WO2005117080A1 - Plasma generator, plasma processing apparatus using same and electronic device - Google Patents

Plasma generator, plasma processing apparatus using same and electronic device Download PDF

Info

Publication number
WO2005117080A1
WO2005117080A1 PCT/JP2005/009459 JP2005009459W WO2005117080A1 WO 2005117080 A1 WO2005117080 A1 WO 2005117080A1 JP 2005009459 W JP2005009459 W JP 2005009459W WO 2005117080 A1 WO2005117080 A1 WO 2005117080A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
temperature
plasma generator
generator according
chamber
Prior art date
Application number
PCT/JP2005/009459
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Ito
Bunji Mizuno
Yuichiro Sasaki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2005117080A1 publication Critical patent/WO2005117080A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature

Definitions

  • Plasma generator Plasma generator, plasma processing apparatus using the same, and electronic equipment
  • the present invention relates to a plasma generator, a plasma processing apparatus and an electronic apparatus using the same, and more particularly to a method of applying a kinetic energy after ionizing a substance, and particularly using ion implantation, plasma doping, and the like. It relates to temperature control in surface treatment such as plasma surface treatment.
  • a switching transistor composed of a thin film transistor is also being miniaturized. Under such circumstances, the amount of current flowing through the transistor tends to increase, for example, the energy of ions required in forming the source and drain regions of the transistor is low, such as low energy current.
  • FIG. 8 is a sectional structural view of a main part of a microwave plasma source for an ion implanter.
  • a high frequency wave 120 is introduced into a waveguide 110 connected to the plasma chamber 100 and guided through the plasma chamber 100. This energy is controlled by the solenoid coil 130 so that there is no loss, and plasma is generated in the plasma chamber 100. Pull it out to get ion beam 140 You can do it.
  • the present invention has a temperature control function in or near a plasma chamber having an ion source.
  • a channel for passing the refrigerant and a heater for heating are provided on a part or all of the wall forming the plasma chamber of the plasma source, or a temperature control plate that can be in close contact with or close to the plasma chamber is provided near the plasma chamber.
  • a plasma generating apparatus of the present invention includes a plasma generating chamber, plasma generating means for generating plasma in the plasma generating chamber, and temperature adjusting means for adjusting the temperature of plasma generated by the plasma generating means. It is characterized by having done.
  • the plasma chamber can be cooled and the temperature of the external field in contact with the plasma, that is, the temperature of the wall of the plasma chamber can be reduced, so that the plasma can be generated with high efficiency.
  • the plasma generator of the present invention includes a plasma generator in which the temperature adjusting means adjusts the temperature of a raw material gas for generating plasma.
  • a desired plasma source can be efficiently obtained by controlling the temperature of the source gas.
  • the plasma generator of the present invention includes a plasma generator in which the temperature adjusting means is provided in the plasma generation chamber.
  • the plasma generator of the present invention includes one in which the temperature adjusting means is provided on a wall of the plasma generation chamber.
  • the temperature can be more efficiently adjusted by adjusting the temperature of the outside world in contact with the plasma, that is, the temperature of the wall of the plasma chamber.
  • the temperature adjusting means is a temperature adjusting block disposed so as to surround the plasma generating chamber.
  • the temperature can be more efficiently adjusted by being detachable, easy to handle, and by adjusting the distance to the plasma generation chamber or by inserting a member whose thermal conductivity is adjusted between them. Can be.
  • the temperature adjustment block can adjust an interval between the temperature adjustment block and the plasma generation chamber.
  • the temperature adjustment unit is provided in the plasma generation unit. It is characterized by being beaten.
  • the plasma generator of the present invention includes a plasma generator in which the temperature adjusting means is provided on a filament constituting the plasma generating means.
  • the plasma generator of the present invention includes a plasma generator in which the temperature adjusting means is arranged near the filament.
  • the plasma generating apparatus of the present invention includes an apparatus for performing temperature adjustment so that the temperature adjusting means can obtain a predetermined beam current.
  • the plasma density can be controlled with high accuracy.
  • the plasma generator of the present invention includes one in which the temperature adjusting means is capable of adjusting a flow rate of a fluid as a heat medium.
  • the temperature can be adjusted only by adjusting the flow rate of the fluid serving as the heat medium.
  • the plasma generator of the present invention includes a plasma generator in which the temperature adjusting means is capable of adjusting the thermal conductivity of a fluid as a heat medium.
  • the plasma generator of the present invention includes one in which the temperature adjusting means is capable of controlling the temperature by a spatial position.
  • the plasma generating apparatus of the present invention includes an apparatus configured to perform plasma processing on a substrate to be processed.
  • the method for manufacturing an electronic device of the present invention includes a step of forming an electronic device by performing a plasma treatment on a substrate to be processed.
  • An electronic device of the present invention uses the above-described plasma generator to generate a plasma on a substrate to be processed. It is formed by performing processing.
  • the plasma generator of the present invention includes the following.
  • a plasma generator having a temperature adjustment function (1) A plasma generator having a temperature adjustment function.
  • the plasma generator having a temperature control function, wherein the type of the plasma generator is a high-frequency plasma generator.
  • a method for producing an electronic device characterized in that the electronic device is produced using the above-mentioned mechanical device or a mechanical device having characteristics of a plasma generator of this mechanical device.
  • FIG. 1 is a three-dimensional structural view of an example in which a cooling and heating mechanism is embedded in a constituent wall of a plasma chamber.
  • FIG. 2 is a cross-sectional view from three directions of an example in which a cooling and heating mechanism is embedded in a constituent wall of a plasma chamber.
  • FIG. 3 is a three-dimensional structure diagram of an example in which a temperature control panel is installed near the plasma chamber.
  • FIG. 4 is a cross-sectional structure diagram of an example in which a temperature control panel is installed near the plasma chamber.
  • FIG. 5 is a cross-sectional structural view from three directions of an example in which a cooling and heating mechanism is embedded in a constituent wall of a plasma chamber of a DC plasma generator requiring a filament.
  • Fig. 6 is a sectional structural view for explaining an ion implanter.
  • FIG. 7 is a sectional structural view for explaining the basic principle of plasma doping.
  • this high-frequency plasma generator is a three-dimensional structure diagram of the plasma chamber 100 taken out of FIG. 8 described in the background art, and FIG. It is represented by a sectional view.
  • a part or all of the plasma chamber 100 connected to the high-frequency waveguide is made of ceramic, an electrical insulator, or the like so that high-frequency waves can enter.
  • a gas that is a source of generating plasma is introduced into the plasma chamber.
  • a substance that is difficult to obtain in a gas state is introduced in a solid or liquid state (material introduction means such as gas is expressed in a drawing,,,,).
  • the introduced substance is supplied to the plasma chamber in the form of gas or other gasified or mixed gas, and is energized by high frequency to generate plasma.
  • a channel is formed in a plasma chamber, and a coolant or a fluid having good heat conductivity is flowed and cooled using the channel.
  • a good material for the plasma chamber is selected in consideration of thermal conductivity. That is, in FIG. 1, for example, a cooling pipe 160 is pierced in the constituent material of the plasma chamber 100, and a path is provided in another part, and a heater 170 is installed here. As described above, the cooling or heating is performed by the cooling pipe 160 and the heater 170, but the cooling pipe 160 and the heater 170 can be installed at the same time. It is also possible to control its own temperature by feedback-controlling the current flowing through the temperature monitor 180 via the temperature monitor 180.
  • a device 180 having a temperature monitoring function was embedded in the constituent wall of the plasma chamber 100. This may be brought into contact, or a method such as measuring infrared rays without contact may be adopted.
  • Fig. 2 is an exploded view of the three-dimensional structure diagram of Fig. 1 is there. Looking at the top view, there is a wall constituting the plasma chamber around the plasma chamber, and the cooling pipe 160, the heater 170, and the temperature monitoring device 180 are installed inside the wall.
  • the desired molecular ions are obtained by controlling the wall temperature of the plasma chamber using this apparatus.
  • the cooling function is mainly used, and the temperature is controlled using the cooling pipe 160 and the heater 170 while feeding back via the temperature monitoring device 180 so that the wall temperature can be maintained at 100 ° C. .
  • a second method for adjusting the temperature of the wall of the plasma chamber is employed. This method will be described with reference to FIGS.
  • This method uses a functional component equipped with a temperature control plate 200 as a cooling mechanism adjacent to the plasma chamber when it is difficult or inappropriate to secure a flow path inside the plasma chamber due to the nature of the material of the plasma chamber. It is installed, and He, which is a gas with good thermal conductivity, is flowed through the gap 210 between the plasma chamber and the functional components to remove heat and cool it.
  • the temperature control plate 200 as described above, the cooling pipe 160 and the heater 170 are installed.
  • FIG. 4 is a sectional structural view of the three-dimensional structural view of FIG. 3 as viewed from one direction.
  • the cooling function is mainly used, and the temperature is controlled using the cooling pipe 160 and the heater 170 while feeding back via the temperature monitoring device 180 so that the wall temperature can be maintained at 100 ° C. .
  • the distance between the plasma chamber and the temperature control plate 200 can be changed mechanically. Thereby, the gap 210 between the plasma chamber 100 and the temperature control plate 200 can be adjusted, and the distance related to heat conduction can be controlled to achieve a predetermined wall temperature. Also, the gap between the plasma chamber 100 and the temperature control plate 200 It is also possible to set 10 to zero and make it completely in contact.
  • the force using He as a gas having good heat conductivity is not limited to He, and can be appropriately selected.
  • Cooling and heating can be similarly realized using a similar device, but in the case of heating, as a third method, radiant heating can be performed using an infrared lamp 220 as shown in FIG. That is, a functional component capable of holding a heating means such as an infrared lamp is installed, and the temperature is increased mainly by radiant heat.
  • the wall temperature of the plasma chamber 100 rises, and even in a high-frequency plasma generator, it becomes possible to generate an atom ion plasma predominantly.
  • a molecular ion plasma in a DC plasma generator having a filament 224, can be generated by cooling the filament 224 by flowing a coolant through a cooling pipe 160. it can.
  • DC plasma generators with filaments are widely used as plasma sources in semiconductor ion implanters.
  • the main purpose of this device is to generate a large amount of atomic ion plasma, The goal was to accelerate the ions to high energy and implant them into the semiconductor substrate.
  • thermoelectrons are generated to generate plasma.
  • a channel is formed in the constituent wall of the plasma chamber 100 to function as a cooling pipe 160, and a fluid such as a refrigerant is introduced into the cooling chamber 160 for cooling. Is it difficult to drill a channel directly into the plasma chamber?
  • a temperature control plate including a cooling pipe 160 and the like may be provided.
  • introduction of a gas having high thermal conductivity, such as helium, partially into the plasma chamber is also effective for cooling the plasma chamber.
  • the plasma can be controlled by adjusting the temperature of the filament.
  • the ion implanter has, as a rule, an electromagnetic field application mechanism for separating energy and substances by using the plasma source described above as a source of ions.
  • the purpose is to inject a necessary substance with a predetermined energy into a target object, for example, a silicon semiconductor substrate in the semiconductor industry.
  • a plasma source 230 is used as an ion source, and the generated ions are extracted by an extraction electrode 240. It is extracted to form an ion beam 140. In order to analyze this beam, the energy is adjusted to a predetermined energy by the post-acceleration / deceleration electrode 270 via the mass analysis magnet 260, and arrives at the antenna 280. Since the ion implanter is a vacuum device, several vacuum pumps 290 are installed, and a charge neutralization device 300 for neutralizing the charge of ions is installed.
  • Example 1 of the present invention describes an example in which BH was introduced as a gas for plasma generation.
  • boron atomic ions are introduced into the semiconductor substrate as B + or BF +.
  • a plasma density of 10 14 3 2 6 is obtained, a current amount 10 times equivalent can be obtained equivalently, and doping can be performed with energy reduced to 1/10.
  • the current amount of a 1 KEV ion implanter that can be used industrially is IMA, doping can be equivalently performed at 10 MA with energy of 100 EV.
  • the original density of the plasma source decreases, the original purpose cannot be achieved.
  • the device for the plasma chamber of the present invention is adopted, and if the plasma source 230 described in Fig. 6 is replaced with the plasma generator already described in the present invention, the limited plasma chamber of the same ion implanter is used. It is possible to efficiently generate the plasma density obtained with the size of. Therefore, even if molecular ions are generated, a sufficiently large amount of current can be obtained. In addition, if the plasma generator can be mounted on an ion implanter already in use, the life of the apparatus can be extended and waste can be reduced.
  • FIG. 7 is a conceptual cross-sectional view in which a wafer 280 as an object to be processed is installed inside the plasma chamber 100 of FIG.
  • plasma processing that is, plasma doping is performed.
  • the heating or cooling of the plasma chamber can be used in two more ways.
  • the decomposition of the doping gas is suppressed, and the molecular ion plasma can be generated with higher efficiency.
  • the ion implanter includes the high-frequency plasma source. Or a DC plasma source.
  • the current was taken out. This is equivalent to an energy of 150 EV and a current of 5 MA in terms of boron atoms. This boron was applied to the so-called source-drain extension of MOS transistors. A junction with a depth of 15 NM and a sheet resistance of 1000 ⁇ / port was obtained, and it was applied to a MOS transistor with a gate length of 25 NM.
  • a technology for extracting different ion species including atoms and molecules at a high current without changing the plasma source, such as an ion implanter in semiconductor manufacturing, is extremely demanding, especially in a factory that requires mass production. The economic effect of high productivity can be demonstrated.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Plasma Technology (AREA)

Abstract

Disclosed is a plasma generator which is capable of efficiently generating both molecular ions and atomic ions by using a single ion source. By providing a channel for passing a refrigerant through and a heater for heating in a part of or throughout the wall defining the plasma chamber of the plasma source, or by providing a temperature-controlling plate in the vicinity of the plasma chamber in such a manner that the temperature-controlling plate is close to or in close contact with the plasma chamber, the gas temperature within the plasma chamber is controlled in situ, and thus there can be highly efficiently generated different ion species such as molecular ions and atomic ions without taking out the plasma source.

Description

プラズマ発生装置、これを用いたプラズマ処理装置および電子機器 技術分野  Plasma generator, plasma processing apparatus using the same, and electronic equipment
[0001] 本発明はプラズマ発生装置、これを用いたプラズマ処理装置および電子機器に係 り、特に物質をイオン化した後運動エネルギを与えてこれを利用するもので、特にィ オン注入やプラズマドーピング、プラズマ表面処理などの表面処理における温度制 御に関する。  The present invention relates to a plasma generator, a plasma processing apparatus and an electronic apparatus using the same, and more particularly to a method of applying a kinetic energy after ionizing a substance, and particularly using ion implantation, plasma doping, and the like. It relates to temperature control in surface treatment such as plasma surface treatment.
背景技術  Background art
[0002] 近年、半導体装置の微細化は、大幅に進む一方である。そして液晶基板を用いた 液晶パネル上でも薄膜トランジスタで構成されるスイッチングトランジスタも微細化が 進む一方である。このような状況に伴い、例えばトランジスタのソース'ドレイン領域の 形成にお 、て必要とされるイオンのエネルギは低ェネルギレイン電流など、トランジス タを流れる電流量は増加する傾向にある。  In recent years, the miniaturization of semiconductor devices has been proceeding significantly. On a liquid crystal panel using a liquid crystal substrate, a switching transistor composed of a thin film transistor is also being miniaturized. Under such circumstances, the amount of current flowing through the transistor tends to increase, for example, the energy of ions required in forming the source and drain regions of the transistor is low, such as low energy current.
そもそもプラズマドーピングはこの要請に応えて開発されたものである力 更に効率 を向上する必要性もある。それは、ゥエーハゃ液晶の基板面積が増大し、装置自体 のコスト増が予想されるからである。原理的に大量のイオン電流を基板に導入する為 に設計されたプラズマドーピング装置では、プラズマ源に、高密度プラズマを発生す る高周波プラズマ源を用いることが多 、。  In the first place, plasma doping has been developed in response to this demand, and there is also a need to improve the efficiency and efficiency. The reason for this is that the substrate area of the {aehwa} liquid crystal increases and the cost of the device itself is expected to increase. In a plasma doping apparatus designed to introduce a large amount of ion current into a substrate in principle, a high-frequency plasma source that generates high-density plasma is often used as a plasma source.
[0003] プラズマを発生させるプラズマ源もしくはイオン源は、プラズマプロセス装置ゃィォ ン注入装置等、様々な産業、研究分野で多様な用途に用いられている。プラズマ源 に求められる性能はそれらの用途によって大きく異なり、例えば高工ネルギのイオン 注入の場合には高い効率で原子イオンを生成することが求められ、また表面改質( 塗膜やエッチングを含む)などでは分子イオンの生成を求められることが多 、。 図 8はイオン注入器用のマイクロ波プラズマ源の主要部分の断面構造図である。プ ラズマ室 100に接続された導波管 110に高周波 120が導入され、プラズマ室 100〖こ 導かれる。このエネルギはソレノイドコイル 130で損失の無いように制御され、プラズ マ室 100内でプラズマが発生する。これを外部に引き出して、イオンビーム 140を得 ることがでさる。 [0003] Plasma sources or ion sources that generate plasma are used in various applications in various industries and research fields, such as plasma processing devices and ion implantation devices. The performance required of plasma sources varies greatly depending on their use. For example, in the case of ion implantation with high energy, it is required to generate atomic ions with high efficiency, and surface modification (including coating and etching) In many cases, the production of molecular ions is required. FIG. 8 is a sectional structural view of a main part of a microwave plasma source for an ion implanter. A high frequency wave 120 is introduced into a waveguide 110 connected to the plasma chamber 100 and guided through the plasma chamber 100. This energy is controlled by the solenoid coil 130 so that there is no loss, and plasma is generated in the plasma chamber 100. Pull it out to get ion beam 140 You can do it.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] プラズマ源には直流放電を用いるタイプから高周波励起を用いるタイプを含めて多 くの種類が存在するが、一般にそれぞれのタイプが発生させられるプラズマの性質に は特徴的な違 ヽがあり、このため例えば原子イオンの発生に適したプラズマ源では 分子イオンを効率よく発生させることは困難であった。  [0004] There are many types of plasma sources, including a type using DC discharge to a type using high-frequency excitation, but generally there is a characteristic difference in the properties of plasma generated by each type. For this reason, for example, it was difficult to efficiently generate molecular ions with a plasma source suitable for generating atomic ions.
[0005] 例えば、マイクロ波や ICPRFなどを使用した高周波イオン源によるプラズマ生成で は、電子のみを励起する傾向が高いため、ガス温度が比較的低く保たれることから分 子イオンの発生が多ぐ原子イオンの生成に適さな力つた。又、直流放電イオン源な ど高温フィラメントを使用するイオン源では通常熱電子を発生させる陰極力 熱の放 出を伴うためにプラズマ室内のガス温度が高くなり、 BF +や B H +等の分子イオンは  [0005] For example, in plasma generation by a high-frequency ion source using microwaves, ICPRF, or the like, since there is a high tendency to excite only electrons, the generation of molecular ions is high because the gas temperature is kept relatively low. The force is suitable for generating atomic ions. Also, in an ion source that uses a high-temperature filament, such as a DC discharge ion source, the gas temperature in the plasma chamber increases due to the emission of cathodic heat that normally generates thermoelectrons, and molecular ions such as BF + and BH + Is
2 10 14  2 10 14
容易に分解されて原子イオンが優勢に発生する傾向があった。  It was easily decomposed and tended to generate atomic ions predominantly.
[0006] つまり、一つのイオン源を用いて、例えば、分子イオンも、原子イオンも大量に発生 させること。例えば原子イオンの発生に適したプラズマ源では分子イオンを効率よく 発生させることは困難であった。従って、従来の技術では、使用目的に合わせて異な るプラズマ源を選択する方法を取らざるを得ず、少なくとも 2種類のイオン源を保有も しくは使用せざるを得な力つた。 本発明は前記実情に鑑みてなされたもので、一つ のイオン源を用いて、分子イオンも、原子イオンも効率よく発生させることのできるブラ ズマ発生装置を提供することを目的とする。 [0006] That is, a large amount of, for example, both molecular ions and atomic ions are generated using one ion source. For example, it has been difficult to efficiently generate molecular ions with a plasma source suitable for generating atomic ions. Therefore, in the prior art, it was necessary to adopt a method of selecting a different plasma source according to the purpose of use, and it was necessary to possess or use at least two types of ion sources. The present invention has been made in view of the above circumstances, and has as its object to provide a plasma generator capable of efficiently generating both molecular ions and atomic ions using one ion source.
課題を解決するための手段  Means for solving the problem
[0007] 本発明はイオン源をもつプラズマ室もしくはその近傍に温度調節機能を具備する。 [0007] The present invention has a temperature control function in or near a plasma chamber having an ion source.
即ち、プラズマ源のプラズマ室を形成する壁の 1部もしくは全部に冷媒を通すチヤネ ルと加熱するためのヒータとを設け、またはプラズマ室近傍にプラズマ室に密着もしく は近接できる温度コントロールプレートを設けることによって in situでプラズマ室内 のガスの温度を変えられるようにし、プラズマ源を取出さずに異なるイオン種を高い効 率で生成する方法を提供する。これによつて各種プラズマ源の単一構造での性能範 囲を大きく拡大することが可能になる。本発明は、従来の特定用途プラズマ源を高性 能汎用プラズマ源に改良する技術を提供するものである。 That is, a channel for passing the refrigerant and a heater for heating are provided on a part or all of the wall forming the plasma chamber of the plasma source, or a temperature control plate that can be in close contact with or close to the plasma chamber is provided near the plasma chamber. By providing the method, the temperature of the gas in the plasma chamber can be changed in situ, and a method for efficiently generating different ion species without removing the plasma source is provided. This makes it possible to greatly expand the performance range of various plasma sources with a single structure. The present invention enhances conventional special-purpose plasma sources The present invention provides a technique for improving a general-purpose plasma source.
[0008] 本発明のプラズマ発生装置は、プラズマ発生室と、前記プラズマ発生室内でプラズ マを生成するプラズマ生成手段と、前記プラズマ生成手段で生成されるプラズマの 温度を調整する温度調整手段を具備したことを特徴とする。  [0008] A plasma generating apparatus of the present invention includes a plasma generating chamber, plasma generating means for generating plasma in the plasma generating chamber, and temperature adjusting means for adjusting the temperature of plasma generated by the plasma generating means. It is characterized by having done.
高周波を利用したプラズマ源の場合、導入したガス分子を壊すこと無ぐ分子レべ ルの構成力 電子を奪って、分子イオンを生成する確率が高い。上記構成によれば 、この確率を高めるために、プラズマ室を冷却し、プラズマと接触する外界即ちプラズ マ室の壁の温度を下げることにより、高効率でプラズマを生成することが可能となる。  In the case of a plasma source that uses high frequency, there is a high probability that molecular ions will be generated by taking away electrons, which are constituents of the molecular level without breaking the introduced gas molecules. According to the above configuration, in order to increase the probability, the plasma chamber can be cooled and the temperature of the external field in contact with the plasma, that is, the temperature of the wall of the plasma chamber can be reduced, so that the plasma can be generated with high efficiency.
[0009] 本発明のプラズマ発生装置は、前記温度調整手段がプラズマを生成するための原 料ガスの温度を調整するものであるものを含む。  [0009] The plasma generator of the present invention includes a plasma generator in which the temperature adjusting means adjusts the temperature of a raw material gas for generating plasma.
この構成によれば、原料ガスの温度を制御することにより、効率よく所望のプラズマ 源を得ることができる。  According to this configuration, a desired plasma source can be efficiently obtained by controlling the temperature of the source gas.
[0010] 本発明のプラズマ発生装置は、前記温度調整手段が前記プラズマ発生室に設けら れたものを含む。  [0010] The plasma generator of the present invention includes a plasma generator in which the temperature adjusting means is provided in the plasma generation chamber.
この構成によれば、効率よくプラズマ発生室の温度を制御することができる。  According to this configuration, it is possible to efficiently control the temperature of the plasma generation chamber.
[0011] 本発明のプラズマ発生装置は、前記温度調整手段が前記プラズマ発生室の壁部 に設けられたものを含む。  [0011] The plasma generator of the present invention includes one in which the temperature adjusting means is provided on a wall of the plasma generation chamber.
この構成によれば、プラズマと接触する外界即ちプラズマ室の壁の温度を調整する ことにより、より効率よく温度調整を行うことができる。  According to this configuration, the temperature can be more efficiently adjusted by adjusting the temperature of the outside world in contact with the plasma, that is, the temperature of the wall of the plasma chamber.
[0012] 本発明のプラズマ発生装置は、前記温度調整手段は前記プラズマ発生室を囲むよ うに配設された温度調整ブロックである。  [0012] In the plasma generating apparatus according to the present invention, the temperature adjusting means is a temperature adjusting block disposed so as to surround the plasma generating chamber.
この構成によれば、着脱自在で、取り扱いも容易で、かつプラズマ発生室との距離 を調整したり、間に熱伝導率を調整した部材をはさむことにより、より効率よく温度調 整を行うことができる。  According to this configuration, the temperature can be more efficiently adjusted by being detachable, easy to handle, and by adjusting the distance to the plasma generation chamber or by inserting a member whose thermal conductivity is adjusted between them. Can be.
[0013] 本発明のプラズマ発生装置は、前記温度調整ブロックは、前記プラズマ発生室との 間隔が調整可能である。  [0013] In the plasma generator of the present invention, the temperature adjustment block can adjust an interval between the temperature adjustment block and the plasma generation chamber.
この構成によれば、より制御性よく温度調整を行うことができる。  According to this configuration, temperature control can be performed with better controllability.
[0014] 本発明のプラズマ発生装置は、前記温度調整手段は前記プラズマ生成手段に設 けられたことを特徴とする。 [0014] In the plasma generator according to the present invention, the temperature adjustment unit is provided in the plasma generation unit. It is characterized by being beaten.
この構成によれば、より制御性よく温度調整を行うことができる。  According to this configuration, temperature control can be performed with better controllability.
[0015] 本発明のプラズマ発生装置は、前記温度調整手段が前記プラズマ生成手段を構 成するフィラメントに設けられたものを含む。  [0015] The plasma generator of the present invention includes a plasma generator in which the temperature adjusting means is provided on a filament constituting the plasma generating means.
[0016] 本発のプラズマ発生装置は、前記温度調整手段が、前記フィラメントの近傍に配置 されたものを含む。 [0016] The plasma generator of the present invention includes a plasma generator in which the temperature adjusting means is arranged near the filament.
フィラメントの温度に応じてフィードバックしながら温度調整手段を用いて温度制御 を行うことにより、所望のプラズマを生成することが可能となる。  By performing temperature control using the temperature adjusting means while feeding back according to the temperature of the filament, a desired plasma can be generated.
[0017] 本発明のプラズマ発生装置は、前記温度調整手段が所定のビーム電流を得ること ができるように温度調整を行うものを含む。 [0017] The plasma generating apparatus of the present invention includes an apparatus for performing temperature adjustment so that the temperature adjusting means can obtain a predetermined beam current.
この構成により、プラズマ密度を高精度に制御することができる。  With this configuration, the plasma density can be controlled with high accuracy.
[0018] 本発明のプラズマ発生装置は、前記温度調整手段が、熱媒体としての流体の流量 を調整可能であるものを含む。 [0018] The plasma generator of the present invention includes one in which the temperature adjusting means is capable of adjusting a flow rate of a fluid as a heat medium.
この構成により、熱媒体となる流体の流量を調整するのみで温度調整を行うことが できる。  With this configuration, the temperature can be adjusted only by adjusting the flow rate of the fluid serving as the heat medium.
[0019] 本発明のプラズマ発生装置は、前記温度調整手段が、熱媒体としての流体の熱伝 導率を調整可能であるものを含む。  [0019] The plasma generator of the present invention includes a plasma generator in which the temperature adjusting means is capable of adjusting the thermal conductivity of a fluid as a heat medium.
この構成により、流体そのものの熱伝導率を調整することにより容易に温度制御を 実現することができる。  With this configuration, temperature control can be easily realized by adjusting the thermal conductivity of the fluid itself.
[0020] 本発明のプラズマ発生装置は、前記温度調整手段が、空間的位置によって温度制 御可能であるものを含む。  [0020] The plasma generator of the present invention includes one in which the temperature adjusting means is capable of controlling the temperature by a spatial position.
この構成により、流体そのものの熱伝導率を調整することにより容易に温度制御を 実現することができる。  With this configuration, temperature control can be easily realized by adjusting the thermal conductivity of the fluid itself.
[0021] 本発明のプラズマ発生装置は、被処理基体に対しプラズマ処理を行うように構成さ れたものを含む。  [0021] The plasma generating apparatus of the present invention includes an apparatus configured to perform plasma processing on a substrate to be processed.
[0022] 本発明の電子機器の製造方法は、被処理基体に対しプラズマ処理を行うことにより 電子機器を形成する工程を含む。  The method for manufacturing an electronic device of the present invention includes a step of forming an electronic device by performing a plasma treatment on a substrate to be processed.
[0023] 本発明の電子機器は、上記プラズマ発生装置を用い、被処理基体に対しプラズマ 処理を行うことにより形成される。 An electronic device of the present invention uses the above-described plasma generator to generate a plasma on a substrate to be processed. It is formed by performing processing.
[0024] また、本発明のプラズマ発生装置は以下のもの含む。 The plasma generator of the present invention includes the following.
(1)温度調整機能を具備したプラズマ発生装置。  (1) A plasma generator having a temperature adjustment function.
(2)物質を被照射対象に導入する機能を持つ機械装置であって、温度調整機能を 具備したプラズマ発生装置を内蔵、もしくは結合されていることを特徴とする機械装 置。  (2) A mechanical device having a function of introducing a substance to an irradiation target, wherein the mechanical device has a built-in or coupled plasma generating device having a temperature adjusting function.
(3)上記プラズマ発生装置であって、プラズマ発生装置の種類が高周波プラズマ発 生装置であることを特徴とする、温度制御機能を具備するプラズマ発生装置。  (3) The plasma generator having a temperature control function, wherein the type of the plasma generator is a high-frequency plasma generator.
(4)上記プラズマ発生装置であって、温度調節機能をプラズマ室に適用することを特 徴とする、温度制御機能を具備するプラズマ発生装置。  (4) The plasma generator described above, comprising a temperature control function, wherein the temperature control function is applied to a plasma chamber.
(5)上記プラズマ発生装置であって、電子発生の源になるフィラメントもしくは同等の 機能構造の周辺に温度調整機能を具備させたことを特徴とする、温度制御機能を具 備するプラズマ発生装置。  (5) The plasma generator according to the above, wherein the temperature control function is provided around a filament serving as a source of electron generation or an equivalent functional structure.
(6)上記プラズマ発生装置であって、温度調整機能として、電流量、流体の流量、熱 伝導率の制御及び空間的位置関係の制御によって、温度調整を行うことを特徴とす る、温度制御機能を具備するプラズマ発生装置。  (6) The above-mentioned plasma generator, wherein the temperature is controlled by controlling a current amount, a flow rate of a fluid, a thermal conductivity, and a spatial positional relationship as a temperature control function. Plasma generator with functions.
(7)上記機械装置もしくは、この機械装置のプラズマ発生装置の特徴を持たせた機 械装置を使用して作成することを特徴とする電子機器の作成方法。  (7) A method for producing an electronic device, characterized in that the electronic device is produced using the above-mentioned mechanical device or a mechanical device having characteristics of a plasma generator of this mechanical device.
(8)上記の機械装置もしくは、この機械装置のプラズマ発生装置に上記の特徴を持 たせた機械装置を使用して作成された電子機器。  (8) An electronic device produced using the above mechanical device or a mechanical device having the above features in the plasma generator of this mechanical device.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]プラズマ室の構成壁に冷却加熱機構を埋め込んだ例の立体構造図である。  FIG. 1 is a three-dimensional structural view of an example in which a cooling and heating mechanism is embedded in a constituent wall of a plasma chamber.
[図 2]プラズマ室の構成壁に冷却加熱機構を埋め込んだ例の 3方向からの断面構造 図である。  FIG. 2 is a cross-sectional view from three directions of an example in which a cooling and heating mechanism is embedded in a constituent wall of a plasma chamber.
[図 3]プラズマ室の近傍に温度コントロールパネルを設置した例の立体構造図である [図 4]プラズマ室の近傍に温度コントロールパネルを設置した例の断面構造図である [図 5]フィラメントを要する直流プラズマ発生装置のプラズマ室の構成壁に冷却加熱 機構を埋め込んだ例の 3方向からの断面構造図である。 FIG. 3 is a three-dimensional structure diagram of an example in which a temperature control panel is installed near the plasma chamber. FIG. 4 is a cross-sectional structure diagram of an example in which a temperature control panel is installed near the plasma chamber. FIG. 5 is a cross-sectional structural view from three directions of an example in which a cooling and heating mechanism is embedded in a constituent wall of a plasma chamber of a DC plasma generator requiring a filament.
圆 6]イオン注入器を説明する為の断面構造図である。  [6] Fig. 6 is a sectional structural view for explaining an ion implanter.
[図 7]プラズマドーピングの基本原理を説明するための断面構造図である。  FIG. 7 is a sectional structural view for explaining the basic principle of plasma doping.
圆 8]背景技術を説明する為の、既存のマイクロ波プラズマ源の中心部分の断面構 造図である。  [8] This is a cross-sectional structure diagram of the central portion of an existing microwave plasma source for explaining the background art.
符号の説明  Explanation of symbols
[0026] 100 プラズマ室  [0026] 100 plasma chamber
110 導波管  110 waveguide
120 高周波  120 high frequency
130 ソレノイドコィノレ  130 Solenoid coil
140 ィ才ンビーム  140 year old beam
160 冷却管  160 cooling pipe
170 ヒータ  170 heater
180 温度モニタ装置  180 Temperature monitoring device
200 温度コントロールプレート  200 Temperature control plate
210 間隙  210 gap
220 赤外ランプ  220 infrared lamp
224 フィラメント  224 filament
230 プラズマ源  230 plasma source
240 引き出し電極  240 Leader electrode
260 質量分析マグネット  260 mass spectrometer magnet
270 後段加速減速電極  270 second stage acceleration / deceleration electrode
280 ゥエーハ  280 eha
290 真空ポンプ  290 vacuum pump
300 電荷中和装置  300 Charge neutralizer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] (実施の形態 1) 以下本発明の実施の形態 1における高周波プラズマ発生装置に関して、図 1から 図 4を参照しながら説明する。この高周波プラズマ発生装置は、図 1に示すように、背 景技術で説明した図 8から、プラズマ室 100を取り出して、立体構造図として示したも のであり、図 2はこの構造を 3面から断面図で表したものである。 (Embodiment 1) Hereinafter, a high-frequency plasma generator according to Embodiment 1 of the present invention will be described with reference to FIGS. As shown in FIG. 1, this high-frequency plasma generator is a three-dimensional structure diagram of the plasma chamber 100 taken out of FIG. 8 described in the background art, and FIG. It is represented by a sectional view.
高周波の導波管に接続されたプラズマ室 100は高周波が侵入可能な様に一部もし くは全部がセラミック、電気的絶縁物などで構成されている。このプラズマ室に、ブラ ズマを発生する源になるガスを導入する。もしくは、ガス状態で得にくい物質は固体も しくは液体の状態で導入する (ガスなどの材料導入手段は図面には表現して 、な 、) 。導入された物質はガスもしくはその他のものはガス化あるいはガスに混入させる形 でプラズマ室に供給され、高周波によってエネルギを与えられてプラズマが生成され る。  A part or all of the plasma chamber 100 connected to the high-frequency waveguide is made of ceramic, an electrical insulator, or the like so that high-frequency waves can enter. A gas that is a source of generating plasma is introduced into the plasma chamber. Alternatively, a substance that is difficult to obtain in a gas state is introduced in a solid or liquid state (material introduction means such as gas is expressed in a drawing,,,,). The introduced substance is supplied to the plasma chamber in the form of gas or other gasified or mixed gas, and is energized by high frequency to generate plasma.
[0028] 一般に、高周波を利用したプラズマ源の場合、導入したガス分子を壊すこと無ぐ 電子を奪って、分子イオンを生成することができる。さらにこの分子イオンの生成効率 を高めるためには、原料ガスを冷却する必要がある。そこでプラズマ室 100を冷却し 、プラズマと接触する外界即ちプラズマ室の壁の温度を下げるようにしたものである。 本実施の形態では、プラズマ室の壁の温度を調整すベぐ以下に説明する手法を 用いた。  [0028] In general, in the case of a plasma source using a high frequency, molecular ions can be generated by removing electrons without breaking introduced gas molecules. To further increase the efficiency of generating molecular ions, it is necessary to cool the source gas. Therefore, the plasma chamber 100 is cooled so as to lower the temperature of the external environment in contact with the plasma, that is, the temperature of the plasma chamber wall. In the present embodiment, a method described below for adjusting the temperature of the wall of the plasma chamber is used.
[0029] その第 1の手法は、プラズマ室にチャネルを穿ち、その経路を利用して、冷媒もしく は熱伝導性の良い流体を流し、冷却する。この場合はプラズマ室を構成する材料も 熱伝導性を考慮して良好なものを選択する。即ち、図 1においてプラズマ室 100の構 成材料に、例えば、冷却管 160を穿ち、又、別の部分に経路を設けここにヒータ 170 を設置する。このように、冷却管 160とヒータ 170との二者によって冷却もしくは加熱 を行うのは勿論であるが、両者を同時に設置することも可能で、両者の組み合わせで 冷却管 160に流れる冷媒とヒータ 170に流れる電流とを温度モニタ装置 180を介して フィードバック制御することにより、自身の温度を制御することも可能である。温度測 定には温度モニタ機能を有する装置 180をプラズマ室 100の構成壁内に埋設した。 これは接触させても良 、し、非接触で例えば赤外線を測定するなどの手法をとるよう にしても良い。図 2は図 1の立体構造図を 3面から見た断面構造図に分解したもので ある。上面図を見ると、プラズマ室の周辺にプラズマ室を構成する壁があり、その内 部に冷却管 160やヒータ 170、温度モニタ装置 180が設置されている。 [0029] In the first method, a channel is formed in a plasma chamber, and a coolant or a fluid having good heat conductivity is flowed and cooled using the channel. In this case, a good material for the plasma chamber is selected in consideration of thermal conductivity. That is, in FIG. 1, for example, a cooling pipe 160 is pierced in the constituent material of the plasma chamber 100, and a path is provided in another part, and a heater 170 is installed here. As described above, the cooling or heating is performed by the cooling pipe 160 and the heater 170, but the cooling pipe 160 and the heater 170 can be installed at the same time. It is also possible to control its own temperature by feedback-controlling the current flowing through the temperature monitor 180 via the temperature monitor 180. For temperature measurement, a device 180 having a temperature monitoring function was embedded in the constituent wall of the plasma chamber 100. This may be brought into contact, or a method such as measuring infrared rays without contact may be adopted. Fig. 2 is an exploded view of the three-dimensional structure diagram of Fig. 1 is there. Looking at the top view, there is a wall constituting the plasma chamber around the plasma chamber, and the cooling pipe 160, the heater 170, and the temperature monitoring device 180 are installed inside the wall.
この装置を用いてプラズマ室の壁温度を制御することにより所望の分子イオンを得 る。  The desired molecular ions are obtained by controlling the wall temperature of the plasma chamber using this apparatus.
本実施の形態では、主に冷却機能を利用し、壁温度を 100°Cに維持できるように、 温度モニタ装置 180を介してフィードバックしながら、冷却管 160やヒータ 170を用い て温度制御を行う。  In the present embodiment, the cooling function is mainly used, and the temperature is controlled using the cooling pipe 160 and the heater 170 while feeding back via the temperature monitoring device 180 so that the wall temperature can be maintained at 100 ° C. .
これにより、安定して、分子イオンを得ることができた。  Thereby, a molecular ion could be obtained stably.
[0030] (実施の形態 2) (Embodiment 2)
次に本発明の第 2の実施の形態について説明する。  Next, a second embodiment of the present invention will be described.
本実施の形態では、プラズマ室の壁の温度を調整すベぐ第 2の手法をとる。この 手法について、図 3及び 4を引用しながら説明する。  In the present embodiment, a second method for adjusting the temperature of the wall of the plasma chamber is employed. This method will be described with reference to FIGS.
この方法は、プラズマ室の材質の性格上内部に流路を確保することが工作上難しい もしくは適さない場合に、プラズマ室に隣接して冷却機構として、温度コントロールプ レート 200を備えた機能部品を設置して、プラズマ室と機能部品の間の間隙 210に 熱伝導性の良い気体である Heを流し、熱を奪い冷却する。また、温度コントロールプ レート 200の中には、先に説明した通り、内部に冷却管 160やヒータ 170を設置する 。図 4は図 3の立体構造図を 1方向から見た断面構造図である。  This method uses a functional component equipped with a temperature control plate 200 as a cooling mechanism adjacent to the plasma chamber when it is difficult or inappropriate to secure a flow path inside the plasma chamber due to the nature of the material of the plasma chamber. It is installed, and He, which is a gas with good thermal conductivity, is flowed through the gap 210 between the plasma chamber and the functional components to remove heat and cool it. In the temperature control plate 200, as described above, the cooling pipe 160 and the heater 170 are installed. FIG. 4 is a sectional structural view of the three-dimensional structural view of FIG. 3 as viewed from one direction.
[0031] この装置を用!、てプラズマ室の壁温度を制御することにより所望の分子イオンを得 る。 Using this apparatus, desired molecular ions are obtained by controlling the wall temperature of the plasma chamber.
本実施の形態では、主に冷却機能を利用し、壁温度を 100°Cに維持できるように、 温度モニタ装置 180を介してフィードバックしながら、冷却管 160やヒータ 170を用い て温度制御を行う。  In the present embodiment, the cooling function is mainly used, and the temperature is controlled using the cooling pipe 160 and the heater 170 while feeding back via the temperature monitoring device 180 so that the wall temperature can be maintained at 100 ° C. .
[0032] これにより、安定して、分子イオンを得ることができた。 [0032] Thereby, a molecular ion could be obtained stably.
プラズマ室と温度コントロールプレート 200の距離を機械的に変更できるようにして おくことも可能である。これにより、プラズマ室 100と温度コントロールプレート 200の 間の間隙 210を調整するとともに、熱伝導に関する距離を制御し、所定の壁温度に することができる。また、プラズマ室 100と温度コントロールプレート 200の間の間隙 2 10をゼロにし、完全に接触させることもできる。 It is also possible that the distance between the plasma chamber and the temperature control plate 200 can be changed mechanically. Thereby, the gap 210 between the plasma chamber 100 and the temperature control plate 200 can be adjusted, and the distance related to heat conduction can be controlled to achieve a predetermined wall temperature. Also, the gap between the plasma chamber 100 and the temperature control plate 200 It is also possible to set 10 to zero and make it completely in contact.
なお本実施の形態では、熱伝導性の良い気体として Heを用いた力 Heに限定され ることなく、適宜選択可能である。  In the present embodiment, the force using He as a gas having good heat conductivity is not limited to He, and can be appropriately selected.
[0033] (実施の形態 3) (Embodiment 3)
また、同様にして、図 1から 4に示した上記装置を用いて、温度を上昇させる方法に ついて説明する。冷却と加熱は同様の装置を用いて同様に実現可能であるが、加熱 の場合は第 3の方法として図 4に示すように、赤外線ランプ 220を用いて輻射加熱を 行うことができる。すなわち、赤外線ランプなどの加熱手段を保持できる機能部品を 設置して、主に輻射熱によって、温度を上昇させる。  Similarly, a method of increasing the temperature using the above-described apparatus shown in FIGS. 1 to 4 will be described. Cooling and heating can be similarly realized using a similar device, but in the case of heating, as a third method, radiant heating can be performed using an infrared lamp 220 as shown in FIG. That is, a functional component capable of holding a heating means such as an infrared lamp is installed, and the temperature is increased mainly by radiant heat.
これらにより、プラズマ室 100の壁温度が上昇し、高周波プラズマ発生装置であつ ても、原子イオンプラズマを優勢に発生させることが可能となる。  As a result, the wall temperature of the plasma chamber 100 rises, and even in a high-frequency plasma generator, it becomes possible to generate an atom ion plasma predominantly.
[0034] (実施の形態 4) (Embodiment 4)
次に、本発明の実施の形態 4について説明する。  Next, a fourth embodiment of the present invention will be described.
本実施の形態 4では、図 5に示すように、フィラメント 224を有する直流プラズマ発生 装置において、冷却管 160に冷媒を流すことによりフィラメント 224を冷却することに より、分子イオンプラズマを発生させることができる。  In the fourth embodiment, as shown in FIG. 5, in a DC plasma generator having a filament 224, a molecular ion plasma can be generated by cooling the filament 224 by flowing a coolant through a cooling pipe 160. it can.
すなわち、フィラメントを保有する直流プラズマ発生装置は、半導体のイオン注入器 のプラズマ源として広く使用されてきたものである力 この装置の主な目的は、原子ィ オンプラズマを大量に発生させ、これらのイオンを高工ネルギに加速して半導体基板 に注入することにあった。  In other words, DC plasma generators with filaments are widely used as plasma sources in semiconductor ion implanters. The main purpose of this device is to generate a large amount of atomic ion plasma, The goal was to accelerate the ions to high energy and implant them into the semiconductor substrate.
[0035] 本実施の形態によれば、この直流プラズマ発生装置を用いても、フィラメントを冷却 することにより、比較的大量の分子イオンプラズマを発生させることができる。装置の 構造概念は既に説明した、実施の形態 1と同様である力 図 5に示すように、これは 図 2で説明した高周波プラズマ源とは異なり、フィラメント 224を具備する。このフィラメ ントに電流を流すことによって熱電子を発生させ、プラズマを発生させる。  According to the present embodiment, even with this DC plasma generator, a relatively large amount of molecular ion plasma can be generated by cooling the filament. The structural concept of the device is the same as that of the first embodiment, which has already been described. As shown in FIG. 5, unlike the high-frequency plasma source described in FIG. By passing a current through the filament, thermoelectrons are generated to generate plasma.
[0036] これにより原子イオンプラズマが優勢に発生する。そこで、高周波の場合と同様に、 プラズマ室 100の構成壁にチャネルを穿ち、冷却管 160として機能させ、ここに冷媒 などの流体を導入し、冷却する。又直接プラズマ室にチャネルを穿つことが難しいか 、もしくは、適切で無い場合は、実施の形態 1で図 4を引用しながら説明した様に、冷 却管 160などを具備する温度コントロールプレートを設置すればよい。又、冷却管を 用いた冷却に加え、プラズマ室に一部ヘリウムなどの熱伝導性の高 、ガスを導入す ることもプラズマ室冷却に効果がある。 [0036] As a result, atomic ion plasma is predominantly generated. Therefore, as in the case of the high frequency, a channel is formed in the constituent wall of the plasma chamber 100 to function as a cooling pipe 160, and a fluid such as a refrigerant is introduced into the cooling chamber 160 for cooling. Is it difficult to drill a channel directly into the plasma chamber? Alternatively, if it is not appropriate, as described with reference to FIG. 4 in Embodiment 1, a temperature control plate including a cooling pipe 160 and the like may be provided. In addition to cooling using a cooling pipe, introduction of a gas having high thermal conductivity, such as helium, partially into the plasma chamber is also effective for cooling the plasma chamber.
このようにして、フィラメントの温度を調整することにより、プラズマを制御することが できる。  Thus, the plasma can be controlled by adjusting the temperature of the filament.
[0037] (実施の形態 5) (Embodiment 5)
次に本発明の実施の形態 5として、イオン注入器について説明する。  Next, an ion implanter will be described as a fifth embodiment of the present invention.
イオン注入器は、既に述べたプラズマ源をイオンの源として、原則的には、ェネル ギと物質を分離するための電磁場印加機構を保有する。最終的には目的物、例えば 、半導体産業ではシリコン半導体基板に所定のエネルギで必要な物質を注入する目 的で構成されている。  The ion implanter has, as a rule, an electromagnetic field application mechanism for separating energy and substances by using the plasma source described above as a source of ions. Ultimately, the purpose is to inject a necessary substance with a predetermined energy into a target object, for example, a silicon semiconductor substrate in the semiconductor industry.
この装置は、図 6に示すように、イオンの源としてはプラズマ源 230が用いられ、ここ で発生したイオンを引き出し電極 240で引き出すように構成されて 、る。引き出され てイオンビーム 140が形成される。なお、このビームを分析する為に、質量分析マグ ネット 260を経由し、後段加速減速電極 270で所定のエネルギに調整され、ゥエー ノ、 280上に到達する。イオン注入器は真空装置であるため、真空ポンプ 290が数台 設置され、イオンの電荷を中和するための、電荷中和装置 300が設置される。  In this apparatus, as shown in FIG. 6, a plasma source 230 is used as an ion source, and the generated ions are extracted by an extraction electrode 240. It is extracted to form an ion beam 140. In order to analyze this beam, the energy is adjusted to a predetermined energy by the post-acceleration / deceleration electrode 270 via the mass analysis magnet 260, and arrives at the antenna 280. Since the ion implanter is a vacuum device, several vacuum pumps 290 are installed, and a charge neutralization device 300 for neutralizing the charge of ions is installed.
[0038] (実施例 1) (Example 1)
本発明の実施例 1として、プラズマ生成用のガスとして B H を導入した際の例を述  Example 1 of the present invention describes an example in which BH was introduced as a gas for plasma generation.
10 14  10 14
ベる。この応用は半導体に対する不純物ドーピングの際に、用いる。通常は BFや B  I will. This application is used for impurity doping of a semiconductor. Usually BF or B
3 2 3 2
Hなどのガスを用いて、 B+や BF +として、ボロンの原子イオンを半導体基板に導入しUsing a gas such as H, boron atomic ions are introduced into the semiconductor substrate as B + or BF +.
6 2 6 2
てトランジスタを形成している。この際に使用するイオン注入器は元々が加速器であ るから、エネルギが比較的高いところで、効率良く運転できるように設計されてきた。 そしてトランジスタの微細化に伴って急速にエネルギを低下させる必要がある力 そう すると、イオン電流量が急速に減少する。ここで、 B H を利用して、 BFや B Hと同  To form a transistor. Since the ion implanter used at this time was originally an accelerator, it has been designed so that it can be operated efficiently in a place where the energy is relatively high. The force that requires a rapid reduction in energy with the miniaturization of transistors If so, the amount of ion current decreases rapidly. Here, using B H, the same as BF and B H
10 14 3 2 6 等のプラズマ密度が得られれば、等価的に 10倍の電流量が得られ、 10分の 1に低下 したエネルギでドーピングが可能となる。 [0039] つまり、工業的に使用できる 1KEVのイオン注入器の電流量が IMAであるとすると、 等価的に 100EVのエネルギで 10MAでドーピングが可能となる。ところが、プラズマ 源におけるもともとの密度が低下しては、本来の目的が達成できなくなる。 If a plasma density of 10 14 3 2 6 is obtained, a current amount 10 times equivalent can be obtained equivalently, and doping can be performed with energy reduced to 1/10. [0039] That is, assuming that the current amount of a 1 KEV ion implanter that can be used industrially is IMA, doping can be equivalently performed at 10 MA with energy of 100 EV. However, if the original density of the plasma source decreases, the original purpose cannot be achieved.
[0040] ここで本発明のプラズマ室に対する工夫を採用し、図 6で説明したプラズマ源 230 を本発明で既に説明したプラズマ発生装置に交換すれば同一のイオン注入器の限 定されたプラズマ室の大きさで得られるプラズマ密度を効率よく発生させることができ る。従って、分子イオンを発生させたとしても、十分に大きな電流量を得ることができ る。また、このプラズマ発生装置を既に使用されているイオン注入器に装着すること ができると、装置寿命が延び、廃棄物の削減も可能である。  [0040] Here, the device for the plasma chamber of the present invention is adopted, and if the plasma source 230 described in Fig. 6 is replaced with the plasma generator already described in the present invention, the limited plasma chamber of the same ion implanter is used. It is possible to efficiently generate the plasma density obtained with the size of. Therefore, even if molecular ions are generated, a sufficiently large amount of current can be obtained. In addition, if the plasma generator can be mounted on an ion implanter already in use, the life of the apparatus can be extended and waste can be reduced.
[0041] (実施の形態 6)  (Embodiment 6)
次に本発明の実施の形態 6として、図 7に示すように、プラズマ室 100をゥエーハ 2 80が載置できるように設計し、このプラズマ室に対して、壁に温度コントロールプレー ト 200を配して、プラズマ室の室内を冷却する。図 7は図 4のプラズマ室 100内部に 被処理物体である、ゥエーハ 280を設置した概念断面図である。原理的には、プラズ マ室に被処理物を載置してプラズマ処理すなわちプラズマドーピングを行う。  Next, as a sixth embodiment of the present invention, as shown in FIG. 7, a plasma chamber 100 is designed so that a wafer 280 can be mounted thereon, and a temperature control plate 200 is arranged on a wall of the plasma chamber. Then, the interior of the plasma chamber is cooled. FIG. 7 is a conceptual cross-sectional view in which a wafer 280 as an object to be processed is installed inside the plasma chamber 100 of FIG. In principle, an object to be processed is placed in a plasma chamber and plasma processing, that is, plasma doping is performed.
[0042] 最近半導体や液晶のトランジスタ微細化に伴い、必要とされるイオンのエネルギは 低下し、電流量は増加する傾向にある。そもそもプラズマドーピングはこの要請に応 えて開発されたものであるが、更に効率を向上する必要性もある。それは、ゥエーハ や液晶の基板面積が引き続き増大し、装置自体のコスト増が予想されるからである。 原理的に大量のイオン電流を基板に導入する為に設計されたプラズマドーピング装 置では、プラズマ源に、高密度プラズマを発生する高周波プラズマ源を用いることが 多い。  With the recent miniaturization of semiconductor and liquid crystal transistors, the required ion energy tends to decrease and the amount of current tends to increase. In the first place, plasma doping was developed in response to this requirement, but there is a need to further improve efficiency. This is because the substrate area of wafers and liquid crystals will continue to increase, and the cost of the device itself will increase. In a plasma doping apparatus designed to introduce a large amount of ion current into a substrate in principle, a high-frequency plasma source that generates high-density plasma is often used as a plasma source.
[0043] この場合もプラズマ室の加熱あるいは冷却によって、更に 2通りに活用することがで きる。先ず、 1つは、プラズマ源の冷却の応用である。実施例 1に既に記載した様に、 プラズマ室の壁を冷却することによって、ドーピングガスの分解が抑制され、より高い 効率で分子イオンプラズマを発生させることができる。  [0043] In this case as well, the heating or cooling of the plasma chamber can be used in two more ways. First, there is the application of plasma source cooling. As already described in the first embodiment, by cooling the wall of the plasma chamber, the decomposition of the doping gas is suppressed, and the molecular ion plasma can be generated with higher efficiency.
[0044] 一方、この高周波プラズマ源を用いて、原子イオンプラズマを優勢に発生させた!/ヽ 場合には、図 2の例を応用する形でプラズマ源のプラズマ室の壁にヒータを設置して 、壁の温度を上昇させる。温度を上昇させるのは、通常真空度を向上させるための設 備を応用してもできる力 高精度に制御する為に、プラズマ室外部から、ビューヮを 通して、赤外ランプ 220から赤外線などを照射し、プラズマ室壁を熱したり、プラズマ 室内部にランプや赤熱ヒータなどを設置し、壁に対して、熱伝導もしくは、輻射熱で 温度上昇を行うことができる。このことにより、熱電子が盛んに放出されるようになり、ド 一ビングガス物質の解離が促進され、原子イオンプラズマが優勢なプラズマを生成 することができた。 On the other hand, in the case where an atomic ion plasma was predominantly generated by using this high-frequency plasma source! / In the case of, in the case of applying the example of FIG. 2, a heater was installed on the wall of the plasma chamber of the plasma source. hand Raise the temperature of the walls. To raise the temperature, it is usually possible to apply equipment for improving the degree of vacuum. In order to control with high accuracy, infrared light from the infrared lamp 220 is transmitted from the outside of the plasma chamber through the view ヮ. Irradiation can be used to heat the plasma chamber wall, or a lamp or glow heater can be installed inside the plasma chamber to raise the temperature of the wall by heat conduction or radiant heat. As a result, thermions were actively emitted, the dissociation of the driving gas material was promoted, and a plasma in which atomic ion plasma was dominant could be generated.
[0045] (実施の形態 7) (Embodiment 7)
ここでは、図面を示すことはしないが、実施の形態 5, 6で説明した、イオン注入器 やプラズマドーピング装置を用いて作成した半導体デバイスの製造に関しては、ィォ ン注入器には高周波プラズマ源を用いても良 、し、直流プラズマ源を用いても良 、。 過去大量に販売された、直流プラズマ源に本発明の冷却の効果を取り込んで、 B H  Here, although not shown, with respect to the manufacture of the semiconductor device manufactured by using the ion implanter or the plasma doping apparatus described in the fifth and sixth embodiments, the ion implanter includes the high-frequency plasma source. Or a DC plasma source. By incorporating the cooling effect of the present invention into a DC plasma source that was sold in large quantities in the past, BH
10 プラズマが大量に発生する。これを利用して、加速エネルギ 1. 5KEVで 0. 5MAの 10 A large amount of plasma is generated. Utilizing this, the acceleration energy of 1.5 KEV and 0.5 MA
14 14
電流を取り出した。これは、ボロン原子に換算して、エネルギ 150EV、電流量 5MA に匹敵する。このボロンなどを、 MOSトランジスタの所謂ソースドレインェクステンショ ン作成に応用した。深さ 15NM、シート抵抗 1000 Ω /口の接合が得られ、ゲート長 2 5NMの MOSトランジスタに適用し、トランジスタ特性、ショートチャネル効果などに良 好な結果を得た。  The current was taken out. This is equivalent to an energy of 150 EV and a current of 5 MA in terms of boron atoms. This boron was applied to the so-called source-drain extension of MOS transistors. A junction with a depth of 15 NM and a sheet resistance of 1000 Ω / port was obtained, and it was applied to a MOS transistor with a gate length of 25 NM.
産業上の利用可能性  Industrial applicability
[0046] 半導体製造におけるイオン注入器のように、原子や分子を含む異なるイオン種をプ ラズマ源を変えずに高電流で取出す技術は極めて需要が高ぐ特に大量生産を必 要とする工場では高い生産性による経済効果を発揮できる。 [0046] A technology for extracting different ion species including atoms and molecules at a high current without changing the plasma source, such as an ion implanter in semiconductor manufacturing, is extremely demanding, especially in a factory that requires mass production. The economic effect of high productivity can be demonstrated.

Claims

請求の範囲 The scope of the claims
[1] プラズマ発生室と、  [1] a plasma generation chamber,
前記プラズマ発生室内でプラズマを生成するプラズマ生成手段と、  Plasma generation means for generating plasma in the plasma generation chamber,
前記プラズマ生成手段で生成されるプラズマの温度を調整する温度調整手段を具 備したプラズマ発生装置。  A plasma generator comprising a temperature adjusting means for adjusting the temperature of plasma generated by the plasma generating means.
[2] 請求項 1に記載のプラズマ発生装置であって、 [2] The plasma generator according to claim 1,
前記温度調整手段はプラズマを生成するための原料ガスの温度を調整するもので あるプラズマ発生装置。  The plasma generator, wherein the temperature adjusting means adjusts the temperature of a source gas for generating plasma.
[3] 請求項 1または 2に記載のプラズマ発生装置であって、 [3] The plasma generator according to claim 1 or 2,
前記温度調整手段は前記プラズマ発生室に設けられたプラズマ発生装置。  The temperature adjusting means is a plasma generator provided in the plasma generation chamber.
[4] 請求項 3に記載のプラズマ発生装置であって、 [4] The plasma generator according to claim 3,
前記温度調整手段は前記プラズマ発生室の壁部に設けられたプラズマ発生装置。  The plasma generating device is provided with the temperature adjusting means on a wall of the plasma generating chamber.
[5] 請求項 3に記載のプラズマ発生装置であって、 [5] The plasma generator according to claim 3,
前記温度調整手段は前記プラズマ発生室を囲むように配設された温度調整ブロッ クであるプラズマ発生装置。  The plasma generator, wherein the temperature adjusting means is a temperature adjusting block disposed so as to surround the plasma generating chamber.
[6] 請求項 5に記載のプラズマ発生装置であって、 [6] The plasma generator according to claim 5,
前記温度調整ブロックは、前記プラズマ発生室との間隔が調整可能であるプラズマ 発生装置。  A plasma generator in which the temperature adjustment block is capable of adjusting an interval with the plasma generation chamber.
[7] 請求項 1に記載のプラズマ発生装置であって、  [7] The plasma generator according to claim 1,
前記温度調整手段は前記プラズマ生成手段に設けられたプラズマ発生装置。  The temperature adjusting means is a plasma generator provided in the plasma generating means.
[8] 請求項 1乃至 7のいずれかに記載のプラズマ発生装置であって、 [8] The plasma generator according to any one of claims 1 to 7,
前記温度調整手段はビーム電流が所定の値となるように温度調整を行うものである プラズマ発生装置。  The temperature adjusting means adjusts the temperature so that the beam current becomes a predetermined value.
[9] 請求項 1乃至 8のいずれかに記載のプラズマ発生装置であって、 [9] The plasma generator according to any one of claims 1 to 8,
前記温度調整手段は、熱媒体としての流体の流量を調整することによって温度を 調整するものであるプラズマ発生装置。  The plasma generator according to claim 1, wherein the temperature adjusting unit adjusts the temperature by adjusting a flow rate of a fluid as a heat medium.
[10] 請求項 1乃至 8のいずれかに記載のプラズマ発生装置であって、 [10] The plasma generator according to any one of claims 1 to 8,
前記温度調整手段は、熱媒体としての流体の熱伝導率を調整することによって温 度を調整するものであるプラズマ発生装置。 The temperature adjusting means adjusts the thermal conductivity of the fluid as a heat medium by adjusting the thermal conductivity. A plasma generator for adjusting the degree.
[11] 請求項 1乃至 10のいずれかに記載のプラズマ発生装置であって、 [11] The plasma generator according to any one of claims 1 to 10,
前記温度調整手段は、空間的位置を調整することによって温度制御可能であるプ ラズマ発生装置。  A plasma generator, wherein the temperature adjusting means is capable of controlling the temperature by adjusting a spatial position.
[12] 請求項 1乃至 11のいずれかに記載のプラズマ発生装置を用い、被処理基体に対 しプラズマ処理を行うように構成されたプラズマ処理装置。  [12] A plasma processing apparatus configured to perform plasma processing on a substrate to be processed using the plasma generator according to any one of claims 1 to 11.
[13] 請求項 1乃至 11のいずれかに記載のプラズマ発生装置を用い、被処理基体に対 しプラズマ処理を行うことにより電子機器を形成する工程を含む電子機器の製造方 法。 [13] A method for manufacturing an electronic device, comprising a step of forming an electronic device by performing a plasma process on a substrate to be processed using the plasma generator according to any one of claims 1 to 11.
[14] 請求項 1乃至 11のいずれかに記載のプラズマ発生装置を用い、被処理基体に対 しプラズマ処理を行うことにより形成された電子機器。  [14] An electronic device formed by performing a plasma process on a substrate to be processed using the plasma generator according to any one of claims 1 to 11.
PCT/JP2005/009459 2004-05-25 2005-05-24 Plasma generator, plasma processing apparatus using same and electronic device WO2005117080A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-183111 2004-05-25
JP2004183111A JP2007266022A (en) 2004-05-25 2004-05-25 Plasma generator, plasma treating apparatus using same, and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2005117080A1 true WO2005117080A1 (en) 2005-12-08

Family

ID=35451139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009459 WO2005117080A1 (en) 2004-05-25 2005-05-24 Plasma generator, plasma processing apparatus using same and electronic device

Country Status (3)

Country Link
JP (1) JP2007266022A (en)
TW (1) TW200603194A (en)
WO (1) WO2005117080A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7414602B2 (en) 2020-03-18 2024-01-16 住友重機械イオンテクノロジー株式会社 ion generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048425A2 (en) * 2000-12-15 2002-06-20 Axcelis Technologies, Inc. Method and system for icosaborane implantation
JP2003303784A (en) * 2002-04-05 2003-10-24 Semiconductor Energy Lab Co Ltd Ion-doping equipment and ion-doping method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048425A2 (en) * 2000-12-15 2002-06-20 Axcelis Technologies, Inc. Method and system for icosaborane implantation
JP2003303784A (en) * 2002-04-05 2003-10-24 Semiconductor Energy Lab Co Ltd Ion-doping equipment and ion-doping method

Also Published As

Publication number Publication date
TW200603194A (en) 2006-01-16
JP2007266022A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
US7700925B2 (en) Techniques for providing a multimode ion source
JP4749713B2 (en) Ion implantation method and semiconductor manufacturing method by implantation of borohydride cluster ions
JP5026711B2 (en) Ion implantation system and control method
US7838842B2 (en) Dual mode ion source for ion implantation
KR100351489B1 (en) A method of forming a circuit and buried insulating layer in a semiconductor substrate
KR101593540B1 (en) High density helicon plasma source for wide ribbon ion beam generation
US8502161B2 (en) External cathode ion source
JP5568813B2 (en) Method for providing a multimode ion source
TWI467615B (en) Ion source and method of adjusting the uniformity of ion beam
KR101838578B1 (en) Silaborane implantation processes
TWI758352B (en) Rf ion source with dynamic volume control, plasma chamber, and method for adjusting a volume of plasma
US6545419B2 (en) Double chamber ion implantation system
JP2004519070A (en) Ion implantation system and control method
JPH11283520A (en) Ion source and magnetic filter used for the same
JP2008300687A (en) Plasma doping method, and device therefor
JP4517204B2 (en) Aperture mounting mechanism for plasma extraction
WO2005117080A1 (en) Plasma generator, plasma processing apparatus using same and electronic device
JP2005005328A (en) Method and apparatus for introducing impurity and semiconductor device formed using the same
JPH10177846A (en) Ion source of ion implantation device
JP2003303784A (en) Ion-doping equipment and ion-doping method
US20010037939A1 (en) Impurity introducing apparatus and method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP