WO2004106434A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2004106434A1
WO2004106434A1 PCT/JP2004/007550 JP2004007550W WO2004106434A1 WO 2004106434 A1 WO2004106434 A1 WO 2004106434A1 JP 2004007550 W JP2004007550 W JP 2004007550W WO 2004106434 A1 WO2004106434 A1 WO 2004106434A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
modified
weight
resin
parts
Prior art date
Application number
PCT/JP2004/007550
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsushige Hamaguchi
Hideo Matsuoka
Kazuhiko Kobayashi
Shuichi Murakami
Jyunji Tan
Seiji Ota
Original Assignee
Toray Industries, Inc.
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc., Mitsui Chemicals, Inc. filed Critical Toray Industries, Inc.
Publication of WO2004106434A1 publication Critical patent/WO2004106434A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a resin composition having excellent gas and / or liquid permeation resistance, and in particular, to a modified polyphenylene sulfide resin, a modified polyester resin, and an epoxy resin obtained by reacting an epoxy compound with a polyolefin.
  • the present invention relates to a resin composition having specific permeation resistance, impact resistance, and moldability obtained by forming a compatibilizer into a specific phase structure.
  • Polyester resins are used in a wide range of fields, including mechanical and mechanical components, electrical and electronic components, and automotive components, due to their excellent mechanical and chemical properties.
  • polyester resin has a better gas barrier property against oxygen and carbon dioxide than polyethylene and polypropylene, it is still insufficient.
  • resins having better gas barrier properties than polyester resins such as ethylene-vinyl acetate copolymer (EVOH), polyamide (PA), and polyvinylidene chloride (PVDC), are used.
  • EVOH ethylene-vinyl acetate copolymer
  • PA polyamide
  • PVDC polyvinylidene chloride
  • Polyester resin is mixed with polymethaxylylene adipamide (Nymouth MXD6), which is obtained from adipic acid and metaxylylenediamine, which has excellent gas barrier properties. Attempts have been made to improve gas barrier properties.
  • the gas barrier properties of EVOH and PA are susceptible to the effects of humidity, and have the disadvantage that the gas barrier properties are greatly reduced in high-temperature and high-humidity conditions.
  • the barrier properties at the time of moisture absorption were not always satisfactory even if mixed.
  • polyester resins have a problem of poor hydrolysis resistance, and their use is often limited due to durability problems such as a decrease in mechanical strength under high temperature and high humidity.
  • Polyphenylene sulfide resin is used in chemicals such as automotive oils and water. It is known that they exhibit extremely high barrier properties, and blow molded hollow containers and tubular bodies using the same have also been proposed (US Pat. No. 4,866,669, European Patent No. No. 2,022,199, U.S. Pat. No. 5,089,209). However, since polyphenylene sulfide resin has insufficient eyebrow adhesion to other resins, co-extrusion with other resin materials, including polyolefin-based materials such as polyethylene and polypropylene, etc. It was difficult.
  • a means for improving the impact resistance by adding an impact modifier to a polyester resin and a polyphenylene sulfide resin and melting and kneading the resin is disclosed in Japanese Patent Publication No. Hei 6-2330000, Patent No. 3067. Although disclosed in Japanese Patent Application Laid-Open No. 2-14, these conventional techniques are still insufficient particularly in balance between low-temperature impact resistance and permeation resistance. In Japanese Patent Application Laid-Open No. 2002-692773, by controlling the phase structure of a polyester resin and a polyphenylene sulfide resin, high barrier properties can be exhibited even under high temperature and high humidity. However, in this case as well, there are cases where the balance between impact resistance at low temperatures is not sufficient, and there are cases in which materials that highly and stably satisfy various properties such as barrier properties and impact resistance are disclosed. Development is required.
  • An object of the present invention is to achieve a high balance between the mechanical strength and toughness of a polyester resin and the low water absorption and permeation resistance of a polyphenylene sulfide resin.
  • the present inventors have studied to achieve the above object, and as a result, a modified polyphenylene sulfide resin, a modified polyester resin, and a resin composition obtained from an epoxy-modified polyolefin obtained by reacting an epoxy compound with polyolefin.
  • the resin phase separation structure of the molded article obtained by molding the resin composition is controlled so as to be a dispersed structure in which the modified polyphenylene sulfide resin forms a continuous or partially continuous phase.
  • the resin composition according to the present invention is a modified polyphenylene sulfide resin containing polyphenylene sulfide (al) and epoxy group-containing polyolefin (a 2).
  • Part of the resin composition wherein a molded article of the resin composition has a resin phase separation structure observed by an electron microscope, a modified polyphenylene sulfide resin (a) having a continuous phase, and a modified polyester.
  • the resin (b) is characterized in that the resin (b) forms at least a part thereof as a dispersed structure.
  • the modified polyphenylene sulfide resin (a) has a continuous phase and a modified phase in a resin phase separation structure observed by an electron microscope in a molded product obtained by processing the resin composition.
  • the dispersed phase of the modified polyester resin (b) is formed to have a phase structure in which the polyester resin (b) is a dispersed phase, and the dispersed phase of the modified polyester resin (b) has an average particle size of 5 m or less.
  • the epoxy group-containing polyolefin (b 2) and the polyolefin (b 3) other than the epoxy group-containing polyolefin preferably have a dispersed structure in which the average dispersed particle size is 1 zm or less.
  • the epoxy group-containing polyolefins (a2) and (b2) are preferably a copolymer containing a monoolefin and an epoxy group-containing monomer.
  • the epoxy-modified polyolefin (c) is preferably an epoxy-modified polyolefin obtained by reacting an epoxy compound with a polyolefin having a density of 0.940 cm 3 or less.
  • epoxy-modified polyolefin (c) examples include, for example, a modified ethylene monoolefin copolymer obtained by grafting at least one selected from ethylenically unsaturated carboxylic acids and derivatives thereof on an ethylene norolefin copolymer. Epoxy-modified polyolefin obtained by reaction with a compound can be used.
  • epoxy-modified polyolefin (c) at least one selected from ethylenically unsaturated carboxylic acids and derivatives thereof is added to an ethylene-free olefin copolymer together with an epoxy compound in the presence of a radical generator. Obtained by heating Epoxy-modified polyolefins can also be used.
  • modified polyphenylene sulfide resin (a) for example, 1 to 50 parts by weight of an epoxy group-containing polyolefin (a 2) is added to 100 parts by weight of a polyphenylene sulfide (a 1). What it contains can be used.
  • modified polyphenylene sulfide resin (a) 100 parts by weight of a composition composed of polyphenylene sulfide (a1) and epoxy group-containing polyolefin (a2), Those containing 1 to 50 parts by weight of a polyolefin (a 3) other than the polyolefin can be used.
  • the modified polyphenylene sulfide resin (a) preferably has an Izod impact strength of at least 300 JZm.
  • modified polyester resin (b) for example, 100 to 100 parts by weight of the polyester (b1), 100 to 80 parts by weight of the epoxy group-containing polyolefin (b2) and other than the epoxy group-containing polyolefin Polyolefin (b3) containing 10 to 80 parts by weight can be used.
  • the modified polyester resin (b) preferably has an Izod impact strength of 500 J / m or more.
  • the resin composition according to the present invention has a high balance between the mechanical strength and toughness of the polyester resin and the low water absorption and permeation resistance of the polyphenylene sulfide resin.
  • the resin composition can stably exhibit impact resistance and moldability at low temperatures.
  • the molded article obtained by molding this resin composition has excellent barrier properties, particularly excellent impact resistance at low temperatures, and also has excellent adhesive properties under moisture absorption.
  • Figure 1 shows a dispersion in which the modified PPS resin component forms a continuous phase, the polyester of the modified polyester resin becomes the dispersed phase, and the polyolefin other than the epoxy group-containing polyolefin and the epoxy group-containing polyolefin is further dispersed in the polyester. It is a model diagram of the structure (one island, one lake structure).
  • weight means “mass”.
  • the modified polyphenylene sulfide resin (a) (hereinafter sometimes abbreviated as a modified PPS resin) used in the resin composition according to the present invention is a polyphenylene sulfide resin (a1) (hereinafter abbreviated as PPS).
  • PPS polyphenylene sulfide resin
  • This is a thermoplastic resin obtained by melt-kneading an epoxy group-containing polyolefin (a2) and, if necessary, a polyolefin (a3) other than the epoxy group-containing polyolefin.
  • Preferred PPS (a1) is a polymer having a repeating unit represented by the following structural formula 1.
  • a polymer containing 70 mol% or more, more preferably 90 mol% or more of the repeating unit represented by the above structural formula is preferable.
  • less than 30 mol% of the repeating unit may be constituted by a repeating unit represented by the following structural formula 2, or the like.
  • p-phenylene sulfide / m-phenylene sulfide copolymer m-phenylene sulfide unit 20% or less
  • the melt viscosity of the PPS (a 1) used in the present invention is not particularly limited as long as melt kneading is possible, but it is usually 5 to 200 Pas (32 ° C., shear rate 1 The ones with a duration of 100 sec are used, and the range of 10 to 500 Pas (same as above) is more preferable.
  • Such PPS is usually prepared by a known method, that is, a method of obtaining a polymer having a relatively small molecular weight as described in JP-B-45-33668, or a method of obtaining a polymer having a relatively small molecular weight. It can be produced by a method for obtaining a polymer having a comparatively large molecular weight, as described in Japanese Patent Application Laid-Open No. 0-86 and Japanese Patent Application Laid-Open No. 61-73332.
  • the PPS obtained as described above is crosslinked / polymerized by heating in air, heat-treated in an atmosphere of an inert gas such as nitrogen or under reduced pressure, and washed with an organic solvent, hot water, an acid aqueous solution, or the like.
  • an inert gas such as nitrogen or under reduced pressure
  • an organic solvent hot water, an acid aqueous solution, or the like.
  • the specific method for increasing the molecular weight is as follows: in an atmosphere of an oxidizing gas such as air or oxygen, or in a mixed gas atmosphere of the oxidizing gas and an inert gas such as nitrogen or argon.
  • An example is a method in which heating is performed at a predetermined temperature in a heating vessel until a desired melt viscosity is obtained.
  • the heat treatment temperature is generally selected from 170 to 280 ° C, and preferably from 200 to 270 ° C.
  • the heat treatment time is generally selected from 0.5 to 100 hours, and preferably from 2 to 50 hours. By controlling both of them, the target viscosity level can be obtained.
  • the heating device may be an ordinary hot air dryer or a rotary or a heating device with stirring blades. For efficient and more uniform treatment, use a heating device with a rotary or stirring blade. Is more preferred.
  • the heat treatment temperature is 150 to 280 ° C in an inert gas atmosphere such as nitrogen or under reduced pressure.
  • the heat treatment is performed at 200 to 270 ° C.
  • the heating time is 0.5 to 100 hours, preferably 2 to 50 hours.
  • the heating device may be an ordinary hot-air dryer or a rotary heating device or a heating device with a stirring blade, but for efficient and more uniform treatment, a heating device with a rotary or stirring blade is used. It is more preferable to use
  • the PPS (a 1) used in the present invention is preferably deionized PPS.
  • deionization treatment include acid aqueous solution washing treatment, hot water washing treatment, and organic solvent washing treatment, and these treatments may be used in combination of two or more methods.
  • the following method can be exemplified as a specific method for washing PPS with an organic solvent.
  • the organic solvent used for washing is not particularly limited as long as it does not have an action of decomposing PPS.
  • a nitrogen-containing polar solvent such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, and dimethyl Sulfoxides such as sulfoxide and dimethyl sulfone; sulfone solvents; ketone solvents such as acetone, methylethyl ketone, getyl ketone, and acetophenone; ether compounds such as dimethyl ether, dipropyl ether, and tetrahydrofuran Solvent, liquid form, methylene chloride, trichloroethylene, ethylene dichloride, dichlor Halogen solvents such as ethane, tetrachloroethane, and chlorobenzene, alcohols such as methanol, ethanol, propanol, butanol, pen
  • organic solvents use of N-methyl virolidone, acetone, dimethylformamide, and chloroform is preferred. These organic solvents are used singly or as a mixture of two or more.
  • a method for washing with an organic solvent there is a method such as immersing PPS in an organic solvent, and it is also possible to appropriately stir or heat as necessary.
  • the washing temperature when washing PPS with an organic solvent there is no particular limitation on the washing temperature when washing PPS with an organic solvent, and any temperature from room temperature to about 300 ° C can be selected. The higher the washing temperature, the higher the washing efficiency tends to be. However, in general, a normal temperature to 15 (TC washing temperature is sufficient to obtain the effect. It is preferable to wash several times with water or warm water to remove the water.
  • the following method can be exemplified as a specific method for washing the PPS with hot water. That is, the water used is preferably distilled water or deionized water in order to exhibit a favorable chemical modification effect of PPS by hot water washing.
  • the operation of the hot water treatment is usually performed by charging a predetermined amount of water into a predetermined amount of water, and heating and stirring the mixture at normal pressure or in a pressure vessel.
  • the proportion of PPS to water is preferably as high as possible, but usually a bath ratio of less than 200 g of PPS per liter of water is selected.
  • the following method can be exemplified as a specific method for washing PPS with an aqueous acid solution. That is, there is a method of immersing PPS in an acid or an aqueous solution of an acid, or the like, and if necessary, stirring or heating can be performed.
  • the acid used is not particularly limited as long as it does not have the action of decomposing PPS.Halo-substituted fats such as aliphatic saturated monocarboxylic acids such as formic acid, acetic acid, propionic acid and butyric acid, and chloroacetic acid and dichloroacetic acid.
  • Aliphatic unsaturated monocarboxylic acids such as aromatic saturated carboxylic acid, acrylic acid and crotonic acid, aromatic carboxylic acids such as benzoic acid and salicylic acid, dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, phthalic acid and fumaric acid And inorganic acidic compounds such as sulfuric acid, phosphoric acid, phosphoric acid, hydrochloric acid, carbonic acid, and silicic acid.
  • Acetic acid and hydrochloric acid More preferably used.
  • the acid-treated PPS is preferably washed several times with water or hot water in order to remove residual acids or salts. Further, the water used for washing is preferably distilled water or deionized water in the sense that the effect of the preferred chemical modification of PPS by acid treatment is not impaired.
  • the epoxy-containing polyolefin (a 2) used as a component of the modified PPS resin (a) used in the present invention is a polyolefin having an epoxy group in the molecule, and is preferably a one-year-old olefin and an epoxy group. It is a copolymer containing contained monomers. More preferably, a copolymerized polyolefin comprising -olefin and glycidyl ester of yS-unsaturated acid can be used.
  • the monoolefin is specifically ethylene, propylene, 1-butene, etc., and preferably ethylene.
  • the glycidyl ester of ⁇ , 3-unsaturated acid is a compound represented by the following structural formula 3 (wherein R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), and specifically, acrylic acid Glycidyl, glycidyl methacrylate, glycidyl ethacrylate, and the like, and particularly, glycidyl methacrylate is preferably used.
  • the copolymerization amount of glycidyl ester of S-unsaturated acid is 1 to 50% by weight, preferably 3 to 50% by weight. A range of 40% by weight is appropriate.
  • Ch C-C-1 0-CH 2 -CH-CH 2
  • the content of the epoxy group-containing polyolefin (a 2) is preferably 1 to 50 parts by weight, more preferably 1 to 40 parts by weight, based on 100 parts by weight of P P S (a 1).
  • the content of the epoxy group-containing polyolefin exceeds 50 parts by weight, it is not preferable because the barrier property and the fluidity are reduced.
  • the content of the epoxy group-containing polyolefin is less than 1 part by weight, it is not preferable because it becomes difficult to develop the high impact property which is a feature of the present invention.
  • a polyolefin (a 3) other than the epoxy group-containing polyolefin which can be used as an additional component may be used.
  • a polyolefin (a 3) other than the epoxy group-containing polyolefin which can be used as an additional component may be used.
  • a polyolefin (a 3) other than the epoxy group-containing polyolefin which can be used as an additional component may be used.
  • homopolymers such as polyethylene, polypropylene, polystyrene, polyacrylate, polymethacrylate, poly 1-butene, poly 1-pentene, and polymethylpentene, ethylene-one-year-old olefin copolymer, A vinyl alcohol ester homopolymer, a polymer obtained by hydrolyzing at least a part of a vinyl alcohol ester homopolymer, [at least a part of a copolymer of ((ethylene and or propylene) and a vinyl alcohol ester) Polymer obtained by
  • polyethylene, polypropylene, ethylene-olefin copolymers, [copolymers of (ethylene and propylene or propylene) with (unsaturated carboxylic acid and phenol or unsaturated carboxylic acid ester)], [(ethylene And propylene) and (unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) are preferred.
  • the ethylene one-year-old olefin copolymer referred to herein is a copolymer of ethylene and at least one or more —3-olefins having 3 to 20 carbon atoms.
  • olefins include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, and 1- Tridecene, 1—Tetradecene, 1—Pentadecene, 1—Hexadecene, 1—Heptadecene, 1-year-old Kutadecene, 1—Nonadecene, 1—Eicosene, 3-Methyl-1—Butene, 3—Methyl-1-—Pentene, 3— 1-pentene, 4-methyl-1- 1-pentene, 4-methyl-1-hexene, 4,
  • Copolymers using 3 to 12 monoolefins are preferred from the viewpoint of improving mechanical strength.
  • the ethylene-one-year-old olefin-based copolymer preferably has an ⁇ -year-old olefin content of 1 to 30 mol%, more preferably 2 to 25 mol%, and still more preferably 3 to 20 mol%. .
  • At least one non-conjugated gen such as norbornene may be copolymerized.
  • the content of the polyolefin (a3) other than the epoxy group-containing polyolefin per 100 parts by weight of the modified PPS resin (a) is preferably 1 to 50 parts by weight, more preferably 5 to 40 parts by weight. is there.
  • modified PPS resin (a) in the present invention may contain other resins other than those described above.
  • the modified polyester resin (b) in the present invention is obtained by melt-kneading a polyester (b1), a polyolefin (b2) containing an epoxy group, and a polyolefin (b3) other than the polyolefin containing an epoxy group as essential components.
  • the resulting thermoplastic resin is obtained by melt-kneading a polyester (b1), a polyolefin (b2) containing an epoxy group, and a polyolefin (b3) other than the polyolefin containing an epoxy group as essential components.
  • the preferred polyester (bl) is a polymer having an ester bond in the main chain.
  • Preferable is a thermoplastic polyester having an aromatic ring in the chain unit of the polymer.
  • an aromatic dicarboxylic acid (or an ester-forming derivative thereof) and a diol (or an ester-forming derivative thereof) are usually used.
  • Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, bis (p-carboxyphenyl) methane, anthracenedicarboxylic acid, 4,4'- Diphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-1,4,4'-dicarboxylic acid, 5-sodium sulfoisophthalic acid and ester-forming derivatives thereof Can be Two or more of these aromatic dicarboxylic acids can be used in combination.
  • Aliphatic dicarboxylic acids such as adipic acid, sebacic acid, azelaic acid and dodecandionic acid; alicyclic dicarboxylic acids such as 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid; Ester-forming derivatives can also be used in combination.
  • diol examples include aliphatic diols having 2 to 20 carbon atoms, ie, ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, and 1,6-hexanediol. , Decamethylene glycol, cyclohexanedimethanol, cyclohexanediol and the like, and ester-forming derivatives thereof. Two or more of these diols can be used in combination.
  • alkylene terephthalate polyethylene-1,2,6-naphthalenedicarboxylate, polybutylene-1,2,6-naphthalenedicarboxylate, polyethylene-1,2, bis (phenoxy) ethane-1,4,4'-dicalpoxylate , Polyethylene isophthalate terephthalate, polybutylene isophthalate Z terephthalate, polybutylene terephthalate decane dicarboxylate, poly (ethylene terephthalate Z cyclohexane dimethylene) And non-liquid crystalline polyesters such as polyethylene-1,4'-dicarboxylate / terephthalate and mixtures thereof.
  • polyethylene terephthalate More preferred are polyethylene terephthalate, polybutylene terephthalate, and polyethylene 1,2,6-naphthalenedicarboxylate, and particularly preferred is polyethylene terephthalate. It is practically suitable to use it as a mixture depending on the required properties such as heat resistance, heat resistance, toughness, and surface properties.
  • the degree of polymerization of these polyesters is not limited, for example, the intrinsic viscosity measured at 25 ° C. in a 0.5% 0-chlorophenol solution is in the range of 0.35 to 2.00, In particular, those having a range of 0.50 to 1.50 are preferable.
  • the amount of C OH H terminal group is 1 to 5 when the amount of C OH H terminal group obtained by potentiometric titration of m-cresol solution with an alkaline solution is 1 to
  • Those having a range of 50 eq / t (terminal group amount per ton of polymer) can be preferably used from the viewpoint of durability and anisotropic suppression effect.
  • the epoxy group-containing polyolefin (b 2) used as an essential component of the modified polyester resin (b) used in the present invention is a polyolefin having an epoxy group in the molecule, and is preferable. Is a copolymer containing a naphthalene and an epoxy group-containing monomer. Further, a copolymerized polyolefin comprising ⁇ -olefin and glycidyl ⁇ , monounsaturated acid is preferred.
  • copolymer of ethylene and glycidyl acrylate, glycidyl methacrylate, and glycidyl ethacrylate More preferred is a copolymer of ethylene glycidyl methacrylate.
  • the copolymerization amount of the / 3_unsaturated glycidyl ester is suitably 1 to 50% by weight, preferably 3 to 40% by weight.
  • the content of the epoxy group-containing polyolefin (b2) based on 100 parts by weight of the polyester (bl) is preferably from 10 to 80 parts by weight, and more preferably from 10 to 80 parts by weight.
  • the content of the epoxy group-containing polyolefin is more than 80 parts by weight, it is not preferable because the barrier property and the fluidity are reduced. Further, if the content of the epoxy group-containing polyolefin is less than 10 parts by weight, it is difficult to develop the high impact property, which is a feature of the present invention, which is not preferable.
  • the polyolefin (b 3) other than the epoxy group-containing polyolefin used as an essential component of the modified polyester resin (b) used in the present invention is used as an additional component in the modified PPS resin (a) (a 3) And preferably selected from polyethylene, polypropylene, ethylene / ⁇ -olefin copolymer, [(ethylene and / or propylene) and (unsaturated carboxylic acid and Ester) and [(ethylene and or propylene) and (unsaturated carboxylic acid and di- or unsaturated carboxylic acid ester) copolymers in which at least a part of the carboxyl groups of the copolymer are metallized And particularly preferably an ethylene / ⁇ -refined olefin copolymer.
  • the content of the polyolefin (b3) other than the epoxy group-containing polyolefin is preferably 10 to 80 parts by weight, more preferably 10 to 100 parts by weight, based on 100 parts by weight of the polyester (b1). 60 parts by weight. If the content of the polyolefin resin other than the epoxy group-containing polyolefin exceeds 80 parts by weight, the barrier property is lowered, which is not preferable. On the other hand, if the content is less than 10 parts by weight, it is difficult to develop the high impact characteristic which is a feature of the present invention, which is not preferable.
  • the modified polyester resin (b) in the present invention may contain other resins as long as the object of the present invention is not impaired.
  • the content of the modified polyester resin (b) in the modified PPS resin (a) of 100 parts by weight in the resin composition of the present invention is from 40 to 250 parts by weight, preferably from 50 to 180 parts by weight. It is. If the content of the modified polyester resin (b) exceeds 250 parts by weight, it becomes difficult for the modified PPS resin (a), which is a feature of the present invention, to form a continuous phase, which is not preferable. On the other hand, if the content is less than 40 parts by weight, it is not preferable because it is difficult to exhibit the high impact characteristic of the present invention.
  • the epoxy-modified polyolefin (c) obtained by the reaction between the epoxy compound and the polyolefin used in the present invention is an acid-modified polyolefin (c1) obtained by graft polymerization of an ethylenically unsaturated carboxylic acid or a derivative thereof to polyolefin.
  • a polyfunctional epoxy compound (c 2), a polyolefin, an ethylenically unsaturated carboxylic acid or a derivative thereof, an organic peroxide, or a multifunctional epoxy compound Obtained by the method.
  • the polyolefin used herein is obtained by polymerizing at least one of olefins selected from ethylene and ⁇ -olefins having 3 to 20 carbon atoms.
  • alpha-olefins with 3 to 20 carbon atoms include propylene, 1-butene, 2-butene, 1-pentene, 3-methyl-1-butene, and 1-hexene.
  • polyolefins containing at least one polymer or copolymer of an olefin selected from ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and 1-octene are preferred.
  • a polyolefin containing a copolymer of at least one selected from ethylene and ⁇ -olefin having 3 to 20 carbon atoms is more preferable in that it has good impact resistance.
  • propylene, 1-butene, 4-methyl-11-pentene, 1-hexene and 1-octene are particularly preferred as ⁇ -olefins to be copolymerized with ethylene.
  • the density of the polyolefin used in the present invention is usually 0.940 g / cc or less, preferably 0.920 g / cc or less, more preferably 0.895 gZc c or less.
  • melt flow rate (MFR; ASTM D 1238, 190 ° C, load 2.16 kg) of polyolefins is usually between 0.01 and 500 gZ10 min, preferably 0.0 It is 5 to 200 minutes, more preferably 0.1 to 100 gZ10 minutes.
  • the weight average molecular weight (Mw) of the polyolefin measured by gel permeation chromatography (GPC) is usually 30,000 to 60,000, preferably 40,000 to 40,000, more preferably 40,000 to 40,000. It is 300,000.
  • MwZMn The molecular weight distribution (MwZMn) is usually 5.0 or less, preferably 4.5 or less, and more preferably 4.0 or less. Mn indicates a number average molecular weight.
  • the production of the above-mentioned polyolefin can be carried out by any conventionally known method.
  • the polymerization can be carried out using a titanium-based catalyst, a vanadium-based catalyst, a meta-open catalyst, or the like.
  • the ethylenically unsaturated carboxylic acid or a derivative thereof used in the present invention is a compound having an ethylenic double bond and at least one carboxylic acid or a derivative thereof in the molecule.
  • Examples of specific compounds include maleenyl chloride, malenylimide, maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo [2,2,1] hept-1-ene.
  • 1,5,6-dicarboxylic anhydride dimethyl maleate, monomethyl maleate, getyl maleate, getyl fumarate, dimethyl itaconate, getyl citrate, dimethyl tetrahydrophthalate, bicyclo [2,2,1] heptoh 2-ene-5,6-dimethyl carboxylate, hydroxyshethyl (meth) acrylate, hydroxypropyl (meth) acrylate, glycidyl (meth) acrylate, methacrylic acid Examples thereof include aminoethyl and aminopropyl methacrylate.
  • (meth) acrylic acid, maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo [2,2,1] hept-2-ene_5 , 6-dicarboxylic anhydride, hydroxyxethyl (meth) acrylate, glycidylmethacrylate, and aminopropyl methacrylate are preferred.
  • dicarboxylic anhydrides such as maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydro anhydrous phthalic acid, bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic anhydride Is particularly preferred.
  • the acid-modified polyolefin (c1) in the present invention is obtained by radical-initiating the above-mentioned polyolefin with an ethylenically unsaturated carboxylic acid or a derivative thereof and, if necessary, other ethylenically unsaturated monomers. It can be produced by heating and reacting in the presence or absence of an agent.
  • the graft polymerization is carried out in the presence of a radical initiator, the efficiency of the graft reaction is increased.
  • the graft reaction can be carried out using a radical initiator. preferable.
  • radical initiator used here examples include organic peroxides and azo compounds.
  • organic peroxides include dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-bis (t-butylpyroxy) hexane, 2,5 —Dimethyl-1,2,5-bis (t-butylperoxy) hexine — 3,1,3-bis (t-butylperoxyisopropyl) benzene, 1,1-bis (t-butylperoxy) balalate, benzoylperoxa Ide, t-butylperoxybenzoate, acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, decanoyl peroxide, lauroyl peroxide, 3, 5, 5 — Trimethylhexanoyl peroxide, 2,4-dichrolic benzoyl peroxide and m-tolyl peroxide Can.
  • the above-mentioned graft polymerization may be carried out in any state where at least a part of the polyolefin is in a solid state, in a molten state, or at least partly in an organic solvent.
  • the graft polymerization is carried out in a state where at least a part of the thermoplastic polymer is dissolved in an organic solvent, it is usually 50 to 200 ° C, preferably 60 to 190 ° C, more preferably.
  • the reaction is carried out at a temperature of 70 to 180 ° C.
  • organic solvent used at that time examples include aromatic hydrocarbon solvents such as benzene, tonolene, and xylene, and aliphatic hydrocarbon solvents such as pentane, hexane, and heptane.
  • the reaction is usually carried out at a temperature higher than the melting point of the polyolefin. That is, the graft polymerization reaction is carried out at a temperature equal to or higher than the melting point of the polyolefin, specifically at a temperature of usually 80 to 300 ° C., preferably 80 to 260 ° C.
  • the graft amount of the carboxylic acid or its derivative in the acid-modified polyolefin thus prepared is usually 0.01 to 20% by weight, preferably 0.05%.
  • the polyfunctional epoxy compound used in the present invention may be any compound, polymer or prepolymer containing two or more oxysilane ring structures in the molecule. Although an epoxy resin can be used, it is preferable to use an epoxy resin containing two or more epoxy groups in the molecule.
  • the polyfunctional epoxy compound may be aromatic or aliphatic.
  • the epoxy resins used here include bisphenol A type epoxy resin, bisphenol F type epoxy resin, resorcinol type epoxy resin, tetrahydroxyphenylmethane type epoxy resin, tetrahydroxyphenylethane type epoxy resin, and phenol novolak.
  • phenol nopolak-type epoxy resin, cresol novolak-type epoxy resin, tetrahydroxyphenylmethane-type epoxy resin, and tetrahydroxyloxy-xylethane-type epoxy resin are resin compositions having a high polar group content. It is preferable in that it can obtain.
  • the polar resin usually has an epoxy equivalent of 50 to 500, preferably 100 to 300, and more preferably 100 to 250. This is preferable in that a resin composition having good compatibility with the above can be obtained.
  • the epoxy-modified polyolefin (c) in the present invention can be obtained by melt-kneading the acid-modified polyolefin (c1) and the polyfunctional epoxy compound (c2).
  • the kneading method when the above components are melt-kneaded, but the above-mentioned components are simultaneously or sequentially added to, for example, a hensile mixer, a V-type blender, a tumbler blender, a ribbon blender, and the like. After being charged and kneaded, it can be obtained by melt-kneading with a single-screw extruder, multi-screw extruder, kneader, Banbury mixer, or the like.
  • a kneading machine having excellent kneading performance such as a multi-screw extruder, a kneader, a Banbury mixer, etc., since it is possible to obtain a resin composition in which each component is more uniformly dispersed and reacted. .
  • the reaction conditions for melt-mixing the polyolefin, the ethylenically unsaturated carboxylic acid or its derivative, the organic peroxide, and the polyfunctional epoxy compound are the same as the conditions for the above-described graft reaction. It can be performed under conditions.
  • the content of the epoxy-modified polyolefin (C) obtained by the reaction of the epoxy compound with the polyolefin is determined by the polyolefin other than polyphenylene sulfide, polyester, epoxy group-containing polyolefin, and epoxy group-containing polyolefin.
  • the modified PPS resin 1 forms a continuous phase
  • the polyester (bl) 2 of the modified polyester resin (b) Is a dispersed phase
  • the poly-olefin (b 3) 3 other than the epoxy group-containing polyolefin (b 2) and the epoxy group-containing polyolefin is dispersed in the polyester.
  • the resin phase separation structure of the present invention is not limited to the embodiment shown in FIG.
  • a modified polyester resin (b), an epoxy group-containing polyolefin (b 2), and a polyolefin (b) other than the epoxy group-containing polyolefin (b).
  • the shape of 3) may be non-circular such as polygonal or substantially elliptical.
  • the above sea-island-lake structure can be formed stably irrespective of the shape of the molded article and molding conditions. You. Furthermore, the dispersed particle size of the dispersed phase can be reduced, and the dispersed phase of the modified polyester resin (b) is dispersed and dispersed at an average dispersed particle size of 5 m or less, and the dispersed phase of the modified polyester resin (b) is dispersed.
  • the epoxy group-containing polyolefin (b 2) and the polyolefin (b 3) other than the epoxy group-containing polyolefin form a dispersed phase with an average dispersed particle size of 1 or less. With this resin phase separation structure, the specific impact resistance and permeation resistance, which are the objects of the present invention, can be significantly improved.
  • the dispersed particle size of the modified polyester resin (b) is more preferably 3 m or less.
  • the dispersed particle size of the epoxy group-containing polyolefin (t ⁇ ⁇ 2) and the polyolefin (b 3) other than the epoxy group-containing polyolefin is preferably 0.8 ⁇ m or less.
  • the lower limit of the dispersion particle size is not particularly limited, but the dispersion particle size of the modified polyester resin (b) achievable by ordinary melt-kneading is about 0.03 m, and the epoxy group-containing polyolefin (b 2) Less than polyolefin containing epoxy group
  • the dispersed particle size of the outer polyolefin (b 3) is about 0.01 ⁇ m.
  • the molded product obtained by molding the resin composition of the present invention has a part or the whole of a phase structure in which the modified PPS resin (a) is a continuous phase and the modified polyester resin (b) is a dispersed phase.
  • the modified PPS resin (a) is a small component, such as 100 to 250 parts by weight of the modified PPS resin (b), relative to 100 parts by weight of the modified PPS resin.
  • the melt viscosity ratio here, the melt viscosity ratio is defined as the melt viscosity of the modified PPS resin and the melt viscosity of the modified polyester resin
  • the phase in which the modified PPS resin takes a continuous phase is controlled.
  • a molded article forming the structure can be obtained.
  • the resin composition of the present invention is generally formed by melt molding.
  • a temperature difference and a stress difference easily occur between the resin surface layer and the inside of the resin during flow.
  • this can be used to obtain the above-mentioned phase structure.
  • the modified PPS resin (a) and the modified polyester resin (b) use resins with different melt viscosities depending on the shear rate for the modified polyester resin (b).
  • the modified PPS resin (a) partially or entirely forms a continuous phase. For example, taking injection molding as an example, when molding at a certain molding temperature, the shear rate increases at the surface layer of the molded product due to friction with the mold as compared with the central portion of the molded product.
  • the molded product surface is modified PPS resin (a) and modified polyester resin (b) May form a co-continuous phase, both of which are continuous phases.
  • the melt viscosity ratio at any shear rate of 200 seconds to about 1 or less at that temperature is 0.5 or less, the molded article
  • the modified PPS resin (a) which is a requirement of the present invention, can form a portion where the modified PPS resin (a) becomes a continuous phase and the modified polyester resin (b) becomes a disperse phase at the center.
  • the resin composition of the present invention has an inorganic filler for imparting mechanical strength, rigidity and barrier properties.
  • ⁇ material can be contained. The material is not particularly limited, but fibrous, plate-like, powder-like, and granular fillers can be used.
  • fibers such as glass fiber, carbon fiber, titanic acid-reducing force, zinc oxide whisker, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone fiber, and metal fiber Swelling properties such as silicates such as fillers, wallastite, sericite, kaolin, myriki, cres, bentonites, asbestos, talc, alumina silicates, monmorillonite, synthetic mica
  • silicates such as fillers, wallastite, sericite, kaolin, myriki, cres, bentonites, asbestos, talc, alumina silicates, monmorillonite, synthetic mica
  • Metal compounds such as layered silicate, alumina, silicon oxide, magnesium oxide, zirconium oxide, titanium oxide and iron oxide; carbonates such as calcium carbonate, magnesium carbonate and dolomite; sulfates such as calcium sulfate and barium sulfate; Glass' beads, ceramic beads, boron nitride, silicon carbide, calcium
  • these inorganic fillers are pre-treated with a coupling agent such as an isocyanate-based compound, an organic silane-based compound, an organic titanate-based compound, an organic borane-based compound, or an epoxy compound, and an organic ion for a swellable layered silicate. It is preferable to use more excellent mechanical strength and barrier property.
  • a coupling agent such as an isocyanate-based compound, an organic silane-based compound, an organic titanate-based compound, an organic borane-based compound, or an epoxy compound, and an organic ion for a swellable layered silicate. It is preferable to use more excellent mechanical strength and barrier property.
  • C The content of the inorganic filler is the total amount of the modified PPS resin (a) and the modified polyester resin (b). It is preferable that the amount be 0.1 to 200 parts by weight based on 100 parts by weight. It is more preferably 0.5 to 200 parts by weight, particularly preferably 1 to 150 parts by weight.
  • the resin composition of the present invention may contain a conductive filler and / or a conductive polymer for imparting conductivity.
  • the material is not particularly limited, but the conductive filler is not particularly limited as long as it is a conductive filler that is generally used for making a resin conductive. Specific examples thereof include metal powder, metal flake, and metal.
  • the filler include carbon, inorganic filler coated with a conductive material, carbon powder, graphite, carbon fiber, carbon flake, and flaky carbon.
  • metal types of metal powder, metal flakes, and metal ribbons include silver, nickel, copper, zinc, aluminum, stainless steel, iron, brass, chromium, and tin.
  • Specific examples of the metal type of the metal fiber include iron, copper, stainless steel, aluminum, brass and the like.
  • Such metal powder, metal flakes, metal repons, and metal fibers may be subjected to a surface treatment with a surface treating agent such as a titanate, aluminum, or silane.
  • a surface treating agent such as a titanate, aluminum, or silane.
  • metal oxides antimony de one-flop
  • I n 2 0 3 antimony de one-flop
  • Z n O aluminum-doped
  • Surface treatment may be performed with a surface treatment agent such as an aluminum-based or silane-based coupling agent.
  • Conductive material coated with an inorganic FILLER ⁇ Specific examples of the conductive material in one Noreminiumu, nickel, silver, carbon, S n 0 2 (doped with antimony), I n 2 0 such as (antimony-doped) can be exemplified.
  • Inorganic fillers to be coated include: My power, glass beads, glass fiber, carbon fiber, potassium titanate whisker, barium sulfate, zinc oxide, titanium oxide, aluminum borate whiskers, zinc oxide whiskers, Examples include titanic acid whiskers and silicon carbide whiskers.
  • Examples of the coating method include a vacuum deposition method, a sputtering method, an electroless plating method, and a baking method. These may be surface-treated with a surface treating agent such as a titanate-based, aluminum-based, or silane-based coupling agent.
  • Carbon powder is classified into acetylene black, gas black, oil black, naphthalene black, thermal black, furnace black, lamp black, channel black, roll black, disk black, etc. according to its raw material and production method.
  • the raw material and production method of the carbon powder that can be used in the present invention are not particularly limited, but acetylene black and furnace black are particularly preferably used.
  • Various carbon powders with different properties such as particle diameter, surface area, DBP oil absorption, and ash are manufactured.
  • the carbon powder that can be used in the present invention is not particularly limited in these characteristics, but from the viewpoint of balance between strength and electric conductivity, the average particle size is preferably 500 nm or less, and more preferably 5 to 10 nm.
  • the specific surface area (BET method) 1 0 m 2 Roh g or more, more 3 0 m 2 or more.
  • the DBP refueling amount is preferably at least 500 m1 / 100 g, particularly preferably at least 100 m1 / 100 g.
  • the ash content is 0. It is preferably at most 5% by weight, particularly preferably at most 0.3% by weight.
  • Such a carbon powder may be subjected to a surface treatment with a surface treating agent such as a titanate, aluminum, or silane. It is also possible to use a granulated material to improve the workability of melt-kneading.
  • a surface treating agent such as a titanate, aluminum, or silane.
  • the conductive filler used in the present invention is more powdery, granular, and plate-like than the fibrous filler having a high aspect ratio. It is preferably in any of a scaly shape or a fibrous shape having a length-to-diameter ratio of 200 or less in the resin composition.
  • the conductive polymer examples include poly (arylene), polypyrrole, polyacetylene, poly (paraphenylene), polythiophene, and polyphenylenevinylene.
  • the conductive filler and the conductive polymer or the conductive polymer may be used in combination of two or more.
  • conductive fillers and conductive polymers particularly strong black is preferably used in view of strength and economy.
  • the content of the conductive filler and Z or the conductive polymer used in the present invention varies depending on the type of the conductive filler and / or the conductive polymer used, it cannot be specified unconditionally. From the viewpoint of balance with mechanical strength, etc., 1 to 250 parts by weight, preferably 3 to 100 parts by weight, of the total of 100 parts by weight of the components (a) and (b) is used. A range is preferably selected. More preferably, the range of 3 to 100 parts by weight is preferably selected for imparting a conductive function to the total of 100 parts by weight of the components (a) and (b).
  • the volume resistivity is preferably 10 '° ⁇ ⁇ cm or less from the viewpoint of obtaining sufficient antistatic performance.
  • the compounding of the conductive filler and the conductive polymer generally tends to cause deterioration in strength and fluidity. Therefore, if the target conductivity level can be obtained, it is desirable that the blending amounts of the conductive filler and the conductive polymer be as small as possible.
  • the target conductivity level depends on the application, but usually the volume resistivity is in the range of more than 100 ⁇ ⁇ cm and less than 100 ′ ° ⁇ ⁇ cm.
  • antioxidants for example, antioxidants, heat stabilizers (hindered phenols, hydroquinones, phosphites and their substitutes), weathering agents (resorcinols, salicylates, benzotriazoles, benzophenones, hinders) Release agents and lubricants (montanic acid and its metal salts, esters, half esters, stearyl alcohol, stearamide, various bisamides, bisurea, polyethylene wax, etc.), pigments (sulfided Power dough, phthalocyanine, carbon black, etc.), dyes (Nig mouth, etc.), crystal nucleating agents (talc, silica, power ol, crepe, etc.), plasticizers (p-oxybenzoyl octyl, N-butylbenzene sulfo) Amide, etc.), antistatic agent (alkyl sulfate type anio) Antistatic
  • the method for obtaining the resin composition of the present invention is not particularly limited as long as the present invention satisfies the requirements.
  • a twin-screw extruder is used.
  • the PPS (a1) and the epoxy group-containing polyolefin (a2) are supplied from the main feeder, melt-kneaded, and the modified polyester resin (b) and the epoxy-modified polyolefin obtained by reacting the epoxy compound with the polyolefin ( c) from the side feeder at the extruder tip, polyester from the main feeder b 1), epoxy group-containing polyolefin (b 2), and polyolefin (b 3) other than epoxy group-containing polyolefin are supplied, melt-kneaded, and modified PPS resin (a) and the mixture of epoxy compound and polyolefin.
  • the epoxy-modified polyolefin (c) obtained by the reaction is transferred to the side fin of the extruder.
  • the resin composition of the present invention As a method for molding the resin composition of the present invention, conventionally known methods (such as injection molding, extrusion molding, blow molding, and press molding) can be employed. Among them, it is preferable to adopt a method selected from injection molding, injection compression molding and compression molding from the viewpoints of low water absorption and improvement of permeation resistance of the molded article.
  • the molding temperature is usually selected from a temperature range 5 to 50 ° C higher than the melting point of PPS.
  • the structure of the molded product is generally a single layer, but may be a multilayer structure by a method such as a two-color injection molding method or a co-extrusion molding method.
  • the multilayer structure refers to a structure having at least one layer made of the resin composition of the present invention.
  • the arrangement of each layer is not particularly limited, and all the layers may be composed of the resin composition of the present invention, or the other layers may be composed of another thermoplastic resin.
  • Such a multilayer structure can also be manufactured by a two-color injection molding method or the like.
  • the composition forming each layer is melted by a separate extruder, and then fed to a multi-layered die, co-extrusion molding, another layer is formed in advance Thereafter, it can be produced by a so-called lamination molding method in which a layer comprising the resin composition of the present invention is melt-extruded.
  • the shape of the laminated structure is a hollow container such as a bottle, a barrel, or a tank, or a tubular body such as a pipe or a tube
  • an ordinary co-extrusion molding method can be employed.
  • the inner layer is formed of the resin composition of the present invention.
  • the resin composition and the other resin are separately supplied to two extruders, and these two types of molten resins are supplied. After pressure is supplied into the common die to form an annular flow, the resin composition layer is joined to the inner layer side and the other resin layer is joined to the outer layer side, and then the resin composition is shared outside the die.
  • the two-layer hollow molded body can be obtained by extruding and performing a generally known tube molding method, blow molding method, or the like.
  • a three-layer structure is formed by the same method as described above using three extruders, or a two-layer three-layer hollow structure is formed using two extruders. It is also possible to obtain molded objects. Among these methods, it is preferable to form using a co-extrusion molding method from the viewpoint of the eyebrow adhesive strength.
  • the thermoplastic resin used as another layer includes saturated polyester, polysulfur Hong, polyethylene tetrafluoride, polyether imide, polyamide imid, polyamide, polyketone copolymer, polyphenylene ether, polyimide, polyester sulfone, polyether ketone, polythioether ketone, polyether a Examples thereof include terketone, thermoplastic polyurethane, polyolefin, ABS, polyamide elastomer, polyester elastomer, and the like. These may be used as a mixture thereof or with various additives added thereto.
  • Molded articles obtained by molding the resin composition of the present invention include, for example, chlorofluorocarbon 11, fluorocarbon 12, fluorocarbon 21, fluorocarbon 22, fluorocarbon 11, fluorocarbon 11 4 , CFC 1 1 5, CFC 1 3 4a, CFC 1 3 2, CFC 1 2 3, CFC 1 2 4, CFC 1 2 5, CFC 1 4 3a, CFC 1 4 1b , Chlorofluorocarbon _ 14 2 b, fluorocarbon 225, fluorocarbon C 3 18, R—502, 1, 1, 1 — trichloroethane, methyl chloride, methylene chloride, chlorinated methyl, methylchloroform, Propane, isobutane, n-butane, dimethyl ether, castor oil based brake fluid, glycol ether based brake fluid, borate ester based brake fluid, brake fluid for extreme cold regions, silicone oil based brake fluid, mineral oil based brake fluid, power sariline G oil, window washer fluid, Gase
  • test container filled with methanol was treated in a thermo-hygrostat at a temperature of 60 ° C. and a relative humidity of 65% for 500 hours in the same manner as in the above (1), and the reduced weight was measured.
  • Liquid absorption rate (%) ⁇ (weight after liquid absorption—weight when absolutely dry) Z Weight when absolutely dry) X 100
  • Low temperature impact strength Izod impact strength measured according to ASTM D256 except that the temperature atmosphere was 140 ° C.
  • the 1.4-1.8 mm portion (center) from the thickness direction of the ASTM No. 1 test piece was observed using TEM (magnification: 10,000 times), and 100 arbitrary disperse phases were selected. The average value of the maximum diameter and the minimum diameter was calculated as a number average value.
  • modified PPS resin and modified polyester resin used in Examples and Comparative Examples are as follows. In addition, unless otherwise noted, polymerization was carried out in accordance with a conventional method.
  • the obtained P-phenylene sulfide Zm-phenylene sulfide copolymer has a melting point of 248 ° C and a melt flow rate of 350 g / 10 minutes (hereinafter abbreviated as MFR). : 3 1
  • A-1 Melting point 280 ° C, MFR 200 g / 10 min (3 15 ° C, 5 kg load), melt viscosity 1550 P a 's (320 ° C, MFR 310 minutes (190.C, 2.16 kg load) ethylene / glycidyl methacrylate based on 100 parts by weight of polyphenylene sulfide resin with a shear rate of 100 000 sec- 1 ) 288/12 (wt%) copolymer was mixed in 25 parts by weight and melt-extruded at a cylinder temperature of 300 ° C using a twin-screw extruder to give an Izod impact strength of 350. JZm modified PPS resin.
  • the ethylene-butene copolymer of 860 was mixed at a ratio of 12 parts by weight, and melt-extruded at a cylinder temperature of 300 ° C using a twin-screw extruder. 0 0 JZm modified PPS resin.
  • melt viscosity 1 500 Pa ⁇ s (320 ° C, shear rate 10000 sec—
  • Ethylene / glycidyl methacrylate with MFR of 3 gZl 0 min (190 ° C, 2.16 kg load) per 100 parts by weight of styrene sulfide resin 88/12 (% by weight)
  • MFR 0.5 (190 ° C, 2.16 kg load)
  • the ethylene 1-butene copolymer of 60 was mixed at a ratio of 25 parts by weight, and melt-extruded at a cylinder temperature of 300 ° C. using a twin-screw extruder to obtain an Izod impact strength of 650. JZm denaturation PPS resin.
  • (B-4) a polyethylene terephthalate resin having an intrinsic viscosity of 1.40.
  • C-1 Ethylene / butene copolymer (density 0.861, MFR: 0.5 g / 10 minutes) 100 parts by weight, 0.5 part by weight of maleic anhydride, 2 parts by weight 30.0 parts by weight of 3,5-dimethyl-2,5-bis (tert-butylperoxy) hexine were mixed with a helical mixer, and the cylinder temperature was set to 30 mm2 with a cylinder temperature of 240 ° C. The graft modification was performed using an extruder.
  • the polar group content is a value obtained by calculation using the following equation (2). (Equation 2)
  • Ne Number of epoxy groups per molecule of epoxy resin
  • C-2 ethylene / butene copolymer (density 0.870, MFR: 0.5 g / 10 minutes) 100 parts by weight, 0.5 part by weight of maleic anhydride, 2 parts by weight , 5—Dimethyl-1,2,5-bis (tert-butylperoxy) hexine — 30.0 parts by weight were mixed with a hensil mixer, and the cylinder temperature was set at 240 ° C. Graft modification was performed using a screw extruder.
  • C-3 ethylene / butene copolymer (density 0.870, MFR: 0.5 g / 10 minutes) 100 parts by weight, 1.0 part by weight of maleic anhydride, 30.06 parts by weight of 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexine was mixed with a Hensile mixer, and the mixture was set at a cylinder temperature of 240 ° C. Graft modification was performed using a screw extruder.
  • C-4) Ethylene butene copolymer (density 0.861, MFR: 0.5% / 10 minutes) 100 parts by weight, 0.5 parts by weight of maleic anhydride, 2, 5-dimethyl-1,2,5-bis (tert-butylperoxy) hexine-30.0 parts by weight, and cresol nopolak epoxy resin (epoxy equivalent: 220, molecular weight: 180,000) ) 4.6 parts by weight were mixed with a Hensile mixer, melt-kneaded using a 30 mm ⁇ twin screw extruder set at a cylinder temperature of 240 ° C, and the polar group content was 20.0 mmo 1 / 100 g of an epoxy-modified polyolefin was obtained.
  • the above-mentioned modified PPS resin (a), modified polyester resin (b), and epoxy-modified polyolefin (c) obtained by the reaction of an epoxy compound with polyolefin were used as TEX 30 products manufactured by Nippon Steel Corporation.
  • the melt was kneaded at a cylinder temperature of 280 to 300 ° C and a screw rotation speed of 200 rpm, supplied from the main figure of a twin-screw extruder. After drying the obtained pellet, a test piece was prepared by injection molding (IS100FA manufactured by Toshiba Machine Co., cylinder temperature 280-300 ° C, mold temperature 130 ° C). Table 1 shows the results of measuring the barrier properties and material strength of each sample.
  • the modified polyester resin (B-1) and the epoxy-modified polyolefin (C-1) obtained by the reaction of the epoxy compound with the polyolefin are mixed, and then mixed through the side feeder at the tip of the extruder.
  • the main feeder and side feeder at this time The supply amount from the beginning was adjusted and supplied so that the obtained resin composition had the composition shown in Table 2.
  • a test piece was prepared by injection molding (IS 100 FA manufactured by Toshiba Machine Co., cylinder temperature 300 ° C., mold temperature 130 ° C.). Table 2 shows the results of measuring the barrier properties and material strength of the obtained samples.
  • the cylinder temperature of 300 ° C from the side feeder to the die at the end of the extruder, screw rotation speed 200 r Melt kneading was performed at pm. At this time, the supply amounts from the main feeder and the side feeder were adjusted and supplied so that the obtained resin composition had the composition shown in Table 2. After drying the obtained pellet, a test piece was prepared by injection molding (IS100FA manufactured by Toshiba Machine Co., cylinder temperature 300 ° C, mold temperature 130 ° C). Table 2 shows the results of measuring the barrier properties and material strength of the obtained samples.
  • the above-mentioned modified PPS resin (a), modified polyester resin (b), or the following polyamide resin, epoxy-modified polyolefin (c) obtained by reacting an epoxy compound with polyolefin, and the following epoxy Group-containing polyolefins and polyolefins other than the following epoxy group-containing polyolefins were supplied from the main feeder of a TEX30 type twin screw extruder manufactured by Nippon Steel Works, Ltd., and the cylinder temperature was 280-300 ° C. Melt kneading was performed at a screw rotation speed of 200 rpm.
  • test specimens were prepared by injection molding (Toshiba Machine Co., IS 100 FA, cylinder temperature 280-300 ° C, mold temperature 130 ° C). did. Table 3 shows the results of measuring the barrier properties and material strength of each sample.
  • Ethylene Z glycidyl methacrylate 94/4 (weight copolymer) with a length of 33/10 minutes (190, 2.16 kg load)
  • Polyolefins other than epoxy group-containing polyolefins> MFR 0.5 (190.C, 2.16 kg load), ethylene / 1-butene copolymer with density 0.860
  • MXD 6 Nylon MXD 6 resin with a relative viscosity of 2.20.
  • Feeder Modified positive ester resin type ⁇ — ⁇ B— 1
  • Dispersion particle size (d) 11 m 0.5 0.5 0.8 0.8
  • Epoxy group-containing polyolefin in modified polyester resin and dispersed particle size of polyolefin other than epoxy group-containing polyolefine Part by weight when the total of modified PPS resin and modified polyester resin is 100 parts by weight
  • a resin composition comprising a modified PPS resin, a modified polyester resin, and an epoxy-modified polyolefin obtained by reacting an epoxy compound with polyolefin was molded.
  • the molded article obtained by this method has excellent barrier properties, particularly excellent impact resistance at low temperatures, and also has excellent barrier properties under moisture absorption and has high practical value.
  • the molded article obtained by molding the resin composition according to the present invention has good barrier properties and impact resistance, and can be developed for various uses.For example, electric, gas and electronic related equipment, precision machinery related equipment, Suitable for office equipment, automobile and vehicle-related parts, building materials, packaging materials, furniture, and daily necessities.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A resin composition obtained by incorporating an epoxy-modified polyolefin obtained by the reaction of an epoxy compound with a polyolefin into a resin composition comprising a modified polyphenylene sulfide resin comprising polyphenylene sulfide and an epoxidized polyolefin and, incorporated therein in a given amount, a modified polyester resin comprising a polyester, an epoxidized polyolefin, and a polyolefin containing no epoxy group. The resin composition gives a molded article which at least partly has a phase structure in which the resins have separated into different phases so that the modified polyphenylene sulfide resin constitutes a continuous phase and the modified polyester resin constitutes a dispersed phase. The resin composition is excellent in impermeability, impact resistance especially at low temperatures, and moldability.

Description

糸田 »  Itoda »
樹脂組成物  Resin composition
技 術 分 野  Technical field
本発明は、 気体および //または液体の耐透過性に優れた樹脂組成物に関し、 特 に、 変性ポリフヱニレンスルフィ ド樹脂、 変性ポリエステル樹脂およびエポキシ 化合物とポリオレフィンとの反応により得られるエポキシ系相溶化剤を特定の相 構造に形成させることによって得られる特異的な耐透過性、 耐衝撃性、 成形加工 性を有する樹脂組成物に関する。  The present invention relates to a resin composition having excellent gas and / or liquid permeation resistance, and in particular, to a modified polyphenylene sulfide resin, a modified polyester resin, and an epoxy resin obtained by reacting an epoxy compound with a polyolefin. The present invention relates to a resin composition having specific permeation resistance, impact resistance, and moldability obtained by forming a compatibilizer into a specific phase structure.
背 景 技 術  Background technology
ポリエステル樹脂は、 優れた力学的性質、 化学的性質から機械機構部品、 電気 •電子部品、 自動車部品などの幅広い分野に利用されている。  Polyester resins are used in a wide range of fields, including mechanical and mechanical components, electrical and electronic components, and automotive components, due to their excellent mechanical and chemical properties.
しかしながらポリエステル樹脂は、 酸素や二酸化炭素に対するガスバリァ性に 関しては、 ポリエチレンやポリプロピレン等に比較すれば優れているものの、 未 だ十分ではない。 例えば油脂を含む食品のように酸化しやすい内容物を包装する 用途や、 炭酸飲料のように充塡ガスの漏洩を防止する必要がある用途において、 より一層のガスバリァ性向上が要望されている。 ポリエステル樹脂のガスバリァ 性を改良する方法として、 ポリエステル樹脂よりもガスバリア性の優れた樹脂、 例えば、 エチレン一酢酸ビニル共重合体 ( E V O H ) やポリアミ ド (P A ) 、 ポ リ塩化ビニリデン (P V D C ) などを混合して用いられることが検討されてきた c なかでもポリエステル樹脂にガスバリア性が格段に優れたアジピン酸とメタキシ リ レンジアミンとから得られるポリメタキシリレンアジパミ ド (ナイ口ン M X D 6 ) を混合し、 ガスバリア性を改善することが試みられてきた。  However, although the polyester resin has a better gas barrier property against oxygen and carbon dioxide than polyethylene and polypropylene, it is still insufficient. For example, there is a demand for a further improvement in gas barrier properties in applications such as packaging of easily oxidizable contents such as foods containing fats and oils and applications in which filling gas leakage must be prevented such as carbonated beverages. As a method of improving the gas barrier properties of polyester resins, resins having better gas barrier properties than polyester resins, such as ethylene-vinyl acetate copolymer (EVOH), polyamide (PA), and polyvinylidene chloride (PVDC), are used. Among these, c has been considered to be used as a mixture. C) Polyester resin is mixed with polymethaxylylene adipamide (Nymouth MXD6), which is obtained from adipic acid and metaxylylenediamine, which has excellent gas barrier properties. Attempts have been made to improve gas barrier properties.
しカヽし、 E V O H、 P A (ナイロン M X D 6など) のガスバリア性は、 湿度の 影響をうけやすく、 高温高湿状態ではガスバリァ性が大きく低下するという欠点 を有しているため、 ポリエステル樹脂にこれら樹脂を混合しても吸湿時のバリア 性は必ずしも満足のいく ものではなかった。 また、 ポリエステル樹脂には耐加水 分解性に劣る問題があり、 高温高湿下では機械強度の低下など、 耐久性の問題か ら用途が限定される場合が多かった。  However, the gas barrier properties of EVOH and PA (nylon MXD 6, etc.) are susceptible to the effects of humidity, and have the disadvantage that the gas barrier properties are greatly reduced in high-temperature and high-humidity conditions. The barrier properties at the time of moisture absorption were not always satisfactory even if mixed. In addition, polyester resins have a problem of poor hydrolysis resistance, and their use is often limited due to durability problems such as a decrease in mechanical strength under high temperature and high humidity.
一方、 ポリフヱニレンスルフィ ド樹脂は、 自動車オイルなどの薬液および水に 対して極めて高いバリァ性を示すことが知られており、 これを用いたブロー成形 中空容器や管状体なども提案されている (米国特許第 4 8 6 3 6 6 9号公報、 欧 州特許第 0 2 2 2 1 9 9号公報、 米国特許第 5 0 8 9 2 0 9号公報) 。 しかし、 ポリフヱニレンスルフィ ド樹脂は他の樹脂との眉間接着性が不十分なため、 ポリ エチレン、 ポリプロピレンなどのポリオレフイ ン系材料を初め他の樹脂材料との 共押出ゃラミネー ト加工などが困難であった。 Polyphenylene sulfide resin, on the other hand, is used in chemicals such as automotive oils and water. It is known that they exhibit extremely high barrier properties, and blow molded hollow containers and tubular bodies using the same have also been proposed (US Pat. No. 4,866,669, European Patent No. No. 2,022,199, U.S. Pat. No. 5,089,209). However, since polyphenylene sulfide resin has insufficient eyebrow adhesion to other resins, co-extrusion with other resin materials, including polyolefin-based materials such as polyethylene and polypropylene, etc. It was difficult.
ポリエステル樹脂とポリフヱニレンスルフィ ド樹脂に耐衝撃改良材を加えて溶 融混練することにより耐衝撃性を改良する手段が特公平 6— 2 3 3 0 0号公報、 特許第 3 0 6 7 2 1 4号公報に開示されているが、 これら従来の技術では、 特に 低温の耐衝撃性と耐透過性のバランスにおいて未だ不十分である。 特開 2 0 0 2 - 6 9 2 7 3号公報では、 ポリエステル樹脂とポリフヱニレンスルフィ ド樹脂の 相構造を制御することにより、 高温高湿下でも高いバリァ性を発現することがで きることが開示されているが、 この場合も特に低温の耐衝撃性とのバランスの点 では不十分なケースがあり、 バリア性と耐衝擊性など諸特性を高度に且つ安定的 に満足する材料の開発が求められている。  A means for improving the impact resistance by adding an impact modifier to a polyester resin and a polyphenylene sulfide resin and melting and kneading the resin is disclosed in Japanese Patent Publication No. Hei 6-2330000, Patent No. 3067. Although disclosed in Japanese Patent Application Laid-Open No. 2-14, these conventional techniques are still insufficient particularly in balance between low-temperature impact resistance and permeation resistance. In Japanese Patent Application Laid-Open No. 2002-692773, by controlling the phase structure of a polyester resin and a polyphenylene sulfide resin, high barrier properties can be exhibited even under high temperature and high humidity. However, in this case as well, there are cases where the balance between impact resistance at low temperatures is not sufficient, and there are cases in which materials that highly and stably satisfy various properties such as barrier properties and impact resistance are disclosed. Development is required.
発 明 の 開 示  Disclosure of the invention
本発明の目的は、 ポリエステル樹脂の有する機械的強度および靱性と、 ポリフ ヱ;レンスルフィ ド樹脂の有する低吸水性および耐透過性との高度なバランスの 実現を課題とし、 特異的な耐透過性、 特に低温における耐衝撃性、 成形加工性を 安定的に発現する樹脂組成物を提供することにある。  An object of the present invention is to achieve a high balance between the mechanical strength and toughness of a polyester resin and the low water absorption and permeation resistance of a polyphenylene sulfide resin. In particular, it is an object of the present invention to provide a resin composition stably exhibiting impact resistance and moldability at low temperatures.
そこで本発明者らは上記目的を達成すべく検討した結果、 変性ポリフエ二レン スルフィ ド樹脂、 変性ポリエステル樹脂、 およびエポキシ化合物とポリオレフィ ンとの反応により得られるエポキシ変性ポリオレフィンから得られる樹脂組成物 において、 その樹脂組成物を成形して得られる成形品の樹脂相分離構造が、 変性 ポリフ 二レンスルフィ ド樹脂が連続した相を一部または全部に形成する分散構 造となるように制御することにより前記課題が解決されることを見出し本発明に 到達した。  Accordingly, the present inventors have studied to achieve the above object, and as a result, a modified polyphenylene sulfide resin, a modified polyester resin, and a resin composition obtained from an epoxy-modified polyolefin obtained by reacting an epoxy compound with polyolefin. The resin phase separation structure of the molded article obtained by molding the resin composition is controlled so as to be a dispersed structure in which the modified polyphenylene sulfide resin forms a continuous or partially continuous phase. The inventors have found that the problem is solved, and arrived at the present invention.
すなわち本発明に係る樹脂組成物は、 ポリフヱニレンスルフィ ド (a l ) 、 ェ ポキシ基含有ポリオレフイ ン (a 2 ) を含む変性ポリフヱニレンスルフィ ド樹脂 (a) 1 0 0重量部に対して、 ポリエステル (b 1 ) 、 エポキシ基含有ポリオレ フィ ン (b 2) およびエポキシ基含有ポリオレフィ ン以外のポリオレフィ ン (b 3 ) .を含む変性ポリエステル樹脂 (b) 4 0〜2 5 0重量部を含有する樹脂組成 物 1 0 0重量部に対して、 エポキシ化合物とポリオレフィ ンとの反応により得ら れるエポキシ変性ポリオレフイン (c) を 0. 5〜2 0重量部含有する樹脂組成 物であって、 該樹脂組成物の成形品にて、 電子顕微鏡で観察される樹脂相分離構 造が、 変性ポリフヱニレンスルフィ ド樹脂 (a) が連続相、 変性ポリエステル樹 脂 (b) が分散相となる枏構造を少なくとも一部に形成することを特徵とするも のからなる。 That is, the resin composition according to the present invention is a modified polyphenylene sulfide resin containing polyphenylene sulfide (al) and epoxy group-containing polyolefin (a 2). (a) A modified polyester resin (b) containing 100 parts by weight of a polyester (b 1), an epoxy group-containing polyolefin (b 2), and a polyolefin (b 3) other than an epoxy group-containing polyolefin. ) 100 to 100 parts by weight of a resin composition containing 40 to 250 parts by weight, 0.5 to 20 parts by weight of an epoxy-modified polyolefin (c) obtained by reacting an epoxy compound with a polyolefin. Part of the resin composition, wherein a molded article of the resin composition has a resin phase separation structure observed by an electron microscope, a modified polyphenylene sulfide resin (a) having a continuous phase, and a modified polyester. The resin (b) is characterized in that the resin (b) forms at least a part thereof as a dispersed structure.
この樹脂組成物においては、 上記樹脂組成物を加工して得られる成形品におけ る、 電子顕微鏡で観察される樹脂相分離構造において、 変性ポリフエ二レンスル フィ ド樹脂 (a) が連続相、 変性ポリエステル樹脂 (b) が分散相となる相構造 に形成し、 かつ変性ポリエステル樹脂 (b) の分散相の平均分散粒径が 5 m以 下であり、 変性ポリエステル樹脂 (b) の分散相中にエポキシ基含有ポリオレフ イ ン (b 2 ) およびエポキシ基含有ポリオレフィ ン以外のポリオレフイ ン (b 3 ) が平均分散粒径が 1 zm以下で分散した分散構造を有することが好ましい。 また、 エポキシ基含有ポリオレフィ ン (a 2) および (b 2) は、 一ォレフィ ンとエポキシ基含有モノマーを含む共重合体であることが好ましい。  In this resin composition, the modified polyphenylene sulfide resin (a) has a continuous phase and a modified phase in a resin phase separation structure observed by an electron microscope in a molded product obtained by processing the resin composition. The dispersed phase of the modified polyester resin (b) is formed to have a phase structure in which the polyester resin (b) is a dispersed phase, and the dispersed phase of the modified polyester resin (b) has an average particle size of 5 m or less. The epoxy group-containing polyolefin (b 2) and the polyolefin (b 3) other than the epoxy group-containing polyolefin preferably have a dispersed structure in which the average dispersed particle size is 1 zm or less. Further, the epoxy group-containing polyolefins (a2) and (b2) are preferably a copolymer containing a monoolefin and an epoxy group-containing monomer.
また、 上記エポキシ変性ポリオレフイン (c) がエポキシ化合物と密度 0. 9 4 0 cm3以下のポリオレフィンとの反応により得られるエポキシ変性ポリ ォレフィ ンであることが好ましい。 Further, the epoxy-modified polyolefin (c) is preferably an epoxy-modified polyolefin obtained by reacting an epoxy compound with a polyolefin having a density of 0.940 cm 3 or less.
上記エポキシ変性ポリオレフイン (c) としては、 たとえば、 エチレンノ 一 ォレフィン共重合体に、 ェチレン性不飽和カルボン酸及びその誘導体から選ばれ る少なくとも一種をグラフ トした変性エチレン 一ォレフィン共重合体とェポ キシ化合物との反応により得られるエポキシ変性ポリオレフィ ンを用いることが できる。  Examples of the epoxy-modified polyolefin (c) include, for example, a modified ethylene monoolefin copolymer obtained by grafting at least one selected from ethylenically unsaturated carboxylic acids and derivatives thereof on an ethylene norolefin copolymer. Epoxy-modified polyolefin obtained by reaction with a compound can be used.
また、 上記エポキシ変性ポリオレフィ ン (c) として、 エチレンノ 一才レフ ィン共重合体に、 エチレン性不飽和カルボン酸及びその誘導体から選ばれる少な くとも一種をラジカル発生剤の存在下、 エポキシ化合物と共に加熱して得られる エポキシ変性ポリオレフィンを用いることもできる。 In addition, as the epoxy-modified polyolefin (c), at least one selected from ethylenically unsaturated carboxylic acids and derivatives thereof is added to an ethylene-free olefin copolymer together with an epoxy compound in the presence of a radical generator. Obtained by heating Epoxy-modified polyolefins can also be used.
上記変性ポリフヱニレンスルフィ ド樹脂 (a ) としては、 たとえば、 ポリフヱ 二レンスルフイ ド (a 1 ) 1 0 0重量部に対して、 エポキシ基含有ポリオレフィ ン (a 2 ) 1〜 5 0重量部を含有するものを用いることができる。  As the modified polyphenylene sulfide resin (a), for example, 1 to 50 parts by weight of an epoxy group-containing polyolefin (a 2) is added to 100 parts by weight of a polyphenylene sulfide (a 1). What it contains can be used.
また、 上記変性ポリフヱニレンスルフィ ド樹脂 (a ) として、 ポリフヱニレン スルフィ ド (a 1 ) と、 エポキシ基含有ポリオレフィ ン (a 2 ) からなる組成物 1 0 0重量部に対して、 エポキシ基含有ポリオレフィ ン以外のポリオレフィ ン ( a 3 ) を 1〜5 0重量部を含有してなるものを用いることができる。  Further, as the modified polyphenylene sulfide resin (a), 100 parts by weight of a composition composed of polyphenylene sulfide (a1) and epoxy group-containing polyolefin (a2), Those containing 1 to 50 parts by weight of a polyolefin (a 3) other than the polyolefin can be used.
上記変性ポリフ 二レンスルフィ ド樹脂 (a ) は、 そのアイゾッ ド衝撃.強度が 3 0 0 J Zm以上であることが好ましい。  The modified polyphenylene sulfide resin (a) preferably has an Izod impact strength of at least 300 JZm.
また、 上記変性ポリエステル樹脂 (b ) としては、 たとえば、 ポリエステル ( b 1 ) 1 0 0重量部に対して、 エポキシ基含有ポリオレフイン (b 2 ) 1 0〜 8 0重量部およびエポキシ基含有ポリオレフィン以外のポリオレフイン (b 3 ) 1 0〜8 0重量部を含有してなるものを用いることができる。  Further, as the modified polyester resin (b), for example, 100 to 100 parts by weight of the polyester (b1), 100 to 80 parts by weight of the epoxy group-containing polyolefin (b2) and other than the epoxy group-containing polyolefin Polyolefin (b3) containing 10 to 80 parts by weight can be used.
上記変性ポリエステル樹脂 (b ) は、 そのアイゾッ ド衝擊強度が 5 0 0 J /m 以上であることが好ましい。  The modified polyester resin (b) preferably has an Izod impact strength of 500 J / m or more.
本発明に係る樹脂組成物は、 ポリエステル樹脂の有する機械的強度および靱性 と、 ポリフヱニレンスルフィ ド樹脂の有する低吸水性および耐透過性とを高度に バランスさせ、 特異的な耐透過性、 特に低温における耐衝擊性、 成形加工性を安 定的に発現することができる樹脂組成物となる。 この樹脂組成物を成形して得ら れる成形品は、 バリア性、 特に低温における耐衝撃性に優れ、 また、 吸湿下での ノくリア性にも優れている。  The resin composition according to the present invention has a high balance between the mechanical strength and toughness of the polyester resin and the low water absorption and permeation resistance of the polyphenylene sulfide resin. In particular, the resin composition can stably exhibit impact resistance and moldability at low temperatures. The molded article obtained by molding this resin composition has excellent barrier properties, particularly excellent impact resistance at low temperatures, and also has excellent adhesive properties under moisture absorption.
図 面 の 簡 単 な 説 明  Brief explanation of drawings
図 1は、 変性 P P S樹脂成分が連続相を形成し、 変性ポリエステル樹脂のうち のポリエステルが分散相となり、 かつポリエステル中に更にエポキシ基含有ポリ ォレフィンおよびエポキシ基含有ポリオレフィン以外のポリオレフィンが分散し た分散構造 (海一島一湖構造) のモデル図である。  Figure 1 shows a dispersion in which the modified PPS resin component forms a continuous phase, the polyester of the modified polyester resin becomes the dispersed phase, and the polyolefin other than the epoxy group-containing polyolefin and the epoxy group-containing polyolefin is further dispersed in the polyester. It is a model diagram of the structure (one island, one lake structure).
〔符号の説明〕  [Explanation of symbols]
1 :変性 P P S樹脂 2 : ポリエステル 1: Modified PPS resin 2: Polyester
3 :エポキシ基含有ポリオレフィンおよびエポキシ基含有ポリオレフィ ン以外 のポリオレフィ ン  3: Polyolefin other than epoxy group-containing polyolefin and epoxy group-containing polyolefin
発 明 を実施す る た め の 最良の形態  Best mode for carrying out the invention
以下に、 本発明について、 望ましい実施の形態とともに詳細に説明する。 なお. 以下の説明において 「重量」 とは 「質量」 を意味する。  Hereinafter, the present invention will be described in detail with preferred embodiments. In the following description, “weight” means “mass”.
本発明に係る樹脂組成物に用いる変性ポリフ 二レンスルフィ ド樹脂 (a ) (以下、 変性 P P S樹脂と略称することもある。 ) とは、 ポリフ 二レンスルフ イ ド (a 1 ) (以下、 P P Sと略称することもある。 ) とエポキシ基含有ポリオ レフイ ン (a 2 ) 、 および必要に応じてエポキシ基含有ポリオレフイン以外のポ リオレフイ ン (a 3 ) を溶融混練して得られる熱可塑性樹脂である。  The modified polyphenylene sulfide resin (a) (hereinafter sometimes abbreviated as a modified PPS resin) used in the resin composition according to the present invention is a polyphenylene sulfide resin (a1) (hereinafter abbreviated as PPS). This is a thermoplastic resin obtained by melt-kneading an epoxy group-containing polyolefin (a2) and, if necessary, a polyolefin (a3) other than the epoxy group-containing polyolefin.
好ましい P P S ( a 1 ) は、 下記構造式 1で示される繰り返し単位を有する重 合体である。  Preferred PPS (a1) is a polymer having a repeating unit represented by the following structural formula 1.
(構造式 1 )  (Structural formula 1)
Figure imgf000006_0001
上記構造式 1で示される繰り返し単位を有する重合体としては、 耐熱性の観点 から、 上記構造式で示される繰り返し単位を 7 0モル%以上、 更には 9 0モル% 以上含む重合体が好ましい。 また、 P P Sはその繰り返し単位の 3 0モル%未満 程度が、 下記構造式 2で示される繰り返し単位等で構成されていてもよい。 なか でも p —フヱニレンスルフィ ド /m—フヱニレンスルフィ ド共重合体 (m—フエ 二レンスルフィ ド単位 2 0 %以下) などは成形加工性とバリア性を兼備する点で 好ましく用いられ得る。 (構造式 2 )
Figure imgf000006_0001
As the polymer having the repeating unit represented by the above structural formula 1, from the viewpoint of heat resistance, a polymer containing 70 mol% or more, more preferably 90 mol% or more of the repeating unit represented by the above structural formula is preferable. Further, in the PPS, less than 30 mol% of the repeating unit may be constituted by a repeating unit represented by the following structural formula 2, or the like. Of these, p-phenylene sulfide / m-phenylene sulfide copolymer (m-phenylene sulfide unit 20% or less) is preferably used because it has both moldability and barrier properties. Can be (Structural formula 2)
Figure imgf000007_0001
Figure imgf000007_0001
本発明において用いられる P P S ( a 1 ) の溶融粘度は、 溶融混練が可能であ れば特に制限はないが、 通常 5〜 2 0 0 0 P a · s ( 3 2 0 °C、 剪断速度 1 0 0 0 s e c のものが使用され、 1 0〜 5 0 0 P a · s (同上) の範囲がより好 ましい。 The melt viscosity of the PPS (a 1) used in the present invention is not particularly limited as long as melt kneading is possible, but it is usually 5 to 200 Pas (32 ° C., shear rate 1 The ones with a duration of 100 sec are used, and the range of 10 to 500 Pas (same as above) is more preferable.
かかる P P Sは、 通常、 公知の方法、 即ち特公昭 4 5— 3 3 6 8号公報に記載 されているような比較的分子量の小さな重合体を得る方法、 あるいは特公昭 5 2 - 1 2 2 4 0号公報や特開昭 6 1 - 7 3 3 2号公報に記載されているような比較 的分子量の大きな重合体を得る方法などによって製造できる。 本発明において前 記のように得られた P P Sを空気中加熱による架橋/高分子量化、 窒素などの不 活性ガス雰囲気下あるいは減圧下での熱処理、 有機溶媒、 熱水、 酸水溶液などに よる洗浄、 酸無水物、 ァミ ン、 イソシァネー ト、 官能基含有ジスルフィ ド化合物 などの官能基含有化合物による活性化など種々の処理を施した上で使用すること ももちろん可能である。 P P sの加熱による架橋 高分子量化する場合の具体的方法としては、 空気、 酸素などの酸化性ガス雰囲気下あるいは前記酸化性ガスと窒素、 アルゴンなどの 不活性ガスとの混合ガス雰囲気下で、 加熱容器中で所定の温度においで希望する 溶融粘度が得られるまで加熱を行う方法が例示できる。 加熱処理温度は通常、 1 7 0〜 2 8 0 °Cが選択され、 好ましくは 2 0 0〜 2 7 0 °Cである。 また、 加熱処 理時間は通常 0 . 5〜 1 0 0時間が選択され、 好ましくは 2〜 5 0時間であるが、 この両者をコントロールすることにより 標とする粘度レベルを得ることができ る。 加熱処理の装置は通常の熱風乾燥機でもまた回転式あるいは撹拌翼付の加熱 装置であってもよいが、 効率よく しかもより均一に処理ためには回転式あるいは 撹拌翼付の加熱装置を用いるのがより好ましい。 Such PPS is usually prepared by a known method, that is, a method of obtaining a polymer having a relatively small molecular weight as described in JP-B-45-33668, or a method of obtaining a polymer having a relatively small molecular weight. It can be produced by a method for obtaining a polymer having a comparatively large molecular weight, as described in Japanese Patent Application Laid-Open No. 0-86 and Japanese Patent Application Laid-Open No. 61-73332. In the present invention, the PPS obtained as described above is crosslinked / polymerized by heating in air, heat-treated in an atmosphere of an inert gas such as nitrogen or under reduced pressure, and washed with an organic solvent, hot water, an acid aqueous solution, or the like. Of course, it is also possible to use after being subjected to various treatments such as activation with a functional group-containing compound such as an acid anhydride, an amine, an isocyanate, or a functional group-containing disulfide compound. Cross-linking by heating PP s The specific method for increasing the molecular weight is as follows: in an atmosphere of an oxidizing gas such as air or oxygen, or in a mixed gas atmosphere of the oxidizing gas and an inert gas such as nitrogen or argon. An example is a method in which heating is performed at a predetermined temperature in a heating vessel until a desired melt viscosity is obtained. The heat treatment temperature is generally selected from 170 to 280 ° C, and preferably from 200 to 270 ° C. The heat treatment time is generally selected from 0.5 to 100 hours, and preferably from 2 to 50 hours. By controlling both of them, the target viscosity level can be obtained. The heating device may be an ordinary hot air dryer or a rotary or a heating device with stirring blades. For efficient and more uniform treatment, use a heating device with a rotary or stirring blade. Is more preferred.
P P Sを窒素などの不活性ガス雰囲気下あるいは減圧下で熱処理する場合の具 体的方法としては、 窒素などの不活性ガス雰囲気下あるいは減圧下で、 加熱処理 温度 1 5 0〜 2 8 0 °C、 好ましくは 2 0 0〜 2 7 0 °C、 加熱時間は 0 . 5〜 1 0 0時間、 好ましくは 2〜 5 0時間加熱処理する方法が例示できる。 加熱処理の装 置は、 通常の熱風乾燥機でもまた回転式あるいは撹拌翼付の加熱装置であっても よいが、 効率よく しかもより均一に処理するためには回転式あるいは撹拌翼付の 加熱装置を用いるのがより好ましい。  As a specific method for heat-treating PPS in an inert gas atmosphere such as nitrogen or under reduced pressure, the heat treatment temperature is 150 to 280 ° C in an inert gas atmosphere such as nitrogen or under reduced pressure. Preferably, the heat treatment is performed at 200 to 270 ° C., and the heating time is 0.5 to 100 hours, preferably 2 to 50 hours. The heating device may be an ordinary hot-air dryer or a rotary heating device or a heating device with a stirring blade, but for efficient and more uniform treatment, a heating device with a rotary or stirring blade is used. It is more preferable to use
本発明で用いられる P P S ( a 1 ) は、 脱イオン処理を施された P P Sである ことが好ましい。 かかる脱イオン処理の具体的方法としては酸水溶液洗浄処理、 熱水洗浄処理および有機溶媒洗浄処理などが例示でき、 これらの処理は 2種以上 の方法を組み合わせて用いてもよい。  The PPS (a 1) used in the present invention is preferably deionized PPS. Specific examples of such deionization treatment include acid aqueous solution washing treatment, hot water washing treatment, and organic solvent washing treatment, and these treatments may be used in combination of two or more methods.
P P Sを有機溶媒で洗浄する場合の具体的方法としては以下の方法が例示でき る。 すなわち、 洗浄に用いる有機溶媒としては、 P P Sを分解する作用などを有 しないものであれば特に制限はないが、 例えば N—メチルピロリ ドン、 ジメチル ホルムアミ ド、 ジメチルァセ トアミ ドなどの含窒素極性溶媒、 ジメチルスルホキ シ ド、 ジメチルスルホンなどのスルホキシ ド、 スルホン系溶媒、 アセ トン、 メチ ルェチルケ トン、 ジェチルケトン、 ァセ トフエノ ンなどのケ トン系溶媒、 ジメチ ルエーテル、 ジプロピルエーテル、 テ トラヒ ドロフランなどのエーテル系溶媒、 クロ口ホルム、 塩化メチレン、 ト リクロロエチレン、 2塩化エチレン、 ジクロル ェタン、 テトラクロルェタン、 クロルベンゼンなどのハロゲン系溶媒、 メタノー ル、 エタノール、 プロパノール、 ブタノール、 ペンタノール、 エチレングリコー ル、 プロピレングリコール、 フエノール、 クレゾール、 ポリエチレングリコール などのアルコール、 フヱノール系溶媒、 ベンゼン、 トルエン、 キシレンなどの芳 香族炭化水素系溶媒などが挙げられる。 これらの有機溶媒のなかで N—メチルビ ロリ ドン、 アセトン、 ジメチルホルムアミ ド、 クロ口ホルムなどの使用が好まし い。 また、 これらの有機溶媒は、 1種類で、 あるいは 2種類以上を混合して使用 される。 有機溶媒による洗浄の方法としては、 有機溶媒中に P P Sを浸漬せしめ るなどの方法があり、 必要により適宜撹拌または加熱することも可能である。 有 機溶媒で P P Sを洗浄する際の洗浄温度については特に制限はなく、 常温〜 3 0 0 °c程度の任意の温度が選択できる。 洗浄温度が高くなるほど洗浄効率が高くな る傾向があるが、 通常は常温〜 1 5 (TCの洗浄温度で十分効果が得られる。 また 有機溶媒洗浄を施された P P Sは残留している有機溶媒を除去するため、 水また は温水で数回洗浄す,ることが好ましい。 The following method can be exemplified as a specific method for washing PPS with an organic solvent. That is, the organic solvent used for washing is not particularly limited as long as it does not have an action of decomposing PPS. For example, a nitrogen-containing polar solvent such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, and dimethyl Sulfoxides such as sulfoxide and dimethyl sulfone; sulfone solvents; ketone solvents such as acetone, methylethyl ketone, getyl ketone, and acetophenone; ether compounds such as dimethyl ether, dipropyl ether, and tetrahydrofuran Solvent, liquid form, methylene chloride, trichloroethylene, ethylene dichloride, dichlor Halogen solvents such as ethane, tetrachloroethane, and chlorobenzene, alcohols such as methanol, ethanol, propanol, butanol, pentanol, ethylene glycol, propylene glycol, phenol, cresol, and polyethylene glycol, phenol solvents, benzene, Examples include aromatic hydrocarbon solvents such as toluene and xylene. Of these organic solvents, use of N-methyl virolidone, acetone, dimethylformamide, and chloroform is preferred. These organic solvents are used singly or as a mixture of two or more. As a method for washing with an organic solvent, there is a method such as immersing PPS in an organic solvent, and it is also possible to appropriately stir or heat as necessary. There is no particular limitation on the washing temperature when washing PPS with an organic solvent, and any temperature from room temperature to about 300 ° C can be selected. The higher the washing temperature, the higher the washing efficiency tends to be. However, in general, a normal temperature to 15 (TC washing temperature is sufficient to obtain the effect. It is preferable to wash several times with water or warm water to remove the water.
P P Sを熱水で洗浄処理する場合の具体的方法としては以下の方法が例示でき る。 すなわち熱水洗浄による P P Sの好ましい化学的変性の効果を発現するため、 使用する水は蒸留水あるいは脱イオン水であることが好ましい。 熱水処理の操作 は、 通常、 所定量の水に所定量の Ρ ΊΡ Sを投入し、 常圧で或いは圧力容器内で加 熱、 撹拌することにより行われる。 P P Sと水との割合は、 水の多いほうが好ま しいが、 通常、 水 1 リッ トルに対し、 P P S 2 0 0 g以下の浴比が選択される。  The following method can be exemplified as a specific method for washing the PPS with hot water. That is, the water used is preferably distilled water or deionized water in order to exhibit a favorable chemical modification effect of PPS by hot water washing. The operation of the hot water treatment is usually performed by charging a predetermined amount of water into a predetermined amount of water, and heating and stirring the mixture at normal pressure or in a pressure vessel. The proportion of PPS to water is preferably as high as possible, but usually a bath ratio of less than 200 g of PPS per liter of water is selected.
P P Sを酸水溶液で洗浄処理する場合の具体的方法としては以下の方法が例示 できる。 すなわち、 酸または酸の水溶液に P P Sを浸漬せしめるなどの方法があ り、 必要により適宜撹拌または加熱することも可能である。 用いられる酸は P P Sを分解する作用を有しないものであれば特に制限はなく、 ギ酸、 酢酸、 プロピ オン酸、 酪酸などの脂肪族飽和モノカルボン酸、 クロ口酢酸、 ジクロロ酢酸など のハロ置換脂肪族飽和カルボン酸、 アクリル酸、 クロトン酸などの脂肪族不飽和 モノカルボン酸、 安息香酸、 サリチル酸などの芳香族カルボン酸、 シユウ酸、 マ ロン酸、 コハク酸、 フタル酸、 フマル酸などのジカルボン酸、 硫酸、 リン酸、 塩 酸、 炭酸、 珪酸などの無機酸性化合物などがあげられる。 中でも酢酸、 塩酸がよ り好ましく用いられる。 酸処理を施された P P Sは残留レている酸または塩など を除去するために、 水または温水で数回洗浄することが好ましい。 また洗浄に用 いる水は、 酸処理による P P Sの好ましい化学的変性の効果を損なわない意味で 蒸留水あるいは脱イオン水であることが好ましい。 The following method can be exemplified as a specific method for washing PPS with an aqueous acid solution. That is, there is a method of immersing PPS in an acid or an aqueous solution of an acid, or the like, and if necessary, stirring or heating can be performed. The acid used is not particularly limited as long as it does not have the action of decomposing PPS.Halo-substituted fats such as aliphatic saturated monocarboxylic acids such as formic acid, acetic acid, propionic acid and butyric acid, and chloroacetic acid and dichloroacetic acid. Aliphatic unsaturated monocarboxylic acids such as aromatic saturated carboxylic acid, acrylic acid and crotonic acid, aromatic carboxylic acids such as benzoic acid and salicylic acid, dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, phthalic acid and fumaric acid And inorganic acidic compounds such as sulfuric acid, phosphoric acid, phosphoric acid, hydrochloric acid, carbonic acid, and silicic acid. Acetic acid and hydrochloric acid More preferably used. The acid-treated PPS is preferably washed several times with water or hot water in order to remove residual acids or salts. Further, the water used for washing is preferably distilled water or deionized water in the sense that the effect of the preferred chemical modification of PPS by acid treatment is not impaired.
本発明において使用される変性 P P S樹脂 (a ) の成分として用いられるェポ キシ甚含有ポリオレフイン (a 2 ) は、 分子中にエポキシ基を有するポリオレフ ィンであり好ましくは、 一才レフィンとエポキシ基含有モノマーを含む共重合 体である。 さらに好ましくは —ォレフィンと , yS—不飽和酸のグリシジルェ ステルからなる共重合ポリオレフィ ンを用いることができる。 一ォレフィンと は具体的にはエチレン、 プロピレン、 1—ブテンなどであるが好ましいのはェチ レンである。 また、 《, 3—不飽和酸のグリシジルエステルとは下記構造式 3 (式中 Rは水素原子または炭素数 1 〜 6のアルキル基を表す) で示される化合物 であり、 具体的にはァクリル酸グリシジル、 メタクリル酸グリシジル、 エタクリ ル酸グリシジルなどであり、 特にメタクリル酸グリシジルが好ましく用いられる α ,. ; S—不飽和酸のグリシジルエステルの共重合量は 1 〜 5 0重量%、 好ましく は 3 〜 4 0重量%の範囲が適当である。  The epoxy-containing polyolefin (a 2) used as a component of the modified PPS resin (a) used in the present invention is a polyolefin having an epoxy group in the molecule, and is preferably a one-year-old olefin and an epoxy group. It is a copolymer containing contained monomers. More preferably, a copolymerized polyolefin comprising -olefin and glycidyl ester of yS-unsaturated acid can be used. The monoolefin is specifically ethylene, propylene, 1-butene, etc., and preferably ethylene. The glycidyl ester of <<, 3-unsaturated acid is a compound represented by the following structural formula 3 (wherein R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), and specifically, acrylic acid Glycidyl, glycidyl methacrylate, glycidyl ethacrylate, and the like, and particularly, glycidyl methacrylate is preferably used. The copolymerization amount of glycidyl ester of S-unsaturated acid is 1 to 50% by weight, preferably 3 to 50% by weight. A range of 40% by weight is appropriate.
(構造式 3 )  (Structural formula 3)
Ch =C - C一 0 - CH2-CH-CH2 Ch = C-C-1 0-CH 2 -CH-CH 2
- I II \ /  -I II \ /
R 0 0  R 0 0
P P S ( a 1 ) 1 0 0重量部に対するエポキシ基含有ポリオレフィン (a 2 ) の含有量は 1 〜 5 0重量部であることが好ましく、 より好ましくは 1 〜 4 0重量 部である。 エポキシ基含有ポリオレフィ ンの含有量が 5 0重量部を超えるとバリ ァ性の低下および流動性の低下を引き起こすため好ましくない。 またエポキシ基 含有ポリオレフィンの含有量が 1重量部未満になると本発明の特徴である高衝撃 性の発現が困難になるため好ましくない。 The content of the epoxy group-containing polyolefin (a 2) is preferably 1 to 50 parts by weight, more preferably 1 to 40 parts by weight, based on 100 parts by weight of P P S (a 1). When the content of the epoxy group-containing polyolefin exceeds 50 parts by weight, it is not preferable because the barrier property and the fluidity are reduced. On the other hand, if the content of the epoxy group-containing polyolefin is less than 1 part by weight, it is not preferable because it becomes difficult to develop the high impact property which is a feature of the present invention.
本発明で使用される変性 P P S樹脂 (a ) には、 追加成分として用いられ得る エポキシ基含有ポリオレフィン以外のポリオレフィン (a 3 ) を使用することが 好ましい。 その具体例としては、 ポリエチレン、 ポリプロピレン、 ポリスチレン、 ポリアクリル酸エステル、 ポリメタクリル酸エステル、 ポリ 1 —ブテン、 ポリ 1 —ペンテン、 ポリメチルペンテンなどの単独重合体、 エチレンノ 一才レフイ ン 共重合体、 ビニルアルコールエステル単独重合体、 ビニルアルコールエステル単 独重合体の少なくとも一部を加水分解して得られる重合体、 [ (エチレンおよび またはプロピレン) とビニルアルコールエステルとの共重合体の少なく とも一 部を加水分解して得られる重合体] 、 [ (エチレンおよび またはプロピレン) と (不飽和カルボン酸および/または不飽和カルボン酸エステル) との共重合 体] 、 [ (エチレンおよび/またはプロピレン) と (不飽和カルボン酸およびノ たは不飽和カルボン酸エステル) との共重合体のカルボキシル基の少なく とも一 部を金属塩化した共重合体] 、 共役ジェンとビニル芳香族炭化水素とのブロック 共重合体、 および、 そのブロック共重合体の水素化物などが用いられる。 In the modified PPS resin (a) used in the present invention, a polyolefin (a 3) other than the epoxy group-containing polyolefin which can be used as an additional component may be used. preferable. Specific examples thereof include homopolymers such as polyethylene, polypropylene, polystyrene, polyacrylate, polymethacrylate, poly 1-butene, poly 1-pentene, and polymethylpentene, ethylene-one-year-old olefin copolymer, A vinyl alcohol ester homopolymer, a polymer obtained by hydrolyzing at least a part of a vinyl alcohol ester homopolymer, [at least a part of a copolymer of ((ethylene and or propylene) and a vinyl alcohol ester) Polymer obtained by hydrolysis], [Copolymer of (ethylene and / or propylene) and (unsaturated carboxylic acid and / or unsaturated carboxylic acid ester)], [(ethylene and / or propylene) and (un Saturated carboxylic acids and unsaturated carboxylic acids A) a copolymer in which at least a portion of the carboxyl group of the copolymer is metallized, a block copolymer of a conjugated gen and a vinyl aromatic hydrocarbon, and a hydride of the block copolymer. Is used.
なかでも、 ポリエチレン、 ポリプロピレン、 エチレン —ォレフィ ン共重合 体、 [ (エチレンおよびノまたはプロピレン) と (不飽和カルボン酸およびノま たは不飽和カルボン酸エステル) との共重合体] 、 [ (エチレンおよびノまたは プロピレン) と (不飽和カルボン酸および または不飽和カルボン酸エステル) との共重合体のカルボキシル基の少なくとも一部を金属塩化した共重合体] が好 ましい。  Among them, polyethylene, polypropylene, ethylene-olefin copolymers, [copolymers of (ethylene and propylene or propylene) with (unsaturated carboxylic acid and phenol or unsaturated carboxylic acid ester)], [(ethylene And propylene) and (unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) are preferred.
また、 ここでいうエチレン 一才レフイン共重合体は、 エチレンと炭素原子 数 3〜2 0の —ォレフィ ンの少なく とも 1種以上との共重合体であり、 前記の 炭素数 3〜 2 0のな一ォレフィンとしては、 具体的にはプロピレン、 1—ブテン、 1 一ペンテン、 1 —へキセン、 1 —ヘプテン、 1ーォクテン、 1 —ノネン、 1 — デセン、 1 —ゥンデセン、 1 —ドデセン、 1 —トリデセン、 1 —テトラデセン、 1 —ペンタデセン、 1 —へキサデセン、 1 —ヘプタデセン、 1一才クタデセン、 1 —ノナデセン、 1 —エイコセン、 3—メチル一 1 —ブテン、 3 —メチル一 1 — ペンテン、 3—ェチルー 1 —ペンテン、 4 —メチル一 1 —ペンテン、 4 —メチル — 1 —へキセン、 4 , 4 —ジメチルー 1一へキセン、 4 , 4—ジメチル一 1ーぺ ンテン、 4 —ェチル一 1 —へキセン、 3 —ェチルー 1 —へキセン、 9ーメチルー 1ーデセン、 1 1 —メチル一 1 —ドデセン、 1 2—ェチルー 1 —テトラデセンお よびこれらの組み合わせが挙げられる。 これら α—才レフインの中でも、 炭素数Further, the ethylene one-year-old olefin copolymer referred to herein is a copolymer of ethylene and at least one or more —3-olefins having 3 to 20 carbon atoms. Specific examples of olefins include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, and 1- Tridecene, 1—Tetradecene, 1—Pentadecene, 1—Hexadecene, 1—Heptadecene, 1-year-old Kutadecene, 1—Nonadecene, 1—Eicosene, 3-Methyl-1—Butene, 3—Methyl-1-—Pentene, 3— 1-pentene, 4-methyl-1- 1-pentene, 4-methyl-1-hexene, 4, 4-dimethyl-1-hexene, 4, 4-dimethyl-1-pentene, 4-ethyl-1— Ki Down, 3 - Echiru 1 - hexene, 9-methyl-1 Desen, 1 1 - methyl one 1 - dodecene, 1 2 Echiru 1 - tetradecene Contact And combinations thereof. Among these α-year-old fins, carbon number
3 〜 1 2 の 一ォレフィ ンを用いた共重合体が機械強度の向上の点から好ましい。 このエチレン 一才レフィ ン系共重合体は、 α—才レフィ ン含量が好ましくは 1 〜 3 0モル%、 より好ましくは 2 〜 2 5モル%、 さらに好ましくは 3 〜 2 0モ ル%である。 Copolymers using 3 to 12 monoolefins are preferred from the viewpoint of improving mechanical strength. The ethylene-one-year-old olefin-based copolymer preferably has an α-year-old olefin content of 1 to 30 mol%, more preferably 2 to 25 mol%, and still more preferably 3 to 20 mol%. .
更に 1 , 4 一へキサジェン、 ジシクロペンタジェン、 2 , 5 —ノルポルナジェ ン、 5 —ェチリデンノルボルネン、 5 _ェチル一 2, 5—ノルボルナジェン、 5 - ( 1 ' —プロべニル) 一 2 —ノルボルネンなどの非共役ジェンの少なく とも 1 種が共重合されていてもよい。  1,4-hexadiene, dicyclopentadiene, 2,5-norpolnagen, 5-ethylidene norbornene, 5-ethyl-1-2,5-norbornadiene, 5- (1'-probenyl) 1-2 At least one non-conjugated gen such as norbornene may be copolymerized.
変性 P P S樹脂 (a ) 1 0 0重量部に対するエポキシ基含有ポリオレフイ ン以 外のポリオレフイン (a 3 ) の含有量は好ましくは 1 〜 5 0重量部であり、 更に 好ましくは 5 〜 4 0重量部である。  The content of the polyolefin (a3) other than the epoxy group-containing polyolefin per 100 parts by weight of the modified PPS resin (a) is preferably 1 to 50 parts by weight, more preferably 5 to 40 parts by weight. is there.
本発明における変性 P P S樹脂 (a ) には、 本発明の目的を損なわない限りに おいては、 前記以外の他の樹脂が含有されることは差し支えがない。  As long as the purpose of the present invention is not impaired, the modified PPS resin (a) in the present invention may contain other resins other than those described above.
本発明における変性ポリエステル樹脂 (b ) は、 ポリエステル (b 1 ) 、 ェポ キシ基含有ポリオレフイン (b 2 ) 、 およびエポキシ基含有ポリオレフィ ン以外 のポリオレフイ ン (b 3 ) を必須成分として溶融混練して得られる熱可塑性樹脂 である。  The modified polyester resin (b) in the present invention is obtained by melt-kneading a polyester (b1), a polyolefin (b2) containing an epoxy group, and a polyolefin (b3) other than the polyolefin containing an epoxy group as essential components. The resulting thermoplastic resin.
好ましいポリエステル (b l ) とは主鎖中にエステル結合を有する重合体であ る。 好適には芳香環を重合体の連鎖単位に有する熱可塑性のポリエステルが挙げ られ、 具体的には通常、 芳香族ジカルボン酸 (あるいはそのエステル形成性誘導 体) とジオール (あるいはそのエステル形成性誘導体) および Zまたはヒ ドロキ シカルボン酸とを主成分とする縮合反応により得られる重合体ないしは共重合体 が挙げられる。  The preferred polyester (bl) is a polymer having an ester bond in the main chain. Preferable is a thermoplastic polyester having an aromatic ring in the chain unit of the polymer. Specifically, usually, an aromatic dicarboxylic acid (or an ester-forming derivative thereof) and a diol (or an ester-forming derivative thereof) are usually used. And a polymer or copolymer obtained by a condensation reaction containing Z or hydroxycarboxylic acid as a main component.
芳香族ジカルボン酸としてはテレフタル酸、 イソフタル酸、 オルトフタル酸、 2 , 6 —ナフタレンジカルボン酸、 1 , 5 —ナフタレンジカルボン酸、 ビス (p 一カルボキシフエニル) メタン、 アントラセンジカルボン酸、 4 , 4 ' —ジフエ ニルジカルボン酸、 1 , 2 —ビス (フエノキシ) ェタン一 4 , 4 ' ージカルボン 酸、 5—ナ トリウムスルホイソフタル酸およびそのエステル形成性誘導体が挙げ られる。 これらの芳香族ジカルボン酸は 2種以上併用することもできる。 またァ ジピン酸、 セバシン酸、 ァゼライン酸、 ドデカンジオン酸などの脂肪族ジカルボ ン酸、 1 , 3—シクロへキサンジカルボン酸、 1 , 4 —シクロへキサンジカルボ ン酸などの脂環式ジカルボン酸およびそのエステル形成性誘導体を併用すること もできる。 Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, bis (p-carboxyphenyl) methane, anthracenedicarboxylic acid, 4,4'- Diphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-1,4,4'-dicarboxylic acid, 5-sodium sulfoisophthalic acid and ester-forming derivatives thereof Can be Two or more of these aromatic dicarboxylic acids can be used in combination. Aliphatic dicarboxylic acids such as adipic acid, sebacic acid, azelaic acid and dodecandionic acid; alicyclic dicarboxylic acids such as 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid; Ester-forming derivatives can also be used in combination.
またジオールとしては炭素数 2〜 2 0の脂肪族ジオール、 すなわちエチレング リ コール、 プロピレングリ コール、 1, 4 一ブタンジオール、 ネオペンチルグリ コール、 1, 5—ペンタンジオール、 1 , 6—へキサンジオール、 デカメチレン グリ コール、 シクロへキサンジメタノール、 シクロへキサンジオールなど、 およ びそれらのエステル形成性誘導体が挙げられる。 これらのジオールは 2種以上併 用することもできる。  Examples of the diol include aliphatic diols having 2 to 20 carbon atoms, ie, ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, and 1,6-hexanediol. , Decamethylene glycol, cyclohexanedimethanol, cyclohexanediol and the like, and ester-forming derivatives thereof. Two or more of these diols can be used in combination.
本発明において好ましく用いられるポリエステル (b 1 ) の具体例としては、 ポリエチレンテレフタレー ト、 ポリプロピレンテレフタレー ト、 ポリブチレンテ レフタ レー ト、 ポリ シクロへキサンジメチレンテレフタレー ト、 ポリへキシレン テレフタレー トなどのポリアルキレンテレフタレー ト、 ポリエチレン一 2, 6 - ナフタレンジカルボキシレー ト、 ポリブチレン一 2 , 6 —ナフタレンジカルボキ シレー ト、 ポリエチレン一 1, 2 —ビス (フエノキシ) ェタン一 4, 4 ' ージカ ルポキシレー トのほか、 ポリエチレンイソフタレー ト テレフタレー ト、 ポリブ チレンイソフタレー ト Zテレフタレー ト、 ポリプチレンテレフタレー ト デカン ジカルボキシレー ト、 ポリ (エチレンテレフタレー ト Zシクロへキサンジメチレ ンテレフ夕レー ト) 、 ポリエチレン一 4 , 4 ' ―ジカルボキシレー 卜/テレフタ レー トなどの非液晶性ポリエステルおよびこれらの混合物が挙げられる。  Specific examples of the polyester (b 1) preferably used in the present invention include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polycyclohexane dimethylene terephthalate, and polyhexylene terephthalate. In addition to alkylene terephthalate, polyethylene-1,2,6-naphthalenedicarboxylate, polybutylene-1,2,6-naphthalenedicarboxylate, polyethylene-1,2, bis (phenoxy) ethane-1,4,4'-dicalpoxylate , Polyethylene isophthalate terephthalate, polybutylene isophthalate Z terephthalate, polybutylene terephthalate decane dicarboxylate, poly (ethylene terephthalate Z cyclohexane dimethylene) And non-liquid crystalline polyesters such as polyethylene-1,4'-dicarboxylate / terephthalate and mixtures thereof.
より好ましいものとしては、 ポリエチレンテレフタレー ト、 ポリブチレンテレ フタレー ト、 ポリエチレン一 2, 6 —ナフタレンジカルボキシレー トが挙げられ、 特に好ましく はポリエチレンテレフタレー トであるが、 これらのポリエステル樹 脂は成形性、 耐熱性、 靱性、 表面性などの必要特性に応じて混合物として用いる ことも実用上好適である。  More preferred are polyethylene terephthalate, polybutylene terephthalate, and polyethylene 1,2,6-naphthalenedicarboxylate, and particularly preferred is polyethylene terephthalate. It is practically suitable to use it as a mixture depending on the required properties such as heat resistance, heat resistance, toughness, and surface properties.
これらポリエステルの重合度には制限はないが、 例えば 0 . 5 %の0—クロロ フヱノール溶液中、 2 5 °Cで測定した固有粘度が、 0 . 3 5〜2 . 0 0の範囲、 特に 0 . 5 0〜 1 . 5 0の範囲のものが好ましい。 Although the degree of polymerization of these polyesters is not limited, for example, the intrinsic viscosity measured at 25 ° C. in a 0.5% 0-chlorophenol solution is in the range of 0.35 to 2.00, In particular, those having a range of 0.50 to 1.50 are preferable.
さらに C O O H末端基量は、 例えばポリブチレンテレフタレートの場合、 m— クレゾール溶液をアル力リ溶液で電位差滴定して求めた C O O H末端基量が 1〜 Further, for example, in the case of polybutylene terephthalate, the amount of C OH H terminal group is 1 to 5 when the amount of C OH H terminal group obtained by potentiometric titration of m-cresol solution with an alkaline solution is 1 to
5 0 e q / t (ポリマ 1 トン当りの末端基量) の範囲にあるものが耐久性、 異方 性抑制効果の点から好ましく使用できる。 Those having a range of 50 eq / t (terminal group amount per ton of polymer) can be preferably used from the viewpoint of durability and anisotropic suppression effect.
本発明で使用される変性ポリエステル樹脂 (b ) の必須成分として用いられる エポキシ基含有ポリオレフィン (b 2 ) は、 変性 P P S樹脂 (a ) 成分と同様、 分子中にエポキシ基を有するポリオレフィンであり、 好ましくは、 な一ォレフィ ンとエポキシ基含有モノマーを含む共重合体である。 さらに α—ォレフィ ンと α, 一不飽和酸グリシジルエステルからなる共重合ポリオレフイ ンが好ましい。 よ り好ましくはェチレンとアクリル酸グリシジル、 メタクリル酸グリシジル、 エタ クリル酸グリシジルとの共重合体であり、 特に好ましくはエチレン メタクリル 酸グリシジル共重合体である。 /3 _不飽和酸グリシジルエステルの共重合量 は 1〜 5 0重量%、 好ましくは 3〜 4 0重量%の範囲が適当である。  The epoxy group-containing polyolefin (b 2) used as an essential component of the modified polyester resin (b) used in the present invention, like the modified PPS resin (a) component, is a polyolefin having an epoxy group in the molecule, and is preferable. Is a copolymer containing a naphthalene and an epoxy group-containing monomer. Further, a copolymerized polyolefin comprising α-olefin and glycidyl α, monounsaturated acid is preferred. More preferred is a copolymer of ethylene and glycidyl acrylate, glycidyl methacrylate, and glycidyl ethacrylate, and particularly preferred is a copolymer of ethylene glycidyl methacrylate. The copolymerization amount of the / 3_unsaturated glycidyl ester is suitably 1 to 50% by weight, preferably 3 to 40% by weight.
ポリエステル (b l ) 1 0 0重量部に対するエポキシ基含有ポリオレフイ ン ( b 2 ) の含有量は好ましくは 1 0〜 8 0重量部であり、 更に好ましくは 1 0〜 The content of the epoxy group-containing polyolefin (b2) based on 100 parts by weight of the polyester (bl) is preferably from 10 to 80 parts by weight, and more preferably from 10 to 80 parts by weight.
6 0重量部である。 エポキシ基含有ポリオレフィ ンの含有量が 8 0重量部を超え るとバリァ性の低下および流動性の低下を引き起こすため好ましくない。 またェ ポキシ基含有ポリオレフィ ンの含有量が 1 0重量部未満になると本発明の特徵で ある高衝撃性の発現が困難になるため好ましくない。 60 parts by weight. If the content of the epoxy group-containing polyolefin is more than 80 parts by weight, it is not preferable because the barrier property and the fluidity are reduced. Further, if the content of the epoxy group-containing polyolefin is less than 10 parts by weight, it is difficult to develop the high impact property, which is a feature of the present invention, which is not preferable.
本発明で使用される変性ポリエステル樹脂 (b ) の必須成分として用いられる エポキシ基含有ポリオレフィ ン以外のポリオレフイ ン (b 3 ) は、 変性 P P S樹 脂 (a ) に追加成分として用いられる (a 3 ) として列挙したものより選択する ことができ、 好ましくはポリエチレン、 ポリプロピレン、 エチレン / α—ォレフ イ ン共重合体、 [ (エチレンおよび//またはプロピレン) と (不飽和カルボン酸 およびノまたは不飽和カルボン酸エステル) との共重合体] 、 [ (エチレンおよ び またはプロピレン) と (不飽和カルボン酸およびノまたは不飽和カルボン酸 エステル) との共重合体のカルボキシル基の少なくとも一部を金属塩化した共重 合体] であり、 特に好ましくはエチレン / α—才レフィ ン共重合体である。 ポリエステル (b 1 ) 1 0 0重量部に対するエポキシ基含有ポリオレフィ ン以 外のポリオレフ-ィ ン (b 3 ) の含有量は好ましくは 1 0〜8 0重量部であり、 更 に好ましくは 1 0〜 6 0重量部である。 エポキシ基含有ポリオレフィン以外のポ リオレフィ ン樹脂の含有量が 8 0重量部を超えるとバリア性の低下を引き起こす ため好ましくない。 また含有量が 1 0重量部未満になると本発明の特徵である高 衝撃性の発現が困難になるため好ましくない。 The polyolefin (b 3) other than the epoxy group-containing polyolefin used as an essential component of the modified polyester resin (b) used in the present invention is used as an additional component in the modified PPS resin (a) (a 3) And preferably selected from polyethylene, polypropylene, ethylene / α-olefin copolymer, [(ethylene and / or propylene) and (unsaturated carboxylic acid and Ester) and [(ethylene and or propylene) and (unsaturated carboxylic acid and di- or unsaturated carboxylic acid ester) copolymers in which at least a part of the carboxyl groups of the copolymer are metallized And particularly preferably an ethylene / α-refined olefin copolymer. The content of the polyolefin (b3) other than the epoxy group-containing polyolefin is preferably 10 to 80 parts by weight, more preferably 10 to 100 parts by weight, based on 100 parts by weight of the polyester (b1). 60 parts by weight. If the content of the polyolefin resin other than the epoxy group-containing polyolefin exceeds 80 parts by weight, the barrier property is lowered, which is not preferable. On the other hand, if the content is less than 10 parts by weight, it is difficult to develop the high impact characteristic which is a feature of the present invention, which is not preferable.
本発明における変性ポリエステル樹脂 (b ) には、 本発明の目的を損なわない 限りにおいては、 他の樹脂が含有されることは差し支えがない。  The modified polyester resin (b) in the present invention may contain other resins as long as the object of the present invention is not impaired.
本発明の樹脂組成物における変性 P P S樹脂 (a ) 1 0 0重量部に対する変性 ポリエステル樹脂 (b ) の含有量は 4 0〜 2 5 0重量部であり、 好ましくは 5 0 〜 1 8 0重量部である。 変性ポリエステル樹脂 (b ) の含有量が 2 5 0重量部を 超えると、 本発明の特徴である変性 P P S樹脂 (a ) が連続相を形成することが 困難となるため好ましくない。 また含有量が 4 0重量部未満になると本発明の特 徵である高撃性の発現が困難になるため好ましくない。  The content of the modified polyester resin (b) in the modified PPS resin (a) of 100 parts by weight in the resin composition of the present invention is from 40 to 250 parts by weight, preferably from 50 to 180 parts by weight. It is. If the content of the modified polyester resin (b) exceeds 250 parts by weight, it becomes difficult for the modified PPS resin (a), which is a feature of the present invention, to form a continuous phase, which is not preferable. On the other hand, if the content is less than 40 parts by weight, it is not preferable because it is difficult to exhibit the high impact characteristic of the present invention.
本発明において用いられるエポキシ化合物とポリオレフィンとの反応により得 られるエポキシ変性ポリオレフイン (c ) は、 ポリオレフインにエチレン性不飽 和カルボン酸またはその誘導体をグラフ ト重合して得られる酸変性ポリオレフィ ン ( c 1 ) と、 多官能エポキシ化合物 (c 2 ) とを反応させる方法、 ポリオレフ イン、 エチレン性不飽和カルボン酸またはその誘導体、 有機過酸化物、 及び多官 能エポキシ化合物とを反応させる方法のいずれかの方法によって得られる。 ここで用いられるポリオレフィンとしては、 エチレンおよび炭素原子数 3〜 2 0の α—ォレフィンから選ばれる少なくとも 1種のォレフィ ンを重合して得られ ο  The epoxy-modified polyolefin (c) obtained by the reaction between the epoxy compound and the polyolefin used in the present invention is an acid-modified polyolefin (c1) obtained by graft polymerization of an ethylenically unsaturated carboxylic acid or a derivative thereof to polyolefin. ) And a polyfunctional epoxy compound (c 2), a polyolefin, an ethylenically unsaturated carboxylic acid or a derivative thereof, an organic peroxide, or a multifunctional epoxy compound. Obtained by the method. The polyolefin used herein is obtained by polymerizing at least one of olefins selected from ethylene and α-olefins having 3 to 20 carbon atoms.
具体的には、 エチレンの他、 炭素原子数 3〜2 0の α—才レフイ ンとして、 プ ロピレン、 1 —ブテン、 2—ブテン、 1 —ペンテン、 3—メチル一 1 ーブテン、 1 —へキセン、 4 —メチル一 1 —ペンテン、 3 —メチル一 1 —ペンテン、 3 —ェ チル一 1 —ペンテン、 4, 4ージメチル一 1 —ペンテン、 4—メチル一 1 —へキ セン、 4, 4 —ジメチル一 1 —へキセン、 4 —ェチルー 1 一へキセン、 3 —ェチ ル一 1 一へキセン、 1 —ォクテン、 1 ーデセン、 1 — ドデセン、 1 ーテ トラデセ ン、 1—へキサデセン、 1—ォクタデセン、 1—エイコセンなどのォレフィ ンが 挙げられ、 これらの単独重合体または共重合体を、 単独に、 あるいは複数種を組 合せて用いることができる。 Specifically, in addition to ethylene, alpha-olefins with 3 to 20 carbon atoms include propylene, 1-butene, 2-butene, 1-pentene, 3-methyl-1-butene, and 1-hexene. , 4-Methyl 1-pentene, 3-Methyl 1-pentene, 3-Ethyl 1-pentene, 4, 4-dimethyl-1-pentene, 4-methyl-1-hexene, 4, 4--dimethyl 1 — hexene, 4 — ethyl 1 1 hexene, 3 — ethyl 1 1 hexene, 1 — octene, 1 — decene, 1 — dodecene, 1 — tradece And olefins such as 1-hexadecene, 1-octadecene, and 1-eicosene. These homopolymers or copolymers can be used alone or in combination of two or more.
中でも、 エチレン、 プロピレン、 1ーブテン、 4—メチル一 1—ペンテン、 1 —へキセン、 1—ォクテンから選ばれる 1種以上のォレフィ ンの重合体または共 重合体を含有するポリオレフイ ンが好ましい。  Among them, polyolefins containing at least one polymer or copolymer of an olefin selected from ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and 1-octene are preferred.
更にこれらの中でも、 エチレンと炭素原子数 3〜 2 0の α—ォレフィンから選 ばれる少なく とも 1種との共重合体を含有するポリオレフィンが良好な耐衝擊性 を有する点でより好ましい。 ここでエチレンと共重合させる α—才レフィンとし ては、 プロピレン、 1—ブテン、 4—メチル一 1一ペンテン、 1—へキセン、 1 —ォクテンが特に好ましい。  Further, among these, a polyolefin containing a copolymer of at least one selected from ethylene and α-olefin having 3 to 20 carbon atoms is more preferable in that it has good impact resistance. Here, propylene, 1-butene, 4-methyl-11-pentene, 1-hexene and 1-octene are particularly preferred as α-olefins to be copolymerized with ethylene.
本発明で用いられるポリオレフインの密度は、 通常、 0. 9 4 0 g/c c以下、 好ましくは 0. 9 2 0 g/c c以下、 さらに好ましくは 0. 8 9 5 gZc c以下 でめる。  The density of the polyolefin used in the present invention is usually 0.940 g / cc or less, preferably 0.920 g / cc or less, more preferably 0.895 gZc c or less.
ポリオレフイ ンのメルトフローレート (MFR ; ASTM D 1 2 3 8、 1 9 0 °C、 荷重 2. 1 6 k g) は、 通常 0. 0 1〜 5 0 0 gZ 1 0分、 好ましくは0. 0 5〜2 0 0 ノ 1 0分、 さらに好ましくは 0. l〜 1 0 0 gZ l 0分であ る。  The melt flow rate (MFR; ASTM D 1238, 190 ° C, load 2.16 kg) of polyolefins is usually between 0.01 and 500 gZ10 min, preferably 0.0 It is 5 to 200 minutes, more preferably 0.1 to 100 gZ10 minutes.
また、 ゲルパーミエーシヨンクロマトグラフィー (GP C) で測定したポリオ レフィ ンの重量平均分子量 (Mw) は、 通常 3万〜 6 0万、 好ましくは 4万〜 4 0万、 さらに好ましくは 4万〜 3 0万である。  The weight average molecular weight (Mw) of the polyolefin measured by gel permeation chromatography (GPC) is usually 30,000 to 60,000, preferably 40,000 to 40,000, more preferably 40,000 to 40,000. It is 300,000.
分子量分布 (MwZMn) は、 通常 5. 0以下、 好ましくは 4. 5以下、 さら に好ましくは 4. 0以下である。 なお、 Mnは数平均分子量を示す。  The molecular weight distribution (MwZMn) is usually 5.0 or less, preferably 4.5 or less, and more preferably 4.0 or less. Mn indicates a number average molecular weight.
上記のポリオレフィンの製造は、 従来から公知のいずれの方法によっても行う ことができ、 例えば、 チタン系触媒、 バナジウム系触媒、 メタ口セン触媒などを 用いて重合することができる。  The production of the above-mentioned polyolefin can be carried out by any conventionally known method. For example, the polymerization can be carried out using a titanium-based catalyst, a vanadium-based catalyst, a meta-open catalyst, or the like.
本発明において使用されるエチレン性不飽和カルボン酸またはその誘導体とは、 分子中にエチレン性二重結合と少なくとも 1個のカルボン酸またはその誘導体部 位を有する化合物である。 具体的には、 アクリル酸、 メタクリル酸、 マレイン酸、 フマル酸、 テ トラヒ ドロフタル酸、 ィタコン酸、 シトラコン酸、 クロ トン酸、 ィ ソクロ トン酸、 ノルポルネンジカルボン酸、 ビシクロ [ 2, 2 , 1 ] ヘプト一 2 一ェン一 5 , 6—ジカルボン酸などの不飽和カルボン酸、 またはこれらの酸無水 物あるいはこれらの誘導体 (例えば酸ハライ ド、 アミ ド、 イ ミ ド、 エステルな ど) が挙げられる。 具体的な化合物の例としては、 塩化マレニル、 マレニルイ ミ ド、 無水マレイン酸、 無水ィタコン酸、 無水シ トラコン酸、 テトラヒ ドロ無水フ タル酸、 ビシクロ [ 2, 2 , 1 ] ヘプト一 2—ェン一 5 , 6—ジカルボン酸無水 物、 マレイン酸ジメチル、 マレイン酸モノメチル、 マレイン酸ジェチル、 フマル 酸ジェチル、 ィタコン酸ジメチル、 シ トラコン酸ジェチル、 テ トラヒ ドロフタル 酸ジメチル、 ビシクロ [ 2, 2 , 1 ] ヘプトー 2—ェンー 5, 6—ジカルボン酸 ジメチル、 ヒ ドロキシェチル (メタ) ァク リ レー ト、 ヒ ドロキシプロピル (メ タ) ァク リ レ一 ト、 グリ シジル (メタ) ァク リ レー ト、 メタク リル酸ァミ ノェチ ルおよびメタク リル酸ァミ ノプロピルなどを挙げることができる。 これらの中で は、 (メタ) ァク リル酸、 無水マレイン酸、 無水イタコン酸、 無水シ トラコン酸、 テ トラヒ ドロ無水フタル酸、 ビシクロ [ 2, 2 , 1 ] ヘプト一 2—ェン _ 5, 6 ージカルボン酸無水物、 ヒ ドロキシェチル (メタ) ァク リ レー ト、 グリ シジルメ タク リ レー ト、 メタク リル酸アミ ノプロピルが好ましい。 The ethylenically unsaturated carboxylic acid or a derivative thereof used in the present invention is a compound having an ethylenic double bond and at least one carboxylic acid or a derivative thereof in the molecule. Specifically, acrylic acid, methacrylic acid, maleic acid, Fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, norpolonenedicarboxylic acid, bicyclo [2,2,1] hept-1-ene-5,6-dicarboxylic acid And the like, or their anhydrides or their derivatives (eg, acid halides, amides, imides, esters, etc.). Examples of specific compounds include maleenyl chloride, malenylimide, maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo [2,2,1] hept-1-ene. 1,5,6-dicarboxylic anhydride, dimethyl maleate, monomethyl maleate, getyl maleate, getyl fumarate, dimethyl itaconate, getyl citrate, dimethyl tetrahydrophthalate, bicyclo [2,2,1] heptoh 2-ene-5,6-dimethyl carboxylate, hydroxyshethyl (meth) acrylate, hydroxypropyl (meth) acrylate, glycidyl (meth) acrylate, methacrylic acid Examples thereof include aminoethyl and aminopropyl methacrylate. Among them, (meth) acrylic acid, maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo [2,2,1] hept-2-ene_5 , 6-dicarboxylic anhydride, hydroxyxethyl (meth) acrylate, glycidylmethacrylate, and aminopropyl methacrylate are preferred.
更には無水マレイン酸、 無水ィタコン酸、 無水シ トラコン酸、 テトラヒ ドロ無 水フタル酸、 ビシクロ [ 2, 2, 1 ] ヘプトー 2 —ェン一 5, 6—ジカルボン酸 無水物などのジカルボン酸無水物であることが特に好ましい。  Furthermore, dicarboxylic anhydrides such as maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydro anhydrous phthalic acid, bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic anhydride Is particularly preferred.
本発明における酸変性ポリオレフィ ン (c 1 ) は、 上記ポリオレフィ ンとェチ レン性不飽和カルボン酸またはその誘導体と、 さらに必要に応じてその他のェチ レン性不飽和単量体とをラジカル開始剤の存在下、 または不存在下で加熱して反 応させることにより製造することができる。  The acid-modified polyolefin (c1) in the present invention is obtained by radical-initiating the above-mentioned polyolefin with an ethylenically unsaturated carboxylic acid or a derivative thereof and, if necessary, other ethylenically unsaturated monomers. It can be produced by heating and reacting in the presence or absence of an agent.
このグラフ ト重合はラジカル開始剤の存在下で行うことによりグラフ ト反応効 率が高くなり、 従って、 本発明における変性エチレン系重合体の製造に際しては ラジカル開始剤を用いてグラフ ト反応させることが好ましい。  When the graft polymerization is carried out in the presence of a radical initiator, the efficiency of the graft reaction is increased.Therefore, in producing the modified ethylene polymer of the present invention, the graft reaction can be carried out using a radical initiator. preferable.
ここで用いられるラジカル開始剤としては、 有機過酸化物あるいはァゾ化合物 などを挙げることができる。 有機過酸化物の具体的な例としては、 ジクミルパーオキサイ ド、 ジ一 t—プチ ルパーオキサイ ド、 2, 5—ジメチルー 2 , 5 —ビス ( t—プチルバーオキシ) へキサン、 2, 5—ジメチル一 2, 5—ビス ( t —ブチルパーォキシ) へキシン — 3、 1, 3 —ビス ( t 一プチルパーォキシイソプロピル) ベンゼン、 1 , 1— ビス ( t—ブチルパーォキシ) バラレート、 ベンゾィルパーオキサイ ド、 t—ブ チルパーォキシベンゾェート、 ァセチルバ一オキサイ ド、 イソブチリルパーォキ サイ ド、 ォクタノィルパーオキサイ ド、 デカノィルパーオキサイ ド、 ラウロイル パーオキサイ ド、 3 , 5, 5 —トリメチルへキサノィルパーオキサイ ドおよび 2, 4ージクロ口ベンゾィルパーォキサイ ドおよび m—トルィルパーォキサイ ドなど を挙げることができる。 また、 ァゾ化合物としてはァゾイソプチロニトリルぉよ びジメチルァゾィソプチロニトリルなどが挙げられる。 Examples of the radical initiator used here include organic peroxides and azo compounds. Specific examples of organic peroxides include dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-bis (t-butylpyroxy) hexane, 2,5 —Dimethyl-1,2,5-bis (t-butylperoxy) hexine — 3,1,3-bis (t-butylperoxyisopropyl) benzene, 1,1-bis (t-butylperoxy) balalate, benzoylperoxa Ide, t-butylperoxybenzoate, acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, decanoyl peroxide, lauroyl peroxide, 3, 5, 5 — Trimethylhexanoyl peroxide, 2,4-dichrolic benzoyl peroxide and m-tolyl peroxide Can. In addition, examples of the azo compound include azoisobutyronitrile and dimethylazosopyronitrile.
上記のようなグラフ ト重合は、 前記ポリオレフィ ンの少なくとも一部が固体の 状態、 溶融した状態、 少なくとも一部が有機溶媒に溶解した状態のいずれの状態 で行ってもよい。  The above-mentioned graft polymerization may be carried out in any state where at least a part of the polyolefin is in a solid state, in a molten state, or at least partly in an organic solvent.
グラフ ト重合を前記熱可塑性ポリマーの少なく とも一部が有機溶媒に溶解した 状態で行う場合には、 通常は 5 0〜 2 0 0 °C、 好ましくは 6 0〜 1 9 0 °C、 更に 好ましくは 7 0〜 1 8 0 °Cの温度で反応を行う。  When the graft polymerization is carried out in a state where at least a part of the thermoplastic polymer is dissolved in an organic solvent, it is usually 50 to 200 ° C, preferably 60 to 190 ° C, more preferably. The reaction is carried out at a temperature of 70 to 180 ° C.
その際に使用される有機溶媒としては、 ベンゼン、 トノレェン、 キシレンなどの 芳香族炭化水素系溶媒、 ペンタン、 へキサン、 ヘプタンなどの脂肪族炭化水素系 溶媒などが挙げられる。  Examples of the organic solvent used at that time include aromatic hydrocarbon solvents such as benzene, tonolene, and xylene, and aliphatic hydrocarbon solvents such as pentane, hexane, and heptane.
また、 グラフ ト重合を前記ポリオレフィ ンが溶融した状態で行う場合には、 通 常ポリオレフイ ンの融点以上で反応させる。 すなわち、 前記ポリオレフイ ンの融 点以上の温度、 具体的には通常は 8 0〜 3 0 0 °C、 好ましくは 8 0〜 2 6 0での 範囲でグラフ ト重合反応を行う。  When the graft polymerization is carried out in a state where the polyolefin is melted, the reaction is usually carried out at a temperature higher than the melting point of the polyolefin. That is, the graft polymerization reaction is carried out at a temperature equal to or higher than the melting point of the polyolefin, specifically at a temperature of usually 80 to 300 ° C., preferably 80 to 260 ° C.
このようにして調製された酸変性ポリオレフィン中におけるカルボン酸または その誘導体のグラフ ト量は、 通常は 0 . 0 1〜 2 0重量%、 好ましくは 0 . 0 5 The graft amount of the carboxylic acid or its derivative in the acid-modified polyolefin thus prepared is usually 0.01 to 20% by weight, preferably 0.05%.
〜 1 5重量%、 更に好ましくは 0 . 1〜 1 0重量%でぁる。 -15% by weight, more preferably 0.1-10% by weight.
本発明において使用される多官能エポキシ化合物とは、 分子中に 2個以上のォ キシラン環構造を含有する化合物、 ポリマー、 プレボリマーであれば、 いずれの ものでも使用することができるが、 分子中に 2個以上のエポキシ基を含有するェ ポキシ樹脂を用いることが好ましい。 多官能エポキシ化合物は、 芳香族でも脂肪 族でもよい。 The polyfunctional epoxy compound used in the present invention may be any compound, polymer or prepolymer containing two or more oxysilane ring structures in the molecule. Although an epoxy resin can be used, it is preferable to use an epoxy resin containing two or more epoxy groups in the molecule. The polyfunctional epoxy compound may be aromatic or aliphatic.
ここで用いられるエポキシ樹脂としては、 ビスフヱノール A型エポキシ樹脂、 ビスフエノール F型エポキシ樹脂、 レゾルシン型エポキシ樹脂、 テトラヒ ドロキ シフェニルメタン型エポキシ樹脂、 テトラヒ ドロキシフヱニルエタン型エポキシ 樹脂、 フヱノールノボラック型エポキシ樹脂、 クレゾールノポラック型エポキシ 樹脂、 脂環化合物型エポキシ樹脂、 脂肪族エポキシ樹脂、 エポキシ化ポリブタジ ェン、 エポキシ化スチレン/ブタジェンゴム等が例示される。  The epoxy resins used here include bisphenol A type epoxy resin, bisphenol F type epoxy resin, resorcinol type epoxy resin, tetrahydroxyphenylmethane type epoxy resin, tetrahydroxyphenylethane type epoxy resin, and phenol novolak. Epoxy resin, cresol nopolak epoxy resin, alicyclic epoxy resin, aliphatic epoxy resin, epoxidized polybutadiene, epoxidized styrene / butadiene rubber, and the like.
これらの中でも、 フヱノールノポラック型 ポキシ樹脂、 クレゾールノボラッ ク型エポキシ樹脂、 テトラヒ ドロキシフヱニルメタン型エポキシ樹脂、 テトラヒ ドロキシフ Xニルエタン型エポキシ樹脂などが、 極性基含有量の高い樹脂組成物 を得られる点で好ましい。  Among them, phenol nopolak-type epoxy resin, cresol novolak-type epoxy resin, tetrahydroxyphenylmethane-type epoxy resin, and tetrahydroxyloxy-xylethane-type epoxy resin are resin compositions having a high polar group content. It is preferable in that it can obtain.
また、 これらのエポキシ樹脂の中でも、 通常エポキシ当量が 5 0〜5 0 0、 好 ましくは 1 0 0〜 3 0 0、 更に好ましくは 1 0 0〜 2 5 0であることが、 極性樹 脂との相溶性が良好な樹脂組成物が得られる点で好ましい。  Among these epoxy resins, the polar resin usually has an epoxy equivalent of 50 to 500, preferably 100 to 300, and more preferably 100 to 250. This is preferable in that a resin composition having good compatibility with the above can be obtained.
本発明におけるエポキシ変性ポリオレフイ ン (c ) は、 上記酸変性ポリオレフ イ ン (c 1 ) 、 多官能エポキシ化合物 (c 2 ) を溶融混練することにより得られ o  The epoxy-modified polyolefin (c) in the present invention can be obtained by melt-kneading the acid-modified polyolefin (c1) and the polyfunctional epoxy compound (c2).
上記成分を溶融混練する場合の混練方法については、 特に限定はされないが、 上記の各成分を同時に、 または逐次的に、 たとえばヘンシヱルミキサー、 V型ブ レンダー、 タンブラ一プレンダー、 リボンプレンダーなどに装入して混練した後, 単軸押出機、 多軸押出機、 ニーダー、 バンバリ一ミキサーなどで溶融混練するこ とによって得られる。 これらのうちでも、 多軸押出機、 ニーダー、 バンバリーミ キサ一などの混練性能に優れた装匱を使用すると、 各成分がより均一に分散 ·反 応された樹脂組成物を得ることができるため好ましい。  There is no particular limitation on the kneading method when the above components are melt-kneaded, but the above-mentioned components are simultaneously or sequentially added to, for example, a hensile mixer, a V-type blender, a tumbler blender, a ribbon blender, and the like. After being charged and kneaded, it can be obtained by melt-kneading with a single-screw extruder, multi-screw extruder, kneader, Banbury mixer, or the like. Among these, it is preferable to use a kneading machine having excellent kneading performance such as a multi-screw extruder, a kneader, a Banbury mixer, etc., since it is possible to obtain a resin composition in which each component is more uniformly dispersed and reacted. .
また、 本発明において、 ポリオレフイ ン、 エチレン性不飽和カルボン酸または その誘導体、 有機過酸化物、 および多官能エポキシ化合物を溶融混合する場合の 反応条件は、 上記グラフ ト反応の際の条件と同様な条件にて行うことができる。 このェポキシ化合物とポリオレフィ ンとの反応により得られるェポキシ変性ポ リオレフイ ン ( C ) の含有量は、 ポリフェニレンスルフィ ド、 ポリエステル、 ェ ポキシ基含有ポリオレフィ ン、 およびエポキシ基含有ポリオレフィ ン以外のポリ ォレフィ ンからなる樹脂組成物 1 0 0重量部に対して、 0 . 5〜2 0重量部であ る。 好ましくは 0 . 5〜 1 5重量部、 より好ましくは 1〜 1 0重量部である。 本発明の樹脂組成物は加工して得られる成形品においては、 図 1に示すように、 変性 P P S樹脂 1が連続相を形成し、 変性ポリエステル樹脂 (b ) のうちのポリ エステル (b l ) 2が分散相となり、 かつポリエステル中に更にエポキシ基含有 ポリオレフイン ( b 2 ) およびェポキシ基含有ポリオレフィ ン以外のポリオレフ イ ン (b 3 ) 3が分散した海一島—湖構造のことをいう。 ここで、 本発明の樹脂 相分離構造は図 1の形態に限定されるものではなく、 変性ポリエステル樹脂 ( b ) およびエポキシ基含有ポリオレフイン (b 2 ) およびエポキシ基含有ポリオ レフィ ン以外のポリオレフィン (b 3 ) の形状が多角形、 略楕円形などの非円形 であってもかまわない。 In the present invention, the reaction conditions for melt-mixing the polyolefin, the ethylenically unsaturated carboxylic acid or its derivative, the organic peroxide, and the polyfunctional epoxy compound are the same as the conditions for the above-described graft reaction. It can be performed under conditions. The content of the epoxy-modified polyolefin (C) obtained by the reaction of the epoxy compound with the polyolefin is determined by the polyolefin other than polyphenylene sulfide, polyester, epoxy group-containing polyolefin, and epoxy group-containing polyolefin. Is 0.5 to 20 parts by weight based on 100 parts by weight of the resin composition comprising Preferably it is 0.5 to 15 parts by weight, more preferably 1 to 10 parts by weight. In the molded product obtained by processing the resin composition of the present invention, as shown in FIG. 1, the modified PPS resin 1 forms a continuous phase, and the polyester (bl) 2 of the modified polyester resin (b) Is a dispersed phase, and the poly-olefin (b 3) 3 other than the epoxy group-containing polyolefin (b 2) and the epoxy group-containing polyolefin is dispersed in the polyester. Here, the resin phase separation structure of the present invention is not limited to the embodiment shown in FIG. 1, but includes a modified polyester resin (b), an epoxy group-containing polyolefin (b 2), and a polyolefin (b) other than the epoxy group-containing polyolefin (b). The shape of 3) may be non-circular such as polygonal or substantially elliptical.
エポキシ化合物とポリオレフィ ンとの反応により得られるエポキシ変性ポリォ レフイ ン (c ) を使用することで上記の海一島—湖構造が、 成形品の形状や成形 条件によらず、 安定的に形成される。 さらに分散相の分散粒径を微細化すること ができ、 変性ポリエステル樹脂 (b ) の分散相が 5 m以下の平均分散粒径で分 散し、 かつ分散する変性ポリエステル樹脂 (b ) の分散相中にエポキシ基含有ポ リオレフイ ン (b 2 ) およびエポキシ基含有ポリオレフィ ン以外のポリオレフィ ン (b 3 ) が 1 以下の平均分散粒径で分散相を形成する。 この樹脂相分離構 造により本発明の目的である特異的な耐衝擊性と耐透過性を著しく向上すること ができる。  By using an epoxy-modified polyolefin (c) obtained by the reaction of an epoxy compound and polyolefin, the above sea-island-lake structure can be formed stably irrespective of the shape of the molded article and molding conditions. You. Furthermore, the dispersed particle size of the dispersed phase can be reduced, and the dispersed phase of the modified polyester resin (b) is dispersed and dispersed at an average dispersed particle size of 5 m or less, and the dispersed phase of the modified polyester resin (b) is dispersed. The epoxy group-containing polyolefin (b 2) and the polyolefin (b 3) other than the epoxy group-containing polyolefin form a dispersed phase with an average dispersed particle size of 1 or less. With this resin phase separation structure, the specific impact resistance and permeation resistance, which are the objects of the present invention, can be significantly improved.
変性ポリエステル樹脂 (b ) の分散粒径は、 3 m以下であることがより好ま しい。 またエポキシ基含有ポリオレフイン (t» 2 ) およびエポキシ基含有ポリオ レフィ ン以外のポリオレフイン (b 3 ) の分散粒径は、 好ましくは 0 . 8〃m以 下である。 分散粒径の下限については、 特に制限はないが通常の溶融混練により 達成可能な変性ポリエステル樹脂 (b ) の分散粒径は 0 . 0 3 m程度であり、 エポキシ基含有ポリオレフイン (b 2 ) およびエポキシ基含有ポリオレフィ ン以 外のポリオレフイン (b 3 ) の分散粒径は 0. 0 1 〃m程度である。 The dispersed particle size of the modified polyester resin (b) is more preferably 3 m or less. The dispersed particle size of the epoxy group-containing polyolefin (t イ ン 2) and the polyolefin (b 3) other than the epoxy group-containing polyolefin is preferably 0.8 μm or less. The lower limit of the dispersion particle size is not particularly limited, but the dispersion particle size of the modified polyester resin (b) achievable by ordinary melt-kneading is about 0.03 m, and the epoxy group-containing polyolefin (b 2) Less than polyolefin containing epoxy group The dispersed particle size of the outer polyolefin (b 3) is about 0.01 μm.
本発明の樹脂組成物を成形して得られる成形品は、 変性 PP S樹脂 (a) が連 続相および変性ポリエステル樹脂 (b) が分散相となる相構造を一部もしくは全 体に有する。 ここで例えば変性 P P S樹脂 (a) 1 0 0重量部に対して、 変性ポ リエステル樹脂 (b) 1 0 0〜2 5 0重量部の如く、 変性 PP S樹脂 (a) 成分 が少量成分であっても溶融粘度比 (ここで、 溶融粘度比とは変性 P P S樹脂の溶 融粘度 変性ポリエステル樹脂の溶融粘度、 として定義される。 ) を適切に制御 することによって変性 P P S樹脂が連続相をとる相構造を形成する成形品を得る ことができる。  The molded product obtained by molding the resin composition of the present invention has a part or the whole of a phase structure in which the modified PPS resin (a) is a continuous phase and the modified polyester resin (b) is a dispersed phase. Here, for example, the modified PPS resin (a) is a small component, such as 100 to 250 parts by weight of the modified PPS resin (b), relative to 100 parts by weight of the modified PPS resin. By appropriately controlling the melt viscosity ratio (here, the melt viscosity ratio is defined as the melt viscosity of the modified PPS resin and the melt viscosity of the modified polyester resin), the phase in which the modified PPS resin takes a continuous phase is controlled. A molded article forming the structure can be obtained.
本発明の樹脂組成物は一般的に溶融成形により成形されるが、 溶融成形におい ては流動時の樹脂表層と樹脂内部には、 温度差や応力差が生じ易い。 本発明にお いて、 前記した相構造を得るために、 これを利用することができる。 すなわち、 変性 PP S樹脂 (a) と変性ポリエステル樹脂 (b) にせん断速度に対する溶融 粘度の依存性の異なった樹脂.を用い、 樹脂表層と樹脂内部に生じたせん断速度の 差により、 成形品の一部もしくは全体に変性 P P S樹脂 (a) が連続相となる部 分を生ぜしめる方法である。 例えば、 射出成形を例に挙げて説明すると、 ある成 形加工温度で成形するとき、 成形品の中心部と比較して、 成形品の表層部では金 型との摩擦によりせん断速度が高まる。 せん断速度 1 0 0 0秒—1程度以上の任意 のせん断速度における溶融粘度比が 0. 7以上となる組み合わせであると成形品 表層部では変性 PP S樹脂 (a) と変性ポリエステル樹脂 (b) が共に連続相と なる共連続相を形成することもあるが、 該温度におけるせん断速度 2 0 0秒—1程 度以下の任意のせん断速度での溶融粘度比を 0. 5以下とすると成形品の中心部 には変性 PP S樹脂 (a) が連続相、 変性ポリエステル樹脂 (b) が分散相とな る部分を生ぜしめることができ、 本発明の要件である、 変性 PP S樹脂 (a) が 連続相、 変性ポリエステル樹脂 (b) が分散相となる相構造を形成するための方 法として好ましく用いることができる。 また、 該成形品の形状については特に制 限はない。 また、 該成形品中前記相構造が複数形成された態様もある。 この相構 造は、 走査型および透過型電子顕微鏡を用いて観察し、 確認することができる。 本発明の樹脂組成物には機械的強度、 剛性やバリァ性を付与するために無機充 塡材を含有することができる。 その材料は特に限定されるものではないが、 繊維 状、 板状、 粉末状、 粒状などの充塡剤を使用することができる。 具体的には例え ば、 ガラス繊維、 炭素繊維、 チタン酸力リウイス力、 酸化亜鉛ウイスカ、 アルミ ナ繊維、 炭化珪素繊維、 セラミ ック繊維、 アスベス ト繊維、 石コゥ繊維、 金属繊 維などの繊維状充塡剤、 ワラステナイ ト、 セリサイ ト、 カオリ ン、 マイ力、 ク レ ―、 ベン トナイ ト、 アスベス ト、 タルク、 アルミナシリケー トなどの珪酸塩、 モ ンモリロナイ ト、 合成雲母などの膨潤性の層状珪酸塩、 アルミナ、 酸化珪素、 酸 化マグネシウム、 酸化ジルコニウム、 酸化チタン、 酸化鉄などの金属化合物、 炭 酸カルシウム、 炭酸マグネシウム、 ドロマイ トなどの炭酸塩、 硫酸カルシウム、 硫酸バリウムなどの硫酸塩、 ガラス ' ビーズ、 セラミ ヅクビーズ、 窒化ホウ素、 炭化珪素、 燐酸カルシウムおよびシリカなどの非繊維状充塡剤が挙げられ、 これ らは中空であってもよく、 さらにはこれら充塡剤を 2種類以上併用することも可 能である。 The resin composition of the present invention is generally formed by melt molding. However, in the melt molding, a temperature difference and a stress difference easily occur between the resin surface layer and the inside of the resin during flow. In the present invention, this can be used to obtain the above-mentioned phase structure. In other words, the modified PPS resin (a) and the modified polyester resin (b) use resins with different melt viscosities depending on the shear rate for the modified polyester resin (b). In this method, the modified PPS resin (a) partially or entirely forms a continuous phase. For example, taking injection molding as an example, when molding at a certain molding temperature, the shear rate increases at the surface layer of the molded product due to friction with the mold as compared with the central portion of the molded product. Shearing speed 100 seconds-If the combination is such that the melt viscosity ratio at any shearing speed of about 1 or more is 0.7 or more, the molded product surface is modified PPS resin (a) and modified polyester resin (b) May form a co-continuous phase, both of which are continuous phases. However, if the melt viscosity ratio at any shear rate of 200 seconds to about 1 or less at that temperature is 0.5 or less, the molded article The modified PPS resin (a), which is a requirement of the present invention, can form a portion where the modified PPS resin (a) becomes a continuous phase and the modified polyester resin (b) becomes a disperse phase at the center. Can be preferably used as a method for forming a phase structure in which the modified polyester resin (b) becomes a dispersed phase. There is no particular limitation on the shape of the molded article. There is also an embodiment in which a plurality of the phase structures are formed in the molded article. This phase structure can be observed and confirmed using scanning and transmission electron microscopes. The resin composition of the present invention has an inorganic filler for imparting mechanical strength, rigidity and barrier properties. 塡 material can be contained. The material is not particularly limited, but fibrous, plate-like, powder-like, and granular fillers can be used. Specifically, for example, fibers such as glass fiber, carbon fiber, titanic acid-reducing force, zinc oxide whisker, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone fiber, and metal fiber Swelling properties such as silicates such as fillers, wallastite, sericite, kaolin, myriki, cres, bentonites, asbestos, talc, alumina silicates, monmorillonite, synthetic mica Metal compounds such as layered silicate, alumina, silicon oxide, magnesium oxide, zirconium oxide, titanium oxide and iron oxide; carbonates such as calcium carbonate, magnesium carbonate and dolomite; sulfates such as calcium sulfate and barium sulfate; Glass' beads, ceramic beads, boron nitride, silicon carbide, calcium phosphate and silica Include non-fibrous charged 塡剤 of, these may be hollow, it is also possible that further a combination of these charging 塡剤 two or more.
また、 これら無機充塡材をイソシァネート系化合物、 有機シラン系化合物、 有 機チダネート系化合物、 有機ボラン系化合物、 およびエポキシ化合物などのカツ プリング剤および膨潤性の層状珪酸塩では有機化ォニゥムイオンで予備処理して 使用することは、 より優れた機械的強度、 バリヤ性を得る意味において好ましい c 前記の無機充塡剤の含有量は、 変性 P P S樹脂 (a ) および変性ポリエステル 樹脂 (b ) の合計量 1 0 0重量部に対し、 0 . 1〜 2 0 0重量部であることが好 ましい。 より好ましくは 0 . 5〜 2 0 0重量部、 特に好ましくは 1〜 1 5 0重量 部である。 In addition, these inorganic fillers are pre-treated with a coupling agent such as an isocyanate-based compound, an organic silane-based compound, an organic titanate-based compound, an organic borane-based compound, or an epoxy compound, and an organic ion for a swellable layered silicate. It is preferable to use more excellent mechanical strength and barrier property. C The content of the inorganic filler is the total amount of the modified PPS resin (a) and the modified polyester resin (b). It is preferable that the amount be 0.1 to 200 parts by weight based on 100 parts by weight. It is more preferably 0.5 to 200 parts by weight, particularly preferably 1 to 150 parts by weight.
本発明の樹脂組成物には導電性を付与するために導電性フイラ一および/また は導電性ポリマーを含有することができる。 その材料は特に限定されるものでは ないが、 導電性フイラ一として、 通常樹脂の導電化に用いられる導電性フィラー であれば特に制限は無く、 その具体例としては、 金属粉、 金属フレーク、 金属リ ボン、 金属繊維、 金属酸化物、 導電性物質で被覆された無機フィラー、 カーボン 粉末、 黒鉛、 炭素繊維、 カーボンフレーク、 鱗片状カーボンなどが挙げられる。 金属粉、 金属フレーク、 金属リボンの金属種の具体例としては銀、 ニッケル、 銅、 亜鉛、 アルミニウム、 ステンレス、 鉄、 黄銅、 クロム、 錫などが例示できる 金属繊維の金属種の具体例としては鉄、 銅、 ステンレス、 アルミニウム、 黄銅 などが例示できる。 The resin composition of the present invention may contain a conductive filler and / or a conductive polymer for imparting conductivity. The material is not particularly limited, but the conductive filler is not particularly limited as long as it is a conductive filler that is generally used for making a resin conductive. Specific examples thereof include metal powder, metal flake, and metal. Examples of the filler include carbon, inorganic filler coated with a conductive material, carbon powder, graphite, carbon fiber, carbon flake, and flaky carbon. Specific examples of metal types of metal powder, metal flakes, and metal ribbons include silver, nickel, copper, zinc, aluminum, stainless steel, iron, brass, chromium, and tin. Specific examples of the metal type of the metal fiber include iron, copper, stainless steel, aluminum, brass and the like.
かかる金属粉、 金属フレーク、 金属リポン、 金属繊維はチタネート系、 アルミ 系、 シラン系などの表面処理剤で表面処理を施されていてもよい。  Such metal powder, metal flakes, metal repons, and metal fibers may be subjected to a surface treatment with a surface treating agent such as a titanate, aluminum, or silane.
金属酸化物の具体例としては S n 0 2 (アンチモン ド一プ) 、 I n 20 3 (アン チモン ド一プ) 、 Z n O (アルミニウムドープ) などが例示でき、 これらはチタ ネート系、 アルミ系、 シラン系カップリング剤などの表面処理剤で表面処理を施 されていてもよい。 S n 0 2 Specific examples of the metal oxides (antimony de one-flop), I n 2 0 3 (antimony de one-flop), Z n O (aluminum-doped) and the like can be exemplified, they titanate system, Surface treatment may be performed with a surface treatment agent such as an aluminum-based or silane-based coupling agent.
導電性物質で被覆された無機フイラ一における導電性物質の具体例としてはァ ノレミニゥム、 ニッケル、 銀、 カーボン、 S n 0 2 (アンチモンドープ) 、 I n 2 0 (アンチモンドープ) などが例示できる。 また被覆される無機フイラ一として は、 マイ力、 ガラスビーズ、 ガラス繊維、 炭素繊維、 チタン酸カリウムウイスカ 一、 硫酸バリウム、 酸化亜鉛、 酸化チタン、 ホウ酸アルミニウムゥイスカー、 酸 化亜鉛系ゥイスカー、 チタン酸系ゥイスカー、 炭化珪素ウイスカーなどが例示で きる。 被覆方法としては真空蒸着法、 スパッタリング法、 無電解メツキ法、 焼き 付け法などが挙げられる。 またこれらはチタネート系、 アルミ系、 シラン系カツ プリング剤などの表面処理剤で表面処理を施されていてもよい。 Conductive material coated with an inorganic FILLER § Specific examples of the conductive material in one Noreminiumu, nickel, silver, carbon, S n 0 2 (doped with antimony), I n 2 0 such as (antimony-doped) can be exemplified. Inorganic fillers to be coated include: My power, glass beads, glass fiber, carbon fiber, potassium titanate whisker, barium sulfate, zinc oxide, titanium oxide, aluminum borate whiskers, zinc oxide whiskers, Examples include titanic acid whiskers and silicon carbide whiskers. Examples of the coating method include a vacuum deposition method, a sputtering method, an electroless plating method, and a baking method. These may be surface-treated with a surface treating agent such as a titanate-based, aluminum-based, or silane-based coupling agent.
カーボン粉末はその原料、 製造法からアセチレンブラック、 ガスブラック、 ォ ィルブラック、 ナフタリンブラック、 サーマルブラック、 ファーネスブラック、 ランプブラック、 チャンネルブラック、 ロールブラック、 ディスクブラックなど に分類される。 本発明で用いることのできるカーボン粉末は、 その原料、 製造法 は特に限定されないが、 アセチレンブラック、 ファーネスブラックが特に好適に 用いられる。 またカーボン粉末は、 その粒子径、 表面積、 D B P吸油量、 灰分な どの特性の異なる種々のカーボン粉末が製造されている。 本発明で用いることの できるカーボン粉末は、 これら特性に特に制限は無いが、 強度、 電気伝導度のバ ランスの点から、 平均粒径が好ましく 5 0 0 n m以下、 更に好ましくは 5〜 1 0 0 n m、 特に好ましくは 1 0〜 7 0 n mである。 また比表面積 (B E T法) は 1 0 m 2 ノ g以上、 更には 3 0 m 2 以上が好ましい。 また D B P給油量は 5 0 m 1 / 1 0 0 g以上、 特に 1 0 0 m 1 / 1 0 0 g以上が好ましい。 また灰分は 0 . 5重量%以下、 特に 0 . 3重量%以下が好ましい。 Carbon powder is classified into acetylene black, gas black, oil black, naphthalene black, thermal black, furnace black, lamp black, channel black, roll black, disk black, etc. according to its raw material and production method. The raw material and production method of the carbon powder that can be used in the present invention are not particularly limited, but acetylene black and furnace black are particularly preferably used. Various carbon powders with different properties such as particle diameter, surface area, DBP oil absorption, and ash are manufactured. The carbon powder that can be used in the present invention is not particularly limited in these characteristics, but from the viewpoint of balance between strength and electric conductivity, the average particle size is preferably 500 nm or less, and more preferably 5 to 10 nm. 0 nm, particularly preferably 10 to 70 nm. The specific surface area (BET method) 1 0 m 2 Roh g or more, more 3 0 m 2 or more. The DBP refueling amount is preferably at least 500 m1 / 100 g, particularly preferably at least 100 m1 / 100 g. The ash content is 0. It is preferably at most 5% by weight, particularly preferably at most 0.3% by weight.
かかるカーボン粉末はチタネート系、 アルミ系、 シラン系などの表面処理剤で 表面処理を施されていても良い。 また溶融混練作業性を向上させるために造粒さ れたものを用いることも可能である。  Such a carbon powder may be subjected to a surface treatment with a surface treating agent such as a titanate, aluminum, or silane. It is also possible to use a granulated material to improve the workability of melt-kneading.
本発明の樹脂組成物を加工して得られた成形品は、 しばしば表面の平滑性が求 められる。 かかる観点から、 本発明で用いられる導電性フイラ一は、 本発明で用 いられる無機充塡材同様、 高いァスぺク ト比を有する繊維状フイラ一よりも、 粉 状、 粒状、 板状、 鱗片状、 或いは樹脂組成物中の長さノ直径比が 2 0 0以下の繊 維状のいずれかの形態であることが好ましい。  Molded articles obtained by processing the resin composition of the present invention often require surface smoothness. From such a viewpoint, the conductive filler used in the present invention, like the inorganic filler used in the present invention, is more powdery, granular, and plate-like than the fibrous filler having a high aspect ratio. It is preferably in any of a scaly shape or a fibrous shape having a length-to-diameter ratio of 200 or less in the resin composition.
導電性ポリマーの具体例としては、 ポリア二リ ン、 ポリ ピロール、 ポリアセチ レン、 ポリ (パラフヱニレン) 、 ポリチォフェン、 ポリフエ二レンビニレンなど が例示できる。 ^  Specific examples of the conductive polymer include poly (arylene), polypyrrole, polyacetylene, poly (paraphenylene), polythiophene, and polyphenylenevinylene. ^
前記導電性フィラーおよびノまたは導電性ポリマーは、 2種以上を併用して用 いても良い。 かかる導電性フィラー、 導電性ポリマーの中で、 特に力一ボンブラ ックが強度、 経済性の点で特に好適に用いられる。  The conductive filler and the conductive polymer or the conductive polymer may be used in combination of two or more. Among such conductive fillers and conductive polymers, particularly strong black is preferably used in view of strength and economy.
本発明で用いられる導電性フィラーおよび Zまたは導電性ポリマーの含有量は、 用いる導電性フィラーおよび//または導電性ポリマーの種類により異なるため、 一概に規定はできないが、 導電性と流動性、 '機械的強度などとのバランスの点か ら、 (a ) および (b ) 成分の合計 1 0 0重量部に対し、 1〜 2 5 0重量部、 好 ましくは 3〜 1 0 0重量部の範囲が好ましく選択される。 また、 更に好ましくは ( a ) 成分と (b ) 成分の合計 1 0 0重量部に対し、 3〜 1 0 0重量部の範囲が 導電性機能を付与するために好ましく選択される。  Since the content of the conductive filler and Z or the conductive polymer used in the present invention varies depending on the type of the conductive filler and / or the conductive polymer used, it cannot be specified unconditionally. From the viewpoint of balance with mechanical strength, etc., 1 to 250 parts by weight, preferably 3 to 100 parts by weight, of the total of 100 parts by weight of the components (a) and (b) is used. A range is preferably selected. More preferably, the range of 3 to 100 parts by weight is preferably selected for imparting a conductive function to the total of 100 parts by weight of the components (a) and (b).
また導電性を付与した場合、 十分な帯電防止性能を得る意味で、 その体積固有 抵抗が 1 0 ' ° Ω · c m以下であることが好ましい。 但し前記導電性フイラ一、 導 電性ポリマーの配合は一般に強度、 流動性の悪化を招きやすい。 そのため目標と する導電レベルが得られれば、 前記導電性フィラー、 導電性ポリマーの配合量は できるだけ少ない方が望ましい。 目標とする導電レベルは用途によって異なるが、 通常体積固有抵抗が 1 0 0 Ω · c mを越え、 1 0 ' ° Ω · c m以下の範囲である。 本発明における樹脂組成物中には本発明の効果を損なわない範囲で他の成分、 例えば酸化防止剤や耐熱安定剤 (ヒンダードフエノール系、 ヒ ドロキノン系、 ホ スフアイ ト系およびこれらの置換体等) 、 耐候剤 (レゾルシノール系、 サリシレ ート系、 ベンゾトリァゾール系、 ベンゾフヱノン系、 ヒンダ一ドアミン系等) 、 離型剤および滑剤 (モンタン酸およびその金属塩、 そのエステル、 そのハーフエ ステル、 ステアリルアルコール、 ステアラ ミ ド、 各種ビスアミ ド、 ビス尿素およ びポリエチレンワックス等) 、 顔料 (硫化力 ドミゥム、 フタロシアニン、 カーボ ンブラック等) 、 染料 (ニグ口シン等) 、 結晶核剤 (タルク、 シリカ、 力オリン、 ク レー等) 、 可塑剤 (p —ォキシ安息香酸ォクチル、 N—ブチルベンゼンスルホ ンアミ ド等) 、 帯電防止剤 (アルキルサルフェート型ァニオン系帯電防止剤、 4 級アンモニゥム塩型カチオン系帯電防止剤、 ポリオキシエチレンソルビタンモノ ステアレートのような非イオン系帯電防止剤、 ベタイン系両性帯電防止剤等) 、 難燃剤 (例えば、 赤燐、 メラミ ンシァヌレート、 水酸化マグネシウム、 水酸化ァ ルミニゥム等の水酸化物、 ポリ リン酸アンモニゥム、 臭素化ポリスチレン、 臭素 化ポリフヱニレンエーテル、 臭素化ポリカーボネート、 臭素化エポキシ樹脂ある いはこれらの臭素系難燃剤と三酸化アンチモンとの組み合わせ等) 、 他の重合体 を添加することができる。 When conductivity is imparted, the volume resistivity is preferably 10 '° Ω · cm or less from the viewpoint of obtaining sufficient antistatic performance. However, the compounding of the conductive filler and the conductive polymer generally tends to cause deterioration in strength and fluidity. Therefore, if the target conductivity level can be obtained, it is desirable that the blending amounts of the conductive filler and the conductive polymer be as small as possible. The target conductivity level depends on the application, but usually the volume resistivity is in the range of more than 100 Ω · cm and less than 100 ′ ° Ω · cm. Other components in the resin composition of the present invention within a range that does not impair the effects of the present invention, For example, antioxidants, heat stabilizers (hindered phenols, hydroquinones, phosphites and their substitutes), weathering agents (resorcinols, salicylates, benzotriazoles, benzophenones, hinders) Release agents and lubricants (montanic acid and its metal salts, esters, half esters, stearyl alcohol, stearamide, various bisamides, bisurea, polyethylene wax, etc.), pigments (sulfided Power dough, phthalocyanine, carbon black, etc.), dyes (Nig mouth, etc.), crystal nucleating agents (talc, silica, power ol, crepe, etc.), plasticizers (p-oxybenzoyl octyl, N-butylbenzene sulfo) Amide, etc.), antistatic agent (alkyl sulfate type anio) Antistatic agents, quaternary ammonium salt type cationic antistatic agents, nonionic antistatic agents such as polyoxyethylene sorbitan monostearate, betaine amphoteric antistatic agents, etc., flame retardants (for example, red phosphorus, Hydroxides such as melamine cyanurate, magnesium hydroxide, and aluminum hydroxide, ammonium polyphosphate, brominated polystyrene, brominated polyphenylene ether, brominated polycarbonate, brominated epoxy resin, and brominated flame retardants of these And antimony trioxide, etc.) and other polymers can be added.
本発明の樹脂組成物を得る方法としては、 本発明が要件が満たされる限り、 特 に制限はないが、 溶融混練において、 好ましい相構造を実現するためには、 たと えば 2軸押出機で溶融混練する場合にメインフィーダ一から予め溶融混練された 変性 P P S樹脂 (a ) と変性ポリエステル樹脂 (b ) およびエポキシ化合物とポ リオレフィンとの反応により得られるエポキシ変性ポリオレフィン (c ) を供給 する方法、 メインフィーダ一から P P S ( a 1 ) およびエポキシ基含有ポリオレ フィ ン (a 2 ) を供給、 溶融混練し、 変性ポリエステル樹脂 (b ) およびェポキ シ化合物とポリオレフィンとの反応により得られるエポキシ変性ポリオレフイ ン ( c ) を押出機の先端部分のサイ ドフィーダ一から供給する方法、 メインフィー ダ一からポリエステル (b 1 ) 、 エポキシ基含有ポリオレフイン (b 2 ) 、 およ びエポキシ基含有ポリオレフィン以外のポリオレフィ ン (b 3 ) を供給、 溶融混 練し、 変性 P P S樹脂 (a ) およびエポキシ化合物とポリオレフイ ンとの反応に より得られるエポキシ変性ポリオレフイン (c ) を押出機の先端部分のサイ ドフ ィーダ一から供給する方法などが挙げられる。 溶融混練した後、 ストランド状に して冷却バスにより冷却、 ス トランド力ッター.によりペレツ ト化をした。 The method for obtaining the resin composition of the present invention is not particularly limited as long as the present invention satisfies the requirements.In order to achieve a preferable phase structure in melt-kneading, for example, a twin-screw extruder is used. A method in which, when kneading, a modified PPS resin (a) and a modified polyester resin (b) previously melt-kneaded and an epoxy-modified polyolefin (c) obtained by reacting an epoxy compound with a polyolefin are supplied from a main feeder; The PPS (a1) and the epoxy group-containing polyolefin (a2) are supplied from the main feeder, melt-kneaded, and the modified polyester resin (b) and the epoxy-modified polyolefin obtained by reacting the epoxy compound with the polyolefin ( c) from the side feeder at the extruder tip, polyester from the main feeder b 1), epoxy group-containing polyolefin (b 2), and polyolefin (b 3) other than epoxy group-containing polyolefin are supplied, melt-kneaded, and modified PPS resin (a) and the mixture of epoxy compound and polyolefin. The epoxy-modified polyolefin (c) obtained by the reaction is transferred to the side fin of the extruder. For example, there is a method of supplying from a feeder. After melt-kneading, the mixture was formed into strands, cooled with a cooling bath, and pelletized with a strand force.
本発明の樹脂組成物の成形方法は、 従来公知の方法 (射出成形、 押出成形、 吹 込成形、 プレス成形等) を採用することができる。 その中で射出成形、 射出圧縮 成形、 圧縮成形から選ばれた方法を採用することが、 成形品の低吸水性および耐 透過性向上の観点から好ましい。 また、 成形温度については、 通常、 P P Sの融 点より 5〜 5 0 °C高い温度範囲から選択される。  As a method for molding the resin composition of the present invention, conventionally known methods (such as injection molding, extrusion molding, blow molding, and press molding) can be employed. Among them, it is preferable to adopt a method selected from injection molding, injection compression molding and compression molding from the viewpoints of low water absorption and improvement of permeation resistance of the molded article. The molding temperature is usually selected from a temperature range 5 to 50 ° C higher than the melting point of PPS.
成形品の構造は、 一般的には単層であるが、 2色射出成形法や共押出成形法な どの方法により多層構造体としてもかまわない。 ここで多層構造体とは、 本発明 の樹脂組成物からなる層を少なくとも一つもつ構造体を言う。 各層の配置につい ては特に制限はなく、 全ての層を本発明の樹脂組成物で構成してもよいし、 他の 層にその他の熱可塑性樹脂で構成してもよい。  The structure of the molded product is generally a single layer, but may be a multilayer structure by a method such as a two-color injection molding method or a co-extrusion molding method. Here, the multilayer structure refers to a structure having at least one layer made of the resin composition of the present invention. The arrangement of each layer is not particularly limited, and all the layers may be composed of the resin composition of the present invention, or the other layers may be composed of another thermoplastic resin.
このような多層構造体は、 2色射出成形法などによっても製造し得る。 フィル ム状またはシート状として得る場合は各々の層を形成する組成物を別個の押出機 で溶融した後、 多層構造のダイに供給し、 共押出成形する方法、 予め他の層を成 形した後、.本発明の樹脂組成物からなる層を溶融押出するいわゆるラミネート成 形法などにより製造することができる。 積層構造体の形状が瓶、 樽、 タンクなど の中空容器やパイプ、 チューブなどの管状体である場合は、 通常の共押出成形法 を採用することができ、 例えば内層を本発明の樹脂組成物からなる層、 外層を他 の樹脂層で形成する 2層中空成形体の場合、 2台の押出機へ、 前記樹脂組成物と 他の樹脂とを別々に供給し、 これら 2種の溶融樹脂を共通のダイ内に圧力供給し て、 各々環状の流れとなした後、 樹脂組成物からなる層を内層側に、 他の樹脂層 を外層側になるように合流させ、 ついで、 ダイ外へ共押出して、 通常公知のチュ ーブ成形法、 ブロー成形法などを行うことにより、 2層中空成形体を得ることが できる。 また、 3層中空成形体の場合には、 3台の押出機を用いて前記と同様の 方法にて 3層構造にするか、 または 2台の押出機を用いて 2種 3層構造の中空成 形体を得ることも可能である。 これらの方法の中では眉間接着力の点で共押出成 形法を用いて成形することが好ましい。  Such a multilayer structure can also be manufactured by a two-color injection molding method or the like. In the case of obtaining a film or sheet, the composition forming each layer is melted by a separate extruder, and then fed to a multi-layered die, co-extrusion molding, another layer is formed in advance Thereafter, it can be produced by a so-called lamination molding method in which a layer comprising the resin composition of the present invention is melt-extruded. When the shape of the laminated structure is a hollow container such as a bottle, a barrel, or a tank, or a tubular body such as a pipe or a tube, an ordinary co-extrusion molding method can be employed. For example, the inner layer is formed of the resin composition of the present invention. In the case of a two-layer hollow molded body in which the outer layer and the outer layer are formed of other resin layers, the resin composition and the other resin are separately supplied to two extruders, and these two types of molten resins are supplied. After pressure is supplied into the common die to form an annular flow, the resin composition layer is joined to the inner layer side and the other resin layer is joined to the outer layer side, and then the resin composition is shared outside the die. The two-layer hollow molded body can be obtained by extruding and performing a generally known tube molding method, blow molding method, or the like. In the case of a three-layer hollow molded body, a three-layer structure is formed by the same method as described above using three extruders, or a two-layer three-layer hollow structure is formed using two extruders. It is also possible to obtain molded objects. Among these methods, it is preferable to form using a co-extrusion molding method from the viewpoint of the eyebrow adhesive strength.
他の層として用いられる熱可塑性樹脂としては、 飽和ポリエステル、 ポリスル ホン、 四フッ化ポリエチレン、 ポリエーテルイミ ド、 ポリアミ ドイミ ド、 ポリア ミ ド、 ポリケトン共重合体、 ポリフエ二レンエーテル、 ポリイミ ド、 ポリェ一テ ルスルホン、 ポリエーテルケトン、 ポリチォエーテルケトン、 ポリエーテルエー テルケトン、 熱可塑性ポリウレタン、 ポリオレフイン、 A B S、 ポリアミ ドエラ ストマ、 ポリエステルエラストマ一などが例示でき、 これらの混合物としたり各 種添加剤を添加して用いることもできる。 The thermoplastic resin used as another layer includes saturated polyester, polysulfur Hong, polyethylene tetrafluoride, polyether imide, polyamide imid, polyamide, polyketone copolymer, polyphenylene ether, polyimide, polyester sulfone, polyether ketone, polythioether ketone, polyether a Examples thereof include terketone, thermoplastic polyurethane, polyolefin, ABS, polyamide elastomer, polyester elastomer, and the like. These may be used as a mixture thereof or with various additives added thereto.
本発明の樹脂組成物を成形して得られる成形品は、 例えば、 フロン一 1 1、 フ ロン一 1 2、 フロン一 2 1、 フロン一 2 2、 フロン一 1 1 3、 フロン一 1 1 4、 フロン一 1 1 5、 フロン一 1 3 4 a、 フロン一 3 2、 フロン一 1 2 3、 フロン一 1 2 4、 フロン一 1 2 5、 フロン一 1 4 3 a、 フロン一 1 4 1 b、 フロン _ 1 4 2 b、 フロン一 2 2 5、 フロン一 C 3 1 8、 R— 5 0 2、 1 , 1, 1 — トリクロ ロェタン、 塩化メチル、 塩化メチレン、 塩化工チル、 メチルクロ口ホルム、 プロ パン、 イソブタン、 n—ブタン、 ジメチルエーテル、 ひまし油ベースのブレーキ 液、 グリコールエーテル系ブレーキ液、 ホウ酸エステル系ブレーキ液、 極寒地用 ブレーキ液、 シリコーン油系ブレーキ.液、 鉱油系ブレーキ液、 パワースァリ リン グオイル、 ウィンドウォッシャ液、 ガソリン、 メタノール、 エタノール、 イソプ タノール、 ブタノール、 窒素、 酸素、 水素、 二酸化炭素、 メタン、 プロパン、 天 然ガス、 アルゴン、 ヘリウム、 キセノン、 医薬剤等の気体および Zまたは液体あ るいは気化ガス等の透過性が低く優れていることから、 オイル用リザ一バータン ク、 その他シャンプー、 リ ンス、 液体石鹼等の各種薬剤用ボトルおよび付属ボン プなどの薬液保存容器またはその付属部品、 各種オイルチューブ接続部品、 ブレ ーキホース接続部品、 ウィンドウォッシャー液用ノズル、 冷却水、 冷媒等用クー ラーホース接続用部品、 エアコン冷媒用チューブ接続用部品、 消火器および消火 設備用ホース、 医療用冷却機材用チューブの接続用部品およびバルブ類、 その他 薬液およびガス搬送用チューブ用途、 薬品保存用容器等の薬液および耐ガス透過 性が必要とされる用途、 自動車部品、 内燃機関用途、 電動工具ハウジング類など の機械部品を始め、 電気,電子部品、 医療、 食品、 家庭 ·事務用品、 建材関係部 品、 家具用部品など各種用途に有効である。  Molded articles obtained by molding the resin composition of the present invention include, for example, chlorofluorocarbon 11, fluorocarbon 12, fluorocarbon 21, fluorocarbon 22, fluorocarbon 11, fluorocarbon 11 4 , CFC 1 1 5, CFC 1 3 4a, CFC 1 3 2, CFC 1 2 3, CFC 1 2 4, CFC 1 2 5, CFC 1 4 3a, CFC 1 4 1b , Chlorofluorocarbon _ 14 2 b, fluorocarbon 225, fluorocarbon C 3 18, R—502, 1, 1, 1 — trichloroethane, methyl chloride, methylene chloride, chlorinated methyl, methylchloroform, Propane, isobutane, n-butane, dimethyl ether, castor oil based brake fluid, glycol ether based brake fluid, borate ester based brake fluid, brake fluid for extreme cold regions, silicone oil based brake fluid, mineral oil based brake fluid, power sariline G oil, window washer fluid, Gases such as gasoline, methanol, ethanol, isobutanol, butanol, nitrogen, oxygen, hydrogen, carbon dioxide, methane, propane, natural gas, argon, helium, xenon, pharmaceutical agents, and Z or liquid or vaporized gas Due to its low permeability and excellent properties, reservoir tanks for oils and other chemical storage containers such as shampoos, rinses, liquid stones, etc. Parts, brake hose connection parts, window washer liquid nozzles, cooling water, refrigerant hose connection parts, air conditioner refrigerant tube connection parts, fire extinguishers and fire extinguishing equipment hoses, medical cooling equipment tube connections Parts and valves, other chemicals and gas transport tubes Applications, such as chemicals and gas storage resistance, such as containers for chemicals, containers for storing chemicals, automotive parts, internal combustion engines, and mechanical parts such as power tool housings, electrical and electronic parts, medical care, food, and households. · Effective for various uses such as office supplies, building materials-related parts, and furniture parts.
実 施 例 以下、 実施例を挙げて本発明を詳細に説明するが、 本発明の骨子は以下の実施 例にのみ限定されるものではない。 まず、 本発明に係る樹脂組成物の評価に用い た特性について説明する。 Example Hereinafter, the present invention will be described in detail with reference to examples, but the gist of the present invention is not limited to the following examples. First, characteristics used for evaluation of the resin composition according to the present invention will be described.
( 1 ) アルコール透過性  (1) Alcohol permeability
直径 6 O mm、 深さ 5 c mのアルミ製容器にメタノールを 2 0 g精秤し、 射出 成形により調整した 1 mm厚角扳試験片により密封し、 漏れのないようにボルト で固定した。 その後、 全体の重量を測定し、 試験容器を 6 0 °Cの防爆型オーブン にいれ、 5 0 0時間おき、 その後減量した重量を測定した。  20 g of methanol was precisely weighed in an aluminum container having a diameter of 6 O mm and a depth of 5 cm, sealed with a 1 mm thick square test piece adjusted by injection molding, and fixed with bolts so as not to leak. Thereafter, the entire weight was measured, and the test container was placed in an explosion-proof oven at 60 ° C., every 500 hours, and then the reduced weight was measured.
(2) 吸湿時のアルコール透過性  (2) Alcohol permeability when absorbing moisture
上記 ( 1 ) と同様にメタノールを充塡した試験容器を温度 6 0 °C、 相対湿度 6 5 %の恒温恒湿器中で 5 0 0時間処理し、 減量した重量を測定した。  The test container filled with methanol was treated in a thermo-hygrostat at a temperature of 60 ° C. and a relative humidity of 65% for 500 hours in the same manner as in the above (1), and the reduced weight was measured.
(3) アルコールの吸液性  (3) Absorbency of alcohol
射出成形によりにより調製した AS TM 1号引張試験片 (厚さ 1 /8インチ) をォートクレーブ中でメタノ一ルに浸漬後、 6 0 °Cの防爆型オーブンに入れ 2 4 時間処理した。 吸液性は成形直後の絶対乾燥時 (絶乾時) に測定した重量とアル コール吸液処理後に測定した重量の比から吸液時重量増加率として求めた。 吸液率 (%) = { (吸液後の重量一絶乾時の重量) /絶乾時の重量) X 1 0 0 ASTM No. 1 tensile test specimen (thickness: 1/8 inch) prepared by injection molding was immersed in methanol in an autoclave, and placed in an explosion-proof oven at 60 ° C. for 24 hours. The liquid absorbency was determined as the weight increase during liquid absorption from the ratio of the weight measured at the time of absolute drying (at the time of absolute drying) immediately after molding and the weight measured after the alcohol liquid absorption treatment. Liquid absorption rate (%) = {(weight after liquid absorption-weight when absolutely dry) / weight when absolutely dry) X100
(4) アルコールガソ リ ンの吸液性 (4) Absorbency of alcohol gasoline
射出成形によりにより調製した AS TM 1号引張試験片 (厚さ 1 /8インチ) をォ一トクレーブ中でモデルガソリン (トルエン/ ィソオクタン = 5 0 / / 5 0体積%) とエタノールを 9 0対 1 0重量比に混合したアルコールガソリンに浸 漬後、 6 0 °Cの,防爆型オーブンに入れ 2 4時間処理した。 吸液性は成形直後の絶 対乾燥時 (絶乾時) に測定した重量とアルコールガソリン吸液処理後に測定した 重量の比から吸液時重量増加率として求めた。  ASTM No. 1 tensile test specimen (thickness: 1/8 inch) prepared by injection molding was mixed in a autoclave with model gasoline (toluene / isooctane = 50 // 50% by volume) and ethanol at 90: 1. After being immersed in alcohol gasoline mixed at 0 weight ratio, it was placed in an explosion-proof oven at 60 ° C and treated for 24 hours. The liquid absorbency was determined as the weight increase rate during liquid absorption from the ratio of the weight measured immediately after molding to the absolute dry state (at the absolute dry time) and the weight measured after the alcohol gasoline liquid absorption treatment.
吸液率 (%) = { (吸液後の重量—絶乾時の重量) Z絶乾時の重量) X 1 0 0Liquid absorption rate (%) = {(weight after liquid absorption—weight when absolutely dry) Z Weight when absolutely dry) X 100
(5) 材料強度 (5) Material strength
以下の標準方法に従って測定した。  It was measured according to the following standard method.
引張強度: A S TM D 6 3 8に記載された方法に従って測定した。 Tensile strength: Measured according to the method described in ASTM D638.
アイゾッ ド ( I z 0 d) 衝撃強度: A S TM D 2 5 6 (温度雰囲気 2 3 °C) に 記載された方法に従って測定した。 Izod (Iz0d) Impact strength: ASTM D256 (temperature 23 ° C) Measured according to the method described.
低温衝撃強度:温度雰囲気を一 4 0 °Cにした以外は A S TM D 2 5 6にしたが つて測定したアイゾッ ド衝撃強度。 Low temperature impact strength: Izod impact strength measured according to ASTM D256 except that the temperature atmosphere was 140 ° C.
(6 ) 相分離構造、 分散形態の観察 - A STM 1号試験片の厚さ方向に表面より 0. 1〜0. 3 mm部分 (表層部) と 1. 4〜 1. 8 mm部分 (中心部) を TEM (日立製作所製 H— 7 1 0 0形透 過形電子顕微鏡) または S EM (日立製作所製 S— 2 1 0 O A形走査電子顕微 鏡) を用いて観察を行なった。  (6) Observation of phase separation structure and dispersion morphology-0.1 to 0.3 mm part (surface layer) and 1.4 to 1.8 mm part (center) from the surface in the thickness direction of A STM No. 1 test piece Were observed using a TEM (H-7100 transmission electron microscope manufactured by Hitachi, Ltd.) or SEM (S210A OA scanning electron microscope manufactured by Hitachi, Ltd.).
( 7 ) 溶融粘度比  (7) Melt viscosity ratio
, プランジャー式キヤピラリーレオメーター (東洋精機製作所社製、 キヤピログ ラフ タイプ 1 C) を用いて、 混練温度でのせん断速度 1 0 0秒—1および 5 0 0 0秒—1における溶融粘度 (P a ' s) を測定し下記式 ( 1 ) により求めた。 (式 1 ) Using a plunger-type capillary rheometer (capillary graph type 1C, manufactured by Toyo Seiki Seisaku-Sho, Ltd.), the melt viscosities at the kneading temperature of 100 seconds- 1 and 500 seconds- 1 (P a's) was measured and determined by the following equation (1). (Equation 1)
[変性ポリフエ二レンスルフイド樹脂の溶融粘度] 溶融粘度比 =· (1) [Melt viscosity of modified polyphenylene sulfide resin] Melt viscosity ratio = · (1)
[変性ポリエステル樹脂の溶融粘度]  [Melt viscosity of modified polyester resin]
(8) 分散相の分散粒径 (8) Dispersion phase dispersion particle size
ASTM 1号試験片の厚さ方向より 1. 4〜 1. 8 mm部分 (中心部) を TE M (倍率 1万倍) を用いて観察し、 任意の分散相を 1 0 0個選び、 それぞれの最 大径と最小径の平均値をとり、 数平均値として求めた。  The 1.4-1.8 mm portion (center) from the thickness direction of the ASTM No. 1 test piece was observed using TEM (magnification: 10,000 times), and 100 arbitrary disperse phases were selected. The average value of the maximum diameter and the minimum diameter was calculated as a number average value.
実施例および比較例で使用した変性 P P S樹脂および変性ポリエステル樹脂は 以下のとおり。 なお、 特に断らない限りはいずれも常法に従い重合を行い、 調製 した。  The modified PPS resin and modified polyester resin used in Examples and Comparative Examples are as follows. In addition, unless otherwise noted, polymerization was carried out in accordance with a conventional method.
[参考例 1 ] p—フヱニレンスルフイ ド Zm—フヱニレンスルフイ ド共重合体 の製造  [Reference Example 1] Production of p-phenylene sulfide Zm-phenylene sulfide copolymer
撹拌機付きのォートクレーブに、 4 7 %水硫化ナトリウム水溶液 (三協化成) 2. 9 8 k g (2 5モル) 、 9 6 %水酸化ナ トリウム 1. 0 6 k g (2 5. 4 4 モル) 、 N—メチル一 2—ピロリ ドン (NMP) 4. 0 8 k g (4 1. 2 1モ ル) 、 酢酸ナ トリウム 0. 6 9 k g (8. 4 1モル) 、 及びィォン交換水 3. 7 5 k gを仕込み、 常圧で窒素を通じながら 2 2 5 °Cまで約 3時間かけて徐々に加 熱し、 水 5. 2 5 k gぉょびNMP 0. 1 k gを留出したのち、 反応容器を 1 5 0 °Cに冷却した。 硫化水素の飛散量は 1. 8モル%であった。 In an autoclave with a stirrer, add 47% aqueous sodium hydrosulfide solution (Sankyo Kasei) 2.98 kg (25 mol), 96% sodium hydroxide 1.06 kg (25.44 mol) N-methyl-1-pyrrolidone (NMP) 4.0 kg (4.12 ), 0.69 kg (8.41 mol) of sodium acetate, and 3.75 kg of ion-exchanged water, and gradually increase the temperature to 225 ° C over about 3 hours while passing nitrogen at normal pressure. After heating and distilling 5.25 kg of water and 0.1 kg of NMP, the reaction vessel was cooled to 150 ° C. The amount of hydrogen sulfide scattered was 1.8 mol%.
次に、 p—ジクロロベンゼン (シグマアルドリ ッチ) 3. 3 6 k (2 2. 8 6モル) 、 m—ジクロロベンゼン (東京化成) 0. 3 6 k g (2. 4 5モル) 、 NMP 3. 2 8 k (3 3. 1モル) を加え、 反応容器を窒素ガス下に密封し、 Next, p-dichlorobenzene (Sigma Aldrich) 3.36 k (2.86 mol), m-dichlorobenzene (Tokyo Kasei) 0.36 kg (2.45 mol), NMP 3. 28 k (33.1 mol) was added, the reaction vessel was sealed under nitrogen gas,
4 0 0 r pmで撹拌しながら、 2 2 7 °。まで0. 8 °C "分の速度で昇温し、 その 後 2 7 0 °Cまで 0. 6 °CZ分の速度で昇温し 2 7 0でで 1 7 0分保持した。 その 後 1 8 0 °Cまで 0. 4で 分の速度で冷却し、 その後室温近傍まで急冷した。 内容物を取り出し、 1 2. 5 リッ トルの NMPで希釈後、 溶剤と固形物をふる い (8 O m e s h) で濾別し、 得られた粒子を 2 5 リッ トルの温水で数回洗浄、 濾別し、 P P Sポリマー粒子を得た。 これを、 8 0 °Cで熱風乾璨し、 1 2 0 °Cで 減圧乾燥して約 2. 2 K gの p—フヱニレンスルフィ ド m—フヱニレンスルフ ィ ド共重合体を得た。 227 ° while stirring at 400 rpm. The temperature was raised at a rate of 0.8 ° C "min. Until then, and then the temperature was raised at a rate of 0.6 ° CZ up to 270 ° C and held at 270 for 170 min. Cooled to 80 ° C at a rate of 0.4 min, then quenched to near room temperature Remove the contents, dilute with 12.5 liters of NMP, sieve solvent and solids (8 O The resulting particles were washed several times with 25 liters of warm water and filtered to obtain PPS polymer particles, which were dried with hot air at 80 ° C and dried at 120 ° C. It was dried under reduced pressure at ° C to obtain about 2.2 kg of p-phenylene sulfide m-phenylene sulfide copolymer.
得られた P—フヱニレンスルフィ ド Zm—フヱニレンスルフィ ド共重合体の融 点は 2 4 8 °C、 メルトフローレー ト 3 5 0 g/ 1 0分 (以下 MF Rと略す: 3 1 The obtained P-phenylene sulfide Zm-phenylene sulfide copolymer has a melting point of 248 ° C and a melt flow rate of 350 g / 10 minutes (hereinafter abbreviated as MFR). : 3 1
5 °C、 荷重 5 kg) であった。 5 ° C, load 5 kg).
[参考例 2] 変性 PP S樹脂 (a) の製造  [Reference Example 2] Production of modified PP S resin (a)
(A— 1 ) :融点 2 8 0 °C、 MFR 2 0 0 g / 1 0分 ( 3 1 5 °C、 5 k g荷重) 、 溶融粘度 1 5 0 P a ' s (3 2 0 °C、 剪断速度 1 0 0 0 s e c—1) のポリフヱニ レンスルフィ ド樹脂 1 0 0重量部に対して、 MF R 3 1 0分 ( 1 9 0。C、 2. 1 6 k g荷重) のエチレン/メタクリル酸グリシジル二 8 8/ 1 2 (重量%) 共 重合体を 2 5重量部混合し、 2軸押出機を用いてシリンダー温度 3 0 0 °Cで溶融 押出して得られたアイゾッ ド衝擊強度が 3 5 0 JZmの変性 P P S樹脂。 (A-1): Melting point 280 ° C, MFR 200 g / 10 min (3 15 ° C, 5 kg load), melt viscosity 1550 P a 's (320 ° C, MFR 310 minutes (190.C, 2.16 kg load) ethylene / glycidyl methacrylate based on 100 parts by weight of polyphenylene sulfide resin with a shear rate of 100 000 sec- 1 ) 288/12 (wt%) copolymer was mixed in 25 parts by weight and melt-extruded at a cylinder temperature of 300 ° C using a twin-screw extruder to give an Izod impact strength of 350. JZm modified PPS resin.
(A- 2 ) :融点 2 8 0。C、 MFR 2 0 0 g/ 1 0分 (3 1 5。C、 5 k g荷重) 、 溶融粘度 1 5 0 P a · s ( 3 2 0 °C、 剪断速度 1 0 0 0 s e c— 1 ) のポリフヱニ レンスルフィ ド樹脂 1 0 0重量部に対して、 MF R 3 1 0分 ( 1 9 0。C、 2. 1 6 k g荷重) のエチレン Zメタクリル酸グリシジル = 8 8/1 2 (重量%) 共 重合体を 1 2. 5重量部混合してなる変性 P P S樹脂を 1 0 0重量部としたとき、 MF R= 0. 5 ( 1 9 0 °C、 2. 1 6 k g荷重) 、 密度 0. 8 6 0のエチレンノ 1ーブテン共重合体を 1 2重量部の比率で混合し、 2軸押出機を用いてシリンダ 一温度 3 0 0 °Cで溶融押出して得られたアイゾッ ド衝搫強度が 5 0 0 JZmの変 性 P P S樹脂。 (A-2): melting point 280. C, MFR 200 g / 10 min (31.5 C, 5 kg load), melt viscosity 150 Pas (320 ° C, shear rate 10000 sec- 1 ) For 100 parts by weight of polyphenylene sulfide resin, ethylene Z glycidyl methacrylate = 88/12 (weight%) for MFR 310 minutes (190.C, 2.16 kg load) When 100 parts by weight of the modified PPS resin obtained by mixing 12.5 parts by weight of the polymer is used, MFR = 0.5 (190 ° C, 2.16 kg load), density 0. The ethylene-butene copolymer of 860 was mixed at a ratio of 12 parts by weight, and melt-extruded at a cylinder temperature of 300 ° C using a twin-screw extruder. 0 0 JZm modified PPS resin.
(A- 2 ' ) :融点 2 8 0 °C、 MFR 2 0 0 1 0分 ( 3 1 5 °C、 5 k g荷 重) 、 溶融粘度 1 5 0 P a · s ( 3 2 0 °C、 剪断速度 1 0 0 0 s e c— のポリ フエ二レンスルフィ ド樹脂 1 0 0重量部に対して、 MFR S gZ l Oj^ C i g O °C、 2. 1 6 k g荷重) のエチレンノメタクリル酸グリシジル = 8 8 Z 1 2 (重 量%) 共重合体を 1 2. 5重量部混合してなる変性 P P S樹脂を 1 0 0重量部と したとき、 MFR= 0. 5 ( 1 9 0 °C、 2. 1 6 k g荷重) 、 密度 0. 8 6 0の エチレン Z 1—ブテン共重合体を 1 2重量部の比率で混合した未溶融混合物。 (A- 3 ) :上記参考例 1により得られた融点 2 4 8 °C、 MF R 3 5 0 1 0 分 ( 3 1 5 °C、 5 k g荷重) の p—フヱニレンスルフィ ド m—フヱ二レンスル フイ ド共重合体 1 0 0重量部に対して、 MFR 3 g/ 1 0分 ( 1 9 0 °C、 2. 1 6 k g荷重) のエチレン/メタク リル酸グリシジル = 8 8/ 1 2 (重量%) 共重 合体を 1 2. 5重量部混合してなる変性 P P S樹脂を 1 0 0重量部としたとき、 MF R= 0. 5 ( 1 9 0 °C、 2. 1 6 k g荷重) 、 密度 0. 8 6 0のエチレン/ 1—ブテン共重合体を 1 2重量部の比率で混合し、 2軸押出機を用いてシリンダ —温度 2 7 0 °Cで溶融押出して得られたアイゾッ ド衝撃強度が 4 5 0 JZmの変 性 P P S樹脂。  (A- 2 '): Melting point 280 ° C, MFR 200 10 minutes (315 ° C, 5 kg load), melt viscosity 150 Pas (320 ° C, Glycidyl ethylenenomethacrylate with MFR S gZ l Oj ^ C ig O ° C and a load of 2.16 kg) was added to 100 parts by weight of polyphenylene sulfide resin with a shear rate of 100 sec— When the modified PPS resin obtained by mixing 12.5 parts by weight of the 8 8 Z 12 (weight%) copolymer was 100 parts by weight, the MFR was 0.5 (190 ° C, 2 ° C). Unmelted mixture of ethylene Z 1 -butene copolymer with a density of 0.860 at a ratio of 12 parts by weight. (A-3): p-phenylene sulfide m obtained at the melting point of 2 48 ° C and MFR 350 0 min (3 15 ° C, 5 kg load) obtained in Reference Example 1 above. —Ethylene / glycidyl methacrylate with MFR of 3 g / 10 min (190 ° C, 2.16 kg load) = 100 wt parts of phenylene sulfide copolymer = 88 / 1 2 (% by weight) When the modified PPS resin obtained by mixing 12.5 parts by weight of the copolymer is 100 parts by weight, MF R = 0.5 (190 ° C, 2.1 6 kg load) Ethylene / 1-butene copolymer with a density of 0.860 is mixed at a ratio of 12 parts by weight, and melt-extruded at a temperature of 270 ° C in a cylinder using a twin-screw extruder. The resulting modified PPS resin with an Izod impact strength of 450 JZm.
(A- 4 ) :融点 2 8 0。 (:、 MFR 2 0 0 g/ 1 0分 (3 1 5 °C、 5 k g荷重) 、 溶融粘度 1 5 0 P a · s ( 3 2 0 °C、 剪断速度 1 0 0 0 s e c— のポリフエ二 レンスルフィ ド樹脂 1 0 0重量部に対して、 MFR 3 gZl 0分 ( 1 9 0 °C、 2. 1 6 k g荷重) のエチレン/メタク リル酸グリ シジル = 8 8 / 1 2 (重量%) 共 重合体を 1 5重量部混合してなる変性 P P S樹脂を 1 0 0重量部としたとき、 M FR= 0. 5 ( 1 9 0 °C、 2. 1 6 k g荷重) 、 密度 0. 8 6 0のエチレン 1 —ブテン共重合体を 2 5重量部の比率で混合し、 2軸押出機を用いてシリンダー 温度 3 0 0 °Cで溶融押出して得られたアイゾッ ド衝擊強度が 6 5 0 JZmの変性 P P S樹脂。 (A-4): melting point 280. (: MFR 200 g / 10 min (3 15 ° C, 5 kg load), melt viscosity 1 500 Pa · s (320 ° C, shear rate 10000 sec— Ethylene / glycidyl methacrylate with MFR of 3 gZl 0 min (190 ° C, 2.16 kg load) per 100 parts by weight of styrene sulfide resin = 88/12 (% by weight) When the modified PPS resin obtained by mixing 15 parts by weight of the copolymer is 100 parts by weight, MFR = 0.5 (190 ° C, 2.16 kg load), density 0.8 The ethylene 1-butene copolymer of 60 was mixed at a ratio of 25 parts by weight, and melt-extruded at a cylinder temperature of 300 ° C. using a twin-screw extruder to obtain an Izod impact strength of 650. JZm denaturation PPS resin.
(A— 5 ) :融点 2 8 0 °C、 MFR 2 0 0 g/1 0分 (3 1 5 °C、 5 k g荷重) 、 溶融粘度 1 5 0 P a · s ( 3 2 0 °C、 剪断速度 1 0 0 0 s e c ') のポリフエ二 レンスルフィ ド樹脂 1 0 0重量部に対して、 MFR 3 gZl 0分 ( 1 9 0 °C、 2. 1 6 k g荷重) のエチレン メタク リル酸グリ シジル = 8 8 1 2 (重量%) 共 重合体を 5重量部混合してなる変性 P P S樹脂を 1 0 0重量部としたとき、 MF R= 0. 5 ( 1 9 0。C、 2. 1 6 k g荷重) 、 密度 0. 8 6 0のエチレン / 1— ブテン共重合体を 5重量部の比率で混合し、 2軸押出機を用いてシリンダー温度 3 0 0 °Cで溶融押出して得られたアイゾッ ド衝撃強度が 3 8 0 JZmの変性 P P S樹脂。  (A-5): Melting point 280 ° C, MFR 200 g / 10 min (3 15 ° C, 5 kg load), melt viscosity 150 Pas (320 ° C, MFR 3 gZl 0 min (190 ° C, 2.16 kg load) ethylene glycidyl methacrylate per 100 parts by weight of polyphenylene sulfide resin with a shear rate of 1000 sec ') = 8 8 1 2 (% by weight) When 100 parts by weight of a modified PPS resin obtained by mixing 5 parts by weight of a copolymer, MFR = 0.5 (190.C, 2.16 kg load), ethylene / 1-butene copolymer with a density of 0.860 was mixed at a ratio of 5 parts by weight and melt-extruded at a cylinder temperature of 300 ° C. using a twin-screw extruder. Modified PPS resin with Izod impact strength of 380 JZm.
(A- 6 ) :融点 2 8 0 °C、 MFR 2 0 0 gZ 1 0分 ( 3 1 5 °C、 5 k g荷重) 、 溶融粘度 1 5 0 P a · s ( 3 2 0 °C、 剪断速度 1 0 0 0 s e c ') のポリフヱニ レンスルフィ ド樹脂。  (A-6): Melting point 280 ° C, MFR 200 gZ 10 minutes (3 15 ° C, 5 kg load), melt viscosity 150 Pas (32 ° C, shearing) Polyphenylene sulfide resin with a speed of 100 000 sec ').
[参考例 3] 変性ポリエステル樹脂 (b) の製造  [Reference Example 3] Production of modified polyester resin (b)
(B - 1 ) :固有粘度 0. 6 5のポリエチレンテレフタレート樹脂 1 0 0重量部 に対し、 それぞれ MFR 3 1 0分 ( 1 9 0 °C、 2. 1 6 k g荷重) のェチレ ン/メタクリル酸ダリシジル = 8 8/ 1 2 (重量%) 共重合体を 3 3重量部、 M F R= 0. 5 ( 1 9 0 °C、 2. 1 6 K g荷重) 、 密度 0. 8 6 0のエチレン/ 1 —ブテン共重合体を 3 3重量部混合し、 2軸押出機を用いてシリンダー温度 2 8 0 °Cで溶融押出して得られたアイゾッ ド衝撃強度が 9 5 0 J Zmの変性ポリエス テル樹脂。  (B-1): Ethylene / methacrylic acid of MFR 310 minutes (190 ° C, 2.16 kg load) with respect to 100 parts by weight of polyethylene terephthalate resin having an intrinsic viscosity of 0.65 Daricidil = 88/12 (wt%) 33 parts by weight of copolymer, MFR = 0.5 (190 ° C, 2.16 Kg load), ethylene / density 0.860 1—Modified polyester resin with an Izod impact strength of 950 J Zm obtained by mixing 33 parts by weight of a butene copolymer and melt-extruding the mixture at a cylinder temperature of 280 ° C using a twin-screw extruder .
(B - Γ ) :固有粘度 0. 6 5のポリエチレンテレフタレート樹脂 1 0 0重量 部に対し、 それぞれ MFR 3 g " 1 0分 ( 1 9 0 °C、 2. 1 6 k g荷重) のェチ レン/メタクリル酸グリシジル = 8 8/ 1 2 (重量%) 共重合体を 3 3重量部、 MF R= 0. 5 ( 1 9 0 °C、 2. 1 6 k g荷重) 、 密度 0. 8 6 0のエチレンノ 1ーブテン共重合体を 3 3重量部の比率で混合した未溶融混合物。  (B-II): Ethylene with MFR of 3 g ”for 10 minutes (at 190 ° C, 2.16 kg load) with respect to 100 parts by weight of polyethylene terephthalate resin having an intrinsic viscosity of 0.65 / Glycidyl methacrylate = 88/12 (wt%) 33 parts by weight of copolymer, MFR = 0.5 (190 ° C, 2.16 kg load), density 0.86 0 An unmelted mixture obtained by mixing ethylene monobutene copolymer in a ratio of 33 parts by weight.
(B - 2 ) :固有粘度 0. 6 5のポリエチレンテレフタレー ト樹脂 1 0 0重量部 に対し、 それぞれ MF R 3 1 0分 ( 1 9 0 °C、 2. 1 6 k g荷重) のェチレ ン メタクリル酸グリシジル = 8 8/ 1 2 (重量%) 共重合体を 2 5重量部、 M FR= 0. 5 ( 1 9 0 °C、 2. 1 6 k g荷重) 、 密度 0. 8 6 0のエチレンノ 1 ーブテン共重合体を 3 0重量部混合し、 2軸押出機を用いてシリンダー温度 2 8 0 °Cで溶融押出して得られたアイゾッ ド衝撃強度が 9 0 0 JZmの変性ポリエス テル樹脂。 (B-2): Ethylene of MFR 310 minutes (190 ° C, 2.16 kg load) with respect to 100 parts by weight of polyethylene terephthalate resin having an intrinsic viscosity of 0.65 Glycidyl methacrylate = 88/12 (% by weight) 25 parts by weight of copolymer, M FR = 0.5 (190 ° C, 2.16 kg load), 30 parts by weight of ethylenebutene copolymer having a density of 0.860 are mixed, and the cylinder temperature is adjusted using a twin-screw extruder. Modified polyester resin with an Izod impact strength of 900 JZm obtained by melt extrusion at 280 ° C.
(B - 3 ) : 固有粘度 0. 6 5のポリエチレンテレフタレート樹脂 1 0 0重量部 に対し、 それぞれ MFR 3 g/ 1 0分 ( 1 9 0 °C、 2. 1 6 k g荷重) のェチレ ン Zメタクリル酸グリシジル = 9 4/6 (重量 共重合体を 3 3重量部、 MF R= 0. 5 ( 1 9 0 °C、 2. 1 6 k g荷重) 、 密度 0. 8 6 0のェチレン Z 1 — ブテン共重合体を 3 3重量部混合し、 2軸押出機を用いてシリンダー温度 2 8 0 °Cで溶融押出して得られたアイゾッ ド衝擊強度が 1 0 5 0 J "mの変性ポリエス テル樹脂。  (B-3): Ethylene Z with MFR of 3 g / 10 minutes (190 ° C, 2.16 kg load) with respect to 100 parts by weight of polyethylene terephthalate resin having an intrinsic viscosity of 0.65 Glycidyl methacrylate = 9 4/6 (33 parts by weight of copolymer, MFR = 0.5 (190 ° C, 2.16 kg load), Ethylene Z 1 with density of 0.860 — A modified polyester with an Izod impact strength of 150 J "m, obtained by mixing 33 parts by weight of a butene copolymer and melt-extruding the mixture at a cylinder temperature of 280 ° C using a twin-screw extruder. Resin.
(B- 4) : 固有粘度 1. 4 0のポリエチレンテレフタレート樹脂。  (B-4): a polyethylene terephthalate resin having an intrinsic viscosity of 1.40.
[参考例 4] エポキシ変性ポリオレフイ ン (c) の製造  [Reference Example 4] Production of epoxy-modified polyolefin (c)
(C- 1 ) : エチレン /ブテン共重合体 (密度 0. 8 6 1、 MFR: 0. 5 g/ 1 0分) 1 0 0重量部に対して、 無水マレイン酸 0. 5重量部、 2, 5—ジメ チルー 2, 5—ビス ( t e r t—ブチルペルォキシ) へキシン一 3 0. 0 3重 量部をへンシヱルミキサ一で混合し、 シリンダー温度 2 4 0 °Cに設定した 3 0 m m0二軸押出機を用いてグラフ ト変性を行った。  (C-1): Ethylene / butene copolymer (density 0.861, MFR: 0.5 g / 10 minutes) 100 parts by weight, 0.5 part by weight of maleic anhydride, 2 parts by weight 30.0 parts by weight of 3,5-dimethyl-2,5-bis (tert-butylperoxy) hexine were mixed with a helical mixer, and the cylinder temperature was set to 30 mm2 with a cylinder temperature of 240 ° C. The graft modification was performed using an extruder.
次いで、 得られた酸変性エチレン/ブテン共重合体 1 0 0重量部に対して、. クレゾールノボラック型エポキシ樹脂 (エポキシ当量: 2 2 0、 分子量: 1 8 0 Next, based on 100 parts by weight of the obtained acid-modified ethylene / butene copolymer, a cresol novolak-type epoxy resin (epoxy equivalent: 220, molecular weight: 180
0) 4. 6重量部を、 シリンダー温度 2 5 0 °Cに設定した 3 O mm0二軸押出 機にて溶融混練し、 極性基含有量 2 0. 0 mmo 1 / 1 0 0 gのエポキシ奕性ポ リオレフィ ンを得た。 0) 4.6 parts by weight were melt-kneaded with a 3 O mm0 twin screw extruder set at a cylinder temperature of 250 ° C, and the polar group content was 20.0 mmo 1/100 g of epoxy grease. Polyolefin was obtained.
なお、 極性基含有量は下記式 (2) を用いて計算により求めた値である。 (式 2 ) The polar group content is a value obtained by calculation using the following equation (2). (Equation 2)
We 100 We 100
極性基含有量 (mmol/100g) = x Ne x 1000  Polar group content (mmol / 100g) = x Ne x 1000
MWe Wt  MWe Wt
We:エポキシ樹脂の添加量 (g) We: amount of epoxy resin added (g)
MWe:エポキシ樹脂の分子量  MWe: molecular weight of epoxy resin
Ne:エポキシ樹脂 1分子当たりのエポキシ基個数  Ne: Number of epoxy groups per molecule of epoxy resin
Wt:重合体組成物の全体量 (g)  Wt: Total amount of polymer composition (g)
(C - 2 ) : エチレン/プテン共重合体 (密度 0. 8 7 0、 MFR : 0. 5 g/ 1 0分) 1 0 0重量部に対して、 無水マレイン酸 0. 5重量部、 2 , 5—ジメ チル一 2 , 5—ビス ( t e r t—ブチルペルォキシ) へキシン _ 3 0. 0 3重 量部をへンシヱルミキサ一で混合し、 シリンダー温度 2 4 0 °Cに設定した 3 0 m m0二軸押出機を用いてグラフ ト変性を行った。 (C-2): ethylene / butene copolymer (density 0.870, MFR: 0.5 g / 10 minutes) 100 parts by weight, 0.5 part by weight of maleic anhydride, 2 parts by weight , 5—Dimethyl-1,2,5-bis (tert-butylperoxy) hexine — 30.0 parts by weight were mixed with a hensil mixer, and the cylinder temperature was set at 240 ° C. Graft modification was performed using a screw extruder.
次いで、 得られた酸変性エチレン ブテン共重合体 1 0 0重量部に対して、 クレゾールノポラック型エポキシ樹脂 (エポキシ当量: 2 2 0、 分子量: 1 8 0 0 ) 4. 6重量部を、 シリ ンダー温度 2 5 0 °Cに設定した 3 O mm0二軸押出 機にて溶融混練し、 極性基含有量 2 0. 0 mmo 1 / 1 0 0 gのエポキシ変性ポ リオレフィ ンを得た。  Then, 4.6 parts by weight of a cresol nopolak-type epoxy resin (epoxy equivalent: 220, molecular weight: 180,000) was added to 100 parts by weight of the obtained acid-modified ethylene-butene copolymer. The mixture was melted and kneaded with a 3 O mm0 twin screw extruder set to a binder temperature of 250 ° C. to obtain an epoxy-modified polyolefin having a polar group content of 20.0 mmo 1/1000 g.
(C - 3 ) : エチレン/ブテン共重合体 (密度 0. 8 7 0、 MF R : 0. 5 g/ 1 0分) 1 0 0重量部に対して、 無水マレイン酸 1. 0重量部、 2, 5—ジメ チルー 2 , 5—ビス ( t e r t—ブチルペルォキシ) へキシン一 3 0. 0 6重 量部をヘンシヱルミキサーで混合し、 シリンダー温度 2 4 0 °Cに設定した 3 0 m m0二軸押出機を用いてグラフ ト変性を行った。  (C-3): ethylene / butene copolymer (density 0.870, MFR: 0.5 g / 10 minutes) 100 parts by weight, 1.0 part by weight of maleic anhydride, 30.06 parts by weight of 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexine was mixed with a Hensile mixer, and the mixture was set at a cylinder temperature of 240 ° C. Graft modification was performed using a screw extruder.
次いで、 得られた酸変性エチレン/ブテン共重合体 1 0 0重量部に対して、 クレゾールノボラック型エポキシ樹脂 (エポキシ当量: 2 2 0、 分子量: 1 8 0 0 ) 9. 2重量部を、 シリンダー温度 2 5 0 °Cに設定した 3 O mm0二軸押出 機にて溶融混練し、 極性基含有量 3 8. 3 mmo 1 / 1 0 0 gのエポキシ変性ポ リオレフィンを得た。 (C— 4) : エチレン ブテン共重合体 (密度 0. 8 6 1、 MFR : 0. 5 %/ 1 0分) 1 0 0重量部に対して、 無水マレイン酸 0. 5重量部、 2, 5—ジメ チル一 2, 5—ビス ( t e r t—ブチルペルォキシ) へキシン一 3 0. 0 3重 量部、 およびクレゾ一ルノポラック型エポキシ樹脂 (エポキシ当量: 2 2 0、 分 子量: 1 8 0 0 ) 4. 6重量部をヘンシヱルミキサーで混合し、 シリンダー温度 2 4 0 °Cに設定した 3 0 mm ø二軸押出機を用いて溶融混練し、 極性基含有量 2 0. 0 mmo 1 /1 0 0 gのエポキシ変性ポリオレフィンを得た。 Then, with respect to 100 parts by weight of the obtained acid-modified ethylene / butene copolymer, 9.2 parts by weight of a cresol novolak type epoxy resin (epoxy equivalent: 220, molecular weight: 180,000) was added to a cylinder. The mixture was melted and kneaded with a 3 O mm0 twin screw extruder set at a temperature of 250 ° C. to obtain an epoxy-modified polyolefin having a polar group content of 38.3 mmo 1/1000 g. (C-4): Ethylene butene copolymer (density 0.861, MFR: 0.5% / 10 minutes) 100 parts by weight, 0.5 parts by weight of maleic anhydride, 2, 5-dimethyl-1,2,5-bis (tert-butylperoxy) hexine-30.0 parts by weight, and cresol nopolak epoxy resin (epoxy equivalent: 220, molecular weight: 180,000) ) 4.6 parts by weight were mixed with a Hensile mixer, melt-kneaded using a 30 mm ø twin screw extruder set at a cylinder temperature of 240 ° C, and the polar group content was 20.0 mmo 1 / 100 g of an epoxy-modified polyolefin was obtained.
実施例 1〜 8 Examples 1 to 8
表 1に示すように上記変性 P P S樹脂 (a) 、 変性ポリエステル樹脂 (b) お よびエポキシ化合物とポリオレフィ ンとの反応により得られるエポキシ変性ポリ ォレフィ ン (c) を日本製鋼所社製 TEX 3 0型 2軸押出機のメインフィ一グー から供給し、 シリンダー温度 2 8 0〜 3 0 0 °C、 スクリュー回転数 2 0 0 r p m で溶融混練を行った。 得られたペレツ トを乾燥後、 射出成形 (東芝機械社製 I S 1 0 0 F A、 シリンダー温度 2 8 0〜3 0 0 °C、 金型温度 1 3 0 °C) により試験 片を調製した。 各サンプルのバリア性および材料強度などを測定した結果は表 1 に示すとおりであった。  As shown in Table 1, the above-mentioned modified PPS resin (a), modified polyester resin (b), and epoxy-modified polyolefin (c) obtained by the reaction of an epoxy compound with polyolefin were used as TEX 30 products manufactured by Nippon Steel Corporation. The melt was kneaded at a cylinder temperature of 280 to 300 ° C and a screw rotation speed of 200 rpm, supplied from the main figure of a twin-screw extruder. After drying the obtained pellet, a test piece was prepared by injection molding (IS100FA manufactured by Toshiba Machine Co., cylinder temperature 280-300 ° C, mold temperature 130 ° C). Table 1 shows the results of measuring the barrier properties and material strength of each sample.
実施例 9 Example 9
融点 2 8 0 °C、 MFR 2 0 0 1 0分 (3 1 5 °C、 5 k g荷重) 、 溶融粘度 1 5 0 P a · s (3 2 0 °C、 剪断速度 1 0 0 0 s e c— 1 ) のポリフエ二レンスル フィ ド樹脂 1 0 0重量部に対して、 MFR 3 g/ 1 0分 ( 1 9 0 °C、 2. 1 6 k g荷重) のエチレン メタクリル酸グリシジル = 8 8/ 1 2 (重量%) 共重合体 を 1 2. 5重量部混合してなる変性 P P S樹脂を 1 0 0重量部としたとき、 MF R= 0. 5 ( 1 9 0 °C、 2. 1 6 k g荷重) 、 密度 0. 8 6 0のエチレン 1一 ブテン共重合体を 1 2重量部の比率で混合した未溶融混合物 (A— 2' ) を日本 製鋼所社製 TEX 3 0型 2軸押出機のメインフィーダ一から供給し、 変性ポリェ ステル樹脂 (B— 1 ) およびエポキシ化合物とポリオレフイ ンとの反応により得 られるエポキシ変性ポリオレフィ ン (C— 1 ) を混合して押出機先端のサイ ドフ ィーダ一より供給し、 シリンダー温度は 3 0 0 °C、 スクリユー回転数は 2 0 0 r P mとして溶融混練をした。 このときのメインフィーダ一およびサイ ドフィーダ 一からの供給量は、 得られる樹脂組成物が表 2に示した組成となるように調整し て供給した。 得られたペレツ トを乾燥後、 射出成形 (東芝機械社製 I S 1 0 0 F A、 シリンダー温度 3 0 0 °C、 金型温度 1 3 0 °C) により試験片を調製した。 得 られたサンプルのバリア性および材料強度などを測定した結果は表 2に示すとお りであった。 Melting point: 280 ° C, MFR: 200 minutes (3,15 ° C, 5 kg load), melt viscosity: 1,500 Pa · s (320 ° C, shear rate: 100,000 sec— 1 ) 100 parts by weight of the polyphenylene sulfide resin, ethylene glycol glycidyl methacrylate with MFR of 3 g / 10 minutes (190 ° C, 2.16 kg load) = 88/12 (% By weight) When the modified PPS resin obtained by mixing 12.5 parts by weight of the copolymer is 100 parts by weight, MF R = 0.5 (190 ° C, 2.16 kg load) ) The unmelted mixture (A-2 ′) obtained by mixing ethylene-butene copolymer having a density of 0.860 at a ratio of 12 parts by weight was mixed with a TEX30 type twin-screw extruder manufactured by Japan Steel Works, Ltd. Supplied from the main feeder, the modified polyester resin (B-1) and the epoxy-modified polyolefin (C-1) obtained by the reaction of the epoxy compound with the polyolefin are mixed, and then mixed through the side feeder at the tip of the extruder. Supply and syring Over temperature 3 0 0 ° C, Sukuriyu rpm was melt-kneaded as 2 0 0 r P m. The main feeder and side feeder at this time The supply amount from the beginning was adjusted and supplied so that the obtained resin composition had the composition shown in Table 2. After the obtained pellet was dried, a test piece was prepared by injection molding (IS 100 FA manufactured by Toshiba Machine Co., cylinder temperature 300 ° C., mold temperature 130 ° C.). Table 2 shows the results of measuring the barrier properties and material strength of the obtained samples.
実施例 1 0 Example 10
固有粘度 0. 6 5のポリエチレンテレフタレート樹脂 1 0 0重量部に対し、 そ れぞれ MF R 3 g/ 1 0分 ( 1 9 0 °C、 2. 1 6 k g荷重) のエチレン メタク リル酸グリシジル = 8 8/1 2 (重量%) 共重合体を 3 3重量部、 MFR= 0. 5 ( 1 9 0 °C、 2. 1 6 k g荷重) 、 密度 0. 8 6 0のェチレンノ 1—ブテン共 重合体を 3 3重量部の比率で混合した未溶融混合物 (B— Γ ) を日本製鋼所社 製 TEX 3 0型 2軸押出機のメインフイダーから供給し、 変性 P P S樹脂 (A— 2 ) およびエポキシ化合物とポリオレフィ ンとの反応により得られるエポキシ変 性ポリオレフィ ン (C— 1 ) を混合して押出機先端のサイ ドフィーダ一より供給 し、 メインフィーダ一からサイ ドフィーダ一までは 2 8 0 °C、 サイ ドフィーダー から押出機先端ダイまでは 3 0 0 °Cのシリンダ温度、 スクリユー回転数 2 0 0 r pmで溶融混練をした。 このときのメインフィーダ一およびサイ ドフィ一ダーか らの供給量は、 得られる樹脂組成物が表 2に示した組成となるように調整して供 給した。 得られたペレツ トを乾燥後、 射出成形 (東芝機械社製 I S 1 0 0 FA、 シリンダー温度 3 0 0 °C、 金型温度 1 3 0 °C) により試験片を調製した。 得られ たサンプルのバリァ性および材料強度などを測定した結果は表 2に示すとおりで あった。  For 100 parts by weight of polyethylene terephthalate resin with an intrinsic viscosity of 0.65, ethylene glycol glycidyl methacrylate with an MFR of 3 g / 10 minutes (190 ° C, 2.16 kg load) was used. = 8 8/1 2 (% by weight) 33 parts by weight of copolymer, MFR = 0.5 (190 ° C, 2.16 kg load), density of 0.860 Ethyrenno 1-butene An unmelted mixture (B-Γ) obtained by mixing the copolymer at a ratio of 33 parts by weight was supplied from the main feeder of a TEX 30 type twin screw extruder manufactured by Nippon Steel Works, Ltd., and the modified PPS resin (A-2) and The epoxy-modified polyolefin (C-1) obtained by the reaction between the epoxy compound and polyolefin is mixed and supplied from the side feeder at the tip of the extruder. The cylinder temperature of 300 ° C from the side feeder to the die at the end of the extruder, screw rotation speed 200 r Melt kneading was performed at pm. At this time, the supply amounts from the main feeder and the side feeder were adjusted and supplied so that the obtained resin composition had the composition shown in Table 2. After drying the obtained pellet, a test piece was prepared by injection molding (IS100FA manufactured by Toshiba Machine Co., cylinder temperature 300 ° C, mold temperature 130 ° C). Table 2 shows the results of measuring the barrier properties and material strength of the obtained samples.
実施例 1 1 Example 11
融点 2 8 0 °C、 MFR 2 0 0 gZl 0分 (3 1 5 °C、 5 k g荷重) 、 溶融粘度 1 5 0 P a · s ( 3 2 0。C、 剪断速度 1 0 0 0 s e c—1) のポリフエ二レンスル フィ ド樹脂 1 0 0重量部に対して、 MFR 3 g/ 1 0分 ( 1 9 0 °C、 2. 1 6 k g荷重) のェチレン メタクリル酸グリシジル = 8 8/ 1 2 (重量%) 共重合体 を 1 2. 5重量部混合してなる変性 P P S樹脂を 1 0 0重量部としたとき、 MF R= 0. 5 ( 1 9 0 °C、 2. 1 6 k g荷重) 、 密度 0. 8 6 0のエチレン 1一 ブテン共重合体を 1 2重量部の比率で混合した未溶融混合物 (A— 2' ) を日本 製鋼所社製 TEX 3 0型 2軸押出機のメインフィダ一から供給し、 固有粘度 0. 6 5のポリェチレンテレフタレート樹脂 1 0 0重量部に対し、 それぞれ MF R 3 1 0分 ( 1 9 0 °C、 2. 1 6 k g荷重) のエチレン メタクリル酸グリシジ ル = 8 8 / 1 2 (重量%) 共重合体を 3 3重量部、 MF R= 0. 5 ( 1 9 0 °C、 2. 1 6 k g荷重) 、 密度 0. 8 6 0のエチレン / 1ーブテン共重合体を 3 3重 量部の比率で混合した未溶融混合物 (B— 1 ' ) およびエポキシ化合物とポリオ レフィンとの反応により得られるエポキシ変性ポリオレフィ ン (C— 1 ) を混合 して押出機先端のサイ ドフィーダ一より供給し、 シリ ンダー温度は 3 0 0 °C、 ス クリュー回転数は 2 0 0 r pmとして溶融混練をした。 このときのメインフィー ダ一およびサイ ドフィーダ一からの供給量は、.得られる樹脂組成物が表 2に示し た組成となるように調整して供給した。 得られたペレツ トを乾燥後、 射出成形 (東芝機械社製 I S 1 0 0 F A、 シリ ンダー温度 3 0 0 °C、 金型温度 1 3 0 °C) により試験片を調製した。 得られたサンプルのバリァ性および材料強度などを測 定した結果は表 2に示すとおりであった。 Melting point 280 ° C, MFR 200 gZl 0 min (3 15 ° C, 5 kg load), melt viscosity 150 Pas (320.C, shear rate 10000 sec— 1 ) 100 parts by weight of the polyphenylene sulfide resin, MFR 3 g / 10 minutes (190 ° C, 2.16 kg load) Ethylene glycidyl methacrylate = 88/12 (% By weight) When the modified PPS resin obtained by mixing 12.5 parts by weight of the copolymer is 100 parts by weight, MF R = 0.5 (190 ° C, 2.16 kg load) ) The density of 0.86 ethylene An unmelted mixture (A-2 ′) obtained by mixing a butene copolymer at a ratio of 12 parts by weight was supplied from the main feeder of a TEX 30 type twin screw extruder manufactured by Nippon Steel Works, Ltd., and the intrinsic viscosity was 0.65. For each 100 parts by weight of the polyethylene terephthalate resin, ethylene glycol glycidyl methacrylate of MFR 310 minutes (190 ° C, 2.16 kg load) = 88/12 (% by weight) ) 33 parts by weight of copolymer, MFR = 0.5 (190 ° C, 2.16 kg load), 33 weight of ethylene / 1-butene copolymer with density of 0.860 Parts of the unmelted mixture (B-1 ') and the epoxy-modified polyolefin (C-1) obtained by the reaction of the epoxy compound with the polyolefin, and the mixture is supplied from the side feeder at the tip of the extruder. The melt kneading was carried out at a cylinder temperature of 300 ° C. and a screw rotation speed of 200 rpm. At this time, the supply amounts from the main feeder 1 and the side feeder 1 were adjusted and supplied so that the obtained resin composition had the composition shown in Table 2. After the obtained pellet was dried, a test piece was prepared by injection molding (IS 100 FA manufactured by Toshiba Machine Co., Ltd., cylinder temperature: 300 ° C., mold temperature: 130 ° C.). Table 2 shows the results of measurement of the barrier properties and material strength of the obtained samples.
比較例 1〜 7 Comparative Examples 1 to 7
表 3に示すように上記変性 P P S樹脂 (a) 、 変性ポリエステル樹脂 (b) ま たは下記ポリアミ ド樹脂、 エポキシ化合物とポリオレフイ ンとの反応により得ら れるエポキシ変性ポリオレフィ ン (c) 、 下記エポキシ基含有ポリオレフィ ン、 および下記エポキシ基含有ポリオレフィ ン以外のポリオレフィ ンを日本製鋼所社 製 TEX 3 0型 2軸押出機のメインフィーダ一から供給し、 シリンダー温度 2 8 0〜3 0 0 °C、 スク リユー回転数 2 0 0 r pmで溶融混練を行った。 得られたぺ レツ トを乾燥後、 射出成形 (東芝機械社製 I S 1 0 0 FA、 シリンダ一温度 2 8 0〜3 0 0 °C、 金型温度 1 3 0 °C) により試験片を調製した。 各サンプルのバリ ァ性および材料強度などを測定した結果は表 3に示すとおりであった。  As shown in Table 3, the above-mentioned modified PPS resin (a), modified polyester resin (b), or the following polyamide resin, epoxy-modified polyolefin (c) obtained by reacting an epoxy compound with polyolefin, and the following epoxy Group-containing polyolefins and polyolefins other than the following epoxy group-containing polyolefins were supplied from the main feeder of a TEX30 type twin screw extruder manufactured by Nippon Steel Works, Ltd., and the cylinder temperature was 280-300 ° C. Melt kneading was performed at a screw rotation speed of 200 rpm. After drying the obtained pellets, test specimens were prepared by injection molding (Toshiba Machine Co., IS 100 FA, cylinder temperature 280-300 ° C, mold temperature 130 ° C). did. Table 3 shows the results of measuring the barrier properties and material strength of each sample.
くエポキシ基含有ポリオレフィン〉 Epoxy group-containing polyolefin>
尺 3 3/ 1 0分 ( 1 9 0 、 2. 1 6 k g荷重) のエチレン Zメタク リル 酸グリ シジル = 9 4 / 6 (重量 共重合体  Ethylene Z glycidyl methacrylate = 94/4 (weight copolymer) with a length of 33/10 minutes (190, 2.16 kg load)
くエポキシ基含有ポリオレフィン以外のポリオレフィ ン〉 MFR= 0. 5 ( 1 9 0。C、 2. 1 6 k g荷重) 、 密度 0. 8 6 0のエチレン / 1ーブテン共重合体 Polyolefins other than epoxy group-containing polyolefins> MFR = 0.5 (190.C, 2.16 kg load), ethylene / 1-butene copolymer with density 0.860
くポリアミ ド樹脂〉 Polyamide resin>
(MXD 6) :相対粘度 2. 2 0のナイロン MX D 6樹脂。 (MXD 6): Nylon MXD 6 resin with a relative viscosity of 2.20.
Figure imgf000039_0001
Figure imgf000039_0001
a)変性 PPS樹脂の溶融粘度 Z変性ポリエステル樹脂の溶融粘度  a) Melt viscosity of modified PPS resin Melt viscosity of Z-modified polyester resin
b)変性ポリエステル樹脂の分散粒径  b) Dispersed particle size of modified polyester resin
c)変性ポリエステル樹脂中のエポキシ基含有ポリオレフインおよびエポキシ基含有ポリオレフイン以外のポリオレフインの分散粒径 d)変性 PPS樹脂と変性ポリエステル樹脂の合計を 100重量部としたときの重量部 c) The dispersed particle size of the epoxy group-containing polyolefin and the polyolefin other than the epoxy group-containing polyolefin in the modified polyester resin d) The parts by weight when the total of the modified PPS resin and the modified polyester resin is 100 parts by weight
Eye
早 她1タリ 秀她タリ 失舰 1タリ ιυ 1タリ丄丄  Early 她 1 Tari Hide 她 Tari Lost 1 Tali ιυ 1 Tari
変性 PPS樹脂種類 A-2 A-2' a A-2' a) Modified PPS resin type A-2 A-2 ' a A-2' a)
配ム景  Arrangement
メイン 量 ώ|7 丄 uu 丄 uu  Main quantity ώ | 7 丄 uu 丄 uu
フィーダ一 変性ポ]エステル樹脂種類 B- l Β— l  Feeder Modified Po] ester resin type B- l Β— l
f骨: ,b)f bone:, b )
d n直  d n
配合 エポキシ変性ポリオレフイン種類 c-i  Formulation Epoxy-modified polyolefin type c-i
日 F 配合景 霄 ¾^e) ϋ  FF
変性 PPS樹脂種類 A— 2 ο  Modified PPS resin type A—2 ο
サイド 配合量 重量部 100  Side compounding amount by weight 100
フィーダ一 変性ポジエステル樹脂種類 : Β—丄 B— 1 Feeder Modified positive ester resin type : Β— 丄 B— 1
配合鼋 重量部 100 100  Formulation 鼋 parts by weight 100 100
エポキシ変性ポリオレフイン種類 一 Cー丄 c— 1 C一 1  Epoxy-modified polyolefin type 1 C-c-1 C-1
配合量 重量部 e) 5 5 5 Compounding amount by weight e ) 5 5 5
混練加工温度 。c 300 300 280-300 300  Kneading processing temperature. c 300 300 280-300 300
表層部の連続相  Continuous phase of surface layer
変性 PPS 変性 PPS 変性 PPS 変性 PPS  Denatured PPS Denatured PPS Denatured PPS Denatured PPS
相分離  Phase separation
中心部の連続相  Central continuous phase
変性 PPS 変性 PPS 変性 PPS 変性 PPS  Denatured PPS Denatured PPS Denatured PPS Denatured PPS
m .  m.
分散相 変性 変性 変性 変性  Dispersed phase denaturation denaturation denaturation denaturation
ホ°リエステル ホ。リエステル ホ。リエステル ホ°リエステル  Woester E. Riester Ho. Riester Wolester
分散粒径 (C) 11 m 2 1.5 1.8 2.5  Dispersion particle size (C) 11 m 2 1.5 1.8 2.5
分散粒径 (d) 11 m 0.5 0.5 0.8 0.8  Dispersion particle size (d) 11 m 0.5 0.5 0.8 0.8
バリア性 ァノレコーノレ透過性 ' g 0.45 0.50 0.40 0.55  Barrier properties Permeable permeability 'g 0.45 0.50 0.40 0.55
吸湿時の g 0.85 0.90 0.80 0.90  G when absorbing moisture 0.85 0.90 0.80 0.90
アルコール吸液率 % 1.80 1.75 1.70 1.90  Alcohol absorption rate% 1.80 1.75 1.70 1.90
アルコ一ルガソリン吸液率 % 1.35 1.40 1.30 1.45  Alcohol gasoline absorption% 1.35 1.40 1.30 1.45
材料物性 引張強度 MPa 33 31 32 31 Material properties Tensile strength MPa 33 31 32 31
Izod衝撃強度 J/m 900 900 850 850  Izod impact strength J / m 900 900 850 850
低温特性 低温衝撃強度 J/m 860 850 800 780 Low temperature properties Low temperature impact strength J / m 860 850 800 780
a) A_2構成成分を混合した未溶融混合物 a) Unmelted mixture of A_2 components
b) B—1構成成分を混合した未溶融混合物 b) Unmelted mixture of B-1 components
c)変性ポリエステル樹脂の分散粒径 c) Dispersion particle size of modified polyester resin
d)変性ポリエステル樹脂中のエポキシ基含有ポリオレフインおょぴエポキシ基含有ポリオレフイン以外のポリオレフインの分散粒径 e)変性 PPS樹脂と変性ポリエステル樹脂の合計を 100重量部としたときの重量部 d) Epoxy group-containing polyolefin in modified polyester resin and dispersed particle size of polyolefin other than epoxy group-containing polyolefine) Part by weight when the total of modified PPS resin and modified polyester resin is 100 parts by weight
Figure imgf000041_0001
Figure imgf000041_0001
実施例 1〜 1 1および比較例 1〜マより明らかなように、 変性 P P S樹脂、 変 性ポリエステル樹脂、 およびエポキシ化合物とポリオレフィ ンとの反応により得 られるエポキシ変性ポリオレフインからなる樹脂組成物を成形して得られる成形 品は、 バリア性、 特に低温における耐衝撃性に優れた特性を有し、 また吸湿下で のバリァ性にも優れる実用価値の高いものである。 As is clear from Examples 1 to 11 and Comparative Examples 1 to 11, a resin composition comprising a modified PPS resin, a modified polyester resin, and an epoxy-modified polyolefin obtained by reacting an epoxy compound with polyolefin was molded. The molded article obtained by this method has excellent barrier properties, particularly excellent impact resistance at low temperatures, and also has excellent barrier properties under moisture absorption and has high practical value.
産 業 上 の 利 用 可 能 性  Industrial availability
本発明に係る樹脂組成物を成形して得られる成形品は、 バリア性および耐衝撃 性が良好であり、 各種用途に展開可能であり、 例えば電 ,気 ·電子関連機器、 精密 機械関連機器、 事務用機器、 自動車 ·車両関連部品、 建材、 包装材、 家具、 日用 雑貨などに適している。  The molded article obtained by molding the resin composition according to the present invention has good barrier properties and impact resistance, and can be developed for various uses.For example, electric, gas and electronic related equipment, precision machinery related equipment, Suitable for office equipment, automobile and vehicle-related parts, building materials, packaging materials, furniture, and daily necessities.

Claims

言青 求 の 範 囲 Scope of demand
1. ポリフエ二レンスルフイ ド (a 1 ) 、 エポキシ基含有ポリオレフイ ン (a 2) を含む変性ポリフヱニレンスルフィ ド樹脂 (a) 1 0 0重量部に対して、 ポ リエステル (b 1 ) 、 エポキシ基含有ポリオレフイン (b 2 ) およびエポキシ基 含有ポリオレフイ ン以外のポリオレフイ ン (b 3) を含む変性ポリエステル樹脂 1. 100 parts by weight of a modified polyphenylene sulfide resin (a) containing a polyphenylene sulfide (a 1) and an epoxy group-containing polyolefin (a 2), and a polyester (b 1) Modified polyester resin containing polyolefin (b 2) containing group and polyolefin (b 3) other than polyolefin containing epoxy group
(b) 4 0〜2 5 0重量部を含有する樹脂組成物 1 0 0重量部に対して、 ェポキ シ化合物とポリオレフィ ンとの反応により得られるエポキシ変性ポリオレフイン(b) an epoxy-modified polyolefin obtained by reacting an epoxy compound with polyolefin with respect to 100 parts by weight of a resin composition containing 40 to 250 parts by weight;
(c) を 0. 5〜2 0重量部含有する樹脂組成物であって、 該樹脂組成物の成形 品にて、 電子顕微鏡で観察される樹脂相分離構造が、 変性ポリフ X二レンスルフ ィ ド樹脂 (a) が連続相、 変性ポリエステル樹脂 (b) が分散相となる相構造を 少なくとも一部に形成することを特徴とする樹脂組成物。 a resin composition containing 0.5 to 20 parts by weight of (c), wherein a molded article of the resin composition has a modified resin phase separation structure observed by an electron microscope, and is a modified polyolefin X diene sulfide. A resin composition characterized in that a resin (a) forms a continuous phase and a modified polyester resin (b) forms a dispersed phase in at least a part thereof.
2. 前記変性ポリエステル樹脂 (b) の分散相の平均分散粒径が 5 /zm以下であ り、 前記変性ポリエステル樹脂 (b) の分散相中に前記エポキシ基含有ポリオレ フィン (b 2 ) および前記エポキシ基含有ポリオレフィ ン以外のポリオレフイ ン (b 3 ) が分散相を形成し、 該分散相が 1 m以下の平均分散粒径で分散した分 散構造を有することを特徴とする請求項 1記載の樹脂組成物。  2. The dispersed phase of the modified polyester resin (b) has an average dispersed particle size of 5 / zm or less, and the epoxy group-containing polyolefin (b 2) and the epoxy group-containing polyolefin (b 2) are dispersed in the dispersed phase of the modified polyester resin (b). The polyolefin (b3) other than the epoxy group-containing polyolefin forms a dispersed phase, and the dispersed phase has a dispersed structure dispersed with an average dispersed particle size of 1 m or less. Resin composition.
3. 前記エポキシ基含有ポリオレフイン ( a 2 ) および (b 2 ) が、 一才レフ ィンとエポキシ基含有モノマーを含む共重合体であることを特徵とする請求項 1 または 2に記載の樹脂組成物。  3. The resin composition according to claim 1, wherein the epoxy group-containing polyolefins (a 2) and (b 2) are a copolymer containing a one-year-old olefin and an epoxy group-containing monomer. object.
4. 前記エポキシ変性ポリオレフイン (c) がエポキシ化合物と密度 0. 9 4 0 g/c m3以下のポリオレフィ ンとの反応により得られるエポキシ変性ポリオレ フィンであることを特徵とする請求項 1〜 3のいずれかに記載の樹脂組成物。 4. The epoxy-modified polyolefin according to claim 1, wherein the epoxy-modified polyolefin (c) is an epoxy-modified polyolefin obtained by reacting an epoxy compound with a polyolefin having a density of 0.940 g / cm 3 or less. The resin composition according to any one of the above.
5. 前記エポキシ変性ポリオレフィン (c) が、 エチレン //な一才レフィ ン共重 合体に、 エチレン性不飽和カルボン酸及びその誘導体から選ばれる少なく とも一 種をグラフ トした変性エチレン// α—才レフィン共重合体とエポキシ化合物との 反応により得られるエポキシ変性ポリオレフィンであることを特徴とする請求項 1〜 4のいずれかに記載の樹脂組成物。  5. The above-mentioned epoxy-modified polyolefin (c) is an ethylene / one-year-old olefin copolymer, and modified ethylene // α- is obtained by grafting at least one kind selected from ethylenically unsaturated carboxylic acids and derivatives thereof. The resin composition according to any one of claims 1 to 4, wherein the resin composition is an epoxy-modified polyolefin obtained by a reaction between a refining copolymer and an epoxy compound.
6. 前記エポキシ変性ポリオレフィン (c) 力く、 エチレン/ α—ォレフィ ン共重 合体に、 エチレン性不飽和カルボン酸及びその誘導体から選ばれる少なく とも一 種をラジカル発生剤の存在下、 エポキシ化合物と共に加熱して得られるエポキシ 変性ポリオレフィンであることを特徴とする請求項 1〜 4のいずれかに記載の樹 脂組成物。 6. The epoxy-modified polyolefin (c) is strongly mixed with at least one selected from ethylenically unsaturated carboxylic acids and derivatives thereof in the ethylene / α-olefin copolymer. The resin composition according to any one of claims 1 to 4, wherein the resin composition is an epoxy-modified polyolefin obtained by heating a seed together with an epoxy compound in the presence of a radical generator.
7. 前記変性ポリフヱニレンスルフィ ド樹脂 (a) 力く、 ポリフエ二レンスルフィ ド (a 1 ) 1 0 0重量部に対して、 エポキシ基含有ポリオレフイ ン (a 2 ) 1〜 5 0重量部を含有することを特徴とする請求項 1〜6のいずれかに記載の樹脂組 成物。  7. The epoxy group-containing polyolefin (a2) is used in an amount of 1 to 50 parts by weight based on 100 parts by weight of the modified polyphenylene sulfide resin (a) and polyphenylene sulfide (a1). The resin composition according to any one of claims 1 to 6, wherein the resin composition is contained.
8. 前記変性ポリフヱニレンスルフィ ド樹脂 (a) が、 ポリフヱニレンスルフィ ド (a 1 ) と、 エポキシ基含有ポリオレフィ ン (a 2) からなる組成物 1 0 0重 量部に対して、 エポキシ基含有ポリオレフイ ン以外のポリオレフイン (a 3) を 1〜5 0重量部を含有してなることを特徴とする請求項 1〜7のいずれかに記載 の樹脂組成物。  8. The modified polyphenylene sulfide resin (a) is used in an amount of 100 parts by weight of a composition comprising a polyphenylene sulfide (a1) and an epoxy group-containing polyolefin (a2). The resin composition according to any one of claims 1 to 7, further comprising 1 to 50 parts by weight of a polyolefin (a3) other than the epoxy group-containing polyolefin.
9. 前記変性ポリフヱニレンスルフィ ド樹脂 (a) のアイゾッ ド衝擊強度が 3 0 0 J /m以上であることを特徵とする請求項 1〜8のいずれかに記載の樹脂組成 物。  9. The resin composition according to any one of claims 1 to 8, wherein the modified polyphenylene sulfide resin (a) has an Izod impact strength of at least 300 J / m.
1 0. 前記変性ポリエステル樹脂 (b) 力《、 ポリエステル (b 1 ) 1 0 0重量部 に対して、 エポキシ基含有ポリオレフイ ン (b 2) 1 0〜 8 0重量部およびェポ キシ基含有ポリオレフィン以外のポリオレフイ ン (b 3) 1 0 ~ 8 0重量部を含 有してなることを特徴とする請求項 1〜 9のいずれかに記載の樹脂組成物。  100. 100 parts by weight of the modified polyester resin (b), 100 to 100 parts by weight of the polyester (b1), and 100 to 80 parts by weight of an epoxy group-containing polyolefin (b2) and an epoxy group-containing polyolefin. The resin composition according to any one of claims 1 to 9, comprising 10 to 80 parts by weight of a polyolefin other than the above (b3).
1 1. 前記変性ポリエステル樹脂 (b) のアイゾッ ド衝撃強度が 5 0 0 JZm以 上であることを特徵とする請求項 1〜 1 0のいずれかに記載の樹脂組成物。 11. The resin composition according to any one of claims 1 to 10, wherein the modified polyester resin (b) has an Izod impact strength of 500 JZm or more.
PCT/JP2004/007550 2003-05-27 2004-05-26 Resin composition WO2004106434A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003148914A JP4266704B2 (en) 2003-05-27 2003-05-27 Resin composition
JP2003-148914 2003-05-27

Publications (1)

Publication Number Publication Date
WO2004106434A1 true WO2004106434A1 (en) 2004-12-09

Family

ID=33487135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007550 WO2004106434A1 (en) 2003-05-27 2004-05-26 Resin composition

Country Status (2)

Country Link
JP (1) JP4266704B2 (en)
WO (1) WO2004106434A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115926287A (en) * 2022-12-01 2023-04-07 江苏极易新材料有限公司 Granulating method of compounded agent with melt finger control for polyolefin

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8685598B2 (en) 2009-10-07 2014-04-01 Mitsui Chemicals, Inc. Pellicle and mask adhesive therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320508A (en) * 1992-05-21 1993-12-03 Tonen Corp Thermoplastic resin composition
JPH08165353A (en) * 1994-12-15 1996-06-25 Kanegafuchi Chem Ind Co Ltd Production of thermoplastic resin composition
JP2000265059A (en) * 1999-03-12 2000-09-26 Toray Ind Inc Polyphenylene sulfide resin composition and molded article therefrom
JP2002069273A (en) * 2000-08-25 2002-03-08 Toray Ind Inc Resin structure, and container for transporting and/or storing drug solution or gas made thereof and its attachment
JP2003146332A (en) * 2001-11-13 2003-05-21 Toray Ind Inc Multi-layered hollow container and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320508A (en) * 1992-05-21 1993-12-03 Tonen Corp Thermoplastic resin composition
JPH08165353A (en) * 1994-12-15 1996-06-25 Kanegafuchi Chem Ind Co Ltd Production of thermoplastic resin composition
JP2000265059A (en) * 1999-03-12 2000-09-26 Toray Ind Inc Polyphenylene sulfide resin composition and molded article therefrom
JP2002069273A (en) * 2000-08-25 2002-03-08 Toray Ind Inc Resin structure, and container for transporting and/or storing drug solution or gas made thereof and its attachment
JP2003146332A (en) * 2001-11-13 2003-05-21 Toray Ind Inc Multi-layered hollow container and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115926287A (en) * 2022-12-01 2023-04-07 江苏极易新材料有限公司 Granulating method of compounded agent with melt finger control for polyolefin

Also Published As

Publication number Publication date
JP2004352755A (en) 2004-12-16
JP4266704B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
JP4032656B2 (en) Resin molded product and manufacturing method thereof
EP1270671B1 (en) Resin structure and use thereof
WO2001027203A1 (en) Resin structure and use thereof
JP3931622B2 (en) Resin structure
JP4609743B2 (en) Resin structure and its use
JP2001226537A (en) Structure of thermoplastic resin and molded article thereof
JP4639442B2 (en) Resin structure, and chemical or gas transport and / or storage container comprising the resin structure and its accessories.
WO2004106434A1 (en) Resin composition
JP2005248170A (en) Polyphenylene sulfide resin composition
JP2002249595A (en) Injection molded article
JP4151336B2 (en) Resin composition and method for producing the same
JP4186617B2 (en) Resin composition
JP4352773B2 (en) Polyester resin composition
JP4496397B2 (en) Containers or accessories for transporting or storing chemicals and / or gases
JP4344176B2 (en) Containers or accessories for transporting or storing chemicals and / or gases
JP2002121334A (en) Resin structure, vessel for carrying and/or storing of chemical or gas, and its attachment parts
JP4003432B2 (en) Barrier multilayer hollow container and method for producing the same
JP4701662B2 (en) Polyester resin composition
JPH10230556A (en) Conductive multilayered hollow molded object and conductive resin composition
JP2001172445A (en) Resin composition having resistance to gas and/or liquid permeability and its molded product
JP2005036068A (en) Container or its additional part for transporting or storing chemical fluid and/or gas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase