WO2004109785A1 - Impurity doping method, impurity doping apparatus and semiconductor device produced by using same - Google Patents

Impurity doping method, impurity doping apparatus and semiconductor device produced by using same Download PDF

Info

Publication number
WO2004109785A1
WO2004109785A1 PCT/JP2004/008281 JP2004008281W WO2004109785A1 WO 2004109785 A1 WO2004109785 A1 WO 2004109785A1 JP 2004008281 W JP2004008281 W JP 2004008281W WO 2004109785 A1 WO2004109785 A1 WO 2004109785A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
impurity
plasma
introducing
substrate
Prior art date
Application number
PCT/JP2004/008281
Other languages
French (fr)
Japanese (ja)
Inventor
Bunji Mizuno
Yuichiro Sasaki
Ichiro Nakayama
Hisataka Kanada
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2004109785A1 publication Critical patent/WO2004109785A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • H01L21/2236Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase from or into a plasma phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Definitions

  • the present invention relates to an impurity introduction method, an impurity introduction device, and a semiconductor device formed using the same, and more particularly to control of an impurity introduction profile in plasma doping.
  • a shallow junction of a semiconductor device is formed by using this ion implantation method, and although a shallow junction can be formed, there is a limit to the depth that can be formed by ion implantation. For example, it is difficult to introduce boron impurities at a shallow depth, and in ion implantation, the depth of the implantation region has been limited to about 100 nm from the substrate surface.
  • the plasma doping is a technique in which a reaction gas containing an impurity to be introduced is plasma-excited, and the substrate surface is irradiated with plasma to introduce the impurity. According to this technique, a shallow junction with a depth of 70 nm can be formed even with boron impurities (for example, see Non-Patent Documents 1 and 2).
  • Non-Patent Document 1 Plasma doping technology: Bunji Mizuno (Vol. 70, No. 12, p. 1458—1462 (2001)
  • Non-Patent Document 2 Sub-doped by low bias plasma doping Performance of 1 micron p MO SFET: Reliable and enhanced performances of sub-0.
  • the miniaturization of semiconductor devices is progressing rapidly, and the design dimensions for mass production are approaching 100 nm or less.
  • silicon wafers semiconductor substrates
  • silicon wafers semiconductor substrates
  • a high-precision control technique is required as described below in introducing impurities into the surface of a semiconductor substrate. .
  • the first is a technique for stably controlling the formation of a shallow junction where the depth near the substrate surface where impurities are introduced is 100 nm or less.
  • the second is a technique for controlling the uniformity of the impurity distribution in the surface of the substrate having a large diameter as described above.
  • the above-mentioned problem in the impurity introduction is not limited to the semiconductor substrate forming the semiconductor device, but also applies to a matrix substrate serving as a liquid crystal display substrate forming a liquid crystal display device.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an impurity introduction method and an impurity introduction device capable of controlling the introduction of impurities into a substrate with high accuracy.
  • Another object of the present invention is to reduce the variation in impurity introduction depth or concentration depending on the position, and to introduce impurities to a uniform depth on a large-area substrate.
  • the impurity introduction method of the present invention is an impurity introduction method for exciting a substance containing an impurity by plasma and introducing the excited impurity into a substrate, wherein at least a part of the distribution of the plasma can be offset.
  • the distribution of the substance in the vicinity of the surface of the base is adjusted. That is, the distribution of the substance in the vicinity of the surface of the substrate is adjusted according to the distribution of the plasma.
  • the distribution of the plasma itself that is, the distribution of the resulting plasma (the distribution of ions, radicals, neutral particles, etc.) is adjusted in accordance with the distribution of the plasma itself in such a manner as to cancel out the distribution.
  • a simulation is performed or the material distribution near the substrate surface is adjusted based on the actual impurity introduction results.
  • To cancel at least part of the plasma distribution means to give a material distribution that changes the original plasma distribution, and to generate a material distribution that does not depend on the original plasma distribution. Shall mean. Therefore, it is assumed here that not only the original plasma distribution is canceled out to make it uniform, but also that the original plasma distribution is further expanded.
  • the power for exciting plasma such as high-frequency waves or microphone mouth waves has a limit in spatial uniformity. Therefore, in the impurity introduction method of the present invention, We propose a method that can obtain the impurity distribution that does not depend on the degree of the spatial uniformity by controlling the distribution of the substances excited by plasma.
  • a material that is plasma-excited to offset this non-uniformity is provided. This makes it possible to introduce impurities with extremely high uniformity into a very shallow region from the substrate surface. Further, even with a substrate having a large diameter such as a semiconductor substrate or a liquid crystal display substrate, it becomes easy to control the uniformity of the impurity distribution.
  • the present invention enables the profile to be controlled with a high degree of accuracy in the introduction of impurities.
  • the result is obtained by the point that the material is equilibrated on the surface of the substrate and then plasma is excited, and the power distribution of plasma excitation is used.
  • the point of adjusting the substance on the substrate surface so as to cancel the distribution of the plasma (ion radical, neutral particle distribution) that is generated on the surface, and the substance on the substrate surface so that the plasma is gradually distributed on the substrate surface
  • These methods include a method of adjusting the plasma doping or a combination thereof, and these methods enable plasma doping with a desired profile.
  • a spatially arbitrary one is provided in a chamber in which the substrate is disposed.
  • the substance is supplied so as to have a distribution, and the substance having the spatial distribution is excited by plasma to introduce impurities.
  • the impurity profile includes the impurity distribution in the depth direction in addition to the in-plane impurity distribution.
  • the plasma is generated in a state where the supply of the substance is stopped. Plasma is generated with the supply and discharge of the substance stopped. Plasma is generated after the substance supplied into the chamber in which the substrate is placed is in an equilibrium state on the surface of the substrate. Alternatively, the flow rate of the substance is reduced to 10 O m e
  • plasma is generated after supplying a certain amount of the substance into the chamber.
  • the fixed amount of the substance to be supplied is determined according to the amount of impurities introduced into the substrate.
  • the supply of the substance into the chamber in which the substrate is disposed is performed through a microphone port nozzle.
  • the substance is a gas containing impurities.
  • fine particles or fine droplets containing impurities may be used.
  • the flow rate can be changed by arranging a large number of micro nozzles having a fine opening diameter and controlling each micro nozzle independently.
  • the spatial distribution of the substance in the chamber in which the substrate is disposed can be controlled with high accuracy, and the control of the amount of impurities on the surface of the substrate and the independent control of the spatial distribution are further promoted.
  • the impurity introducing device of the present invention is an impurity introducing device for plasma-exciting a substance containing an impurity and introducing the impurity into the substrate from the excited substance, wherein:
  • the apparatus includes a means for supplying a certain amount of the substance into the chamber, a means for evacuating the inside of the chamber, and a plasma generating means for plasma-forming the certain amount of the substance.
  • the means for supplying a certain amount of the substance has a mechanism for measuring and storing the substance, and this mechanism controls the volume, pressure, and temperature of the storage container to maintain the substance at a constant amount. ing. Further, the storage container stores an amount of the substance corresponding to the amount of impurities introduced into the base.
  • the substance is a gas, fine particles, or fine droplets.
  • the gas includes any of B 2 H 6 , BF 3 , As H 3 , and PH 3 .
  • any of B, As, P, Sb, In, and A1 can be used as the fine particles or solid.
  • the term “droplet” refers to a solution in which these fine particles and gas are dissolved or turbid.
  • the surface may be covered so as to be wet.
  • the timing of generating the plasma may be determined based on a result of simulating the profile of the impurity concentration in the vicinity of the surface of the base and simulating the result. Furthermore, instead of simulating the profile of the impurity concentration, at least one selected from the group consisting of gas, fine particles or fine droplet flow velocity, number of gas molecules, and pressure was measured, and the standard deviation reached less than 2%. Plasma may be generated in the state.
  • the present invention makes it possible to control the profile with high precision in the introduction of impurities.It is based on the point that the substance is equilibrated on the surface of the substrate and then plasma is excited, and the power distribution of plasma excitation is used.
  • the point of adjusting the substance on the substrate surface so as to offset the distribution of the resulting plasma (ion radial, distribution of neutral particles) is that the plasma is gradually distributed on the substrate surface.
  • FIG. 1 is a schematic cross-sectional view of the impurity introduction device according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a main body of the impurity introduction device for describing the impurity introduction method according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a drive timing of the impurity introduction device according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a drive timing of the impurity introduction device according to the second embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a main body of the impurity introduction device according to the third embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of another impurity introduction device according to the fourth embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of a main body of an impurity introduction device for describing an impurity introduction method according to a fifth embodiment of the present invention.
  • FIGS. 8A and 8B are explanatory diagrams of a fifth embodiment of the present invention.
  • FIG. 8A is a diagram showing plasma intensity
  • FIG. 8B is a diagram showing distribution of a supplied substance (dopant)
  • FIG. It is a figure which shows a distribution.
  • FIG. 9 is a schematic cross-sectional view of a main body of an impurity introduction device for describing an impurity introduction method according to the sixth embodiment of the present invention.
  • FIG. 10 is a plan view of a silicon wafer substrate showing an impurity distribution according to the sixth embodiment of the present invention.
  • FIG. 11 is a graph showing characteristics of the MOSFET formed according to the sixth embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view of a main body of an impurity introduction device for describing an impurity introduction method according to a seventh embodiment of the present invention.
  • FIG. 13 is a graph showing an impurity distribution according to the seventh embodiment of the present invention.
  • FIGS. 14A and 14B are explanatory diagrams of the eighth embodiment of the present invention.
  • FIG. 14A is a diagram showing the plasma intensity
  • FIG. 14B is a diagram showing the distribution of the supplied material (dopant)
  • FIG. It is a figure which shows a distribution.
  • reference numeral 1 denotes a vacuum chamber
  • 2 denotes a plasma generating unit
  • 3 denotes a power source
  • 4 denotes a holding table
  • 5 denotes a substrate to be processed
  • 6 denotes a vacuum pump
  • 7a and 7b denote measuring chambers
  • 8 and 14 is a nozzle
  • 9 is a supply device
  • 10 is a mass flow controller
  • 11 is a pressure A gyrator
  • 1 2 is a plasma
  • 1 3 is a rotary drive shaft
  • 1 5 is a gas flow
  • 1 6 is a high frequency power supply
  • 1 7 is a counter electrode
  • 1 8 is a gas introduction pipe
  • 1 is a micro nozzle
  • 2 is a deflected plasma
  • Pl and P2 are pressure gauges
  • T1 and T2 are thermometers.
  • FIG. 1 is a cross-sectional view schematically showing an impurity introducing device of the present invention
  • FIG. 2 is a main body of the above-described device for explaining the impurity introducing method of the present invention.
  • this apparatus includes a vacuum chamber 1, a plasma generator 2 and a power supply 3 for supplying power thereto, and a holding table 4 is provided in the vacuum chamber 11, and a processing substrate 5 is provided. Is placed. Then, a vacuum pump 6 for adjusting the degree of vacuum of the vacuum chamber 11 is provided.
  • the main body of the impurity introduction device is configured in this way, but this device is a single-wafer type and requires the minimum volume of the entire vacuum chamber 1 in order to enable rapid processing. That is important.
  • the plasma generation unit 2 is a helicon wave plasma source, an ECR (ElectronCytronTronOnRec ancen) plasma source, or the like, and a plasma generation source having a high response speed is preferable. With such a plasma source, a substance containing an impurity to be introduced into the substrate 5 to be processed, here a gas, is plasma-excited.
  • the measuring chambers 7a and 7b are provided, and the gaseous substance is supplied from the nozzle 8 to the vacuum chamber 1 through the measuring chamber 17a or 7b in a fixed amount. Is done.
  • the measuring chambers 7a and 7b are configured to store a certain amount of gaseous substances. This storage amount is determined by the volume of the measuring chambers 7a and 7b, gas temperature, and gas pressure, and monitored by thermometers Tl and ⁇ 2 and pressure gauges ⁇ 1 and ⁇ 2, respectively.
  • the gas temperature and pressure are controlled stably by the unit and the pressure control unit. This measuring chamber will be added as needed.
  • the gas supply to the measuring chamber 1 is performed through the mass flow controller 10 from the supply device 9.
  • the amount of gas supplied to the measuring chambers 7 a and 7 b is strictly controlled by the pressure regulator 10.
  • the gas is B 2 H 6 , BF 3 , As H 3 , PH 3 , or a gas obtained by diluting them with an inert gas.
  • the impurity introduction apparatus of the present invention excites a substance containing an impurity by plasma excitation to dope an impurity into a substrate.
  • An RIE reactive Ion E which continuously supplies a reaction gas to a reaction chamber and generates a plasma.
  • the impurity introduction apparatus of the present invention uses a certain amount of gas corresponding to the impurity introduction amount (dose amount) to the substrate. It can be converted to plasma with high accuracy. With this configuration, it is possible to introduce an impurity having an extremely shallow depth, and it is possible to control the impurity introduction depth with high precision.
  • the holding table 4 may be made of a conductor, and a direct current (DC) power supply or an RF power supply, which is a high-frequency power supply, may be attached to the holding table 4.
  • the RF power supply is a high-frequency power supply having a frequency of 100 kHz to 10 MHz.
  • a DC potential in the range of several eV to 1 keV can be formed between the plasma generated by these power supplies and the substrate 5 to be processed.
  • a mechanism that can rotate the holding table 4 may be attached. By applying a rotation of, for example, about 10 rpm to the substrate 5 to be processed on a horizontal plane by this rotating mechanism, the uniformity of the impurity dose in the surface of the substrate 5 to be processed is further improved.
  • substances containing impurities in addition to those which are gas at normal temperature and normal pressure as described above, fine particles such as B, As, P, Sb, In, Al, and Si fine particles can be used.
  • a solid, a liquid containing the above impurities, or a solid particle surrounded by a liquid may be used.
  • the supply system shown in Fig. 1 will be slightly different It is necessary to be able to supply a certain amount of substances containing power impurities.
  • 3 (a) to 3 (c) are timing charts showing the driving states of the vacuum pump 6, the gas supply nozzle 8, and the plasma excitation power supply 3, respectively.
  • a silicon wafer having a diameter of 30 ⁇ is placed as a substrate 5 to be processed on the holding table 4 and fixed by electrostatic attraction. Then, after the vacuum pump 6 is operated to reduce the degree of vacuum in the vacuum chamber 11 to about 10 ′′ 3 Pa, the gas exhaust by the vacuum pump 6 is stopped.
  • the above-mentioned fixed amount of the gas substance in the measuring chambers 7a and 7b is supplied into the vacuum chamber 11 through the nozzle 8.
  • the vacuum pump 6 since the vacuum pump 6 is in a stopped state, the flow rate of the gas substance flowing into the vacuum chamber 11 decreases with time.
  • the plasma generator 2 is driven by the power source 3 to vacuum the vacuum. Excitation of the gas substance filling chamber 1 into plasma (section P: see Fig. 3).
  • a predetermined value converted value: 100 meV
  • the plasma 12 having a uniform spatial distribution is generated, and the surface of the substrate 5 to be processed is exposed to the plasma 12 for a predetermined time (for example, one minute).
  • the plasma 12 is a thermal non-equilibrium plasma in which the electron temperature and the ion temperature are extremely different, and the ion temperature is usually several tens of degrees and its thermal kinetic energy is small.
  • the substance in the adsorption mode, the substance is physically adsorbed on the surface of the substrate 5 to be processed, and active species such as neutral radicals mainly generated by the plasma excitation are chemically adsorbed.
  • the ionized impurity material in the above substance is ionized, but part of the ionized material is injected into the surface by thermal motion.
  • the thermal kinetic energy is small and the amount is small.
  • the ion implantation is mainly accelerated by a DC voltage such as an ion sheath generated on the surface of the plasma 12 and the surface of the substrate 5 to be processed or a so-called self-bias.
  • RTA rapid heat treatment
  • another chamber of a multi-chamber configuration not shown in FIG.
  • RTA rapid heat treatment
  • uniform and shallow impurity introduction can be performed near the surface of the substrate 5 to be processed.
  • the amount of impurities introduced to the surface of the base can be controlled so as to be a desired set amount.
  • the plasma excitation is performed while supplying a substance that is an impurity, but in the present embodiment, the timing of the plasma excitation is changed. As shown in the timing chart of Fig. 4, the plasma excitation is performed after the supply of impurities is stopped.
  • Fig. 4 (a) shows the timing chart of the vacuum pump. That is, as described above, after the degree of vacuum in the vacuum chamber 11 is reduced to about 10 to 3 Pa, the gas exhaust is stopped (FIG. 4B). Then, after supplying the above-mentioned fixed amount of gaseous substance in the measuring chambers 7a and 7b through the nozzle 8 into the vacuum chamber 11, the supply is also stopped by an electromagnetic valve (not shown).
  • the plasma generator 2 is driven to generate the plasma 12 (FIG. 4 (c)).
  • impurities are introduced into the surface of the substrate 5 to be processed during the interval P in the same manner as described above.
  • the measuring chambers 7a and 7b are not necessarily required. This is because even if a gas substance is directly introduced into the vacuum chamber 11 from the supply device 9 shown in FIG. 1, the amount of the gas substance can be strictly defined by the mass flow controller 10.
  • the gas substance is plasma-excited when the flow of the gas substance in the vacuum chamber 11 becomes equilibrium and is stabilized in a quasi-static state.
  • FIG. 5 is a schematic cross-sectional view of a main body of the impurity introduction device of the present invention.
  • the same parts as those in the first embodiment are denoted by the same reference numerals.
  • This apparatus is characterized in that a nozzle 14 having a large number of ejection ports is connected to a measuring chamber, and is adjusted so as to have a distribution in the ejection amount of gas containing impurities from the nozzle 14.
  • a vacuum chamber 11, a plasma generator 2 and a power supply 3 for supplying power thereto are provided, and a holding table 4 is provided in the vacuum chamber 11.
  • the substrate 5 to be processed is provided.
  • the rotary drive shaft 13 is attached to the holding base 4 so as to rotate in the direction of the arrow.
  • a vacuum pump 6 for adjusting the degree of vacuum of the vacuum chamber 11 is provided.
  • a nozzle 14 having a large number of ejection ports is connected to the measuring chamber 17 described above, and this nozzle 14 is inserted into the vacuum chamber 11.
  • the nozzle 14 may be tubular or may have a planar spread.
  • the ejection port is composed of an aggregate of micro nozzles having a diameter of / order. Then, when the gas is introduced from the measuring chamber 7, a spatially non-uniform gas flow 15 can be generated as shown by the distribution of arrows in FIG.
  • an impurity introducing device As shown in Fig. 6, unlike the helicon wave plasma and ECR plasma generation, this impurity introduction device generates plasma by applying a high frequency of 13.56 MHz to parallel plate electrodes. .
  • a holding table 4 is provided in a vacuum chamber 1 and a substrate 5 to be processed is placed thereon.
  • a high-frequency power supply 16 is attached to the holding base 4 made of a conductor, and serves as one electrode of a parallel plate electrode.
  • a counter pump 17 and a vacuum pump 6 for adjusting the degree of vacuum of the vacuum chamber 11 are provided.
  • the counter electrode 17 described above is provided with a large number of ejection ports, and is connected to the measurement chamber 17 through the gas introduction pipe 18.
  • the ejection port is composed of an aggregate of micro nozzles with a diameter of the order of 10 x m.
  • a magnetic field parallel to the parallel plate electrodes may be applied by a permanent magnet or the like, and even in this case, high-density plasma can be easily generated.
  • the magnetic field shown in Fig. 6 represents this, as well as the electric field due to high frequency.
  • the method described in the first embodiment is basically used, but the present embodiment is characterized in that the introduction of the gas substance has a spatial distribution as described above.
  • the generated plasma has a spatial distribution because the electromagnetic energy density of the high frequency or microwave used for plasma excitation has a spatial distribution and is not always uniform.
  • the spatial distribution of the gaseous substance is so set as to cancel the spatial distribution of the plasma generated for the above reason (hereinafter referred to as the plasma distribution). Hold the cloth.
  • the above plasma distribution can be measured by well-known plasma emission spectroscopy, Faraday force or Langmuir probe.
  • a substrate 5 to be processed is placed on a holding table 4, fixed by electrostatic attraction, and rotated by a rotation drive shaft 13. For example, rotate horizontally at 20 rpm.
  • the vacuum pump 6 is operated to set the degree of vacuum in the vacuum chamber 11 to about 10 Pa to 3 Pa, and then gas exhaust by the vacuum pump 6 is stopped.
  • a certain amount of the above-mentioned substance for generating plasma in the measuring chamber 7 is introduced into the vacuum chamber 1 through the nozzle 14.
  • the nozzle 14 is provided with a large number of micro nozzles 19, and a spatially non-uniform gas flow 15 is generated in the vacuum chamber 11 through the micro nozzle 19.
  • the plasma generation unit 2 is turned on by the power source 3. Is driven to excite the plasma generating substance (gas substance) filling the vacuum chamber 1 with plasma.
  • the plasma generation part is driven to excite the gaseous substance introduced unevenly into the vacuum chamber 11 by plasma excitation. I do.
  • the plasma excitation the gas flow 15 is adjusted so that a large amount of gas substance exists in a space having a low electromagnetic energy density and a small amount of gas substance exists in a space having a high electromagnetic energy density.
  • the surface of the substrate 5 is exposed to plasma for a predetermined time (for example, one minute). Thereafter, the same processing as that described in the first embodiment is performed.
  • a plasma distribution is generated from the spatial distribution of the electromagnetic energy density of the high frequency or microwave used for plasma excitation. That is, when viewed from the rotating substrate 5 to be processed, the plasma distribution usually has a concentric distribution shape. In order to offset the distribution of plasma (distribution of ions, radicals, and neutral particles) resulting from the power distribution and the like of the plasma excitation, the material (gas) for generating plasma shown in Fig. 8 (b) is canceled out. Have a spatial distribution of Here, the spatial distribution may be in the vicinity of the surface of the substrate 5 to be processed, or may be in the vacuum chamber 1.
  • Such a spatial distribution of the gaseous substance is obtained from a simulation or a trial experiment of a gas flow taking into account a so-called thermal motion.
  • the spatial distribution of the gaseous substance viewed from the rotating target substrate 5 is shown.
  • a gas substance having such a spatial distribution is excited by plasma, a plasma having a uniform spatial distribution is generated as viewed from the substrate 5 to be processed, as shown in FIG. 8 (c). It will be exposed to various plasmas. In this way, it is possible to uniformly introduce impurities in the surface of the substrate 5 to be processed.
  • the supply of the gaseous substance through the micro nozzle as described above makes it possible to control the spatial distribution of the substance in the chamber in which the base is arranged with high precision.
  • the impurities introduced by the plasma irradiation on the substrate 5 to be processed are introduced in the form of adsorption or ion implantation with low energy.
  • active species such as neutral radicals are chemically adsorbed.
  • the ionized material is accelerated and implanted by plasma and an ion sheath generated on the surface of the substrate 5 or a DC voltage such as a so-called self-bias.
  • FIGS. 8 (a) to 8 (c) show that by controlling the spatial distribution of the gaseous substances, the introduction of impurities in the form of adsorption can also be adjusted.
  • This embodiment is different from the third embodiment in that the gas substance introduced into the vacuum chamber 11 is intentionally given a predetermined spatial distribution, and the impurity dose to the substrate 5 to be processed is not in-plane. This is the case where control is performed so as to be uniform. In this case, the same impurity introducing device as that described in the second embodiment may be used.
  • a substrate 5 to be processed is placed on a holding table 4 in a vacuum chamber 11 and fixed by electrostatic attraction. Then, as shown in the figure, the vacuum pump 6 provided at the lower left end of the vacuum chamber 11 is operated. Further, the gas substance to the vacuum chamber 11 is introduced from the measuring chamber 17 through a nozzle 8 provided at the upper right end of the vacuum chamber 11. After the gas substance flows from the upper right to the lower left in the vacuum chamber 11 in this way, the plasma generator 2 is driven by the power source 3 to uniformly distribute the gas substance introduced into the vacuum chamber 11. Excitation of plasma.
  • the deflected plasma 20 whose plasma density decreases from right to left is generated. Then, the surface of the substrate 5 is exposed to the deflected plasma 20 for a predetermined time (for example, 10 seconds). Thereafter, the same processing as that described in the first embodiment is performed.
  • FIG. 9 shows the impurity distribution in the silicon wafer surface after the boron impurity was introduced into a silicon wafer of 300 m ⁇ (substrate 5 to be processed).
  • the substrate 5 to be processed shows a sheet resistance distribution.
  • the sheet resistance increases in the direction of the arrow in FIG.
  • the upper part of the substrate 5 shown in FIG. 10 corresponds to the right-hand side in FIG. 9
  • the lower part of the substrate 5 shown in FIG. 10 corresponds to the right-hand side in FIG.
  • impurities having desired non-uniformity can be introduced in the surface of the substrate 5 to be processed.
  • FIG. 11 shows the transistor characteristics after introducing impurities having non-uniformity as shown in FIG. 10 and performing channel doping for the MOSF, and shows the drain current and the drain current when the gate voltage is constant. The relationship between the drain voltages is shown.
  • X and ⁇ in the figure correspond to the M OS F ⁇ of the semiconductor chip at the ⁇ and ⁇ positions shown in FIG. 10, respectively. In this way, it becomes possible to manufacture a large number of semiconductor chips having different MOS FETs with different characteristics by introducing impurities into the substrate 5 once.
  • the impurity introducing device in this case is the same as that described in the third embodiment shown in FIG. However, in this case, there is no rotary drive shaft 13 and the substrate 5 to be processed is not rotated.
  • a substrate 5 to be processed is placed on a holding table 4 in a vacuum chamber 11 and fixed by electrostatic attraction. And true After the empty pump 6 is operated to reduce the degree of vacuum in the vacuum chamber 11 to about 10 to 3 Pa, the gas exhaust by the vacuum pump 6 is stopped.
  • a substance (gas substance) for plasma generation in the measuring chamber 17 is introduced into the vacuum chamber 1 through the nozzle 14.
  • the nozzle 14 is provided with a large number of micro nozzles 19, and a spatially non-uniform gas flow 15 is generated in the vacuum chamber 11 through the micro nozzles 19.
  • the plasma generating unit 2 is driven by the power source 3 to excite the gas substance introduced non-uniformly into the vacuum chamber 11, and the surface of the substrate 5 to be processed is plasma-treated for a predetermined time (for example, 10 seconds). Exposure. Thereafter, processing similar to that described in the first embodiment is performed.
  • plasma having a step-shaped plasma density is generated in the vacuum chamber 11. That is, it is possible to generate plasma that decreases stepwise from the left side to the right side of the substrate 5 to be processed.
  • the supply of the gaseous substance through the microphone nozzle can control the spatial distribution of the substance in the chamber in which the substrate is disposed with high precision. Further, control of the amount of impurities on the surface of the base and free control of the distribution thereof are further promoted.
  • the seventh embodiment of the present invention since it is easy to freely control the amount of impurities introduced into the surface of the semiconductor substrate when the impurities are introduced into the surface of the semiconductor substrate, regions having different impurity distributions are formed in the same substrate. Can be freely formed by a single impurity introduction treatment. Therefore, in forming a semiconductor integrated circuit, a margin for mask alignment is not required, and further miniaturization and high integration can be achieved.
  • the semiconductor substrate forming the semiconductor device has been described as the substrate to be processed.
  • the present invention is applied to the case where the substrate to be processed is a matrix substrate forming a liquid crystal display device. Is done. This is realized by using the same impurity introduction device as that used in the first embodiment.However, in the case of a large-area substrate, the plasma excitation power is easily distributed in the vacuum chamber, and FIG. As shown in a), the edges are particularly likely to be low. Therefore, in this case, as shown in FIG. 14 (b), the gas supply amount is increased at the end as an eighth embodiment of the present invention, and as a result, as shown in FIG. 14 (c), A uniform plasma density can be realized. Therefore, a large-area substrate can be formed.
  • the present invention is not limited to the above embodiments, and the embodiments can be appropriately changed within the scope of the technical idea of the present invention.
  • a plasma generating substance gas substance
  • the impurity doping amount can be controlled by the total introduction amount of the gas substance obtained by integrating from the mass flow controller 10.
  • a feature of the impurity introduction device of the present invention is that rapid treatment is possible. Therefore, the plasma generation unit 2 may generate a high-density plasma such as ICP (Inductiv eCooledPla sma). However, even in this case, it is necessary to enable a high-speed response as described above.
  • ICP Inductiv eCooledPla sma
  • the present invention relates to an impurity introduction method for plasma-exciting a substance containing an impurity and introducing an impurity into the substrate from the excited substance, wherein the space of the substance in one chamber in which the substrate is disposed is provided. Adjust the distribution according to the plasma distribution.
  • the impurity introduction method of the present invention comprises the steps of: adjusting the distribution of the substance in the vicinity of the substrate surface to have a distribution corresponding to the plasma distribution, and supplying the substance into the chamber; Generating a plasma after reaching an equilibrium state.
  • the present invention enables the introduction of highly uniform impurities into an extremely shallow region from the substrate surface, even if the spatial uniformity of power for plasma excitation such as high frequency or microwave is poor. It is possible to provide an impurity introduction method having an effect of reducing the impurity concentration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

An impurity doping method and an impurity doping apparatus are disclosed which enable high-precision control in doping of a substrate with impurities. A substrate to be processed (5) is mounted on a holding stage (4) and rotated about a rotational driving axis (13). After activating a vacuum pump (6), gas evacuation by the vacuum pump (6) is stopped and a certain amount of a substance for plasma generation (a gas substance) in a measuring chamber (7) is introduced into a vacuum chamber (1) through a nozzle (14). The nozzle (14) is provided with many micronozzles (19), and a gas flow (15) is generated through these micronozzles (19) in the vacuum chamber (1) according to the excitation intensity of a plasma. The gas flow (15) is spatially non-uniform within the vacuum chamber (1). A plasma generating unit (2) is then driven by a power supply (3) so that the gas substance non-uniformly introduced in the vacuum chamber (1) is excited into a plasma, and the surface of the substrate to be processed (5) is exposed to the plasma for a certain time.

Description

不純物導入方法、 不純物導入装置およびこれを用いて形成された半導体装置 <技術分野〉 Impurity introduction method, impurity introduction device, and semiconductor device formed using the same <Technical field>
本発明は、 不純物導入方法、 不純物導入装置およびこれを用いて形成される半 導体装置に係り、 特に、 特にプラズマドーピングにおける不純物導入プロフアイ ルの制御に関する。  The present invention relates to an impurity introduction method, an impurity introduction device, and a semiconductor device formed using the same, and more particularly to control of an impurity introduction profile in plasma doping.
明 <背景技術 >  Akira <Background technology>
近年、 半導体デバイスの微細化に伴い、 浅書い接合を形成する技術が求められて いる。 従来の半導体製造技術では、 ボロン (B) 、 リン (P) 、 ヒ素 (A s) 等 の各種導電型の不純物を半導体基板表面に、 低エネルギーでイオン注入を行う方 法が広く用いられている。  In recent years, with the miniaturization of semiconductor devices, a technology for forming a shallow write junction has been required. In conventional semiconductor manufacturing technology, low-energy ion implantation of impurities of various conductivity types, such as boron (B), phosphorus (P), and arsenic (As), on a semiconductor substrate surface is widely used. .
このイオン注入の方法を用いて、半導体デバイスの浅い接合が形成されており、 浅い接合を形成できるとはいうものの、 イオン注入で形成できる深さには限界が ある。 例えば、 ボロン不純物は浅く導入することが難しく、 イオン注入では、 導 入領域の深さは基体表面から 100 nm程度が限界であった。  A shallow junction of a semiconductor device is formed by using this ion implantation method, and although a shallow junction can be formed, there is a limit to the depth that can be formed by ion implantation. For example, it is difficult to introduce boron impurities at a shallow depth, and in ion implantation, the depth of the implantation region has been limited to about 100 nm from the substrate surface.
そこで、 近年、 更に浅い接合を可能にする手法として種々のドーピング方法が 提案され、 その中でプラズマドーピング技術が実用化に適するものとして注目さ れてきている。 このプラズマドーピングは、 導入すべき不純物を含有した反応ガ スをプラズマ励起し、 上記基体表面にプラズマ照射して不純物を導入する技術で ある。 この技術によれば、 ボロン不純物であっても深さ 70 nmの浅い接合が形 成できるとされる (例えば非特許文献 1、 2参照) 。  Therefore, in recent years, various doping methods have been proposed as a technique for enabling a shallower junction, and among them, the plasma doping technique has been attracting attention as being suitable for practical use. The plasma doping is a technique in which a reaction gas containing an impurity to be introduced is plasma-excited, and the substrate surface is irradiated with plasma to introduce the impurity. According to this technique, a shallow junction with a depth of 70 nm can be formed even with boron impurities (for example, see Non-Patent Documents 1 and 2).
(非特許文献 1) プラズマドーピング技術:水野文二著 (第 70卷、 第 12号、 p。 1458— 1462 (200 1) (Non-Patent Document 1) Plasma doping technology: Bunji Mizuno (Vol. 70, No. 12, p. 1458—1462 (2001)
(非特許文献 2) 低バイアスプラズマドーピングによってドープされたサブ 0. 1 ミクロン p MO S F E Tの性能: Reliable and enhanced performances of sub - 0. I μ ϊίΐ pMOSFETs doped by low biased Plasma DopingN Damien Lenoble他、 VLSIシンポジウム、 IEEEZ日本応用物理学会共催、 p. 1 1 0、 2 0 0 0年。 現在、 半導体デバイスの微細化は急激に進んでおり、 その量産製造での設計寸 法は 1 0 0 nm以下になろうとしている。 その一方で、 シリコンウェハ (半導体 基板)は 2 0 Omm φ から 3 0 0 mm φ へと大口径化が進んでいる。 このような 中で、 半導体基板表面への不純物導入において以下のように高精度の制御技術が 要求されている。. (Non-Patent Document 2) Sub-doped by low bias plasma doping Performance of 1 micron p MO SFET: Reliable and enhanced performances of sub-0. I μ ϊίΐ pMOSFETs doped by low biased Plasma Doping N Damien Lenoble, etc. 0 0 years. At present, the miniaturization of semiconductor devices is progressing rapidly, and the design dimensions for mass production are approaching 100 nm or less. On the other hand, silicon wafers (semiconductor substrates) are increasing in diameter from 200 Omm φ to 300 mm φ. Under these circumstances, a high-precision control technique is required as described below in introducing impurities into the surface of a semiconductor substrate. .
その第 1は、 不純物導入を行う基板表面近傍の深さが 1 0 0 nm以下になる浅 い接合の形成を安定的に制御する技術である。 そして、 その第 2は、 上述のよう に大口径化された基板面内での不純物分布の均一性を制御する技術である。  The first is a technique for stably controlling the formation of a shallow junction where the depth near the substrate surface where impurities are introduced is 100 nm or less. The second is a technique for controlling the uniformity of the impurity distribution in the surface of the substrate having a large diameter as described above.
しかし、 上述のイオン注入の方法では、 特にボロンの不純物導入において Bィ オンあるいは B F2イオンの加速エネルギーを数 k e Vの低エネルギーにするこ とは困難となり、 将来の不純物導入領域の深さが 1 0 0 nm以下になる浅い接合 の形成は難しくなるという問題がある。 これに対して、 従来のプラズマドーピン グ方法では、 プラズマイオンのエネルギーを 1 0 0 e V以下にすることは容易で あり、 上述したように深さ 5 0 nm以下の浅い接合を制御することは可能となる 力 大口径化された基板面内での不純物分布の均一性を制御することが未だ充分 ではないという問題がある。 However, with the above-described ion implantation method, it is difficult to reduce the acceleration energy of B ions or BF 2 ions to a low energy of several keV, particularly in the case of introducing boron impurities. There is a problem that it is difficult to form a shallow junction of 100 nm or less. On the other hand, in the conventional plasma doping method, it is easy to reduce the energy of plasma ions to 100 eV or less, and it is difficult to control a shallow junction having a depth of 50 nm or less as described above. Possible force There is a problem that it is not enough to control the uniformity of the impurity distribution in the surface of the substrate having a large diameter.
また、 半導体デバイス製品のカスタム化が進んできており、 その多品種少量生 産への対応は必須である。ここで、多品種製品の生産効率を向上させるためには、. 半導体基板表面への不純物導入において基板面内で不純物の導入量を自在に制御 できる技術が非常に有効になる。  In addition, customization of semiconductor device products is progressing, and it is essential to respond to high-mix low-volume production. Here, in order to improve the production efficiency of a wide variety of products, a technology that can freely control the amount of impurities to be introduced in the surface of the semiconductor substrate when introducing impurities to the surface of the semiconductor substrate becomes very effective.
しかし、 上述のイオン注入および従来のプラズマドーピング何れの方法におい ても、 上述したような大口径化された基板面内で不純物の導入量を自在に制御す ることは難しい。 不純物導入における上述したような問題は、 半導体デバイスを 形成する半導体基板に限らず、 液晶表示デバイスを形成する液晶表示基板となる マトリックス基板などの場合にも、 同様である。 本発明は、 前記実情に鑑みてなされたもので、 基板への不純物導入において高 精度の制御が可能な不純物導入方法および不純物導入装置を提供することを目的 とする。 However, it is difficult to freely control the amount of impurities introduced in the above-described large-diameter substrate surface by any of the above-described ion implantation and the conventional plasma doping method. The above-mentioned problem in the impurity introduction is not limited to the semiconductor substrate forming the semiconductor device, but also applies to a matrix substrate serving as a liquid crystal display substrate forming a liquid crystal display device. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an impurity introduction method and an impurity introduction device capable of controlling the introduction of impurities into a substrate with high accuracy.
また、 不純物導入量を制御し、 極めて浅い深さの不純物導入を高精度に実現す ることを目的とする。  It is another object of the present invention to control the amount of impurities to be introduced and to achieve the introduction of impurities at an extremely shallow depth with high accuracy.
また、本発明は、位置による不純物導入深さあるいは濃度のばらつきを低減し、 大面積基板上で均一な深さに不純物導入を行うことを目的とする。  Another object of the present invention is to reduce the variation in impurity introduction depth or concentration depending on the position, and to introduce impurities to a uniform depth on a large-area substrate.
<発明の開示 > <Disclosure of Invention>
本発明の不純物導入方法は、 不純物を含有する物質をプラズマ励起し、 励起さ れた前記不純物を基体内に導入する不純物導入方法であって、 前記プラズマの分 布の少なくとも一部を相殺し得るように、 前記基体の表面近傍における前記物質 の分布を、 調整するようにしたことを特徴とする。 すなわち前記基体の表面近傍 における前記物質の分布を、 前記プラズマの分布に応じて調整する。  The impurity introduction method of the present invention is an impurity introduction method for exciting a substance containing an impurity by plasma and introducing the excited impurity into a substrate, wherein at least a part of the distribution of the plasma can be offset. Thus, the distribution of the substance in the vicinity of the surface of the base is adjusted. That is, the distribution of the substance in the vicinity of the surface of the substrate is adjusted according to the distribution of the plasma.
すなわち、 プラズマ自体の分布すなわち、 結果的に生じるプラズマの分布 (ィ オンやラジカル、 中性粒子などの分布) を相殺する形でプラズマ自体の分布に応 じて調整するものである。 実際には、 シミュレーションを行うかあるいは実際の 不純物導入結果に基づいて基体表面近傍の物質分布を調整する。 プラズマの分布 の少なくとも一部を相殺するとは、 本来のプラズマの分布を変えるような物質分 布を与えるということを意味し、 本来のプラズマの分布に依存しないプラズマ分 布を生起するような物質分布を意味するものとする。 従ってここでは、 本来のプ ラズマの分布を相殺して均一にするものだけでなく、 本来のプラズマの分布をさ らに拡大するようなものも一部は相殺されているとみなすものとする。  That is, the distribution of the plasma itself, that is, the distribution of the resulting plasma (the distribution of ions, radicals, neutral particles, etc.) is adjusted in accordance with the distribution of the plasma itself in such a manner as to cancel out the distribution. In practice, a simulation is performed or the material distribution near the substrate surface is adjusted based on the actual impurity introduction results. To cancel at least part of the plasma distribution means to give a material distribution that changes the original plasma distribution, and to generate a material distribution that does not depend on the original plasma distribution. Shall mean. Therefore, it is assumed here that not only the original plasma distribution is canceled out to make it uniform, but also that the original plasma distribution is further expanded.
あるいは、 本発明の不純物導入方法は、 前記基体表面近傍に.おける前記物質の 分布が、 前記プラズマ分布に応じた分布をもつように調整して前記物質をチャン バー内に供給する工程と、 前記物質が前記基体表面で平衡状態となつた後に前記 物質のプラズマを発生させる工程とを含む。  Alternatively, in the impurity introducing method of the present invention, a step of adjusting the distribution of the substance in the vicinity of the substrate surface to have a distribution corresponding to the plasma distribution and supplying the substance into the chamber; Generating a plasma of the material after the material has equilibrated on the substrate surface.
通常のプラズマ発生装置では、 高周波あるいはマイク口波等のプラズマ励起の ための電力は空間的均一性に限界をもつ。 そこで本発明の不純物導入方法では、 プラズマ励起される物質の分布を制御することにより、 この空間的均一性の度合 いに依存することのない不純物分布を得ることのできる方法を提案する。 In ordinary plasma generators, the power for exciting plasma such as high-frequency waves or microphone mouth waves has a limit in spatial uniformity. Therefore, in the impurity introduction method of the present invention, We propose a method that can obtain the impurity distribution that does not depend on the degree of the spatial uniformity by controlling the distribution of the substances excited by plasma.
例えば、 この不均一性を相殺するようにプラズマ励起される物質を供給する。 これにより、 基体表面から極めて浅い領域に非常に均一性が高い不純物導入が可 能になる。 そして、 半導体基板あるいは液晶表示基板のように大口径化された基 体であっても、 不純物分布の均一性を制御することが容易になる。  For example, a material that is plasma-excited to offset this non-uniformity is provided. This makes it possible to introduce impurities with extremely high uniformity into a very shallow region from the substrate surface. Further, even with a substrate having a large diameter such as a semiconductor substrate or a liquid crystal display substrate, it becomes easy to control the uniformity of the impurity distribution.
なお本発明は、 不純物導入においてプロファイルを高精度に制御することを可 能にするもので、 基体表面で物質を平衡状態にしたのちプラズマ励起する点、 プ ラズマ励起の電力分布等によつて結果的に生じるプラズマの分布 (イオンゃラジ カル、 中性粒子の分布) を相殺するように、 基体表面の物質を調整する点、 基体 表面でプラズマが段階的に分布を生じるように基体表面の物質を調整するもの、 あるいはこれらの組み合わせを含み、 これらの方法により、 所望のプロファイル のプラズマドーピングを可能にするものである。  The present invention enables the profile to be controlled with a high degree of accuracy in the introduction of impurities.The result is obtained by the point that the material is equilibrated on the surface of the substrate and then plasma is excited, and the power distribution of plasma excitation is used. The point of adjusting the substance on the substrate surface so as to cancel the distribution of the plasma (ion radical, neutral particle distribution) that is generated on the surface, and the substance on the substrate surface so that the plasma is gradually distributed on the substrate surface These methods include a method of adjusting the plasma doping or a combination thereof, and these methods enable plasma doping with a desired profile.
また、 本発明の、 不純物を含有する物質をプラズマ励起し、 励起された前記不 純物を基体内に導入する不純物導入方法では、 基体を配置するチャンバ一内にお いて、 空間的に任意の分布を持つように前記物質を供給し、 この空間分布を有す る前記物質をプラズマ励起して不純物導入を行う。  Further, according to the impurity introduction method of the present invention in which a substance containing an impurity is plasma-excited and the excited impurity is introduced into a substrate, a spatially arbitrary one is provided in a chamber in which the substrate is disposed. The substance is supplied so as to have a distribution, and the substance having the spatial distribution is excited by plasma to introduce impurities.
このようにすると、 基体内に、 不純物分布の異なる領域を 1回の不純物導入処 理で自在に形成できる。 従って、 半導体集積回路の形成においては、 マスク合わ せのマージンが不要となり、 より微細化、 高集積化が可能となる。 また、 種々の 異なる性能を持つ半導体装置を 1枚の基板内に作りこむことが可能になる。 そし て、 半導体デバイス製品の多品種少量生産への対応が迅速になると共に、 多品種 製品の生産効率が向上する。 ここで不純物プロファイルとは、 面内の不純物分布 に加え、 深さ方向での不純物の分布を含むものとする。  With this configuration, regions having different impurity distributions can be freely formed in the base body by a single impurity introduction process. Accordingly, in forming a semiconductor integrated circuit, a margin for mask alignment is not required, and further miniaturization and high integration can be achieved. In addition, it becomes possible to fabricate semiconductor devices having various different performances on a single substrate. In addition, it will be possible to respond quickly to high-mix low-volume production of semiconductor device products and improve the production efficiency of multi-product products. Here, the impurity profile includes the impurity distribution in the depth direction in addition to the in-plane impurity distribution.
また、本発明では、前記物質の供給を停止させた状態でプラズマを発生させる。 前記物質の供給および排出を停止させた状態でプラズマを発生させる。 前記基体 を配置したチャンバ一内に供給した前記物質が前記基体表面で平衡状態となった 後にプラズマを発生させる。 あるいは、 前記物質の流速が換算速度で 1 0 O m e In the present invention, the plasma is generated in a state where the supply of the substance is stopped. Plasma is generated with the supply and discharge of the substance stopped. Plasma is generated after the substance supplied into the chamber in which the substrate is placed is in an equilibrium state on the surface of the substrate. Alternatively, the flow rate of the substance is reduced to 10 O m e
V以下となったのち、 プラズマを発生させる等の手段を取る。 これにより、 供給する物質の上記チャンバ一内での流れを準静的に、 安定化す ることができる。 この安定した物質をプラズマ励起することで、 基体表面での不 純物分布は更に向上するようになる。 このように、 物質の流れによって生じる変 動成分が低減され、 プラズマによる乱れのみに抑制される。 流速を換算速度で 1 0 O m e V以下とするとレヽうことはほぼ室温の状態に近づいているとレ、うことで あり、 プラズマ化に際して大きく分布変動を生じることなく、 プラズマ化前の分 布を維持することができる。 After that, take measures such as generating plasma. Thereby, the flow of the substance to be supplied in the chamber can be stabilized quasi-statically. By exciting this stable substance with plasma, the distribution of impurities on the substrate surface is further improved. In this way, the fluctuation component generated by the flow of the substance is reduced, and the disturbance is suppressed only by the plasma. When the flow velocity is reduced to 10 Ome V or less, the phenomenon is that the temperature is almost at room temperature, and the distribution before plasma formation does not significantly change during plasma formation. Can be maintained.
また、 本発明では、 チャンバ一内への上記物質を一定量供給してからプラズマ を発生させる。 ここで、 供給する前記物質の一定量は前記基体に導入する不純物 量に応じて決める。  In the present invention, plasma is generated after supplying a certain amount of the substance into the chamber. Here, the fixed amount of the substance to be supplied is determined according to the amount of impurities introduced into the substrate.
このようにすることで、 基体表面への不純物導入量が所望の設定量になるよう に制御できる。また極めて浅い導入も高精度に制御することができ、極めて浅い接 合を高精度に形成することも可能となる。  By doing so, it is possible to control the amount of impurities introduced to the surface of the substrate to a desired set amount. In addition, very shallow introduction can be controlled with high precision, and extremely shallow junctions can be formed with high precision.
また、 本発明では、 前記基体を配置したチャンバ一内への前記物質の供給はマ イク口ノズルを通して行う。 ここで、 前記物質は不純物を含有する気体である。 あるいは、 不純物を含有する微粒子、 微細液滴であってもよい。 微細な開口径を もつマイクロノズルを、 多数配列し、 各マイクロノズルを独立して制御すること により流量を変化させることができる。  Further, in the present invention, the supply of the substance into the chamber in which the substrate is disposed is performed through a microphone port nozzle. Here, the substance is a gas containing impurities. Alternatively, fine particles or fine droplets containing impurities may be used. The flow rate can be changed by arranging a large number of micro nozzles having a fine opening diameter and controlling each micro nozzle independently.
これにより、 基体を配置するチャンバ一内における物質の空間的分布を高精度 に制御できるようになり、 基体表面の不純物量の制御およびその空間的分布の自 在な制御が更に促進される。  As a result, the spatial distribution of the substance in the chamber in which the substrate is disposed can be controlled with high accuracy, and the control of the amount of impurities on the surface of the substrate and the independent control of the spatial distribution are further promoted.
また、 本発明の不純物導入装置は、 不純物を含有する物質をプラズマ励起し、 励起された前記物質より前記不純物を基体内に導入する不純物導入装置であって、 前記基体を配置するチャンバ一と、 前記チャンバ一内へ前記物質を一定量供給す る手段と、 前記チャンバ一内を真空排気する手段と、 前記一定量の物質をプラズ マにするプラズマ発生手段とを備えた構成になっている。 そして、 前記物質を一 定量供給する手段は、 前記物質を計量し貯蔵する機構を有し、 この機構は、 貯蔵 容器の容積、圧力、温度を制御し前記物質を一定量に保持するようになっている。 更に、 上記貯蔵の容器は、 上記基体に導入する不純物量に対応する量の物質が収 納されるようになっている。 Further, the impurity introducing device of the present invention is an impurity introducing device for plasma-exciting a substance containing an impurity and introducing the impurity into the substrate from the excited substance, wherein: The apparatus includes a means for supplying a certain amount of the substance into the chamber, a means for evacuating the inside of the chamber, and a plasma generating means for plasma-forming the certain amount of the substance. The means for supplying a certain amount of the substance has a mechanism for measuring and storing the substance, and this mechanism controls the volume, pressure, and temperature of the storage container to maintain the substance at a constant amount. ing. Further, the storage container stores an amount of the substance corresponding to the amount of impurities introduced into the base.
この構成により、 大口径の半導体基板あるいは液晶表示基板である基体への不 純物導入が短時間で枚葉処理できる。 このために、 半導体デバイスあるいは液晶 表示デバイスの量産能力が向上し、 生産コス ト低減が可能になる。 なお、 前記物 質は、 気体、 微粒子あるいは微細液滴である。  With this configuration, the introduction of impurities to a large-diameter semiconductor substrate or a substrate that is a liquid crystal display substrate can be performed in a short time in a single wafer process. As a result, the mass production capacity of semiconductor devices or liquid crystal display devices is improved, and production costs can be reduced. The substance is a gas, fine particles, or fine droplets.
例えば気体としては、 B 2H6、 B F 3、 A s H3、 P H3のいずれかを含む。 また 微粒子あるいは固体としては、 B、 A s、 P、 S b、 I n、 A 1のいずれかを用 いることができる。 ここで液滴とはこれらの微粒子や気体を溶解もしくは混濁さ せたものをいう。 またこの他濡れる様に表面を覆う場合もある。 For example, the gas includes any of B 2 H 6 , BF 3 , As H 3 , and PH 3 . Further, any of B, As, P, Sb, In, and A1 can be used as the fine particles or solid. Here, the term “droplet” refers to a solution in which these fine particles and gas are dissolved or turbid. In addition, the surface may be covered so as to be wet.
また、 プラズマを発生させるタイミングは、 基体表面近傍における不純物濃度 のプロファイルをシミュレーションし、 この結果に基づいて、 行うようにしても よい。さらにまた不純物濃度のプロファイルのシミュレーシヨンに代えて、気体、 微粒子または微細液滴の流速、気体分子数、圧力の群から選ばれる少なくとも 1つ を測定し、 その標準偏差が 2 %未満に到達した状態でプラズマを発生させるよう にしてもよい。  Further, the timing of generating the plasma may be determined based on a result of simulating the profile of the impurity concentration in the vicinity of the surface of the base and simulating the result. Furthermore, instead of simulating the profile of the impurity concentration, at least one selected from the group consisting of gas, fine particles or fine droplet flow velocity, number of gas molecules, and pressure was measured, and the standard deviation reached less than 2%. Plasma may be generated in the state.
なお本発明は、 不純物導入においてプロフアイルを高精度に制御することを可 能にするもので、 基体表面で物質を平衡状態にしたのちプラズマ励起する点、 プ ラズマ励起の電力分布等によつて結果的に生じるプラズマの分布 (ィオンゃラジ カル、 中性粒子の分布) を相殺するように、 基体表面の物質を調整する点、 基体 表面でプラズマが段階的に分布を生じるように基体表面の物質を調整するもの、 あるいはこれらの組み合わせを含み、 これらの方法により、 所望のプロファイル のプラズマドーピングを可能にするものである。 <図面の簡単な説明 >  The present invention makes it possible to control the profile with high precision in the introduction of impurities.It is based on the point that the substance is equilibrated on the surface of the substrate and then plasma is excited, and the power distribution of plasma excitation is used. The point of adjusting the substance on the substrate surface so as to offset the distribution of the resulting plasma (ion radial, distribution of neutral particles) is that the plasma is gradually distributed on the substrate surface. These include methods for adjusting the material or a combination thereof, and these methods enable plasma doping with a desired profile. <Brief description of drawings>
図 1は、 本発明の第 1の実施の形態における不純物導入装置の模式的な断面図で ある。 FIG. 1 is a schematic cross-sectional view of the impurity introduction device according to the first embodiment of the present invention.
図 2は、 本発明の第 1の実施の形態における不純物導入方法を説明するための不 純物導入装置の本体部の模式的な断面図である。 図 3は、 本発明の第 1の実施の形態における不純物導入装置の駆動タイミングを 示す図である。 FIG. 2 is a schematic cross-sectional view of a main body of the impurity introduction device for describing the impurity introduction method according to the first embodiment of the present invention. FIG. 3 is a diagram showing a drive timing of the impurity introduction device according to the first embodiment of the present invention.
図 4は、 本発明の第 2の実施の形態における不純物導入装置の駆動タイミングを 示す図である。 FIG. 4 is a diagram showing a drive timing of the impurity introduction device according to the second embodiment of the present invention.
図 5は、 本発明の第 3の実施の形態における不純物導入装置の本体部の模式的な 断面図である。 FIG. 5 is a schematic cross-sectional view of a main body of the impurity introduction device according to the third embodiment of the present invention.
図 6は、 本発明の第 4の実施の形態における別の不純物導入装置の模式的な断面 図である。 FIG. 6 is a schematic cross-sectional view of another impurity introduction device according to the fourth embodiment of the present invention.
図 7は、 本発明の第 5の実施の形態における不純物導入方法を説明するための不 純物導入装置の本体部の模式的な断面図である。 FIG. 7 is a schematic cross-sectional view of a main body of an impurity introduction device for describing an impurity introduction method according to a fifth embodiment of the present invention.
図 8は、 本発明の第 5の実施の形態の説明図であり、 (a ) はプラズマ強度を示 す図、 (b ) は供給した物質 (ドーパント) 分布を示す図、 (c ) はプラズマ分 布を示す図である。 FIGS. 8A and 8B are explanatory diagrams of a fifth embodiment of the present invention. FIG. 8A is a diagram showing plasma intensity, FIG. 8B is a diagram showing distribution of a supplied substance (dopant), and FIG. It is a figure which shows a distribution.
図 9は、 本発明の第 6の実施の形態における不純物導入方法を説明するための不 純物導入装置の本体部の模式的な断面図である。 FIG. 9 is a schematic cross-sectional view of a main body of an impurity introduction device for describing an impurity introduction method according to the sixth embodiment of the present invention.
図 1 0は、 本発明の第 6の実施の形態における不純物分布を示すシリコンウェハ 基板の平面図である。 FIG. 10 is a plan view of a silicon wafer substrate showing an impurity distribution according to the sixth embodiment of the present invention.
図 1 1は、 本発明の第 6の実施の形態で形成した MO S F E Tの特性を示すグラ フである。 FIG. 11 is a graph showing characteristics of the MOSFET formed according to the sixth embodiment of the present invention.
図 1 2は、 本発明の第 7の実施の形態における不純物導入方法を説明するための 不純物導入装置の本体部の模式的な断面図である。 FIG. 12 is a schematic cross-sectional view of a main body of an impurity introduction device for describing an impurity introduction method according to a seventh embodiment of the present invention.
図 1 3は、 本発明の第 7の実施の形態における不純物分布を示すグラフである。 図 1 4は、 本発明第 8の実施の形態の説明図であり、 (a ) はプラズマ強度を示 す図、 (b ) は供給した物質 (ドーパント) 分布を示す図、 (c ) はプラズマ分 布を示す図である。 なお、 図中の符号 1は真空チャンバ一、 2はプラズマ発生部、 3は電源、 4は 保持台、 5は被処理基板、 6は真空ポンプ、 7 a , 7 bは計量チャンバ一、 8 , 1 4はノズル、 9は供給装置、 1 0はマスフローコントローラー、 1 1は圧カレ ギユレータ、 1 2はプラズマ、 1 3は回転駆動軸、 1 5はガス流、 1 6は高周波 電源、 1 7は対向電極、 1 8はガス導入管、 1 9はマイクロノズル、 20は偏向 プラズマ、 P l、 P 2は圧力計、 T 1、 T 2は温度計である。 <発明を実施するための最良の形態 > FIG. 13 is a graph showing an impurity distribution according to the seventh embodiment of the present invention. FIGS. 14A and 14B are explanatory diagrams of the eighth embodiment of the present invention. FIG. 14A is a diagram showing the plasma intensity, FIG. 14B is a diagram showing the distribution of the supplied material (dopant), and FIG. It is a figure which shows a distribution. In the figure, reference numeral 1 denotes a vacuum chamber, 2 denotes a plasma generating unit, 3 denotes a power source, 4 denotes a holding table, 5 denotes a substrate to be processed, 6 denotes a vacuum pump, 7a and 7b denote measuring chambers, 8 and 14 is a nozzle, 9 is a supply device, 10 is a mass flow controller, and 11 is a pressure A gyrator, 1 2 is a plasma, 1 3 is a rotary drive shaft, 1 5 is a gas flow, 1 6 is a high frequency power supply, 1 7 is a counter electrode, 1 8 is a gas introduction pipe, 1 is a micro nozzle, 2 is a deflected plasma, Pl and P2 are pressure gauges, and T1 and T2 are thermometers. <Best mode for carrying out the invention>
(第 1の実施の形態)  (First Embodiment)
以下、 本発明の第 1の実施の形態 ついて図 1と図 2を用いて説明する。 この 不純物導入装置は、 基体の表面近傍における物質の分布を調整することにより、 不純物導入プロフアイルを調整できるように構成されたことを特徴とする。 図 1 は本発明の不純物導入装置を模式的に示した断面図であり、 図 2は本発明の不純 物導入方法を説明するための上記装置の本体部である。  Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. The impurity introduction device is characterized in that the impurity introduction profile can be adjusted by adjusting the distribution of the substance near the surface of the base. FIG. 1 is a cross-sectional view schematically showing an impurity introducing device of the present invention, and FIG. 2 is a main body of the above-described device for explaining the impurity introducing method of the present invention.
この装置は、 図 1に示すように、 真空チャンバ一 1、 プラズマ発生部 2とその 電力供給用の電源 3とを備え、 真空チャンバ一 1内には保持台 4が設けられ被処 理基板 5が載置される。 そして、 真空チャンバ一 1の真空度を調節する真空ボン プ 6が設けられる。 このようにして不純物導入装置の本体部が構成されるが、 こ の装置は枚葉型でしかも急速処理を可能にするために、 全体の容積とくに真空チ ヤンバー 1の容積が必要最小限になるように構成することが重要である。ここで、 プラズマ発生部 2はヘリコン波プラズマ源、 ECR (E l e c t r o n C y c l o t r o n R e s o n a n c e) プラズマ源等であり、 応答速度の高いプラ ズマ発生源が好ましい。 このようなプラズマ源により、 被処理基板 5に導入する ための不純物を含有する物質、 ここではガスをプラズマ励起する。  As shown in FIG. 1, this apparatus includes a vacuum chamber 1, a plasma generator 2 and a power supply 3 for supplying power thereto, and a holding table 4 is provided in the vacuum chamber 11, and a processing substrate 5 is provided. Is placed. Then, a vacuum pump 6 for adjusting the degree of vacuum of the vacuum chamber 11 is provided. The main body of the impurity introduction device is configured in this way, but this device is a single-wafer type and requires the minimum volume of the entire vacuum chamber 1 in order to enable rapid processing. That is important. Here, the plasma generation unit 2 is a helicon wave plasma source, an ECR (ElectronCytronTronOnRec ancen) plasma source, or the like, and a plasma generation source having a high response speed is preferable. With such a plasma source, a substance containing an impurity to be introduced into the substrate 5 to be processed, here a gas, is plasma-excited.
上記不純物を含有するガス物質の供給系では、 計量チャンバ一 7 a, 7 bが設 けられ、 上記ガス物質は、 計量チャンバ一 7 aあるいは 7 bを通して真空チャン バー 1にノズル 8から一定量供給される。 ここで、 計量チャンバ一 7 a, 7 bは 一定量のガス物質を貯蔵するように構成されている。 この貯蔵量は計量チャンバ 一 7 a, 7 bの容積、 ガス温度、 ガス圧力で決定され、 それぞれ温度計 T l、 Τ 2および圧力計 Ρ 1、 Ρ 2でモニターされ図示しないがそれぞれの温度制御部、 圧力制御部でガス温度、 圧力が安定的に制御されている。 なお、 この計量チャン バーは更に必要に応じて増設する。 そして、 上記計量チャンバ一^■のガス供給は、 供給装置 9からマスフローコン トローラー 1 0を通して行うカ^ 計量チャンバ一 7 a, 7 bへ供給するガス分量 は圧力レギユレータ 10での圧力制御により厳密に規定することができる。 ここ で、 ガスは、 B2H6、 B F3、 A s H3、 PH3、 あるいはこれらを不活性ガス希釈 したものである。 In the supply system of the gaseous substance containing the above impurities, the measuring chambers 7a and 7b are provided, and the gaseous substance is supplied from the nozzle 8 to the vacuum chamber 1 through the measuring chamber 17a or 7b in a fixed amount. Is done. Here, the measuring chambers 7a and 7b are configured to store a certain amount of gaseous substances. This storage amount is determined by the volume of the measuring chambers 7a and 7b, gas temperature, and gas pressure, and monitored by thermometers Tl and Τ2 and pressure gauges Ρ1 and Ρ2, respectively. The gas temperature and pressure are controlled stably by the unit and the pressure control unit. This measuring chamber will be added as needed. The gas supply to the measuring chamber 1 is performed through the mass flow controller 10 from the supply device 9. The amount of gas supplied to the measuring chambers 7 a and 7 b is strictly controlled by the pressure regulator 10. Can be specified. Here, the gas is B 2 H 6 , BF 3 , As H 3 , PH 3 , or a gas obtained by diluting them with an inert gas.
本発明の不純物導入装置は、 不純物を含有する物質をプラズマ励起し不純物を 基板にドーピングするものであるが、 反応ガスを連続的に反応チャンバ一に供給 しプラズマ生成する R I E (R e a c t i v e I o n E t c h i n g) のよ うなドライエッチングあるいは CVD (C h em i c a l Va p o r D e ρ o s i t i o n) と異なり、 本発明の不純物導入装置では、 基板への不純物導入 量(ドーズ量)に対応した一定量のガスを高精度にプラズマ化できるものである。 この構成により、 極めて浅い深さの不純物導入が可能となり、 高精度に不純物の 導入深さの制御が可能となる。  The impurity introduction apparatus of the present invention excites a substance containing an impurity by plasma excitation to dope an impurity into a substrate. An RIE (Reactive Ion E) which continuously supplies a reaction gas to a reaction chamber and generates a plasma. Unlike dry etching (CVD) or CVD (Chemical Vapor Dep osition), the impurity introduction apparatus of the present invention uses a certain amount of gas corresponding to the impurity introduction amount (dose amount) to the substrate. It can be converted to plasma with high accuracy. With this configuration, it is possible to introduce an impurity having an extremely shallow depth, and it is possible to control the impurity introduction depth with high precision.
また、大口径の半導体基板である基体への不純物導入が急速処理で可能になり、 短時間で枚葉処理できるようになる。 このために、 高精度で信頼性の高い半導体 デバイスを生産性よく形成することが可能となる。 また液晶表示基板に用いた場 合には、液晶表示デバイスの量産能力が向上し、生産コストの低減が可能となる。 図 1に示した不純物導入装置において、 保持台 4を導電体で構成し保持台 4に 直流 (DC) 電源あるいは高周波電源である RF電源を取り付けてもよレ、。 ここ で、 RF電源は周波数が 100 kHz〜l 0MHzの高周波電源である。 これら の電源により生成したプラズマと被処理基板 5との間に数 e V〜 1 k e V範囲の DC電位を形成できるようになる。 また、 保持台 4を回転できるような機構を取 り付けてもよい。 この回転機構で被処理基板 5に水平面上で例えば 10 r p m程 度の回転を加えることで、 被処理基板 5面内での不純物ドーズ量の均一性が更に 向上する。  In addition, it is possible to rapidly introduce impurities into a substrate, which is a large-diameter semiconductor substrate, so that single-wafer processing can be performed in a short time. For this reason, it becomes possible to form a highly accurate and highly reliable semiconductor device with high productivity. When used for a liquid crystal display substrate, the mass production capacity of the liquid crystal display device is improved, and the production cost can be reduced. In the impurity introducing apparatus shown in FIG. 1, the holding table 4 may be made of a conductor, and a direct current (DC) power supply or an RF power supply, which is a high-frequency power supply, may be attached to the holding table 4. Here, the RF power supply is a high-frequency power supply having a frequency of 100 kHz to 10 MHz. A DC potential in the range of several eV to 1 keV can be formed between the plasma generated by these power supplies and the substrate 5 to be processed. Also, a mechanism that can rotate the holding table 4 may be attached. By applying a rotation of, for example, about 10 rpm to the substrate 5 to be processed on a horizontal plane by this rotating mechanism, the uniformity of the impurity dose in the surface of the substrate 5 to be processed is further improved.
また、 不純物を含有する物質としては、 上述したような常温 ·常圧で気体であ るもの以外に、 B、 A s、 P、 S b、 I n、 A l、 S iの微粒子のような固体、 上記不純物を含有する液体あるいは、固体微粒子を液体で囲んだものなどを用い てもよい。 但し、 この場合には、 図 1で示した供給系は少し異なったものになる 力 不純物を含有する物質が一定量供給できるようになっていることが必要であ る。 In addition, as substances containing impurities, in addition to those which are gas at normal temperature and normal pressure as described above, fine particles such as B, As, P, Sb, In, Al, and Si fine particles can be used. A solid, a liquid containing the above impurities, or a solid particle surrounded by a liquid may be used. However, in this case, the supply system shown in Fig. 1 will be slightly different It is necessary to be able to supply a certain amount of substances containing power impurities.
次に、本発明の不純物導入方法を図 2および図 3に基づいて説明する。ここで、 図 1に示した部位と同一部位は同一符号で示す。 図 3 ( a ) 乃至 (c ) はそれぞ れ真空ポンプ 6、 ガス供給用の供給ノズル 8、 プラズマ励起用の電源 3の駆動状 態を示すタイミングチャートである。 図 2に示すように、 保持台 4上に例えば被 処理基板 5として 3 0 Ο πιπι φ径のシリコンウェハを載置し静電吸着により固 定させる。 そして、 真空ポンプ 6を作動させ真空チャンバ一 1内の真空度を 1 0 "3 P a程度にした後、 真空ポンプ 6によるガス排気を停止させる。 Next, the impurity introduction method of the present invention will be described with reference to FIGS. Here, the same parts as those shown in FIG. 1 are denoted by the same reference numerals. 3 (a) to 3 (c) are timing charts showing the driving states of the vacuum pump 6, the gas supply nozzle 8, and the plasma excitation power supply 3, respectively. As shown in FIG. 2, for example, a silicon wafer having a diameter of 30 μππππφ is placed as a substrate 5 to be processed on the holding table 4 and fixed by electrostatic attraction. Then, after the vacuum pump 6 is operated to reduce the degree of vacuum in the vacuum chamber 11 to about 10 ″ 3 Pa, the gas exhaust by the vacuum pump 6 is stopped.
このような状態にした後、 計量チャンバ一 7 a、 7 b内の上述した一定量のガ ス物質を真空チャンバ一 1内にノズル 8を通して供給する。 ここで、 真空ポンプ 6は停止状態であるために、 真空チャンバ一 1に流入するガス物質の流速は時間 と共に低下していく。 そして、 被処理基板 5の表面近傍あるいは真空チャンバ一 1内での上記ガス物質の流れが平衡状態になり準静的な状態に安定した時点で、 電源 3によりプラズマ発生部 2を駆動させて真空チャンバ一 1内に充満するガス 物質をプラズマ励起する (区間 P :図 3参照) 。 ここで、 実際に測定する、 ある いはシミュレーションにより、 このガス物質の流速が所定の値 (換算値: 1 0 0 m e V) 以下になる時点で、 プラズマ発生部 2を駆動させて真空チャンバ一 1内 に充満するガス物質をプラズマ励起する。  After such a state, the above-mentioned fixed amount of the gas substance in the measuring chambers 7a and 7b is supplied into the vacuum chamber 11 through the nozzle 8. Here, since the vacuum pump 6 is in a stopped state, the flow rate of the gas substance flowing into the vacuum chamber 11 decreases with time. When the flow of the gaseous substance near the surface of the substrate 5 to be processed or in the vacuum chamber 11 is in an equilibrium state and is stabilized in a quasi-static state, the plasma generator 2 is driven by the power source 3 to vacuum the vacuum. Excitation of the gas substance filling chamber 1 into plasma (section P: see Fig. 3). Here, when the flow rate of this gaseous substance becomes equal to or lower than a predetermined value (converted value: 100 meV) by actual measurement or simulation, the plasma generation unit 2 is driven to start the vacuum chamber. Excitation of the gas substance filling 1 into plasma.
このようにして、 均一の空間分布を有するプラズマ 1 2を生成させ、 所定の時 間(例えば 1分間)に亘り被処理基板 5表面をプラズマ 1 2に曝させる。ここで、 ブラズマ 1 2は電子温度とイオン温度とが極端に異なる熱非平衡ブラズマであり、 通常、 イオン温度は数十度となりその熱運動エネルギーは小さいものである。 上述した被処理基板 5へのプラズマ照射により、 導入する不純物を含有する物 質が、被処理基板 5表面あるいはその内部に、吸着形態あるいは低エネルギー(上 述した数 e V〜l k e V)イオン注入形態で導入される。ここで、吸着形態では、 上記被処理基板 5表面に、 上記物質が物理吸着すると共に、 主に、 上記プラズマ 励起で生成する上記物質の中性ラジカルのような活性種が化学吸着する。 また、ィォン注入形態では、上記物質中の不純物材料をィォン化にしたものが、 一部は熱運動で表面内に注入される (伹し、 上述したように熱運動エネルギーは 小さくその量は僅かである) と共に、 主に、 プラズマ 1 2と被処理基板 5表面に 生じるイオンシースあるいは所謂セルフバイアスのような D C電圧で加速されて 注入される。 In this way, the plasma 12 having a uniform spatial distribution is generated, and the surface of the substrate 5 to be processed is exposed to the plasma 12 for a predetermined time (for example, one minute). Here, the plasma 12 is a thermal non-equilibrium plasma in which the electron temperature and the ion temperature are extremely different, and the ion temperature is usually several tens of degrees and its thermal kinetic energy is small. By the above-described plasma irradiation of the substrate 5 to be processed, a substance containing impurities to be introduced is ion-implanted into the surface of or within the substrate 5 to be processed or in the form of adsorption or low energy (several eV to lkeV as described above). Introduced in form. Here, in the adsorption mode, the substance is physically adsorbed on the surface of the substrate 5 to be processed, and active species such as neutral radicals mainly generated by the plasma excitation are chemically adsorbed. In the ion implantation mode, the ionized impurity material in the above substance is ionized, but part of the ionized material is injected into the surface by thermal motion. (As described above, the thermal kinetic energy is small and the amount is small. At the same time, the ion implantation is mainly accelerated by a DC voltage such as an ion sheath generated on the surface of the plasma 12 and the surface of the substrate 5 to be processed or a so-called self-bias.
この後、 図 1では示さなかったがマルチチャンバ一構成の別チャンバ一内で R T A (急速熱処理) を施す。 このようにして、 本発明の不純物導入方法では、 被 処理基板 5表面近傍に均一で浅い不純物導入を行うことができる。 また、 一定量 のガス物質を真空チャンバ一 1内に供給するために、 基体表面への不純物導入量 が所望の設定量になるように制御できる。  After that, RTA (rapid heat treatment) is performed in another chamber of a multi-chamber configuration, not shown in FIG. In this way, according to the impurity introduction method of the present invention, uniform and shallow impurity introduction can be performed near the surface of the substrate 5 to be processed. Further, in order to supply a certain amount of gaseous substance into the vacuum chamber 11, the amount of impurities introduced to the surface of the base can be controlled so as to be a desired set amount.
(第 2の実施の形態) (Second embodiment)
前記第 1の実施の形態では、 図 3にタイミングチャートを示したように、 不純 物となる物質を供給しながらプラズマ励起を行ったが、 本実施の形態ではプラズ マ励起のタイミングを変え、 図 4にタイミングチャートを示すように、 不純物の 供給を停止した後、プラズマ励起を行うようにしたものである。  In the first embodiment, as shown in the timing chart of FIG. 3, the plasma excitation is performed while supplying a substance that is an impurity, but in the present embodiment, the timing of the plasma excitation is changed. As shown in the timing chart of Fig. 4, the plasma excitation is performed after the supply of impurities is stopped.
図 4 ( a ) に真空ポンプのタイミングチャートを示す。 すなわち、 上述したよ うに、 真空チャンバ一 1内の真空度を 1 0—3 P a程度にした後、 ガス排気を停止 する (図 4 ( b ) ) 。 そして、 計量チャンバ一 7 a、 7 b内の上述した一定量の ガス物質を真空チャンバ一 1内にノズル 8を通して供給した後、 図示しないが電 磁バルブで上記供給も停止する。 Fig. 4 (a) shows the timing chart of the vacuum pump. That is, as described above, after the degree of vacuum in the vacuum chamber 11 is reduced to about 10 to 3 Pa, the gas exhaust is stopped (FIG. 4B). Then, after supplying the above-mentioned fixed amount of gaseous substance in the measuring chambers 7a and 7b through the nozzle 8 into the vacuum chamber 11, the supply is also stopped by an electromagnetic valve (not shown).
この後、プラズマ発生部 2を駆動させてプラズマ 1 2を生成させる(図 4 ( c ) )。 後は上述したのと同様にして、 区間 Pの間、 被処理基板 5表面部に不純物導入す ることになる。 このような方法では、 必ずしも計量チャンバ一 7 a、 7 bは必要 でない。 図 1で示した供給装置 9から直接に真空チャンバ一 1へガス物質を導入 しても、 マスフローコントローラー 1 0でガス物質の分量を厳密に規定できるた めである。  Thereafter, the plasma generator 2 is driven to generate the plasma 12 (FIG. 4 (c)). Thereafter, impurities are introduced into the surface of the substrate 5 to be processed during the interval P in the same manner as described above. In such a method, the measuring chambers 7a and 7b are not necessarily required. This is because even if a gas substance is directly introduced into the vacuum chamber 11 from the supply device 9 shown in FIG. 1, the amount of the gas substance can be strictly defined by the mass flow controller 10.
この場合も、 上述したように真空チャンバ一 1内での上記ガス物質の流れが平 衡状態になり準静的な状態に安定した時点で、 ガス物質をプラズマ励起する。 (第 3の実施の形態) Also in this case, as described above, the gas substance is plasma-excited when the flow of the gas substance in the vacuum chamber 11 becomes equilibrium and is stabilized in a quasi-static state. (Third embodiment)
次に、 本発明の第 3の実施の形態について図 5を参照しつつ説明する。  Next, a third embodiment of the present invention will be described with reference to FIG.
この実施の形態は、 前記第 1および第 2の実施の形態と異なり、 真空チャンバ 一 1内に導入する不純物含有ガスに意図的に所定の空間分布をもたせ、 被処理基 板 5への不純物ドーズ量の均一性を向上させることを特徴とする。 図 5は本発明 の不純物導入装置の本体部の模式的な断面図である。 ここで、 第 1の実施の形態 における部位と同様の部位は同一符号で示す。  This embodiment is different from the first and second embodiments in that the impurity-containing gas introduced into the vacuum chamber 11 is intentionally given a predetermined spatial distribution, and the impurity dose to the substrate 5 to be processed is changed. It is characterized by improving the uniformity of the amount. FIG. 5 is a schematic cross-sectional view of a main body of the impurity introduction device of the present invention. Here, the same parts as those in the first embodiment are denoted by the same reference numerals.
この装置では、 多数の噴出口を有するノズル 1 4が計量チャンバに接続され、 ノズル 1 4からの不純物を含有するガスの噴出量に分布を持たせるように調整さ れたことを特徴とする。  This apparatus is characterized in that a nozzle 14 having a large number of ejection ports is connected to a measuring chamber, and is adjusted so as to have a distribution in the ejection amount of gas containing impurities from the nozzle 14.
図 5において、 第 1の実施の形態で説明したのと同様に、 真空チャンバ一 1、 プラズマ発生部 2とその電力供給用の電源 3が設けられ、 真空チャンバ一 1内に は保持台 4が設けられ被処理基板 5が載置される。 ここで、 保持台 4には回転駆 動軸 1 3が取り付けられ、 矢印の方向に回転するようになっている。  In FIG. 5, as described in the first embodiment, a vacuum chamber 11, a plasma generator 2 and a power supply 3 for supplying power thereto are provided, and a holding table 4 is provided in the vacuum chamber 11. The substrate 5 to be processed is provided. Here, the rotary drive shaft 13 is attached to the holding base 4 so as to rotate in the direction of the arrow.
また、 真空チャンバ一 1の真空度を調節する真空ポンプ 6が設けられる。 そし て、 図 5に示すように上述した計量チャンバ一 7には多数の噴出口を有するノズ ル 1 4が接続され、 このノズル 1 4は真空チャンバ一 1内に挿入されている。 こ こでノズル 1 4は管状のものでもよいし、 平面的な広がりを有するものであって もよい。 ここで、 噴出口は口径が / オーダーのマイクロノズルの集合体で構成 されるとよい。 そして、 計量チャンバ 7からのガスの導入において、 図 5に矢 印の分布で示すように空間的に不均一なガス流 1 5が生成できるようになってい る。  Further, a vacuum pump 6 for adjusting the degree of vacuum of the vacuum chamber 11 is provided. As shown in FIG. 5, a nozzle 14 having a large number of ejection ports is connected to the measuring chamber 17 described above, and this nozzle 14 is inserted into the vacuum chamber 11. Here, the nozzle 14 may be tubular or may have a planar spread. Here, it is preferable that the ejection port is composed of an aggregate of micro nozzles having a diameter of / order. Then, when the gas is introduced from the measuring chamber 7, a spatially non-uniform gas flow 15 can be generated as shown by the distribution of arrows in FIG.
このようにノズルからのガスの供給量を制御することにより、位置等の諸条件 に起因するプラズマのばらつきを相殺し、均一な分布を形成することも可能であ る。  By controlling the amount of gas supplied from the nozzle in this way, it is possible to offset the variation in plasma caused by various conditions such as the position and to form a uniform distribution.
(第 4の実施の形態) 次に、 本発明の第 4の実施の形態の不純物導入装置を説明する。 この不純物導 入装置は、 図 6に示すように、 ヘリコン波プラズマ、 E C Rプラズマ生成と異な り、 平行平板電極に周波数 1 3 . 5 6 MH zの高周波を印加してプラズマ生成す るものである。 図 5において、 第 1の実施の形態で説明したのと同様に、 真空チ ヤンバー 1内には保持台 4が設けられ被処理基板 5が載置される。 ここで、 導電 体から成る保持台 4には高周波電源 1 6が取り付けられ平行平板電極の一電極と なる。 そして、 対向電極 1 7、 真空チャンバ一 1の真空度を調節する真空ポンプ 6が設けられている。 (Fourth embodiment) Next, an impurity introducing device according to a fourth embodiment of the present invention will be described. As shown in Fig. 6, unlike the helicon wave plasma and ECR plasma generation, this impurity introduction device generates plasma by applying a high frequency of 13.56 MHz to parallel plate electrodes. . In FIG. 5, as described in the first embodiment, a holding table 4 is provided in a vacuum chamber 1 and a substrate 5 to be processed is placed thereon. Here, a high-frequency power supply 16 is attached to the holding base 4 made of a conductor, and serves as one electrode of a parallel plate electrode. Further, a counter pump 17 and a vacuum pump 6 for adjusting the degree of vacuum of the vacuum chamber 11 are provided.
上述した対向電極 1 7には多数の噴出口が設けられ、 ガス導入管 1 8を通して 計量チャンバ一 7に接続している。 ここで、 噴出口は口径が 1 0 x mオーダーの マイクロノズルの集合体で構成される。 そして、 計量チャンバ一 7から真空チヤ ンバー 1へのガス物質導入において、 図 6に示すように空間的に不均一なガス流 1 5が生成できるようになつている。 この例では、 電極を構成する保持台 4およ び対向電極 1 7の周縁部近傍では中心部に比べ電界が弱いため、 周縁部のガス流 1 5がより高濃度となるように調整することにより、 プラズマ分布は基板面内で 均一となる。  The counter electrode 17 described above is provided with a large number of ejection ports, and is connected to the measurement chamber 17 through the gas introduction pipe 18. Here, the ejection port is composed of an aggregate of micro nozzles with a diameter of the order of 10 x m. Then, when introducing the gas substance from the measuring chamber 17 into the vacuum chamber 1, a spatially non-uniform gas flow 15 can be generated as shown in FIG. In this example, since the electric field is weaker in the vicinity of the periphery of the holding base 4 and the counter electrode 17 constituting the electrode than in the center, the gas flow 15 in the periphery should be adjusted to have a higher concentration. As a result, the plasma distribution becomes uniform in the substrate plane.
なお、平行平板電極に並行する磁界を永久磁石等で付加するようにしてもよく、 この場合でも高密度プラズマを容易に生成することができる。 図 6に示す磁界が それを表しており、 同様に高周波による電界も示している。  Note that a magnetic field parallel to the parallel plate electrodes may be applied by a permanent magnet or the like, and even in this case, high-density plasma can be easily generated. The magnetic field shown in Fig. 6 represents this, as well as the electric field due to high frequency.
(第 5の実施の形態) (Fifth embodiment)
次に、 図 7と図 8を参照して第 5の実施の形態について説明する。 この場合で も第 1の実施の形態で説明した方法を基本とするが、 本実施の形態では、 上述し たようにガス物質の導入に空間分布を持たせた点を特徴とする。 通常、 プラズマ 励起に用いる高周波あるいはマイクロ波の電磁エネルギー密度は空間的分布を有 し必ずしも一様ではない等の理由からから、 生成するプラズマには空間分布が生 じる。  Next, a fifth embodiment will be described with reference to FIGS. Even in this case, the method described in the first embodiment is basically used, but the present embodiment is characterized in that the introduction of the gas substance has a spatial distribution as described above. Normally, the generated plasma has a spatial distribution because the electromagnetic energy density of the high frequency or microwave used for plasma excitation has a spatial distribution and is not always uniform.
そこで、この実施の形態では、上記理由によって生じるプラズマの空間分布(以 下、 これをプラズマ分布と呼称する) を相殺するようにガス物質の供給に空間分 布を持たせる。 ここで、 上記のプラズマ分布は周知のプラズマ発光分光測定、 フ ァラディ力ップあるいはラングミュア一プローブ等で計測できる。 Therefore, in this embodiment, the spatial distribution of the gaseous substance is so set as to cancel the spatial distribution of the plasma generated for the above reason (hereinafter referred to as the plasma distribution). Hold the cloth. Here, the above plasma distribution can be measured by well-known plasma emission spectroscopy, Faraday force or Langmuir probe.
図 7に示すように、 保持台 4上に例えば被処理基板 5を载置し静電吸着により 固定させ回転駆動軸 1 3で回転させる。 例えば 2 0 r p mで水平に回転させる。 そして、 真空ポンプ 6を作動させ、 真空チャンバ一 1内の真空度を 1 0 _3 P a程 度にした後、 真空ポンプ 6によるガス排気を停止させる。 このような状態にした 後、 計量チヤンバー 7内の上述した一定量のブラズマ発生用の物質を真空チヤン バー 1内にノズル 1 4を通して導入する。 ここで、 ノズル 1 4には多数のマイク ロノズノレ 1 9が備えられ、 このマイクロノズル 1 9を通して真空チャンバ一 1内 で空間的に不均一なガス流 1 5が生じる。 そして、 被処理基板 5の表面近傍ある いは真空チャンバ一 1内での上記プラズマ発生用の物質の流れが平衡状態になり 準静的な状態に安定した時点で、 電源 3によりプラズマ発生部 2を駆動させて真 空チャンバ一 1内に充満するプラズマ発生用の物質 (ガス物質) をプラズマ励起 する。 As shown in FIG. 7, for example, a substrate 5 to be processed is placed on a holding table 4, fixed by electrostatic attraction, and rotated by a rotation drive shaft 13. For example, rotate horizontally at 20 rpm. Then, the vacuum pump 6 is operated to set the degree of vacuum in the vacuum chamber 11 to about 10 Pa to 3 Pa, and then gas exhaust by the vacuum pump 6 is stopped. After such a state, a certain amount of the above-mentioned substance for generating plasma in the measuring chamber 7 is introduced into the vacuum chamber 1 through the nozzle 14. Here, the nozzle 14 is provided with a large number of micro nozzles 19, and a spatially non-uniform gas flow 15 is generated in the vacuum chamber 11 through the micro nozzle 19. Then, when the flow of the substance for plasma generation in the vicinity of the surface of the substrate 5 to be processed or in the vacuum chamber 11 is in an equilibrium state and is stabilized in a quasi-static state, the plasma generation unit 2 is turned on by the power source 3. Is driven to excite the plasma generating substance (gas substance) filling the vacuum chamber 1 with plasma.
例えば、 このガス物質の流速が所定の値 (換算値: l O O m e V) 以下になる 時点で、 プラズマ発生部を駆動させて真空チャンバ一 1内に不均一に導入したガ ス物質をプラズマ励起する。 このプラズマ励起で電磁エネルギー密度の低い空間 には多量のガス物質が存在し、 電磁エネルギー密度の高い空間には少量のガス物 質が存在するように上記ガス流 1 5を調整する。 そして、 所定の時間 (例えば 1 分間) に亘り被処理基板 5表面をプラズマに曝させる。 後は、 第 1の実施の形態 で説明したのと同様の処理を行う。  For example, when the flow rate of the gaseous substance falls below a predetermined value (converted value: lOOmeV), the plasma generation part is driven to excite the gaseous substance introduced unevenly into the vacuum chamber 11 by plasma excitation. I do. By the plasma excitation, the gas flow 15 is adjusted so that a large amount of gas substance exists in a space having a low electromagnetic energy density and a small amount of gas substance exists in a space having a high electromagnetic energy density. Then, the surface of the substrate 5 is exposed to plasma for a predetermined time (for example, one minute). Thereafter, the same processing as that described in the first embodiment is performed.
この結果について図 8に基づいて説明すると、 図 8 ( a ) に示すように、 ブラ ズマ励起に用いる高周波あるいはマイクロ波の電磁エネルギー密度の空間的分布 等からプラズマ分布が生じる。 すなわち、 プラズマ分布は、 回転する被処理基板 5からみると、 通常では、 同心円状の分布形状になる。 そこで、 このプラズマ励 起の電力分布等によって結果的に生じるプラズマの分布 (イオンやラジカル、 中 性粒子の分布) を相殺するように、 図 8 ( b ) に示すプラズマ発生用の物質 (ガ ス物質) の空間分布を持たせる。 ここで空間分布は、 被処理基板 5表面近傍でのものであってもよいし、 真空チ ヤンバー 1内のものであってもよい。 このようなガス物質の空間分布は、 いわゆ る熱運動を加味したガス流のシミュレーションあるいは試行実験から求める。 こ こで、 この場合も、 回転する被処理基板 5からみたガス物質の空間分布を示して いる。 このような空間分布を有するガス物質をプラズマ励起すると、 図 8 ( c ) に示すように、 被処理基板 5からみると一様な空間分布を有するプラズマが生成 され、 この被処理基板 5は均一なプラズマに曝されるようになる。 このようにし て、 被処理基板 5面内で均一な不純物導入が可能になる。 また、 上述したような マイクロノズルを通したガス物質の供給は、 基体を配置するチャンバ一内におけ る物質の空間的分布を高精度に制御できるようになる。 Explaining this result with reference to FIG. 8, as shown in FIG. 8 (a), a plasma distribution is generated from the spatial distribution of the electromagnetic energy density of the high frequency or microwave used for plasma excitation. That is, when viewed from the rotating substrate 5 to be processed, the plasma distribution usually has a concentric distribution shape. In order to offset the distribution of plasma (distribution of ions, radicals, and neutral particles) resulting from the power distribution and the like of the plasma excitation, the material (gas) for generating plasma shown in Fig. 8 (b) is canceled out. Have a spatial distribution of Here, the spatial distribution may be in the vicinity of the surface of the substrate 5 to be processed, or may be in the vacuum chamber 1. Such a spatial distribution of the gaseous substance is obtained from a simulation or a trial experiment of a gas flow taking into account a so-called thermal motion. Here, also in this case, the spatial distribution of the gaseous substance viewed from the rotating target substrate 5 is shown. When a gas substance having such a spatial distribution is excited by plasma, a plasma having a uniform spatial distribution is generated as viewed from the substrate 5 to be processed, as shown in FIG. 8 (c). It will be exposed to various plasmas. In this way, it is possible to uniformly introduce impurities in the surface of the substrate 5 to be processed. In addition, the supply of the gaseous substance through the micro nozzle as described above makes it possible to control the spatial distribution of the substance in the chamber in which the base is arranged with high precision.
第 1の実施の形態で述べたように、 被処理基板 5へのプラズマ照射により導入 される不純物は、吸着形態あるいは低エネルギ一のィォン注入形態で導入される。 ここで、 吸着形態では、 中性ラジカルのような活性種が化学吸着する。 また、 ィ オン注入形態では、 上記物質のイオン化にしたものが、 プラズマと被処理基板 5 表面に生じるイオンシースあるいは所謂セルフバイアスのような D C電圧で加速 されて注入される。 図 8 ( a ) 乃至 (c ) に示す結果は、 ガス物質の空間分布を 制御することで、 吸着形態での不純物導入も調整できることを示している。  As described in the first embodiment, the impurities introduced by the plasma irradiation on the substrate 5 to be processed are introduced in the form of adsorption or ion implantation with low energy. Here, in the adsorption form, active species such as neutral radicals are chemically adsorbed. In the ion implantation mode, the ionized material is accelerated and implanted by plasma and an ion sheath generated on the surface of the substrate 5 or a DC voltage such as a so-called self-bias. The results shown in FIGS. 8 (a) to 8 (c) show that by controlling the spatial distribution of the gaseous substances, the introduction of impurities in the form of adsorption can also be adjusted.
(第 6の実施の形態) (Sixth embodiment)
次に、 第 6の実施の形態の不純物導入方法について説明する。 この実施の形態 は、 第 3の実施の形態と異なり、 真空チャンバ一 1内に導入するガス物質に意図 的に所定の空間分布をもたせ、 被処理基板 5への不純物ドーズ量が面内で不均一 になるように制御する場合である。 この場合の不純物導入装置は第 2の実施の形 態で説明したものと同様のものを用いればよい。  Next, an impurity introduction method according to the sixth embodiment will be described. This embodiment is different from the third embodiment in that the gas substance introduced into the vacuum chamber 11 is intentionally given a predetermined spatial distribution, and the impurity dose to the substrate 5 to be processed is not in-plane. This is the case where control is performed so as to be uniform. In this case, the same impurity introducing device as that described in the second embodiment may be used.
図 9に示す不純物導入装置の本体部において、 真空チャンバ一 1内に保持台 4 上に例えば被処理基板 5を載置し静電吸着により固定させる。 そして、 図に示す ように真空チャンバ一 1の左下端部の位置に設けられた真空ポンプ 6を作動させ る。 また、 真空チャンバ一 1へのガス物質は、 真空チャンバ一 1の右上端部に設 置したノズル 8を通して計量チャンバ一 7から導入する。 このようにして真空チャンバ一 1内で右上から左下へのガス物質の流れを形成 した後、 電源 3によりプラズマ発生部 2を駆動させて真空チャンバ一 1内に不均 一に導入したガス物質をプラズマ励起する。 In the main body of the impurity introducing apparatus shown in FIG. 9, for example, a substrate 5 to be processed is placed on a holding table 4 in a vacuum chamber 11 and fixed by electrostatic attraction. Then, as shown in the figure, the vacuum pump 6 provided at the lower left end of the vacuum chamber 11 is operated. Further, the gas substance to the vacuum chamber 11 is introduced from the measuring chamber 17 through a nozzle 8 provided at the upper right end of the vacuum chamber 11. After the gas substance flows from the upper right to the lower left in the vacuum chamber 11 in this way, the plasma generator 2 is driven by the power source 3 to uniformly distribute the gas substance introduced into the vacuum chamber 11. Excitation of plasma.
このようにして、 図 9の斜線で模式的に示すように右から左に向かってプラズ マ密度が低くなる偏向プラズマ 2 0が生成される。 そして、 所定の時間 (例えば 1 0秒間) に亘り被処理基板 5表面を偏向プラズマ 2 0に曝させる。 後は、 第 1 の実施の形態で説明したのと同様の処理を行う。  In this way, as shown schematically by the oblique lines in FIG. 9, the deflected plasma 20 whose plasma density decreases from right to left is generated. Then, the surface of the substrate 5 is exposed to the deflected plasma 20 for a predetermined time (for example, 10 seconds). Thereafter, the same processing as that described in the first embodiment is performed.
この結果について図 1 0を参照して説明する。 図 9はボロン不純物を 3 0 0 m ιη φ のシリコンウェハ (被処理基板 5 ) に導入した後のシリコンウェハ面内の不 純物分布である。 被処理基板 5にはシート抵抗分布が示されている。 図 1 0の矢 印の方向にシート抵抗が高くなる。 ここで、 図 1 0に示す被処理基板 5の上部は 図 9において右手側に対応し、 図 1 0に示す被処理基板 5の下部は図 9において 右手側に対応する。 このように、 真空チャンバ一 1内でガス物質の空間分布を持 たせることで、 被処理基板 5面内で所望の不均一性を有する不純物導入が可能に なる。  The result will be described with reference to FIG. FIG. 9 shows the impurity distribution in the silicon wafer surface after the boron impurity was introduced into a silicon wafer of 300 mιηφ (substrate 5 to be processed). The substrate 5 to be processed shows a sheet resistance distribution. The sheet resistance increases in the direction of the arrow in FIG. Here, the upper part of the substrate 5 shown in FIG. 10 corresponds to the right-hand side in FIG. 9, and the lower part of the substrate 5 shown in FIG. 10 corresponds to the right-hand side in FIG. As described above, by imparting a spatial distribution of the gas substance in the vacuum chamber 11, impurities having desired non-uniformity can be introduced in the surface of the substrate 5 to be processed.
図 1 1は、 図 1 0に示すような不均一性を有する不純物導入を行い、 M O S F Ε Τ用のチャネルドープを行った後のトランジスタ特性であり、 ゲート電圧が一 定の場合のドレイン電流とドレイン電圧の関係を示している。ここで、図中の X、 Υはそれぞれ図 1 0に示す Χ、Υ位置の半導体チップの M O S F Ε Τに対応する。 このように、 被処理基板 5への一度の不純物導入で特性の異なる M O S F E Tを 有する半導体チップを多数個製造することが可能になる。  FIG. 11 shows the transistor characteristics after introducing impurities having non-uniformity as shown in FIG. 10 and performing channel doping for the MOSF, and shows the drain current and the drain current when the gate voltage is constant. The relationship between the drain voltages is shown. Here, X and Υ in the figure correspond to the M OS F の of the semiconductor chip at the Χ and Υ positions shown in FIG. 10, respectively. In this way, it becomes possible to manufacture a large number of semiconductor chips having different MOS FETs with different characteristics by introducing impurities into the substrate 5 once.
(第 7の実施の形態) (Seventh embodiment)
次に、 上記第 7の実施の形態の別の不純物導入方法について説明する。 この場 合の不純物導入装置は図 7で示した第 3の実施の形態で説明したものと同様のも のである。 但し、 この場合には、 回転駆動軸 1 3はなく被処理基板 5は回転させ ない。 図 1 1に示す不純物導入装置の本体部において、 真空チャンバ一 1内に保 持台 4上に例えば被処理基板 5を載置し静電吸着により固定させる。 そして、 真 空ポンプ 6を作動させ真空チャンバ一 1内の真空度を 1 0—3 P a程度にした後、 真空ポンプ 6によるガス排気を停止させる。 Next, another impurity introduction method according to the seventh embodiment will be described. The impurity introducing device in this case is the same as that described in the third embodiment shown in FIG. However, in this case, there is no rotary drive shaft 13 and the substrate 5 to be processed is not rotated. In the main body of the impurity introducing apparatus shown in FIG. 11, for example, a substrate 5 to be processed is placed on a holding table 4 in a vacuum chamber 11 and fixed by electrostatic attraction. And true After the empty pump 6 is operated to reduce the degree of vacuum in the vacuum chamber 11 to about 10 to 3 Pa, the gas exhaust by the vacuum pump 6 is stopped.
そして、 計量チャンバ一 7内のプラズマ発生用の物質 (ガス物質) を真空チヤ ンバー 1内にノズル 1 4を通して導入する。 ここで、 ノズル 1 4には多数のマイ クロノズル 1 9が備えられ、 このマイクロノズノレ 1 9を通して真空チャンバ一 1 内で空間的に不均一なガス流 1 5が生じる。 そして、 電源 3によりプラズマ発生 部 2を駆動させて真空チャンバ一 1内に不均一に導入したガス物質をプラズマ励 起し、 所定の時間 (例えば 1 0秒間) に亘り被処理基板 5表面をプラズマに曝さ せる。 後は、 第 1の実施の形態で説明したのと同様の処理を行う。  Then, a substance (gas substance) for plasma generation in the measuring chamber 17 is introduced into the vacuum chamber 1 through the nozzle 14. Here, the nozzle 14 is provided with a large number of micro nozzles 19, and a spatially non-uniform gas flow 15 is generated in the vacuum chamber 11 through the micro nozzles 19. Then, the plasma generating unit 2 is driven by the power source 3 to excite the gas substance introduced non-uniformly into the vacuum chamber 11, and the surface of the substrate 5 to be processed is plasma-treated for a predetermined time (for example, 10 seconds). Exposure. Thereafter, processing similar to that described in the first embodiment is performed.
この結果、 図 1 3に示すように、 ステップ形状のプラズマ密度を有するプラズ マが真空チャンバ一 1内に生成される。 すなわち、 被処理基板 5の左側から右側 にかけて階段状に低下するプラズマを生成できるようになる。 この場合のマイク 口ノズルを通したガス物質の供給は、 基体を配置するチヤンバー内における物質 の空間的分布を高精度に制御できるようになる。 そして、 基体表面の不純物量の 制御およびその分布の自在な制御が更に促進される。  As a result, as shown in FIG. 13, plasma having a step-shaped plasma density is generated in the vacuum chamber 11. That is, it is possible to generate plasma that decreases stepwise from the left side to the right side of the substrate 5 to be processed. In this case, the supply of the gaseous substance through the microphone nozzle can control the spatial distribution of the substance in the chamber in which the substrate is disposed with high precision. Further, control of the amount of impurities on the surface of the base and free control of the distribution thereof are further promoted.
このために、 図 1 0に示した場合よりも高い精度で不均一性のある不純物導入 をすることが可能になる。 そして、 MO S F E Tのチャネルドープ以外にもソー ス- ドレイン領域となる拡散層の形成、ゥエル層の形成が高い精度で実現できる。 本発明の第 7の実施の形態では、 半導体基板表面への不純物導入において基板 面内で不純物の導入量を自在に制御することが容易になるために、同一基板内に、 不純物分布の異なる領域を 1回の不純物導入処理で自在に形成することができる。 従って、 半導体集積回路の形成においては、 マスク合わせのマージンが不要とな り、 より微細化、 高集積化が可能となる。 また、 多品種少量生産の半導体デバイ ス製品への対応が迅速になる。 また、 半導体装置の試作において、 1枚のシリコ ンウェハに異なる多数の条件で不純物導入した半導体チップを形成できるために、 半導体装置製造の最適化が迅速になる。 そして、 半導体装置の製造において顧客 ニーズへの対応の迅速化をはかることが可能となる。  Therefore, it becomes possible to introduce non-uniform impurities with higher precision than the case shown in FIG. In addition to the channel doping of the MOSFET, formation of a diffusion layer serving as a source-drain region and formation of a well layer can be realized with high accuracy. In the seventh embodiment of the present invention, since it is easy to freely control the amount of impurities introduced into the surface of the semiconductor substrate when the impurities are introduced into the surface of the semiconductor substrate, regions having different impurity distributions are formed in the same substrate. Can be freely formed by a single impurity introduction treatment. Therefore, in forming a semiconductor integrated circuit, a margin for mask alignment is not required, and further miniaturization and high integration can be achieved. In addition, the response to high-mix low-volume production of semiconductor device products will be accelerated. In addition, in the trial manufacture of semiconductor devices, semiconductor chips in which impurities are introduced under a number of different conditions can be formed on a single silicon wafer, so that the optimization of semiconductor device manufacturing can be accelerated. In addition, in manufacturing semiconductor devices, it becomes possible to quickly respond to customer needs.
(第 8の実施の形態) 以上の実施の形態では、 半導体デバイスを形成する半導体基板を被処理基板と して説明してきたが、 本発明は、 被処理基板が液晶表示デバイスを形成するマト リックス基板の場合でも全く同様に適用される。 前記第 1の実施の形態で用いた のと同様の不純物導入装置を用いて実現されるが、 大面積基板の場合、 真空チヤ ンバー内でプラズマの励起電力には分布ができ易く、図 14 (a)に示すように、 特に端部が低くなり易い。そこでこの場合には、本発明の第 8の実施の形態として 図 14 (b) に示すように、 ガスの供給量を端部で高めるようにし、 結果として 図 14 (c) に示すように、 均一なプラズマ密度を実現することができる。 従つ て大面積基板を形成することが可能となる。 (Eighth embodiment) In the above embodiments, the semiconductor substrate forming the semiconductor device has been described as the substrate to be processed. However, the present invention is applied to the case where the substrate to be processed is a matrix substrate forming a liquid crystal display device. Is done. This is realized by using the same impurity introduction device as that used in the first embodiment.However, in the case of a large-area substrate, the plasma excitation power is easily distributed in the vacuum chamber, and FIG. As shown in a), the edges are particularly likely to be low. Therefore, in this case, as shown in FIG. 14 (b), the gas supply amount is increased at the end as an eighth embodiment of the present invention, and as a result, as shown in FIG. 14 (c), A uniform plasma density can be realized. Therefore, a large-area substrate can be formed.
また、 本発明は、 上記の実施の形態に限定されることなく、 本発明の技術思想 の範囲内において、 実施の形態は適宜に変更可能である。 例えば、 第 3、 第 7の 実施の形態においては、 真空チャンバ一 1内に計量チャンバ一 7から一定量のプ ラズマ発生用の物質 (ガス物質) を導入してそれをプラズマ励起する場合につい て記載しているが、 計量チャンバ一 7を通さずに供給装置 9からマスフローコン トローラー 10を通してガス物質を導入しても同様な効果が生じる。 この場合に は、 真空ポンプ 6を作動させガス物質を排気しながらプラズマ励起を行ってもよ い。 この場合の不純物ドープ量は、 マスフローコントローラー 10から積算して 求めたガス物質の総導入量により制御できる。 また、 本発明の不純物導入装置の 特徴は、 急速処理が可能なことである。 そこで、 プラズマ発生部 2は I CP ( I n d u c t i v e C o u l e d P l a s ma) のように高密度プラズマを 生成するものにしてもよい。 但し、 この場合においても、 前述したように高速な 応答ができるようにする必要がある。  Further, the present invention is not limited to the above embodiments, and the embodiments can be appropriately changed within the scope of the technical idea of the present invention. For example, in the third and seventh embodiments, a case where a certain amount of a plasma generating substance (gas substance) is introduced from the measuring chamber 17 into the vacuum chamber 11 and the plasma is excited therefrom. Although described, a similar effect is produced even if a gaseous substance is introduced from the supply device 9 through the mass flow controller 10 without passing through the measuring chamber 17. In this case, plasma excitation may be performed while operating the vacuum pump 6 to exhaust gas substances. In this case, the impurity doping amount can be controlled by the total introduction amount of the gas substance obtained by integrating from the mass flow controller 10. A feature of the impurity introduction device of the present invention is that rapid treatment is possible. Therefore, the plasma generation unit 2 may generate a high-density plasma such as ICP (Inductiv eCooledPla sma). However, even in this case, it is necessary to enable a high-speed response as described above.
なお、 前記実施の形態では、 減圧下で不純物を導入する方法について説明した 力 常圧下で導入することも可能である。 本発明を詳細にまた特定の実施態様を参照して説明したが、 本発明の精神と範 囲を逸脱することなく様々な変更や修正を加えることができることは当業者にと つて明らかである。  In the above embodiment, the method of introducing impurities under reduced pressure has been described. It is also possible to introduce impurities under normal pressure. Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
本出願は、 2003年 6月 9日出願の日本特許出願 Ν 2003-164249、に基づくもの であり、 その内容はここに参照として取り込まれる。 ぐ産業上の利用可能性〉 This application is based on Japanese Patent Application No. 2003-164249 filed on June 9, 2003 And its contents are hereby incorporated by reference. Industrial applicability>
以上のように本発明は、 不純物を含有する物質をプラズマ励起し、 励起された 上記物質より不純物を基体内に導入する不純物導入方法であって、 基体を配置し たチャンバ一内における物質の空間分布を、 プラズマ分布に応じて調整する。 あるいは、 本発明の不純物導入方法は、 上記基体表面近傍における物質の分布 力 プラズマ分布に応じた分布をもつように調整して上記物質をチャンバ一内に 供給する工程と、 上記物質が基体表面で平衡状態となつた後にプラズマを発生さ せる工程とを含んでいる。  As described above, the present invention relates to an impurity introduction method for plasma-exciting a substance containing an impurity and introducing an impurity into the substrate from the excited substance, wherein the space of the substance in one chamber in which the substrate is disposed is provided. Adjust the distribution according to the plasma distribution. Alternatively, the impurity introduction method of the present invention comprises the steps of: adjusting the distribution of the substance in the vicinity of the substrate surface to have a distribution corresponding to the plasma distribution, and supplying the substance into the chamber; Generating a plasma after reaching an equilibrium state.
このために、 本発明は、 高周波あるいはマイクロ波等のプラズマ励起のための 電力などの空間的均一性が悪くても、 基体表面から極めて浅い領域に非常に均一 性の高い不純物導入が可能を可能にするという効果を有する不純物導入方法を提 供することができるものである。  For this reason, the present invention enables the introduction of highly uniform impurities into an extremely shallow region from the substrate surface, even if the spatial uniformity of power for plasma excitation such as high frequency or microwave is poor. It is possible to provide an impurity introduction method having an effect of reducing the impurity concentration.

Claims

請 求 の 範 囲 The scope of the claims
1 . 導入すべき不純物を含有する物質をプラズマ励起し、 励起された前記物 質から前記不純物のプラズマを基体内に導入する不純物導入方法であって、 前記プラズマの分布の少なくとも一部を相殺し得るように、 前記基体表面近傍 における前記物質の分布を調整するようにしたことを特徴とする不純物導入方法。 1. An impurity introduction method for exciting a substance containing an impurity to be introduced by plasma, and introducing a plasma of the impurity into the substrate from the excited substance, wherein at least a part of the distribution of the plasma is offset. A method of introducing impurities, wherein the distribution of the substance in the vicinity of the surface of the substrate is adjusted so as to obtain.
2 . 請求の範囲第 1項に記載の不純物導入方法であって、  2. The method for introducing impurities according to claim 1, wherein
前記基体表面近傍における前記物質の分布が、 前記プラズマの分布の少なくと も一部を相殺しうるように調整して前記物質を前記基体を配置したチヤンバー内 に供給する工程と、  Adjusting the distribution of the substance in the vicinity of the surface of the substrate so that at least a part of the distribution of the plasma can be offset, and supplying the substance into a chamber in which the substrate is disposed;
前記物質が前記基体表面で平衡状態となった後にブラズマを発生させる工程と を含む不純物導入方法。  Generating plasma after the substance is in an equilibrium state on the substrate surface.
3 . 請求の範囲第 2項に記載の不純物導入方法であって、  3. The method for introducing impurities according to claim 2, wherein
前記物質を供給する工程は、 前記基体に導入される前記不純物が均一となるよ うに調整される不純物導入方法。  The step of supplying the substance is an impurity introduction method in which the impurity introduced into the base is adjusted to be uniform.
4 . 請求の範囲第 2項に記載の不純物導入方法であって、  4. The method for introducing impurities according to claim 2, wherein
前記物質を供給する工程は、 前記基体に導入される不純物が所定の分布をもつ ように調整される不純物導入方法。  The step of supplying the substance is a method of introducing impurities in which impurities introduced into the base are adjusted to have a predetermined distribution.
5 . 請求の範囲第 1項乃至第 4項のいずれかに記載の不純物導入方法であつ て、  5. The method for introducing impurities according to any one of claims 1 to 4, wherein
前記物質の供給を停止させた状態でプラズマを発生させることを特徴とする不 純物導入方法。  A method for introducing impurities, wherein plasma is generated while the supply of the substance is stopped.
6 . 請求の範囲第 1項乃至第 4項のいずれかに記載の不純物導入方法であつ て、  6. The method for introducing impurities according to any one of claims 1 to 4, wherein
前記物質の供給および排出を停止させた状態でプラズマを発生させることを特 徴とする不純物導入方法。  A method of introducing impurities, characterized in that plasma is generated while supply and discharge of the substance are stopped.
7 . 不純物を含有する物質をプラズマ励起し、 励起された前記物質より前記 不純物を基体内に導入する不純物導入方法であって、 前記基体を配置したチャンバ一内への前記物質の供給を停止させた状態でブラ ズマを発生させることを特徴とする不純物導入方法。 7. An impurity introducing method, comprising: plasma-exciting a substance containing an impurity; and introducing the impurity into the substrate from the excited substance, A method of introducing impurities, wherein plasma is generated in a state where supply of the substance into one chamber in which the substrate is disposed is stopped.
8 . 不純物を含有する物質をプラズマ励起し、 励起された前記物質より前記 不純物を基体内に導入する不純物導入方法であって、  8. A method for introducing an impurity into a substrate, wherein the material containing the impurity is plasma-excited, and the impurity is introduced into the substrate from the excited material,
前記基体を配置したチャンバ一内への前記物質の供給およびその排出を停止さ せた状態でプラズマを発生させることを特徴とする不純物導入方法。  A method of introducing impurities, wherein plasma is generated in a state in which supply and discharge of the substance into and out of a chamber in which the substrate is disposed are stopped.
9 . 不純物を含有する物質をプラズマ励起し、 励起された前記物質より前記 不純物を基体内に導入する不純物導入方法であって、  9. A method for introducing an impurity into a substrate, comprising exciting a substance containing an impurity by plasma, and introducing the impurity into the substrate from the excited substance.
前記基体を配置したチャンバ一内に供給した前記物質が前記基体表面で平衡状 態となつた後にブラズマを発生させることを特徴とする不純物導入方法。  An impurity introduction method, characterized in that plasma is generated after the substance supplied into one of the chambers in which the substrate is placed is in an equilibrium state on the surface of the substrate.
1 0 . 請求の範囲第 1項乃至第 9項のいずれかに記載の不純物導入方法であ つて、  10. The method for introducing impurities according to any one of claims 1 to 9, wherein
前記物質の流速が換算速度で 1 0 O m e V以下となったのち、 プラズマを発生 させることを特徴とする不純物導入方法。  Plasma is generated after the flow rate of the substance becomes equal to or less than 10 OmeV in terms of a conversion rate, and plasma is generated.
1 1 . 請求の範囲第 1項乃至第 1 0項のいずれかに記載の不純物導入方法で あって、  11. The method for introducing impurities according to any one of claims 1 to 10, wherein
前記基体を配置したチャンパ一内に前記物質を一定量供給した後にプラズマを 発生させることを特徴とする不純物導入方法。  A method of introducing impurities, comprising: generating plasma after supplying a certain amount of the substance into a champer on which the base is arranged.
1 2 . 請求の範囲第 1 1項に記載の不純物導入方法であって、  12. The method for introducing impurities according to claim 11, wherein
供給する前記物質の一定量は前記基体に導入する不純物量に応じて決定される ことをすることを特徴とする不純物導入方法。  The method of introducing impurities, wherein a certain amount of the substance to be supplied is determined according to an amount of impurities to be introduced into the substrate.
1 3 . 請求の範囲第 1項乃至第 1 2項のいずれかに記載の不純物導入方法で あって、  13. The method for introducing impurities according to any one of claims 1 to 12, wherein
前記基体を配置したチヤンバー内への前記物質の供給はマイクロノズルを介し て、 前記不純物の分布を調整しつつ行うことを特徴とする不純物導入方法。  The method of introducing impurities, wherein the supply of the substance into the chamber in which the substrate is disposed is performed through a micro nozzle while adjusting the distribution of the impurities.
1 4 . 請求の範囲第 1項乃至第 1 3項のいずれかに記載の不純物導入方法で あって、  14. The method for introducing impurities according to any one of claims 1 to 13, wherein
前記物質は、 気体である不純物導入方法。  The method for introducing impurities, wherein the substance is a gas.
1 5, 請求の範囲第 1 4項に記載の不純物導入方法であって、 前記気体は、 B 2 H6、 B F 3、 A s H3、 P H3のいずれかを含む不純物導入方 法。 15. The method for introducing impurities according to claim 14, wherein: A method for introducing impurities into which the gas contains any of B 2 H 6 , BF 3 , As H 3 , and PH 3 .
1 6 . 請求の範囲第 1項乃至第 1 3項のいずれかに記載の不純物導入方法で あって、  16. The method for introducing impurities according to any one of claims 1 to 13, wherein
前記物質は、 微粒子である不純物導入方法。  The impurity introducing method, wherein the substance is fine particles.
1 7 . 請求の範囲第 1項乃至第 1 3項のいずれかに記載の不純物導入方法で あって、  17. The method for introducing impurities according to any one of claims 1 to 13, wherein
前記物質は、 微細液滴である不純物導入方法。  The method for introducing impurities, wherein the substance is a fine droplet.
1 8 . 請求の範囲第 1 6項または第 1 7項に記載の不純物導入方法であって、 前記微粒子は、 B、 A s、 P、 S b , I n , A 1のいずれかを含む不純物導入 方法。  18. The method for introducing impurities according to claim 16 or claim 17, wherein the fine particles contain any one of B, As, P, Sb, In, and A1. Introduction method.
1 9 . 不純物を含有する物質をプラズマ励起し、 励起された前記物質より前 記不純物を基体内に導入する不純物導入装置であって、  19. An impurity introducing apparatus for exciting a substance containing an impurity by plasma and introducing the impurity into the substrate from the excited substance,
前記基体を配置するチャンバ一と、  A chamber for disposing the substrate,
前記チャンバ一内へ前記物質を供給する手段と、  Means for supplying the substance into the chamber;
前記チャンバ一内を真空排気する手段と、  Means for evacuating the inside of the chamber,
前記物質を平衡状態に維持しつつ、 ブラズマ化するブラズマ発生手段とを備え ていることを特徴とする不純物導入装置。  An impurity introduction device, comprising: a plasma generating means for performing plasma while maintaining the substance in an equilibrium state.
2 0 . 請求の範囲第 1 9項に記載の不純物導入装置であって、  20. The impurity introducing apparatus according to claim 19, wherein
前記物質を供給する手段は、 前記物質を計量し貯蔵する機構を有していること を特徴とする不純物導入装置。  An impurity introduction device, wherein the means for supplying the substance has a mechanism for measuring and storing the substance.
2 1 . 請求の範囲第 2 0項に記載の不純物導入装置であって、  21. The impurity introducing apparatus according to claim 20, wherein
前記物質を計量し貯蔵する機構は、 貯蔵容器の容積、 圧力、 温度を制御し前記 物質を一定量に保持することを特徴とする不純物導入装置。  A mechanism for measuring and storing the substance, wherein the apparatus controls the volume, pressure, and temperature of a storage container to maintain the substance at a constant amount.
2 2 . 請求の範囲第 2 0項乃至第 2 1項に記載の不純物導入装置であって、 前記物質を計量し貯蔵するための容器は、 前記基体に導入する不純物量に対応 した量の物質が貯蔵できるようになっていることを特徴とする不純物導入装置。  22. The impurity introducing apparatus according to claim 20, wherein the container for measuring and storing the substance comprises a substance having an amount corresponding to an impurity amount introduced into the base. Impurity introducing device, characterized in that the impurity introducing device can be stored.
2 3 . 請求の範囲第 1 9項乃至第 2 2項のいずれかに記載の不純物導入装置 であって、 前記物質は、 気体、 微粒子あるいは微細液滴である不純物導入装置。 23. The impurity introducing apparatus according to any one of claims 19 to 22, wherein An impurity introducing device, wherein the substance is a gas, fine particles or fine droplets.
2 4 . 請求の範囲第 1項乃至第 1 8項のいずれかに記載の不純物導入方法に おいて、  24. In the impurity introducing method according to any one of claims 1 to 18,
前記物質の挙動をシミュレーショ ンする工程を含み、  Simulating the behavior of the substance,
前記シミュレーション結果に基づいて、 前記プラズマを発生させるタイミング を調整するようにした不純物導入方法。  An impurity introduction method wherein the timing for generating the plasma is adjusted based on the simulation result.
2 5 . 請求の範囲第 1項乃至第 1 8項、 第 2 4項のいずれかに記載の不純物 導入方法または請求の範囲第 1 5項乃至第 2 3項のいずれかに記載の不純物導入 装置を用いて形成される半導体装置であって、  25. The method for introducing an impurity according to any one of claims 1 to 18 and 24 or the apparatus for introducing an impurity according to any one of claims 15 to 23. A semiconductor device formed by using
前記不純物の導入によって形成された素子領域をもつ半導体装置。  A semiconductor device having an element region formed by introducing the impurity.
2 6 . 請求の範囲第 2 5項に記載の半導体装置であって、  26. The semiconductor device according to claim 25, wherein
前記素子領域は複数の異なる不純物プロファイルをもつ不純物導入領域を含む ことを特徴とする半導体装置。  The semiconductor device according to claim 1, wherein the element region includes a plurality of impurity introduction regions having different impurity profiles.
PCT/JP2004/008281 2003-06-09 2004-06-08 Impurity doping method, impurity doping apparatus and semiconductor device produced by using same WO2004109785A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003164249A JP2005005328A (en) 2003-06-09 2003-06-09 Method and apparatus for introducing impurity and semiconductor device formed using the same
JP2003-164249 2003-06-09

Publications (1)

Publication Number Publication Date
WO2004109785A1 true WO2004109785A1 (en) 2004-12-16

Family

ID=33508782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008281 WO2004109785A1 (en) 2003-06-09 2004-06-08 Impurity doping method, impurity doping apparatus and semiconductor device produced by using same

Country Status (4)

Country Link
JP (1) JP2005005328A (en)
CN (1) CN1806314A (en)
TW (1) TW200504785A (en)
WO (1) WO2004109785A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106872A1 (en) * 2005-03-30 2006-10-12 Matsushita Electric Industrial Co., Ltd. Plasma doping method and system
WO2006114976A1 (en) * 2005-03-30 2006-11-02 Matsushita Electric Industrial Co., Ltd. Plasma doping method and plasma processing equipment
US7348264B2 (en) 2004-12-13 2008-03-25 Matsushita Electric Industrial Co., Ltd. Plasma doping method
US7358511B2 (en) 2005-05-12 2008-04-15 Matsushita Electric Industrial Co., Ltd. Plasma doping method and plasma doping apparatus
US7972945B2 (en) 2007-12-28 2011-07-05 Panasonic Corporation Plasma doping apparatus and method, and method for manufacturing semiconductor device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101151710A (en) 2005-03-28 2008-03-26 松下电器产业株式会社 Plasma doping method and device used for this
CN101151711A (en) * 2005-03-31 2008-03-26 松下电器产业株式会社 Plasma doping method and apparatus
US8383496B2 (en) 2008-08-15 2013-02-26 Kazuhiko Tonari Plasma doping method and manufacturing method of semiconductor device
JP5810357B2 (en) * 2011-02-21 2015-11-11 株式会社サンケイエンジニアリング Film forming method and film forming apparatus
JP7050139B2 (en) * 2020-12-14 2022-04-07 東京エレクトロン株式会社 Board processing equipment and measurement board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971866A (en) * 1995-09-01 1997-03-18 Hitachi Ltd Reduced pressure cvd apparatus
JPH11278987A (en) * 1998-01-27 1999-10-12 Mitsubishi Materials Polycrystalline Silicon Corp Supply of gas for epitaxial growth and device therefor
JP2000090871A (en) * 1998-09-16 2000-03-31 Seiko Epson Corp Doping method and device thereof
JP2003013237A (en) * 2001-06-28 2003-01-15 Kobe Steel Ltd Plasma film-forming apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2553556B2 (en) * 1987-06-04 1996-11-13 松下電器産業株式会社 Impurity doping method and apparatus
US6020592A (en) * 1998-08-03 2000-02-01 Varian Semiconductor Equipment Associates, Inc. Dose monitor for plasma doping system
JP2000054150A (en) * 1998-08-07 2000-02-22 Hitachi Ltd Plasma treating device and plasma treating method
KR20020019596A (en) * 1999-08-06 2002-03-12 브라이언 알. 바흐맨 System and method for providing implant dose uniformity across the surface of a substrate
JP2002043243A (en) * 2000-07-26 2002-02-08 Matsushita Electric Ind Co Ltd Ion doping apparatus and thin film semiconductor manufactured by using the same and display
JP3911997B2 (en) * 2000-12-04 2007-05-09 松下電器産業株式会社 Plasma doping equipment
JP2002231650A (en) * 2001-01-31 2002-08-16 Toshiba Corp Ion processor
WO2002084724A1 (en) * 2001-04-09 2002-10-24 Matsushita Electric Industrial Co., Ltd. Method for surface treatment and system for fabricating semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971866A (en) * 1995-09-01 1997-03-18 Hitachi Ltd Reduced pressure cvd apparatus
JPH11278987A (en) * 1998-01-27 1999-10-12 Mitsubishi Materials Polycrystalline Silicon Corp Supply of gas for epitaxial growth and device therefor
JP2000090871A (en) * 1998-09-16 2000-03-31 Seiko Epson Corp Doping method and device thereof
JP2003013237A (en) * 2001-06-28 2003-01-15 Kobe Steel Ltd Plasma film-forming apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7348264B2 (en) 2004-12-13 2008-03-25 Matsushita Electric Industrial Co., Ltd. Plasma doping method
US7407874B2 (en) 2004-12-13 2008-08-05 Matsushita Electric Industrial Co., Ltd. Plasma doping method
WO2006106872A1 (en) * 2005-03-30 2006-10-12 Matsushita Electric Industrial Co., Ltd. Plasma doping method and system
WO2006114976A1 (en) * 2005-03-30 2006-11-02 Matsushita Electric Industrial Co., Ltd. Plasma doping method and plasma processing equipment
JP4979576B2 (en) * 2005-03-30 2012-07-18 パナソニック株式会社 Plasma doping method and plasma processing apparatus
US8257501B2 (en) 2005-03-30 2012-09-04 Panasonic Corporation Plasma doping device with gate shutter
JP5055114B2 (en) * 2005-03-30 2012-10-24 パナソニック株式会社 Plasma doping method
US8652953B2 (en) 2005-03-30 2014-02-18 Panasonic Corporation Plasma doping method with gate shutter
US7358511B2 (en) 2005-05-12 2008-04-15 Matsushita Electric Industrial Co., Ltd. Plasma doping method and plasma doping apparatus
US7972945B2 (en) 2007-12-28 2011-07-05 Panasonic Corporation Plasma doping apparatus and method, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
TW200504785A (en) 2005-02-01
JP2005005328A (en) 2005-01-06
CN1806314A (en) 2006-07-19

Similar Documents

Publication Publication Date Title
US7682954B2 (en) Method of impurity introduction, impurity introduction apparatus and semiconductor device produced with use of the method
JP5102495B2 (en) Plasma doping method
TWI385718B (en) Plasma doping method
US8889534B1 (en) Solid state source introduction of dopants and additives for a plasma doping process
JP5237820B2 (en) Plasma doping method
US20130323916A1 (en) Plasma doping method and apparatus
JP2004179592A (en) Method for plasma doping and device manufactured using the same
WO2004109785A1 (en) Impurity doping method, impurity doping apparatus and semiconductor device produced by using same
CN101053066B (en) Plasma processing method and plasma processing apparatus
CN111527591A (en) Plasma etching method and plasma etching apparatus
JP5097538B2 (en) Plasma doping method and apparatus used therefor
KR20070075138A (en) Plasma processing equipment
US20110097516A1 (en) Plasma processing apparatus and plasma processing method
JP4634581B2 (en) Sputtering method, surface treatment method, sputtering apparatus and surface treatment apparatus
JP4622275B2 (en) Impurity introduction method
JP2010267670A (en) Plasma processing method
JP2022148647A (en) Substrate treatment method
WO2005117080A1 (en) Plasma generator, plasma processing apparatus using same and electronic device
JP2007189137A (en) Ion-doping equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 20048161934

Country of ref document: CN

122 Ep: pct application non-entry in european phase