WO2004109111A1 - Flügelzellenpumpe mit tiefgezogenem stahlblechtopf - Google Patents

Flügelzellenpumpe mit tiefgezogenem stahlblechtopf Download PDF

Info

Publication number
WO2004109111A1
WO2004109111A1 PCT/DE2004/001032 DE2004001032W WO2004109111A1 WO 2004109111 A1 WO2004109111 A1 WO 2004109111A1 DE 2004001032 W DE2004001032 W DE 2004001032W WO 2004109111 A1 WO2004109111 A1 WO 2004109111A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump according
pump
stroke
tin pot
switching valve
Prior art date
Application number
PCT/DE2004/001032
Other languages
English (en)
French (fr)
Inventor
Heiko Schulz-Andres
Original Assignee
Luk Automobiltechnik Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luk Automobiltechnik Gmbh & Co. Kg filed Critical Luk Automobiltechnik Gmbh & Co. Kg
Priority to US10/557,513 priority Critical patent/US20070148011A1/en
Priority to DE502004005440T priority patent/DE502004005440D1/de
Priority to DE112004000065T priority patent/DE112004000065D2/de
Priority to JP2006529599A priority patent/JP2007500309A/ja
Priority to EP04733242A priority patent/EP1631745B1/de
Publication of WO2004109111A1 publication Critical patent/WO2004109111A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3446Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/20Manufacture essentially without removing material
    • F04C2230/24Manufacture essentially without removing material by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings

Definitions

  • the invention relates to a pump, for example for pumping lubricating oil of an internal combustion engine, in particular a multi-stroke vane pump, in which the rotating group comprises a rotor with at least radially movable vanes, a stroke contour on which the vanes with their wing heads slide sealingly, and two axial side covers, such as side plates or housing walls.
  • Such pumps are known. They have axial inlet openings and outlet openings in their side plates, which must be separated according to their pressure ranges, for example by sealing devices or the like, and therefore cause a large axial overall length in vane pumps of this type.
  • the components of the known rotation groups such as. B. side plates made of sintered steel and contour rings made of solid steel or sintered steel, correspondingly thick-walled and thus require both a large radial and axial space.
  • a pump for example for conveying lubricating oil of an internal combustion engine, in particular a multi-stroke vane pump, in which the rotary group has a rotor with at least radially movable vanes, a stroke contour on which the vanes with their wing heads slide sealingly, and two axial side covers , such as side plates or housing walls, wherein the stroke contour and a first axial side plate are represented by a sheet steel pot.
  • the tin pot can preferably be produced by deep drawing.
  • a pump is preferred in which a second axial side plate is represented by a sheet steel cover.
  • a pump according to the invention is characterized in that the sheet metal cover has an embossed shoulder, the outer contour of which has the shape of the stroke contour.
  • the sheet metal cover after insertion in the tin pot covers the rounding of the tin pot, which is caused by the deep-drawing process, and thus creates tight sealing gaps within the rotating group.
  • the sheet metal cover can be produced by fine stamping or fine cutting.
  • a pump according to the invention is characterized in that the suction openings are represented by radial openings in the tin pot.
  • the rotary group has a narrow construction, since the suction channel can be arranged radially around the tin pot and does not have to be arranged axially on the opposite side of the pressure channel.
  • a pump is also preferred in which the outlet openings are represented by axial openings (pressure kidneys) and optionally at least one radial opening in the tin pot.
  • the radial outlet opening can be closed by a temperature switching valve or a pressure switching valve and thus creates a switchable delivery area.
  • a pump according to the invention is characterized in that the temperature switching valve has an overtravel spring. This has the advantage that after the radial outlet opening is closed by the temperature switching valve, if there is a further expansion of a thermal expansion element due to an increase in the temperature of the
  • the expansion element can perform an additional expansion path against the overtravel spring without deformation or destruction.
  • a pump is preferred in which the tin pot of the rotating group and, if appropriate, the temperature switching valve or pressure switching valve are integrated in a plastic housing.
  • the plastic housing is preferably injection molded and therefore does not require any post-processing. The advantage is that a rotary group encapsulated in sheet metal is integrated in a plastic housing and the advantages of the two types of material can thus be exploited.
  • Another pump according to the invention is characterized in that the axial outlet opening of the switchable delivery area can be closed by a spring tongue check valve.
  • the shape of the spring tongue check valve has the Shape of the stroke contour curvature.
  • the spring tongue check valve is mounted on a pin made of plastic in the plastic housing. The spring check valve is also protected against overexpansion by a stroke stop in the plastic housing. This design of the spring tongue check valve has the advantages, on the one hand, of being very inexpensive and, on the other hand, of being integrated in the pump in a space-neutral manner.
  • a pump according to the invention is characterized in that the tin pot has a notched or stamped cold start ring which, in the cold operating state, guides the wings outwards under the wings in accordance with the stroke contour and directs them against the stroke contour. Furthermore, a pump is preferred in which the rotor has grooves or depressions for receiving the cold start ring. A pump is also preferred in which the sheet metal cover has a notched or stamped cold start ring.
  • a pump according to the invention is distinguished by the fact that the sheet metal cover has embossed sheared kidneys, that is to say pressure kidneys without through-openings, which only bring about axial pressure surface compensation for the rotor in the pressure area.
  • a pump in which the radial outlet opening or openings of the switchable delivery area open into a channel that opens directly into the suction area of the second, non-switchable delivery area. This has the advantage that low flow losses and favorable ducting lead to a low-energy, pressure-free circulation of the switchable delivery area.
  • Figure 1 shows a top view of the open pump.
  • Figure 2 shows the section B-B of Figure 1.
  • Figure 3 shows in cross section the tin pot and the rotor.
  • Figure 4 shows a detail of the tin pot and the sheet metal cover.
  • Figure 5 shows in cross section the rotating group and the temperature switching valve.
  • Figure 6 shows in cross section the temperature switching valve in the open state.
  • Figure 7 shows the pump housing with the check valve.
  • FIG. 8 shows the section D-D from FIG. 7.
  • FIG. 9 shows in cross section an embodiment of the cold start ring
  • Figure 10 shows in cross section a further embodiment of the cold start ring
  • FIG. 9 shows the section C-C from FIG. 7.
  • the pump according to the invention in its housing is shown in supervision without a cover.
  • the tin pot 1, in which the stroke contour is shown, contains the other parts of the rotating group such as. B. the wings 3, which are arranged in radial slots 5 slidably in the rotor 7.
  • the rotor 7 has a recess 9, in which, for. B. engages the crankshaft of an internal combustion engine and thus drives the lubricating oil pump. In this case one speaks of a so-called shaft neck pump.
  • the rotation group is arranged with the tin pot 1 in a plastic housing 11 and is closed by the sheet metal cover, not shown here.
  • the rotation group, completely encapsulated in sheet steel, has the advantage that the friction pairings do not change here.
  • the tin pot 1 is partially surrounded within the plastic housing 11 by a channel 13 which is acted upon by the suction pressure of the pump.
  • the shape of the stroke contour forms two pressure areas 15.1 and 15.2, in which the cells between the wing, rotor, cam ring and side plates shrink and thus expel the pressure medium, and two suction areas 17.1 and 17.2, in which the corresponding cells enlarge and suck in medium.
  • the function of such a double-stroke vane pump is known and need not be explained further here.
  • a temperature switching valve 19 is arranged inside the housing, which has an expansion element within a housing 21, which can press a valve sealing plate 25 against the force of a return spring 27 against the sheet metal pot 1 via a pin 23 when the lubricating oil rises.
  • the tin pot 1 In this position, not shown here, in the tin pot 1 there is a radial opening from which the pressure kidney 15.1 can deliver pressure oil into the intake duct 13 as long as the temperature switching valve remains in this open state. The oil expelled from the pressure kidney 15.1 thus passes without pressure via the channel 13 to the suction kidney 17.2 of the second pump half and is therefore sucked in by the pump without major losses.
  • the tin pot 1 has one or more radial openings in the suction area of the suction kidney 17.2.
  • the suction kidney 17.1 of the first pump part here has invisible radial openings in the tin cup 1 through which oil can be sucked in from the suction channel 29.
  • the suction channel 29, like the suction channel 13, is connected to the suction connection 31, from which the oil from the internal combustion engine area, such as, for. B. the oil pan, can be sucked.
  • the oil is then discharged through the lubricating oil pump in the pressure channel 32 and fed to the internal combustion engine under pressure via the pressure connection 34.
  • a pressure relief valve is arranged in the area 36 of the plastic housing, which opens when the maximum permissible pressure in the pressure area 32 is exceeded and in turn supplies the excess oil to the suction area 29 via the outflow channel 38.
  • FIG. 2 shows section B-B from FIG. 1.
  • the tin pot 1 is embedded in the plastic housing 11.
  • the tin pot 1 contains the rotating group and thus, among other things, the rotor 7 shown here in cross section.
  • the rotating group is closed off by a sheet metal cover 40.
  • the stroke contour, as shown in FIG. 1 is drawn directly into the sheet metal, and the sheet metal base 42 of the tin pot forms the first axial side plate of the rotating group.
  • the cover 40 has a shoulder 44 which projects into the upper edge of the tin pot 1, which also has the shape of the stroke contour in its outer contour and which thus represents the second axial side plate of the rotating group.
  • a plurality of radial openings 46 and 48 are made in the tin pot 1 in the suction area.
  • the suction openings 46 and 48 open into the suction channels 29 and 13, which are shown in a top view in FIG.
  • FIG 3 the design of the tin pot 1 in the plastic housing 11 and the rotor 7 is shown enlarged. It can be seen that the tin pot 1 has a rounding 50 at its upper end, which is caused by the deep-drawing process in terms of production technology.
  • the rotor 7 has two grooves 52 on its side surfaces, into which a so-called cold start ring 54 engages.
  • the cold start ring 54 is notched or stamped out of the tin pot 1 and also has the shape of the stroke contour on a reduced scale.
  • This cold start ring thus engages within the rotor grooves 52 under the wings and lifts them along the contour so far that they slide and seal approximately on the contour ring, even if the wings are not pressed out by centrifugal forces or by additional pressure forces under the wing. This ensures that the wing heads rest securely on the contour ring even at cold starts and at low engine speeds.
  • the interaction of the tin pot 1 with the sheet metal cover 40 is shown in particular. Due to the manufacturing process, the rounding 50 is caused by the deep-drawing process in the tin pot 1, but this would be problematic for the wings as a sealing surface or tread. Therefore, the sheet metal cover 40, which can be produced as a flat component with a manufacturing process other than deep drawing, has a more sharp-edged deformation of the shoulder 44, which covers the rounding 50 and thus ensures a sufficient sealing of the rotating group on the top of the rotor 7 and the wing heads , Thus, the wings are housed within the right-angled rotation group room with their side walls and their wing head in a sufficiently sealing manner.
  • FIG. 5 shows a cross section of the rotating group and the temperature switching valve.
  • the temperature switching valve is extended by the elevated temperature of the lubricating oil and closes an opening 56 in the pressure region with its valve body 25.
  • the pressure kidney 15.1 from FIG. 1 cannot deliver into the unpressurized circulation of the channel 13 and thus feeds into the pressure channel 66 via a check valve 64, which will be described in more detail later, which means that both
  • the temperature switching valve 19 is accommodated with the housing of the expansion body 21 in a separate cover 62, the expansion element housing 21 being supported on a web 60 of the cover 62 with a so-called overtravel spring 58.
  • the overtravel spring 58 secures the expansion element and the housing against overexpansion by further temperature increase and expansion of the expansion element, which works as follows: First, when the temperature increases, the expansion element extends the actuating rod 23 against the force of the spring 27 and thus with the Valve body 25 close the pressure opening 56.
  • the temperature switching valve is open, i.e. shown in the cooled state.
  • the valve closing body 25 has moved away from the radial pressure opening 56 of the tin pot 1, and the pressure oil from the area 15.1 can now flow via the opening 56 into the channel 13 for unpressurized circulation up to the suction port 17.2 from FIG. 1.
  • the spring cup 68 also serves to guide the actuating pin 23 of the temperature switching valve.
  • the return spring 27 has pushed back the actuating pin and the cooled expansion element via the spring cup 68.
  • FIG. 7 the rotation group has been removed from FIG. 1, so that the arrangement of the check valve 64 can be seen in an underlying pressure channel 70.
  • the pressure channel 70 and the spring leaf 72 of the check valve 64 are adapted to the stroke contour, so that the spring leaf 72 of the check valve 64 can close the pressure kidney 15.1 from FIG. 1.
  • the check valve 64 is mounted in the housing 11 by means of a plastic pin 74 and is fixed by the tin pot against the plastic housing after it has been inserted.
  • FIG. 8 shows the section D-D from FIG. 7 and thus the stroke end stop 76 of the valve leaf 72.
  • FIG. 9 shows in section C-C the plastic pin 74 which supports the spring leaf 72 in the plastic housing 11.
  • FIG. 10 shows an alternative of the cold start ring 54.1 to the representation of the cold start ring 54 in FIG. 3 in cross section.
  • the cold start contour 54.1 is pressed out of the tin pot 1 by means of an expression and thus engages under the wing 3, which is mounted in the cam ring 7, and thus guides the wing 3 along the stroke contour of the metal cover 1.
  • FIG. 11 shows a further variant of the cold start contour 54.2, which is produced from the tin pot 1 by material displacement and can therefore also guide the wing 3 here against the contour.
  • the axial tolerances of the pot depth can be eliminated if the lid 40 is pushed open in a controlled manner.
  • Axial and radial openings are provided in the pressure range of the switched stage.
  • the openings in the radial direction with the temperature switching valve or a pressure switching valve are used for unpressurized circulation.
  • the oil is flushed out of the pressure side back into the suction chamber for the next suction stage. Due to the channeling obtained in this way, there are only minor flow losses due to deflection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)

Abstract

Pumpe, beispielsweise zur Förderung von Schmieröl eines Verbrennungsmotors, insbesondere mehrhubige Flügelzellenpumpe, bei welcher die Rotationsgruppe einen Rotor (7) mit zumindest radial beweglichen Flügeln (3), eine Hubkontur, an welcher die Flügel (3) mit ihren Flügelköpfen dichtend entlang gleiten, und zwei axiale seitenabdeckungen, wie Seitenaplatten oder Gehäusewände, aufweist, wobei die Hubkontur und eine erste axiale Seitenplatte durch einen Stahlblechkopf dargestellt sind.

Description

F UGELZE LENPUMPE MIT TIEFGEZOGENEM STAHLBLECHTOPF
Die Erfindung betrifft eine Pumpe, beispielsweise zur Förderung von Schmieröl eines Verbrennungsmotors, insbesondere eine mehrhubige Flügelzellenpumpe, bei welcher die Rotationsgruppe einen Rotor mit zumindest radial beweglichen Flügeln, eine Hubkontur, an welcher die Flügel mit ihren Flügelköpfen dichtend entlang gleiten, und zwei axiale Seitenabdeckungen, wie Seitenplatten oder Gehäusewände aufweist.
Derartige Pumpen sind bekannt. Sie weisen in ihren Seitenplatten axiale Einlassöffnun- gen und Auslassöffnungen auf, welche entsprechend ihren Druckbereichen beispielsweise durch Dichtungseinrichtungen oder ähnliches getrennt sein müssen und deshalb bei derartigen Flügelzellenpumpen eine große axiale Baulänge verursachen. Auch sind die Bauteile der bekannten Rotationsgruppen, wie z. B. Seitenplatten aus Sinterstahl und Konturringe aus massivem Stahl oder Sinterstahl, entsprechend dickwandig und erfordern somit sowohl einen großen radialen als auch axialen Bauraum.
Es ist also Aufgabe der Erfindung, eine Pumpe darzustellen, welche diese Nachteile nicht aufweist.
Die Aufgabe wird gelöst durch eine Pumpe, beispielsweise zur Förderung von Schmieröl eines Verbrennungsmotors, insbesondere eine mehrhubige Flügelzellenpumpe, bei welcher die Rotationsgruppe einen Rotor mit zumindest radial beweglichen Flügeln, eine Hubkontur, an welcher die Flügel mit ihren Flügelköpfen dichtend entlanggleiten, und zwei axiale Seitenabdeckungen, wie Seitenplatten oder Gehäusewände aufweist, wobei die Hubkontur und eine erste axiale Seitenplatte durch einen Stahlblechtopf dargestellt sind. Vorzugsweise kann der Blechtopf durch Tiefziehen herstellbar sein. Außerdem wird eine Pumpe bevorzugt, bei welcher eine zweite axiale Seitenplatte durch einen Stahlblechdeckel dargestellt ist. Eine erfindungsgemäße Pumpe zeichnet sich dadurch aus, dass der Blechdeckel einen eingeprägten Absatz aufweist, dessen Außenkontur die Form der Hubkontur aufweist. Das hat den Vorteil, dass der Blechdeckel nach Einsetzen in den Blechtopf die Abrundungen des Blechtopfes, welche durch den Tiefziehvorgang verursacht sind, überdeckt und damit enge Dichtspalte innerhalb der Rotationsgruppe herstellt. Erfindungsgemäß kann der Blechdeckel durch Feinstanzen oder Feinschneiden herstellbar sein. Eine erfindungsgemäße Pumpe zeichnet sich dadurch aus, dass die Ansaugöffnungen durch radiale Öffnungen im Blechtopf dargestellt sind. Das hat den Vorteil, dass die Rotationsgruppe eine schmale Bauweise aufweist, da der Saugkanal radial um den Blechtopf angeordnet sein kann und nicht axial auf der gegenüberliegenden Seite des Druckkanales angeordnet werden muss.
Auch wird eine Pumpe bevorzugt, bei welcher die Auslassöffnungen durch axiale Öffnungen (Drucknieren) und gegebenenfalls mindestens eine radiale Öffnung im Blechtopf dargestellt sind. Erfindungsgemäß ist die radiale Auslassöffnung durch ein Tempe- raturschaltventil oder ein Druckschaltventil verschließbar und stellt somit einen schaltbaren Förderbereich her. Das hat den Vorteil, dass je nach temperaturabhängigem oder druckabhängigem Schmierölbedarf des Verbrennungsmotors die Pumpe mit beiden Förderbereichen Drucköl fördert oder nur mit einem Förderbereich Drucköl fördert und der zweite Förderbereich ohne Druckaufbau mitläuft, wodurch sich eine beträchtliche Leistungseinsparung ergeben kann.
Eine erfindungsgemäße Pumpe zeichnet sich dadurch aus, dass das Temperaturschaltventil eine Überhubfeder aufweist. Das hat den Vorteil, dass nach Verschließen der radialen Auslassöffnung durch das Temperaturschaltventil, wenn sich eine weitere Ausdehnung eines Wärmeausdehnungselements durch Temperaturerhöhung des
Schmieröls einstellt, das Ausdehnungselement ohne Verformung oder Zerstörung einen zusätzlichen Ausdehnungsweg gegen die Überhubfeder vollziehen kann.
Bevorzugt wird eine Pumpe, bei welcher der Blechtopf der Rotationsgruppe und gege- benenfalls das Temperaturschaltventil oder Druckschaltventil in ein Kunststoffgehäuse integriert sind. Das Kunststoffgehäuse ist vorzugsweise fertig gespritzt und bedarf daher keiner Nachbearbeitung. Der Vorteil besteht darin, dass eine in Blech gekapselte Rotationsgruppe in einem Kunststoffgehäuse integriert ist und so die Vorteile der beiden Materialarten ausgenutzt werden können.
Eine weitere erfindungsgemäße Pumpe zeichnet sich dadurch aus, dass die axiale Auslassöffnung des schaltbaren Förderbereiches durch ein Federzungenrückschlagventil verschließbar ist. Dabei weist die Form des Federzungenrückschlagventils die Form der Hubkonturkrümmung auf. Weiterhin ist das Federzungenrückschlagventil auf einem Zapfen aus Kunststoff im Kunststoffgehäuse gelagert. Auch wird das Federzungenrückschlagventil durch einen Hubanschlag im Kunststoffgehäuse vor Überdehnungen geschützt. Diese Ausbildung des Federzungenrückschlagventils hat die Vorteile, zum einen sehr kostengünstig und zum anderen aber auch bauraumneutral in der Pumpe integriert zu sein.
Eine erfindungsgemäße Pumpe zeichnet sich dadurch aus, dass der Blechtopf einen ausgeklinkten oder eingeprägten Kaltstartring aufweist, welcher im kalten Betriebszu- stand unter den Flügeln die Flügel entsprechend der Hubkontur nach außen führt und gegen die Hubkontur lenkt. Weiterhin wird eine Pumpe bevorzugt, bei welcher der Rotor Nuten oder Einsenkungen zur Aufnahme des Kaltstartringes aufweist. Auch wird eine Pumpe bevorzugt, bei welcher der Blechdeckel einen ausgeklinkten oder eingeprägten Kaltstartring aufweist.
Eine erfindungsgemäße Pumpe zeichnet sich dadurch aus, dass der Blechdeckel eingeprägte Scheindrucknieren aufweist, also Drucknieren ohne Durchgangsöffnungen, die nur eine axiale Druckflächenkompensation für den Rotor im Druckbereich bewirken.
Bevorzugt wird weiterhin eine Pumpe, bei welcher der oder die radialen Auslassöffnungen des schaltbaren Förderbereiches in einen Kanal münden, der direkt auf kurzem Weg in den Ansaugbereich des zweiten, nicht schaltbaren Förderbereichs mündet. Das hat den Vorteil, dass geringe Strömungsverluste und eine günstige Kanalführung zu einem energiearmen drucklosen Umlauf des schaltbaren Förderbereichs führen.
Die Erfindung wird nun anhand der Figuren beschrieben.
Figur 1 zeigt eine Aufsicht auf die geöffnete Pumpe. Figur 2 zeigt den Schnitt B-B aus Figur 1. Figur 3 zeigt im Querschnitt den Blechtopf und den Rotor.
Figur 4 zeigt ein Detail des Blechtopfes und des Blechdeckels.
Figur 5 zeigt im Querschnitt die Rotationsgruppe und das Temperaturschaltventil.
Figur 6 zeigt im Querschnitt das Temperaturschaltventil im geöffneten Zustand. Figur 7 zeigt das Pumpengehäuse mit dem Rückschlagventil.
Figur 8 zeigt den Schnitt D-D aus Figur 7.
Figur 9 zeigt im Querschnitt eine Ausführung des Kaltstartrings
Figur 10 zeigt im Querschnitt eine weitere Ausführung des Kaltstartrings
Figur 9 zeigt den Schnitt C-C aus Figur 7.
In Figur 1 ist die erfindungsgemäße Pumpe in ihrem Gehäuse in Aufsicht ohne Abdeckung dargestellt. Der Blechtopf 1 , in welchem die Hubkontur abgebildet ist, enthält die anderen Teile der Rotationsgruppe wie z. B. die Flügel 3, welche in radialen Schlitzen 5 verschieblich im Rotor 7 angeordnet sind. Der Rotor 7 hat eine Ausnehmung 9, in welche z. B. die Kurbelwelle eines Verbrennungsmotors eingreift und damit die Schmierölpumpe antreibt. Man spricht in diesem Fall auch von einer so genannten Wellenhals- pumpe. Die Rotationsgruppe ist mit dem Blechtopf 1 in einem Kunststoffgehäuse 11 angeordnet und wird durch den hier nicht dargestellten Blechdeckel verschlossen. Die komplett in Stahlblech gekapselte Rotationsgruppe hat damit den Vorteil, dass sich hier die Reibpaarungen nicht ändern. Es gibt keine gleitenden Bewegungen zu Kunststoffteilen, so dass ein verschleißarmer Betrieb möglich ist. Der Blechtopf 1 wird innerhalb des Kunststoffgehäuses 11 teilweise von einem Kanal 13 umgeben, welcher mit dem An- saugdruck der Pumpe beaufschlagt ist. Innerhalb der Rotationsgruppe bilden sich durch die Form der Hubkontur zwei Druckbereiche 15.1 und 15.2, in denen sich die Zellen zwischen Flügel, Rotor, Hubring und Seitenplatten verkleinern und damit das Druckmedium ausstoßen, und zwei Ansaugbereiche 17.1 und 17.2, in denen sich die entsprechenden Zellen vergrößern und damit Medium ansaugen. Die Funktion einer derartigen doppelhubigen Flügelzellenpumpe ist bekannt und muss hier nicht weiter erläutert werden. Innerhalb des Gehäuses ist weiterhin ein Temperaturschaltventil 19 angeordnet, welches innerhalb eines Gehäuses 21 ein Dehnstoffelement besitzt, welches bei Temperaturerhöhung des Schmieröls über einen Stift 23 eine Ventildichtplatte 25 gegen die Kraft einer Rückholfeder 27 gegen den Blechtopf 1 pressen kann. Im Blechtopf 1 ist in dieser Position, hier nicht dargestellt, eine radiale Öffnung, aus der die Druckniere 15.1 Drucköl in den Ansaugkanal 13 fördern kann, so lange das Temperaturschaltventil in diesem geöffneten Zustand verharrt. Das von der Druckniere 15.1 ausgestoßene Öl gelangt damit drucklos über den Kanal 13 bis zur Saugniere 17.2 der zweiten Pumpen- hälfte und wird somit ohne große Verluste von der Pumpe angesaugt. Der Blechtopf 1 besitzt dazu im Ansaugbereich der Saugniere 17.2 eine oder mehrere radiale Öffnungen. Ebenso besitzt die Saugniere 17.1 des ersten Pumpenteils hier nicht sichtbar radiale Öffnungen im Blechtopf 1 , durch welche aus dem Saugkanal 29 Öl angesaugt wer- den kann. Der Saugkanal 29 ist ebenso wie der Saugkanal 13 mit dem Ansaugan- schluss 31 verbunden, von welchem das Öl aus dem Verbrennungsmotorbereich, wie z. B. der Ölwanne, angesaugt werden kann. Das Öl wird dann durch die Schmierölpumpe im Druckkanal 32 ausgestoßen und unter Druck über den Druckanschluss 34 dem Verbrennungsmotor zugeführt. Im Bereich 36 des Kunststoffgehäuses ist ein hier nicht dargestelltes Druckbegrenzungsventil angeordnet, welches bei Überschreiten des maximal zulässigen Druckes im Druckbereich 32 öffnet und über den Abströmkanal 38 das überflüssige Öl wiederum dem Ansaugbereich 29 zuführt.
In Figur 2 ist der Schnitt B-B aus Figur 1 dargestellt. Der Blechtopf 1 ist im Kunststoff- gehäuse 11 eingebettet. Der Blechtopf 1 enthält die Rotationsgruppe und damit unter anderem den hier im Querschnitt dargestellten Rotor 7. Die Rotationsgruppe wird durch einen Blechdeckel 40 abgeschlossen. Bei dem Blechtopf 1 ist die Hubkontur, wie in Figur 1 dargestellt, direkt ins Blech eingezogen, und der Blechboden 42 des Blechtopfes bildet die erste axiale Seitenplatte der Rotationsgruppe. Der Deckel 40 besitzt einen Absatz 44, der in den oberen Rand des Blechtopfes 1 hineinragt, der in seiner Außenkontur ebenfalls die Form der Hubkontur hat und der somit die zweite axiale Seitenplatte der Rotationsgruppe darstellt. Zur Verbesserung der Ansaugfähigkeit der Pumpe sind im Saugbereich mehrere radiale Öffnungen 46 und 48 in den Blechtopf 1 eingebracht. Die Ansaugöffnungen 46 und 48 münden dabei in die Ansaugkanäle 29 und 13, welche in Figur 1 in Aufsicht dargestellt sind.
In Figur 3 ist vergrößert die Gestaltung des Blechtopfes 1 im Kunststoffgehäuse 11 und der Rotor 7 dargestellt. Man erkennt, dass der Blechtopf 1 an seinem oberen Ende eine Abrundung 50 aufweist, welche durch den Tiefziehvorgang fertigungstechnisch bedingt ist. Der Rotor 7 weist an seinen Seitenflächen zwei Nuten 52 auf, in die ein so genannter Kaltstartring 54 eingreift. Der Kaltstartring 54 ist aus dem Blechtopf 1 ausgeklinkt oder eingeprägt und besitzt in verkleinertem Maßstab ebenfalls die Form der Hubkontur. Dieser Kaltstartring greift damit innerhalb der Rotornuten 52 unter die Flügel und hebt sie entlang des Konturverlaufes soweit an, dass sie annähernd am Konturring gleiten und abdichten, auch wenn die Flügel nicht durch Fliehkräfte oder durch zusätzliche Druckkräfte unter dem Flügel herausgepresst werden. Somit ist schon bei Kaltstart und niedrigen Drehzahlen ein sicheres Anliegen der Flügelköpfe am Konturring gewähr- leistet.
In Figur 4 ist insbesondere im Detail das Zusammenspiel des Blechtopfes 1 mit dem Blechdeckel 40 dargestellt. Fertigungsbedingt ist durch den Tiefziehvorgang beim Blechtopf 1 die Abrundung 50 verursacht, welche aber als Abdichtfläche oder Laufflä- ehe für die Flügel problematisch wäre. Daher besitzt der Blechdeckel 40, der als flaches Bauteil mit einem anderen Fertigungsverfahren als dem Tiefziehen hergestellt sein kann, eine scharfkantigere Umformung des Absatzes 44, welche die Abrundung 50 überdeckt und damit eine hinreichende Abdichtung der Rotationsgruppe auf der Oberseite des Rotors 7 und den Flügelköpfen gewährleistet. Damit sind auch die Flügel innerhalb des rechtwinkligen Rotationsgruppenraumes mit ihren Seitenwänden und ihrem Flügelkopf hinreichend dichtend untergebracht.
In Abbildung 5 ist im Querschnitt die Rotationsgruppe und das Temperaturschaltventil dargestellt. Gleiche Bauteile sind mit gleichen Bezugszeichen versehen und sollen hier zur Vermeidung von Wiederholungen nicht noch einmal erläutert werden. Das Tempe- raturschaltventil ist in dieser Darstellung durch erhöhte Temperatur des Schmieröls ausgefahren und verschließt mit seinem Ventilkörper 25 eine Öffnung 56 im Druckbereich. Das führt dazu, dass die Druckniere 15.1 aus Figur 1 nicht in den drucklosen Umlauf des Kanals 13 fördern kann und damit über ein Rückschlagventil 64, welches später noch genauer dargestellt wird, in den Druckkanal 66 fördert, wodurch beide
Drucknieren den Schmierölbedarf des Verbrennungsmotors versorgen. Das Temperaturschaltventil 19 ist mit dem Gehäuse des Dehnstoffkörpers 21 in einem separaten Deckel 62 untergebracht, wobei sich das Dehnstoffelementgehäuse 21 mit einer so genannten Überhubfeder 58 an einem Steg 60 des Deckels 62 abstützt. Die Überhub- feder 58 sichert das Dehnstoffelement und das Gehäuse gegen Überdehnung durch weitere Temperaturerhöhung und Ausdehnung des Dehnstoffelementes, was folgendermaßen funktioniert: Zunächst wird bei Temperaturerhöhung das Dehnstoffelement die Betätigungsstange 23 ausfahren gegen die Kraft der Feder 27 und damit mit dem Ventilkörper 25 die Drucköffnung 56 verschließen. Die Feder 27, welche als Rückstellfeder nach dem Abkühlen für das Dehnstoffelement dient und das Temperaturschaltventil wieder in Öffnungsstellung bringt, ist von einem Federtopf 68 umgeben, der hier gleichzeitig als Führung für die Stange 23 dient. Findet bei geschlossenem Temperatur- schaltventil jetzt eine weitere Ausdehnung des Dehnstoffelementes statt, so kann das Dehnstoffelement gegen die Kraft der Überhubfeder 58 nach hinten gegen den Anschlag 60 ausweichen und somit Zerstörungen des Dehnstoffelementes oder des das Dehnstoffelement abstützenden Gehäuseteils vermeiden.
In Abbildung 6 ist das Temperaturschaltventil im geöffneten, d.h. im abgekühlten Zustand dargestellt. Der Ventilschließkörper 25 hat sich von der radialen Drucköffnung 56 des Blechtopfes 1 entfernt, und das Drucköl aus dem Bereich 15.1 kann über die Öffnung 56 nun in den Kanal 13 zum drucklosen Umlauf bis zur Ansaugniere 17.2 aus Figur 1 strömen. Der Federtopf 68 dient auch hier zur Führung des Betätigungsstiftes 23 des Temperaturschaltventils. Die Rückstellfeder 27 hat über den Federtopf 68 den Betätigungsstift und das abgekühlte Dehnstoffelement zurückgedrückt.
In Figur 7 ist die Rotationsgruppe aus der Figur 1 entfernt, so dass man in einem darunterliegenden Druckkanal 70 die Anordnung des Rückschlagventils 64 erkennen kann. Der Druckkanal 70 und das Federblatt 72 des Rückschlagventils 64 sind der Hubkontur angepasst, so dass das Federblatt 72 des Rückschlagventils 64 die Druckniere 15.1 aus Figur 1 verschließen kann. Das Rückschlagventil 64 ist mittels eines Kunststoffstif- tes 74 im Gehäuse 11 gelagert und wird nach Einsetzen des Blechtopfes durch diesen gegen das Kunststoffgehäuse fixiert.
Figur 8 zeigt den Schnitt D-D aus Figur 7 und damit den Hubendanschlag 76 des Ventilblattes 72. Figur 9 zeigt im Schnitt C-C den Kunststoffstift 74, welcher das Federblatt 72 im Kunststoffgehäuse 11 lagert.
In Figur 10 ist im Querschnitt eine Alternative des Kaltstartrings 54.1 zu der Darstellung des Kaltstartrings 54 in Figur 3 dargestellt. Die Kaltstartkontur 54.1 ist durch Ausprägung aus dem Blechtopf 1 heraus gedrückt und greift somit unter den Flügel 3, welcher im Hubring 7 gelagert ist, und führt den Flügel 3 somit an der Hubkontur des Blechdeckels 1 entlang.
In Figur 11 ist eine weitere Variante der Kaltstartkontur 54.2 dargestellt, welche durch Materialverdrängung aus dem Blechtopf 1 hergestellt ist und somit auch hier den Flügel 3 gegen die Kontur führen kann.
Bei der Montage wird der Blechdeckel 40 auf den Blechtopf 1 (vgl. Figur 2), aufgeschoben und anschließend durch eine Schweißoperation befestigt. Dieses Vorgehen bietet mehrere Vorteile:
1. Die axialen Toleranzen der Topftiefe können eliminiert werden, wenn das Aufschieben des Deckels 40 weggesteuert erfolgt.
2. Durch den Tiefziehvorgang am Blechtopf 1 entsteht beim Übergang von der Hubkontur zum Blechflansch ein Radius 50 (vgl. Figur 3), der für die Volumetrie der Ro- tationsgruppe schädlich wäre. Bei Aufschieben auf den Absatz 44 des Deckels 40 wird der Radius 50 aus dem Funktionsbereich der Rotationsgruppe entfernt. Ein Vorteil der gekapselten Rotationsgruppe ist, dass nun alle wichtigen Konturen für die Steuerzeiten integriert sind und die Positionierung der kompletten Rotationsgruppe im Kunststoffgehäuse 11 größere Toleranzen zulassen kann.
Im Druckbereich der geschalteten Stufe sind axiale und radiale Öffnungen vorgesehen. Die Öffnungen in radialer Richtung mit dem Temperaturschaltventil oder einem Druckschaltventil werden für den drucklosen Umlauf benutzt. Dabei wird das Öl aus der Druckseite wieder in den Saugraum für die Ansaugung der nächsten Saugstufe her- ausgespült. Aufgrund der so gewonnenen Kanalführung ergeben sich nur geringe Strömungsverluste durch Umlenkung.
Der große Vorteil dieses Pumpenaufbaus mit entsprechenden radialen und axialen Öffnungen sind die Reduzierung des benötigten Bauraums sowie die Kostensenkung.

Claims

Patentansprüche
1. Pumpe, beispielsweise zur Förderung von Schmieröl eines Verbrennungsmotors, insbesondere mehrhubige Flügelzellenpumpe, bei welcher die Rotationsgruppe einen Rotor (7) mit zumindest radial beweglichen Flügeln (3), eine Hubkontur, an welcher die Flügel (3) mit ihren Flügelköpfen dichtend entlang gleiten, und zwei axiale Seitenabdeckungen, wie Seitenplatten oder Gehäusewände aufweist, dadurch gekennzeichnet, dass die Hubkontur und eine erste axiale Seitenplatte durch einen Stahlblechtopf (1) dargestellt sind.
2. Pumpe nach Anspruch 1 , dadurch gekennzeichnet, dass der Blechtopf (1 ) durch Tiefziehen herstellbar ist.
3. Pumpe nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass eine zweite axiale Seitenplatte durch einen Stahlblechdeckel (40) dargestellt ist.
4. Pumpe nach Anspruch 3, dadurch gekennzeichnet, dass der Blechdeckel (40) einen eingeprägten Absatz (44) aufweist, dessen Außenkontur die Form der Hubkontur aufweist.
5. Pumpe nach Anspruch 3 oder Anspruch 4, dadurch gekennzeichnet, dass der Blechdeckel (44) durch Feinstanzen oder Feinschneiden herstellbar ist.
6. Pumpe nach Anspruch 1 bis Anspruch 5, dadurch gekennzeichnet, dass die An- Saugöffnungen durch radiale Öffnungen (46, 48) im Blechtopf (1 ) dargestellt sind.
7. Pumpe nach Anspruch 1 bis Anspruch 6, dadurch gekennzeichnet, dass die Auslassöffnungen durch axiale Öffnungen (15.1 , 15.2) (Drucknieren) und gegebenenfalls mindestens eine radiale Öffnung (56) im Blechtopf dargestellt sind.
8. Pumpe nach Anspruch 7, dadurch gekennzeichnet, dass die radiale Auslassöffnung (56) durch ein Temperaturschaltventil (19) oder ein Druckschaltventil verschließbar ist und somit einen schaltbaren Förderbereich herstellt.
9. Pumpe nach Anspruch 8, dadurch gekennzeichnet, dass das Temperaturschaltventil (19) eine Überhubfeder (58) aufweist.
10. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Blechtopf (19 der Rotationsgruppe und gegebenenfalls das Temperaturschaltventil (19) oder Druckschaltventil in ein Kunststoffgehäuse (11) integriert sind.
11. Pumpe nach Anspruch 10, dadurch gekennzeichnet, dass das Kunststoffgehäuse (11) fertig gespritzt ist und daher keiner Nachbearbeitung bedarf.
12. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die axiale Auslassöffnung (15.1) des schaltbaren Förderbereichs durch ein Federzungenrückschlagventil (64) verschließbar ist.
13. Pumpe nach Anspruch 12, dadurch gekennzeichnet, dass das Federzungenrückschlagventil die Form der Hubkonturkrümmung aufweist.
14. Pumpe nach Anspruch 12 oder Anspruch 13, dadurch gekennzeichnet, dass das Federzungenrückschlagventil (64) auf einem Zapfen (74) aus Kunststoff gelagert ist.
15. Pumpe nach Anspruch 12 bis Anspruch 14, dadurch gekennzeichnet, dass dem Federzungenrückschlagventil (64) ein Hubanschlag (76) im Kunststoffgehäuse (11) zugeordnet ist.
16. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Blechtopf (1 ) einen ausgeklinkten oder eingeprägten Kaltstartring (54, 54.1 , 54.2) aufweist.
17. Pumpe nach Anspruch 16, dadurch gekennzeichnet, dass der Rotor (7) Nuten oder Einsenkungen zur Aufnahme des Kaltstartringes (54, 54.1 , 54.2) aufweist. 14
18. Pumpe nach Anspruch 16 oder Anspruch 17, dadurch gekennzeichnet, dass der Blechdeckel (40) einen ausgeklinkten oder eingeprägten Kaltstartring aufweist.
19. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Blechdeckel (40) eingeprägte Scheindrucknieren aufweist.
20. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die radiale Auslassöffnung (56) des schaltbaren Förderbereichs in einen Kanal (13) mündet, der direkt auf kurzem Weg in den Ansaugbereich (17.2) des zweiten, nicht schaltbaren Förderbereichs mündet.
PCT/DE2004/001032 2003-05-26 2004-05-15 Flügelzellenpumpe mit tiefgezogenem stahlblechtopf WO2004109111A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/557,513 US20070148011A1 (en) 2003-05-26 2004-05-15 Vane-cell pump provided with a deep-drawn metal-sheet pot
DE502004005440T DE502004005440D1 (de) 2003-05-26 2004-05-15 Flügelzellenpumpe mit tiefgezogenem stahlblechtopf
DE112004000065T DE112004000065D2 (de) 2004-05-15 2004-05-15 Flügelzellenpumpe mit tiefgezogenem Stahlblechtopf
JP2006529599A JP2007500309A (ja) 2003-05-26 2004-05-15 深絞り加工されたポット形金属薄板を備えたベーンポンプ
EP04733242A EP1631745B1 (de) 2003-05-26 2004-05-15 Flügelzellenpumpe mit tiefgezogenem stahlblechtopf

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10323572.8 2003-05-26
DE10323572 2003-05-26

Publications (1)

Publication Number Publication Date
WO2004109111A1 true WO2004109111A1 (de) 2004-12-16

Family

ID=33494749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/001032 WO2004109111A1 (de) 2003-05-26 2004-05-15 Flügelzellenpumpe mit tiefgezogenem stahlblechtopf

Country Status (8)

Country Link
US (1) US20070148011A1 (de)
EP (1) EP1631745B1 (de)
JP (1) JP2007500309A (de)
KR (1) KR20060019557A (de)
CN (1) CN100408858C (de)
AT (1) ATE377710T1 (de)
DE (1) DE502004005440D1 (de)
WO (1) WO2004109111A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009109282A1 (de) * 2008-03-01 2009-09-11 Ixetic Hückeswagen Gmbh Vakuumpumpengehäusedeckel

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009055945B4 (de) * 2009-11-26 2018-10-04 HELLA GmbH & Co. KGaA Flügelzellenpumpe
DE102013213051A1 (de) * 2013-06-18 2014-12-18 Continental Automotive Gmbh Fördereinrichtung zur Förderung von Öl aus einem Vorratsbehälter zu einem Getriebe eines Kraftfahrzeuges
DE102014102643A1 (de) * 2014-02-27 2015-08-27 Schwäbische Hüttenwerke Automotive GmbH Rotationspumpe mit Kunststoffverbundstruktur
US20190195221A1 (en) * 2015-12-23 2019-06-27 Sabic Global Technologies B.V. Hybrid metal-plastic parts and process for manufacturing the same
CN105673485B (zh) * 2016-01-15 2017-09-19 沈阳天朗艾尔压缩机有限公司 一种滑片式空气压缩机
US11396811B2 (en) * 2017-12-13 2022-07-26 Pierburg Pump Technology Gmbh Variable lubricant vane pump
CN117759534B (zh) * 2024-02-22 2024-04-26 苏州英磁新能源科技有限公司 一种自适应可变容量叶片泵

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797091A (en) * 1981-10-01 1982-06-16 Kayaba Ind Co Ltd Vane pump
US4656710A (en) * 1985-08-19 1987-04-14 Noman Maciejewski Method of making a hydraulic pump housing
FR2660221A1 (fr) * 1990-03-31 1991-10-04 Barmac Luk Automobiltechnik Gm Procede de fabrication d'un carter en tole par emboutissage profond.
EP0644317A1 (de) * 1993-09-16 1995-03-22 SIHI GmbH & Co KG Flüssigkeitsringgaspumpe
DE19913632A1 (de) * 1999-03-25 2000-10-05 Siemens Ag Flüssigkeitsringpumpe

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US940246A (en) * 1908-08-24 1909-11-16 John C Hagerty Rotary engine.
DE2221541A1 (de) * 1972-05-03 1973-11-22 Bosch Gmbh Robert Fluegelzellenkompressor
SE457010B (sv) * 1983-09-17 1988-11-21 Glyco Antriebstechnik Gmbh Reglerbar smoerjmedelspump
US5310326A (en) * 1992-09-14 1994-05-10 Mainstream Engineering Corporation Rotary compressor with improved bore configuration and lubrication system
CN2148837Y (zh) * 1992-10-07 1993-12-08 大连液压件厂 转向助力泵
CA2131081C (en) * 1993-09-16 2004-01-20 Udo Segebrecht Liquid ring gas pump
US5642991A (en) * 1996-03-11 1997-07-01 Procon Products Sliding vane pump with plastic housing
DE19927400A1 (de) * 1998-06-24 1999-12-30 Luk Fahrzeug Hydraulik Hydraulische Fördereinrichtung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797091A (en) * 1981-10-01 1982-06-16 Kayaba Ind Co Ltd Vane pump
US4656710A (en) * 1985-08-19 1987-04-14 Noman Maciejewski Method of making a hydraulic pump housing
FR2660221A1 (fr) * 1990-03-31 1991-10-04 Barmac Luk Automobiltechnik Gm Procede de fabrication d'un carter en tole par emboutissage profond.
EP0644317A1 (de) * 1993-09-16 1995-03-22 SIHI GmbH & Co KG Flüssigkeitsringgaspumpe
DE19913632A1 (de) * 1999-03-25 2000-10-05 Siemens Ag Flüssigkeitsringpumpe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 0061, no. 90 (M - 159) 29 September 1982 (1982-09-29) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009109282A1 (de) * 2008-03-01 2009-09-11 Ixetic Hückeswagen Gmbh Vakuumpumpengehäusedeckel

Also Published As

Publication number Publication date
US20070148011A1 (en) 2007-06-28
EP1631745B1 (de) 2007-11-07
CN100408858C (zh) 2008-08-06
DE502004005440D1 (de) 2007-12-20
JP2007500309A (ja) 2007-01-11
CN1795333A (zh) 2006-06-28
KR20060019557A (ko) 2006-03-03
ATE377710T1 (de) 2007-11-15
EP1631745A1 (de) 2006-03-08

Similar Documents

Publication Publication Date Title
DE10161131B4 (de) Flügelpumpe veränderlicher Verdrängung
DE2443720C3 (de) Drehkolbenpumpe für Flüssigkeiten
DE102012201615A1 (de) variable kombinierte Öl-Vakuum-Verdrängerpumpe
DE102007032103B4 (de) Pumpeneinheit mit einer Hauptpumpe und einer in ihrem Fördervolumen verstellbaren Ladepumpe
DE102010019530A1 (de) Nockenwellenversteller und U-förmiges Dichtelement zum Abdichten einer radialen Fläche eines Flügels eines Nockenwellenverstellers
WO2017076524A1 (de) Kühlmittelpumpe für den kfz-bereich
EP1461533B1 (de) Pumpe
WO2002097273A2 (de) Pumpe mit temperaturabhängigen fördervolumen
EP1631745B1 (de) Flügelzellenpumpe mit tiefgezogenem stahlblechtopf
DE102016124104A1 (de) Hydraulikvorrichtung mit Dichtelement
DE60301312T2 (de) Treibstoffpumpenanordnung
DE2646583C2 (de) Selbstansaugende Kolbenpumpe
DE202015103751U1 (de) Pumpenvorrichtung
WO2020136269A1 (de) Rotationspumpe mit axialer kompensation, auslassdichtung für eine pumpe sowie vormontierte pumpeneinheit
DE3303247C2 (de) Flügelzellenverdichter
DE10353027A1 (de) Regelbare Pumpe, insbesondere Flügelzellenpumpe
DE1808826A1 (de) Drehlkolbenmaschine
DE102014107735B4 (de) Flügel mit axialer Abdichtung
EP3903006A1 (de) Rotationspumpe mit axialer kompensation, auslassdichtung für eine pumpe sowie vormontierte pumpeneinheit
WO1995029324A1 (de) Motorbremse für eine mehrzylindrige brennkraftmaschine
DE102014201572A1 (de) Expansionsmaschine
WO2016174246A1 (de) Axialkolbenmaschine
DE4008522A1 (de) Fluegelzellenverdichter
DE102010046591B4 (de) Flügelzellenpumpe
DE102018133680A1 (de) Rotationspumpe mit axialer Kompensation, Auslassdichtung für eine Pumpe sowie vormontierte Pumpeneinheit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REF Corresponds to

Ref document number: 112004000065

Country of ref document: DE

Date of ref document: 20050728

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8629

WWE Wipo information: entry into national phase

Ref document number: 2004733242

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057022563

Country of ref document: KR

Ref document number: 2006529599

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048147405

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057022563

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004733242

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007148011

Country of ref document: US

Ref document number: 10557513

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10557513

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004733242

Country of ref document: EP