WO2004107055A2 - Ensemble electrodes et son utilisation - Google Patents

Ensemble electrodes et son utilisation Download PDF

Info

Publication number
WO2004107055A2
WO2004107055A2 PCT/EP2004/005386 EP2004005386W WO2004107055A2 WO 2004107055 A2 WO2004107055 A2 WO 2004107055A2 EP 2004005386 W EP2004005386 W EP 2004005386W WO 2004107055 A2 WO2004107055 A2 WO 2004107055A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode arrangement
arrangement according
optical element
charged particles
Prior art date
Application number
PCT/EP2004/005386
Other languages
German (de)
English (en)
Other versions
WO2004107055A3 (fr
Inventor
Frank Stietz
Markus Weiss
Bas Mertens
Marko Wedowski
Original Assignee
Carl Zeiss Smt Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Smt Ag filed Critical Carl Zeiss Smt Ag
Publication of WO2004107055A2 publication Critical patent/WO2004107055A2/fr
Publication of WO2004107055A3 publication Critical patent/WO2004107055A3/fr

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70941Stray fields and charges, e.g. stray light, scattered light, flare, transmission loss
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70916Pollution mitigation, i.e. mitigating effect of contamination or debris, e.g. foil traps
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning

Definitions

  • the invention relates to an electrode arrangement for removing charged particles, with an optical element connected as a first electrode, which emits photo-induced secondary electrons when exposed to EUV radiation and / or soft X-rays, and with a second electrode arranged at a distance from the irradiated surface of the optical element.
  • the invention also relates to the use of this electrode arrangement.
  • optical components e.g. Mirrors or lenses are in a negative pressure atmosphere, in which there are still residual gases.
  • In-situ cleaning processes are used to combat carbon growth, which are based on the combination of EUV radiation and oxygen (pressure range 10 '6 hPa to 10 "3 hPa).
  • the frequency with which cleaning steps are necessary results from the following considerations:
  • the growth rate of the carbon thickness depends approximately linearly on the hydrocarbon pressure. For example, 1 x 10 "8 hPa leads to a temporal reflection loss dr / dt of 1% / h with an EUV power density of 10 mW / mm 2 .
  • the reflection loss per hour dr / dt in% / h depends on the EUV power density P in mW / mm 2 for a fixed hydrocarbon pressure using the following expression:
  • dr / dt ax P 0.3 (equation 1)
  • DE 3904969 A1 thus describes the cleaning of the surface by supplying electromagnetic radiation.
  • the radiation leads to the detachment of the undesired particles, which are simultaneously electrically charged.
  • the particles are then removed from the surface to be cleaned by providing a suitable electrical field.
  • No. 6,192,897 B1 proposes to remove the foreign particles on the surface to be cleaned by applying Ar ions, 0 2 ions or activated CO 2 ions and then removing them by means of a directed gas flow.
  • EP 0987601 A2 provides for the photo-induced secondary electrons emitted by a mirror during an EUV exposure process to be detected in order to determine the EUV radiation intensity to which the mirror is subjected.
  • the photoelectrons are collected by a positively charged electrode plate, which is in a position opposite the surface of the reflecting mirror.
  • the measured photocurrent is then a measure of the applied EUV radiation intensity.
  • the object of the invention is to create an electrode arrangement for removing charged particles in order to prevent or at least slow down the formation of disruptive contamination layers on optical elements. It is also an object of the invention to specify a use of the electrode arrangement so that the contamination layers are prevented or at least their formation is slowed down.
  • the second electrode can consist entirely of inert material.
  • Preferred inert materials are carbon, Pd, Rh, Au, Ru, Cr, V, Ti, Ta, W, Re, Os, Ir or compounds, mixtures and / or alloys thereof.
  • Inert materials have the advantage that when collecting charged particles, in particular photoelectrons, no material, in particular ions, is knocked out of the electrode surface. This effect would lead to an additional undesirable contamination of the optical element and would nullify the advantageous effect.
  • the coating consists of electrically conductive material in order to ensure sufficient electrical conductivity of the electrode.
  • the core is preferably coated with an inert material which has the highest possible melting point and is chemically resistant.
  • Preferred inert materials for the core are summarized in the following 2 groups:
  • 1st group Re, Ta, Hf, Nb, Ni, V, Pt, Cd, Cr
  • 2nd group W, Co, Au, Mo, Ir, Rh, Si, Ge, Cu, AI, Ag, Fe.
  • Cu and AI are particularly advantageous from a cost point of view.
  • 1st group Hf, Nb, Y, Ge, Co, W, Ta, Mo
  • 2nd group Ni, Cr, V, Ti, Ir, Re, Pd, Ru, Zr, Au, Pt, Rh, Fe.
  • the second group is particularly preferred because of its high chemical resistance.
  • Au, Pt, Ru and Rh are particularly advantageous because of their special chemical resistance.
  • the thickness of the coating is preferably 5-500 nm.
  • the two electrodes are advantageously connected as an anode / cathode or as a cathode / anode. How the two electrodes are switched depends on which charged particles are to be collected with the electrode arrangement.
  • the optical element is connected as the cathode and the second electrode as the anode.
  • the anode / cathode arrangement can be switched to cathode / anode arrangement, for example during pauses in irradiation, in order in this way not only to remove, capture or suck off photoelectrons during the irradiation process but also ions present in the residual gas.
  • a voltage between 1 V and 100 V is preferably applied between the two electrodes. It has been shown that this voltage range is particularly advantageous in the case of the cathode / anode arrangement, in particular for removing photoelectrons. Exceeding the voltage of 100 V leads to destructive effects, for example due to the acceleration of ions in the direction of the surface of the optical element.
  • a preferred voltage range is 10 V to 40 V.
  • the second electrode is preferably cylindrical or annular.
  • the second electrode is designed as a network, which is stretched over the optical element.
  • a particularly preferred embodiment consists in that the second electrode is plate-shaped, the surface of which is positioned largely perpendicular to the surface of the optical element.
  • the electrode assembly is used in a vacuum chamber to keep charged particles away from the walls of the vacuum chamber. It has been shown that the chamber walls also have a contamination layer and / or are covered with particles. This contamination layer or the particles can get into the residual gas atmosphere through impinging charged particles and thus be deposited on the optical elements. It has surprisingly been found that if the charged particles are kept away from the chamber walls, the contamination of the optical components can be reduced very much.
  • the second electrode is designed and arranged in such a way that it shields the chamber wall.
  • this can be done by a plate which is arranged between the optical element and the closest chamber wall.
  • the plate-shaped electrode described above is suitable for this.
  • Another preferred use of the electrode arrangement is to keep charged particles away from a lens.
  • the second electrode is designed as a ring, in particular as a cylindrical ring, which preferably has a larger diameter than the optical element, so that the beam path is not obstructed.
  • This ring which can be designed as a cylindrical strip, is arranged above the irradiated surface and is therefore essentially in the trajectory of the emitted photoelectrons, so that effective shielding is ensured.
  • the width B of the ring is preferably 5-15% of its diameter.
  • Fig. 1 is a schematic representation of the electrode arrangement according to one embodiment.
  • Fig. 2 is a diagram of the loss of reflection per hour.
  • the optical element 1 shows an electrode arrangement, as can typically be used in lithography devices for wafer production.
  • the optical element 1 is a mirror, the surface of which is contacted 1a and is connected to a voltage device 3 via the electrical connection 4.
  • the surface 1a contacted in this way forms the first electrode 10.
  • This ring 2 consists of a circular strip of width B, which consists for example of aluminum coated with gold.
  • This strip-shaped ring 2 is connected to the voltage device 3 via the electrical connection 5.
  • the ring 2 thus forms the second electrode 20.
  • the first electrode 10 can be connected as a cathode and the second electrode 20 as an anode. Switching can also be carried out by means of the voltage device 3, so that the first electrode 10 is connected as an anode and the second electrode 20 as a cathode.
  • the arrangement is selected in such a way that the beam path, as schematically represented by the incident beam 6 and the reflected beam 7, is not impaired. Secondary electrons emerge from the illuminated area 1b and are collected by the second electrode 20. Due to the arrangement and the width of the second electrode 20, all photoelectrons are largely captured, so that no electrons enter the space above the can leave optical element 1. The main effect is achieved by the applied voltage. But also because of the arrangement, the ring 2 forms a mechanical obstacle for the photoelectrons, because it is located in the region of the trajectory of a large part of the photoelectrons and thus effectively keeps the photoelectrons away from the schematically drawn chamber wall 8.
  • the distance between the mirror electrode 20 is 10-50 mm.
  • the mirror diameter is 100-500 mm and the width B of the electrode 20 is 10-20 mm.
  • the reflection loss of Si / Mo multilayer mirrors was measured by the growth of a carbon layer on the mirror surface.
  • the optical surfaces of an 8-mirror optic were with an Al plate arranged perpendicular to it and provided with a 100 nm thick gold layer.
  • the plate was at a distance of 25 mm from the 8 mirror optics at a potential of +100 V relative to ground and the sample.
  • the partial pressure of water was 10 "7 hPa, and the partial pressure of hydrocarbons was 10 " 9 hPa.
  • the average EUV power density was 1.1 mW / mm 2 .
  • optical element a surface of the optical element b illuminated area ring voltage device electrical connection electrical connection incident beam reflected beam chamber wall 0 first electrode 0 second electrode

Abstract

Ensemble électrodes destiné à éloigner des particules chargées, dans lequel un élément optique (1) est connecté en tant que première électrode (10) qui émet des électrons secondaires photoinduits lorsque ledit élément optique est exposé à des rayons ultraviolets extrêmes et / ou à des rayons X mous. Une seconde électrode (20) est placée à un certain écart de la surface exposée aux rayons de l'élément optique, la surface (1a) au moins de la seconde électrode (20) étant constituée d'au moins une matière inerte. L'avantage des matières inertes est que l'efficacité de l'électrode reste constante et qu'aucune matière elle-même n'est expulsée de la surface de l'électrode pendant l'éloignement de particules chargées.
PCT/EP2004/005386 2003-05-30 2004-05-19 Ensemble electrodes et son utilisation WO2004107055A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10324613.4 2003-05-30
DE2003124613 DE10324613A1 (de) 2003-05-30 2003-05-30 Elektrodenanordnung und deren Verwendung

Publications (2)

Publication Number Publication Date
WO2004107055A2 true WO2004107055A2 (fr) 2004-12-09
WO2004107055A3 WO2004107055A3 (fr) 2005-03-03

Family

ID=33441507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/005386 WO2004107055A2 (fr) 2003-05-30 2004-05-19 Ensemble electrodes et son utilisation

Country Status (2)

Country Link
DE (1) DE10324613A1 (fr)
WO (1) WO2004107055A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1727158A2 (fr) * 2005-05-24 2006-11-29 Carl Zeiss SMT AG Elément optique pour le rayonnement dans le domaine des longueurs d'ondes des rayons X mous et/ou du EUV et système optique ayant au moins un élément optique
US8546776B2 (en) 2010-06-14 2013-10-01 Carl Zeiss Smt Gmbh Optical system for EUV lithography with a charged-particle source

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1726993A1 (fr) * 2005-05-24 2006-11-29 Carl Zeiss SMT AG Système optique et procédé destiné au fonctionnement de celui-ci
DE102018211498A1 (de) * 2018-07-11 2019-08-01 Carl Zeiss Smt Gmbh Optische Anordnung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3710125A (en) * 1970-04-29 1973-01-09 Univ Northwestern Secondary emission enhancer for an x-ray image intensifier
EP1182510A1 (fr) * 2000-08-25 2002-02-27 Asm Lithography B.V. Appareil de projection lithographique et dispositif de manipulation de masques
US6642531B1 (en) * 2002-12-23 2003-11-04 Intel Corporation Contamination control on lithography components
EP1411392A1 (fr) * 2002-10-18 2004-04-21 ASML Netherlands B.V. Appareil de projection lithographique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3710125A (en) * 1970-04-29 1973-01-09 Univ Northwestern Secondary emission enhancer for an x-ray image intensifier
EP1182510A1 (fr) * 2000-08-25 2002-02-27 Asm Lithography B.V. Appareil de projection lithographique et dispositif de manipulation de masques
EP1411392A1 (fr) * 2002-10-18 2004-04-21 ASML Netherlands B.V. Appareil de projection lithographique
US6642531B1 (en) * 2002-12-23 2003-11-04 Intel Corporation Contamination control on lithography components

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1727158A2 (fr) * 2005-05-24 2006-11-29 Carl Zeiss SMT AG Elément optique pour le rayonnement dans le domaine des longueurs d'ondes des rayons X mous et/ou du EUV et système optique ayant au moins un élément optique
EP1727158A3 (fr) * 2005-05-24 2008-07-02 Carl Zeiss SMT AG Elément optique pour le rayonnement dans le domaine des longueurs d'ondes des rayons X mous et/ou du EUV et système optique ayant au moins un élément optique
US7646004B2 (en) 2005-05-24 2010-01-12 Carl Zeiss Smt Ag Optical element for radiation in the EUV and/or soft X-ray region and an optical system with at least one optical element
US8164077B2 (en) 2005-05-24 2012-04-24 Carl Zeiss Smt Gmbh Optical element for radiation in the EUV and/or soft X-ray region and an optical system with at least one optical element
US8546776B2 (en) 2010-06-14 2013-10-01 Carl Zeiss Smt Gmbh Optical system for EUV lithography with a charged-particle source

Also Published As

Publication number Publication date
WO2004107055A3 (fr) 2005-03-03
DE10324613A1 (de) 2004-12-16

Similar Documents

Publication Publication Date Title
DE69735920T2 (de) Verfahren und Vorrichtung zum Entfernen von Teilchen von einer Gegenstandsoberfläche
EP1629268B1 (fr) Procédé et dispositif pour nettoyer au moins un composant optique
EP0120834B1 (fr) Filtres optiques texturés et procédé de fabrication
DE3420353C2 (de) Verfahren zum Korrigieren und Modifizieren von lithographischen Masken
DE102008000709B3 (de) Reinigungsmodul, EUV-Lithographievorrichtung und Verfahren zu seiner Reinigung
DE102015203160A1 (de) Optische Anordnung für die EUV-Lithographie
WO2010043398A1 (fr) Dispositif de lithographie euv et procédé pour traiter un élément optique
DE102006044591A1 (de) Optische Anordnung, insbesondere Projektionsbelichtungsanlage für die EUV-Lithographie, sowie reflektives optisches Element mit verminderter Kontamination
DE102017213181A1 (de) Optische Anordnung für EUV-Strahlung mit einer Abschirmung zum Schutz vor der Ätzwirkung eines Plasmas
DE102011008924A1 (de) Defekt-Reperaturvorrichtung und Verfahren für EUV Maske
DE102018211498A1 (de) Optische Anordnung
CH652236A5 (de) Roentgenstrahllithografiegeraet sowie verfahren zu dessen betrieb.
EP1727158A2 (fr) Elément optique pour le rayonnement dans le domaine des longueurs d'ondes des rayons X mous et/ou du EUV et système optique ayant au moins un élément optique
WO2020115086A2 (fr) Élément optique de réflexion de rayonnements ultraviolets du vide et ensemble optique
WO2004107055A2 (fr) Ensemble electrodes et son utilisation
EP3107113A1 (fr) Appareil d'irradiation corpusculaire et procédé d'exploitation d'un appareil d'irradiation corpusculaire
DE602004007573T2 (de) Verfahren zur Vermeidung von Ablagerungen von Verunreinigungsteilchen auf die Oberfläche eines Mikrobauteils, Aufbewahrungsvorrichtung für ein Mikrobauteil und Vorrichtung zur Abscheidung von dünnen Schichten
DE102005044141B4 (de) Belichtungsgerät und Verfahren zum Betrieb eines Belichtungsgeräts
WO2021037515A1 (fr) Élément optique et système de lithograhie euv
DE102009012091A1 (de) Reinigung optischer Oberflächen mittels atomarem Wasserstoff
DE2416186A1 (de) Verfahren zur strukturierung duenner schichten
DE102010030023A1 (de) Optisches System
EP1726993A1 (fr) Système optique et procédé destiné au fonctionnement de celui-ci
EP0021204B1 (fr) Générateur d'ions
DE102015115030A1 (de) Verfahren zum Entfernen einer Schicht von einem Substrat und dessen Verwendung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase