2920077C (en) Method for producing a pane with an electrically conductive coating with electrically isolated defects
JP3436858B2 (en) Manufacturing method of thin film solar cell
US20090040640A1 (en) Glass cutting method, glass for flat panel display thereof and flat panel display device using it
CN100533230C (en) Patterning method for aligning film
JP2008216958A (en) Method of producing liquid crystal display device including forming align mark in mother substrate (insulating mother substrate) made of insulator
WO2006068204A1 (en) Substrate with transparent conductive film and patterning method thereof
JP2002544568A (en) Ablation enhancement layer
WO2014196802A1 (en) Ito patterning device and patterning method
KR100789277B1 (en) Etching method of transparent conductive film
KR20120018701A (en) Laser lift-off method and laser lift-off apparatus
CN1035102A (en) On substrate of glass, produce the method for film pattern
TW201601925A (en) Method for manufacturing glass substrate and electronic device
JPH10303444A (en) Manufacture of solar battery
JP2002248589A (en) Laser beam method
KR101506734B1 (en) Device and method for ito patterning
Hsiao et al. Fabrication of electrodes on the aluminum doped zinc oxide thin films using an ultraviolet laser direct-patterning technology
JP3851665B2 (en) Short ring removing method, removing device, and manufacturing method of liquid crystal display device
JP2011062714A (en) Laser beam machining device and method of manufacturing solar battery panel
Chien et al. Fabrication of the crystalline ITO pattern by picosecond laser with a diffractive optical element
JP2005527858A (en) Laser structuring of electro-optic systems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase